
Università degli Studi di Padova
Departimento di Ingegneria dell’Informazione

TESI DI DOTTORATO

Randomness, Age, Work: Ingredients
for Secure Distributed Hash Tables

Dottorando:
Vincenzo-Maria Cappelleri

Supervisore:
Prof. Enoch Peserico

Direttore della Scuola:
Prof. Matteo Bertocco

Coordinatore d’indirizzo:
Prof. Carlo Ferrari

January 31st, 2017

i

Preface
My journey among distributed systems began when I was an under-
graduate student. Since then I became immensely fascinated from
their aesthetically pleasing complexity, especially when dealing with
spontaneous networks. The enormous number of things that can
go wrong, the variety of the machines hosting their instances, it all
reminds me of the complexity in human society.

The security problems affecting these contraptions however has
always deeply bugged me. With this work, even in its simplicity,
I hope to offer the community yet another idea on how to put a
patch on it.

Stylistically, this dissertation is written using the plural noun.
In “The Sybil Attack” Douceur wrote: “Use of the plural pronoun is
customary even in solely authored research papers; however, given
the subject of the present paper, its use herein is particularly ironic”.
For the importance that his work had on all my endeavor, I thought
it was appropriate to join in this little joke.

I’ve never been good at inscriptions. Nonetheless my gratitude
goes to friends and family and, albeit I will not explicitly write
their names, they definitely know my thoughts are for them as I
write these few lines.

Vincenzo-Maria Cappelleri
Padova

January 31st, 2017

ii

Abstract

Distributed Hash Tables (DHTs) are a popular and natu-
ral choice when dealing with dynamic resource location and
routing. DHTs basically provide two main functions: saving
(key, value) records in a network environment and, given a
key, find the node responsible for it, optionally retrieving
the associated value. However, all predominant DHT de-
signs suffer a number of security flaws that expose nodes
and stored data to a number of malicious attacks, ranging
from disrupting correct DHT routing to corrupting data or
making it unavailable. Thus even if DHTs are a standard
layer for some mainstream systems (like BitTorrent or KAD
clients), said vulnerabilities may prevent more security-aware
systems from taking advantage of the ease of indexing and
publishing on DHTs.

Through the years a variety of solutions to the security
flaws of DHTs have been proposed both from academia
and practitioners, ranging from authentication via Central
Authorities to social-network based ones. These solutions
are often tailored to DHT specific implementations, simply
try to mitigate without eliminating hostile actions aimed
at resources or nodes. Moreover all these solutions often
sports serious limitations or make strong assumptions on
the underlying network.

We present, after after providing a useful abstract model
of the DHT protocol and infrastructure, two new primitives.
We extend a “standard” proof-of-work primitive making of it
also a “proof of age” primitive (informally, allowing a node
to prove it is “sufficiently old”) and a “shared random seed”
primitive (informally, producing a new, shared, seed that
was completely unpredictable in a “sufficiently remote” past).
These primitives are then integrated into the basic DHT
model obtaining an “enhanced” DHT design, resilient to
many common attacks. This work also shows how to adapt
a Block Chain scheme – a continuously growing list of records
(or blocks) protected from alteration or forgery – to provide
a possible infrastructure for our proposed secure design.
Finally a working proof-of-concept software implementing
an “enhanced” Kademlia-based DHT is presented, together
with some experimental results showing that, in practice,

iii

the performance overhead of the additional security layer is
more than tolerable.

Therefore this work provides a threefold contribution. It
describes a general set of new primitives (adaptable to any
DHT matching our basic model) achieving a secure DHT;
it proposes an actionable design to attain said primitives;
it makes public a proof-of-concept implementation of a full
“enhanced” DHT system, which a preliminary performance
evaluation shows to be actually usable in practice.

This work was supported by a national grant (“legge
170”) on “innovative broadband telecommunication systems,
possibly with satellite usage, for different use cases regard-
ing security, prevention and intervention in case of natural
disasters”.

iv

Abstract

Nel contesto dell’indirizzamento dinamico basato su
risorse le Tabelle di Hash Distribuite (DHT) si rivelano
una scelta naturale oltre che molto apprezzata. Le DHT
forniscono due funzioni principali: il salvataggio di coppie
(chiave, valore) e, data una chiave, la localizzazione del
nodo per essa responsabile, opzionalmente unita al recupero
del valore associato. La maggior parte delle DHT realiz-
zate sono ad ogni modo vulnerabili a falle di sicurezza che
espongono i nodi ed i dati salvati ad un certo numero di
possibili attacchi. Tali attacchi spaziano dall’impedire il
corretto instradamento sulla DHT al corrompere o rendere
indisponibili i dati. Anche se le DHT sono uno standard
de facto in sistemi molto diffusi (come per esempio i client
di BitTorrent o per la rete KAD) la debolezza di fronte a
questi attacchi potrebbe tuttavia impedirne l’adozione da
parte di sistemi maggiormente incentrati sulla sicurezza, pur
potendo trarre vantaggio dalla facilità di indicizzazione e
pubblicazione delle DHT.

Nel corso degli anni, sia da parte della comunità ac-
cademica che da parte di sviluppatori professionisti, sono
state proposte molte possibili soluzioni al problema di si-
curezza della DHT, spaziando da idee basate sul controllo
esercitato da parte di Autorità Centrali a meccanismi basati
sulle social network. Le proposte sono spesso personalizzate
per specifiche realizzazioni delle DHT o, spesso, cercano
semplicemente di mitigare senza eliminare la possibilità di
azioni ostili verso i nodi o le risorse. Inoltre le soluzioni
proposte spesso dimostrano di essere seriamente limitate o
basate su assunzioni piuttosto forti relativamente alla rete
di riferimento.

In questo lavoro, dopo aver fornito un’utile e gener-
ica astrazione del protocollo e delle infrastrutture di una
DHT, presentiamo due nuove primitive. Estendiamo la
“normale” funzione di proof-of-work facendo si che offra
anche una “prova d’età” (ossia, informalmente, permette
di provare che un nodo sia sufficientemente “anziano”) ed
una primitiva che permetta l’accesso ad un seme randomico
distribuito. Utilizzando queste due nuove primitive ed inte-
grandole nell’astrazione basilare otteniamo una DHT “miglio-
rata”, resistente a molti degi comuni attacchi inferti a questi

v

sistemi. Inoltre mostreremo come un sistema basato sulle
Block Chain – una collezione di “blocchi di dati” protetta con-
tro la contraffazione – possa fornire una possibile fondazione
per la nostra DHT migliorata. Infine abbiamo realizzato un
software prototipo che realizza una DHT sicura basata sul
sistema Kademlia. Utilizzando questo software abbiamo con-
dotto degli esperimenti, dimostrando come questo sistema
sia utilizzabile in pratica nonostante il lavoro addizionale
richiesto dai nodi.

Concludendo questo lavoro forniamo il seguente contrib-
uto: descriviamo un nuovo insieme di primitive per ottenere
una DHT sicura (adattabile ad ogni sistema conforme alla
nostra definizione di DHT), proponiamo un’architettura
concreta per ottenere una DHT migliorata, ed annunciamo
una versione prototipale e funzionante di questo sistema.

Questo lavoro è stato possibile tramite una borsa di
studio ad ambito vincolato (“legge 170”) sul tema “sistemi
di telecomunicazione innovativi a larga banda anche con
impiego di satelliti per utenze differenziate in materia di
sicurezza, prevenzione e intervento in caso di catastrofi nat-
urali”

Contents

List of Figures viii

List of Tables xii

List of Acronyms xv

1 Introduction 1

2 The Distributed Hash Table 9
2.1 Description . 9
2.2 A basic DHT model 11
2.3 DHT examples . 14

2.3.1 CAN . 15
2.3.2 Chord . 17
2.3.3 Pastry . 19
2.3.4 Tapestry . 20
2.3.5 Kademlia 22

3 DHT Security 27
3.1 Sybil attack . 28

3.1.1 At a glance 28
3.1.2 Practical relevance 29
3.1.3 Proposed solutions 31
3.1.4 Open issues 32

3.2 Node insertion . 33
3.2.1 At a glance 33
3.2.2 Practical relevance 34
3.2.3 Proposed solutions 35
3.2.4 Open issues 36

3.3 Publish attack . 37

vi

CONTENTS vii

3.3.1 At a glance 37
3.3.2 Practical relevance 38
3.3.3 Proposed solutions 39
3.3.4 Open issues 40

3.4 Eclipse attack . 41
3.4.1 At a glance 41
3.4.2 Practical relevance 42
3.4.3 Proposed solutions 43
3.4.4 Open issues 44

4 Our new secure DHT 45

5 Security guarantees 51
5.1 Preliminaries . 51
5.2 Assumptions . 52
5.3 Proximity guarantees 53
5.4 Poisoning the routing tables 54
5.5 Summary of changes 56

6 New DHT primitives through a Block Chain 57
6.1 A generic block chain model 57
6.2 A Block Chain enabling the new primitives 64
6.3 Current block chains 67

6.3.1 BitCoin, the first block chain 67
6.3.2 Other notable block chains 71
6.3.3 NameCoin 73

7 A secure DHT implementation 75
7.1 An easy-to-use secure DHT 75
7.2 System architecture 76

7.2.1 The Block Chain module 79
7.2.2 The DHT module 81

7.3 Future work . 85

8 Experimental evaluation 89
8.1 Experimental set up 90
8.2 Performance evaluation 94

8.2.1 Block chain related tests 94
8.2.2 DHT tests 97

9 Conclusions 111

Bibliography 115

List of Figures

2.1 Example of a CAN 2-d virtual space partitioned among
five nodes. 15

2.2 Example of a 16 nodes Chord network. One of the
nodes shows its fingers and its predecessor pointer. Solid
arrows (inside the identifier circle) represent fingers to
the other nodes, while the dotted arrow (outside of the
identifier circle) represents the predecessor pointer. . . 18

2.3 Example of a Kademlia network using 3-bits node IDs.
All nodes from each of the three highlighted areas will
be referenced in the same k-bucket in the selected node’s
(with ID 101) routing table. 23

3.1 A Sybil attack example. On a network where honest
nodes only deploy one ID each, an attacker (the one
marked with a star) deploys several IDs (marked in red). 29

3.2 A Node insertion attack example. In the left part of the
image a Chord-like network is shown (see Section 2.3.2
for a reference on Chord mechanics). The placeholder
marked with an @ symbol represent the target resource’s
ID position. The rightful node responsible for the re-
source is one the blue one, marked with a small check
sign upon it. In the right part of the image is depicted
the same network after a malicious node (the red one)
perform a Node insertion attack, purposely becoming
the closest node to target resource. All look-up queries
for the resources will be directed toward the attacker
node after its inception. 34

viii

List of Figures ix

3.3 An Eclipse attack example. The right part of the image
shows a generic Distributed Hash Table (DHT) network.
The node on the extreme left part of the image wanted
to join the DHT but it ended up connecting only to four
malicious nodes (marked in red). Thus all victim node’s
connections to the main DHT network are carried out
throughout the set of malicious nodes that are able, if
and when they desire, to isolate the victim from the rest
of the network. 41

6.1 A graphical representation of a single block chain block
and all its basic components. 58

6.2 An example of a binary Merkle Tree built on transactions.
The root node is a convenient digest, representing the
whole transactions collection’s hash in the block header. 59

6.3 An example of three blocks from an hypothetical block
chain. The link between two subsequent blocks, consist-
ing on the predecessor’s header ’s hash, is represented by
the arrows. 60

6.4 A simplified transaction verification is shown in this pic-
ture. It is possible to check if a transaction is contained
in a collection without knowing all other transactions if
the collection itself is organized as a binary Merkle Tree,
just by checking the tree’s root hash. In this example to
check if a certain transaction (marked with the star and
blue colored) is contained in a collection whose Merkle
Tree hash is known just three more hash values are re-
quired to compute the root value: they are shown as
the red hashes. In the image the whole Merkle Tree is
completed (with light gray elements and dotted arrows)
for comparison. 62

8.1 Blocks’ computation times during block chain test. The
red vertical dashed line marks the point after which no
new miner nodes were spawned in the network, leaving
it in a steady computation regime. The green dotted
horizontal line shows the average block’s computation
time during the second half of the experiment (after
block 200). 95

x List of Figures

8.2 Plot of how the hash value of key string “Lorem ipsum
dolor sit amet” was changed by random seeds during
the performance tests. 96

8.3 Pictorial representation of how the hash value of key
string “Lorem ipsum dolor sit amet” was changed by
random seeds ranging from seed number 12 to seed
number 17 during the performance tests. 96

8.4 Store times recorded on a Random-Age-Work DHT
(RAW DHT) node running a block chain module thick
node. Both plots show the linear and logarithmic fit to
the data. (a) only shows mean values, while (b) shows
also all the sampled values. 98

8.5 Store times recorded on a RAW DHT node running a
block chain module thin node. Both plots show the
linear and logarithmic fit to the data. (a) only shows
mean values, while (b) shows also all the sampled values. 99

8.6 Estimation of store times on a RAW DHT network sizing
up to 1 million nodes. The dashed and dot-dashed lines
are the plots of logarithmic fits shown in Figure 8.4 and
Figure 8.5. The solid line instead, is the plot of the OLS
logarithmic fit on the whole body of data. 100

8.7 Look-up times recorded on a RAW DHT node running
a block chain module thick node. Both plots show the
linear and logarithmic fit to the data. (a) only shows
mean values, while (b) shows also all the sampled values.102

8.8 Look-up times recorded on a RAW DHT node running
a block chain module thin node. Both plots show the
linear and logarithmic fit to the data. (a) only shows
mean values, while (b) shows also all the sampled values.103

8.9 RAW DHT average start-up times. Full bars represent
the time from the moment the software is started to the
moment the DHT client is ready to manage user requests
(or ready as a back-end). Each bar is broken down in
time spent starting the DHT module, the block chain
module and initializing other software data structures
e.g. database, logging facilities, and other transient Java
objects. 105

List of Figures xi

8.10 Plot showing the number of of active nodes during evo-
lution of a network made up of a maximum number of
8 or 32 nodes, each of them equipped with a thick block
chain client. The two plots shows different rates of nodes
reshuffling. 108

8.11 The red points mark the average store times recorded
during the churning networks experiments. Blue points
instead marks the average store times (both from Fig-
ure 8.4 and Figure 8.5). Note that the dashed vertical
lines are drawn exclusively to guide the eye: particularly
in the left side of the graph points coupling may be
mistaken. 109

List of Tables

8.1 Eridano cluster system specifications. 90
8.2 System specifications of personal computers used to test

RAW DHT software. 92
8.3 Duration of the experiments performed running RAW

DHT software. 93
8.4 This table shows, for every “churning network” exper-

imental setup, both the average percentage of nodes
that failed during the distributed software run and the
maximum percentage of nodes failing during any of such
experiments. Note that during each of the experiments
the network evolved (nodes leaving or re-joining it) ran-
domly. 106

xii

List of Acronyms

CA Central Authority . 31

CAN Content Addressable Netwgeork . 15

CLI Command Line Interface. .78

CS Certification Service . 43

DNS Domain Name System . 67

DoS Denial of Service . 44

DDoS Distributed Denial of Service . 39

DHT Distributed Hash Table . ix

DOLR Decentralized Object Location and Routing 11

ESB Enterprise Service Bus . 75

F2F friend-to-friend . 25

HSQLDB HyperSQL DataBase . 78

IBS Identity Based Signature . 40

IP Internet Protocol . 11

ISP Internet Service Provider. .83

JVM Java Virtual Machine . 77

MANET Mobile Ad-hoc Network . 30

MOM Message Oriented Middleware . 75

xv

xvi LIST OF ACRONYMS

NAT Network Address Translation . 91

OLS Ordinary Least Squares . 97

ORB Object Request Broker . 75

ORM Object-Relational Mapping . 78

P2P peer-to-peer . 9

PHP PHP: Hypertext Preprocessor . 11

PKG Private Key Generator . 40

PKI Public Key Infrastructure . 69

RAW DHT Random-Age-Work DHT. x

RMI Remote Method Invocation . 76

RPC Remote Procedure Call . 24

TCP Transmission Control Protocol . 81

TDD Test-Driven Development. .77

UDP User Datagram Protocol. .81

VANET Vehicular Ad-hoc Network . 30

Colophon

Some of the illustrations created for this document use
icons made by Alfredo Hernandez1 and by FreePik2 from
www.flaticon.com and licensed under the Flaticon Basic
License.

This document was typeset using LATEX and the memoir
class created by Peter Wilson. The original template was
created by Federico Maggi (fede@maggi.cc) with extensive
modifications by Vel (vel@latextemplates.com).

1www.flaticon.com/authors/alfredo-hernandez
2www.flaticon.com/authors/freepik and www.freepik.com/

www.flaticon.com
www.flaticon.com/authors/alfredo-hernandez
www.flaticon.com/authors/freepik
www.freepik.com/

Introduction 1

We introduce a new Distributed Hash Table (DHT) system concept,
resilient to attacks against keys integrity. We will go through
motivations that lead to this work, a general description of DHTs,
and afterwards we will move on to a design that prevents malicious
entities from tampering on selected keys. Then we describe a
possible implementation of this design, backed up by a specifically
repurposed block chain system. Need for a tailored block chain,
instead of piggybacking our system on an already existent one, will
also be addressed. Before diving in the details presented through
this body of work, next paragraphs will provide the reader with a
general overview.

Network pervasiveness makes distributed software a modern and
attractive opportunity for developers. Cloud computing systems
are usually provided by companies that – by means of applications,
platforms and infrastructures – enable final users to access ubiq-
uitous services. Also, high bandwidth connection availability and
the growing computational capacity of PCs as well as hand-held
devices can contribute to the rise of spontaneous and heterogeneous
distributed systems. Especially in the open source community, de-
velopment of such systems could lead to new and unprecedented
interesting applications.

Distributed software development however, contrarily to the
more traditional centralized software architecture, comes with a
few complications due to its network and variable nature. To help

1

1. Introduction

developers cope with data exchange among the spreaded instances
issue – i.e. data marshalling – many middleware resources has been
released over the years. Two representative examples are CORBA
or Java RMI; for a more complete list of such tools please refer to
Section 7.1. Letting aside considerations about the required (often
steep) learning curve associated with these instruments, the issue
of the application network setup is almost always neglected and
left to the ingenuity of the final developers. Albeit some aspects of
the network setup are straightforward – e.g. socket management
– dealing with spontaneous unstructured networks requires, for
example, discovery of new idling application instances and routing
within the distributed overlay. These issues may prove absolutely
not trivial in practice.

Distributed Hash Tables (DHTs) are a popular choice addressing
both routing and node location. A general DHT is a distributed sys-
tem that, ultimately, resembles a normal hash table data structure
but allows each of its instances to store key/value records on its
network and retrieve them in a second moment. These records are
distributed among the instances using some kind of metric between
the record’s key and nodes identifiers (IDs). Resources (whose iden-
tifier usually coincide with the key’s hash) and node’s identifiers
share the same address space. Many different DHT schemes have
been proposed over the years: the more important designs are de-
scribed in Section 2.3. To overcome small unimportant differences,
we outlined a general DHT model, presented in Section 2.2. In this
work DHT records will always be described as key/value couples
even if, for example, Chord (Section 2.3.2) only manages keys while
KAD (a Kademlia implementation, Section 2.3.5.1) links keys with
references of nodes owning resources identified by certain keys. A
key/value abstraction is the most general possible: in Chord’s case
value can be considered a “null” value and in KAD’s case it is just
a proxy to the actual value. Due to their loosely knit but highly
organized overlay, DHTs allow every node to route over a changing
network requiring a small number of contacts compared to the over-
all network size. Each node is required to host a relatively small
set of keys but nonetheless record integrity is generally granted.
Among all DHT designs, those based on Kademlia are nowadays
the most used, backboning popular file-sharing systems like eMule
and Bittorrent (plus their variants). These systems serves millions
of users, and routing is almost entirely based on their DHTs.

2

DHTs, unfortunately, are known to be prone to a number of
security threats. A key aspect of DHTs is versatility, a trait provided
by its self-organizing structure. However such versatility is favored
by lack of nodes authentication: almost all current DHT designs
completely trust nodes’ information provided by nodes themselves.
This feature can be exploited to perform various attacks, the most
famous being the Sybil attack (Section 3.1) – which was unveiled
just a year after the first DHT designs was presented. Sybil attack
however is not the only threat, nor necessarily the most important
one. In Section 3.2 and Section 3.3, for example, we present two
attacks that directly undermine records availability: Node insertion
attack and Publish attack. In a Node insertion attack a malicious
node purposely chooses its ID; this way it persuades the other
nodes to bestow on it storage of a specific key. Then, whenever an
honest DHT instance will ask for the record identified by target
key, malicious node will simply deny it or, alternatively, reply with
bogus information. Performing such attacks a malicious entity can
easily target specific nodes, keys, values, or all of the aforementioned
resources. Chapter 3 extensively presents the major security threats
impairing Distributed Hash Tables.

Nonetheless a reliable and secure content-based or resource-
based routing layer appears to be essential. Widely deployed ap-
plications – e.g. Bittorrent – still rely on DHTs in spite of their
vulnerabilities due to the fact that no valid alternative to DHTs
tackling the issue of dynamic resource routing is known. Reliable
countermeasures for these attacks are still considered open questions.
Security weaknesses limit DHTs to be just “best effort” systems and
make them only suitable to some kinds of applications. However
even more security-aware applications could (and would) benefit
from what a DHT has to offer: aside from a network layer where
nodes may be located relying on dynamic keys rather than physical
network addresses, also the possibility to store short chunk of data
on an ubiquitous medium could help developing applications coping
with fast changing deployment scenarios.

An intuition on how to counteract Node insertion attack however
may reside in a non-fixed resource positioning. To successfully gain
control over a certain resource, the attacker must carefully choose its
“position” – i.e. its ID – trying to become the “closest node possible”
to its target. If keys were to periodically “move” (or “rotate”) across
the resources’ address space along unpredictable trajectories though,

3

1. Introduction

such an endeavor would get dramatically harder. So, creating a
mechanism that permits to permanently keep resources “on step
ahead” of malicious nodes could be a way to frustrate any attacker’s
attempt to tamper with a target resource.

Elaborating on this intuition we define a new DHT that, relying
on the addition of just two new primitives, leads to a system
protecting key integrity as well as limiting the appearance of Sybil
nodes. This new design, which is presented in Chapter 4 is built
upon the generic DHT system of Section 2.2 retaining all of its basic
primitives. On top of them we define getSeed and isOldWorker. To
protect keys integrity getSeed and isOldWorker do work together.
The first, getSeed, provides access to a shared random seed for
every node in the network. This seed will, of course, periodically
change and all the network accessing getSeed will be able to access
its current value – the correct one. Nodes will then combine such
seed with the normal mechanism distributing keys among the nodes
partaking to the DHT. Changes in the random seed will affect
resources positioning among the DHT nodes, thus causing a periodic
“resources’ rotation”. The other primitive, isOldWorker, checks if
an ID become active before current random seed was generated
and that, in the recent past, it invested some effort in the task of
maintaining incepted ID. Thus whenever trying to store a resource
on a node (through its ID), using the combination of getSeed and
isOld, recipient will be considered trustworthy if and only if:

1. recipient node’s ID appears to be the closest to the (randomly
generated) resource’s position

2. recipient node chose its ID before anyone could know that
resources position would be close to such ID

3. recipient node spent some effort to “activate” its ID.

Requiring an effort at ID inception time is necessary to discourage
nodes from, slowly but steadily, generating as much IDs as necessary
to eventually rise their probability of “reaching the correct location”.
Moreover the number of different IDs behind which a single node
can “hide” is bounded by the ability of the offending node to create
them. A simple way to achieve this lies in requiring each node
to provide a difficult to compute yet easy to check token derived
from getSeed current value. The set of new primitives can be

4

incorporated in a generic DHT design with minor modifications
on the basic primitives mechanisms – e.g. resources hashing and
routing procedures. Chapter 5 provides proofs that this newly
proposed proposed design is correct and secure.

The main challenge in our new DHT design resides in gen-
erating and accessing a distributed random seed. The two new
primitives proposed by this work rely on providing all the network
nodes with a consistent value. The problem of distributed consen-
sus however is still an open one [29]. Nonetheless if, instead of
a global consensus, we loose requirements to a “quasi-consensus”
or to a “almost-distributed-consensus” scheme, tractability of the
issue significantly improves. Example of systems relying on almost
distributed consensus are block chain systems.

Block chains (a general description is available in Section 6.1)
are a distributed data collection, whose security is based on the
difficulty of chaining new data to existing one. Data is organized
in quantum units called blocks, linked one another building up a
chain. A block is identified both by its position in the chain and by
a value obtained hashing it. The difficulty securing the system lies
in the unpredictability of required data fragments without which
new blocks are not considered valid: to the very least a block must
satisfy certain criterion on its own hash and include the hash of
its predecessor block among the data contributing to its own hash
value. Block chains are known to undergo transient disagreement
about the newly added chunks. Nonetheless, disregarding the most
recent blocks added to the chain, eventually all participating nodes
converge to a network-wise consensus about the main trunk stored
in the system.

To back up our new theoretical DHT design we developed a
working proof-of-concept implementation. This system is coded
in Java and has a modular architecture. The software separates
the local system management operations; a database interface; a
module providing a back-end for the two new primitives; and a
module managing DHT operations as well as an interface to access
it. Our implementation is described in detail in Chapter 7 while
Chapter 8 discuss its practical performance analyzing the system
through experimental evaluation.

The module serving as back-end for getSeed and isOldWorker
implements a customized block chain. Unlike popular existent block
chains – e.g. BitCoin, detailed in Section 6.3.1 – ours does not have a

5

1. Introduction

coin value associated: the transactions stored in its blocks do record
authentication credentials linked to DHT identifiers (IDs). Aside
from this difference and the choice of SHA-512 hashing algorithm,
our block chain module is modeled after BitCoin under every other
conceptual aspect.

The DHT module is an implementation of the design proposed
in Chapter 4. It is a Kademlia-like system (see Section 2.3.5 for
details about Kademlia) using the block chain module as source of
random seeds and as “registration authority”. In a nutshell both
getSeed and isOldWorker can be easily piggybacked on a block chain
due to its very nature. A block ’s hash can be used as a random
seed: there is no possible way to know beforehand the value of the
next block ’s hash, independently from of how much information
about the already known blocks is available. To tune the new
seeds extraction rate one can tune the difficulty to computer a new
block or (preferably) devise a mechanism selecting only some of
the chained blocks; for example a seed could be represented by
the value of the hash of a block whose number is divisible by a
certain prime number. Once established which blocks – namely the
“seed blocks”– will yield a new seed, getSeed can be implemented by
just accessing the current block chain copy and returning the hash
of the most recent seed block available. Thus said implementing
isOldWorker is even simpler: an ID will pass isOldWorker check
if it appears in a transaction stored in a block preceding the one
used by getSeed. We also require that any node provides in its
transaction an integer that hashed with its own ID and the value
of the submission’s seed obtained from getSeed produces an output
satisfying some constrains: finding such an integer may require an
extensive sequential search, but its verification is straightforward.
Additionally a constrain about “how old a transaction can be” is
required, but this will be detailed in Chapters 4 and 5.

Usage of a block chain is a convenient solution, both for its out-
of-the-box nature and for its replaceability. Cryptocurrencies stems
from very thriving communities, made up by academics as well as
practitioners. For their economic value (see Section 6.3.2) bugs,
vulnerabilities and weaknesses are constantly discovered and tackled
down. Thus we can concentrate on the problem at hand – make a
secure DHT – trusting that our back-end is not a criticality by itself
or that, whenever a problem may be encountered, the community
will readily hand over a quick fix. Moreover it is important to note

6

that a block chain is just a possible choice to implement a back-end
for our secure DHT: it is not, by any possible mean, the only
solution nor necessarily the best one. Any (distributed) mechanism
providing

1. a random value accepted by the majority of the network

2. a way to timestamp an ID inception and its required effort

will be equally acceptable.
We chose to develop a new block chain instead of using an

existent one out of necessity. There exist block chains that, alongside
information about coins ownership, store custom data retrievable
through specialized clients. One of the most prominent example
of such systems is NameCoin (more details on it can be found
in Section 6.3.3). Albeit NameCoin offers the possibility to store
personal records, a plain text representation of the authentication
data required by our system exceeds the maximum size allowed by
this block chain. Moreover players entering the speculation block
chain business may cause unsolicited surges in transactions that,
although not affecting the system functionality, could lead to a
futile momentary slow down.

Concluding, our contribution with this work is threefold, the-
oretical and practical. We describe two new primitives and proof
their validity; on these new primitives we describe a novel actionable
DHT design, generic enough to be either implemented on its own or
to be applied to already existent designs with minor adjustments;
and finally we developed a modified version of a Kademlia DHT
that, using a block chain, implements our new secure design to
empirically validate our proposed system.

7

The Distributed Hash Table 2

In this chapter the Distributed Hash Table (DHT) concept will be
introduced. In the first section we provide a general description and
motivation for DHTs while in the second section we will present
a general DHT model. This model will be extended in Chapter 4,
where we outline a secure Distributed Hash Table design. The
last section of this chapter will describe in detail some notable
DHTs, giving the reader a better understanding of the most popular
designs in this field.

2.1 Description

The first part of this section provides a brief history that lead to
the development of DHTs and their motivation, while the second
part gives a general idea of what a DHT is and behaves.

Large heterogeneous (possibly spontaneous) distributed systems,
like for example peer-to-peer (P2P) systems, do have the critical
need of locating any kind of resource required by the system. These
include, for example, system nodes, data records, file pointers or
any other information disseminated across the system itself.

