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Abstract

Bohm theory is a formulation of Quantum Mechanics that characterises the state
of a quantum system according to both the wave function, as in the conventional
formulation, and the coordinates (positions) of all the particles that evolve in time
drawing quantum continuous trajectories. Furthermore, a statistical ensemble of all
the possible trajectories, raising from the impossibility to know the initial position of
all the particles, establishes the exact correspondence with the traditional Quantum
Mechanics. From a computational point of view, Bohm theory has found many
applications in Chemical Physics especially to develop new methodologies for solving
the Schrödinger equation and to address semi-classical approximations of Quantum
Mechanics.

From a theoretical point of view, the most appealing feature of Bohm theory
is its capability to supply a conceptual map between the quantum formalism and
our representation of what a chemical system is. Chemical systems are composed of
molecules, but the same idea of molecule requires a specific arrangement in the space
of particles, i.e., the nuclei of the atoms. The statistical description of conventional
Quantum Mechanics on the basis of wave function alone is insufficient to establish
a clear correspondence with such a picture of molecules. Indeed, chemists employ
usually Classical Mechanics in order to overcome this drawback of the standard
quantum theory. On the other hand, if the particles position is included in the
quantum formalism, as Bohm theory does, the map can be defined in a self-consistent
way. In other words, Bohm theory appears to be the suitable quantum framework
to represent molecules and their motion.

The chemical representation of molecular systems finds a natural correspondence
with a single Bohm trajectory, since it is always implicitly assumed that molecular
components have specific spatial position independently of our knowledge about
it. Consequently, we develop a quantum method whose fundamental assumption is
that a single Bohm trajectory, i.e., a quantum molecular trajectory, describes the
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molecular systems and the molecular motion correctly.
First of all, we examine the correspondence between a single Bohm trajectory

and the conventional Quantum Mechanics, without using the ensemble of trajec-
tories. We verify that such a correspondence exists through numerical simulations
and we prove formally that the statistical properties of a single Bohm trajectory
explain the probabilistic description of Quantum Mechanics. Once the consistency
of this original approach has been established, we investigate the predicted proper-
ties. For instance, we take into account the constants of motion (such as the energy)
corresponding to the time evolution of the coordinates and the behaviour of simple
chemical systems, e.g., the vibrational motion of single molecules interacting with a
resonant field. In this way, unexpected features of the molecular motion are found.

Secondly, we tackle the challenge of describing many components systems (like
the chemical systems in ordinary conditions). As a matter of fact, the computation
of the Bohm trajectory and of the wave function is extremely demanding. However,
the statistical properties of the Bohm trajectory allow the derivation of stochastic
theories for examining the dynamics of open quantum systems, i.e., few molecules (or
few degrees of freedom) interacting with their environment (the other molecules).
One of the developed stochastic methods correlates the dynamics of the reduced
density matrix, for the degrees of freedom of interest, to the evolution of the corre-
sponding Bohm coordinates. In other words, the Bohm equation, determining the
set of all the particles velocities according to the full wave function, is replaced with
a stochastic one that approximates the velocity of a subset of coordinates according
to the reduced density matrix. In such a way, the quantum fluctuations induced by
the environment are taken into account.

The advantage of this method concerns its capability of describing quantum sys-
tems, including open quantum systems, in terms of a quantum trajectory. This
could allow the understanding of the molecular motion during a spectroscopical ex-
periment. The possibility of investigating reactive systems, such as conformational
changes, is particularly interesting. As a matter of fact, chemical reactions can be
completely characterised only through the particles motion and we define the suit-
able quantum methodology providing a self-consistent description of the molecular
motion.
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Sommario

La teoria di Bohm è una formulazione della Meccanica Quantistica che carat-
terizza lo stato di un sistema quantistico attraverso sia la funzione d’onda, come la
teoria standard, sia le coordinate (le posizioni) di tutte le particelle che evolvono nel
tempo secondo traiettorie quantistiche continue. Inoltre, un ensemble statistico di
tutte le possibile traiettorie, che deriva dall’impossibilità di conoscere la posizione
iniziale di tutte le particelle, stabilisce l’esatta corrispondenza con la Meccanica
Quantistica tradizionale. Da un punto di vista computazionale, la teoria di Bohm
è stata impiegata in Chimica Fisica principalmente per sviluppare nuove strategie
risolutive dell’equazione di Schrödinger o nuove approssimazioni semi-classiche della
Meccanica Quantistica.

Da un punto di vista teorico, la caratteristica più attraente della teoria di Bohm
è quella di essere il contesto naturale per definire un mappa concettuale tra il formal-
ismo quantistico e la nostra rappresentazione dei sistemi chimici. I sistemi chimici
sono composti di molecole, ma l’idea stessa di molecola è associata ad una specifica
posizione spaziale delle particelle, i.e., i nuclei degli atomi. La descrizione statistica
della Meccanica Quantistica convenzionale, sulla base della sola funzione d’onda,
è insufficiente per definire una chiara corrispondenza con questa immagine delle
molecole. Infatti, i chimici fanno spesso affidamento alla Meccanica Classica per
aggirare questa difficoltà della teoria quantistica standard. Tuttavia, se la posizione
delle particelle è inclusa nel formalismo quantistico, così come fa la teoria di Bohm,
la corrispondenza può essere definita in modo autoconsistente. In altre parole, la
teoria di Bohm sembra essere il contesto formale idoneo per rappresentare quantis-
ticamente le molecole e il loro moto.

Comunque, la raffigurazione chimica dei sistemi molecolari corrisponde ad una
singola traiettoria di Bohm dato che si assume implicitamente che i componenti delle
molecole abbiano una specifica posizione spaziale indipendentemente dal fatto che
essa sia nota o meno. Di conseguenza, si è sviluppata una metodologia quantistica
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che si basa sull’assunzione che una singola traiettoria di Bohm, cioè una traiettoria
molecolare quantistica, descrive correttamente i sistemi molecolari e il moto moleco-
lare.

In primo luogo, viene esaminata la corrispondenza tra una singola traiettoria di
Bohm e la Meccanica Quantistica convenzionale dato che si rinuncia all’ensemble
di traiettorie. Si verifica che tale corrispondenza esiste attraverso un esperimento
numerico e si dimostra formalmente che le proprietà statistiche di una singola traiet-
toria spiegano la descrizione probabilistica della Meccanica Quantistica. Una volta
che la coerenza di questa metodologia è stata verificata, vengono esaminate accurata-
mente le sue previsioni. Per esempio, si prendono in considerazione le costanti del
moto (come l’energia) associate all’evoluzione temporale delle particelle e il compor-
tamento di semplici sistemi chimici, e.g., il moto vibrazionale di singole molecole che
interagiscono con un campo esterno risonante. In questo modo, proprietà inaspet-
tate del moto molecolare emergono naturalmente.

In secondo luogo, si considera la sfida di descrivere sistemi a molti componenti
(quali sono i sistemi chimici in condizioni ordinarie). È ben noto che il calcolo
della traiettoria di Bohm e della funzione d’onda è molto costoso computazional-
mente. Comunque, le proprietà statistiche della traiettoria di Bohm permettono di
derivare teorie stocastiche per esaminare la dinamica di sistemi quantistici aperti,
come qualche molecola (o qualche grado di libertà) interagente con l’ambiente (le al-
tre molecole). Uno dei metodi stocastici sviluppati correla la dinamica della matrice
densità ridotta, per i gradi di libertà di interesse, all’evoluzione delle corrispondenti
coordinate di Bohm. In altre parole, l’equazione di Bohm, che determina la velocità
delle particelle attraverso la funzione d’onda, è sostituita da un’equazione stocastica
che approssima la veclocità di un sott’insieme di coordinate attraverso la matrice
densità ridotta. In questo modo, le fluttuazioni quantistiche indotte dall’ambiente
sono prese in considerazione.

Il vantaggio del metodo riguarda la sua capacità di descrivere i sistemi quantistici,
compresi quelli aperti, in termini di una traiettoria quantistica. Questo potrebbe
permettere la comprensione del moto molecolare durante un esperimento spettro-
scopico. Di particolare interesse è la possibilità di esaminare sistemi reattivi, come
quelli in cui avvengono cambi conformazionali. Come è ben noto, le reazioni chimiche
possono essere totalmente caratterizzate solo attraverso il moto delle particelle e in
questa tesi viene definita esattamente una metodologia quantistica che fornisce una
descrizione autoconsistente del moto molecolare.
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CHAPTER 1

Introduction

“At the heart of chemistry, let there be no doubt, is the molecule!”
— Hoffmann (1987)

1.1 Molecules and Quantum Mechanics

It might be said that Chemistry is the science that studies the laws that rule
the properties and the behaviour (including the reactivity) of molecular systems. A
major objective is that of explaining the features of macroscopic systems in terms of
molecular properties. In this regard, the focus is on the single molecular constituents
that are at the origin of the observed properties. However, an important issue arises
from these well known considerations: what is a molecule? Despite the answer to
this question appears obvious to chemists, it is not straightforward from a theoretical
point of view.

Consider a macroscopic volume of water. The idea that it is composed of water
molecules is strictly related to specific reciprocal spatial positions of the particles,
and in particular of the nuclei. Broadly speaking, two nuclei of hydrogens and one
nucleus of oxygen must be closer each others than to the rest of the nuclei of the
system. In this way, and only in this way, a water molecule can be recognised. This
representation is so much natural and deep-rooted in Chemistry that the above
issue might sound absurd. Therefore, we correct our question: can a molecule be
well defined within a theoretical framework? Obviously, it can be. Within Classical
Mechanics. Indeed Classical Mechanics takes for granted the cartesian positions of
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2 CHAPTER 1. INTRODUCTION

all the particles (nuclei).

One could reasonably expect that a more deeply rooted answer should be pro-
vided by Quantum Mechanics. Indeed, it is implicitly considered the best theory
at our disposal for interpreting and understanding the properties of molecular sys-
tems, e.g., spectroscopic properties, reactivity and reaction rates. Furthermore, it
is well known that the classification of atoms in the Periodic Table is explainable
by employing Quantum Mechanics. In other words, Quantum Mechanics succeeded
in predicting the experimental observations regarding the molecular systems since
it has been developed. Nevertheless, it does not supply the suitable theoretical
framework for establishing a conceptual map between our imagination of what a
chemical system is and the theory itself. The motivation lies on its probabilistic
predictions. Consequently, one can consider either the average position of the parti-
cles or the position corresponding to a certain probability of observing a particle in
the framework of Quantum Mechanics. However, the idea of molecule is related to
a specific spatial position of the particles in order to distinguish one from another in
molecular systems. This specific position is undefined in Quantum Mechanics: the
actual position of a particle, including nuclei, has no meaning if a measure process
is not taken into account. Therefore, one relies on Classical Mechanics in order to
represent molecules. The same sketch of a molecule, or its representation with 3D
computer model, links the nuclei to specific positions independently of the fact that
this operation is unjustifiable according to Quantum Mechanics.

For these reasons, it seems that the behaviour of molecular systems has to be
described by using both Classical and Quantum Mechanics. It seems that a com-
plete understanding of the chemical phenomenology can be reached only through
the concerted use of both these two theories. This has impacted significantly the de-
velopment of theoretical and computational methods. Indeed, Classical Mechanics
is necessary to represent some aspects of the molecular behaviour even if Quan-
tum Mechanics is considered the correct theory for the appropriate description of
molecules.

Consider, for instance, the dynamics of a cluster composed of six water molecules
within a quantum framework [Clary (2016)]. Such kind of systems are studied in or-
der to understand how the hydrogen bond network evolves in time: which hydrogen
bonds are broken, which are formed and at which time. Indeed, the dynamics of this
network influences the properties of liquid water that are correlated for example to
the conformation of proteins and the dissolution of ions. Furthermore, experimen-
tal evidences from rotational spectroscopy suggest that the cluster is characterised
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by different conformers and the interconversion happens according to a tunnelling
mechanism [Richardson et al. (2016)]. Each conformer is characterised by a differ-
ent hydrogen bond network. In order to understand this kind of phenomena and to
interpreted the experimental observations, quantum methods have been recently de-
veloped [Craig and Manolopoulos (2005); Richardson and Althorpe (2011); Richard-
son et al. (2011)]. In particular they focus on the characterisation of the tunnelling
process. However, the dynamics of the hydrogen bond network can be investigated
only by examining the time evolution of the nuclear distance (oxygen-hydrogen dis-
tance). For this purpose, the actual positions of the nuclei have to be established
and consequently one has to rely on Classical Molecular Dynamics [Clary (2016)].
Actually, the use of Classical Molecular Dynamics is not a reasonable approxima-
tion of the quantum methodologies, but it is necessary representation due to the
simple fact that precise nuclear distances at a given time are undefined in Quantum
Mechanics. In other words, one has to identify the nuclear positions for describing
the molecular motion and this appears that can be done only in the framework of
Classical Mechanics.

Therefore, a wide set of methods have been developed in order to represent the
molecular motion with Classical Molecular Dynamics and to take into account the
quantum effects. This class of methods is known in literature as ab initio Molec-
ular Dynamics [Grotendorst (2000); Helgaker et al. (1990); Millam et al. (1999)].
Broadly speaking, the nuclear motion is described according to classical equations
of motion, i.e., Newton equation, but including also the quantum effects due to elec-
trons. One of the first work in this field is of Car and Parrinello (1985). Recently,
the development of advanced experimental techniques, that allows the efficient ex-
amination of photochemical processes [Fang et al. (2009); Liu et al. (2012)], has
revived the interest for these theoretical tools. In particular the focus concerns
the correlation between the dynamics of the molecular scaffold and the photochemi-
cal/photophysical properties. Some efforts in this direction has been done by Raucci
et al. (2015), Petrone et al. (2014), Wohlgemuth et al. (2011).

An accurate representation of the molecular motion is perhaps even more im-
portant when the interesting phenomena are reaction paths, such as conformational
changes. A prototype of these processes is the photoisomerization of azobenzene.
In order to establish the conformation of an azobenzene, the actual positions of the
atoms have to be known during the photoinduced dynamics because the probability
corresponding to each conformer is insufficient to completely characterise the molec-
ular geometry. To this aim, one can use mixed methods, such as the one of Tully
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(1990), that describes the photoexcitation according to Quantum Mechanics and
the molecular motion according to Classical Molecular Dynamics. The classical po-
tential energy surface is determined by the electronic state. Recently, it has been
investigated the dynamics of self-assembled monolayer of azobenzenes during the
photoexcitation [Benassi et al. (2015); Titov et al. (2016); Cantatore et al. (2016)].
The final aim is the understanding of the role of packing in the isomerisation dy-
namics.

All these examples are quite common in the theoretical chemistry literature.
They point out the importance of Classical Mechanics also in the framework of pure
quantum processes, e.g., photoinduced reactions and photoinduced conformational
changes. However, some doubts can raise even if the results of these methodolo-
gies are in agreement with experimental observations. First of all, these methods
are limited because of the impossibility of absolutely classifying which degrees of
freedom are “classical” and which are “quantum”. For example, electrons are usu-
ally considered quantum particles, whereas the nuclei are described with Classical
Mechanics. The common justification of this choice relies on the different magni-
tude of their masses. Despite this justification is reasonable, it does not ensure that
the nuclear behaviour satisfies Classical Mechanics. In principle, the whole system
should be characterised according to Quantum Mechanics. Secondly, it has been
implicitly assumed the validity of classical equations of motion. However, if the
Classical Mechanics has failed to explain the molecular properties, why should its
dynamical equations be suitable for representing the molecular motion? Thirdly,
Quantum Mechanics and Classical Mechanics are defined with respect to different
formal framework and their concerted use is never obvious. These uncertainties
leave open several conceptual issues and the comparison between the theoretical
predictions and the experimental seems the only way for verifying the validity of a
procedure.

Consequently, an interesting challenge arises: can molecular systems be described
according to a single theoretical framework? In other words, the problem is of
identifying a theory that is in agreement with the prediction of Quantum Mechanics,
but at the same time allows the representation of molecules as sets of nuclei with
specific positions in space like in Classical Mechanics. This is exactly the issue
investigated in this Ph.D. thesis.

On the one hand, one can suppose that if such a theoretical framework exists,
then it should be a re-elaborated version of Quantum Mechanics since it is consid-
ered more general than Classical Mechanics. On the other hand, as already stated,



1.2. ANOTHER QUANTUM MECHANICS 5

the conventional Quantum Mechanics is not suitable to this purpose because of the
impossibility of defining precisely particle positions. However, it has to be mentioned
that there are some attempts of representing the molecular motion with conventional
Quantum Mechanics. The idea consists in exploiting localised wave functions, such
as wave packets, that represent localised particles approximately [Balakrishnan et al.
(1997); Althorpe and Clary (2003)]. These approaches are employed in the studies of
a wide range of phenomena in Chemical Physics, such as reactive collisions, photodis-
sociation of molecules and ions, gas molecule-solid surface scattering, tunnelling of
atoms and electrons in solids and on solid surfaces [Zhang (1999); Wyatt and Zhang
(1996)]. In particular, wave packet scattering has be used for examining both simple
chemical reactions, e.g., Cl + H2 [Skouteris et al. (2004)] and 18O+32O2 [Xie et al.
(2015)], and more complex processes such as the cyclohexadiene/hexatriene photoi-
somerization [Tamura et al. (2006)]. However, they are characterised by a practical
disadvantage: their computational cost increases rapidly with the number of de-
grees of freedom (exact solutions are available for 5/6 degrees of freedom [Skouteris
(2016)]). Moreover, as a matter of fact there are neither theoretical nor experimen-
tal reasons for assuming that the system wave function is a particular wave packet.
From our point of view, this second reason represents a methodological drawback
that asks for more general approaches.

Therefore, are there other ways to describe the molecular motion within a quan-
tum framework? Even if the task seems to be impossible, there is a formulation of
Quantum Mechanics that potentially represents the suitable theoretical framework
for finding a solution. We borrow the words of John S. Bell that embodies the
scientific enthusiasm in front a discovery,

“But in 1952 I saw the impossible done. It was in papers by David
Bohm.”

— Bell (1982)

Bohm theory represents a suitable quantum framework for describing the molec-
ular motion without breaking the laws of Quantum Mechanics.

1.2 Another Quantum Mechanics

Bohm theory is a formulation of Quantum Mechanics that characterises the state
of a quantum system according to both the wave function, as in the conventional
formulation, and the coordinates (positions) of all the particles composing the whole
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quantum system [Bohm (1952a,b)]. On the one hand, the wave function evolves in
time according to Schrödinger equation; on the other hand, the coordinates evolu-
tion is determined by the Bohm equation according to a deterministic dynamics.
The result is that the particle coordinates draw quantum continuous trajectories.
Once the initial position of all the particles is known, then their position at a generic
time is determined by solving the Bohm equation. Furthermore, there is no rela-
tion between the Bohm trajectories and those supplied by Classical Mechanics. The
Bohm trajectories are quantum trajectories because of the pilot role of the wave
function in driving the particles through the Bohm equation. The original formu-
lation of Bohm theory is described in detail in Chap. 2, but here we would like to
emphasise two fundamental aspects.

First of all, Bohm theory is the natural context to establish a conceptual map
between the quantum formalism and our imagination of what a molecular system is.
Since the same idea of molecule requires a specific arrangement of the particles in
space, only if the particles position is included in the quantum formalism, as Bohm
theory does, the correspondence is given without ambiguities. Consequently, also
the molecular motion can be described without using Classical Mechanics in order
to identify the particles position.

Secondly, Bohm theory gives the same predictions as the standard Quantum
Mechanics for all the phenomena. Despite the particles dynamics is described by a
deterministic trajectory, the probabilistic predictions can be recovered. A statistical
ensemble of all the possible trajectories, arising from the impossibility to characterise
completely the initial position of all the particles, establishes the exact correspon-
dence with the conventional Quantum Mechanics: by examining the evolution of a
suitable swarm of trajectories the results of Bohm theory become equivalent to the
statistical distribution provided by the wave function. For this reason, it can be con-
sidered just a mathematical re-elaboration of the conventional approach. However,
the univocal identification of the particles position is the unquestionable advantage
of Bohm theory, and this is especially relevant to Chemistry.

Besides the exact correspondence between the Bohm approach and the Quan-
tum Mechanics, there are no evident reasons for supporting a description based on
an ensemble of trajectories. In Chemistry, it is always implicitly assumed that the
molecular systems are characterised by a precise spatial position of their compo-
nents. This representation corresponds to a single Bohm trajectory in opposition
to the statistical ensemble of different realisations of the system. In other words,
the chemical idea of molecular systems can be mapped to Bohm theory only if the
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reference to the swarm of trajectories is avoided.
In this Ph.D. thesis, a quantum theory, based on a single Bohm trajectory, is de-

veloped. The aim is that of representing the molecular behaviour and the molecular
motion accurately by employing a quantum methodology. In this regard, molecu-
lar systems are characterised completely according to a single “Quantum Molecular
Trajectory”.

1.3 Quantum Molecular Trajectory

By supposing that the molecular behaviour is described by a single Bohm trajec-
tory, then a major issue arises: does a formal connection to the standard Quantum
Mechanics exist? If it is possible to establish such a formal connection, then chemists
could employ a theory that is coherent with Quantum Mechanics, and which is able
to describe formally molecules as objects composed of particles as in the chemical
intuition. Consequently, the answer to the question posed at the beginning of this
chapter is that molecules can be well defined within a quantum theory, i.e., a single
Bohm trajectory.

In Part I of this thesis, the properties of a single Bohm trajectory are exam-
ined in detail. The purpose is to investigate the consequences of assuming that a
single Bohm trajectory is the “correct” theoretical framework for characterising the
molecular properties.

In Chapter 3, it is shown that a correspondence exists between the statistical
distribution of coordinates along the single Bohm trajectory and the quantum dis-
tribution for a subsystem interacting with the environment in a multicomponent
system. To this aim, we present the numerical results of the single Bohm trajectory
description of a model system composed of six confined planar rotors with random
interactions. We find a rather close correspondence between the coordinate distri-
bution of one rotor, the others representing the environment, along its trajectory
and the time averaged marginal quantum distribution for the same rotor. Further-
more, a strongly fluctuating behaviour with a fast loss of correlation is found for
the evolution of each rotor coordinate. This suggests that a Markov process might
well approximate the evolution of the Bohm coordinate of a single rotor (the sub-
system) and, under this condition, it is shown that the correspondence between the
coordinate distribution and the quantum distribution of the rotor is exactly verified.

In Chapter 4, the dynamics along a single Bohm trajectory is analysed in order to
determine the constants of motion. By drawing inspiration from Classical Mechan-



8 CHAPTER 1. INTRODUCTION

ics, we define an action functional such that the time evolution of the wave function
and of the Bohm coordinates can be determined by solving a variational problem.
Furthermore, we generalise the Noether’s theorem for correlating the symmetries of
the action functional to the constants of motion. In this way, it can be proven that
the time independent expectation values are still conserved quantities also in the
framework of a single Bohm trajectory. On the other hand, no further constants of
motion are derived for the coordinates dynamics through the Noether symmetries.

In Chapter 5, the nuclear motion during a vibrational transition is analysed. We
propose a straightforward perturbative procedure for computing the Bohm trajec-
tory of a single molecule interacting with a resonant external field. We focus on the
transition between the ground and one excited state for both diatomic and poly-
atomic molecules. When the wave function is a stationary state (such as the ground
or the excited state) the vibrational degrees of freedom are at rest: the stationary
states are mechanical equilibria of the Bohm trajectory (a feature that has no corre-
spondence with Classical Mechanics). Conversely, when the system is in resonance
between two eigenstates, the resulting vibrational motion is an oscillation at the
resonance frequency with a modulated amplitude. The modulation is related to the
time dependence of the populations of the states involved in the transition.

The statistical properties of the single Bohm trajectory and the correspondence
with the conventional Quantum Mechanics are investigated more in detail in Part II.

In Chapter 6, we examine the statistical properties of a single Bohm trajectory.
In particular, we formulate the counterpart of the Liouville’s theorem in the frame-
work of Bohm theory. To this end, we use an appropriate representation of the
quantum state, that is the set of the particles position and the wave function. We
establish a correspondence between the wave function and a set of variables called
phases. This is essential in order to avoid the complications arising from the task of
defining a probability density on a space of functions (Hilbert space). Furthermore,
the statistical characterisation allows us to prove formally that the predictions of
standard Quantum Mechanics can be interpreted as statistical properties of an un-
derlying deterministic dynamics determined according to a single Bohm trajectory.

Finally, in Chapter 7, we tackle the challenge of describing the molecular mo-
tion of a many components system (that is the most common chemical system).
As a matter of fact, the computation of the Bohm trajectory is as demanding as
for solving the Schrödinger equation and consequently the trajectory can be deter-
mined only for small systems. However, the statistical properties of a single Bohm
trajectory (see Chap. 6) are particularly suitable to infer approximate methods for
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describing open quantum systems, for instance a single molecule interacting with
its environment (the other molecules). In particular, quantum stochastic equations,
through projection operator techniques, are derived. The Bohm equation is replaced
by a stochastic equation that approximates the velocity of a subset of coordinates
according to the reduced density matrix. The method allows an extension of the
conventional quantum description for a single molecule by including both the coor-
dinate trajectories and the fluctuating effects due to the environment.
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CHAPTER 2

Bohm Theory

Quantum Mechanics, there is no doubt, is the best theory at our disposal to
rationalise the behaviour of molecular systems. However, alternative approaches
were proposed in the last century in order to overcome some methodological issues
concerning the quantum formalism and particularly its interpretation.

Bohm theory [Holland (1995)], or pilot wave theory, is perhaps the most debated
of these alternatives in literature. The definition of the spatial position for all the
particles of a quantum system, through their coordinates, is its most appealing fea-
ture and the main difference with respect to Quantum Mechanics. The coordinates
evolve drawing continuous trajectories similarly to Classical Mechanics: if the initial
position of the particles is known, then their position at a generic time is precisely
determined by the equations of motion. As A. Figalli and coworkers stated [Figalli
et al. (2014)], despite Bohm theory “as particle trajectories remains controversial
from the physics point of view, its mathematical foundation is solid”: the Bohmian
trajectories are well defined for all times [Berndl et al. (1995); Teufel and Tumulka
(2005)].

Bohm theory was firstly proposed by Louis de Broglie at the Solvay confer-
ence [de Broglie (1928)], for this reason called also de Broglie-Bohm theory, and then
independently rediscovered in 1952 by David Bohm [Bohm (1952a,b)]: through an
analysis of the Schrödinger equation, David Bohm suggested a formal definition of
the velocity for all the particles and consequently of their evolving positions. Since
Bohm theory supplies the same statistical predictions of Quantum Mechanics under
suitable hypotheses, it can be considered just a mathematical re-elaborated ver-

11
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sion of the standard approach. However, the univocal identification of the particles
position is an unquestionable advantage of the Bohm approach compared to the
standard one, especially in the chemical framework.