By the end of the 90s were Napster, Gnutella and Freenet1 were
popular P2P systems. Although they all shared similar goals these

1Freenet, unlike original Gnutella and Napster clients, is still developed
and available at http://freenetproject.org/

9

http://freenetproject.org/

2. The Distributed Hash Table

systems used different protocols to locate data, hosted on the peer
nodes composing the network. Following paragraphs provide an
overview both of these systems and how they dealt with the issue.

Napster 2 was (mainly) a music file-sharing platform and, proba-
bly, the first large P2P content delivery system. Resources’ indexing
was performed by a central server on behalf of the peers. When
joining the network each node would sent the server a list of the
files it hosted. Thus when nodes searched for a resource, this query
was managed by the central server that would then reply to it
with a list of nodes advertising ownership of requested files. The
querying node could then contact one or more of the discovered
nodes and directly download the file of interest. The central server
feature represented a single point of failure which exposed Napster
to hostile attacks or lawsuits and, ultimately, deemed its fate [13].

The name Gnutella may refer both to Gnutella protocol and to
the first Gnutella client, from whom the network derives its name.
The first client, originally developed by Nullsoft was retired soon
after its initial release, but in a matter of few days Gnutella protocol
was reverse engineered and a number of free open source compatible
clients made their appearance. Gnutella protocol, unlike Napster ’s,
did locate resources on the network through a flood query strategy.
Albeit flooding the network in an attempt to locate a resource
does avoid a single point of failure, it is obviously less efficient.
Since Gnutella protocol does rely on a totally unstructured network
overlay, it cannot be easily shut down like happened with Napster.
For this reason a number of clients are currently developed and
maintained.

Freenet [17] is a fully decentralized free software allowing users
to share whole files. These files are stored in a distributed file-
system fashion and are associated to keys. The system lets users
retrieve desired files through a key-based routing heuristic. However
no guarantee that data will be found and retrieved is given. As a
side note, Freenet allows the creation of web sites (called “freesites”)
hosted and reachable through its network. Note that “freesites” can
contain only static content and, due to bandwidth and latency lim-

2The original Napster system ceased operations in 2001 due to legal difficul-
ties over copyright infringement. It was then acquired by Roxio that, using the
same name and logo, turned it in an online music store. In 2011 the Napster
store was merged with Rhapsody.

10

2.2. A basic DHT model

itations, complex (albeit extremely common) web technologies like
PHP: Hypertext Preprocessor (PHP) or MySQL are not supported.

Even if Gnutella’s and Napster ’s goals differed from Freenet ’s,
the three systems all shared a common necessity: to publish (and,
of course, to locate and retrieve) data on their overlay networks.
This is a non-trivial task: system’s nodes can usually be reached
only via their Internet Protocol (IP) address.

Need for an infrastructure that can provide a resources look-up
service or a Decentralized Object Location and Routing (DOLR) is
what motivated development the first DHTs. A DHT offers such a
service letting the nodes store and search (key, value) pairs as in
an hash table data structure, but these records are distributed (and
possibly redounded) throughout all the nodes participating in the
system’s network.

Distributed Hash Tables use a structured key-based routing
mechanism attaining the decentralization feature of Gnutella and
Freenet but still guaranteeing accurate and efficient results as Nap-
ster did.

Usually DHTs are characterized by three main properties: the
system is built up from the nodes without central coordination – i.e.
autonomous and decentralized; system reliability, within reasonable
constrains, should not be affected by nodes joining and leaving the
network or simply failing – i.e. fault tolerant; system efficiency
should be independent by network’s growth in the number of nodes
– i.e. scalable. A common technique used by most DHTs to achieve
these features is that each node is required to coordinate with a
small fraction of the nodes in the network; usually each node know
a small fraction of the n total nodes, typically just O(log n).

In the next section we provide a model for a basic DHT. In
Section 2.3 instead some notable DHTs will be described.

2.2 A basic DHT model

In this section we will describe the primitives and objects required
for a generic DHT. Through the years the issue of dynamically
and efficiently locate a particular resource – e.g. a key, a reference
to a file or a reference to a node – has been addressed in multiple
ways, most notably via Distributed Hash Tables. Despite differences
from one design to another, a common desired behavior emerges

11

2. The Distributed Hash Table

describing what could be considered an abstraction for a “basic
distributed hash table”. Such a DHT would provide a system where
participants can store data records relying on other nodes and
retrieve them.

Though Kademlia [63] and Chord [85] are probably the two
best known DHTs also CAN [76], Pastry [79] and Tapestry [102]
are among the first and seminal works that opened this research
field. All of these design share some basic fundamental operations
such as looking up for a key (or node) identifier (ID), storing a
key/value pair on the network, and a bootstrap procedure. Moreover
all nodes participating to the DHT will need to upkeep a routing
table (necessary to find other nodes and resources), must have a
global agreement on how data keys will be processed by means of an
hash function, and a distance function is defined for IDs. As a final
note, beside the primitive operations already described, the network
will need a procedure for nodes to join and leave the system; also
some kind of deletion policy is required for all stored data.

In the next paragraphs a more detailed description of each
component sketched out so far will be provided.

On the DHT each unit of data, or resource, is in the form of a
key/value record. Please note that this is abstraction is the most
general definition possible as it can describe a number of different
real-life scenarios: while key is a fundamental feature, value may
be absent (or “null”), a simple reference (e.g. a proxy to some
actual resource), or an actual value indexed by its associated key.
Identifiers (IDs) are used to address resources and nodes alike and
share the same address space. All DHT nodes are required to use
an hash function converting keys to their IDs and, at the same
time, uniformly distribute the resources’ IDs on the address space.
All possible IDs are totally ordered through a distance function
defined on the address space itself.

Every node maintain a routing table listing a set of other nodes
organized according to the distance function. The network view
created by the routing table allows a node to identify the closest
node (according to the distance function) to a desired ID. The
routing table fundamental feature to search resources. To upkeep a
routing table continuous update are required, finding more suitable
nodes and/or purging the not active ones. To achieve an efficient
table maintenance different strategies can be put in place. Without
loss of generality we model it as a ping protocol, executed by each

12

2.2. A basic DHT model

node thus refreshing the local routing table.
Bootstrap is a primitive that provides a starting node with a set

containing at least one DHT active node. To join the network a
new node must at least contact (therefore know) at least one other
participant to the network. The node bootstrapping can thus start
building up its network view populating its routing table with fresh
contacts.

Look-up is a crucial function to a DHT system. It locates
(through the local node routing table and, if necessary, by querying
other known nodes) the network address of the node whose ID is the
closest, accordingly to the distance function, to a searched target
ID. A look-up can be issued to locate a certain node or resource
(both to store a record tied to such a resource or to retrieve it).

Store is used by a node to ask the DHT network to save a
key/value record. A node wishing to store a certain record, performs
a look-up with the record’s key thus finding the node (or set of
nodes) to whom the store request should to be submitted. Each
DHT node hosts a local hash table, a data structure that indexes
values according to their keys hash values, where records received
via store queries are kept. A store request is expected to receive a
boolean reply – confirming or denying the request outcome. If no
reply is received, the node that issued the store request will assume
that its query failed. Although not all the major DHT designs
or implementations [63, 84, 85, 76, 79, 102, 56] share the same
approach on stored records removal, there appear to be a consensus
on the fact that a record is expected to eventually disappear from
the DHT network. A convenient mechanic to achieve this feature
is to impose a time threshold: after a period of time a resource is
either renewed through a new store request or it simply expires.

A find value primitive works (similarly to store) performing a
preliminary look-up for a given resource’s key ID, locating the node
(or set of nodes) where the searched resource is expected to be
stored and, if possible, retrieving the resource’s value. If the located
nodes do not have in their hash table any record matching searched
key, a special value – e.g. “null” – is returned to the request sender.

Nodes can join and leave the DHT network at any time. It is
responsibility of a newcomer node to report in when it come online
for the first time or starts interacting with a node never contacted
before. Thus other nodes are enabled to add it to their own routing
tables. Leave join responsibility to new nodes eases the necessity for

13

2. The Distributed Hash Table

a cumbersome distributed protocol. On the other hand the routing
table’s eviction policy of inactive nodes makes superfluous a leave
protocol (still, is a non-trivial issue).

Usually DHT architectures bound the number of nodes stored
in the routing table – or contacted during look-up, find value, and
store communications – to a factor logarithmic in the number of
network’s the total nodes. Although this is an interesting and
elegant feature, we will not focus on it since it does not really relate
with the DHT vulnerabilities examined in this paper.

Summarizing, a general DHT should have the following primi-
tives: a bootstrap providing a new node with the information needed
to join the network; a look-up that from a certain ID allows to
to locate some nodes; a find value to retrieve, if any, the value(s)
associated to a certain resource’s key; and a store procedure to
save on the network a resource’s key/value record. Helping these
primitives two data structures (the nodes’ routing table and hash
table) and two functions (a distance function and an hash function)
are required. Using these basic components we can model a basic
Distributed Hash Table. It is easy to incorporate in this design a
replication policy, increasing resources availability: whenever look-
up, find value are invoked up to k nodes are returned and store
queries will be performed to k nodes as well.

However, as will be explained in Chapter 3, a variety of attacks
– e.g.: Node insertion or Sybil attacks, see respectively Section 3.2
and Section 3.1 – can be performed with no considerable effort in
such a basic DHT. Through these attacks an adversary can easily
perform a selective censorship or deny the resources stored on the
DHT.

As a final note, throughout this entire work we assume that
any network communication has a timeout, thus avoiding problems
deriving from a node incapacitated to reply a query due both to
node overload or to node failure.

2.3 DHT examples

This section will present the most famous DHTs that ignited the
interest in this particular research field. For each DHT the key
features will be described giving the reader a flavor of the various
design possibilities. Moreover comparing each of these designs with

14

2.3. DHT examples

Figure 2.1: Example of a CAN 2-d virtual space partitioned
among five nodes.

one another helps to understand how the general DHT described
in previous Section 2.2 can model actual implementations.

2.3.1 CAN

Content Addressable Netwgeork (CAN) [76] was presented as a dis-
tributed, Internet-scale, hash table. Its design centers around a
virtual d-dimensional Cartesian coordinate space. CAN’s coordi-
nate space is purely logical and bears no relation to any physical
coordinate system. The entire coordinate space is dynamically
partitioned among all the nodes in the system such that every node
is responsible for its individual, distinct zone within the overall
space. An example of this partitioning is shown in Figure 2.1.

Storage of (key, value) pair in the virtual coordinate space
happens as follows: (K1, V1) pair’s key K1 is deterministically
mapped onto a point P in the coordinate space using a uniform
hash function. Once located the node responsible for the zone
within which point P lies, (K1, V1) is sent to it for storage. To

15

2. The Distributed Hash Table

retrieve an entry corresponding to key K1, any node can apply
the same hash function to map K1 identifying point P . Thus a
node can then retrieve the corresponding value routing the request
through the CAN infrastructure until it reaches the node in whose
zone P lies.

In CAN nodes keep a local routing table that holds IP addresses
linked to coordinates (on the virtual space) of its immediate neigh-
bors. In a d-dimensional coordinate space two nodes are considered
neighbors if their coordinate spans overlap along d− 1 dimensions
and is adjoining along the remaining dimension.

A CAN node moreover holds information about the “adjacent”
zones of the global hash table to allow fault tolerance. This way
whenever a node leaves or fails another CAN node, who already
stores the required information, is able to take charge of the zone
left uncovered.

The set of primitives described in CAN’s original paper [76] are:

• a bootstrap allowing a new node to discover IP addresses of
other nodes currently in the system

• a join procedure allowing a node to enter the network and
take charge of a zone of the virtual space – whenever a new
node logs in the CAN network, its new neighbors release
control over the virtual space’s area claimed by it

• a leave procedure used by a node during a graceful shutdown
to hand over its zone and associated records to one of its
neighbors

• a takeover procedure used after discovering a node’s failure
and allowing one of its neighbors to take charge of its zone

• look-up of a key, allowing a node to find the node responsible
for a (key, value) record

• insertion of a (key, value) record, storing it onto the correct
CAN node

• deletion of a (key, value) record, removing it from the global
hash table maintained by CAN.

16

2.3. DHT examples

2.3.2 Chord

Chord [85] was presented in 2001 as a protocol supporting just
one operation: given a key, map such key onto a node. More
sophisticated operations like data location or (key, value) records
storage were not discussed in the original paper and left as a
conceptually easy extension on top of Chord itself.

Chord uses consistent hashing to attain (with high probability)
load balancing: all nodes will be responsible, roughly, of the same
number of stored keys. The consistent hash function assigns each
node and key an m-bit identifier using a common hash function
such as SHA-1 [23]. Identifiers are ordered and organized in an
identifier circle modulo 2m. Key k is assigned to the first node whose
identifier is equal to or follows k’s identifier in the circle representing
the identifiers’ space. This node is called the “successor node” of
key k and denoted as successor(k). If identifiers are represented as
a circle of numbers from 0 to 2m − 1, then successor(k) is the first
node whose identifier can be find traversing the circle clockwise
starting from k.

The successor concept applies to nodes as well, and is comple-
mented by the predecessor concept. Successor of a node is, like for
keys, the first node encountered in the identifier circle in clockwise
direction. The predecessor instead is the first node encountered on
the circle going counter-clockwise.

Each Chord node keeps a finger table containing up to m en-
tries. The ith entry of node n’s finger table store the information
needed to reach over the network successor((n+ 2i−1) mod 2m).
In addition to the finger table a node also maintains a predecessor
pointer containing IP and identifier of the immediate predecessor.
An example of these pointers (fingers and predecessor pointer) is
depicted in Figure 2.2.

To look-up a key k a node will search its finger table for the
closest successor(k) known. The initiator node then will pass the
query to found successor who will reiterate the procedure until a
node finds out the key is stored by its immediate successor. Using
this mechanism based on finger tables, the expected number of
nodes that must be contacted to locate a key in an N -node network
is O(logN).

When a new node joins the system, within the Chord network
the following is expected to happen: the new node must initialize

17

2. The Distributed Hash Table

Figure 2.2: Example of a 16 nodes Chord network. One of the
nodes shows its fingers and its predecessor pointer. Solid arrows
(inside the identifier circle) represent fingers to the other nodes,
while the dotted arrow (outside of the identifier circle) represents
the predecessor pointer.

its predecessor pointer and finger table; existent nodes must update
their fingers and predecessors accordingly; new node’s predecessor
transfer to the new node all the keys that now are closer to it;
optionally nodes can notify a higher layer software relying on Chord
routing.

Chord’s original paper [85] describes the following primitives:

• a join procedure, allowing new nodes to join the network
and letting existent nodes to update they finger tables and
predecessor pointers

• look-up of a key k locating the node being the k’s identifier
immediate successor in the identifier circle

• a stabilization protocol ensuring fingers and predecessors
pointers of every nodes are kept up-to-date, allowing fault

18

2.3. DHT examples

tolerance in the case of nodes failing or leaving the network.

2.3.3 Pastry

A Pastry [79] system is a self-organizing overlay network of nodes,
where each node routes client requests interacting with local in-
stances of one or more higher layer applications. Each node gets a
128-bit integer used as node identifier (nodeId) and marking the
node’s position in a circular nodeId space ranging from 0 to 2128−1.

The nodeId is assigned randomly when a node joins the system.
In Pastry’s original work is assumed that nodeIds are generated
such that the resulting set is uniformly distributed across the nodeId
space [79]. This way, with high probability, nodes that are close in
the address space – e.g. have adjacent nodeIds – reside in machines
that are geographically separated.

For routing purposes, nodeIds and key’s identifiers are thought
of as a sequence of digits with base 2b (where b is a configuration
parameter, typically with value 4). Please note that in the following
we use the term “key” and “key’s identifier” interchangeably. Pastry
routes messages to the node whose nodeId is numerically closest
to the given key’s identifier, forwarding messages from one node
to another. A node forwards a message to a node whose nodeId
shares with the key a prefix at least one digit (b bits) longer than
the prefix shared by the key and the forwarding node’s nodeId. If
no such node is known, the message is forwarded to a node whose
nodeId shares a prefix with the key as long as the current node, but
is numerically closer to the key than the present node’s ID. If no
other possible forwarding is possible, routing is complete.

The routing overlay network is built on top of the hash table by
each peer discovering new nodes and exchanging state information
consisting of a list of leaf nodes, a neighborhood list, and a routing
table. It is important to note that in a Pastry network it is assumed
the existence of a proximity metric which should be provided to
Pastry by an higher level application layer.

In a network consisting of N nodes, a routing table is organized
into ⌈log2b N⌉ rows, containing up to 2b − 1 entries. Each of such
entries is a reference to a node whose nodeId shares the current
node’s nodeId the first n digits, but whose (n+ 1)-th digit has one
of the 2b − 1 other possible values rather than the (n+ 1)-th digit
of the current node’s nodeId.

19

2. The Distributed Hash Table

The neighborhood list M is a set containing nodeIds and IP ad-
dresses of the |M | nodes that are closest (according to the proximity
metric) to the local node. Although it is not used directly in the
routing algorithm, the neighborhood list is used for maintaining
locality principles in the routing table. Typical values for |M | are
2b or 2 · 2b.

The leaf nodes list L consists of the |L|/2 numerically closest
peers whose nodeId is larger than the local node’s, and of the |L|/2
nodes with smaller nodeId. Typical values for |L| are 2b or 2 · 2b as
well.

In the event of a failed node in the leaf nodes list a node contacts
the live node with the largest index on the side of the failed node,
and asks that node for its leaf table. This procedure guarantees
that each node lazily repairs its leaf set unless ⌊|L|/2⌋ nodes with
adjacent nodeIds have failed simultaneously.

The primitives that Pastry is supposed to expose as described
in [79] are just the following two:

• pastryInit that causes the local node to join the network and
initialize all its internal structures

• route(msg, key) causing Pastry to route msg message to the
node whose nodeId is numerically closest to the key.

On top of those, applications layering on Pastry should manage:

• deliver(msg, key) called by Pastry to notify message msg to a
node whose nodeId is the closest to key

• forward(msg, key, nextId) notifying local node that message
msg addressed to the closest node to key is about to be
forwarded to a node identified by nextId. Local node can
change the content of the message or terminate its routing at
the current node

• newLeafs(leafSet) notifying the higher application layer that
the local Pastry node’s leaf nodes list was updated in leafSet.

2.3.4 Tapestry

Tapestry [103, 102] is a P2P system offering efficient, scalable,
self-repairing, location-aware routing to nearby resources. It is an

20

2.3. DHT examples

extensible infrastructure providing decentralized object location
and routing, focusing on efficiency and on minimizing message
latency. To achieve this Tapestry constructs locally optimal routing
tables from initialization and maintains them trying to reduce
routing stretch. Furthermore, Tapestry allows object distribution
determination according to the needs of a given application.

Tapestry dynamically maps each identifier G to a unique node,
called the identifier’s root GR. If a node N exists with Nid = G then
this node is the root of G. At each hop a message is progressively
routed closer to G by incremental suffix routing. Each node stores
a neighbor map that has multiple levels. Each level contains links
to nodes whose ID match with the host node up to a certain digit
position. The ith entry in jth level records the ID and location of
the closest node whose ID begins with prefix(N, j − 1) + i: this
means that level 1 contains entries that have nothing in common
in their IDs, level 2 contains references to nodes whose ID has the
first digit in common, and so on.

To publish an object participants in the network periodically
route a publish message toward the root node for that object ID.
Each node along the path stores a pointer mapping the object. An
object (or node) is then located by routing a message towards the
root of the object’s (or node’s) ID along the path, checking the
mapping and redirecting the request appropriately.

A new node joining the network becomes the root for its own
nodeID. After its inception, the existing root finds the length of the
longest prefix of the ID it shares and sends a multicast message
that reaches all existing nodes sharing the same prefix. These nodes
then add the new node to their routing tables and the new node
may take over becoming the root for some of the objects that was
stored by the old root.

To leave the network, a node broadcasts its intention of leaving
and appoints a replacement node for each level in the other nodes’
routing tables. Objects held by the leaving node are redistributed
or replenished from redundant copies. Unexpected node failure is
instead handled through redundancy in the network and backup
pointers reestablishing damaged links.

Tapestry [102] describes the following primitives:

• a join procedure (part of the node membership Tapestry
component) allowing a node to enter the network

21

2. The Distributed Hash Table

• a leave procedure for nodes to gracefully leave the network

• routeToObject and routeToNode to find either the root node
for a given key or an exact nodeID match

• publishObject to make available an object at the local node

• unpublishObject attempting to remove location mappings of
a certain object.

2.3.5 Kademlia

Kademlia [63] is a P2P system routing queries and locating nodes
using a XOR-based metric topology. Each Kademlia node has a
160-bit node ID, supposedly chosen as a random identifier when
a node joins the network. Node ID is included as part of every
message exchanged in the network, thus allowing the recipient to
record the sender’s existence if necessary. Keys are opaque, 160-bit
quantities (e.g., the SHA-1 [23] hash of some larger data).

To publish and find (key, value) pairs, Kademlia relies on a
notion of distance between two identifiers: given two 160-bit identi-
fiers, x and y the distance between them is defined as their bit-wise
exclusive or (XOR) interpreted as an integer, d(x, y) = x⊕ y.

To route messages each node stores a routing table holding for
each 0 ≤ i < 160 a list of records containing the physical address
and node ID for nodes having distance between 2i and 2i+1 from
itself. These lists are called k-buckets containing at most k entries,
where k is a system-wide replication parameter.

When looking up for an ID, searching node picks α nodes (being
α a system-wide parameter) from the appropriate k-bucket (if such
bucket has fewer than α entries, the α closest to ID in XOR metric
are chosen among all the known nodes). To each of these nodes a
find node request is sent for the searched ID. Each of these nodes (if
still active) will reply with a set of α nodes closest to the searched
ID. Recursively the initiator re-sends a find node request until no
new node contacts are found.

To store and find values associated to a given key a store or
find value is sent to the (up to) k closest nodes found via find node
look-up.

Assuming that every k-bucket contains at least one node, a look-
up procedure is correct in logarithmic time. A look-up procedure

22

2.3. DHT examples

Figure 2.3: Example of a Kademlia network using 3-bits node IDs.
All nodes from each of the three highlighted areas will be referenced
in the same k-bucket in the selected node’s (with ID 101) routing
table.

will (in the worst case) find at each step a node half as close to the
searched ID. Figure 2.3 can help visualizing how distance halves at
each step.

A lest-recently seen eviction policy is implemented in k-buckets:
when a node receives any message from another node it updates
the appropriate k-bucket for the sender’s node ID moving it at the
top of the bucket or adding it to the bucket if it is not already
present. If the k-bucket is full when a new node is added to it, the
least-recently seen node – i.e. the one at the bottom of the list – is
removed.

23

2. The Distributed Hash Table

In Kademlia, instead of enabling any node to selectively delete
(key, value) records, an expiration time is enforced on any key.

To join the network a new node must know the contact to at
least one node already participating to the Distributed Hash Table’s
network. The new-coming node then performs a node look-up on
its own node ID. By doing so it both populates its own k-buckets
and causes the insertion of a reference to itself into the other nodes’
appropriate k-buckets.

In the Maymounkov and David Mazières original paper [63] a
set of four Remote Procedure Calls (RPCs) is described:

• ping that probes a node to see if it is online

• find node that, given a 160-bit ID argument, finds the k nodes
closest to such an ID in XOR metric

• store instructing a node to store a (key, value) record

• find value that like find node discovers the k closest node to
a given ID but, if such k nodes has received a previous store
instruction for the searched key, returns the stored value.

Moreover, even if not presented as RPCs, the following two
primitives are mentioned:

• a bootstrap procedure to find at least one node already partic-
ipating to the Kademlia network

• a join procedure to allow a new node both to initialize its own
structures and to instruct other nodes about its existence.

2.3.5.1 Kademlia implementations

Unlike other notable DHT proposals, Kademlia has been imple-
mented in a number of major networks, among which the two best
known are probably Mainline and the KAD network.

Mainline [56] is the Distributed Hash Table used by BitTorrent3
clients to find peers, without necessarily use centralized a tracker
server. KAD network instead was originally developed by the

3http://www.bittorrent.com/

24

http://www.bittorrent.com/

2.3. DHT examples

eMule4 community to overcome the usage of eDonkey 2000 server-
based network. Both BitTorrent (with it numerous clients) and
eMule are well-known file-sharing peer-to-peer (P2P) networks, daily
accessed by millions of clients. Given the sizes of these two networks,
through the years the academic community shown interest in them,
performing various experimental measurements both on KAD [84]
and Mainline DHT [93, 94].

Other relevant Kademlia implementations have been developed
to support a number of different systems. The following are an
(incomplete) list of such services: Osiris5, a freeware program used
to create and distribute in a P2P fashion web portals; RetroShare6,
a friend-to-friend (F2F) decentralized communication network; In-
terPlanetary File System (IPFS)7, a content-addressable P2P dis-
tributed file system.

4http://www.emule-project.net/
5http://www.osiris-sps.org/
6https://retroshare.github.io/
7https://ipfs.io/

25

http://www.emule-project.net/
http://www.osiris-sps.org/
https://retroshare.github.io/
https://ipfs.io/

DHT Security 3

This chapter presents some of the most important security threats
that affect systems that can be described by our basic model of
Distributed Hash Tables (DHTs) described in Section 2.2; of course
the major DHT designs described in Section 2.3 are affected as well.

Next sections will present various attacks exploiting weaknesses
derived by the distributed and unstructured nature of DHTs. Each
section describes of one of the attacks, its practical relevance and
eventually presents the state of the art proposed solutions as well
as issues that at the moment are still opened.

Considering that DHTs can be a middle layer for decentralized
P2Ps network system, vulnerability to the attacks described in
this chapter may limit their efficiency an could even pose a serious
threat to freedom of information or speech. On top of that, reducing
DHTs’s ability to provide an acceptable quality of service, these
attacks may also undermine effectiveness of those systems built
upon Distributed Hash Tables, thus potentially leading to their
abandonment. Nonetheless, DHTs could be an interesting way to
provide other applications with out-of-the-box functions like (but
non limited to) an easy way to advertise existence of available idling
instances and, of course, a routing based on dynamic contents.
However the security flaws that we will describe in the following
sections may prevent tout-court adoption of DHT-like solutions.

27

3. DHT Security

3.1 Sybil attack

3.1.1 At a glance

In 2001 the first Distributed Hash Tables made their appearance,
stemming from the growing popularity of peer-to-peer systems and
community [76, 85, 79, 103] and quickly becoming a popular research
field. No more than a year after, the Sybil attack [24] was reported
as a possible (and serious) security threat for peer-to-peers (P2Ps)
systems in general and, obviously, for DHTs as well.

In a nutshell, a vanilla Sybil attack consists of one (or more)
malicious entity that spawns on the attacked network a set of fake
identities. These fake identities will, to some extent, behave as the
legitimate ones, thus tricking other non-malicious nodes partici-
pating in the network to accept them as valid contacts (Figure 3.1
shows a graphic example of the attacker behavior during a Sybil
attack). From another node’s point of view, all other instances
are required to act only in response to an incoming query: for
this reason an attacker can effortlessly emulate an arbitrarily large
number of network nodes: Also, attacker’s simulated nodes can
be strategically “positioned” in the overlay network structure by
carefully choosing the identities’ IDs, for example accordingly to
the distance function used by the target system when dealing with
DHTs. Phony identities used by a malicious entity performing a
Sybil attack are often referred to as “Sybils”.

A Sybil attack exploits the fact that in a distributed environment,
like a P2P system or a DHT, the system that has no direct physical
knowledge of remote participating entities. These are perceived
instead only as informational abstractions or “identities”. The ability
to determine whether two ostensibly different remote entities (or
identities) are actually operated by distinct instances is a non-trivial
task.

During a Sybil attack the hostile entity can combine it with
other attacks, either to enhance these attacks or to enhanced its
Sybil attack. A couple of the attacks that can benefit from the Sybil
one (and, in fact, are usually performed together) are the Node
insertion (see Section 3.2 for details) or Eclipse (see Section 3.4)
attacks.

28

3.1. Sybil attack

Figure 3.1: A Sybil attack example. On a network where honest
nodes only deploy one ID each, an attacker (the one marked with a
star) deploys several IDs (marked in red).

3.1.2 Practical relevance

Presence of Sybils in a P2P system can cause a variety of mal-
functions or unwanted effects. Please note that a Sybil attacks are
not limited to DHTs: exploiting lack of central control and nodes’
self-authentication it can be performed on any decentralized P2P
system. Sybil attacks performed on P2P systems have mainly five
different targets [75]. Next paragraphs will present the possible
variations of this kind of attack.

When performed on DHTs a main goal for Sybil attacks is the
alteration or disruption of the Decentralized Object Location and
Routing (DOLR) algorithms representing the core or the system
itself. In basic DHT designs, for example, load balancing is often
attained because nodes are assumed to be randomly and uniformly

29

3. DHT Security

distributed on the identifiers address space. Please note that a
Sybil attack striking a DHT is seldom performed in its vanilla form,
as already mentioned it is usually performed alongside other attacks
presented in the next sections of this chapter.

Sybil attack can disrupt a P2P distributed storage application
(not necessarily DHT-based). A peer-to-peer system providing
this service depends on replication and duplication mechanisms to
grant resources availability. Presence of Sybils can subvert system
reliability: an attacker entity can gain control over the dissemination
of resource copies. Thus Sybils can gather all data copies, modify or
wipe them out; then the attacker can leave the system undetected.

Any distributed voting aggregation system is manifestly vulner-
able to Sybil attacks. To offer a distributed voting service, a system
must grant access to a collection of identities each authorized to
cast a vote, choosing among (different) options. If an attacker is
able to submit to the system an arbitrary large number of identities,
it will be granted an accordingly large number of vote casts. Thus
it is obvious that attacker is able to decide the vote outcome.

Vehicular Ad-hoc Networks (VANETs) are sensor networks al-
lowing vehicles on the road to exchange traffic information with
each other, whose popularity is currently growing. These networks
can contribute to the improvement of road safety by advance warn-
ing about accidents (or other specific threats to safety) as well
as leading to a more fluent traffic allowing an efficient navigation
avoiding jams or temporary detours. Presence of Sybils created by a
malicious entity on a VANET can mislead drivers about the current
traffic situation, purposely slowing down other users or allowing the
attacker to benefit from artificially cleared roads (e.g. advertising a
traffic jam to drive away other VANET-equipped cars). Similarly
to VANETs, the more generic Mobile Ad-hoc Networks (MANETs)
are afflicted as well by Sybil attacks in a similar way.

In sensor networks query protocols are often employed rather
than returning the reading of each individual sensor to prevent
excessive energy consumption [60]. Exploiting such protocols Sybil
identities may report incorrect readings thereby influencing the over-
all computed aggregate. Thus using enough identities a malicious
user may be able to significantly alter the aggregate result.

Moreover a study has shown that in a DHT scenario Sybils
summing up to 10% of the active identities are able to accumulate
up to 60% of routing table entries within 48 hours from the beginning

30

3.1. Sybil attack

of the attack [41].

3.1.3 Proposed solutions

Through the years many solutions have been proposed for the Sybil
attack variants. In this section we presents the most relevant ones.

In recent years technological advancements brought an increase
in popularity of MANETs and VANETs and sensor networks. So
a plethora of techniques aimed at detecting Sybil nodes in these
environment have been proposed [100, 49, 47, 89, 40, 1, 74, 70, 43].
Detection in such scenarios is usually performed monitoring unusual
nodes’ physical behavior (for example nodes’ mobility in MANETs
VANETs); gathering gathered through network architecture; or
directly probing nodes, often using the honest nodes as probes.
These techniques, tailored on features available only to sensor
networks, are not very practical when dealing with a general DHT
network.

Douceur in his original work about the Sybil attack states that
these attacks are “always possible without a logically centralized
authority” [24]. Following this assertion, some of the proposed
solutions on DHTs are indeed based, one way or another, on Central
Authorities (CAs). For example has been proposed an enforcement
of IP addresses’ authentication [41] using and external CA as a
surrogate providing this service to the DHT; alternatively institution
of a dedicated CA has also been proposed [14]. Eventually another
proposed solution relies on a small subset of nodes self-organizing
in an hierarchical “collegial” CA [78].

A popular strategy used against Sybil attack in DHTs is reputa-
tion/trust based [22, 3, 71, 92, 16, 12, 33, 103]. In these defense
mechanism nodes are granted a certain degree of trust – i.e. repu-
tation – typically as a reward for keeping a good behavior or for
correctly serving incoming queries. Optionally these techniques
incorporate some kind of randomization: when choosing the routing-
path toward a desired destination a node will both take reputation
into account and make random choices for each hop involved in the
resulting route.

Another thriving group of techniques tackling Sybils is based
on direct social links between users – e.g. an actual friendship
between two users – or inferred links gathered from external social
networks already available [51, 98, 97, 62, 52, 87, 37, 4, 6]. These

31

3. DHT Security

mechanisms rely on the trust that is embodied in existing social
relationships between users that should grant the authenticity of
their corresponding software nodes/identities. All social-network-
based Sybil defense schemes make the assumption that, although
an attacker can create arbitrary Sybil identities in social networks,
he or she cannot establish an arbitrarily large number of social
connections to non-Sybil nodes. As a result, Sybils are woven in
a tight network component but are poorly connected to the rest
of the network, especially if compared to non-Sybil nodes. Social-
network-based schemes leverage this observation to estimate if an
observed identifier is or is not a Sybil node.

Finally, the number of identities that a single entity can up-
hold may be limited by means of computational challenges. This
approach was already suggested by Douceur, but he proved that
direct validation works only if all identities provide proofs that are
validated simultaneously (thus requiring, as already said, a CA) [24].
Since this is not feasible in a dynamic system where nodes can join
and leave at any time, a computational challenge based defense
require a periodic re-validation of all identities [11, 78, 53, 86].

3.1.4 Open issues

As seen in previous section, a lot of proposals to defend against Sybil
attacks do exist. In this section we analyze the main shortcomings
of such mechanisms.

First and foremost, despite the purpose, in the context of a
distributed system (be it a DHT or any other kind of P2P system)
usage of CAs is not advisable because it will create a single point
of failure. Creating one would be unreasonable since a distributed
system is (also) devised to avoid such a criticality and, from a more
philosophical point of view, essentially betray the spirit of this kind
of systems.

All the Sybil defense schemes relying on social links (or trust
gained through social links) make the assumption that Sybils can
only form a certain number of links to non-Sybil nodes. However, it
still is an open question whether this is true in any online social net-
work [91]. It has been shown that, at least in some social networks,
this assumption does not hold being identity theft possible [10] thus
frustrating the mechanisms belonging to this category of defenses.

32

3.2. Node insertion

Proposed solutions addressing MANET or VANET networks
relies on physical behavior or on data specific to sensor networks.
Thus the majority of these countermeasures cannot be ported to
more generic distributed systems like P2P systems or DHTs, making
them irrelevant for the scope of this dissertation.

Finally computational challenges appear to be a good and simple
strategy against Sybils. However, as pointed out in Douceur’s
the original work [24], a straightforward implementation based on
single validation is proved to need a CA. Thus for this technique
to be successful is required an additional mechanism enforcing a
mandatory periodical renewal of proof-of-work authenticating a
node. Granted the existence of this extra component, they appear
to be the most effective strategy now available.

3.2 Node insertion

3.2.1 At a glance

A particularly mischievous kind of attack that DHTs are vulnerable
to is the Node insertion attack [83, 88, 55, 50], described for the first
time in 2002. Node insertion attack is performed by a malicious
node that could join and participate in the look-up protocol correctly.
When asked however it deny the existence of data it is responsible
for. Alternatively, it might claim to actually store data when asked,
but then refuse to serve it to clients. Also, it could serve bogus
routing information during exchanges (correctly carried out) with
other nodes. Node insertion attack can be referred to with the
alternative names of Routing attack or Storage attack.

To specifically hide a particular resource performing a Node
insertion attack, the attacker needs to strategically position one
or more node IDs. These IDs are selected according to the DHT’s
distance function in a way that makes of them the most suitable
resource’s owner identifiers. Once the attacker has secured the de-
sired IDs it may, for example, accept store requests thus convincing
honest nodes that it successfully saved the record. Up to this point
the attacker behavior sticks to the normal DHT protocol. When
queried for the stored values though, the attacker hiding behind the
phony ID will deviate from the standard protocol and maliciously
reply with bogus data or just denying the existence of the record.

33

3. DHT Security

Figure 3.2: A Node insertion attack example. In the left part of
the image a Chord-like network is shown (see Section 2.3.2 for a
reference on Chord mechanics). The placeholder marked with an
@ symbol represent the target resource’s ID position. The rightful
node responsible for the resource is one the blue one, marked with a
small check sign upon it. In the right part of the image is depicted
the same network after a malicious node (the red one) perform
a Node insertion attack, purposely becoming the closest node to
target resource. All look-up queries for the resources will be directed
toward the attacker node after its inception.

An attacker performing a Node insertion attack can boost its
effectiveness by jointly performing a Sybil attack (see Section 3.1).
Incrementing the apparent number of attackers node can ease
resource’s takeover and facilitate to overpower a DHT’s redundance
system (if any).

3.2.2 Practical relevance

Practical relevance of a Node insertion attack should be manifest
since it permits an attacker to suppress or alter records stored in
a DHT. Many example for this kind of attack can be provided,
next paragraphs will describe some possible Node insertion attacks.
Moreover last paragraph will provide some data gathered through
attack experiments performed on an actual DHT network.

Since DHTs are a critical layer of many decentralized or P2P
network systems, this kind of attack represents, in many ways, a
strong shortcoming for information dissemination. Many practical

34

3.2. Node insertion

examples are represented by actions taken on those P2P file-sharing
services where pirate copies of copyrighted media are exchanged: in
such a system a company owning licenses and royalties about shared
material can perform a Node insertion attack, thus preventing the
spreading of particular file names that lead to material whose rights
are managed by the company itself. In this case the attack is
considered to be an ethical action [99].

Another example, this time of unethical nature, can be a system
hosting distributed websites and microblogs or allowing direct P2P
communication (in the fashion of Osiris or RetroShare, see Sec-
tion 2.3.5.1). This kind of systems could be a useful tool for real-life
dissidents and whistle-blowers – e.g. trying to report abusive treat-
ments by oppressive government, ecc. A censorship authority could
then perform a Node insertion attack and easily make unavailable
those services, effectively silencing any opinion standing out of line.

Node insertion attack affects data availability, thus its effects
and consequences are easily understandable. An interesting work
performed onto the Kademlia based KAD network (see Section 2.3.5
and Section 2.3.5.1 for details on Kademlia DHT design and on
its implementations) shown that, in a real-world large scale active
DHT, this kind of attack can hijack up to 95% of the look-up
requests colluding as little as 3 attacker IDs [55]. The necessity for
at least three malicious IDs, differently from the example provided in
Figure 3.2, is due to the replication factor used by KAD. Elaborating
on the attack described in [55] a more efficient one was devised
and performed, thus improving the success rate by a factor of 3.8
times [50].

3.2.3 Proposed solutions

Two main strategies are used in the effort of protecting a Distributed
Hash Table against Node insertion attack. These relies on redundant
routing and redundant storage [88].

Solution proposals belonging to the class of data redundancy
are based on erasure coding techniques [21, 28, 65]. Coming at the
price of potentially higher latencies and a higher system complexity,
erasure coding offers less storage requirements compared to simple
data replication. On the other hand plain data replication enables
more simple algorithms for maintenance and verification. There
are several approaches to data replication, ranging from storing

35

3. DHT Security

replicas in nodes close to one another in the identifier space [79, 85,
63, 14, 34, 28, 68, 95], to store them at equally spaced locations
over the identifier space [32] or on random locations across the
address space [102]. Another method consisted in combining said
approaches, selecting locations spreaded over the identifier space
and storing replicas in nodes close to each of these locations [8, 27].

Redundant routing is necessary in order to reliably locate nodes
responsible for a given key (both in a redundant and non-redundant
storage scenario). There are two approach that implement redun-
dant routing: multiple paths [14, 32] and wide paths [63, 34, 68,
28]. Wide paths are suitable when replicas are stored at nodes close
in terms of the DHT’s distance function. Multiple paths instead
are a better match when replicas are spreaded over the identifier
space. These two approaches can be combined as well – becoming
multiple wide paths – by trying wide paths successively. Anyway
this has the disadvantage that maintaining consistency when repli-
cas are mutable entries may become cumbersome and expensive in
most DHT designs. A concrete example is the approach adopted
by Myrmic [95]: it is similar to wide paths but instead of trying
multiple nodes simultaneously at each step, it tries one node and
resort to an alternative one only in case of failure.

Please note that some DHT improvement proposals moreover
do not make an explicit effort against the Node insertion attack
considering it just a byproduct of other attacks, like the Sybil attack
(see Section 3.1). An example of this is Persea DHT [5]. It has
some kind of storage redundancy in place, relies on the assumption
that its network is free from Sybils and thus if a key is unavailable
at one location, it will be still available from another location that
should not be controlled by malicious nodes.

3.2.4 Open issues

Although a number a strategies has been proposed to cope with
the problem of Node insertion attacks, there are still open issues
about a reliable solution. This section will briefly describe how
a Node insertion attack is still possible even in a DHT where
countermeasures Section 3.2.3 are put in place.

About redundant storage a common strategy attains data repli-
cation through a local (in terms of the address space) cluster of
nodes. In such a case a small number of malicious nodes can con-

36

3.3. Publish attack

centrate, possibly also performing a Sybil attack, on the overlay’s
specific region and take control of all replicas. Nonetheless, spread-
ing replicas over the identifier space though is not necessarily a
big improvement: since the placement algorithm must be publicly
known to coordinate honest instances, malicious nodes may attack
all the relevant location for a target resource with a small additional
effort.

Data redundancy moreover is not enough to prevent storage
attacks: the network must provide reasonable guarantees that nodes
are not able to select their own location in the identifier space. The
most straightforward way to achieve this is the use of random
identifiers issued by a trusted certification authority able to limit
the fraction of malicious nodes [14]. Alternatively is possible to
have a set of nodes generating identifiers using a Byzantine-fault-
tolerant consensus algorithm to assign the ID to a new coming
node; on top of this is artificial churn is induced in the network to
prevent concentration of malicious nodes at specific regions [18, 8].
However this does not limit the number of attackers: thus these
countermeasures should be coupled with other techniques suitable
to limit Sybil attacks (see Section 3.1).

Is known that usage of erasure coding provide storage savings.
However the bandwidth required, in particular under a varying
degree of churn, to maintain appropriate redundancy levels is ap-
proximately the same for both coding and plain replication [77].

As a final note, claiming that a system free from Sybils is also
protected against Node insertion attacks is rather naive. As already
stated in Section 3.2.2, in real-world applications just three attacker
nodes can be enough to subvert the whole system [55]. This means
that, although a coordinated Sybil attack can make easier to perform
a Node insertion attack, it can as well be performed by a collusion
of a small number of physical attackers, not necessarily spawning
multiple phony identities.

3.3 Publish attack

3.3.1 At a glance

A different kind of attack that, like the Node insertion attack
(see Section 3.2), aims to disrupt DHT’s data availability is the

37

3. DHT Security

Publish attack [55, 38, 30]. Publish attack – also called Index
poisoning attack or Index pollution attack – exploit the fact that,
for practical reasons, DHT implementations do store record index
tables of limited capacity. The attacker exploits this feature trying
to publish, by means of correct and “legal” store procedure, large
amounts of information in multiple entries. Stored data can be
altered versions of target records or just bogus data.

During a Publish attack, depending on which store strategy was
chosen by the attacker, two different outcomes are expected to
happen. Either attacked peer will not accept any other store once
its index tables are full or, alternatively, as a result attacked peers
will only return attacker’s poisoned entries instead of the correct
information.

Compared to other attacks, and in particular to a Node insertion
attack, a Publish attack requires fewer skills to set up a convenient
software and, by far, less computational resources.

Publish attack does not only affects DHTs but can target any
P2P system relying on indexes stored at peer nodes whose data
may be submitted by other nodes.

3.3.2 Practical relevance

A Publish attack is a very simple kind of exploit to which DHTs
are vulnerable and, both on Mainline and KAD networks (see
Section 2.3.5.1), it has been studied and measured [55, 46, 54, 101].
This section describes the practical uses of this attack along with
experimental results available in literature.

Publish attack has been studied and used both for ethical pur-
poses other than as an attack strategy. Like in the case of Node
insertion attack (see Section 3.2.2) there exist a so called ethical us-
age of the Publish attack, consisting in carrying out index poisoning
to inhibit distribution and download of copyrighted materials. The
“copyright industry” has an understandable and significant desire
to prevent unauthorized distribution of content through P2P sys-
tems, thus avoiding huge financial losses [99]. In fact alongside the
research interest trying to make Publish attacks more efficient [69,
73], to prevent copyright infractions the industry is known to hire
specialized companies performing this attack, each with its own
decoy techniques and strategies [54]. On the other hand, used as an

38

3.3. Publish attack

attack strategy index poisoning is an easy, cost-effective tool used
to maim P2P system’s data integrity.

It has been reported that Publish attack works fairly well on av-
erage, achieving a success rate of roughly 80%. Although it is lower
than the success rate of a Node insertion attack (see Section 3.2.2),
it is important to note that to perform an index poisoning a single
attacker node is required thus making a Node insertion a much more
expensive alternative [55]. Moreover, in 2011, it has been measured
that – on the KAD network – about 20% of audio file entries and
about 41% of video file entries are poisoned [101]. Luckily due to
permanent arrivals of new peers and departure of existing ones, the
success rate periodically drops and remains low for a certain time
period before it recovers, due to malicious nodes re-attacking the
peers periodically [55].

As a final consideration note that some DHT systems – e.g.
P2P file sharing – as value associated to a key store a reference to
the network addresses of those nodes that are supposed to own a
copy of the searched resource. As a result the common expected
behavior after references’ retrieval is for the searching node to
directly contact the discovered hosts. Instead of inhibiting access
to a particular resource, an attacker can use a Publish attack to
poison various popular DHT keys: thus the attack can be tuned
to cause a powerful Distributed Denial of Service (DDoS) attack
against arbitrary unsuspecting victims [54, 99].

3.3.3 Proposed solutions

Countermeasures to Publish attack can be divided into two cat-
egories: proactive and reactive techniques [99]. This section will
outline both.

A proactive technique proposed for Mainline DHT is as simple
as crosschecking IDs in communication or keep-alive messages with
those stored in the local routing table. This forces a possible attacker
to maintain the state information for each previously contacted
node, also increasing its computational overhead. This is expected
to result in a mitigation of possible Publish attacks [94]. Another
technique relies on measurement of advertised DHT records over
a certain period of time. These checks helps in the determination
of which ones are poisoned, polluted or clean. Basing on those
observations a node could be able to estimate – also beforehand –

39

3. DHT Security

if a record store is legitimate or not [54]. DDoS attacks induced by
a Publish attack can also be tackled proactively: using an Identity
Based Signature (IBS) scheme is possible to protect a P2P network
from modified and forged indexes. This is done by tracing any
advertised record to its publishing peer [58].

The reactive methods used to prevent Publish attacks include
the followings: blacklisting; reputation and voting schemes; and the
collaborative filtering and pollution modeling [61, 99, 38, 19]. These
strategies are conceptually easy to understand. Honest nodes can
try to authenticate versions and record advertisements; alongside
this feature, the system may allow users to actively rate sources and
helping in the prevention of the attack [54]. In any of the reactive
schemes, as soon as a peer performing a Publish attack is identified
it gets blacklisted, thus cutting out its ability to tamper records.

Although Publish attack is common in real-world DHTs (as
stated in Section 3.3.2), it countermeasures are fairly effective and
– especially considering the reactive techniques – they are often
relatively easy to implement. Note that when a system undergo
only a light Publish attack poisoning, the reactive methods are more
efficient due to relatively lower resources consumption.

3.3.4 Open issues

Blacklisting malicious nodes to avoid further Publish attack activity
is an easy albeit effective countermeasure. Note that if based on
reputation systems, it has the shortcoming that new peers joining
the network may not have any reputation based on previous rating:
thus it can experience an unjustifiable (maybe temporary) exclusion
from the system. Moreover the usage of a reputation system heavily
depends on users reliability: if an (even small) fraction of malicious
users gives a wrong and/or false feedback the global performance
will suffer a significant decay in its effectiveness.

Instead considering the IBS mechanism proposed to defend
against poison-induced DDoS attacks, the success of such a pro-
tocol requires the usage of a Private Key Generator (PKG) to be
registered with a trusted certification Central Authority (CA). Such
a CA than could represent a single point of failure and, as already
discussed in Section 3.1.4, can be considered unacceptable.

40

3.4. Eclipse attack

Figure 3.3: An Eclipse attack example. The right part of the
image shows a generic DHT network. The node on the extreme
left part of the image wanted to join the DHT but it ended up
connecting only to four malicious nodes (marked in red). Thus all
victim node’s connections to the main DHT network are carried out
throughout the set of malicious nodes that are able, if and when
they desire, to isolate the victim from the rest of the network.

3.4 Eclipse attack

3.4.1 At a glance

When performing an Eclipse attack the attacker tries to partition
from the main network a node or a set of nodes [55, 30, 88, 38]. To
attain this goal an attacker needs to gain control over a sufficient
number of the neighbors of the target node(s). An alternative name
used to denote Eclipse attack is Routing Table Poisoning attack,
since it based on inserting poisoned entries in the victim’s routing
table.

41

3. DHT Security

An honest node is vulnerable to this attack especially during
its bootstrap phase: when a node bootstraps may need to ask for
new nodes contact. During this phase attacker-controlled neighbors
may be fed to boostrapping node, thus filling its routing table with
malicious nodes’ contacts. Another way to poison a node’s routing
table in an attempt to separate it from the network can be carried
out is during its “normal” communications: once at least one of
the nodes controlled by the attacker is inserted in a target node’s
routing table, the victim node will from time to time contact the
attacker-controlled node during normal routing operations. When
this should happen, each message exchanging routing data updates
will be filled only with malicious contacts. Target node will then
use this poisoned data to update its own routing table.

A graphical depiction of a node “eclipsed” from the main network
is shown in Figure 3.3.

3.4.2 Practical relevance

Instead of trying to poison look-up outcomes like in the Node
insertion attack (see Section 3.2), an Eclipse attack aims to gain
control over the routing mechanism of a P2P system [55, 30, 96].
Compromised nodes will work together and try to fool any genuine
node by adding their addresses to the genuine nodes’ neighbor list.
Once an attacker gains control over the routing mechanisms, nodes
cannot correctly forward a message to desired destination. This
way attacker-controlled nodes may also be used to put in place a
man-in-the-middle scheme, allowing to control or alter messages
conveyed through the malicious nodes.

Eclipse attack can be used to facilitate other attacks like Node
insertion attack and, on the other hand, can be boosted with a
preventive Sybil attack (see Section 3.1). Creating a number of
Sybils to be injected in target’s routing table, an attacker can
substantially reduce the amount of resources actually needed to
successfully eclipse a node.

Unstructured overlays are more susceptible to this type of at-
tacks than the structured ones: within a structured environment
constraints over the neighborhood of one node are naturally im-
posed. For this reason, unstructured overlays usually relies on floods
mechanisms to collect information about topology of the network.
The more nodes use these mechanisms, the higher the probability

42

3.4. Eclipse attack

that an attacker will gain control on more nodes in the system:
with every update retrieved during a flood the overall number of
sources of malicious entries contacted increase [30].

On the KAD network (see Section 2.3.5.1 for details on this
Kademlia implementation) it has been shown that, during performed
experiments, Eclipse attack success rate reached virtually always
100% within minutes, although experiments was limited to target
merely single victim peer [55].

3.4.3 Proposed solutions

In this section we review proposed countermeasures against the
Eclipse attack reported in literature. Against this class of attacks
to consider a defense successful it is expected to roughly bound
the fraction of malicious entries (inserted in honest nodes’ routing
tables) to the fraction of malicious nodes present in the whole
system [88].

A possible defense strategy relies on the use of two concurrent
and distinct routing tables [14]. One table – namely the optimized
table – is continuously updated while operating the system, thus be-
ing exposed to potential corruption due to malicious nodes’ activity.
The other table instead must contain only verified entries. A node
decide which routing table should be used to route its messages,
basing it decision on routing failure tests. This strategy can be
further enhanced by periodically resetting the optimized table to
the one with trusted contacts, thus purging any possible malicious
entries contained [18].

Another technique to provide some kind of resistance against
Eclipse attacks resides on artificially induce churn in the network.
Whenever a node joins the system, all the other nodes that become
its neighbors after its inception leave the network; these nodes then
re-join the system with a new random identifier immediately [8].

In systems where the overlay network is more structured a basic
form of defense is to impose constrains on the nodes’ identifiers
allowed in routing tables; this strategy was already suggested in
the original work presenting Chord DHT [85] (also see Section 2.3.2
for basic details on Chord). Moreover forcing nodes to select their
identifier through a Certification Service (CS) should mitigate the
attack (since freely choosing its identifier may help an attacker to
reach a target node’s neighborhood) [59].

43

3. DHT Security

Another popular countermeasure is based on the fact that during
an Eclipse attack malicious nodes’ connections degree tend to be
higher than the average degree of honest nodes in the overlay.
Leveraging this feature an honest node can select its neighbor
among those with a degree below a certain threshold; thus the
probability of selecting honest nodes increases and the network is
expected to gain protection against the attack [82, 38, 96].

3.4.4 Open issues

Despite a number of defenses against Eclipse attack have been
proposed, such an attack still remains an open problem [82]. Each
and every technique described in Section 3.4.3 sports some serious
drawbacks. This section will describe them.

The techniques based on the usage of two different routing
tables (the optimized one and the trusted one) tend to cause more
overhead than advantages. After some time the system is suffering
from an Eclipse attack most of the routing performed ends up to be
done using the verified routing table, with an additional overhead
due to routing attempts via the optimized (and already poisoned)
routing table [18]. Moreover periodically resetting the optimized
table proves useful only if tables’ poisoning increases slowly over
time [88].

Adoption of induced-churn strategies, although providing some
form of protection against the Eclipse attack, leaves the system
vulnerable to other exploits. Purposely inserting new nodes in
the overlay, an attacker can trigger extremely high churn maiming
the system. Moreover an attacker may remove from the overlay
a number of honest nodes by means of a Denial of Service (DoS)
attack while other nodes perform the leave and re-join phase [88].

Using a Certification Service (CS) may be troublesome to im-
plement eventually falling back to the usage of a Central Author-
ity (CA). That, obviously, would become a single point of failure for
the whole system and is not acceptable as we previously discussed
it in Section 3.1.4.

Finally, bounding the nodes’ connection degree, although com-
pletely decentralized, tends to decrease system efficiency. Requires
a small degree per active node results in an increased look-up time
even in the absence of attacks: in general the less contacts are
available, the more routing hops are required.

44

Our new secure DHT 4

In this chapter we present or main contribution: two new DHT
primitives. We will describe how they can constitute a line of defense
against attacks aimed to selectively obscure or alter resources – for
a disquisition about the security threats affecting Distributed Hash
Tables please refer to Chapter 3. We will also explain how these
new primitives can be integrated –requiring minimal adjustments –
with the a basic DHT design, enhancing it. In next Chapter 5 we
discuss correctness of our enhanced design.

To avoid attacks, especially Node insertion and Sybil attacks
(respectively see Section 3.2 and Section 3.1), the set of primitives
available to a basic DHT design described in section 2.2 must be
extended. The required ingredients are three: randomness, age
and work. These three ingredients can be granted by just two
new primitives: getSeed and isOldWorker. To integrate these new
features with the basic design, naturally, does require to adapt the
DHT model but, as we will see, this does not affect the conceptual
mechanics habitual to any DHT. In the next paragraphs we will
individually explain the behavior of the new primitives and, later,
we detail the adjustments required for integration.

The getSeed primitive can be used by a node at any time enabling
it to retrieve a “random seed” – namely “random seed” is a random
byte string. Data returned by getSeed must have three properties:
it must be a network-wise consistent value; it must change every
T time units; and, obviously, it can not be guessed or foreseen

45

4. Our new secure DHT

before the random seed itself is actually generated. These three
properties also imply that as time passes getSeed creates a sequence
of random seeds consistent across the network. Also note that, as all
DHT nodes can (and will) access to the sequence of random seeds
repeatedly calling on getSeed, the evolution of the value returned
by this primitive implicitly creates a time framing. This seed-based
time framing can be used to timestamp – in some sense – the events
occurring within the DHT network. This primitive provides the
“randomness” aspect of our enhanced DHT.

A proper timestamp is provided by isOldWorker. Upon joining
the network each participating node chooses its own node ID. In
our model we do not impose any constrain on ID. However it is
advisable – for honest nodes – to randomly chose its own ID : this
eases stored keys load balancing for the whole network. Clearly
inception of an ID (and it relative node) happens during the an
“epoch” marked by a random seed: the seed returned by getSeed
up to the inception moment. Therefore isOldWorker allows any
node to perform a check on another node ID inception age. More
precisely this primitive returns true a certain ID has been choose
by a node during a seed epoch of a previous seed (relatively to the
one currently returned by getSeed). Moreover, for reasons later
explained, we ask that the node inception is not “too old” – say no
more than η seeds old. Otherwise – i.e. there is no evidence of the
ID being incepted in a previous but reasonably recent epoch – false
is returned. This part of isOldWorker behavior is responsible for
the “age” feature.

Regarding the “work” facet of our new design isOldWorker is
again the key primitive. Accessing this primitive a DHT participant
can verify that inception of a certain ID required submission of a
(valid) proof of work [39] to the node that spawned it. This proof
of work must be tied to the specific ID as well as to its inception’s
seed. This certifies that the “right of use” to an ID has been “payed”
by the node claiming such an ID, thus mitigating Sybils outbreak.
Any protocol providing the function of a proof of work system is
acceptable for this stage. However the general nature of a DHT
is that of a network system: therefore an optimal proof or work
scheme would undeniably be a network-bounded one – e.g. a puzzle
similar to an Abliz’s guided tour [2] but heavily less structured and
centralized – rather than a (more traditional) CPU-bounded one
like, for example, Hashcash [9]. As we said, when checking age of a

46

node, we must also verify that it is not “too old”. Otherwise waiting
an indefinite amount of seed epochs, an attacker would collect a
considerable amount of valid proof of works, for a large number of
IDs. So the constrain about being at most η seeds old is needed to
keep the proof of work scheme valid. Please note that isOldWorker
requires that both the constrains on the ID are satisfied: it must be
“old” enough and, at the same time, at ID-generation time a proof
of work was payed. If any of these two conditions is not met, the
primitive will return false.

Thus far we described how each of the new primitives individu-
ally work. Now we will proceed detailing how they are integrated
on a general basic DHT design, leading to an enhanced DHT design.
We will begin by showing how local operations performed by every
node must be modified to comply with our new setup. Then we
will proceed explaining how the new primitives will work together
when nodes of the enhanced DHT interact with each other.