Indeed Bohm theory is the natural context to establish a conceptual map be-
tween the quantum formalism and our imagination of what a chemical system is.
The chemical systems are quantum systems whose properties can be predicted by
Quantum Mechanics. At the same time, chemists imagine those kind of systems
as composed of molecules. However, the same idea of molecule requires a specific
arrangement in space of particles, i.e., the nuclei of the atoms. For instance, in a
macroscopic volume of water, two precise nuclei of hydrogen have to be adjacent
to one particular nucleus of oxygen in order to identify a water molecule. Such a
water molecule can interact with the environment (the other water molecules), for
instance by exchanging a proton, but the chemical idea of molecule requires a specific
reciprocal spatial positions of nuclei. It is obvious that the statistical description of
conventional Quantum Mechanics on the basis of the wave function alone is insuf-
ficient to establish a clear correspondence with such a picture of molecules. If and
only if the particles position is included in the quantum formalism, as Bohm theory
does, the map can be defined in a self-consistent way. Generally, computational
chemists assign a position to nuclei in order to compute the electronic structure of
molecules by employing the Born-Oppenheimer approximation. After a geometry
optimisation, the electronic structure is precisely determined. Despite this approach
has found many experimental confirmations, it has no theoretical justification: ac-
cording to Quantum Mechanics the precise spatial position of the particles, including
nuclei, is undefined. For this reasons, Bohm theory should be considered the suitable
formal framework to describe molecular systems.

In this chapter, the original formulation of the de Broglie-Bohm theory is sum-
marised by emphasising both the mathematical structure (Sec. 2.1) and some of its
applications reported in literature (Sec. 2.2). In order to avoid misunderstandings,
the particular terminology and notation adopted in all the thesis will be specified
throughout this chapter. In Sec. 2.3, emphasis will be given to a critical issue of the
theory that can be considered one of the main motivations of the study reported in
this thesis.
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2.1 From Quantum Mechanics to Bohm theory

Molecular systems are systems of particles. The position of all the particles
can be identified by the generalised coordinates q, called also coordinates for the
sake convenience, that belongs to the appropriate manifold (called also configu-
ration space C in the following) [Dubrovin et al. (1991a,b,c)]. In the absence of
constraints, q corresponds to the set of the cartesian coordinates of all the particles,
otherwise it is the set of n variables, q ⌘ (q1, q2, . . . , qn), that are derived from the
cartesian coordinates through an appropriate isomorphism. We will refer to each
variable qk (with k = 1, . . . , n) as a degree of freedom and to n as the number of
degrees of freedom. In the framework of Quantum Mechanics [Cohen-Tannoudji
et al. (1977a,b)] the state of an isolated quantum system is completely specified in
the coordinate representation by the wave function  (q, t) = hq| (t)i that is a func-
tion of the generalised coordinates q. Broadly speaking, the square modulus of the
wave function | (q, t)|2 is interpreted as the probability density that the particles
can be found in positions close to those identified by the coordinates q. Notice that
the term “wave function” will be used to tag both the quantum state | (t)i and its
coordinate representation  (q, t) = hq| (t)i without distinction. The wave function
evolves in time according to Schrödinger equation,

@

@t
| (t)i = � ı

~
ˆH | (t)i , (2.1)

where ˆH is the time independent Hamiltonian operator of the system supposed to
be isolated. In the coordinate representation, for a system of particles under the
action of the potential V (q) and without constraints, the Hamiltonian operator can
be represented as follows,

ˆH = �~2

2

r · m�1r + V (q̂), (2.2)

where r = (@/@q1, @/@q2, . . . , @/@qn), and m�1 is a diagonal matrix with elements
the reciprocal of the masses corresponding to each degree of freedom. It has to be
emphasised that the kinetic operator can be different with respect to the previous
one r ·m�1r: for example, if the coordinates for one particle are the spherical ones
q = (r, ✓,�), the Laplacian operator in spherical coordinates has to be employed. For
simplicity, unless otherwise indicated, we will adopt the kinetic operator in cartesian
coordinates like the one reported in Eq. (2.2).

Through a simple analysis of the structure of the Schrödinger equation, in the
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1952 David Bohm developed his alternative approach, i.e., his alternative formula-
tion of Quantum Mechanics [Bohm (1952a,b)]. For simplicity, we summarise the
Bohm derivation for a single degree of freedom, i.e., with m�1

= 1/m and r = @/@q

in Eq. (2.2). For example, one can think to a single particle in one dimensional space.
By converting the wave function to the polar representation  (q, t) = R(q, t)eıS(q,t)/~

where R(q, t) � 0 and S(q, t) are real functions for its amplitude and its phase, the
Schrödinger equation is separated in a system of two differential equations,8>>><>>>:

@

@t
S(q, t) +

��rS(q, t)
��2

2m
+ V (q) � ~2

2m

r2R(q, t)

R(q, t)
= 0

@

@t
R2

(q, t) + r ·
✓rS(q, t)

m
R2

(q, t)

◆
= 0

(2.3)

The second equation in Eq. (2.3) is the well known continuity equation corresponding
to the Schrödinger equation and it represents the local conservation of the probability
density R2

(q, t) = | (q, t)|2, while the first equation is the essential ingredient in the
Bohm derivation. Indeed, it converges to the classical equation of motion known as
Hamilton-Jacobi equation [Landau and Lifshitz (1976)] in the limit ~ ! 0. Within
this limit, the term rS(q, t)/m is the particle velocity for the classical formalism.
Such an interpretation can be extended also for the more general case with ~ 6= 0

by identifying the last contribution
⇣
� ~2

2m
r2R(q,t)
R(q,t)

⌘
as an additional potential, often

called the quantum potential U(q, t):

U(q, t) := � ~2

2m

r2R(q, t)

R(q, t)
. (2.4)

Therefore the mathematical equivalence between the first equation in Eq. (2.3) and
the Hamilton-Jacobi equation still holds and rS(q, t)/m can be interpreted as the
particle velocity. In order to distinguish the classical case from the quantum case, the
first equation in (2.3) will be called quantum Hamilton-Jacobi equation according
to R. E. Wyatt and coworkers [Lopreore and Wyatt (1999)].

By assuming that initially Q(0) is the coordinate of the system at t = 0, i.e.,
Q(0) identifies the initial position of the particle, then the value of the coordinate at
generic time Q(t) can be obtained by solving the quantum Hamilton-Jacobi equation
tantamount to calculate the particle trajectory according to the so-called Bohm
equation,

d

dt
Q(t) =

rS(q, t)

m

����
q=Q(t)

=

~
m

Im
⇢
 

⇤
(q, t)r (q, t)
| (q, t)|2

�����
q=Q(t)

, (2.5)
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where in the second relation the phase S(q, t) is expressed in terms of the wave
function  (q, t) and Im{. . . } supplies the imaginary part of the argument. Once
the wave function and the initial coordinate Q(0) are known, the solution of the
Bohm equation is the trajectory Q(t) drawn by the coordinate associated to the
particle. The trajectory allows the identification of the particle position at any time
exactly as in Classical Mechanics. Notice the substantial difference between the two
types of coordinate q and Q(t) previously introduced. Despite the fact that both are
coordinates of the system and they correspond to the cartesian coordinate through
the same isomorphism, they have a substantial different meaning. While q is the
wave function variable, Q(t) defines the cartesian coordinate of the particle at time
t. In other words, Q(t) attributes a numerical value to the actual position of the
particle at time t in the one dimensional space.

The generalisation to the case with n degrees of freedom is straightforward. A
set of coordinates Q(t) =

�
Q1(t), Q2(t), . . . , Qn(t)

�
corresponds to the coordinates

q = (q1, q2, . . . , qn) and it attributes the position at time t to all the particles. For
this reason we will call Q(t) the configuration of the system at time t and Qk(t)

the coordinate of the k-th degree of freedom at time t. The function that maps
the initial configuration Q(0) = q0 to the configuration at a generic time Q(t) will
be termed trajectory and labeled with the same symbol of the configuration itself
Q(t) or Q(t; q0) if the initial configuration has to be specified. By substituting
the arguments of Eq. (2.5) with the coloum vector Q(t), the matrix m�1 and the
gradient operator r = (@/@q1, @/@q2, . . . , @/@qn), one obtains the Bohm equation
for the general case with n degrees of freedom. The velocity ˙Qk(t) ⌘ dQk(t)/dt of
the k-th degree of freedom with mass mk is defined by

d

dt
Qk(t) =

rkS(q1, q2, . . . , qn, t)

mk

����
q=Q(t)

, (2.6)

with rk = @/@qk. It is important to emphasise that the term “trajectory” will be
used to tag the curve drawn by the configuration Q(t) and not by the k-th coordinate
Qk(t). In this way, a single trajectory Q(t) defines the spatial position of all the the
particles in a quantum system, like in molecular systems.

The Bohm equation for the k-th coordinate can be also written with a structure
similar to the Newton law. Indeed, by considering the second time derivative of the
trajectory Q(t) and the quantum Hamilton-Jacobi equation, the particle acceleration
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can be directly related to the total potential acting on the particle:

d

2

dt2
Qk(t) = � 1

mk

rk

�
V (q) + U(q, t)

���
q=Q(t)

. (2.7)

In this way one can easily understand that the motion is influenced by both the
classical and the quantum potential that have a different origin. The potential V (q)

is the same for both the classical and the quantum system, while the wave function
is the source, through its amplitude R(q, t), of the quantum potential U(q, t) that
is responsible for the differences between the Bohm trajectory and that expected
for the corresponding classical system. For this reason the Bohm trajectory has not
to be confused with the classical one: by definition it is a quantum trajectory that
shares only the physical meaning with the classical trajectory. Moreover, the two
formulations of the Bohm equation, Eq. (2.6) and Eq. (2.7), are equivalent even if
two initial conditions Q(0) and ˙Q(0) have to be specified to solve Eq. (2.7). The
second condition is not independent from the first one, but correlated by Eq. (2.6).

The great benefit of the Bohm analysis is the definition of the system configura-
tion Q(t). It has to be emphasised that his definition is strictly based on the formal
equivalence between the classical Hamilton-Jacobi equation and the first equation
in (2.3) and, therefore, it is an intrinsic feature of the Schrödinger equation. Fur-
thermore, the evolution of the configuration Q(t) and of the wave function  (q, t) is
completely deterministic: known the initial condition

�
Q(0), (q, 0)

�
, one can deter-

mine
�
Q(t), (q, t)

�
by solving respectively the Bohm and the Schrödinger equation.

As previously anticipated, Bohm theory is the natural approach to support the in-
tuitive picture of molecular systems within the formal quantum theory. In this
framework the systems are composed of particles, where “particle” has the same
meaning as in Classical Mechanics: a body whose dimensions may be neglected in
describing its motion [Landau and Lifshitz (1976)]. The wave function is the field
that pilots the particles: all the quantum features of the motion derive from the
wave function role as pilot agent. For instance the tunnelling of a proton, forbidden
in Classical Mechanics, can be predicted by Bohm theory since the quantum poten-
tial can reduce the classical barrier and the particle can reach classically forbidden
regions. For the fundamental contribution of the wave function to determine the
particles motion, Bohm theory is also called “pilot wave theory”.

From this point of view, the wave function can be compared to the electromag-
netic field: as the electromagnetic field influences the motion of charges, the wave
function drives the motion of the quantum particles. However, in classical electro-
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magnetism the charges are themselves source of electromagnetic field. Thus the field
and the particles are mutually interacting. In Bohm theory the trajectory is strictly
determined by the wave function (Eq. (2.5)), but the wave function evolution is
completely independent of Bohm coordinates Q(t) as it can be verified by observing
that the Schrödinger equation (Eq. (2.1)) has no reference to these coordinates Q(t).
The absence of a backreaction from the particles to the field is a peculiarity of Bohm
theory that has no equivalent in the classical world and that preserves the validity of
the Schrödinger equation also in this alternative formulation of Quantum Mechanics.

The pilot role of the wave function correlates the motion of different particles
independently of the magnitude of their interaction through the classical poten-
tial V (q): the motion of classically non-interacting particles can be reciprocally
influenced. In other words, Bohm theory maintains the non locality nature of the
conventional Quantum Mechanics, as it is also been experimentally verified for two
entangled photons [Mahler et al. (2016)]. For example, one can consider two non
interacting systems (A, B) characterised respectively by the Hamiltonian operators
ˆHA, ˆHB and by the coordinates QA(t), QB(t). Assuming that the total Hamiltonian
operator is separated as ˆH =

ˆHA ⌦ ˆ1B +

ˆ1A ⌦ ˆHB, the time evolution of the coor-
dinates QA(t) and QB(t) could be mutually related. Indeed if and only if the wave
function is factorised | (t)i = | A(t)i⌦ | B(t)i then QA(t) and QB(t) are indepen-
dent. On the contrary, if the wave function is entangled | (t)i 6= | A(t)i ⌦ | B(t)i
then the motion of QA(t) affects strongly the evolution of QB(t) and vice versa. This
can be verified simply for the entangled wave function as the one reported below:

 (qA, qB, t) = c(t)'A(qA)'B(qB) + d(t)�A(qA)�B(qB), (2.8)

where 'A(qA) and �A(qA) ('B(qB) and �B(qB)) are generic eigenfunctions of the
Hamiltonian operator ˆHA ( ˆHB); the coefficients satisfy |c(t)|2 + |d(t)|2 = 1. By
inserting this peculiar wave function in Eq. (2.6), one can check that the velocity
˙QA(t) is dependent on both the coordinates QA(t) and QB(t). The entangled wave

function is responsible for non local phenomena also for the dynamics of the Bohm
coordinates.