First of all getSeed primitive will affect resource positioning
within the DHT. Our new design, as the basic one, has its corner-
stone on distributing key/value resources according the hashed value
of their keys. However in our enhanced DHT whenever a node calls
the hash function to convert a resource’s key to its ID also getSeed
must be used. More precisely, instead of simply hashing the key
value, we require that a resource’s ID must be obtained by hashing
together both the key and the random seed returned by getSeed.
Thus the same resource will have different IDs, changing any time
getSeed output – i.e. the seed epoch – changes. A resource’s ID also
marks the resource’s position within the DHT address space. Note
that the sequence of IDs assigned to a resource during different
epochs represent the address space “trajectory” followed by the
same resource.

Nodes of an enhanced DHT must use contacts accordingly to
isOldWorker. For any new node reference obtained during any of
the normal Distributed Hash Table’s operations, a check through
isOldWorker is performed. This new reference can be inserted into
the routing table of a node if and only if isOldWorker confirms
that new refereced node’s ID was chosen before the current random
seed returned by getSeed was generated. This guarantees that all
nodes’ addresses and IDs stored in a routing table was incepted in
a previous random seed “epoch”. Note that enforcing isOldWorker
control over the routing table also affects the outcome of look-up

47

4. Our new secure DHT

and store procedures. Also note that an extra care must be put in
which nodes get actually inserted in a node’s routing table: this is
due to a certain degree of routing table poisoning risk. This last
issue is addressed more directly in Section 5.4, please refer to it for
further details.

Finally network communications can also be affected by the
isOldWorker proof of work token. If a node doe not proves to be
old enough, it can still be allowed to a limited number of DHT
operations – those not requiring any special trust like, for example,
simple look-ups. A node will drop any communication with any
node that, failing isOldWorker due to its fresh inception, does not
at least provide a correct proof of work – i.e. the correspondent
node is not providing a proof of work valid for the current time
frame1. As already mentioned, a node is expected to invest a certain
amount of work to be entitled to the usage of its node ID. Failing
to provide evidence of such an investment results in the node being
ignored from the rest of the network.

These are the slight modifications required to nodes’ behavior.
We will now point out how such small changes reflect on the global
DHT functioning.

As explained dealing with the usage of getSeed coupled with
resources’ hashing, it should be clear that usage of getSeed as cor-
nerstone for the hash function – alongside getSeed output evolution
– does imply that during each random seed “epoch” a resource will
have an ID different from the previous ones. We will call such an
event – resources changing IDs when getSeed changes – resources
rotation. Note that getSeed output is random and a Distributed
Hash Table’s hash must be a function hard to invert. Thus dur-
ing a resource rotation the “destination” ID of a resource is not
predictable before the rotation actually takes place.

A secondary effect of resources rotation is a natural management
of stored records’ expiration: when a seed epoch changes a certain
resource will be entrusted to a new node. This node however does
not necessarily know, yet, the existence of a resource previously
stored elsewhere. Then it is responsibility of the node that originally
stored a record to renew it by issuing a new store request, just as
it would do upon a “normal” resource expiration.

1Remember that the succession of different random seeds returned by
getSeed do imply a time slicing.

48

Any node in the network enforces a routing table insertion policy
ruled by isOldWorker primitive and, if necessary, a communication
drop policy managed by this primitive proof of work. These policies
grants to any node that any other valid DHT node observed both
chose its ID before last resources rotation happened and granted
its ID by performing some work. Furthermore as we previously
hinted any of the basic, yet modified, DHT primitives will lead to
“old” nodes. This is due to the fact any reference stored in a routing
table is granted via isOldWorker primitive. Thus resources will be
given in custody – i.e. stored – only on nodes that are both “old”
and actively maintaining their ID.

In our new DHT architecture then resources are expected to

1. be close, according to the distance function, to an “old” node
that chose its ID before possibly knowing the ending position
of the resource

2. rotate every T time units.

This ensure the DHT against Node insertion attacks and, more
in general, against tampering on selected resources. To harm a
certain resource an attacker must first become the entrusted store
location of it. But no node will ever be entrusted with a resource if
does not pass an isOldWorker check. This implies that any node
actually storing resources chose its ID regardless of which resources
would have been put into its custody. Of course this does not mean
that a node could join the DHT and tamper with resources bestowed
on it, but please note that this is not and aimed strike: randomly
taking down DHT nodes – e.g. via a DDoS attack – would have
an analogous impact on data availability. By chance an attacker
could however become the node entrusted with the target resource.
In this case however malicious node will not be able to harm the
DHT for significantly more than T , the time expected before a new
resource rotation occurs.

The new DHT primitive isOldWorker also provides additional
security causing Sybils mitigation. Being a form of proof of work,
presence of this additional primitive discourages usage of multiple
IDs. On the other hand a malicious node could choose more IDs
in an attempt to increase the probability of becoming, by chance,
the storage location for its targeted resource. This would require a
considerable effort compared to the attack effectiveness. Also, due

49

4. Our new secure DHT

to proof of work expiry, Sybil IDs generation is bounded by the
adversarial capacity of generating them.

Concluding, we propose a Distributed Hash Table with an ex-
tended set of primitives. In basic DHTs an attacker can effortlessly
corrupt or delete resources. With few adjustment a DHT can
be turned in a system with increased security. In such a system
although does not completely eliminate threats, attacks are remark-
ably harder to be carried out.

50

Security guarantees 5

In this section we formally prove that any DHT satisfying some
very mild and “standard” conditions can be protected from a large
range of attacks by the use of the two primitives isOldWorker
and getSeed, even if those attacks are carried out by an adversary
that controls a substantial portion of the network’s computational
power. We explicitly remark that we do not attempt to prevent
or obviate brute-force Denial of Service (DoS) attacks aimed at
disconnecting one or more nodes simply by directing against them
excessive traffic; there are simple techniques based on virtual node
replication that can obviate these attacks, which are beyond the
scope of this dissertation.

5.1 Preliminaries

A first distinction we make is between active and passive nodes.
The former are those that support the DHT, and in particular that
can be part of each node’s routing tables (and be returned by look-
up queries) and on which one may store information. The latter
are all other nodes, that can use the DHT, but do not support
it; in particular, passive nodes can search and store information
on the DHT. Simply put, any node that wants to take an active
role when interacting with other nodes must pass an isOldWorker
check; otherwise it is treated as a passive node.

51

5. Security guarantees

We focus this discussion on active nodes, noting that the only
obstacle that passive nodes may present to the correct functioning
of the DHT is by requesting “too much” service. This is easily
obviated by having active nodes, upon a shortage of resources, ask
for progressively more onerous proofs of work, or other forms of
payment, from passive nodes, until an equilibrium is reached. Since
exactly how much traffic an active node can support can depend
on a large number of factors, and the DHT is likely to be just a
component of a distributed service that faces on its whole similar
resource-limit issues (where the exact resources and limits, however,
are likely to vary widely with the actual service involved) we do
not explicitly consider the exact form this access control can take.

5.2 Assumptions

We make a number of simplifying assumptions in this analysis. The
first is that all (active) nodes have the same computational power
(more powerful nodes can simply simulate multiple less powerful
nodes) and that this power is such that a node can have at most w
proofs of work produced by isOldWorker valid at any given time.
We can then reason in terms of IDs, instead of nodes, noting that an
adversary that controls a fraction f of all the computational power
of the (active) network can effectively masquerade as no more than
a fraction f ·w

f ·w+(1−f)
< f ·w of all the (active) network IDs. We shall

then talk of “bad” IDs to denote those controlled by the adversary,
and “good” IDs to denote all others.

Note that w is, in general, freely tunable, but there is a trade-
off: large values of w grant comparatively more power to malicious
nodes, while small values of w force even honest nodes to waste
a substantial fraction of their computational power to prove their
honesty.

The second assumption we make is that the address space is
sufficiently large that we can reason about it as if it were continuous.
Also, we assume that the address space into k ≥ 2 level 0 areas,
each with the same “size”, in the sense that a random address is
equally likely to be part of each; and the area to which the node
belongs is recursively partitioned into β level 1 subareas, and so
on, with each level i subarea being partitioned into β level i + 1
subareas. We call β the branching factor of the DHT. Note that

52

5.3. Proximity guarantees

many DHTs have a branching factor of 2, although some – e.g.
Pastry and Tapestry – can admit branching factors that are as high
as nε for some small ε.

We say that:

Definition 1 Given three IDs x, y, z, we say that x is closer to y
than to z if, for some i, x belongs to the same level i subarea of y,
but not to that of z.

For brevity, we shall hereafter use the following:

Definition 2 A given point in the address space is compromised
if it there exists no good ID closer to it than every bad ID.

Finally, we assume that a new node bootstrapped into the DHT
can begin with knowledge of at least one good ID. Note that this
is obviously necessary to avoid having the new node completely
isolated from the rest of the network by bad IDs.

5.3 Proximity guarantees

Informally, if we first place the good IDs sufficiently “uniformly”, no
matter how we position the bad IDs, a random point in the address
space will have roughly the same probability of being closest to a
good ID and to a bad ID. Then, if we hash the position of a resource
to a random position through getSeed after the active IDs have
been placed, it will have roughly even chances of being “controlled”
by a bad ID.

In fact, a smaller fraction of bad IDs yields even better guar-
antees, even though the probability of one of them being closest
to the resources decreases slightly sublinearly with the fraction of
bad IDs if good IDs are placed at random (informally, because the
random placement will inevitably leave a few larger-than-average
“holes”). More formally, we can prove the following:

Lemma 1 Assume all good IDs are chosen uniformly and indepen-
dently at random in the address space. Then, for any (subsequent)
choice of bad IDs, and any randomly chosen point x in the address
space, if bad IDs are at most a fraction q of all IDs, the probability
that x is compromised is O(q log(1/q)).

53

5. Security guarantees

Proof 1 The proof is immediate from the fact that, with n nodes,
the probability that any contiguous fraction s of the address space is
unoccupied by any good ID is e−Θ(ns)). Thus, positioning the bad
IDs in the largest such portions (which yields a total probability
of one of them being closest to the random ID no larger than the
sum of the fractions), one can apportion on average at most a
fraction O(log(1/q)/n) of the address space to each bad ID, and
thus apportion to bad nodes a fraction at most O(q log(1/q)) of the
address space.

Remark 1 Note that as long as the probability that a resource
is “controlled” by a bad ID is less than 1

2
, we can easily boost the

probability of making the resource “safe” by replicating it to m
random positions, which makes the probability that more than a
minority of them will be compromised O(2m/2) – i.e. exponentially
small in the replication factor.

5.4 Poisoning the routing tables

It would be tempting to assume that the result of Lemma 1 by itself
ensures that our “randomly moving resources” scheme, plus possibly
an m−fold replication of each resource, makes the probability of an
insertion attack being successful on any given epoch exponentially
small in m even with a constant fraction of bad IDs. Unfortunately,
this fails to take into account that colluding bad IDs can “poison”
the routing tables, in such a way that even if a good ID is closest
to a resource – i.e. if the resource is not compromised – all but a
vanishingly small fraction of searches will fail to reach it.

To see how this is the case, recall that searching in a DHT
of n active IDs proceeds, informally, in logβ(n) = log(n)/ log(β)
steps; at each step the searching node “zooms” into a portion of the
address space β times smaller by performing one or more look-ups
from IDs of a given subarea, that return a number k of IDs from
the next-level subarea. If we assume that each good ID returns a
fraction q of good IDs and a fraction 1− q of bad IDs, whereas each
bad ID returns only bad IDs, the fraction of good IDs available to
a searching node after t look-ups is at most qt – which becomes
vanishingly small at the end of the search (i.e. for t = Θ(logβ(n)))
if 1 − q = ω(1

logβ(n)
). In other words, if the branching factor β

54

5.4. Poisoning the routing tables

equals 2, we can tolerate at best a fraction of bad IDs inversely
proportional to the logarithm of the number of active IDs, whereas
if β = nϵ, we can tolerate a small, constant fraction proportional
to ϵ. A larger fraction of bad IDs can effectively “trap” with high
probability any search into look-ups returning solely bad IDs.

The situation is even worse, however. The crucial point is that
DHT fill (and refill) their routing tables through look-ups to random
points of the address space. This means that if the fraction of good
IDs in the routing tables is at most q at a given point in time,
then if the routing tables are refreshed “naively” through random
look-ups, the next crop of IDs in the routing tables will hold only a
fraction at most ≈ qlogβ(n) of good IDs; and eventually, all entries
in the routing tables will be, and remain, bad IDs.

Fortunately, we can obviate this problem, and ensure that if the
fraction of bad IDs is q, and thus the compromised fraction of the
address space is p = O(q log(1/q)), the fraction of bad IDs in the
routing tables remains O(p). The key idea is to attempt multiple
independent searches for the same point in the address space, and
place into the routing table only the closest ID returned by any of
them. If the number of independent searches is sufficiently large,
one can make the probability that all of them get trapped by bad
IDs arbitrarily small, and thus the probability of not obtaining a
good ID only marginally higher than the “natural” probability that
the target of the search being compromised. In particular, if we
assume that a fraction at most 2p of the routing table entries is
compromised, and searches take ℓ steps, then the probability that
a given search will not be trapped is (1− 2p)ℓ, and the probability
that all of s independent searches will be trapped is (1− (1− 2p)ℓ)s.
If we assume that 2pℓ < 1/2, then (1− (1− 2p)ℓ)s < (2pℓ)s < 2−s,
and the last quantity is no more than p if s ≥ log2(1/p).

One can easily formalize the above into a proof of the following:

Theorem 1 Let p be the compromised fraction of the address space,
and assume that pℓ ≤ 1/4, where ℓ is the maximum number of steps
in a search. Assume also that each element in the routing tables of
every good ID is obtained by choosing with probability 2p an arbitrary
bad ID, and with probability 1− 2p the good ID closest to a point
chosen uniformly and independently at random from the appropriate,
uncompromised address space subarea. Consider, for s ≥ log2(1/p),
the closest ID returned by s searches, each initiated by a distinct

55

5. Security guarantees

ID, for the same address x chosen uniformly and independently
at random from any given subarea. Then with probability at least
1− 2p this ID is a good ID.

Thus, we are essentially looking at a small redundancy of lg(ℓ),
where ℓ < lg(n) is the number of steps in a search, in each step to
populate the routing tables; this is enough to guarantee that routing
table entries do not get poisoned. Note that this also requires care,
however, when adding entries by “casual contact” if this means
ejecting previous entries. New entries should be added only by an
explicit search, or if they would fit in an underpopulated subarea
of the routing table.

5.5 Summary of changes
Summarizing, these are the changes that are required to secure a
DHT through the use of the getSeed and isOldWorker primitives.

1. Resources must be regularly repositioned every epoch to a
pseudorandom point in the address space produced by a hash
of the shared value obtained by getSeed; possibly with m−fold
redundancy.

2. An ID should be considered active by any node it interacts
with and allowed to store values or enter routing tables only
after proving it isOldWorker.

3. Routing tables should be populated proactively by repeating
searches for the same random point in the address space
s ≈ log ℓ times, where ℓ = O(lg(n)) is the maximal number
of steps in searches, and taking the closest node returned by
the s searches to the target address.

4. Routing tables should be populated reactively, by inserting
nodes contacted through means other than the above, only if
it does not entail ejecting current table entries.

5. This tolerates a fraction of malicious IDs up to O
(

1
ℓ log(1/ℓ)

)
(by Lemma 1), ensuring that a resource is obscured with
probability at most 2−m/2.

56

New DHT primitives through a Block
Chain 6

This chapter will provide a basic knowledge about what block chains
are and how a block chain system can be adapted, providing a back-
end for the new DHT primitives described in Chapter 4. The first
section we provide a description of the general mechanics of block
chain. Then, in the second section, we explain how a block chain
may be used supporting the new DHT primitives. Finally in third
section we give a short history of block chains development as well
as depiction of some block chain actually deployed.

6.1 A generic block chain model

The very first block chain was Bitcoin [67], that will be described in
following Section 6.3.1. In this section will be described a generic
block chain system, how it works and what are the mechanics
that make data stored in such a system publicly available while
preventing their alteration.

Ultimately a block chain is a distributed system or, from a
different point of view, a distributed database. This database
allows to store and verify electronic transactions (regardless of what
exactly a transaction represents) without requiring trust among the
peers contributing to the system.

57

6. New DHT primitives through a Block Chain

Figure 6.1: A graphical representation of a single block chain
block and all its basic components.

The basic elements of a block chain are its records, called blocks.
The block chain is, as its name suggests, a continuously growing
collection of such blocks. Each block record is a more complex data
structure, made up of an header and a collection of transactions.
What makes a block chain a secure system is the requirement of
some kind of proof of work, that is embedded in its basic elements.

58

6.1. A generic block chain model

Figure 6.2: An example of a binary Merkle Tree built on transac-
tions. The root node is a convenient digest, representing the whole
transactions collection’s hash in the block header.

Figure 6.1 depicts a block chain’s block structure. In the following
paragraph we will detail the basic data structures making up a
block and how they are used.

The collection of transactions may be organized in any fashion
as long as it sports the possibility to digest it in a compact form, an
hash value. For the purpose of simplified transaction verification
(discussed later in this section), usually transactions ’ collections are
organized in the form of a binary Merkle Tree [64], with the tree’s
root serving as the collection’s digested hash. Figure 6.2 shows a
typical block chain’s transaction Mekle Tree.

Each block header must be a structure that can be digested as an
hash as well. The block header identify its block and should contain
at least the following elements: the block ’s incremental number,
representing the block position in the overall block chain sequence of
blocks ; the hash value representing the set of transactions collected
in the block ; the hash value of the previous block ’s header – i.e. the
hash of the block whose header ’s number equals the current block ’s
number minus one. All these elements must be used as arguments
to compute the block header ’s hashed value. The hash value of
previous block ’s block header then represents the link between two

59

6. New DHT primitives through a Block Chain

Figure 6.3: An example of three blocks from an hypothetical block
chain. The link between two subsequent blocks, consisting on the
predecessor’s header ’s hash, is represented by the arrows.

blocks, as shown in Figure 6.3. The term block header is often
referred to as header, as a shorthand.

Please note that the header ’s hash works as well as an identifier
for the whole block. The block ’s potion in the overall sequence
cannot be altered: modifying any of the components shaping the
block would result in a different hash. Among these elements lies
also the previous block ’s hash value. Thus once a block is “built” to
change its predecessor requires to “re-build” the block from scratch.
This has a clear implication: in a chain of blocks, to be able to
modify any of the parameters stored in any block requires the
modification of all subsequent blocks in the chain – i.e. it would
require to compute them all anew.

Thus, later modification of data stored in the block chain can
be avoided requiring a proof of work embedded in the block ’s
generation itself. This makes the effort required to change a datum
already stored in a block equal to the effort required to generate
a set valid proofs of work: for the targeted block as well as for
all subsequent blocks. Consequently any new block added to the
block chain contributes to ensuring an ever-growing security to all
previous stored blocks, increasing the cost required to modify older
blocks.

Block chain systems usually enforce the proof of work scheme
via block header ’s hash computation. The most commonly adopted
mechanism it obtained imposing some constrains on the acceptable
– i.e. valid – hash values. A common proof of work used in block
chains is based on the HashCash [9] mechanism. An additional
element, called nonce, is usually incorporated into a block header ;

60

6.1. A generic block chain model

the “correct” nonce is necessary to create a new valid block. Each
possible Nonce must be tried sequentially producing the various
possible block headers until, eventually, an hash turns out to be
valid according to the proof of work constrains. Rules on validity
may incorporate a concept of difficulty, a parameter calibrating the
“target” for a valid hash. Difficulty may be adjusted according to
the current network hashrate (the network’s cumulative capacity of
calculating hashes) making the valid hash target easier or harder
as a consequence of the global performance by network’s nodes.

In a block chain system, peers can perform two different tasks.
Nodes partaking in the network may be divided in “regular” nodes
and “miner” nodes. Note that a single peer node may be working
both as a regular and a miner node or, alternatively, just performing
one of the two tasks.

A block chain is organized as an unstructured network. Nodes
choose connections between each others randomly, generating a net-
work overlay arranged in the form of a random graph. Messages are
propagated in the network via a flooding mechanism, broadcasted
from each node to its neighbors.

Miner nodes are responsible for the creation of new blocks. They
constantly gather transactions on behalf of the whole network;
check (if needed) if available transactions are valid and should be
incorporated in the main chain; arrange them in a new block ’s
collection; and, finally, use all these information to search the nonce
that makes the new block a valid one – i.e. its block header when
hashed yields a valid value.

Regular nodes’ functions are mainly two: the first is to maintain
a distributed copy of the block chain, the latter is to grant access
and fruition of data stored in it. Frequently block chains implemen-
tations further divide regular nodes in thin and thick nodes. A thick
node hosts a complete copy of the block chain while a thin does
not. Whenever necessary a thin node retrieves the needed portion
of chain from a thick one, effectively being a lean client to the block
chain system. Thick nodes periodically send each other updates
on the last known block available in their chain copy; if necessary –
e.g. a discrepancy between the chain copies of two nodes – updates
are shared to synchronize the copies.

As already mentioned before, a lightweight procedure to check
if a transaction is contained in a certain block may be put in place.
If the set of transactions stored in a block is arranged in the form

61

6. New DHT primitives through a Block Chain

Figure 6.4: A simplified transaction verification is shown in this
picture. It is possible to check if a transaction is contained in a
collection without knowing all other transactions if the collection
itself is organized as a binary Merkle Tree, just by checking the
tree’s root hash. In this example to check if a certain transaction
(marked with the star and blue colored) is contained in a collection
whose Merkle Tree hash is known just three more hash values are
required to compute the root value: they are shown as the red
hashes. In the image the whole Merkle Tree is completed (with
light gray elements and dotted arrows) for comparison.

of a Merkle Tree, a thin node could verify if a given transaction is
contained in a certain block without necessarily need all the data
contained in that block. The smallest amount of data needed is
just the block header and a subset of the actual Merkle Tree: the
transaction itself; the transaction paired with it or, alternatively, its

62

6.1. A generic block chain model

hash; and the intermediate Merkle Tree nodes’ hashes all the way
up to the root. These data allows for an accurate reconstruction of
the hashed value of the transactions ’ collection. If the hash value of
the transactions is not coherent with the one available in the block
header, the latter can not be consistent with its own hash value.
This is called a “simplified transaction verification” and Figure 6.4
shows how it is processed.

Because the system rely on an unstructured network, different
miners may sometimes simultaneously “discover” different new blocks
chaining after the same block. If such an event should occur, any
thick node attach to its own copy of the chain the first valid block
received. Thus different nodes may experience different endings
for the same chain, virtually causing a fork in the block chain.
Forks are settled whenever a longer version of the chain is retrieved:
length of a block chain is ultimately a measure of how much proof
of work effort has been invested in it. Thus, the longer the chain the
more effort the network cumulatively invested in it. Choosing the
longer copy over the shorter ones, whenever a fork is encountered,
simulate a majority voting system: each “unit of effort” (in terms
of proof of work) accounts for one vote and the most voted chain is
the one upon which the network should share global consensus.

Corrections to the block chain over existing forks are expected
to happen from time to time. This implies that occasionally chain
branches are pruned and, consequently, all transactions stored in
pruned blocks are roll-backed. However, the more a block becomes
“deeper” in the chain – i.e. the more other blocks are chained as its
successors – the more unlikely a rollback of such a block its likely to
happen: to overwrite and outdo an existent chain branch requires
an increasingly growing proof or work effort, increasing every time
a new block is added to the branch itself. Thus once a block is
sufficiently deep its pruning probability is virtually reduced to a
non-existent one, due to overwrite impracticability.

Nodes, regardless of their specific type, may join and leave the
network at will. Miner and thin nodes do rely on thick nodes for
up-to-date information about the block chain, thus no restriction
or special operation is required either at join or at leave time for
such nodes. On the contrary, thick nodes are the actual hosts of the
block chain. This means that when a thick node joins the system
it should check if its block chain copy needs update or is already
synchronized with the shared one. To minimize effort when leaving

63

6. New DHT primitives through a Block Chain

the system and then re-joining it, a node returning online accepts
the longer (valid) chain as the correct one, updating or overwriting
the one already stored locally.

Concluding, a block chain can be considered both a timestamp
network and a majority decision system. It works as a timestamp
server [31] because it proves that the data must have been already
existent (at least) at the time new data was entered. It is a majority
decision system because the “correct” chain is always considered to
be the longest available valid chain – i.e. the chain that has greatest
cumulative proof of work effort invested in it.

6.2 A Block Chain enabling the new
primitives

Chapter 4 described a set of primitives that allows the creation
of a secure Distributed Hash Table (DHT). The main challenge to
implement such primitives lies in providing to the whole network
either a trusted entity to be queried or a distributed consensus
protocol. This section describes how a block chain systems could
be tailored to enable a DHT system with getSeed and isOldWorker
primitives. In the following paragraphs we detail a block-chain-
based implementation of the two primitives.

The cornerstone of security handed over through the use of
the primitives described in Chapter 4 is the availability for every
node in the DHT network of a consistent and shared random seed,
accessed via getSeed primitive. As explained in previous Section 6.1
in a block chain each block has (in its header) an hash value: such
value, because of block chain’s proof of work requirements, must
satisfy some constrains that makes it hard to discover, requiring the
sequential tuning of the nonce value. This makes it not predictable
until the actual block is found. Hence a block chain’s header ’s hash
represents a good candidate for a DHT’s seed random value. A good
option to attain a quasi-distributed consensus on a random value is
the following: let any DHT node able to retrieve (through either a
thin or thick block chain node) some selected block headers’ hash
values from the block chain. Some more constrains are necessary,
but will be discussed after presenting an isOldWorker primitive
block-chain-based implementation.

64

6.2. A Block Chain enabling the new primitives

Recall that, as said in Chapter 4, for a node to be “old” and
active – e.g. issuing isOldWorker on the node DHT identifier
returns true – requires that the node choose, investing some effort
in this process, its identifier before the current seed returned by
getSeed was generated. Moreover tis choice’s proof must not be
too far in the past. This can be proven rather easily once a block
chain is available. We require each DHT node to build a block
chain transaction. Building this transaction will require some effort,
and the transaction itself must contain the DHT identifier and the
token representing the work invested. Then this transaction must
be stored it in a block chain’s block. The DHT node can choose to
mine the block itself or rely on other miners to build it on its behalf.
Now, the criterion to establish is a node is actually “old” and active
or not simply reduces to check if it stored a valid transaction with
its identifier in a block deeper – i.e. older – than the one currently
providing the random seed but, at the same time, not deeper than
a certain parameter. Of course to prevent stealing of identities
“already old”, transactions should also contain the public part of a
public/private key pair as additional information. Thus a node will
be trusted as old if and only if its identity is found in a transaction
stored in a block in the correct “range of deepness” – i.e. coming
before the current seed’s one but after seed’s block minus ε blocks–
and, concurrently, it is able to sign its messages using the private
key verifiable with the public key contained in said transaction.

As said, transactions must require some effort in their building,
and a proof of this effort must be included in them. Mimicking
the block chain proof of work mechanism, we require a node to
provide an integer value included in its own transaction. This
value must have the property that when hashed with the node’s
DHT identifier the value must comply with some constrains. This
mechanism is modeled after Hashcash [9]. Thus generating multiple
identities would require to build multiple transactions, a task mildly
computational-intensive.

Clearly, the transactions are eventually going to expire – i.e.
a transactions sink too deep into the block chain sequence. This
requires each active node to periodically build a new transaction,
submit it to the block chain, and start to sign itself using the newly
stored transaction. Thus any active node is also proofing that its
DHT activity is being constantly worked out.

As consequence of forks happening in block chain accretion,

65

6. New DHT primitives through a Block Chain

latest blocks may be pruned (see Section 6.1 for details). Because
of this in getSeed implementation extra care should be taken when
selecting the block whose hash value represents the current seed:
a “deep enough” block should be used. This will avoid a possible
pruning-induced seed exchange and, at the same time, prevent roll
back of transitions necessary to isOldWorker primitive correctness.

Of course requiring a block to be “deep enough” implies its hash
value will be known beforehand when it will become the current
random seed. The reader could argue that a such knowledge would
make the random seed, in fact, non-random. Albeit a reasonable
objection, this is not an issue for the system security. The seed
value should be non-predictable just for isOldWorker purposes:
once the transaction is stored in the block chain a node can gain
no advantage from the knowledge of the seed.

Thus far we described a method to implement getSeed and
isOldWorker. As explained in Chapter 4 (ans supported by evidence
provided in in Chapter 5) a DHT supporting these primitives,
and thus a DHT paired with a block chain supporting these two
primitives, is protected from a Node insertion attack (described in
Section 3.2) aiming to hide some specific resources form the rest of
the network.

Constantly updating node’s transaction required by isOldWorker
provides instead security against a malicious node spawning too
many Sybil identities (for details on the Sybil attack see Section 3.1).
A node trying to upkeep a number of identifiers is required more
and more effort as the number of identities grows (see Chapter 4
and Chapter 5). In other words, a DHT relying on a block chain as
the one we just described also provides a mechanism that seriously
limit the feasible number of Sybils that a single malicious node is
able to inject and sustain within the system.

Summarizing, a generic DHT can be enhanced (accordingly with
primitives introduced in Chapter 4) by pairing it with a specialized
block chain system that will provide a back-end for getSeed and
isOldWorker providing DHT security through randomness, age and
work.

66

6.3. Current block chains

6.3 Current block chains

The generic block chain model described in Section 6.1 is based on
current implementations of block chain systems. In this section we
describe actual block chain systems. We begin describing BitCoin,
the first ever realized block chain cryptocurrency, then we go through
other prominent examples of existing cryptocurrencies. In the last
subsection instead we describe NameCoin, a BitCoin variant that
offers a Domain Name System (DNS) service, along the traditional
cryptocurrency functionality.

6.3.1 BitCoin, the first block chain

BitCoin is the first released and the more famous cryptocurrency and
block-chain based system. It was presented in 2008 by a white-paper
of an anonymous author writing under the pseudonymous of Satoshi
Nakamoto [67]. This subsection will describe this seminal system,
that heavily influenced designs that followed it and ignited the
cryptocurrency community. We provide a brief history of BitCoin
inception, followed by technical details about mechanics peculiar to
BitCoin system.

Contrary to popular belief, BitCoin was not the first digital
currency nor the first cryptography-based payment system. Indeed
in the early 80s blind signature technology was designed, ensuring
complete privacy to users conducting online transactions [15]. The
author originally designing blind signature was concerned with the
public nature and open access to online payments and personal
information, and proposed to construct a system of cryptographic
protocols preventing a bank or the government to be able to trace
personal payments conducted online. This technology was fully
implemented in 1990 by DigiCash, a corporation that offered an
electronic money service. DigiCash declared bankruptcy in 1998,
being unable to successfully cope company growth with user base
expansion.

BitCoin, instead, is the first fully decentralized digital currency
as well as the first system relying on a block chain. For details
on the general mechanisms governing a block chain please refer to
Section 6.1. The exchangeable financial value associated to the
BitCoin system is referenced to as “bitcoin” or, simply, “coins”.

67

6. New DHT primitives through a Block Chain

BitCoin was intended as a payment system as well as a cryptocur-
rency. Both features are implemented as a transactions exchange
between BitCoin addresses. Addresses can be generated at no cost
by any user of Bitcoin and are alphanumeric case-sensitive identi-
fiers of 26 to 35 characters, starting with the number 1 or 3. To
prevent visual ambiguity he uppercase letter “O”, the uppercase
letter “I”, the lowercase letter “l”, and the number “0” are never used.
Albeit there is no impediment to re-usage of BitCoin addresses,
due to privacy and security issues they are not intended to be used
more than once.

A transaction is a transfer of bitcoin value that is broadcasted
to the network and collected into blocks. BitCoin transactions have
input and output values, these values are used to link transactions
over time. A transaction typically references, as its inputs, previous
transaction’s outputs. It also dedicates all cumulative Bitcoin value
coming from its inputs to its new output(s). Transactions are
not encrypted, so it is possible to browse the block chain and
view every transaction ever collected into any known block. Each
transaction can optionally include a “mining fee”, rewarded to the
miner incorporating that same transaction in a new block. A node
submitting a new transaction to the system may want to include a
fee to expedite its block chain storage: miners can choose which
transactions process first and are likely to prioritize those that pay
higher fees.

Ownership of bitcoins means that a user can spend bitcoins tied
to a specific address, thus assigning a controlled transaction output
as input to a new transaction. To do so, a payer must digitally sign
the transaction using a private key specific to the same transaction.
Without the private key, the transaction cannot be signed and
bitcoins cannot be spent. This is not reversible: losing the private
key credentials makes the transaction signed by it (and thus its
coin value) permanently lost and unspendable.

Reference previous outputs as new inputs to transactions must
be verified. BitCoin uses a custom Forth-like1 stack based scripting
system. In each transaction the first part of the script – called
scriptSig – is paired with each input, while the second half – called

1Forth is an imperative stack-based programming language. First developed
in 1970, since its virtual machine is simple to implement and has no standard
reference, there are numerous implementations of the language.

68

6.3. Current block chains

scriptPubKey – is paired with outputs. The input’s scriptSig and
the referenced output’s scriptPubKey are evaluated (in that order)
with scriptPubKey using values left on the stack by scriptSig. The
input is authorized if scriptPubKey returns true. Using this system
the transaction’s sender – i.e. the payer – can create very complex
conditions that must be meet to claim the output’s value. For
example, it’s possible to create an output that can be claimed by
anyone without any authorization or, on the contrary, it is also
possible to require that an input must be signed by ten different
keys, or be redeemable with a user-defined password instead of a
public/private key couple.

A BitCoin wallet stores the information necessary to transact
bitcoins. In the BitCoin system the monetary value resides in
transactions redeemability, implying that bitcoins cannot be parted
from the block chain itself. For this reason a better way to describe
a wallet is: something that “stores the digital credentials for bitcoin
holdings” and allows to access and spend them. BitCoin is a system
that features characteristics of as a Public Key Infrastructure (PKI):
uses a public key cryptography. Two cryptographic keys, one public
and one private, must be generated by each node. At its most basic,
a wallet is a collection of the keys used by the wallet’s owner.

Being BitCoin a payment system, double-spending – i.e. the
result of successfully spending the same coins in more than one trans-
action – is a crucial issue. BitCoin protects against double-spending
verifying each transaction added to the block chain, ensuring that
the inputs for the a new transaction has not been previously spent.
While other electronic systems prevent double-spending using an
authoritative source approving each transaction, BitCoin uses a
decentralized system, relying on a consensus protocol among nodes
working as a surrogate for a Central Authority (CA). There is some
exposure, due to block chain forks, to fraudulent double-spending
when a transaction is first made. The risk decreases as the block
that stores this transaction goes deeper in the chain.

BitCoin’s hash function is based on the SHA-256 algorithm [23].
For proof-of-work purposes BitCoin uses double SHA-256: candidate
data is firstly digested by means of the algorithm, and this hash is
then hashed again through SHA-256 thus obtaining the final result.
BitCoin expects that in a certain amount of time the network will
be able to create a certain number of new blocks : more precisely the
system is designed on the expectancy that a new block is created

69

6. New DHT primitives through a Block Chain

every 10 minutes. This is achieved by tuning the next block valid
hash target through the proof of work’s difficulty. Valid hashes must
have leading leading bytes set to zero: the more consecutive zeroes
are required, the harder the hash is to find. Moreover, every 2016
blocks are added in the block chain the difficulty will be adjusted
to keep the average production of blocks at the rate of one each 10
minutes. Every node is able (by chain inspection) to independently
infer the correct difficulty needed in the next block generation.

Miners are encouraged to perform their block generation task
through an incentive – on top of the transaction fee. Each block will
contain a special transaction: this transaction has no input but, on
the other hand, has a fixed coin output. Thus a node mining a new
block will be allowed to spend in a future transaction an amount
of coins obtained as a reward for a previous block discovery. Exact
coin value of this reward halves every 210,000 blocks, approximately
every four years. Nakamoto set a monetary policy when he first
started BitCoin: there would only ever be 21 million bitcoins in
total. This means that eventually the reward will decrease to zero;
the limit of 21 million bitcoins is expected to be reached around
the year 2140. By that time miners will be rewarded solely by
transaction fees.

The first wallet program – the so called “Satoshi client” – was
released as open-source code in 2009 by Satoshi Nakamoto. This is
known as the “reference client” because it define the BitCoin protocol
and acts as a standard for other implementations. After the release
of version 0.9, the reference software was renamed “Bitcoin Core” to
distinguish itself from the BitCoin network. Other forks of Bitcoin
Core exist.

BitCoin is a digital asset designed to work as a currency. It
is commonly referred to as digital currency, electronic currency
or cryptocurrency. In February 2015, the number of merchants
accepting BitCoin for products and services passed 100,000 [20]. In
a nutshell, BitCoin is the first block chain ever devised, and works
as a reference for almost all block chain created thereafter. It is a
complex system and is used both as a currency and as a payment
system.

70

6.3. Current block chains

6.3.2 Other notable block chains

Many other block chains do exist beyond BitCoin. This section
provides reviews some of the most relevant systems that stemmed
after the original idea of Nakamoto in 2008, alongside a brief history
providing context to the birth of such alternative implementations.

Block chain based systems are often called altchains, shorthand
for “alternative block chains”. Their concept or code (or both of
them) are generally based on BitCoin technology. Block chains are
used for a variety of purposes, but mainly as a currency just like
BitCoin.

After BitCoin inception in year 2009, in 2011 was created Name-
coin. This chain is described in following Section 6.3.3. In october
2011 LiteCoin was released and, from there on many other altchains
was released. As of December 2016 almost 710 different cryptocur-
rency do exist, with a total market capitalization estimated around
14 billion dollars. However solely BitCoin assets account for 11 bil-
lions of such capitalization and less than 25 altchains do capitalize
more than 10 million dollars each.

Litecoin was released on October 7, 2011 by Charles Lee, a
former Google employee, via an open-source client available on
GitHub. It was a fork of the BitCoin Satoshi client. The main
differences between the two systems are on the block chain and
currency parameters other than, more importantly, on the proof
of work algorithm adopted. Litecoin aims to process one new
block every two minutes and a half, contrary to the ten minutes
period of BitCoin. Litecoins developers claim that this allows for
faster “confirmation” of transactions – i.e. the block hosting the
transaction is deep enough in the block chain, making its pruning
unlikely. However this leads to a higher probability for a new block
to be pruned shortly after its chain inception. Litecoin network
will eventually produce 84 million Litecoins, four times as many
currency units as will be issued by the Bitcoin network. Finally,
in its proof of work scheme Litecoin uses the scrypt algorithm, a
sequential memory-hard function [72] requiring asymptotically more
memory than a non-memory-hard algorithm.

Most of the altchains use a proof of work scheme to timestamp
their blocks. Algorithms used are predominantly SHA-256 [23]
and scrypt [72]. The latter currently dominates over the world of
cryptocurrencies, with more than 400 altchain implementations.

71

6. New DHT primitives through a Block Chain

Other algorithms used for proof of work in other alt chains include
SHA-3 [26], Blake [7], CryptoNight [81] and X11 [25].

PeerCoin [44], released in 2012, is the first cryptocurrency that
shifted from a pure proof-of-work system to an hybrid proof-of-
work/proof-of-stake one. In PeerCoin new blocks can be mined,
through a SHA-256 hash proof of work challenge exactly as in
BitCoin or, alternatively, they can be minted. Minting is the
process of creating a new block through a proof of stake – i.e.
proving coin ownership – rather than a proof of work challenge. In
PeerCoin’s system each transaction is paired with the concept of
“coin age”, representing the time elapsed between the generation
of such a transaction and its usage as input for a new transaction.
Note that this is conceptually identical to the time a particular
unit of coin has been in possession of the same owner. When a
transaction is used, its coin age is destroyed and, clearly, a node
holding control over multiple transactions do have a stockpile of
“coin age units”. To produce a block via minting a node must
include in such a block a special transaction called coinstake. In
the coinstake transaction the owner pays himself using some of
his transactions, thereby consuming associated coin age. Coin age
consumption grants the minter with the privilege of generating a
block for the network. The important difference with mining is
that the minting hashing operation is required to search a valid
hash over a limited space instead of an unlimited search space as in
a “normal” proof of work, thus no significantly easing the process.
Moreover the system eases difficulty for minting process when the
mining difficulty grows harder: this is done to counterbalance the
two strategies each other.

After PeerCoin launched the use of a proof-of-stake-based chain
scheme, other cryptocurrencies followed. Prominent examples are
ShadowCash [80], BlackCoin [90], NuShares/NuBits2, Qora3 and
Nav Coin4. As a final note, Nxt [66] was the first cryptocurrency
to rely its peer consensus purely on a proof of stake scheme.

Finally, after a beginning with a strong focus on financial appli-
cations, block chain technology is extending to activities including
decentralized applications and collaborative organizations. For

2https://www.nubits.com/
3http://qora.tech/
4http://navcoin.org/

72

https://www.nubits.com/
http://qora.tech/
http://navcoin.org/

6.3. Current block chains

example Steemit5 combines a blogging site, a social networking
website, and a cryptocurrency (known as Steem [48]). Synereo’s 2.0
Tech Stack is a blockchain-based decentralized platform, developed
by Synereo LTD6, which is also developing a social network (named
DApp) running on the mentioned platform [45].

6.3.3 NameCoin

This section presents NameCoin [57], a project spawned from Bit-
Coin that, other its cryptocurrency application, provides DNS-like
services.

Namecoin was the first cryptocurrency created forking the Bit-
Coin software. In September 2010 a discussion was started in the
Bitcointalk7 forum about a hypothetical system called BitDNS and
generalizing BitCoin. Inspired by the BitDNS discussion, on April
2011 Namecoin was introduced by forum user Vinced as a multipur-
pose and distributed naming system based on BitCoin. Namecoin’s
flagship use case is to provide a censorship-resistant Domain Name
System for the top level internet domain .bit.

Implementation-wise NameCoin shares code and parameters
with BitCoin. For example all of the following details are common
to both systems: a double SHA-256 proof of work scheme; expected
elapsed time between mining of two blocks ; difficulty adjustments;
coins rewarded with each new block ; halving period of rewards;
maximum number of coins released.

The main difference in NameCoin is on transactions. A trans-
action may include a record consisting of a key and a value, up to
520 bytes in size. Each key is actually a path, with a namespace
preceding the name of the record. Namespaces are online systems
that maps names to values, they have different semantics and pur-
poses: d represents the namespace of DNS records so that the key
d/example corresponds to the record for the example.bit domain.
The other currently implemented namespace is id to manage public
online people identities – e.g. tying a real name to an email address,
a birthday date and other personal details.

To register a new name – i.e. a record – within a transaction, a
fee of 0.01 NameCoins is required. This coin cannot be spendable

5https://steemit.com/
6https://www.synereo.com/
7https://bitcointalk.org/

73

https://steemit.com/
https://www.synereo.com/
https://bitcointalk.org/

6. New DHT primitives through a Block Chain

like other Namecoins while it has a name attached to it. Namecoin
enforces an expiration time for names. Originally, the time period
for a name to expire was set to 12,000 blocks, but by March 2012
the expiration period was increased to 36,000 blocks – about 250
days. An existing name may be mentioned in an update operation
(within another transaction) to postpone its expiration, renewing
it.

Finaly, other proposed potential uses for NameCoin include a
messaging system, personal namespaces, notary/timestamp systems,
alias systems and issuances of shares or stocks. These functions
however are still not available.

Though its purpose as a distributed DNS is interesting, a 2015
study shows that NameCoin reveals itself as a system in disrepair:
among the registered Namecoin’s domain names analyzed (roughly
120,000), a mere 28 were not “squatted”8 and have nontrivial con-
tent [42].

8 The term “squatting” referred to a domain name means that it is registered
by a user whose utility for that name is close to zero. However who purchased
it hopes to profit from selling it to another user whose utility is higher.

74

A secure DHT implementation 7

We developed a Distributed Hash Table (DHT) enhanced with the
primitives described in Chapter 4 and backed by a specialized block
chain as proposed in Section 6.2 as a proof of concept. This Chapter
will describe this system and its implementation. In the first section
we present its motivations, while the second section details on its
structure and architecture are provided. In the last section of this
chapter we eventually illustrate and discuss future improvements of
this software.

7.1 An easy-to-use secure DHT

This section illustrates the motives that leaded to the development
of Random-Age-Work DHT (RAW DHT), an easy-to-use yet secure
DHT implementation.

Modern software applications often require some form of a
distributed execution environment, be it a cloud or the possibility
for two or more application’s instances to find and connect with each
other. This need has been addressed by a number of commercial
middle-layer software – called middleware – that, however, are often
cumbersome and require a steep learning curve. Services regarded
as middleware usually offer enterprise application integration, data
integration, Message Oriented Middleware (MOM), Object Request
Brokers (ORBs), Enterprise Service Bus (ESB), Remote Procedure

75

7. A secure DHT implementation

Call (RPC) or Remote Method Invocation (RMI).
However available middleware solutions seldom if ever address

the following issues: finding nodes; build an overlay network; address
nodes in the overlay. Anyway such functions are as important as,
for example, ORB marshalling or RPC/RMI tasks. As already
discussed in Chapter 2, a DHT comes in handy exactly in this kind
of scenario.

Oddly enough though, in spite of the conceptual simplicity of
a general DHT (see Section 2.2 for more details) very few library
implementations, ready for an out-of-the-box usage, may be found
on the Internet. Moreover, those available are vulnerable to the
numerous security issues reported in Chapter 3.

Lack of a readily available DHT implementation, possibly se-
cured against the Node insertion attack (see Section 3.2), motivated
both the theoretical development of the primitives described in
Chapter 4 and an actual implementation, RAW DHT, serving as a
proof of concept.

More importantly RAW DHT, aside from being a proof of con-
cept, tries to fulfill this need: a code library to ease the development
of distributed software relying on a dynamic network overlay.

The following sections will detail implementation choices that
lead to a working system, experimentally evaluated in Chapter 8.

7.2 System architecture

This section presents a global view of Random-Age-Work DHT
(RAW DHT), the system whose development was motivated by
arguments expressed in Section 7.1. In Subsection 7.2.1 and Subsec-
tion 7.2.2 we respectively describe more in detail the structure of the
block chain module and that of the DHT module, while following
paragraphs we provide a description of the overall implementation
choices that was made during its development.

RAW DHT has been developed in Java: this language is natu-
rally cross-platform and, with small additional coding effort, could
be executed on Android tablets and phones besides more traditional
PCs. In addition Java language comes with an extensive set of
built-in data structures that significantly ease the development of
complex systems. To fully take advantage of this specific feature

76

7.2. System architecture

of the language, the Oracle Java Standard Edition version 81 was
selected.

Our implementation, made by over twenty thousands code lines,
requires as execution environment the Oracle Java Virtual Machine
(JVM) rather than the OpenJDK2 one. This is due to the usage of
some classes that not included in the open-source runtime. However
such classes are used only to render part of a browser-based user
interface, and could be easily excluded to make RAW DHT fit for
a broader range of systems supporting Java.

Some of the Apache Commons3 components were used to expe-
dite the code development, choosing structures whose implemen-
tation is proven to be solid rather then implementing them anew.
Components included in RAW DHT are:

• CLI - a command line arguments parser

• Codec - a set of general encoding/decoding algorithms – e.g.
managing URLs or hexadecimal strings

• Collections - extending the Java “Collections” data structure
framework

• Lang - providing extra functionality for classes contained in
java.lang package.

Through the usage of the Google Guava4 library other data struc-
tures – e.g. collections – and utilities are accessed, also to speedup
the development process as well as diminishing the possibility of
new bugs introduction in the code.

A good portion of RAW DHT code was developed following the
Test-Driven Development (TDD) methodology. TDD requires that
any new feature development begins by writing a unit test; then the
actual code implementation of the feature is written and eventually
it is tested. This practice generally leads to a more robust source
code and ensures that tested code is relatively bug-free, drastically

1https://docs.oracle.com/javase/8/
2http://openjdk.java.net/
3https://commons.apache.org/
4https://github.com/google/guava

77

https://docs.oracle.com/javase/8/
http://openjdk.java.net/
https://commons.apache.org/
https://github.com/google/guava

7. A secure DHT implementation

simplifying an otherwise painstaking debug process. Testing tools
used in RAW DHT development are JUnit5 and EasyMock6.

Aside from the two main modules (the block chain and the DHT
one, detailed in following subsections) RAW DHT implementation
include three more packages worth to be mentioned: logger, DB
and settings.

RAW DHT has been designed aiming to provide its functional-
ity on as many platforms as possible. For this reason an Object-
Relational Mapping (ORM) layer is of paramount importance for
the DB module. Thus we implemented for the system a general
interface to access its database and it relies on the OrmLite7 pack-
age. RAW DHT natively supports (and comes with) HyperSQL
DataBase (HSQLDB)8 – a relational database management system
also developed in Java. However by simply implementing a couple of
classes, RAW DHT support can be extended to the vast majority of
relational databases, from MySQL9 and PostgreSQL10 to Oracle11

or the Android-native SQLite12.
Logger and settings modules on the other hand provide means

to persist data in text files. The latter is used to persists the
various modules’ parameters. Such parameters may be set up via
Command Line Interface (CLI) at each software’s start-up or, as
said, specifying them in the setting files handled by settings module.
Logger module, as one would expect, provides a way to prompt
system messages both to the software console and to store them
in log files. At the moment of writing, such module can produce
either plain text or JSON-formatted output files. However it can
be easily extended to handle other text formats, extending current
classes or implementing required interfaces.

On top of the system described so far we developed a block
chain module and a DHT module supported by it. These modules
implement an enhanced DHT supporting the primitives described
in Chapter 4. In following Section 7.2.1 and Section 7.2.2 these two

5http://junit.org/
6http://easymock.org/
7http://ormlite.com/
8http://hsqldb.org/
9http://www.mysql.com/

10https://www.postgresql.org/
11https://www.oracle.com/
12https://sqlite.org/

78

http://junit.org/
http://easymock.org/
http://ormlite.com/
http://hsqldb.org/
http://www.mysql.com/
https://www.postgresql.org/
https://www.oracle.com/
https://sqlite.org/

7.2. System architecture

modules will be described in detail.

7.2.1 The Block Chain module

In this section we describe the block chain module. This module
was implemented to provide the RAW DHT module (later discussed
in Section 7.2.2) with (part of) the primitives that offer security
guarantees to the system (described in Chapeter 4). Block chain
module is one possible implementation of the hypothetical block
chain described in Section 6.2.

RAW DHT’s block chain module is modeled upon BitCoin [67]
(see Section 6.3.1 for more details on this cryptocurrency) but,
differently from the well-known block chain system, there is no
“coin value” associated with it. Moreover the block chain name
can be set-up throughout preferences parameters, thus making it is
possible to easily create a “private” block chain – separated from the
default trunk – just by tuning a parameter via CLI or configuration
file.

Block headers are built upon the structure described in Sec-
tion 6.1. The header ’s hash is obviously computed on the following
elements: the block number; the nonce; the previous block’s hash;
and the hash of the transactions set. Also the chain’s name, a
timestamp, the current difficulty and a miner ’s concur in the hash
computation. Block header ’s hashes are computed as a double
SHA-512 [23] – i.e. applying two times the algorithm, the first time
digesting the original data and the second time digesting the output
of the first iteration thus obtaining the final value.

A block object is made up just as an encapsulation of a block
header object and a data structure collecting the transactions. Block,
block header and transaction objects are all java-serializable thus a
JVM may send them over internet sockets without requiring explicit
conversion operations.

Transactions are made up of a DHT id (a 64 byte array), a
transaction nonce (a 64 bit long integer) and the public key of an
RSA [35] PKI. This RSA public key is a 2048 bit long key, encoded
by the Java Cryptography Architecture according to the format
specified in the X.509 standard [36] – more precisely: it is a 294 byte
array. Build a transaction requires the submitting node to correctly
compute the nonce that hashed with a enclosed id and the current
seed results in a double SHA-512 hash value whose first three bytes

79

7. A secure DHT implementation

are equal to zero. Please note that the number of bytes set to zero
is an arbitrary parameter. A special transaction – namely the “null
transaction” – is created setting all the transaction bytes to zero (id,
nonce and public key byte array). The “null transaction” cannot be
used by any node to validate their identity. This special transaction
but is used by miners, as will be later explained.

The collection of transactions is organized in a Merkle Tree
fashion by a specialized class storing them in an ordered ArrayList
object. The same class is used to compute the Merkle Tree root
value. Merkle root is then used as the hash value of the transactions ’
collection stored within block headers.

Block chain module sports three autonomous services: the thick
and thin node services other than the miner node service. At start-
up time, accordingly to module’s parameters, the node behavior
can be selected: miner service can be turned on or off and the local
node execution behavior can be selected to be as a thin or thick
client.

Miners gather from thick nodes (either local or remote) transac-
tions that has been submitted by user nodes. Using the transactions
retrieved a miner will try all possible nonce values until a valid
block is produced. This task can be interrupted whenever a thick
nodes notify the miner that an equivalent block has been found
by another miner – meaning that currently searched block would
be rejected when found. If, for any reason, a miner node cannot
get any valid transactions it will still be able to create a new block
using two “null transactions”. This is a small implementation trick
to prevent the block chain from getting stuck in the unlikely event
of the absence of valid transactions.

Thin node clients do not store a full copy of the current block
chain. Instead, they ask missing data to thick nodes whenever
needed. When block chain data is retrieved from thick nodes it is
stored locally, caching it. Note that thin nodes do use a database
architecture common to that used by thick nodes: this way, if a thin
node chooses to switch to thick, download of data already gathered
may be spared. A thin node provides an interface to access the
block chain as well as to submit a new transaction in order of
getting it included in a new block.

A thick node provides the same block chain access granted by
thin nodes, but stores a full copy of the chain. Thick nodes connect
to a number of other thick nodes randomly chosen. Also, thick

80

7.2. System architecture

nodes broadcast to known neighbors updates on the block chain.
When, due to a thick node starting its execution or when a new
block is notified to the network, missing blocks are retrieved by
neighboring thick nodes until the local chain copy is up-to-date.
RAW miners do notify their existence to thick nodes, thus thick
nodes may act as proxy to the miners both for thin nodes and other
thick nodes.

By means of either a thick or thin node it is possible to:

1. get a block (or its header) from its hash or its block number

2. get the last block (or its header) in the chain

3. search for a transaction’s last occurrence

4. check if a specific transaction is actually stored in a specific
block – identified either by its header, its header’s hash or its
number.

Block chain module uses both User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP) transport layer protocols.
The most appropriate is chosen depending on a trade-off between
the amount of data to be sent and the statelessness of the required
connection. All socket communications (TCP) do have a timeout
set to 30 seconds.

Although completely functional, block chain module has not
been optimized. As we will discuss in Section 7.3 a number of
improvement may be put in place with a relatively small effort.

Concluding, RAW DHT’s block chain module is a proof-of-
concept providing a fully operational implementation of a possible
back end – according to the one described in Section 6.2 – enabling
a DHT with the security guarantees explained in Chapter 4.

7.2.2 The DHT module

This section describes the Random-Age-Work DHT (RAW DHT)
core module. Relying on the block chain module described in
previous Section 7.2.1, it offers a working proof-of-concept of a DHT
sporting the security guarantees presented in Chapter 4. RAW DHT
has been designed especially to defend against keys’ hiding or
alteration, as would happen in case of a Node insertion attack (see
Section 3.2).

81

7. A secure DHT implementation

RAW DHT is a modified implementation of Kademlia [63]. For
more details on Kademlia please refer to Section 2.3.5. Addresses’
length has been set to 512 bit and, consistently with this choice,
SHA-512 [23] was selected as hashing function.

RAW DHT obviously support all the basic functions sported
by Kademlia (ping, store, find node, and find value) and, addi-
tionally, supports an implementation of getSeed and isOldWorker –
primitives described in Chapter 4.

The epoch seed retrieved calling getSeed is, as a matter of fact,
just a block header’s hash value obtained querying the block chain
module. RAW DHT’s getSeed select as a “seed block” the last block
whose number is multiple of a constant B and, additionally, whose
depth13 is at least greater than another constant D. The first
condition is needed to identify if a candidate block is, according to
its block’s number, a “seed block”. The second, similarly to BitCoin
“confirmations”14, is needed to reduce the possibility of a “seed
subversion” due to a block chain fork overtaking the current chain.
In RAW DHT’s implementation, at this dissertation is written, has
set B = 7 and D = 5.

Whenever a resource – e.g. a key – needs to be hashed, the
seed retrieved with getSeed is concatenated to the end of resource’s
bytes representation. Thus, in each seed epoch the same resource
will have different (and unpredictable) hashes.

Each RAW DHT node, when choosing its ID creates an RSA-
based Public Key Infrastructure (PKI) keys pair. Any DHT node
is thus identified by three objects: its ID; a transaction nonce;
its public key; and its physical IP address. ID, transaction nonce
and public key must be encoded in a block chain transaction (see
previous Section 7.2.1). As soon as such transaction gets incor-
porated in the block chain, the DHT node saves the number of
the block containing it. Please note that, given a node’s ID, the
nonce and public key a transaction can always be unambiguously
reconstructed. If the node’s transaction is not yet incorporated in
any block, the special value “-1” is used until a valid block number
could be provided.

13In the context of block chains the depth of a block represents the number
of blocks following it up to the last in the chain.

14In the BitCoin system, to be secure against double spending a transaction
should not be considered as “confirmed” until it is at least a certain number of
blocks deep.

82

7.2. System architecture

All RAW DHT messages are fit with the node’s transaction
block number, all the node’s identifiers (ID, transaction nonce and
public key) and a private-key-signed version of the message itself.

This usage of transactions allows three useful behaviors: stored
transactions can be used to enforce isOldWorker policy; they de-
couple a node from its physical address; they allows to check if a
node providing its transaction number in a message is its rightful
owner.

The isOldWorker primitive is thus easily implemented: when a
node needs to verify if another node is “older” than current epoch
seed and is active – i.e. when communicating with – it will:

1. re-build from received message the other node’s transaction

2. check if reconstructed transaction is actually contained in
advertised block – identified by its number, say X

3. if transaction is actually contained in advertised block, check
if said block’s chain position is at an acceptable depth – i.e.
for X will hold L− (B · η) < X < L if the last known seed
block number is L (clearly L mod B = 0 and L must be at
least D blocks deep in the chain).

If all of these conditions are satisfied then isOldWorker check ends
up returning true. η is currently set to the value of 3.

Public and private keys are used by a node to rightfully claim
usage of its own ID. This permits nodes to use their “matured”
ID independently from the current physical address that may be
changed at any time – e.g. by an Internet Service Provider (ISP).
To do so, each message must contain a private-key-signed version
of the carried data. This stops other nodes from pretending to be
some, maybe already old, other node.

A node that fails isOldWorker test but that can still provide
a public key and a transaction nonce satisfying the proof of work
conditions is not trusted as host for key/value records storage.
Anyway it can still ask for storage on other nodes and perform
look-ups on keys or nodes. A also failing to provide a valid proof of
work is simply ignored and communications with it are immediately
dropped.