In this framework, the dynamical state of the system is specified by the coordi-
nates and the wave function. The set of configuration and wave function

�
Q(t), (q, t)

�
defines fully the system state in Bohm theory [Dürr et al. (2012)] as the wave func-
tion alone describes the system state in Quantum Mechanics. The state evolves
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according to the Bohm equation and the Schrödinger equation,8>><>>:
d

dt
Qk(t) =

rkS(q1, q2, . . . , qn, t)

mk

����
q=Q(t)

8k = 1, . . . , n

@

@t
 (q, t) = � ı

~
ˆH (q, t)

(2.9)

in a full deterministic way: known the initial state, the state at a generic time t is
completely determined by the above dynamical equations.

At first sight, Bohm theory seems to be incompatible with the standard Quan-
tum Mechanics: the deterministic evolution of the Q(t) can not be directly compared
with the statistical predictions of the Quantum Mechanics. The square modulus of
the wave function | (q, t)|2 is interpreted as the probability density that the system
particles can be found about the positions identified by the coordinates q, while, on
the other hand, Q(t) identifies the actual positions. However, a complete determin-
istic prediction about the position of the system components is conditioned upon
the knowledge of the initial configuration Q(0). This means the knowledge of the
position of all the components of a molecular system. Any chemist can easily un-
derstand that this piece of information is unattainable. For this reason, a statistical
approach has been proposed by Bohm himself in order to overcome the issue of the
incomplete characterisation of the initial state [Bohm (1952a)]. Assuming that at
least the initial wave function is known  (q, 0), similarly to Quantum Mechanics,
then an ensemble of different system realisations, characterised by different initial
configurations Q(0), has to be considered. By ensemble, we mean the set of all
possible configurations and a probability density for the statistical sampling of the
elements belonging to such a set. Chosen the density distribution ⇢(q, 0) on the
set of initial configurations, the natural evolution of each configuration of the en-
semble through its own trajectory modifies the distribution. The overall result can
be imagined as a swarm of evolving trajectories each corresponding to a different
initial configuration. The distribution ⇢(q, t) at the generic time can be determined
by solving the continuity equation for a given initial distribution ⇢(q, 0):

@

@t
⇢(q, t) + r ·

✓
m�1rS(q, t)⇢(q, t)

◆
= 0. (2.10)

Broadly speaking, ⇢(q, 0) is the probability that the initial configuration Q(0) of
the system is q, whereas ⇢(q, t) is the probability that system configuration Q(t) at
time t is q. In this way, the average of an observable on the statistical ensemble
can be compared with the corresponding expectation value at any time. Notice that
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Eq. (2.10) is equivalent to the continuity equation satisfied by the square modulus
of the wave function (the second relation in Eq. (2.3)): the same velocity field
accounts for the evolution of the configuration in Eq. (2.5), of the ensemble density
distribution in Eq. (2.10) as well, and of the square modulus of the wave function
(second relation in Eq. (2.3)). Therefore, if the initial density distribution on the
configuration space is set equal to the square modulus of the initial wave function,
⇢(q, 0) = | (q, 0)|2, then this equivalence holds at any time,

⇢(q, t) = | (q, t)|2, (2.11)

since both the functions are solution of the same differential equation with the
same initial condition. Consequently the expectation value of an observable B(q),
specified as a function of the coordinates only, is equivalent to its ensemble average
at any time:

h (t)|B(q̂)| (t)i =
Z

dq B(q)⇢(q, t). (2.12)

Therefore, the equivalence between the predictions of Bohm theory and of Quantum
Mechanics is ensured by the swarm of trajectories. Notice that the statistical nature
of the predictions in the framework of Bohm theory originates from the impossibility
of a complete knowledge of the initial position of all the particles. It is not an intrinsic
feature of the theory as in Quantum Mechanics. This correspondence between the
Quantum Mechanics predictions and the statistical predictions of Bohm theory holds
also for a generic observables (that do not depend on the coordinates only), but a
less intuitive proof has to be adopted, which requires the description of the measure
process [Bohm (1952b)], and which is not reported here. However, it has to be
emphasised that the predictions of the two quantum theories are always in agreement
if the Bohm statistical ensemble is employed.

Moreover, the statistical formulation of Bohm theory is equivalent to another al-
ternative quantum theory proposed by E. Madelung in the 1927 [Madelung (1927)].
This approach was inspired by the mathematical equivalence between the second
equation in (2.3) and the classical continuity equation. Madelung suggested that
the square modulus of the wave function has to be considered formally as the den-
sity of a hyperdimensional continuous fluid. Similarly to Classical Mechanics, each
fluid element of volume evolves in time along a trajectory whose velocity field is
related to the wave function phase. Furthermore, the instantaneous expectation
values of the Quantum Mechanics can be interpreted as the instantaneous average
properties of the fluid. For these reasons, Madelung’s approach is called Quantum
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Hydrodynamics. Using the square modulus of the wave function as the statistical
distribution on the configurations ensemble, the Bohm method becomes structurally
equivalent to Quantum Hydrodynamics: the Bohm configurations ensemble is the
Madelung fluid. Therefore, the average of a general observable on the ensemble is
equivalent to the corresponding average property of the fluid. For this reason, in
the literature Quantum Hydrodynamics is usually considered equivalent to Bohm
theory, although the idea of a specific configuration Q(t) and the evolution along
a single trajectory suggested by the Hamilton-Jacobi structure of the phase equa-
tion, represents the audacity of the Bohm interpretation that has no counterpart on
Madelung’s approach: the statistical ensemble is merely a methods to overcome the
absence of the complete knowledge about the initial configuration.

At this stage Bohm theory can be summarised in the following three postu-
lates [Bohm (1952a)]:

(i) the wave function  (q, t) = hq| (t)i is a field that evolves in time by satisfying
the Schrödinger equation, Eq. (2.1);

(ii) the system configuration is Q(t) and the corresponding velocity ˙Q(t) is supplied
by the Bohm equation, Eq. (2.5);

(iii) a density distribution ⇢(q, 0) has to be employed in order to sample the pos-
sible initial configurations which are unpredictable. Furthermore, the initial
density distribution is identified with the square modulus of the wave func-
tion, ⇢(q, 0) = | (q, 0)|2.

These assumptions ensure the exact equivalence between the predictions of Quantum
Mechanics and of Bohm theory. Furthermore, Bohm theory supplies a suitable
framework to describe molecular systems since it is able to characterise molecules
as a set of particles with precise positions.

In order to provide an example of the use of Bohm theory, a simple experiment
will be described qualitatively in the following. In particular, the focus will be on the
difference between the Quantum Mechanics and the Bohm theory explanations. The
case under examination is the well known double-slit experiment, which highlights
the wave-particle duality of the matter [Feynman et al. (1964)]. It is so fundamen-
tal that is mentioned in almost all the textbooks about Quantum Mechanics. The
Figure 2.1 shows a simplified sketch of the experimental setup. During the experi-
ment, the source S emits objects, e.g., classical particles, classical waves or quantum
particles, that pass the central separation (wall) through the two slits and they are
revealed by the detector on the right side of the setup. The experimental results are
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Figure 2.1: Sketch of experimental setup employed in the double slit experiment, where S is the source, F1

and F2 are the two slits (or holes), x is the coordinate on the detector, ±d are the coordinates
of the slits projection on the measuring apparatus. Notice that the origin of the x coordinate
is the middle point between the slits projection.

strictly dependent on the the type of objects emitted by the source. For instance,
by employing a source of classical particles, as bullets, one can observe that:

(i) the particles are emitted one at a time;

(ii) each particles can pass through either one slit or the other;

(iii) the particles that pass through the hole F1 reach with higher probability the
points close to the coordinate x = d. On the other hand, the particles that
pass through the hole F2 reach with higher probability the points close to the
coordinate x = −d. The overall density distribution that a particle reaches
a point with coordinate x on the measuring apparatus is defined as the ratio
between the number of particles that arrive in x and the total number of
particles that pass through the slits and it is equal to an unimodal distribution
with maximum at x = 0. Notice that the interaction between the holes and
the particles is fundamental to address the particles towards either the point
x = d or x = −d, otherwise the particles move along a straight trajectories
from the source to the detector passing through one of the slits.

Instead, if one use a source of classical waves (e.g., a source of circular waves in
water), then the results are deeply different as it is well known:

(i) a single wave is diffracted at the holes;
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(ii) each slit becomes a source of circular waves that interfere;

(iii) the measuring apparatus records the magnitude of the wave at all the coor-
dinates x on the detector, which is proportional to the square modulus of its
amplitude. By drawing the intensity of the wave versus the coordinate x, one
obtains the interference pattern.

Finally, by employing a source of quantum particles (e.g., a tungsten filament as a
source of electrons), properties of both the classical particles and the classical waves
can be observed during the experiment:

(i) the particles are emitted one at a time. With an appropriate voltage on the
tungsten filament in vacuum, the measuring apparatus can detect each single
electron;

(ii) by defining the density distribution that a particle reaches a point with coordi-
nate x on the detector similarly to the case with classical particles, one obtains
the same profile of the interference pattern expected for the classical waves.
This, however, is no the result of the interaction between different particles,
but it is an intrinsic feature of each quantum particle since it can be obtained
also by collecting measures of one emitted particle at a time. Furthermore, if
one of the holes is covered, the particles can pass only through the other slit
and the observed density distribution is unimodal with the maximum in either
x = +d or x = �d position depending on which slit has been left open. In
other words, one observes a behaviour identical to that of classical bullets with
one only open slit.

These last observations, concerning the behaviour of the quantum particles, can
be explained by both the standard Quantum Mechanics and Bohm theory, although
the interpretation of the underlying phenomenon is deeply different. In the standard
framework the observation of the particle on the detector corresponds to the wave
function collapse. The probability of the collapse around the detector coordinate x

is proportional to the wave function amplitude in x that is the result of the wave
interference if and only if both holes are open. If one slit is covered, then the square
modulus of the wave function is an unimodal distribution, so recovering the classical
result. Bohm theory does not employ the wave function collapse, but it exploits the
pilot character of the wave function. Indeed, the wave function is still subjected to
the interference phenomenon and consequently its amplitude along the coordinate x

on the detector is in agreement with the interference pattern. According to the Bohm
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Figure 2.2: Trajectories predicted by Bohm theory for the double slit experiment and characterised by
different initial configurations (figure adapted from Philippidis et al. (1979)) and Dürr et al.
(2012)).

equation, it pilots the particles mainly to the detector positions where its amplitude
is large enough. Therefore, the majority of the trajectories reach the regions of the
measuring apparatus characterised by a high value of the wave function amplitude,
as shown in Figure 2.2 for the case with no covered holes. The specific path of
each single trajectory depends on the initial position and different particles with
different initial conditions reach different regions of the detector. However, the pilot
role of the wave function selects the trajectories that carry the particles to the
regions of the detector where the maxima of the interference pattern are observed.
In other words, Bohm theory is able to explain in a rather straightforward way
the double slit experiment using continuous trajectories and the pilot role of the
wave function. To the question “are the quantum systems composed of particles or
waves?” Bohm theory replies that they are composed of both particles and wave.
This consideration can be extended to a general quantum system including the
molecular systems: Bohm theory can explain any quantum experiment in terms of
continuous trajectories. In the following we summarise some works available in the
literature that employ exactly this important feature of the Bohm approach. The
uses of Bohm theory range from the description of the underlying quantum dynamics
to the development of new computational methods.
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2.2 Applications of Bohm theory

Bohm theory has found many application in Chemical Physics for both its ca-
pability to supply an intuitive image of quantum dynamics and for the exact corre-
spondence between the evolution of a swarm of trajectories and the wave function
dynamics. As we mentioned before, Bohm theory and Quantum Hydrodynamics are
often not distinguished in literature and they are considered as realisations of the
same approach.

Recently, T. Norsen used Bohm theory in order to illustrate the dynamics of two
“elementary textbook examples” in terms of quantum trajectories [Norsen (2013)].
In particular, he considered the one dimensional scattering at a potential step and
the tunnelling through a rectangular barrier. In both cases the evolution of a wave
packet gives rise to a bifurcation of the swarm of trajectories. In the scattering
example some trajectories are reflected by the barrier, whereas others are transmit-
ted. Thereafter, only a subset of the whole swarm of trajectories can tunnel the
barrier. The transmission probability is related to the number of trajectories that
can pass through the classical forbidden region and it depends strictly on the wave
function. Once the initial wave function is chosen, a single trajectory will overcome
the classical forbidden region depending on its initial configuration.

Besides this simple example, Bohm theory has been adopted to describe molec-
ular behaviour. For example, R. Sawada and coworkers investigated the ionization
process of a two electrons molecule, i.e., an hydrogen molecule [Sawada et al. (2014)].
The trajectories allowed the visualisation of the probability density flow from a com-
putational point of view and in parallel they illustrate how the ionization proceeds.
Furthermore, Z. S. Wang and coworkers examined the dissociation of an hydrogen
molecule at the metal surface by modelling the nuclear wave function with a suitable
wave packet [Wang et al. (2001)].

In 2013 Braverman and coworkers suggested how to test the non local features
of the Bohm trajectories by employing a double-slit setup and a week-measurement
technique [Braverman and Simon (2013)]. This idea inspired a recent experimental
study that verified the mutual correlation between two entangled photons [Mahler
et al. (2016)]. The authors observed that the evolution of two distinct photons
is inseparable: they mapped out the trajectories of one photon and how a week-
measurement on the second photon influences the motion of the first one.