Being node identities uncoupled from physical address, the
boostrap phase becomes a bit more complicated. An initial set of

83

7. A secure DHT implementation

nodes for a new instance joining the network cannot be easily hard-
coded (either in the actual source code or through a user-generated
default file): addresses and transaction nonces may, obviously,
change at any time the 294 bytes public key representation of each
node would make it cumbersome and difficult to manage. Instead
a “nodes info server” service has been created as a RAW DHT’s
sub-module, mimicking the servers used to retrieve eMule KAD
references – i.e. the well-known “nodes.dat” files15. The “nodes info
server” are simply DHT nodes listening on a dedicated network
socket. As soon as a node info server receives a nodes request, it
will just provide a number of references to the nodes in server’s
routing table. Using this mechanism allows the list of nodes info
servers to be as simple as a set of <IP address, port> entries. These
short entries con thus be stored on a user-editable default file.

A RAW DHT node’s routing table works as proxy a continuous
usage of the isOldWorker primitive: node references are inserted
in it only if they pass the isOldWorker check – also signing their
messages with the correct private-key signature – accordingly to
the routing table insertion policy described in Section 5.4. Thus
whenever a node reference is retrieved from the routing table, it is
guaranteed that such reference has already passed an isOldWorker
check. Note that whenever the associated transaction associated to
a routing table entry expires, a node fails replying to any message –
e.g. a ping – it is presently removed from the routing table.

On node’s shutdown all references in the routing table are
persisted on a local file. When a DHT node begins execution it
populates its routing table through a series of carefully chosen look-
ups starting from node references obtained by a nodes info server.
Alternatively, if a persisted file is present a node uses DHT contacts
saved from a previous software execution. Please note that, in the
current software version, whenever an insert operation is done on
the routing table an isOldWorker check is always triggered.

Look-up on a key’s value locates the set of nodes closer – in
XOR metric – to the key’s hash, remember that the actual hash is
modulated by current seed. These values may be also used in the
find value procedure to retrieve values associated with the looked-up
key. Each found node will reply with all values known to it up to a
certain limit – currently 300 maximum entries per reply. If values

15http://www.nodes-dat.com/

84

http://www.nodes-dat.com/

7.3. Future work

known to a replying node exceeds the limit, returned values are
randomly chosen among the available ones.

RAW DHT, unlike many Kademlia implementations currently
available, communicates also on TCP rather than relying only on
UDP. More precisely messages exchanged during a store procedure
and in the final step of find value are sent over a TCP channel.
This leverages on the native JVM serialization/de-serialization fea-
ture allowing to black-box the operations required to send objects
representing (the list of) value(s) involved in such procedures.

As a final remark, it is very important to note that the whole
RAW DHT transactions cannot be piggybacked on existent block
chains. In particular, we cannot insert our required data in a
NameCoin’s value field – see Section 6.3.3 for a description of this
block chain. NameCoin’s specification requires that its value fields
must be UTF-8 encoded JSON objects with a maximum size of 520
bytes16. Instead a RAW DHT transaction formatted as a JSON
object is about 800 bytes long17.

Albeit not optimized, current RAW DHT implementation is a
completely operational DHT. Moreover, using the block chain de-
scribed in Section 7.2.1 RAW DHT supports all the new primitives
presented in Chapter 4. RAW DHT is a proof-of-concept for the
a new DHT model, secure against attacks tampering on selected
keys (see Chapter 3 for some attack examples).

7.3 Future work

This chapter described RAW DHT system, a proof-of-concept im-
plementation of the novel DHT proposed in Chapter 4. This last
section will discuss some of the most important improvements that
could be included in future versions of the software.

A considerable improvement can be attained developing a more
accurate management of network messages: currently all incoming
messages are processed sequentially, potentially leading to occur-

16Both for domain names https://wiki.namecoin.org/index.php?
title=Domain_Name_Specification#Value_field and for generic identities
https://wiki.namecoin.org/index.php?title=Identity.

17In the current implementation it size may vary between 760 and 778 bytes,
depending on the nonce included. Note that this is a tight representation,
shorter than the same object formatted according to a JSON pretty print.

85

https://wiki.namecoin.org/index.php?title=Domain_Name_Specification#Value_field
https://wiki.namecoin.org/index.php?title=Domain_Name_Specification#Value_field
https://wiki.namecoin.org/index.php?title=Identity

7. A secure DHT implementation

rence of unwanted delays. Note that, although TCP connections
are more reliable and automatically manage data integrity checks
through the Java platform, some RAW DHT messages – e.g. store
requests and find value replies – could be converted to UDP speeding
up the whole exchange.

In the DHT module, for simplicity reasons, the code implement-
ing isOldWorker is called whenever such a check is necessary. The
same code is also used at start-up time, when a node populates its
routing table for the first time. Contacts used during routing table
initialization can be retrieved from the network or from a locally
persisted file at the end of a previous execution. Note that per-
sisted node references has been already checked with isOldWorker
before current software initialization, during the last software usage.
RAW DHT software would surely benefit from a more efficient and
easily implementable routing table bootstrap, leveraging on the
fact that locally retrieved contacts can be accepted just (locally)
checking if associated block number is still valid – i.e. didn’t sink
too deep in the block chain. Also note that in some cases a node
could need to perform isOldWorker check on more than one node
at the same time: when, at bootstrap time, a list of new nodes
is retrieved or when one of the intermediate node look-up steps
returns a set of new nodes. Currently for each node is independently
performed an individual check. When a thick block chain node
is executed on the local machine isOldWorker check is relatively
quick – just a database access. However when the local block chain
client is a thin node the block chain request must be sent out to the
thick ones. This means that (up to) three randomly chosen thick
nodes are selected from the local node and a query message is sent
to each one of them. This process is then repeated for every DHT
node that needs verification. Clearly, allowing to check more than
one DHT node with the same message would lead to a significant
performance improvement in the authentication phase.

In the block chain module when a thick node begins its execution,
it asks to other know thick nodes the last known block header
before starting its normal tasks. If this block header matches
the last available one stored in the local database than no special
operation is required and the main task loop begins; otherwise a
block chain update is needed. The starting node randomly select one
of its known neighbors and ask for missing blocks. Currently RAW
software, albeit using the same TCP channel to save connection time,

86

7.3. Future work

sequentially asks each needed block until the chain is completely
updated. Note that this doubles the amount of messages exchanged
– one request for each block received – and could be improved asking
beforehand all the (supposedly) needed blocks. Additionally if the
update fails for any reason, block chain updating task is dropped;
then execution is started with the currently available block chain
copy. Mind that as soon as a new block will be discovered and
flooded to the network the chain copy will be updated. Nonetheless
a more sophisticated block chain bootstrap update procedure may
be devised and implemented investing a small development effort.

Anyway note that the block chain module is not irreplaceable.
Thus above every other possible improvement, a different back-
end for the primitives presented in Chapter 4 may yield a radical
performances boost. The major benefit coming from a block chain
based system is that it represent a distributed authority, trustworthy
mainly for two reasons: any node can join its backbone – as a
thick node; and the block-chain-stored data are hard to counterfeit.
Moreover, considering only the thick nodes’ network, a block chain
system is less scalable than a general DHT. RAW DHT is built
on a block-chain-based architecture lacking a better solution for
the (quasi) distributed consensus problem. It is important to note
though that any system providing a network-wise access to an
unanimously accepted random string would be an equally viable
alternative.

We described some of the improvements that RAW DHT soft-
ware would get advantage of. Clearly those are just the most
important ones as would be tedious to compile a list all the small
data structure improvements that could (and will) be made on the
current code-base. Nevertheless these improvements demonstrates,
to some extent, that albeit RAW DHT is still a proof-of-concept
software, it could easily be turned to a fully fledged stable DHT
system.

87

Experimental evaluation 8

In Chapter 7 was presented RAW DHT, an implementation of the
novel secure DHT system presented in Chapter 4. To validate its
usability we performed a series of experiments, which are described
in this chapter. In the first section we describe the test bed used
for RAW DHT evaluation – the hardware and its configuration –
as well as each of the experiments carried out. Then, in the second
section, we present and discuss the outcomes of these experiments.

In the light of these results the proof-of-concept RAW DHT
software proves that the enhanced DHT concept of Chapter 4 can
be a viable option in a real-world scenario. Moreover RAW DHT
itself, with some optimization and improvement, can be a sensible
choice in contexts requiring the decentralization of a DHT layer as
well as some guarantees on the integrity of stored data.

Note that in the following paragraphs of this dissertation with
the term “thick node” or “thin node” we may refer to two different
things. It could properly denote a thick or thin block chain mod-
ule’s node or, more in general, a full RAW DHT software instance
running its block chain module as a thick or thin client. The context
will help recognize which of the two meanings is the correct one.

89

8. Experimental evaluation

8.1 Experimental set up

This section presents both the machines used as test bed for
RAW DHT and the experiments performed. While the setup and
specifics of the experiments are detailed in the following paragraphs,
the results of these test runs will be later discussed in Section 8.2.

Eridano cluster
Machine
name(s)

No. of
ma-

chines

CPU No. of
cores

No. of
threads

Clock
freq.

RAM
size

Stargate 1 AMD
Sem-
pron
140
(C2)

1 1 2.7
GHz

4 GB
(2x

DDR3
2048
MB)

Eri-
dano10

1 Intel
Core
i7-950

4 8 3.06
GHz

24GB
(4x

DDR4
4096
MB)

Eri-
dano11
to Eri-
dano25

15 Intel
Core
i7-950

4 8 3.06
GHz

18GB
(3x

DDR4
4096
MB +

3x
DDR4
2048
MB)

Table 8.1: Eridano cluster system specifications.

A variety of machines widely differing both in processor power
and memory available were used, attempting to simulate a real-
world environment. First and foremost Eridano cluster hosted the
majority of the RAW DHT instances that made up the experimental
network. Eridano is a computer cluster made up of sixteen computa-
tional nodes (namely Eridano10 to Eridano25) and an access master
node (Stargate). Table 8.1 shows memory and CPU power of each

90

8.1. Experimental set up

of the machines making up the cluster. Stargate though did not host
any RAW DHT instance during any of the experiments performed:
this node was used as Network Address Translation (NAT) box
routing communications to and from Eridano nodes.

Additionally seven more personal computers were used. These
machines are more varying in terms of specifications, that are
detailed in Table 8.2. Six of them joined RAW DHT experimental
network, while the last one – namely “Wrong” – was used as control
node managing all the instances executed: issuing them start and
stop commands as well as requesting DHT operations – e.g. storing
keys or looking them up.

The first experiment performed was meant to check that the
block chain module worked properly. This run produced a block
chain about 400 blocks long. Up to half – block -wise speaking – of
the experiment new miner nodes were added to the network, a new
one joining after a random number of seconds ranging from 3 to
120. Then, for the other half of the run, the number of miners was
not changed. During this experiment the number of block for a
difficulty adjustment was lowered form the standard 2016 blocks –
as in BitCoin – to 100.

Other experiments measured start-up times – DHT module’s;
block chain module’s; and overall time from software starting to
front end usability – and DHT records store times. Note that the
time for for a store procedure is a valid upper bound to look-ups: a
record is actually stored on the set of nodes returned by looking up
the record’s key itself.

The first batch of these experiments was performed making a
RAW DHT node join a stable networks of various size (sizes was 2,
4, 8, 16, 32 and 64 nodes). Joining node was equipped either with
a thick or a thin block chain client node. Both the thick and thin
equipped node joined the network 300 times, each time executing
RAW software for a random number of minutes ranging from 1 to
5.

In experimental conditions equivalent to those presently de-
scribed, both a thick and a thin stored a fixed number of keys on
the network during each run. Then, during the same run, the stored
set of keys was both looked-up and their related values retrieved.
This was done to test for search accuracy and correctness.

The next set of experiments measured times on each node
participating in RAW DHT networks whose sizes varied over time –

91

8. Experimental evaluation

PCs testing RAW DHT software
Machine
name(s)

CPU No. of
cores

No. of
threads

Clock
freq.

RAM
size

Nehalem Intel
Core
i7-950

4 8 3.06
GHz

12 GB
(6x

DDR4
2048MB)

Wrong AMD
Phenom
II X4
840

4 4 3.20
GHz

8 GB
(4x

DDR2
2048MB)

Eolo Intel
Pen-

tium4

1 1 3.00
GHz

2 GB
(2x DDR
512MB
+ 1x
DDR

1024MB)
Cafe AMD

Athlon
II X2
250

2 2 3.00 Ghz 4 GB
(2x

DDR3
2048MB)

Chievo Intel
Celeron

430

1 1 1.80
GHz

2 GB
(2x DDR
1024MB)

Nemesi AMD
Athlon
64 X2
5600+

2 2 2.80
GHz

4 GB
(2x

DDR3
2048MB)

Psiche AMD
Athlon
64 X2
5600+

2 2 2.80
GHz

4 GB
(2x

DDR3
2048MB)

Table 8.2: System specifications of personal computers used to test
RAW DHT software.

92

8.1. Experimental set up

within the same experiment run. The maximum number of nodes
making up such networks was again 2, 4, 8, 16, 32 and 64 nodes, but
participating nodes randomly disconnected or re-joined the network
creating a very high churn: the maximum number of simultaneously
failing nodes ranged from 35% up to 87%, these numbers are relative
of the maximum number of nodes allowed during each experiment.
In this last batch of experiments half was performed running only
block chain thick nodes, while the other half ran on a network of
mixed thin and thick nodes.

Table 8.3 summarized the individual and cumulative duration
of said experiments. Data was gathered from RAW DHT instances
for a period of 22 days cumulatively.

Lastly, before turning to result discussion, some values for the
string key “Lorem ipsum dolor sit amet” was stored across various
seed epochs. Key’s ID during each seed epoch was recorded to
monitor the resources’ random positioning.

Execution times
Experiment Time length

Block chain, blocks production 42 hours 11 minutes
Thick node joining stable net-
works

166 hours 22 minutes

Thin node joining stable net-
works

199 hours 58 minutes

Churning networks (only thick
nodes)

52 hours 6 minutes

Churning networks (mixed
thick and thick nodes)

59 hours 13 minutes

Thick node search accuracy 2 hours 16 minutes
Thin node search accuracy 6 hours 35 minutes

Total 528 hours 42 minutes
Total in days (rounded) 22

Table 8.3: Duration of the experiments performed running RAW
DHT software.

93

8. Experimental evaluation

8.2 Performance evaluation

With this section we present and discuss results of the experiments
described in previous Section 8.1. Although the single experiments
was overall described in previous section, to make results more com-
prehensible some more explanations on the experiments performed
will be added throughout the results discussion.

Before diving in the details, we would like to begin addressing the
cumulative experimental time. As shown by Table 8.3 RAW DHT
software has been extensively ran in laboratory conditions. As a
general consideration, a reasonable requirement for a distributed
software is to correctly work for long periods of time. The extensively
period of time during which our experiments was performed, was
meant also to prove RAW DHT’s ability to sustain prolonged work.

Data evaluation is divided in two subsections. We analyze results
about the block chain module in the first subsection, while in the
second we discuss the DHT core module’s performance.

8.2.1 Block chain related tests

A 400 long block chain has been created in an experimental environ-
ment, steadily increasing the number of miners nodes participating
in the network. The miners continued to increase up to the maxi-
mum number of 64 nodes until the chained reached the length of
200 blocks. Then the miners network continued, producing the last
200 blocks of this test block chain in a steady regime.

Figure 8.1 shows the amount of time spent finding each of the
blocks. In the first half of the experiment – shown on the left of the
red dashed vertical line – time required to mine a block is clearly
shorter: this is due to the steady increase of overall computation
power available to the network. The second half of the experiment
shows some noisy measurements, due to the fact that only two
difficulty adjustments occurred – between block 200 and 201 and
between block 300 and 301. Difficulty corrections are known to be
prone to overshooting – as well as undershooting – especially when
there are few miners nodes involved in a network1. Nonetheless

1Remember that mining of a node is, in essence, a process based on pure
chance: a block can be either find immediately or after a long time. The more
miners involved, the more the average block discovery time tends to regularize
and conform to an consistent value.

94

8.2. Performance evaluation

0 50 100 150 200 250 300 350 400

Block number

0

500

1000

1500

2000

2500

T
im

e
 f

o
r

n
e
w

 b
lo

ck

Block's computation time

No new miners
after this point

Steady regime average time

Figure 8.1: Blocks’ computation times during block chain test.
The red vertical dashed line marks the point after which no new
miner nodes were spawned in the network, leaving it in a steady
computation regime. The green dotted horizontal line shows the
average block’s computation time during the second half of the
experiment (after block 200).

during the second part of the experiment, in spite of the jitter
involved, the time spent in the calculation of a single block is on
average 655.93 minutes – marked by the dotted horizontal green line.
This is coherent with the block chain parameters: time expected to
produce a new block was set to 600 seconds.

As described in Section 7.2.2, a new seed is rolled out by the block
chain module every seven blocks. This implies that the expected
seeds intertime would be 4200 seconds. In fact, considering the
latter 200 blocks when the mining network was in a stable condition,
the recorded intertime between two seed-blocks averages to 4494.66
seconds.

Using the seeds generated by this example block chain, the key’s
IDs generated using the string “Lorem ipsum dolor sit amet” was
mapped on the full DHT address space. Figure 8.2 maps the relative
position of obtained IDs on the ordered address space against the

95

8. Experimental evaluation

0 10 20 30 40 50

Seed number

0000...0000

35c0...bec6

6721...82a5

99ef...137d

ce85...7267

ffff...ffff

H
a
sh

 v
a
lu

e

Figure 8.2: Plot of how the hash value of key string “Lorem
ipsum dolor sit amet” was changed by random seeds during the
performance tests.

Figure 8.3: Pictorial representation of how the hash value of
key string “Lorem ipsum dolor sit amet” was changed by random
seeds ranging from seed number 12 to seed number 17 during the
performance tests.

96

8.2. Performance evaluation

seed number – equivalent to a seed epoch. Figure 8.3 is a graphical
representation of the relative positions and movement from one
to the next one of a subset of such key’s IDs – specifically those
obtained using seed 12 to seed 17. Moreover we evaluate the distance
– as the number of IDs – between all the calculated IDs for string
“Lorem ipsum dolor sit amet”. We compare this distances with
the expected distance of an equal number of uniformly spreaded
IDs. Relatively to the theoretical uniform distribution, the average
distance in the actual distribution of IDs is short just of a mere
1.689%.

In light of these data the block chain module of RAW DHT
appears to be a sufficiently reliable provider of random seeds, as
expected by an implementation of the specifically purposed block
chain described in Section 6.2.

8.2.2 DHT tests

Two sets of experiment were executed making a RAW DHT node
(running the block chain module either as a thick or a thin node)
join stable networks of varying sizes. The first set measured startup
and store times of a RAW DHT node. The second set instead
measured look-up times and their accuracy. Finally measurements
was made on churning networks of varying sizes (half made up only
of thick nodes and the other half made up of mixed thin and thick
nodes) to be compared with the data gathered on stable networks.
in this section we present and discuss data from aforementioned
experiments.

Times were recorded storing keys on networks of varying sizes.
These networks was made up of 2, 4, 8, 16, 32 and 64 RAW DHT
nodes. Both a node running a thick and a thin block chain instance
performed 300 key stores on the various networks, recording the
time spent in the process. An Ordinary Least Squares (OLS) linear
regression model (calculated with Python’s module StatsModels2)
was used to compute on such data both a linear fit and a logarithmic
fit in function of the number of network number of nodes.

Figure 8.4 and Figure 8.5 shows the data and the computed
fit functions. However to ease figure reading, the samples are
shown only on the (b) sub-figures, while (a) sub-figures shows

2http://statsmodels.sourceforge.net/

97

http://statsmodels.sourceforge.net/

8. Experimental evaluation

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

0

5

10

15

20

25

30

35

Se
co

nd
s

linear fit
logarithmic fit
average store time

(a) Showing only average values

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

20

0

20

40

60

80

100

Se
co

nd
s

linear fit
logarithmic fit
store times
average store time

(b) Showing all sampled values

Figure 8.4: Store times recorded on a RAW DHT node running
a block chain module thick node. Both plots show the linear and
logarithmic fit to the data. (a) only shows mean values, while (b)
shows also all the sampled values.

98

8.2. Performance evaluation

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

10

20

30

40

50

60

70

80

Se
co

nd
s

linear fit
logarithmic fit
average store time

(a) Showing only average values

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

50

0

50

100

150

200

Se
co

nd
s

linear fit
logarithmic fit
store times
average store time

(b) Showing all sampled values

Figure 8.5: Store times recorded on a RAW DHT node running
a block chain module thin node. Both plots show the linear and
logarithmic fit to the data. (a) only shows mean values, while (b)
shows also all the sampled values.

99

8. Experimental evaluation

0 200000 400000 600000 800000 1000000
Size of the network (nodes)

0

50

100

150

200

Se
co

nd
s

Estimated thin node store time
Estimated average store time
Estimated thick node store time

Figure 8.6: Estimation of store times on a RAW DHT network
sizing up to 1 million nodes. The dashed and dot-dashed lines are
the plots of logarithmic fits shown in Figure 8.4 and Figure 8.5.
The solid line instead, is the plot of the OLS logarithmic fit on the
whole body of data.

only the mean values. Note that sampled times in the 64 nodes
networks do fan out substantially. This is due to routing tables
buckets getting more and more full: when retrieving desired storage
locations Kademlia’s routing algorithm may lead to some “lucky”
short (and fast) routes as well as “unlucky” slow routes. On smaller
networks instead routes are more consistent and times are generally
dominated by mandatory isOldWorker checks that, on the other
hand, are fewer in number and thus keep the maximum store times
relatively low. Also note that measured times include network
latencies on top of the time time spent both by routing itself and
completing isOldWorker primitive operations.

Although the model coefficient of determination R2 between the
logarithmic and linear fit is somewhat similar (differences range in
[0.05, 0.15]), the number of routing hops – that is also the number
of isOldWorker checks performed during a query – is expected to
be logarithmic in the number of nodes participating to the net-

100

8.2. Performance evaluation

work [63]. Given the impossibility to test RAW DHT software in a
real test network whose size would be comparable to a world-wide
deployment scenario, we do not have at our disposal real data on
how RAW DHT would perform in a broad network. Nonetheless,
it is still possible to estimate how RAW DHT would perform using
the fitted logarithmic curves shown in Figure 8.4 and Figure 8.5
or,using the whole data (both from thin and thick nodes), making
an OLS logarithmic fit describing an average behavior. In Figure 8.6
we shows the projected estimated store times based of these fits.
Albeit estimated time is not low, the following must be considered:
the current form of RAW DHT software is absolutely not optimized.
Moreover the expected store times can still be considered afford-
able, in exchange for the keys’ security attained by the mechanics
described in Chapter 4 and Chapter 5.

A Kademlia-like DHT store operation does include a prior look-
up. For this reason another set of experiments was performed in the
same fashion of aforesaid store experiments. In this set-up, having
stored on the network a set of keys, a node running a thin block
chain client and a node running a thick client performed operations
looking up the keys. Times spent looking up keys was recorded
and fitted with an OLS model as did for the store times. As in
the case of store times, we expect the logarithmic fit to be correct
due to Kademlia’s logarithmic behavior described by its original
work [63]. Look-up average times, complete samples plot, linear
and logarithmic fits for thick and thin nodes are shown respectively
in Figure 8.7 and Figure 8.8. Again, the fan-out visible in sub-
figures (b) is not surprising, as explained discussing the store times
data. By comparing data observed for the look-ups and the storage
operations – i.e. comparing Figures 8.7 and 8.8 to Figures 8.4
and 8.5 – recorded times reveal that store operation does have an
overhead in respect to look-up. For the current RAW DHT software
this behavior is expected: to store a key/value record onto the DHT,
a node first perform a look-up on the key’s ID thus locating the
set of recipient nodes. Then the final value storage operation is
initiated, thus triggering a final isOldWorker check.

Regardless of the recorded times during the look-up experiments,
it is worth mentioning the accuracy of look-up and value retrieval.
In these experimental setup the probing node performs multiple
searches of a set of keys. Having previously store such keys, probing
node is beforehand aware of the results that should be obtained

101

8. Experimental evaluation

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

0

2

4

6

8

10

12

Se
co

nd
s

linear fit
logarithmic fit
average lookup time

(a) Showing only average values

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

0

5

10

15

20

25

30

Se
co

nd
s

linear fit
logarithmic fit
lookup times
average lookup time

(b) Showing all sampled values

Figure 8.7: Look-up times recorded on a RAW DHT node running
a block chain module thick node. Both plots show the linear and
logarithmic fit to the data. (a) only shows mean values, while (b)
shows also all the sampled values.

102

8.2. Performance evaluation

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

0

10

20

30

40

50

Se
co

nd
s

linear fit
logarithmic fit
average lookup time

(a) Showing only average values

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

10

0

10

20

30

40

50

60

70

80

Se
co

nd
s

linear fit
logarithmic fit
lookup times
average lookup time

(b) Showing all sampled values

Figure 8.8: Look-up times recorded on a RAW DHT node running
a block chain module thin node. Both plots show the linear and
logarithmic fit to the data. (a) only shows mean values, while (b)
shows also all the sampled values.

103

8. Experimental evaluation

from the network. For each set was checked that

1. the searched key returned a value – nodes targeted are correct

2. the correct value is retrieved – targeted nodes does not store
by chance a different value for the same key replica, as a
possible residual of a previous unrelated store.

If both these conditions was true the operation was recorded as a
success, otherwise as a failure. Look-up and find values resulted
in a 100% success rate, regardless of network size and of the kind
of local block chain client (thick or thin). This is of course the
desirable behavior of any DHT system. However in a “general” DHT
system keys’ are positioned onto the address space following a fixed
scheme, thus a search failure is always ascribable to nodes’ failure.
On the contrary, in an enhanced DHT like the one presented by
Chapter 4 keys are expected to periodically rotate and change the
set of nodes to whom they are entrusted to. RAW DHT complete
accuracy performing look-up and find value operations proves that,
within the same “seed epoch”, keys’ rotation mechanism is robust
and reliable.

Throughout the experiments, occurrence time of a number of
events was recorded on each node – e.g. start or finish time of
certain software threads; finish time of objects’ construction or
initialization; ecc. These data was then aggregated measuring
start-up times of the block chain and DHT module as well as the
RAW DHT software as a whole. Figure 8.9 shows the average start-
up times for nodes equipped with thick or thin block chain clients.
The time spent initializing data structures and starting the block
chain module is, as expected, essentially constant regardless of the
joined network’s size. Start-up time of the DHT module grows as
the network grows. Albeit this is not a desirable behavior, it is
not unexpected but is a fixable flaw. In Section 7.3 was already
discussed the reason behind this software behavior. At start-up
time the routing table is populated: when inserting a node into
a RAW DHT’s routing table an isOldWorker check is triggered.
When bootstrapping node’s references may be retrieved through
the network or from a local file persisting references of nodes already
contacted during previous software executions. Due to isOldWorker
checks the bigger the network, the more nodes contacts are used at
bootstrap, the longer will be the start-up time of the DHT module.

104

8.2. Performance evaluation

2 4 8 16 32 64
Size of the network (nodes)

0

5

10

15

20

25

30

Se
co

nd
s

Other software initializations
Block Chain module startup
DHT module startup

(a) Data from nodes equipped with a thick block chain client

2 4 8 16 32 64
Size of the network (nodes)

0

5

10

15

20

Se
co

nd
s

Other software initializations
Block Chain module startup
DHT module startup

(b) Data from nodes equipped with a thin block chain client

Figure 8.9: RAW DHT average start-up times. Full bars represent
the time from the moment the software is started to the moment
the DHT client is ready to manage user requests (or ready as a
back-end). Each bar is broken down in time spent starting the DHT
module, the block chain module and initializing other software data
structures e.g. database, logging facilities, and other transient Java
objects.

105

8. Experimental evaluation

O
nly

T
hick

nodes
M

ixed
block

chain
clients

M
axim

um
nodes

in
netw

ork
2

4
8

16
32

64
2

4
8

16
32

64

A
verage

failed
nodes

over
tim

e
(%

)

55.92
60.90

47.12
28.92

29.42
20.44

65.47
69.19

48.87
30.90

22.09
18.67

M
axim

um
num

ber
offailed

nodes
(%

)
100

100
87.5

62.50
65.62

42.18
100

100
75.00

68.75
43.75

35.93

T
able

8.4:
T

his
table

show
s,

for
every

“churning
netw

ork”
experim

entalsetup,
both

the
average

percentage
of

nodes
that

failed
during

the
distributed

softw
are

run
and

the
m

axim
um

percentage
ofnodes

failing
during

any
of

such
experim

ents.
N

ote
that

during
each

ofthe
experim

ents
the

netw
ork

evolved
(nodes

leaving
or

re-joining
it)

random
ly.

106

8.2. Performance evaluation

Clearly nodes loaded from persisted files has already undergo an
isOldWorker check before being persisted and may still be valid
instances. So, as previously discussed in Section 7.3, upgrading
RAW DHT software is expected to improve (even if mildly) the
performance during the bootstrap phase.

To confirm data gathered from the experiments discussed above,
a set of experiments involving churning networks was performed.
This set of measurements was carried out to document the (expected)
degradation of performance caused by nodes joining or leaving
the network. Experiments was set up in similar fashion to those
already described: networks’ sizes used as test-bed was power of
two from 2 to 64, half of the experiments performed using only
RAW DHT nodes equipped with thick block chain clients and half
of the experiments used by both thick and thin nodes.