With a totally different purpose, the exact equivalence between the evolution
of the swarm of trajectories and the standard Quantum Mechanics has been em-
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ployed to develop new computational tools in place to the numerical solution of
the Schrödinger equation. The first pioneering studies in this field can be ascribed
to Weiner and coworkers who were mainly interested in the examination of the
tunnelling probabilities between different sites in a solid lattice [Weiner and Partom
(1969); Weiner and Askar (1971); Askar and Weiner (1971)]. Afterwards, Wyatt and
coworkers elaborated a self-consistent computational method based on the Quan-
tum Hydrodynamics formulation [Lopreore and Wyatt (1999); Wyatt (1999b, 2005)].
They were inspired by the numerical difficulties for the calculation of the wave packet
evolution that are employed in the studies of a wide range of phenomena in Chemi-
cal Physics, such as reactive collisions, photodissociation of molecules and ions, gas
molecule-solid surface scattering, tunnelling of atoms and electrons in solids and on
solid surfaces [Zhang (1999); Wyatt and Zhang (1996)]. Their method allows the
calculation of the wave function at any time through the integration of a swarm
of quantum trajectories. In this way the algorithms usually employed in the study
of Classical Hydrodynamics can be adopted also in this framework by adding the
contribution of the quantum potential to the classical equation. In this way the
difficulties of solving the Schrödinger equation, e.g., the choice of the basis set and
the exponential growth of the computational cost with the number of degrees of free-
dom, are avoided [Rassolov and Garashchuk (2008)]. It has to be emphasised that
the only limitation in the Wyatt approach is the number of the trajectories employed
in the calculation. Formally, the evolution of the Madelung fluid is determined by
an infinite set of trajectories that is computationally unmanageable. Nevertheless,
a good agreement between the Wyatt method and the standard predictions can be
achieved with a restricted number of trajectories. From a Chemical Physics point
of view, the study of the reaction scattering A+BC ! AB+C is particularly inter-
esting [Wyatt (1999a)]. It should be stressed that the work of Wyatt exploits Bohm
theory in order to achieve computational advantages for the study of the quantum
dynamics.

In parallel to the development of the Wyatt approach for the computation of
the exact quantum dynamics, similar methods have been proposed with the aim
of incorporating some quantum effects in the framework of a classical dynamics.
The underlying reasons come from the possibility to compute the dynamics of very
large systems, like liquids and biomolecules, with algorithms based on Classical Me-
chanics. On the other hand, it is well known that the quantum effects can not be
neglected for light particles, as protons, and some kind of quantum correction is
essential to combine the computational efficiency of Classical Mechanics with the
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intrinsic quantum nature of some phenomena. Bohm theory is the suitable frame-
work to develop these kind of methodologies since its equations of motion are like
the classical ones with all the quantum effects included into the quantum poten-
tial. Therefore, in 2002 S. Garashchuk and coworkers simplified the Wyatt approach
by employing an approximate quantum potential [Garashchuk and Rassolov (2002,
2004); Rassolov and Garashchuk (2004)]. One of the proposals consists of fitting
the square modulus of the wave function in terms of gaussian functions in order to
derive the corresponding quantum potential. Increasing the accuracy of the fitting,
also the accuracy of the dynamics improves. A limited number of fitting functions
should be sufficient to well describe the dynamics of systems with an almost classical
behaviour. With the same main motivations, approximations of the quantum po-
tential can be used to incorporate quantum effects into a reduced number of degrees
of freedom, like the positions of light nuclei, while describing the remaining ones,
heavy nuclei, with standard Classical Mechanics [Garashchuk and Volkov (2012)].
For this kind of procedures, called in general multiscale methods, the description of
the backreaction from the quantum degrees of freedom to the classical degrees of
freedom is still an open issue. Again the quantum potential has been adopted to
introduce a non arbitrary correlation between the classical and the quantum degrees
of feedom [Garashchuk et al. (2014); Prezhdo and Brooksby (2001)].

It has to be emphasised that in the majority of the recent uses of Bohm theory,
as the few examples reported above, the Bohm approach is employed exactly as
it was defined by Bohm himself in the 1952 [Bohm (1952a,b)]. One of the main
motivation to its use is undoubtedly related to the exact correspondence with the
standard and widely accepted Quantum Mechanics ensured by the Bohm ensemble.
However, from a different point of view the configurations ensemble is a critical issue
of the theory as it will be clarified in the next section.

2.3 Beyond the configurations ensemble

As stressed previously, the most appealing feature of Bohm theory is the def-
inition of system configuration Q(t) that allows the identification of the particles
position in space. Furthermore, an ensemble of possible initial configurations has
been postulated in order to ensure a complete equivalence between the expecta-
tion values and Bohm theory predictions. It has to be emphasised that the perfect
agreement between the two quantum theories is conditioned by the initial constraint

⇢(q, 0) = | (q, 0)|2, (2.13)
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between the ensemble distribution and the square modulus of the wave function.

On the other hand there are no evident reasons for supporting on a physical
ground the equivalence between the square modulus of the wave function and the
density of system’s configurations at the initial time. Bohm himself recognised the
critical role of this assumption and argued that if this is not the case, then the ran-
domness deriving from particle’s interactions would enforce such a correspondence
during the time evolution [Bohm (1953)]. Such a point of view has been further
developed by Valentini and coworkers with the objective of demonstrating that an
arbitrary initial distribution on the configuration space relaxes in the time to the
square modulus of the wave function [Valentini (1991a,b)]. In particular Valentini
proved that the natural dynamics of Bohm theory, that means the natural dynamics
of the configurations ensemble, assures the convergence of a generic coarse-grained
distribution to the corse-grained approximation of the square modulus of the wave
function. Furthermore, numerical simulations have been performed to confirm the
Valentini analysis [Towler et al. (2012)]. A different procedures have been proposed
by Struyve and coworkers modifying the velocity field of Bohm coordinates [Colin
and Struyve (2010)] and by Dürr and coworkers by introducing an effective wave
function representative of a system interacting with the environment [Dürr et al.
(1992)].

However, from our point of view the same idea of the statistical ensemble repre-
sent a critical point of Bohm theory. In Chemistry, it is always implicitly assumed
that molecular systems at a given time are characterised by a precise spatial position
of their components or at least of their nuclei. This representation corresponds to a
single configuration Q(t) in the theoretical framework of Bohm theory, so removing
any possibility of a physical meaning to the abstract statistical ensemble. In other
words, the chemical representation of molecular systems can be mapped in Bohm
theory if and only if we overcome the idea of an ensemble of configurations. By
assuming that the molecular behaviour is described by a single Bohm trajectory,
then a major issue remains open: does still a formal connection to the standard
Quantum Mechanics exist? If it does, then it is available to chemists a quantum
theory whose predictions are in agreement with the standard Quantum Mechan-
ics, but which, at the same time, is able to describe formally molecules as objects
composed of particles with well defined positions as in the chemical intuition.

A quantum approach based on a single Bohm trajectory is defined and develop
in this thesis. In particular in Part I, we investigate the implications of assuming
that the behaviour of quantum systems, such as molecular systems, is fully defined
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according to a single Bohm trajectory. In Part II the statistical properties of a
single Bohm trajectory will be examined formally. It should be anticipated that
we prove the equivalence between the predictions of a single Bohm trajectory and
conventional Quantum Mechanics under reasonable hypotheses.



Part I

Dynamics of a single Bohm

trajectory

29





CHAPTER 3

Single Bohm trajectory approach

From a methodological point of view, the single Bohm trajectory approach is
apparently the best chance to reconcile the chemical representation of molecular
systems and a formal theory that accounts for the quantum behaviour of molecules.
Besides, form an experimental point of view, the recent investigations on single-
molecule or single-spin observables [Berezovsky et al. (2008); Neumann et al. (2008)]
together with the efforts towards the realisation of quantum computers based on
nanostructures [Biercuk et al. (2009); Suter and Mahesh (2008); Nielsen and Chuang
(2010)], calls for a representation of molecular systems according to a single quantum
state that is incompatible with an ensemble of quantum states.

The formal structure of the Bohm theory is well defined and self-consistent also
when an unique wave function and an unique system configuration are used to
describe a particular realisation of the quantum system. This point of view might
be considered as the most natural way of interpreting Bohm theory without requiring
any particular constraint on the distribution of initial configurations.

As mentioned in advance, however, a major issue remains open: what is the con-
nection with standard Quantum Mechanics? More specifically, how to define from
a single trajectory of the system configuration a probability density on the config-
uration space, which is a prerequisite before establishing a relation with the wave
function? One can exploit the analogy with Classical Statistical Mechanics which
introduces the equilibrium distribution by considering the density of phase space
points along a single time dependent realisation of the isolated system [Khinchin
(1949)]. Also in the case of Bohm theory with a single trajectory, one can define

31
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in an analogous way the equilibrium probability density on the configuration space.
But then, how to compare such an equilibrium distribution, which is time indepen-
dent by definition, with the quantum distribution given as the square modulus of
the wave function, which is intrinsically a time dependent distribution? As a mat-
ter of fact the comparison becomes meaningful when the marginal distributions are
considered for a subsystem interacting with a larger environment acting as thermal
bath. Indeed, by employing the methods developed in a previous work [Fresch and
Moro (2013)], one can show that in such a case the fluctuations of the marginal
quantum distribution become negligible. In this particular situation the marginal
distributions obtained from the configuration distribution along a single Bohm tra-
jectory and from the wave function tend to coincide as it is explained in this chapter
and in a work of us [Avanzini et al. (2016)]. In order to provide evidences of this
behaviour, we present some computational results for a model system of several
confined, randomly coupled, planar rotors. Such a numerical observation evidences
that a correspondence between a single Bohm trajectory and the standard Quantum
Mechanics exists and that it plays the same role of the Bohm statistical ensemble.

We would like to mention that only few previous attempts has been done to
connect the standard Quantum Mechanics with a single Bohm trajectory. Yu V.
Shtanov [Shtanov (1997)] investigated the problem from the point of view of ergod-
icity. Very recently, T. Philbin [Philbin (2015)] considered a simple one dimensional
system (an harmonic oscillator) in the presence of an external time dependent po-
tential which mimics the position measurement. From a temporal sequence of these
position measurements he obtains the same distribution given by the square modu-
lus of the wave function. In spite of the differences on the employed model systems
and on the type of dynamical regime, we share the same objective of developing
Bohm theory for a single realisation of the quantum system.

In the following we report the detail of the numerical methods employed to
verify the existence of the previously invoked correspondence. Since the model sys-
tem is composed of several interacting components, statistical tools are required
to analyse the quantum pure state represented by the wave function. In Sec. 3.1
we introduce the Random Pure State Ensemble (RPSE) employed for the sampling
of the wave function, and we summarise its fundamental properties [Fresch and
Moro (2009, 2010a, 2011, 2013)]. Such a statistical ensemble allows one to evaluate
the amplitude of fluctuations of the quantum observables (expectation values) with
respect to their equilibrium values defined by time averages, and to estimate the
behaviour of fluctuation amplitudes in the thermodynamic limit for an increasing
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size of the system. By recalling the results of Fresch and Moro (2013), it is shown
that the marginal distribution on a subsystem, as obtained from integration of the
square modulus of the wave function on the environmental degrees of freedom, is
characterised by fluctuations of vanishing amplitude for an increasing size of the en-
vironment. Correspondingly the subsystem can be described by a nearly stationary
marginal quantum distribution if the environment is large enough, which can be well
approximated by its time average. In Sec. 3.2 the model system of six interacting
and confined planar rotors is used to verify the approximate equivalence between the
quantum marginal distribution and the distribution obtained by sampling a single
Bohm trajectory. First the model system is described in detail together with the
numerical procedures employed for the calculation of time dependent properties.
Then the main results are illustrated in relation to: i) the nearly stationarity of the
marginal quantum distribution of one rotor, the other five rotors constituting the
environment, ii) the randomly fluctuating behaviour displayed by the evolution of
the Bohm coordinate of one rotor with the corresponding loss of correlation with
the time, iii) the close correspondence between the marginal quantum distribution
and the distribution of Bohm coordinate of the subsystem, which provides the com-
putational evidence of the correspondence between a single Bohm trajectory and
the Quantum Mechanics of the wave function. In Sec. 3.3 we show that the corre-
spondence is exactly verified if the Bohm coordinate of the subsystem behaves like
an independent Markov stochastic variable, as partially suggested by the numerical
results. Finally, in Sec. 3.4 the general considerations are drawn by focusing on their
implications.

3.1 Statistics of quantum pure states

In this section we present the statistical description of quantum pure states to be
employed in the analysis of single Bohm trajectory. The need of a statistics of pure
states, that is of a wave function belonging to the proper Hilbert space for an isolated
(closed) system, arose mainly from the efforts of demonstrating the typicality of
quantum observables [Popescu et al. (2006); Goldstein et al. (2006)]. On the other
hand, well defined statistical rules are required for sampling the initial wave function
whenever the quantum dynamics is examined without particular a priori choices of
the initial state. We stress that in Quantum Mechanics the condition of isolated
system is more stringent than in Classical Mechanics: entanglement would keep
the system connected to his environment even though there is no energy exchange
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between them.

Given the Hamiltonian ˆH of the system, the wave function | (t)i, an Hilbert
H space’s element, evolves in time through the Schrödinger equation from a given
initial state | (0)i,

| (t)i = e�ıĤt/~ | (0)i , (3.1)

exp(�ı ˆHt/~) is the propagator of the system. The time evolution of a generic phys-
ical property described by self-adjoint operator ˆB is determined by the expectation
value B(t),

B(t) = h (t)| ˆB| (t)i = Tr
n
ˆB%̂(t)

o
, (3.2)

where %̂(t) is the density matrix operator for the pure state

%̂(t) = | (t)i h (t)| . (3.3)

The expectation value B(t) is usually interpreted as the mean value of a infinite
number of measures of the observable at time t. By considering in all generality an
operator ˆB which does not commute with the Hamiltonian ˆH, the corresponding
expectation value B(t) displays an explicit time dependence. The nature of such
a time dependence is determined by the physical structure of the system and the
particular operating conditions, in practice its initial conditions. The elaboration
of well defined theoretical tools for the statistical characterisation of the time de-
pendence of quantum pure states has been an important objective of the recent
research in relation to the issues of equilibration and thermalisation, see for instance
Reimann (2008), Linden et al. (2009), Goldstein et al. (2010). Here we consider
sufficiently complex quantum systems with a randomly chosen initial state. Then
for the typical observable B(t) one expects a purely fluctuating evolution about the
time average, very much like the fluctuating dynamics of classical observables in
equilibrium conditions. The observation of non-equilibrium dynamics would require
the selection of particular initial conditions within a set of vanishing measure on
the unitary Bloch sphere, choice which is excluded when random initial conditions
are considered. Thus, like in Classical Statistical Mechanics [Khinchin (1949)], we
identify the equilibrium value of observable B with the asymptotic time average of
the expectation value:

B(t) := lim

T!+1

1

T

Z T

0

dt B(t) = Tr
n
ˆB%̂(t)

o
, (3.4)

where %̂(t) is the time average of the density matrix.
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If we are interested in properties of a subsystem, we can imagine to partition the
isolated system: the subsystem S and the environment E for the remaining part of
the isolated system. Correspondingly the overall Hilbert space H is factorised into
the Hilbert spaces HS of the system and HE of the environment, H = HS ⌦ HE.
In this situation the observable of interest b(t), i.e., a property of the subsystem, is
represented by the expectation value of an operator ˆb ⌦ ˆ1E. The reduced density
matrix operator �̂(t), as obtained by partial trace TrE over the environment states
of the pure state density operator,

�̂(t) := TrE
�
%̂(t)

 
, (3.5)

allows the calculation of this expectation value within the subsystem Hilbert space

b(t) = Tr
n�

ˆb ⌦ ˆ1E

�
%̂(t)

o
= TrS

n
ˆb �̂(t)

o
. (3.6)

Its equilibrium value b(t) is defined again by time averaging and it can be evaluated
like in Eq. (3.4) by means of the time average �̂(t) of the reduced density matrix.

In order to formulate a statistical description of quantum pure states, a finite
set of parameters identifying the instantaneous wave function has to be selected,
very much like for the phase space of Classical Statistical Mechanics. This requires
the confinement of the wave function to a finite dimensional subspace of H, say
a N -dimensional subspace HN in the following called active space. To select the
active space, it is convenient to resort to the orthonormal eigenstates |Eki of the
Hamiltonian:

ˆH |Eki = Ek |Eki . (3.7)

Like in previous works [Fresch and Moro (2009, 2010a,b, 2011)], we shall employ the
following type of active space

HN :=

(
NM
k=1

|Eki with EN < Emax < EN+1

)
, (3.8)

that is the subspace due to eigenstates with eigenvalues smaller than Emax. The
energy cutoff Emax is the only parameter required for the identification of this ac-
tive space, and it has been shown that in the limit of macroscopic systems Emax

represents the internal energy [Fresch and Moro (2011)].

It should be mentioned that one can employ an alternative active space by in-
troducing also a low energy cutoff Emin, like in the definition of microcanonical
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density matrix of standard Quantum Statistical Mechanics [Huang (1987)]. In this
way, however, one has to manage two different cutoff parameters and, furthermore,
no direct relation exists between the lower energy cutoff Emin and thermodynamic
properties [Fresch and Moro (2011)].

The wave function | (t)i at a given time is then conveniently specified as a linear
combination of the basis elements |Eki of the active space through its expansion co-
efficients ck(t) or, equivalently, through the sets of populations (P1, P2, . . . , PN) and
of phases A(t) = (A1(t), A2(t), . . . , AN(t)) obtained from the polar representation of
the expansion coefficients

ck(t) := hEk| (t)i =
p
Pke

�ıA
k

(t), (3.9)

with a linear time dependence of the phases: Ak(t) = Ak(0) + Ekt/~. Because of
the normalisation condition,

h (t)| (t)i =
NX
k=1

Pk = 1, (3.10)

only (N � 1) populations are independent, say the set P = (P1, P2, . . . , PN�1).
Therefore a bijection exists between the normalised wave function and a particular
set of these (2N � 1) real parameters, that is the set of populations P and of phases
A(t). In other words, all the pure states of the active space can be imagined like
unit vectors drawing an unit sphere in a 2N -dimensional Euclidean space [Fresch
and Moro (2009)].

Because of the choice of expanding the wave function along the Hamiltonian
eigenstates, the phases are the only dynamic variables of the system, while the
populations represent the constants of motion. Correspondingly it is easily shown
that equilibrium properties B(t) of Eq. (3.4) depend on populations only. Indeed,
under the condition of rational independence of Hamiltonian eigenvalues, meaning
that equation

PN
k=1 nkEk = 0 for integer nk has only the trivial solution nk = 0

8k, the equilibrium density matrix is diagonal with the populations as diagonal
elements [Fresch and Moro (2009)],

%̂(t) =
NX
k=1

|EkiPk hEk| ⌘ %̂
P
, (3.11)

where we have introduced the symbol %̂P to highlight the dependence of equilibrium
density matrix on populations only. We emphasise that the condition of rational
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independence is not too restrictive because of the contribution of random interac-
tions, typical of molecular systems, leading to energy eigenvalue distribution hav-
ing, at least partially, a random character [Wigner (1967)]. Therefore, according to
Eq. (3.4), also the equilibrium value of a generic observable depends on populations
only,

B(t) = Tr
n
ˆB%̂

P
o

⌘ B
P
, (3.12)

as stressed by the symbol BP .

In this way, the parametric dependence of the equilibrium properties on the pop-
ulations is evident. On the other hand, there are no empirical methods leading to
a complete characterisation of the initial state | (0)i and, therefore, also of the
populations. This implies that populations can be characterised only on statistical
grounds by selecting the ensemble for their probability distribution. The absence
of privileged directions for | (0)i within the unit sphere, leads quite naturally to
a purely random choice for the ensemble of pure states. The Random Pure State
Ensemble (RPSE) for populations has been characterised from the geometrical anal-
ysis of the measure on the unit sphere, so deriving the probability density on the
(N � 1) independent populations P [Fresch and Moro (2009)],

pRPSE(P ) = (N � 1)!. (3.13)

Such a probability density allows the explicit calculation of the ensemble average of
equilibrium properties,D

B
P
E
:=

Z
dP1 . . . dPN�1 B

P
pRPSE(P1, . . . , PN�1), (3.14)

which can be interpreted as the average of BP amongst random realisations of the
initial pure state | (0)i. Notice that integration domain on populations is bounded
by constraints 0  Pk  1, 8k = 1, 2, . . . N . In the following we shall employ
the bracket

D
. . .
E

to denote the RPSE average of a function of populations. It
should be stressed out that in Eq. (3.14), as well as in following ones, two different
types of averages are involved: the ensemble average on the populations P and the
time average which is equivalent to the averages on the phases A [Fresch and Moro
(2010a)]. Both these averages might be recast as integral operators acting, however,
on different kinds of variables. On the other hand these averages play a completely
different role in the methodological framework of single Bohm trajectory. As long
as we are looking to a single realisation of the system, therefore for a given set of
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populations, only the time average is relevant to evaluate equilibrium properties.
The ensemble average on the set of populations is required for the analysis of the
dependences on the populations of the equilibrium properties in relation to the
typicality (see Eq. (3.19) below) and to characterise the time dependence of the
marginal quantum distribution.

In order to recover also the macroscopic description of the system, one should
consider the equilibrium energy, HP

=

PN
k=1 PkEk, and Shannon’s entropy [Shan-

non and Weaver (1949)] with respect to the populations, SP
= �kB

PN
k=1 Pk lnPk.

Their RPSE average are associated respectively to the thermodynamical internal
energy, U := hHP i, and to the thermodynamical entropy, S := hSP i, both being
functions of Emax. By eliminating the Emax dependence between functions U(Emax)

and S(Emax), one recovers the thermodynamical state function S(U) and the tem-
perature as well from its derivative 1/T = dS/dU . In this framework, by considering
the system as a set of n distinct components, like molecules in material systems,
one can define the thermodynamic limit for n ! 1 at a given temperature [Fresch
and Moro (2011)]. The thermodynamic limit requires the tensorial product of the
Hilbert spaces of all the distinct components, and this implies an exponential growth
of the dimension N of the active space HN with the number n of components [Fresch
and Moro (2013)]. Finally, in the same limit, the RPSE average of the equilibrium
reduced density matrix

D
�̂
P
E

of a subsystem having weak enough interactions with
the environment, takes the canonical form

D
�̂
P
E
=

e�Ĥ
S

/k
B

T

TrS
n
e�Ĥ

S

/k
B

T
o , (3.15)

where ˆHS is the Hamiltonian of the subsystem [Fresch and Moro (2011)].

The RPSE statistics allows the quantitative analysis of typicality [Fresch and
Moro (2011)] of an equilibrium property B

P by evaluating the thermodynamic limit
of its square variance within the ensemble,

lim

n!1

⌧⇣
B

P �
D
B

P
E⌘2�

. (3.16)

Typicality of property B
P is assured if this limit vanishes, this implying that the

value of BP in a realisation of the pure state is independent of the set of populations,
as long as its deviation from the ensemble average

D
B

P
E

tends to vanish. In other

words, property B
P is typical in the meaning that it is nearly independent of the
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particular realisation of the pure state.

Furthermore, RPSE ensemble allows the quantitative analysis not only of typical-
ity of an observable, but also of its time fluctuations which are of primary importance
for the objectives of proving the existence of a correspondence between the single
Bohm trajectory and the standard Quantum Mechanics. In order to characterise
the amplitude of fluctuations of B(t) during its time evolution, we consider the equi-
librium value, i.e., the time average, of the squared deviation �B(t) := B(t) � B

P

from the time average

(�B)

2
P
:=

⇣
B(t) � B

P
⌘2P

(3.17)

that, like all the equilibrium properties, depends on the population set. The popu-
lation average within RPSE provides an estimate

D
(�B)

2
P
E

of squared fluctuations
which is independent of the particular realisation of the pure state [Bartsch and
Gemmer (2009); Fresch and Moro (2013)] and reads

D
(�B)

2
P
E
+

⌧✓
B

P �
D
B

P
E◆2�

=

D2(
ˆB)

N + 1

, (3.18)

where the second term at the left hand side describes the typicality of equilibrium
property B

P as previously discussed. At the right hand side, N is the dimension of
the active space HN , while D2(

ˆB) represents the squared spectral variance of the
operator ˆB, D2(

ˆB) =

PN
k=1(�k �D1(

ˆB))

2, where {�k} is the set of eigenvalues of ˆB

in HN and D1(
ˆB) =

PN
k=1 �k/N is the eigenvalue average. Such a relation connects

the statistical properties of the expectation value B(t), at the left hand side of the
equation, to the spectral properties of the operator ˆB, on the right hand side of
equation. If operator ˆB has a bounded spectrum, then D2(

ˆB) is finite and in the
thermodynamic limit, n ! +1, the right hand side of Eq. (3.18) vanishes because
of the exponential growth with n of the active space dimension N . Correspondingly
also both terms at the left hand side of Eq. (3.18) vanish since they are non negative

lim

n!+1

*✓
B

P �
D
B

P
E◆2

+
= 0, lim

n!+1

D
(�B)

2
P
E
= 0. (3.19)

Thus, in the thermodynamic limit, both typicality and the vanishing of fluctuations
are assured for bounded operators. The second equation in (3.19) ensures that
(�B)

2
P

vanishes on average by sampling the populations according to RPSE. The
condition holds also for a single set of populations because of typicality (first equation
in (3.19)). Outside the thermodynamic limit, for finite but large enough isolated
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quantum systems a nearly stationarity B(t) ' B
P is predicted. Furthermore, we

note that in these conditions the expectation value B(t) is nearly equal to the
thermodynamic value

D
B

P
E

always because of typicality: B(t) '
D
B

P
E
.

These results for typicality and fluctuation amplitude of bounded operators can
be applied to the reduced density matrix of a subsystem of an isolated system. In
particular, as shown in detail by Fresch and Moro (2013), the following condition
for the expectation value b(t) of subsystem operator ˆb derives from Eq. (3.18),⌧⇣

b
P � ⌦bP↵⌘2�+

D
(�b)2

P
E


TrS
n
ˆb2
D
�̂
P
Eo

� TrS
n
ˆb
D
�̂
P
Eo2

N + 1

.

(3.20)

In the thermodynamic limit the ensemble average of the reduced density matrix
tends to the canonical form Eq. (3.15) and, therefore, the right hand side vanishes
because of the active space dimension N of at the denominator. Then both typicality
and the vanishing of fluctuations are recovered like in Eq. (3.18) for bounded opera-
tors, but now for a generic operator ˆb of the subsystem. For finite but large enough
isolated systems this implies that subsystem observables are nearly stationary,

b(t) ' b
P (3.21)

that is, their time dependent deviations from the equilibrium values are negligible.