All these experiments was performed recording times on each
node partaking to the network. Each node involved queried the net-
work to store key/value records. Differently from experiments that
lead to previously shown data, at any time each of the RAW DHT
nodes could leave the network or join it anew. Figure 8.10 shows, as
an example, the number of active nodes involved during two of the
performed experiments. For each experiment Table 8.4 describes (as
percentage) both the maximum number of nodes failing during each
experiment, and the average number of inactive nodes relatively to
the maximum allowed nodes.

It should be obvious that, due to the changes occurring in the
whole network, routing tables held by working nodes are expected
to progressively degrade, as soon as contained entries becomes
outdated. Routing table degrade eventually leads to longer look-
ups and store procedures, being the first hop(s) more likely to result
in a failure. Longer routes clearly will end up resulting in longer
look-up and store times: Figure 8.11 shows the average storage
times recorded in function of the network size. As can be seen
RAW DHT performance degrade when churn enters the picture.
However it is reassuring that performance degradation appears to be
reasonable. Moreover degradation appears to be stronger in smaller
networks: failure of a single node in a small network is much more
likely to (negatively) influence operations of the other nodes, while
in a bigger network failure of a node impacts a small fraction of the
active nodes. As a final consideration even if performance degraded
the software continued to correctly carry out its functionality, in

107

8. Experimental evaluation

1481047778000 1481052932560 1481059979669 1481065739273 1481073173700 1481079391757
Timestamp (milliseconds)

1

2

3

4

5

6

7

8

N
um

be
r o

f n
od

es

active nodes

(a) 8 maximum number of nodes allowed

1481183336943 1481186917626 1481194459448 1481200913626 1481206863679 1481214794922
Timestamp (milliseconds)

0

5

10

15

20

25

30

35

N
um

be
r o

f n
od

es

active nodes

(b) 32 maximum number of nodes allowed

Figure 8.10: Plot showing the number of of active nodes during
evolution of a network made up of a maximum number of 8 or 32
nodes, each of them equipped with a thick block chain client. The
two plots shows different rates of nodes reshuffling.

108

8.2. Performance evaluation

10 0 10 20 30 40 50 60 70
Size of the network (nodes)

0

10

20

30

40

50

60

Av
er

ag
e

st
or

e
tim

e
(s

ec
on

ds
)

stable network
churning network

Figure 8.11: The red points mark the average store times recorded
during the churning networks experiments. Blue points instead
marks the average store times (both from Figure 8.4 and Figure 8.5).
Note that the dashed vertical lines are drawn exclusively to guide
the eye: particularly in the left side of the graph points coupling
may be mistaken.

spite of node failures introduced by the experimental setup.
Recorded performance shows that RAW DHT is still a prototype

and proof-of-concept software whose efficiency can (and should) be
improved – as previously explained in Section 7.3. However looking
at the results presented in previous paragraphs, by experimental
evaluation RAW DHT software appears to be already a possible
implementation of a secure DHT – fitting the one model outlined
in Chapter 4. Moreover the system RAW DHT proves – directly
on the field – the feasibility of the secure DHT design that this
work presents. It must also be stressed out that the block chain
module, although allowing the implementation of the new primitives
that grant security to the whole system, is one of RAW DHT
current performance bottlenecks and can be replaced by any other
mechanism, as long as getSeed and isOldWorker can be backed up.

109

Conclusions 9

With this dissertation we presented a novel Distributed Hash Table
relying on primitives based on the three ingredients of randomness,
age and work. Our new design can be adopted modifying any
existent DHT that satisfies some very mild and “natural” require-
ments. It is resilient against Node insertion attacks and mitigates
appearance of Sybil nodes. Alongside the theoretical model of our
new and secure DHT we also developed a working implementation,
to corroborate its validity.

We provided a general description of DHT systems and supplied
motivation for their possible usage. Albeit the various DHTs pro-
posed over the years differ from one another in many ways, the basic
model outlined in Chapter 2 is a valid representation of virtually
all presented in the literature. In the same Chapter we also gave
details on their various implementations. It is important to note
that all systems described by our basic DHT abstraction may be
undermined exploiting the same weak spots: in fact Distributed
Hash Tables (DHTs) are known to be vulnerable to a number of
security threats described in Chapter 3.

Our system was developed with a specific purpose: guarantee
some form of security for stored DHT records against fraudulent
deletion or tampering – i.e. against the Node insertion attack.
Leveraging on the idea that an attacker must carefully position
its nodes to gain control on target resources, we elaborated on
the intuition that a possible solutions was as simple as periodi-

111

9. Conclusions

cally moving the resources – i.e. “resource rotation”. This led to
a system based on three principles: randomness – to guarantee
unpredictability of resource rotation; age – to guarantee that a
node chose its position before last resource rotation occurred; and
work – to mitigate inconsiderate spawning of node identifiers. More
specifically these three principles translate in two new primitives:
getSeed and isOldWorker. A new DHT design based on the two
new primitives is detailed in Chapter 4

We gave a theoretical background to our new DHT design. In
Chapter 5 we formalized getSeed and isOldWorker primitives and
proved that our proposed mechanism is correct and can protect the
system against a malicious adversary. We also pointed out a that an
additional layer of security can be obtained by prudently populating
the routing tables. These results strengthen our confidence in the
enhanced DHT.

To confirm practical feasibility of the new DHT enhanced
model we developed it into a functional software. We implemented
RAW DHT in the form of a Kademlia-based Java library, detailed
in Chapter 7. Our system has two primary modules: the DHT one
and a customized block chain client. The first provides a front-end
accessing common DHT features – e.g. look-ups or find values.
The latter is a block-chain-based back-end used by the core DHT
module to retrieve a shared random seed and to timestamp IDs. In
Chapter 6 we described block chains in general and, elaborating on
them, we devised a way to repurpose them from a cryptocurrency
system to a system that efficiently provides both the getSeed and
isOldWorker primitives. RAW DHT’s back-end was then developed
as an actual implementation of the scheme presented in Section 6.2.
It is crucial to note that our block chain module can be replaced with
little effort in the future by any other mechanism providing the two
primitives – e.g. one might imagine supporting getSeed, instead,
from the entropy inherent in public stock-market oscillations.

The software was tested in a laboratory network demonstrating
that a system relying on an hybrid block chain / DHT is actually
usable. We tested RAW DHT for responsiveness and accuracy
simulating different usage scenarios – see Chapter 8. Experiments
proved it to be a perfectible yet already usable library. Thus it can
be considered an answer to those circumstances requiring dynamic
resources location with security guarantees on records availability.

More importantly, as already mentioned, the novel DHT design

112

we propose can be adopted independently of our proof-of-concept
implementation. It is sufficiently general: with enough ingenuity it
can be adapted to any existent DHT proposed either in literature or
practice. Thus our idea encompass a broad spectrum of applications,
delivering an elegant foundation for resilient overlays.

Summarizing, this dissertation fills a gap in Distributed Hash
Table’s security by presenting a blueprint for a Distributed Hash
Table capable of safeguarding accessibility to its own records, im-
plemented in a proof-of-concept yet fully operational Random-Age-
Work DHT (RAW DHT).

113

Bibliography

[1] Sohail Abbas, Madjid Merabti, David Llewellyn-Jones, and
Kashif Kifayat. “Lightweight sybil attack detection in MA-
NETs”. In: IEEE Systems Journal 7.2 (2013), pp. 236–248.
issn: 19328184. doi: 10.1109/JSYST.2012.2221912.

[2] Mehmud Abliz and Taieb Znati. “A Guided Tour Puzzle for
Denial of Service Prevention”. In: 2009 Annual Computer
Security Applications Conference. IEEE, Dec. 2009, pp. 279–
288. isbn: 978-1-4244-5327-6. doi: 10.1109/ACSAC.2009.33.
url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5380686.

[3] Ruj Akavipat, Mahdi N. Al-Ameen, Apu Kapadia, Zahid
Rahman, Roman Schlegel, and Matthew Wright. “ReDS:
A Framework for Reputation-Enhanced DHTs”. In: IEEE
Transactions on Parallel and Distributed Systems 25.2 (Feb.
2014), pp. 321–331. issn: 1045-9219. doi: 10.1109/TPDS.
2013.231. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6594735.

[4] Lorenzo Alvisi, Allen Clement, Alessandro Epasto, Silvio
Lattanzi, and Alessandro Panconesi. “SoK: The Evolution of
Sybil Defense via Social Networks”. In: 2013 IEEE Sympo-
sium on Security and Privacy. 2. IEEE, May 2013, pp. 382–
396. isbn: 978-0-7695-4977-4. doi: 10.1109/SP.2013.33.
url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6547122.

[5] Mahdi Nasrullah Al-Ameen and Matthew Wright. “Design
and evaluation of persea, a sybil-resistant DHT”. In: Pro-
ceedings of the 9th ACM symposium on Information, com-
puter and communications security - ASIA CCS ’14. New
York, New York, USA: ACM Press, 2014, pp. 75–86. isbn:

115

http://dx.doi.org/10.1109/JSYST.2012.2221912
http://dx.doi.org/10.1109/ACSAC.2009.33
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5380686
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5380686
http://dx.doi.org/10.1109/TPDS.2013.231
http://dx.doi.org/10.1109/TPDS.2013.231
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6594735
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6594735
http://dx.doi.org/10.1109/SP.2013.33
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6547122
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6547122

Bibliography

9781450328005. doi: 10 . 1145 / 2590296 . 2590326. url:
http : / / dl . acm . org / citation . cfm ? doid = 2590296 .
2590326.

[6] Mahdi Nasrullah Al-Ameen and Matthew Wright. “iPersea:
Towards improving the Sybil-resilience of social DHT”. In:
Journal of Network and Computer Applications 71 (Aug.
2016), pp. 1–10. issn: 10848045. doi: 10.1016/j.jnca.
2016.05.014. url: http://linkinghub.elsevier.com/
retrieve/pii/S1084804516301096.

[7] Jean Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. “BLAKE2: Simpler,
smaller, fast as MD5”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 7954 LNCS (2013),
pp. 119–135. issn: 03029743. doi: 10.1007/978-3-642-
38980-1_8.

[8] Baruch Awerbuch and Christian Scheideler. “Towards a Scal-
able and Robust DHT”. In: Theory of Computing Systems
45.2 (Aug. 2009), pp. 234–260. issn: 1432-4350. doi: 10.
1007/s00224-008-9099-9. url: http://link.springer.
com/10.1007/s00224-008-9099-9.

[9] Adam Back. Hashcash - A Denial of Service Counter-Measure.
Tech. rep. August. 2002, pp. 1–10. url: http : / / www .
hashcash.org/Papers/Hashcash.Pdf.

[10] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin
Kirda. “All your contacts are belong to us: Automated Iden-
tity Theft Attacks on Social Networks”. In: Proceedings of the
18th international conference on World wide web - WWW
’09. New York, New York, USA: ACM Press, 2009, p. 551.
isbn: 9781605584874. doi: 10 . 1145 / 1526709 . 1526784.
url: http://portal.acm.org/citation.cfm?doid=
1526709.1526784.

[11] Nikita Borisov. “Computational Puzzles as Sybil Defenses”.
In: Sixth IEEE International Conference on Peer-to-Peer
Computing (P2P’06). IEEE, 2006, pp. 171–176. isbn: 0-
7695-2679-9. doi: 10.1109/P2P.2006.10. url: http://
ieeexplore.ieee.org/document/1698607/.

116

http://dx.doi.org/10.1145/2590296.2590326
http://dl.acm.org/citation.cfm?doid=2590296.2590326
http://dl.acm.org/citation.cfm?doid=2590296.2590326
http://dx.doi.org/10.1016/j.jnca.2016.05.014
http://dx.doi.org/10.1016/j.jnca.2016.05.014
http://linkinghub.elsevier.com/retrieve/pii/S1084804516301096
http://linkinghub.elsevier.com/retrieve/pii/S1084804516301096
http://dx.doi.org/10.1007/978-3-642-38980-1_8
http://dx.doi.org/10.1007/978-3-642-38980-1_8
http://dx.doi.org/10.1007/s00224-008-9099-9
http://dx.doi.org/10.1007/s00224-008-9099-9
http://link.springer.com/10.1007/s00224-008-9099-9
http://link.springer.com/10.1007/s00224-008-9099-9
http://www.hashcash.org/Papers/Hashcash.Pdf
http://www.hashcash.org/Papers/Hashcash.Pdf
http://dx.doi.org/10.1145/1526709.1526784
http://portal.acm.org/citation.cfm?doid=1526709.1526784
http://portal.acm.org/citation.cfm?doid=1526709.1526784
http://dx.doi.org/10.1109/P2P.2006.10
http://ieeexplore.ieee.org/document/1698607/
http://ieeexplore.ieee.org/document/1698607/

Bibliography

[12] Ahmet Burak Can and Bharat Bhargava. “SORT: A Self-
ORganizing Trust Model for Peer-to-Peer Systems”. In: IEEE
Transactions on Dependable and Secure Computing 10.1 (Jan.
2013), pp. 14–27. issn: 1545-5971. doi: 10.1109/TDSC.2012.
74. url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6280552.

[13] Bengt Carlsson and Rune Gustavsson. “The rise and fall of
napster-an evolutionary approach”. In: Proceedings of the
6th International Computer Science Conference on Active
Media Technology - ATM ’01 8 (2001), pp. 347–354. url:
http://link.springer.com/chapter/10.1007/3-540-
45336-9_40.

[14] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony
Rowstron, and Dan S Wallach. “Secure routing for structured
peer-to-peer overlay networks”. In: Proceedings of the 5th
symposium on Operating systems design and implementation
- OSDI ’02. Vol. 36. December. New York, New York, USA:
ACM Press, 2002, p. 299. isbn: 9781450301114. doi: 10.
1145/1060289.1060317. url: http://portal.acm.org/
citation.cfm?doid=1060289.1060317.

[15] David Chaum. “Blind Signatures for Untraceable Payments”.
In: Advances in Cryptology. Vol. 82. Boston, MA: Springer
US, 1983, pp. 199–203. isbn: 978-1-4757-0604-8, 978-1-4757-
0602-4. doi: 10.1007/978-1-4757-0602-4_18. url: http:
//link.springer.com/10.1007/978-1-4757-0602-4_18.

[16] Alice Cheng and Eric Friedman. “Sybilproof reputation mech-
anisms”. In: Proceeding of the 2005 ACM SIGCOMM work-
shop on Economics of peer-to-peer systems - P2PECON
’05. New York, New York, USA: ACM Press, 2005, p. 128.
isbn: 1595930264. doi: 10.1145/1080192.1080202. url:
http://portal.acm.org/citation.cfm?doid=1080192.
1080202.

[17] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore
W. Hong. “Freenet: A Distributed Anonymous Informa-
tion Storage and Retrieval System”. In: Designing Privacy
Enhancing Technologies. 2001, pp. 46–66. isbn: 978-3-540-
44702-3. doi: 10.1007/3-540-44702-4_4. url: http:
//link.springer.com/10.1007/3-540-44702-4_4.

117

http://dx.doi.org/10.1109/TDSC.2012.74
http://dx.doi.org/10.1109/TDSC.2012.74
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6280552
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6280552
http://link.springer.com/chapter/10.1007/3-540-45336-9_40
http://link.springer.com/chapter/10.1007/3-540-45336-9_40
http://dx.doi.org/10.1145/1060289.1060317
http://dx.doi.org/10.1145/1060289.1060317
http://portal.acm.org/citation.cfm?doid=1060289.1060317
http://portal.acm.org/citation.cfm?doid=1060289.1060317
http://dx.doi.org/10.1007/978-1-4757-0602-4_18
http://link.springer.com/10.1007/978-1-4757-0602-4_18
http://link.springer.com/10.1007/978-1-4757-0602-4_18
http://dx.doi.org/10.1145/1080192.1080202
http://portal.acm.org/citation.cfm?doid=1080192.1080202
http://portal.acm.org/citation.cfm?doid=1080192.1080202
http://dx.doi.org/10.1007/3-540-44702-4_4
http://link.springer.com/10.1007/3-540-44702-4_4
http://link.springer.com/10.1007/3-540-44702-4_4

Bibliography

[18] Tyson Condie, Varun Kacholia, Sriram Sankararaman, Joseph
M Hellerstein, Petros Maniatis, and U C Berkeley. “Induced
Churn as Shelter from Routing-Table Poisoning”. In: In
Proc. 13th Annual Network and Distributed System Security
Symposium (NDSS). 2006.

[19] Cristiano Costa and Jussara Almeida. “Reputation Systems
for Fighting Pollution in Peer-to-Peer File Sharing Systems”.
In: Seventh IEEE International Conference on Peer-to-Peer
Computing (P2P 2007). IEEE, Sept. 2007, pp. 53–60. isbn:
0-7695-2986-0. doi: 10.1109/P2P.2007.15. url: http:
//ieeexplore.ieee.org/document/4343464/.

[20] Anthony Cuthbertson. Bitcoin now accepted by 100,000
merchants worldwide. 2015. url: http://www.ibtimes.
co.uk/bitcoin-now-accepted-by-100000-merchants-
worldwide-1486613.

[21] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans
Kaashoek, and Robert Morris. “Designing a DHT for Low
Latency and High Throughput”. In: Proceedings of the 1st
conference on Symposium on Networked Systems Design
and Implementation 1 (2004), p. 7. issn: 00045411. url:
http://portal.acm.org/citation.cfm?id=1251182.

[22] George Danezis, Chris Lesniewski-Laas, M. Frans Kaashoek,
and Ross Anderson. “Sybil-Resistant DHT Routing”. In:
Computer Security – ESORICS 2005. Vol. 3679 LNCS. June.
2005, pp. 305–318. isbn: 3540289631. doi: 10.1007/11555827_
18. url: http://link.springer.com/10.1007/11555827_
18.

[23] Quynh H. Dang. Secure Hash Standard. Tech. rep. October.
Gaithersburg, MD: National Institute of Standards and Tech-
nology, July 2015, p. 36. doi: 10.6028/NIST.FIPS.180-4.
url: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.180-4.pdf.

[24] John R. Douceur. “The Sybil Attack”. In: Peer-to-peer Sys-
tems. 2002, pp. 251–260. isbn: 3540441794. doi: 10.1007/3-
540-45748-8_24. url: http://link.springer.com/10.
1007/3-540-45748-8_24.

118

http://dx.doi.org/10.1109/P2P.2007.15
http://ieeexplore.ieee.org/document/4343464/
http://ieeexplore.ieee.org/document/4343464/
http://www.ibtimes.co.uk/bitcoin-now-accepted-by-100000-merchants-worldwide-1486613
http://www.ibtimes.co.uk/bitcoin-now-accepted-by-100000-merchants-worldwide-1486613
http://www.ibtimes.co.uk/bitcoin-now-accepted-by-100000-merchants-worldwide-1486613
http://portal.acm.org/citation.cfm?id=1251182
http://dx.doi.org/10.1007/11555827_18
http://dx.doi.org/10.1007/11555827_18
http://link.springer.com/10.1007/11555827_18
http://link.springer.com/10.1007/11555827_18
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24
http://link.springer.com/10.1007/3-540-45748-8_24
http://link.springer.com/10.1007/3-540-45748-8_24

Bibliography

[25] Evan Duffield and Daniel Diaz. Dash: A PrivacyCentric
CryptoCurrency. Self-published, 2015. url: https://www.
dash.org/wp-content/uploads/2015/04/Dash-Whitepa
perV1.pdf.

[26] Morris J. Dworkin. SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions. Tech. rep. August.
Gaithersburg, MD: National Institute of Standards and Tech-
nology, July 2015. doi: 10.6028/NIST.FIPS.202. url:
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf.

[27] Amos Fiat and Jared Saia. “Censorship Resistant Peer-to-
Peer Networks”. In: Theory of Computing 3.1 (2007), pp. 1–
23. issn: 1557-2862. doi: 10.4086/toc.2007.v003a001.
url: http://www.theoryofcomputing.org/articles/
v003a001.

[28] Amos Fiat, Jared Saia, and Maxwell Young. “Making Chord
Robust to Byzantine Attacks”. In: Esa. 191445. 2005, pp. 803–
814. isbn: 3-540-29118-0. doi: 10.1007/11561071_71. url:
http://link.springer.com/10.1007/11561071_71.

[29] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
“Impossibility of Distributed Consensus with One Faulty
Process”. In: Journal of the ACM 32.2 (1985), pp. 374–382.
issn: 00045411. doi: 10.1145/3149.214121. url: http:
//portal.acm.org/citation.cfm?doid=3149.214121.

[30] Gabriela Gheorghe, Renato Lo Cigno, and Alberto Montresor.
“Security and privacy issues in P2P streaming systems: A
survey”. In: Peer-to-Peer Networking and Applications 4.2
(June 2011), pp. 75–91. issn: 1936-6442. doi: 10.1007/
s12083-010-0070-6. url: http://link.springer.com/
10.1007/s12083-010-0070-6.

[31] Stuart Haber and W.Scott Stornetta. “How to time-stamp
a digital document”. In: Journal of Cryptology 3.2 (1991),
pp. 99–111. issn: 0933-2790. doi: 10.1007/BF00196791.
url: http://link.springer.com/10.1007/BF00196791.

[32] Cyrus Harvesf and Douglas M. Blough. “The Effect of Replica
Placement on Routing Robustness in Distributed Hash Ta-
bles”. In: Sixth IEEE International Conference on Peer-
to-Peer Computing (P2P’06). IEEE, 2006, pp. 57–6. isbn:

119

https://www.dash.org/wp-content/uploads/2015/04/Dash-WhitepaperV1.pdf
https://www.dash.org/wp-content/uploads/2015/04/Dash-WhitepaperV1.pdf
https://www.dash.org/wp-content/uploads/2015/04/Dash-WhitepaperV1.pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://dx.doi.org/10.4086/toc.2007.v003a001
http://www.theoryofcomputing.org/articles/v003a001
http://www.theoryofcomputing.org/articles/v003a001
http://dx.doi.org/10.1007/11561071_71
http://link.springer.com/10.1007/11561071_71
http://dx.doi.org/10.1145/3149.214121
http://portal.acm.org/citation.cfm?doid=3149.214121
http://portal.acm.org/citation.cfm?doid=3149.214121
http://dx.doi.org/10.1007/s12083-010-0070-6
http://dx.doi.org/10.1007/s12083-010-0070-6
http://link.springer.com/10.1007/s12083-010-0070-6
http://link.springer.com/10.1007/s12083-010-0070-6
http://dx.doi.org/10.1007/BF00196791
http://link.springer.com/10.1007/BF00196791

Bibliography

0-7695-2679-9. doi: 10.1109/P2P.2006.44. url: http:
//ieeexplore.ieee.org/document/1698591/.

[33] Mohammed Hawa, Loqman As-Sayid-Ahmad, and Loay D.
Khalaf. “On enhancing reputation management using Peer-
to-Peer interaction history”. In: Peer-to-Peer Networking
and Applications 6.1 (Mar. 2013), pp. 101–113. issn: 1936-
6442. doi: 10.1007/s12083- 012- 0142- x. url: http:
//link.springer.com/10.1007/s12083-012-0142-x.

[34] Kirsten Hildrum and John Kubiatowicz. “Asymptotically
Efficient Approaches to Fault-Tolerance in Peer-to-Peer Net-
works”. In: Distributed Computing. 2003, pp. 321–336. isbn:
978-3-540-39989-6. doi: 10.1007/978-3-540-39989-6_23.
url: http://link.springer.com/10.1007/978-3-540-
39989-6_23.

[35] Russell Housley. Cryptographic Message Syntax (CMS). Tech.
rep. Aug. 2002, pp. 1–57. doi: 10.17487/rfc3369. url:
https://www.rfc-editor.org/info/rfc3369.

[36] Russell Housley, William Timothy Polk, Warwick Ford, and
David Solo. Internet X. 509 public key infrastructure cer-
tificate and certificate revocation list (CRL) profile. Tech.
rep. Apr. 2002, pp. 1–129. doi: 10.17487/rfc3280. url:
https://www.rfc-editor.org/info/rfc3280.

[37] Yusuo Hu, Danqi Wang, Hui Zhong, and Feng Wu. “Social-
Trust: Enabling long-term social cooperation in peer-to-peer
services”. In: Peer-to-Peer Networking and Applications 7.4
(Dec. 2014), pp. 525–538. issn: 1936-6442. doi: 10.1007/
s12083-013-0198-2. url: http://link.springer.com/
10.1007/s12083-013-0198-2.

[38] Gera Jaideep and Bhanu Prakash Battula. “Survey on the
present state-of-the-art of P2P networks, their security is-
sues and counter measures”. In: International Journal of
Applied Engineering Research 11.1 (2016), pp. 616–620. issn:
09739769.

[39] Markus Jakobsson and Ari Juels. “Proofs of Work and Bread
Pudding Protocols(Extended Abstract)”. In: Secure Infor-
mation Networks. Boston, MA: Springer US, 1999, pp. 258–
272. doi: 10.1007/978-0-387-35568-9_18. url: http:
//link.springer.com/10.1007/978-0-387-35568-9_18.

120

http://dx.doi.org/10.1109/P2P.2006.44
http://ieeexplore.ieee.org/document/1698591/
http://ieeexplore.ieee.org/document/1698591/
http://dx.doi.org/10.1007/s12083-012-0142-x
http://link.springer.com/10.1007/s12083-012-0142-x
http://link.springer.com/10.1007/s12083-012-0142-x
http://dx.doi.org/10.1007/978-3-540-39989-6_23
http://link.springer.com/10.1007/978-3-540-39989-6_23
http://link.springer.com/10.1007/978-3-540-39989-6_23
http://dx.doi.org/10.17487/rfc3369
https://www.rfc-editor.org/info/rfc3369
http://dx.doi.org/10.17487/rfc3280
https://www.rfc-editor.org/info/rfc3280
http://dx.doi.org/10.1007/s12083-013-0198-2
http://dx.doi.org/10.1007/s12083-013-0198-2
http://link.springer.com/10.1007/s12083-013-0198-2
http://link.springer.com/10.1007/s12083-013-0198-2
http://dx.doi.org/10.1007/978-0-387-35568-9_18
http://link.springer.com/10.1007/978-0-387-35568-9_18
http://link.springer.com/10.1007/978-0-387-35568-9_18

Bibliography

[40] Mian Ahmad Jan, Priyadarsi Nanda, Xiangjian He, and Ren
Ping Liu. “A Sybil attack detection scheme for a forest wild-
fire monitoring application”. In: Future Generation Computer
Systems 1 (June 2016), pp. 1–14. issn: 0167739X. doi: 10.
1016/j.future.2016.05.034. url: http://linkinghub.
elsevier.com/retrieve/pii/S0167739X16301522.

[41] Oliver Jetter, Jochen Dinger, and Hannes Hartenstein. “Quan-
titative Analysis of the Sybil Attack and Effective Sybil Resis-
tance in Peer-to-Peer Systems”. In: 2010 IEEE International
Conference on Communications. IEEE, May 2010, pp. 1–6.
isbn: 978-1-4244-6402-9. doi: 10.1109/ICC.2010.5501977.
url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5501977.

[42] Harry Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph
Bonneau, and Arvind Narayanan. “An empirical study of
Namecoin and lessons for decentralized namespace design”.
In: 14th Annual Workshop on the Economics of Information
Security (WEIS). 2015.

[43] P. Kavitha, C. Keerthana, V. Niroja, and V. Vivekanand-
han. “Mobile-id Based Sybil Attack detection on the Mobile
ADHOC Network 1”. In: International Journal of communi-
cation and computer Technologies 02.02 (2014), pp. 6–9.

[44] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-
Currency with Proof-of-Stake. Self-published, 2012. url: ht
tp://ppcoin.org/static/ppcoin-paper.pdf.

[45] Dor Konforty, Yuval Adam, Daniel Estrada, and Lucius Gre-
gory Meredith. Synereo: The Decentralized and Distributed
Social Network. Self-published, 2015. url: http://www.
synereo.com/whitepapers/synereo.pdf.

[46] Jie Kong, Wandong Cai, and Lei Wang. “The Evaluation
of Index Poisoning in BitTorrent”. In: 2010 Second Inter-
national Conference on Communication Software and Net-
works. IEEE, 2010, pp. 382–386. isbn: 978-1-4244-5726-7.
doi: 10.1109/ICCSN.2010.39. url: http://ieeexplore.
ieee.org/document/5437695/.

121

http://dx.doi.org/10.1016/j.future.2016.05.034
http://dx.doi.org/10.1016/j.future.2016.05.034
http://linkinghub.elsevier.com/retrieve/pii/S0167739X16301522
http://linkinghub.elsevier.com/retrieve/pii/S0167739X16301522
http://dx.doi.org/10.1109/ICC.2010.5501977
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5501977
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5501977
http://ppcoin.org/static/ppcoin-paper.pdf
http://ppcoin.org/static/ppcoin-paper.pdf
http://www.synereo.com/whitepapers/synereo.pdf
http://www.synereo.com/whitepapers/synereo.pdf
http://dx.doi.org/10.1109/ICCSN.2010.39
http://ieeexplore.ieee.org/document/5437695/
http://ieeexplore.ieee.org/document/5437695/

Bibliography

[47] P. Vinoth Kumar and M. Maheshwari. “Prevention of Sybil
attack and priority batch verification in VANETs”. In: In-
ternational Conference on Information Communication and
Embedded Systems (ICICES2014). 978. IEEE, Feb. 2014,
pp. 1–5. isbn: 978-1-4799-3834-6. doi: 10.1109/ICICES.
2014 . 7033926. url: http : / / ieeexplore . ieee . org /
document/7033926/.

[48] Daniel Larimer, Ned Scott, Valentine Zavgorodnev, Ben-
jamin Johnson, James Calfee, and Michael Vandeberg. Steem
An incentivized, blockchain-based social media platform. March.
Self-published, 2016. url: https://steem.io/SteemWhite
Paper.pdf.

[49] ByungKwan Lee, EunHee Jeong, and Ina Jung. “A DTSA
(detection technique against a sybil attack) protocol using
SKC (session key based certificate) on VANET”. In: Inter-
national Journal of Security and its Applications 7.3 (2013),
pp. 1–10. issn: 17389976.

[50] Yeonju Lee, Hyelim Koo, Seungoh Choi, Byeong-hee Roh,
and Cheolho Lee. “Advanced node insertion attack with
availability falsification in Kademlia-based P2P networks”. In:
14th International Conference on Advanced Communication
Technology (ICACT). 2012, pp. 73–76. isbn: 978-89-5519-
163-9. url: http://ieeexplore.ieee.org/document/
6174613/.

[51] Chris Lesniewski-Laas. “A Sybil-proof one-hop DHT”. In:
Proceedings of the 1st workshop on Social network systems -
SocialNets ’08. New York, New York, USA: ACM Press, 2008,
pp. 19–24. isbn: 9781605581248. doi: 10.1145/1435497.
1435501. url: http://portal.acm.org/citation.cfm?
doid=1435497.1435501.

[52] Chris Lesniewski-Laas and M. Frans Kaashoek. “Whanau:
A Sybil-proof Distributed Hash Table”. In: Proceedings of
the 7th USENIX Conference on Networked Systems Design
and Implementation. NSDI’10. USENIX Association, 2010,
pp. 111–126. isbn: 978-931971-73-7. url: http://www.usen
ix.org/events/nsdi10/tech/full_papers/lesniewski-
laas.pdf.

122

http://dx.doi.org/10.1109/ICICES.2014.7033926
http://dx.doi.org/10.1109/ICICES.2014.7033926
http://ieeexplore.ieee.org/document/7033926/
http://ieeexplore.ieee.org/document/7033926/
https://steem.io/SteemWhitePaper.pdf
https://steem.io/SteemWhitePaper.pdf
http://ieeexplore.ieee.org/document/6174613/
http://ieeexplore.ieee.org/document/6174613/
http://dx.doi.org/10.1145/1435497.1435501
http://dx.doi.org/10.1145/1435497.1435501
http://portal.acm.org/citation.cfm?doid=1435497.1435501
http://portal.acm.org/citation.cfm?doid=1435497.1435501
http://www.usenix.org/events/nsdi10/tech/full_papers/lesniewski-laas.pdf
http://www.usenix.org/events/nsdi10/tech/full_papers/lesniewski-laas.pdf
http://www.usenix.org/events/nsdi10/tech/full_papers/lesniewski-laas.pdf

Bibliography

[53] Frank Li, Prateek Mittal, Matthew Caesar, and Nikita
Borisov. “SybilControl”. In: Proceedings of the seventh ACM
workshop on Scalable trusted computing. STC ’12. New York,
New York, USA: ACM Press, 2012, p. 67. isbn: 978-1-4503-
1662-0. doi: 10.1145/2382536.2382548. url: http://dl.
acm.org/citation.cfm?doid=2382536.2382548.

[54] Jian Liang, Naoum Naoumov, and Keith W. Ross. “The
Index Poisoning Attack in P2P File Sharing Systems”. In:
Proceedings IEEE INFOCOM 2006. 25TH IEEE Interna-
tional Conference on Computer Communications. IEEE,
2006, pp. 1–12. isbn: 1-4244-0221-2. doi: 10.1109/INFOCOM.
2006.232. url: http://ieeexplore.ieee.org/document/
4146885/.

[55] Thomas Locher, David Mysicka, Stefan Schmid, and Roger
Wattenhofer. “Poisoning the Kad Network”. In: International
Conference on Distributed Computing and Networking. 2010,
pp. 195–206. doi: 10.1007/978-3-642-11322-2_22. url:
http://link.springer.com/10.1007/978-3-642-11322-
2_22.

[56] Andrew Loewenstern and Arvid Norberg. BitTorrent En-
hancement Proposals 5: DHT Protocol. Tech. rep. 2008. url:
http://www.bittorrent.org/beps/bep_0005.html.

[57] Andreas Loibl. “Namecoin”. In: Future Internet (FI) and In-
novative Internet Technologies and Mobile Communications
(IITM). August. 2014, pp. 107–113. doi: 10.2313/NET-
2014-08-1_14.

[58] Xiaosong Lou, Kai Hwang, and Yue Hu. “Accountable File
Indexing against DDoS Attacks in Peer-to-Peer Networks”.
In: GLOBECOM 2009 - 2009 IEEE Global Telecommuni-
cations Conference. IEEE, Nov. 2009, pp. 1–6. isbn: 978-
1-4244-4148-8. doi: 10.1109/GLOCOM.2009.5425979. url:
http://ieeexplore.ieee.org/document/5425979/.

[59] Leonardo Maccari, Matteo Rosi, Romano Fantacci, Luigi
Chisci, Luca Maria Aiello, and Marco Milanesio. “Avoiding
Eclipse Attacks on Kad/Kademlia: An Identity Based Ap-
proach”. In: 2009 IEEE International Conference on Com-
munications. IEEE, June 2009, pp. 1–5. doi: 10.1109/

123

http://dx.doi.org/10.1145/2382536.2382548
http://dl.acm.org/citation.cfm?doid=2382536.2382548
http://dl.acm.org/citation.cfm?doid=2382536.2382548
http://dx.doi.org/10.1109/INFOCOM.2006.232
http://dx.doi.org/10.1109/INFOCOM.2006.232
http://ieeexplore.ieee.org/document/4146885/
http://ieeexplore.ieee.org/document/4146885/
http://dx.doi.org/10.1007/978-3-642-11322-2_22
http://link.springer.com/10.1007/978-3-642-11322-2_22
http://link.springer.com/10.1007/978-3-642-11322-2_22
http://www.bittorrent.org/beps/bep_0005.html
http://dx.doi.org/10.2313/NET-2014-08-1_14
http://dx.doi.org/10.2313/NET-2014-08-1_14
http://dx.doi.org/10.1109/GLOCOM.2009.5425979
http://ieeexplore.ieee.org/document/5425979/
http://dx.doi.org/10.1109/ICC.2009.5198772
http://dx.doi.org/10.1109/ICC.2009.5198772

Bibliography

ICC.2009.5198772. url: http://ieeexplore.ieee.org/
document/5198772/.

[60] Samuel Madden, Michael J Franklin, Joseph M Hellerstein,
and Wei Hong. “TAG: A Tiny AGgregation Service for Ad-
hoc Sensor Networks”. In: Proceedings of the 5th sympo-
sium on Operating systems design and implementation 36.SI
(2002), pp. 131–146. issn: 0163-5980. doi: 10.1145/844128.
844142. url: http://doi.acm.org/10.1145/844128.
844142.

[61] JunPeng Mao, YanLi Cui, JianHua Huang, and JianBiao
Zhang. “Analysis of Pollution Disseminating Model of P2P
Network”. In: 2008 Second International Symposium on In-
telligent Information Technology Application. Vol. 3. IEEE,
Dec. 2008, pp. 790–794. isbn: 978-0-7695-3497-8. doi: 10.
1109/IITA.2008.405. url: http://ieeexplore.ieee.
org/document/4740105/.

[62] Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina.
“DHT Routing Using Social Links”. In: Peer-To-Peer Systems
Iii. Vol. 3279. 2005, pp. 100–111. isbn: 3-540-24252-X. doi:
10.1007/978-3-540-30183-7_10. url: http://link.
springer.com/10.1007/978-3-540-30183-7_10.

[63] Petar Maymounkov and D Mazieres. “Kademlia: A peer-
to-peer information system based on the xor metric”. In:
First International Workshop on Peer-to-Peer Systems. 2002,
pp. 53–65. isbn: 978-3-540-44179-3. doi: 10.1007/3-540-
45748-8. url: http://link.springer.com/chapter/10.
1007/3-540-45748-8_5.

[64] Ralph C. Merkle. “A Digital Signature Based on a Conven-
tional Encryption Function”. In: Crypto. 1988, pp. 369–378.
isbn: 3540187960. doi: 10.1007/3-540-48184-2_32. url:
http://link.springer.com/10.1007/3- 540- 48184-
2_32.

[65] Bryan N. Mills and Taieb F. Znati. “SCAR - Scattering,
Concealing and Recovering Data within a DHT”. In: 41st
Annual Simulation Symposium (anss-41 2008). IEEE, Apr.
2008, pp. 35–42. isbn: 978-0-7695-3143-4. doi: 10.1109/
ANSS-41.2008.38. url: http://ieeexplore.ieee.org/
document/4494403/.

124

http://dx.doi.org/10.1109/ICC.2009.5198772
http://dx.doi.org/10.1109/ICC.2009.5198772
http://ieeexplore.ieee.org/document/5198772/
http://ieeexplore.ieee.org/document/5198772/
http://dx.doi.org/10.1145/844128.844142
http://dx.doi.org/10.1145/844128.844142
http://doi.acm.org/10.1145/844128.844142
http://doi.acm.org/10.1145/844128.844142
http://dx.doi.org/10.1109/IITA.2008.405
http://dx.doi.org/10.1109/IITA.2008.405
http://ieeexplore.ieee.org/document/4740105/
http://ieeexplore.ieee.org/document/4740105/
http://dx.doi.org/10.1007/978-3-540-30183-7_10
http://link.springer.com/10.1007/978-3-540-30183-7_10
http://link.springer.com/10.1007/978-3-540-30183-7_10
http://dx.doi.org/10.1007/3-540-45748-8
http://dx.doi.org/10.1007/3-540-45748-8
http://link.springer.com/chapter/10.1007/3-540-45748-8_5
http://link.springer.com/chapter/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1007/3-540-48184-2_32
http://link.springer.com/10.1007/3-540-48184-2_32
http://link.springer.com/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1109/ANSS-41.2008.38
http://dx.doi.org/10.1109/ANSS-41.2008.38
http://ieeexplore.ieee.org/document/4494403/
http://ieeexplore.ieee.org/document/4494403/

Bibliography

[66] Mthcl. The math of Nxt forging. 1. Self-published, 2014,
pp. 1–32. url: https://www.docdroid.net/e29h/forgin
g0-5-1.pdf.html.

[67] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System. Self-published, 2008. url: https://bitcoin.org/
bitcoin.pdf.

[68] Moni Naor and U. Wieder. “A simple fault tolerant dis-
tributed hash table”. In: Peer-to-Peer Systems II (2003),
pp. 88–97. url: http://www.springerlink.com/index/
4e756fgyq4ff4kay.pdf.

[69] Yuusuke Ookita and Satoshi Fujita. “Cost-effective index
poisoning scheme for P2P file sharing systems”. In: 2016
IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS). IEEE, June 2016, pp. 1–6. isbn:
978-1-5090-0806-3. doi: 10.1109/ICIS.2016.7550732. url:
http://ieeexplore.ieee.org/document/7550732/.

[70] Soyoung Park, Baber Aslam, Damla Turgut, and Cliff C. Zou.
“Defense against Sybil attack in the initial deployment stage
of vehicular ad hoc network based on roadside unit support”.
In: Security and Communication Networks 6.4 (Apr. 2013),
pp. 523–538. issn: 19390114. doi: 10.1002/sec.679. url:
http://doi.wiley.com/10.1002/sec.679.

[71] Riccardo Pecori and Luca Veltri. “Trust-based routing for
Kademlia in a sybil scenario”. In: 2014 22nd International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM). IEEE, Sept. 2014, pp. 279–283. isbn:
978-9-5329-0052-1. doi: 10.1109/SOFTCOM.2014.7039131.
url: http://ieeexplore.ieee.org/document/7039131/.

[72] Colin Percival. Stronger key derivation via sequential memory-
hard functions. Self-published, 2009, pp. 1–16. url: http:
//www.tarsnap.com/scrypt/scrypt.pdf.

[73] Pratama Putra and Akihiro Nakao. “An Effective Index Poi-
soning Algorithm for Controlling Peer-to-Peer Network Ap-
plications”. In: Proceedings of the 2011 International Work-
shop on Modeling, Analysis, and Control of Complex Net-
works. CNET ’11. 2011, pp. 17–22. isbn: 978-0-9836283-1-6.
url: http://dl.acm.org/citation.cfm?id=2043530.

125

https://www.docdroid.net/e29h/forging0-5-1.pdf.html
https://www.docdroid.net/e29h/forging0-5-1.pdf.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.springerlink.com/index/4e756fgyq4ff4kay.pdf
http://www.springerlink.com/index/4e756fgyq4ff4kay.pdf
http://dx.doi.org/10.1109/ICIS.2016.7550732
http://ieeexplore.ieee.org/document/7550732/
http://dx.doi.org/10.1002/sec.679
http://doi.wiley.com/10.1002/sec.679
http://dx.doi.org/10.1109/SOFTCOM.2014.7039131
http://ieeexplore.ieee.org/document/7039131/
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf
http://dl.acm.org/citation.cfm?id=2043530

Bibliography

[74] Mina Rahbari and Mohammad Ali Jabreil Jamali. “Efficient
Detection of Sybil attack Based on Cryptography in Vanet”.
In: International Journal of Network Security & Its Appli-
cations 3.6 (Nov. 2011), pp. 185–195. issn: 09752307. doi:
10.5121/ijnsa.2011.3614. url: http://www.airccse.
org/journal/nsa/1111nsa14.pdf.

[75] Shanta Rangaswamy and Vinay Hegde. “A Survey of Tech-
niques to Defend Against Sybil Attacks in Social Networks”.
In: International Journal of Advanced Research in Computer
and Communication Engineering 3.5 (2014), pp. 6577–6580.
issn: 2278-1021.

[76] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Schenker. “A scalable content-addressable
network”. In: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer
communications - SIGCOMM ’01. New York, New York,
USA: ACM Press, 2001, pp. 161–172. isbn: 1581134118. doi:
10.1145/383059.383072. url: http://portal.acm.org/
citation.cfm?doid=383059.383072.

[77] Rodrigo Rodrigues and Barbara Liskov. “High Availability
in DHTs: Erasure Coding vs. Replication”. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 3640 LNCS. 2. 2005, pp. 226–239. isbn: 3540290680.
doi: 10.1007/11558989_21. url: http://link.springer.
com/10.1007/11558989_21.

[78] Hosam Rowaihy, William Enck, Patrick McDaniel, and
Thomas La Porta. “Limiting Sybil Attacks in Structured
P2P Networks”. In: IEEE INFOCOM 2007 - 26th IEEE
International Conference on Computer Communications.
NAS-TR-0017-2005. IEEE, 2007, pp. 2596–2600. isbn: 1-
4244-1047-9. doi: 10.1109/INFCOM.2007.328. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4215910.

[79] Antony Rowstron and Peter Druschel. “Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems”. In: Middleware 2001: IFIP/ACM
International Conference on Distributed Systems Platforms

126

http://dx.doi.org/10.5121/ijnsa.2011.3614
http://www.airccse.org/journal/nsa/1111nsa14.pdf
http://www.airccse.org/journal/nsa/1111nsa14.pdf
http://dx.doi.org/10.1145/383059.383072
http://portal.acm.org/citation.cfm?doid=383059.383072
http://portal.acm.org/citation.cfm?doid=383059.383072
http://dx.doi.org/10.1007/11558989_21
http://link.springer.com/10.1007/11558989_21
http://link.springer.com/10.1007/11558989_21
http://dx.doi.org/10.1109/INFCOM.2007.328
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4215910
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4215910
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4215910

Bibliography

Heidelberg, Germany, November 12–16, 2001 Proceedings.
Ed. by Rachid Guerraoui. November 2001. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 329–350. isbn: 978-3-
540-45518-9. doi: 10.1007/3-540-45518-3_18. url: http:
//link.springer.com/10.1007/3-540-45518-3_18.

[80] Rynomster and Tecnovert. ShadowCash : Zero knowledge
Anonymous Distributed E Cash via Traceable Ring Signa-
tures. Self-published, 2014. url: http://bravenewcoin.
com/assets/Whitepapers/ShadowCash-Zeroknowledge-
Anonymous-Distributed-ECash.pdf.

[81] Nicolas van Saberhagen. CryptoNote v 2.0. Self-published,
2013, pp. 1–20. url: https://cryptonote.org/whitepap
er.pdf.

[82] Atui Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S.
Wallach. “Eclipse Attacks on Overlay Networks: Threats and
Defenses”. In: Proceedings IEEE INFOCOM 2006. 25TH
IEEE International Conference on Computer Communi-
cations. IEEE, 2006, pp. 1–12. isbn: 1-4244-0221-2. doi:
10.1109/INFOCOM.2006.231. url: http://ieeexplore.
ieee.org/document/4146884/.

[83] Emil Sit and Robert Morris. “Security Considerations for
Peer-to-Peer Distributed Hash Tables”. In: Proceedings of
the 1st International Workshop on Peer-to-Peer Systems
(IPTPS). 2002, pp. 261–269. doi: 10.1007/3-540-45748-
8_25. url: http://link.springer.com/10.1007/3-540-
45748-8_25.

[84] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack.
“A global view of kad”. In: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement - IMC ’07.
New York, New York, USA: ACM Press, 2007, p. 117. isbn:
9781595939081. doi: 10.1145/1298306.1298323. url: h
ttp://portal.acm.org/citation.cfm?id=1298306.
1298323.

[85] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek,
and Hari Balakrishnan. “Chord”. In: Proceedings of the 2001
conference on Applications, technologies, architectures, and
protocols for computer communications - SIGCOMM ’01.
New York, New York, USA: ACM Press, 2001, pp. 149–

127

http://dx.doi.org/10.1007/3-540-45518-3_18
http://link.springer.com/10.1007/3-540-45518-3_18
http://link.springer.com/10.1007/3-540-45518-3_18
http://bravenewcoin.com/assets/Whitepapers/ShadowCash-Zeroknowledge-Anonymous-Distributed-ECash.pdf
http://bravenewcoin.com/assets/Whitepapers/ShadowCash-Zeroknowledge-Anonymous-Distributed-ECash.pdf
http://bravenewcoin.com/assets/Whitepapers/ShadowCash-Zeroknowledge-Anonymous-Distributed-ECash.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
http://dx.doi.org/10.1109/INFOCOM.2006.231
http://ieeexplore.ieee.org/document/4146884/
http://ieeexplore.ieee.org/document/4146884/
http://dx.doi.org/10.1007/3-540-45748-8_25
http://dx.doi.org/10.1007/3-540-45748-8_25
http://link.springer.com/10.1007/3-540-45748-8_25
http://link.springer.com/10.1007/3-540-45748-8_25
http://dx.doi.org/10.1145/1298306.1298323
http://portal.acm.org/citation.cfm?id=1298306.1298323
http://portal.acm.org/citation.cfm?id=1298306.1298323
http://portal.acm.org/citation.cfm?id=1298306.1298323

Bibliography

160. isbn: 1581134118. doi: 10.1145/383059.383071. url:
http://portal.acm.org/citation.cfm?doid=383059.
383071.

[86] Florian Tegeler and Xiaoming Fu. “SybilConf: Computa-
tional Puzzles for Confining Sybil Attacks”. In: 2010 IN-
FOCOM IEEE Conference on Computer Communications
Workshops. IEEE, Mar. 2010, pp. 1–2. isbn: 978-1-4244-
6739-6. doi: 10.1109/INFCOMW.2010.5466685. url: http:
//ieeexplore.ieee.org/document/5466685/.

[87] Nguyen Tran, Jinyang Li, Lakshminarayanan Subramanian,
and Sherman S.M. Chow. “Optimal Sybil-resilient node ad-
mission control”. In: 2011 Proceedings IEEE INFOCOM.
IEEE, Apr. 2011, pp. 3218–3226. isbn: 978-1-4244-9919-
9. doi: 10.1109/INFCOM.2011.5935171. url: http://
ieeexplore.ieee.org/document/5935171/.

[88] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen.
“A survey of DHT security techniques”. In: ACM Computing
Surveys 43.2 (Jan. 2011), pp. 1–49. issn: 03600300. doi:
10.1145/1883612.1883615. url: http://portal.acm.
org/citation.cfm?doid=1883612.1883615.

[89] P. Raghu Vamsi and Krishna Kant. “Sybil attack detec-
tion using Sequential Hypothesis Testing in Wireless Sensor
Networks”. In: 2014 International Conference on Signal Prop-
agation and Computer Technology (ICSPCT 2014). IEEE,
July 2014, pp. 698–702. isbn: 978-1-4799-3140-8. doi: 10.
1109/ICSPCT.2014.6884945. url: http://ieeexplore.
ieee.org/document/6884945/.

[90] Pavel Vasin. BlackCoin’s Proof-of-Stake Protocol v2. Self-
published, 2014. url: https://blackcoin.co/blackcoin-
pos-protocol-v2-whitepaper.pdf.

[91] Bimal Viswanath, Ansley Post, Krishna P. Gummadi, and
Alan Mislove. “An analysis of social network-based Sybil
defenses”. In: ACM SIGCOMM Computer Communication
Review 40.4 (Aug. 2010), p. 363. doi: 10.1145/1851275.
1851226. url: http://dl.acm.org/citation.cfm?doid=
1851275.1851226.

128

http://dx.doi.org/10.1145/383059.383071
http://portal.acm.org/citation.cfm?doid=383059.383071
http://portal.acm.org/citation.cfm?doid=383059.383071
http://dx.doi.org/10.1109/INFCOMW.2010.5466685
http://ieeexplore.ieee.org/document/5466685/
http://ieeexplore.ieee.org/document/5466685/
http://dx.doi.org/10.1109/INFCOM.2011.5935171
http://ieeexplore.ieee.org/document/5935171/
http://ieeexplore.ieee.org/document/5935171/
http://dx.doi.org/10.1145/1883612.1883615
http://portal.acm.org/citation.cfm?doid=1883612.1883615
http://portal.acm.org/citation.cfm?doid=1883612.1883615
http://dx.doi.org/10.1109/ICSPCT.2014.6884945
http://dx.doi.org/10.1109/ICSPCT.2014.6884945
http://ieeexplore.ieee.org/document/6884945/
http://ieeexplore.ieee.org/document/6884945/
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://dx.doi.org/10.1145/1851275.1851226
http://dx.doi.org/10.1145/1851275.1851226
http://dl.acm.org/citation.cfm?doid=1851275.1851226
http://dl.acm.org/citation.cfm?doid=1851275.1851226

Bibliography

[92] Guojun Wang, Felix Musau, Song Guo, and Muhammad
Bashir Abdullahi. “Neighbor Similarity Trust against Sybil
Attack in P2P E-Commerce”. In: IEEE Transactions on
Parallel and Distributed Systems 26.3 (Mar. 2015), pp. 824–
833. issn: 1045-9219. doi: 10.1109/TPDS.2014.2312932.
url: http://ieeexplore.ieee.org/document/6776524/.

[93] Liang Wang and Jussi Kangasharju. “Measuring large-scale
distributed systems: case of BitTorrent Mainline DHT”. In:
IEEE P2P 2013 Proceedings. IEEE, Sept. 2013, pp. 1–10.
isbn: 978-1-4799-0515-7. doi: 10.1109/P2P.2013.6688697.
url: http://ieeexplore.ieee.org/document/6688697/.

[94] Liang Wang and Jussi Kangasharju. “Real-world sybil at-
tacks in BitTorrent mainline DHT”. In: 2012 IEEE Global
Communications Conference (GLOBECOM). IEEE, Dec.
2012, pp. 826–832. isbn: 978-1-4673-0921-9. doi: 10.1109/
GLOCOM.2012.6503215. url: http://ieeexplore.ieee.
org/document/6503215/.

[95] Peng Wang, Nicholas Hopper, Ivan Osipkov, and Yongdae
Kim. Myrmic: Secure and Robust DHT Routing. Tech. rep.
University of Minnesota at Twin Cities, Minneapolis/St.
Paul, MN, 2007. url: http://www-users.cs.umn.edu/
~kyd/doc/wohk07.pdf.

[96] Yu Yang and Lan Yang. “A Survey of Peer-to-Peer Attacks
and Counter Attacks”. In: Proceedings of the International
Conference on Security and Management (SAM). 2011, p. 1.

[97] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and
Feng Xiao. “SybilLimit: A Near-Optimal Social Network
Defense Against Sybil Attacks”. In: IEEE/ACM Transactions
on Networking 18.3 (June 2010), pp. 885–898. issn: 1063-
6692. doi: 10.1109/TNET.2009.2034047. url: http://
ieeexplore.ieee.org/document/5313843/.

[98] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and
Abraham Flaxman. “SybilGuard”. In: ACM SIGCOMM
Computer Communication Review 36.4 (Aug. 2006), p. 267.
issn: 01464833. doi: 10 . 1145 / 1151659 . 1159945. url:
http://dl.acm.org/citation.cfm?id=1159945.

129

http://dx.doi.org/10.1109/TPDS.2014.2312932
http://ieeexplore.ieee.org/document/6776524/
http://dx.doi.org/10.1109/P2P.2013.6688697
http://ieeexplore.ieee.org/document/6688697/
http://dx.doi.org/10.1109/GLOCOM.2012.6503215
http://dx.doi.org/10.1109/GLOCOM.2012.6503215
http://ieeexplore.ieee.org/document/6503215/
http://ieeexplore.ieee.org/document/6503215/
http://www-users.cs.umn.edu/~kyd/doc/wohk07.pdf
http://www-users.cs.umn.edu/~kyd/doc/wohk07.pdf
http://dx.doi.org/10.1109/TNET.2009.2034047
http://ieeexplore.ieee.org/document/5313843/
http://ieeexplore.ieee.org/document/5313843/
http://dx.doi.org/10.1145/1151659.1159945
http://dl.acm.org/citation.cfm?id=1159945

Bibliography

[99] Quan Yuan, Aaron Little, Maggie Kabore, and Youssouf
Kabore. “A Study of Index Poisoning in Peer-To-Peer File
Sharing Systems”. In: International Journal on Cybernetics
& Informatics 3.6 (Dec. 2014), pp. 11–24. issn: 23208430.
doi: 10.5121/ijci.2014.3602. url: http://airccse.
org/journal/ijci/papers/3614ijci02.pdf.

[100] Kuan Zhang, Xiaohui Liang, Rongxing Lu, Kan Yang, and
Xuemin Sherman Shen. “Exploiting mobile social behaviors
for Sybil detection”. In: 2015 IEEE Conference on Computer
Communications (INFOCOM). Vol. 26. IEEE, Apr. 2015,
pp. 271–279. isbn: 978-1-4799-8381-0. doi: 10.1109/INFO
COM.2015.7218391. url: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=7218391.

[101] Tao Zhang, Li Lin, and Jian-biao Zhang. “Resource Reli-
ability in Kad”. In: 2011 Second International Conference
on Networking and Distributed Computing. Vol. 5. IEEE,
Sept. 2011, pp. 187–191. isbn: 978-1-4577-0407-9. doi: 10.
1109/ICNDC.2011.45. url: http://ieeexplore.ieee.
org/document/6047132/.

[102] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea,
Anthony D. Joseph, and John D. Kubiatowicz. “Tapestry:
A Resilient Global-Scale Overlay for Service Deployment”.
In: IEEE Journal on Selected Areas in Communications
22.1 (Jan. 2004), pp. 41–53. issn: 0733-8716. doi: 10.1109/
JSAC.2003.818784. url: http://ieeexplore.ieee.org/
document/1258114/.

[103] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant Wide-area Lo-
cation and Routing. Tech. rep. April. Computer Science
Division University of California, Berkeley, 2001.

130

http://dx.doi.org/10.5121/ijci.2014.3602
http://airccse.org/journal/ijci/papers/3614ijci02.pdf
http://airccse.org/journal/ijci/papers/3614ijci02.pdf
http://dx.doi.org/10.1109/INFOCOM.2015.7218391
http://dx.doi.org/10.1109/INFOCOM.2015.7218391
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7218391
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7218391
http://dx.doi.org/10.1109/ICNDC.2011.45
http://dx.doi.org/10.1109/ICNDC.2011.45
http://ieeexplore.ieee.org/document/6047132/
http://ieeexplore.ieee.org/document/6047132/
http://dx.doi.org/10.1109/JSAC.2003.818784
http://dx.doi.org/10.1109/JSAC.2003.818784
http://ieeexplore.ieee.org/document/1258114/
http://ieeexplore.ieee.org/document/1258114/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	The Distributed Hash Table
	Description
	A basic DHT model
	DHT examples
	CAN
	Chord
	Pastry
	Tapestry
	Kademlia

	DHT Security
	Sybil attack
	At a glance
	Practical relevance
	Proposed solutions
	Open issues

	Node insertion
	At a glance
	Practical relevance
	Proposed solutions
	Open issues

	Publish attack
	At a glance
	Practical relevance
	Proposed solutions
	Open issues

	Eclipse attack
	At a glance
	Practical relevance
	Proposed solutions
	Open issues

	Our new secure DHT
	Security guarantees
	Preliminaries
	Assumptions
	Proximity guarantees
	Poisoning the routing tables
	Summary of changes

	New DHT primitives through a Block Chain
	A generic block chain model
	A Block Chain enabling the new primitives
	Current block chains
	BitCoin, the first block chain
	Other notable block chains
	NameCoin

	A secure DHT implementation
	An easy-to-use secure DHT
	System architecture
	The Block Chain module
	The DHT module

	Future work

	Experimental evaluation
	Experimental set up
	Performance evaluation
	Block chain related tests
	DHT tests

	Conclusions
	Bibliography