As an application of the previous analysis, we examine the statistical distribution
on the coordinates qS for the subsystem degrees of freedom. In standard Quantum
Mechanics the wave function allows the calculation of the time dependent distribu-
tion on the generalised coordinates q = (q1, q2, . . . qn) of the isolated system with n

degrees of freedom through the probability density

p(q, t) =
��
 (q, t)

��2 (3.22)

with a parametric dependence on the initial pure state determining the time depen-
dent wave function. Once the subsystem S, and the environment E as well, has
been selected, the isolated system generalised coordinate can be identified with the
set q = (qS, qE) of subsystem coordinates qS and of coordinates qE for the environ-
ment degrees of freedom. Then, by integration on the environment coordinates, the
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marginal distribution on the subsystem degrees of freedom is recovered

pS(qS, t) :=

Z
dqE p(qS, qE, t). (3.23)

As for any time dependent observable, the time average defines the corresponding
equilibrium property, in this case the equilibrium distribution

pSeq(qS) := pS(qS, t), (3.24)

where the reference to the parametric dependence on population set P has been
omitted for the sake of a compact notation.

Let us consider now an orthonormal basis {|'mi} for the subsystem Hilbert space
HS, and its coordinate representation {'m(qS)} as explicit functions of subsystem
coordinates qS. For any set of qS values, we can define the following operator

ˆb(qS) :=
X
m,m0

|'mi'⇤
m(qS)'m0

(qS) h'm0 | , (3.25)

where its operator nature is determined by the kets |'mi and bras h'm0 | on the
r.h.s.. One can easily verify that its qS-dependent expectation value supplies the
subsystem marginal probability density calculated at qS

pS(qS, t) = TrS
n
ˆb(qS)�̂(t)

o
. (3.26)

In this way, the marginal distribution can be interpreted as expectation value of a
subsystem operator, which is characterised by typicality and absence of fluctuations
in the thermodynamic limit in agreement with the previous conclusions. Outside the
thermodynamic limit, but for large enough isolated systems, negligible contributions
of fluctuations about the time average Eq. (3.24) are expected like in Eq. (3.21),

pS(qS, t) ' pSeq(qS), (3.27)

so that the subsystem is characterised by a nearly time independent marginal dis-
tribution.

As long as expectation values or, equivalently, marginal distributions derived
from the wave function are employed to describe a subsystem which is part of a
much larger isolated system, the time evolution of the subsystem appears to be
secondary. As a matter of fact the environment quenches the dynamics of these
subsystem properties. In a classical world this would correspond to a picture of
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motionless subsystems, like molecules in material systems, without fluctuations in
the thermodynamic limit. Such a stationarity derives from the fact that the expec-
tation value is not a directly observed physical property, but an average of infinite
measures of the physical property. Nonetheless, the expectation value is the stan-
dard tool supplied by Quantum Mechanics for the description of the time evolution
of physical properties, tool which displays stationarity in the thermodynamic limit.
It should then be useful to explore Bohm theory by looking for alternative tools
able to capture the fluctuation dynamics of parts, like molecules, of a larger isolated
system.

In parallel, the nearly stationarity of pS(qS, t) allows a meaningful comparison
between the subsystem density distribution predicted by the wave function and the
statistical properties of the single Bohm trajectory. In order to recover a proba-
bilistic description from a single Bohm trajectory, one has necessarily to resort to
the statistical sampling of the coordinates during their time evolution, like in er-
godic theory of Classical Statistical Mechanics [Khinchin (1949)]. As long as such a
sampling represents overall effects of system evolution, it is an equilibrium property
which should in general depend on the constants of motion, that is the populations
P determining the pilot wave function. The probability density on the generalised
coordinates q extracted from the sampling of a single trajectory Q(t) will be de-
noted as weq(q), keeping implicit the reference to the parametric dependence on the
population set to deal with a more compact notation. Broadly speaking, weq(q) is
defined in order to ensure that the following equation holds for any observable of
the type B(q):

lim

T!+1

1

T

Z T

0

dt B
�
Q(t)

�
=

Z
dq B(q)weq(q). (3.28)

In other words, weq(q) relates the time average of any observables B(q) along a sin-
gle Bohm trajectory B

�
Q(t)

�
and a space average on the configuration space. In

a multicomponent system the probability density wS
eq(qS) on the subsystem S de-

scribes the Bohm trajectory sampling of the subsystem coordinates and it is defined
similarly to weq(q). If the isolated system is large enough, wS

eq(qS) can be compared
with the quantum equilibrium density of the subsystem pSeq(qS), since pS(qS, t) has
negligible fluctuations. In other words, by examining a part of a much larger system,
the quantum distribution can be described by pSeq(qS), that is a time independent
function like the coordinate distribution wS

eq(qS) obtained from a single Bohm tra-
jectory and, therefore, a meaningful comparison between them can be done. This is
the objective of the calculations in a model system reported in the next section.
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3.2 Bohm trajectory in a multi-particle model system

In order to compare the single Bohm trajectory and the quantum distribution
function, the dynamical behaviour of a model system of six confined planar rotors
interacting through random potentials has been examined. The numerical calcula-
tions done for a typical situation clearly show that a correspondence exists between
the Bohm coordinate distribution wS

eq(qS) and the equilibrium quantum distribu-
tion pSeq(qS) for a rotor subsystem. In this section, after the presentation of the
model system, we discuss the numerical methods employed for the calculation of the
relevant properties and we illustrate the most relevant results.

3.2.1 The model system

We shall consider a system of n = 6 identical but distinguishable particles with
mass m that move on a ring of constant radius R. Such a system is equivalent to
n planar rotors described by the set of angles q = (q1, q2, . . . , qn) with 0  qi < 2⇡,
each of them having an inertia momentum I = mR2. A physical realisation of the
system could be a set of methyl groups rotating about their C � CH3 bonds. The
Hilbert space Hi for the i-th rotor is the set of periodic functions of the angular coor-
dinate qi, whose Fourier representations can be generated by means of the following
orthonormal basis set

�j(qi) =
eıjqip
2⇡

, (3.29)

with integer values for j index. The tensor product of the Hilbert spaces of each
rotor, H = H1 ⌦ H2 ⌦ . . . ⌦ Hn, identifies the Hilbert space for the overall system.
Such a model system will be described by means of the following Hamiltonian

ˆH =

ˆH(0)
+

ˆV (r)
=

nX
i=1

ˆH
(0)
i +

ˆV (r), (3.30)

where ˆH
(0)
i is the single particle Hamiltonian, while ˆV (r) is an interaction potential

of random type. For the single particle Hamiltonian we use the model of a planar
rotor confined by a cosine potential with minimum at qi = ⇡:

ˆH
(0)
i = �~2

2I

@2

@q2i
+

u

2

(1 + cos qi), (3.31)

the parameter u � 0 representing the energy barrier at qi = 0. In the following
the parameter ~2/2I will be employed as the energy unit. We intend to analyse
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the quantum dynamics of the system in conditions of significant confinement of the
rotors, and to this purpose we have selected the potential barrier as u = 300(~2/2I).

The contribution ˆV (r) of the system Hamiltonian has the purpose of producing
a dynamical coupling between rotors by means of random interactions typical of
molecular systems. Moreover, it assures the rational independence of the Hamilto-
nian ˆH eigenvalues, a property which does not hold in the presence of single particle
Hamiltonians only. The modelling at the quantum level of random interactions and
their effects is well developed starting from the Wigner distribution [Wigner (1967)]
and including more general random matrix theories [Brody et al. (1981)]. In our
rotors system we model it simply by introducing potential terms with a random
profile. The coordinate representation of the potential V (r) has been parameterised
as single particle contributions and interaction terms between pairs of rotors:

V (r)
(q1, q2, . . . , qn) =

nX
i=1

V
(r)
i (qi) +

1

2

nX
i,j=1

(1 � �i,j)V
(r)
i,j (qi � qj). (3.32)

Let us denote with V (✓) the periodic function representative of a single particle
contribution, that is V

(r)
i (qi) for qi = ✓, or of a two-particle interaction, that is

V
(r)
i,j (qi�qj) for qi�qj = ✓. By means of a gaussian random variable with null average

and a given variance �V , a random profile is easily generated for its discretised values
Vk := V (✓k) at (2L+1) equally spaced angles ✓k = 2⇡k/(2L+1) for k = 0, 1, . . . , 2L.
Standard algorithms can be employed to produce these random values of the function
with statistical properties

Vk = 0, V 2
k = �2

V , (3.33)

where the average is referred to different realisations of the same coefficient. In order
to recover a continuous function V (✓) from these random coefficients, we resort to
a truncated Fourier decomposition

V (✓) =

LX
l=�L

˜Vle
ıl✓, (3.34)

with its (2L+ 1) components evaluated at the discretised angles

˜Vl =
1

2L+ 1

2LX
k=0

Vke
�ıl✓

k . (3.35)

Since an additive constant in the potential does not modify the quantum dynam-
ical properties, a null value is attributed to the Fourier component ˜V0, this being
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equivalent to the constraint of a null angular average for functions V (✓).

In conclusion, the previous procedure allows the generation of these random an-
gular functions for each contribution of Eq. (3.32) on the basis of two parameters:
the variance �V and the number (2L + 1) of discretised angles. The variance �V
controls the strength of the random contribution ˆV (r) with respect to single particle
Hamiltonians in Eq. (3.30). In the following calculations we shall use an unitary
value of this variance in the adopted energy units, that is �V = ~2/2I. This cor-
responds to random potentials with a strength much smaller than the confining
potential with a barrier height u = 300(~2/2I). In this way, the random potential
contribution has nearly a perturbation effect so that eigenfunctions and eigenvalues
of the full Hamiltonian Eq. (3.30) preserve the main features deriving from single
rotor contributions. The other parameter L controls the size of the angular cor-
relations in the potential, since it determines the distance between two adjacent
discretised angles with uncorrelated values of the potential. In the calculations we
shall use the value L = 100 because it produces an highly random potential. An
angular dependence resembling that of a noisy signal is evident form Fig. 3.1 which
displays the potential deriving from a particular realisation of the (2L + 1) coeffi-
cients Vk for L = 100. For each of the contributions of Eq. (3.32) an independent
realisation of the random potential V (✓) is employed.
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V
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2I
�
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Figure 3.1: Random potential characterised by the parameters �
V

= ~2/2I and L = 100.
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3.2.2 Numerical methods

Before to discuss the results for the quantum dynamics of the model system, we
summarise in this section the numerical procedures employed in the calculations.
They concern four main issues: i) the solutions for the single planar rotor Hamil-
tonian, ii) the eigenvalues and the stationary states for the system of interacting
rotors, iii) the initial conditions and the time dependent wave function and related
properties, iv) the Bohm trajectory.

The eigenfunctions of the single planar rotor Hamiltonian Eq. (3.31) are required
because their tensorial products represent the most convenient basis for the numer-
ical solution of the time independent Schröedinger Eq. (3.7) as long as the random
potential ˆV (r) is weak. Let us denote the eigenvalue problem for the single rotor as

ˆH
(0)
i 'm(qi) = ✏m'm(qi), (3.36)

with eigenvalues ordered from below, ✏m  ✏m+1, for m = 0, 1, 2, . . . . Of course
all the planar rotors have the same eigenvalues and eigenfunctions with the same
functional form since they share the same Hamiltonian (see Eq. (3.31)). Even if the
eigen-solutions of Eq. (3.36) can be identified with a particular class of Mathieu
functions [Abramowitz and Stegun (1972)], we have preferred to obtain them by
numerical diagonalisation of the matrix representation of Eq. (3.31) on the basis
Eq. (3.29). In this way the eigenfunctions are specified as linear combinations of
basis functions Eq. (3.29), and they allow a straightforward evaluation of the ma-
trix elements due to the interaction potential Eq. (3.32) (see below). The matrix
obtained from basis elements Eq. (3.29) with |j|  20 has been diagonalised by
employing the software routine Armadillo, a C++ linear algebra library [Sanderson
(2010)]. In Table 3.1 we have reported the lower energy eigenvalues, and in Fig. 3.2
the profiles of the corresponding squared eigenfunctions |'m(qi)|2 with the eigen-
values as offset together with the confining potential. In Table 3.1 we have also
included the harmonic oscillator eigenvalues resulting from the parabolic approxi-
mation u(1 + cos qi)/2 ' u(qi � ⇡)2/4 of the rotor potential, in order to attest the
differences with respect to purely harmonic quantum dynamics. Indeed for increas-
ing levels the difference between the two sets of eigen-energies clearly emerges. It
should be mentioned that the numerical diagonalisation of the single rotor Hamil-
tonian supplies not only the eigenvalues ✏m, but also the eigenvectors, that is the
coefficients for the expansion of the eigenfunctions 'm(qi) on the basis of Eq. (3.29).
When, in the following, operations on single rotor eigenfunctions 'm(qi) are invoked,
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implicitly we refer to operations on these linear combinations which can be easily
encoded in computer programs.

Given the numerical solutions of Eq. (3.36), one can employ the following basis
for the Hilbert space H of the overall system

|li =
nO

i=1

|'l
i

i , (3.37)

where l := (l1, l2, · · · , ln), and each index li identifies the eigenfunction 'm(qi) of the
corresponding i-th rotor with m = li. The basis elements |li are eigenfunctions of
the model system Hamiltonian in the absence of the random potential

ˆH(0) |li = E
(0)
l |li , E

(0)
l =

nX
i=1

✏l
i

, (3.38)

and they are conveniently ordered according to the corresponding energies E(0)
l . As

long as the random potential ˆV (r) acts like a perturbation, the diagonalisation of
the full Hamiltonian is influenced mainly by the coupling between basis elements
with nearby values of E(0)

l , and this allows an efficient truncation of the Hamiltonian
matrix representation. In practice, one considers all the basis elements with E

(0)
l

less than a given truncation energy cutoff E
(0)
tr . Then the matrix representation of
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Table 3.1: Low energy eigenvalues ✏
m

of the single planar rotor Hamiltonian for the potential barrier
u = 300(~2/2I). The corresponding harmonic oscillator eigenvalues are reported between paren-
theses.

m ✏m/(~2
/2I)

0 8.597 (8.660)
1 25.664 (25.981)
2 42.472 (43.301)
3 59.015 (60.622)
4 75.286 (77.942)
5 91.278 (95.263)
6 106.982 (112.583)
7 122.390 (129.904)
8 137.491 (147.224)
9 152.275 (164.545)

the full Hamiltonian is generated in order to perform the diagonalisation by means
of the software Armadillo. The organisation of these energy levels in well sepa-
rated multiplets is evident in analogy to the polyads describing molecular vibrations
(see [Krasnoshchekov and Stepanov (2013); Herman and Perry (2013)] and refer-
ences therein). Since in the harmonic approximation the oscillators for the confined
rotors are degenerate, the polyad quantum number classifying the basis elements
Eq. (3.37) is given as P =

Pn
i=1 li with values P = 0 (ground state), P = 1 (6

states), P = 2 (21 states), and so on. As long the random potential ˆV (r) is weak,
the corresponding Hamiltonian eigenfunctions |Eki are substantially reproduced by
linear combinations of basis elements with a given polyad quantum number P , with
only perturbational contributions from the other polyads. Therefore the polyad
quantum number can be used to classify also the eigenvalue multiplets, as done in
Fig. 3.3.

The comparison in Fig. 3.3 of the numerical eigenvalues obtained with two values
of parameter E

(0)
tr allows one to evaluate the effects of matrix truncation. Notice

that the chosen values of E(0)
tr leads to a complete inclusion of the selected polyads

in the truncated matrix representation. The results with matrix representation for
E

(0)
tr = 154/(~2/2I) (N = 924), polyads from P = 0 to P = 6) will be employed as

the reference for the calculation of time dependent properties of the model system.
Their accuracy has been checked by comparison with the larger matrix obtained for
E

(0)
tr = 171/(~2/2I) which includes a further polyad. Such a matrix enlargement,

besides introducing new eigenvalues (i.e., the P = 7 polyad), produces a change of
about 0, 04% for the upper energy eigenvalues, and smaller variations for decreasing
energy (see the insets of Fig. 3.3). Such a behaviour agrees with the perturbational
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Figure 3.3: Numerical results of energy eigenstates E
k

for two truncation parameters E
(0)
tr

= 154/(~2/2I)

(blue crosses) and E
(0)
tr

= 171/(~2/2I) (red crosses). The states with comparable energy are
labeled according to the polyad quantum number, from P=0 (ground state) to P=7. The last
part of polyads P = 5 and P = 6 are magnified in the insets in order to show the effects of the
truncation parameter.

contribution by the random potential ˆV (r): surely it has strong effects within a
polyad in the presence of degenerate or nearly degenerate zero-order energies E

(0)
l ,

but it has weak effects on the coupling of states belonging to different polyads with
well separated values of E(0)

l . These informations allows us to conclude that with the
truncation parameter E

(0)
tr = 154(~2/2I) (N = 924) we get numerical results with

errors at most of 0, 04%. As a matter of fact the accuracy of the data employed
in the calculation of time dependent properties is much better, as long as we shall
use an active space including up to P = 5 polyad whose eigenvalues deviate from
those obtained with the larger matrix by 0, 004% at most. The final results of
this computational task is the set of eigenvalues Ek and eigenstates |Eki, the latter
specified as linear combinations of basis elements Eq. (3.37) through coefficients
hl|Eki, for the time independent Schröedinger Eq. (3.7).

Once the eigenstates and the energy eigenvalues are obtained and the active space
is identified on the basis of the cutoff energy Emax, the time dependent wave function
has to be evaluated. Thus the initial quantum state has to be chosen according to
the set of populations P and the set of initial phases A(0) within the active space.
Since the phases are homogeneously distributed [Fresch and Moro (2010a)], they are



50 CHAPTER 3. SINGLE BOHM TRAJECTORY APPROACH

simply selected at random within their domain. Also for the populations a random
choice is performed but, in order to preserve their normalisation, by means of suitable
set of auxiliary parameters homogeneously distributed in the (0, 1] domain according
to procedure discussed by Zyczkowski and Sommers (2001), Zyczkowski (1999) and
Fresch and Moro (2011). Given these initial conditions, the wave function at an
arbitrary time is specified as

| (t)i =
NX
k=1

p
Pke

�ı(A
k

(0)+E
k

t/~) |Eki , (3.39)

where N is the dimension of the active space. For the calculation of the reduced
density matrix, reference is made to the first planar rotor, qS = q1, so that its matrix
elements on the basis of single rotor eigenfunctions Eq. (3.36) can be specified as

�m,m0
(t) := h'm|�̂(t)|'m0i

=

X
l,l0

 
nY

i=2

�l
i

,l0
i

!
�l1,m�l01,m0 hl| (t)i h (t)|l0i =

=

X
k,k0

X
l,l0

 
nY

i=2

�l
i

,l0
i

!
�l1,m�l01,m0 hl|Eki hEk0 |l0i ⇥

⇥
p
PkPk0e

�ı[A
k

(0)�A
k

0 (0)+(E
k

�E
k

0 )t/~].

(3.40)

The same equation with the constraint k = k0 in the summations on the r.h.s.
can be employed to evaluate the elements �m,m0 of the equilibrium density matrix.
Given the reduced density matrix, also the marginal quantum distribution of the
subsystem (the first planar rotor) is recovered according to Eq. (3.26)

pS(qS, t) =
X
m,m0

�m,m0
(t)'⇤

m0(qS)'m(qS), (3.41)

and the equilibrium distribution as well by inserting the equilibrium density matrix
elements

pSeq(qS) =
X
m,m0

�m,m0'⇤
m0(qS)'m(qS). (3.42)

By specifying the eigenstates |Eki in Eq. (3.39) as linear combinations of the basis
functions Eq. (3.37), one gets for a given time the explicit dependence on the co-
ordinates of the wave function,  (q, t), and of both the amplitude R(q, t) and the
phase S(q, t) as well.

For the computation of the trajectory of the rotors, we adopted the Runge-
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Kutta method [Press et al. (2007)] at the 4-th order to solve the Bohm equation of
motion Eq. (2.5). We employed a time step �t = 0.01(4⇡I/~) that assures a good
approximation to the calculated trajectory from the point of view of its statistical
properties. In particular we have evaluated the correlation function G(t) of the rotor
angle QS

G(⌧) :=
�QS(t)�QS(t+ ⌧)

�Q2
S(t)

, (3.43)

with �QS(t) = QS(t) � QS(t), that we calculate from the discretised time average
along the trajectory:

G(⌧) '
PM

j=0�QS(j�t)�QS(j�t+ ⌧)PM
j=0�Q2

S(j�t)
, (3.44)

where M is the number of sampling points that depends on the length of the exam-
ined trajectory.

Finally the distribution wS
eq(qS) of the planar rotor coordinate along its trajec-

tory has to be evaluated. In practice we have calculated its discretised counterpart
by dividing the domain 0  QS < 2⇡ of the rotor angle into 10

4 equally spaced
intervals. The probability density is recovered from the fraction of time spent by
the rotor in each interval during its evolution. In order to check that the length
of the trajectory is sufficient, we have verified that the resulting distribution is not
significantly modified by a further evolution.

One might wonder whether the numerical procedure for the calculation of the
Hamiltonian eigenvalues and eigenfunctions, which provides always approximate
results, affects the behaviour of the computed trajectory. If this is the case, then
in the comparison between the quantum distribution pSeq(qS) for the subsystem and
the distribution wS

eq(qS) on the Bohm coordinate, one should consider explicitly the
influence of the errors introduced by the numerical diagonalisation. Let us denote
with E

(app)
k and |E(app)

k i the approximate eigenvalues and eigenfunctions computed
numerically. The computed wave function derives from the linear combinations of
these approximate eigenfunctions, and it is a solution of the Schröedinger equation
for the Hamiltonian

ˆH(app)
:=

NX
k=1

���E(app)
k

E
E

(app)
k

D
E

(app)
k

��� (3.45)

instead of the assumed model Hamiltonian Eq. (3.30). Correspondingly the phase
function S(q, t) and the resulting Bohm trajectory is exact for the quantum problem
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described by the Hamiltonian ˆH(app). In conclusion, the unavoidable errors intro-
duced by the numerical diagonalisation are formally equivalent to a slight modifi-
cation of the system Hamiltonian. Of course the Bohm trajectory is also affected
by the numerical errors in the integration of the differential equation (2.5), but
their effects can be easily controlled by checking that the coordinate distribution
wS

eq(qS), and the coordinate correlation function Eq. (3.43) as well, does not change
by decreasing the integration time step.

3.2.3 Dynamical properties

The selected model system and its Hamiltonian with u = 300(~2/2I) as the
barrier of the confining potential, is compatible with different thermal states de-
pending on the cut-off energy Emax of the RPSE. We have selected the value
Emax = 139(~2/2I) which corresponds to an active space of dimension N = 462

including the polyads from P = 0 to P = 5 and excluding the other polyads (see
Fig. 3.3). With such a choice we deal with a state having a significant distribution
between the ground state and the excited states of the single rotor, as witnessed
by the subsystem reduced density matrix represented on the basis of single ro-
tor eigenfunctions 'm(qS) of Eq. (3.36). The equilibrium reduced density matrix
calculated according to the methods illustrated in the previous section is nearly
diagonal, and the diagonal components are reported in Table 3.2. The calculated
off-diagonal elements �m,m0 are less than 1/1000 in magnitude with respect the as-
sociated diagonal elements �m,m and �m0,m0 . The decrease of the diagonal elements
�m,m with the single rotor energy ✏m (see Table 3.2) might suggest a canonical
form �m,m / exp(�✏m/kBT ) but this is not the case. In order to provide ev-
idences about it, we have derived the hypothetical canonical thermal coefficient
1/kBT = 0.0376(2I/~2

) from the ratio �1,1/�0,0 and then the corresponding ele-
ments of the canonical density matrix, which are reported between parentheses in
Table 3.2. The deviations with respect to the numerical values of �m,m clearly
emerge, particularly for the upper energy elements, and this points out that the
size of our model system (six interacting rotors) is not large enough to ensure the
thermodynamic limit. On the other hand one can assert that the system resembles
that of thermodynamic equilibrium.

As explained in the previous section, the instantaneous reduced density matrix
allows the calculation of the time dependent quantum distribution pS(qS, t) of the
subsystem (the first planar rotor). The profiles of such a distribution are reported
in Fig. 3.4 for a selected sample of times. As the reference for the visualisation of its
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Table 3.2: Diagonal elements of the equilibrium reduced density matrix, with their canonical values re-
ported between parentheses.

m �m,m

0 0.536 (0.475)
1 0.282 (0.250)
2 0.127 (0.133)
3 0.0431 (0.0712)
4 0.0122 (0.0386)
5 5.15 10�4 (0.0211)
6 3.61 10�7 (0.0117)
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Figure 3.4: Equilibrium marginal density distribution pS
eq

(q
S

) (black thick line) and marginal density dis-
tributions pS(q

S

, t) (coloured thin lines) at some selected times. The marginal distributions
are referred to the first of the 6 planar rotors in our model system.

change with the time, in the same figure we have plotted also the equilibrium quan-
tum distribution pSeq(qS) calculated according to equilibrium reduced density matrix
�m,m0 . In Sec. 3.1 we have shown that in the thermodynamic limit, i.e., when the
number of interacting components is large enough, the fluctuations of pS(qS, t) be-
come negligible and then pSeq(qS) would reproduce the quantum distribution function
at all times. The data in Fig. 3.4 clearly show that this is not the case in our model
system as long as time dependent deviations from pSeq(qS) are evident. On the other
hand these deviations have a comparably low magnitude, so that the equilibrium
distribution pSeq(qS) can be considered as representative, at least approximately, of
the instantaneous quantum distribution pS(qS, t).
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Figure 3.5: Time evolution of the Bohm coordinates (drawn with different colours) of the six planar rotors

of the model system.

Having characterised the main quantum properties of the subsystem, we examine
now the behaviour of the Bohm coordinates. By employing the procedure illustrated
previously, time evolution of the angular coordinates Qi(t) of the six rotors have been
computed according to Eq. (2.5) by choosing Qi(0) = ⇡ as initial conditions in cor-
respondence of the bottom of the rotor confining potential. In Fig. 3.5 we have
represented with different colours the time evolution of all the rotors coordinate
within the time window 0  t(~/4⇡I)  5. Each rotor coordinate follows a strongly
confined dynamics with limited excursions about the potential minimum. The time
evolution of each rotor coordinate seems that of a fluctuating signal loosing correla-
tion with time, somehow like in the brownian motion. To verify this feature, we have
computed the correlation function G(⌧) Eq. (3.43) which is displayed in Fig. 3.6.
As expected on the basis of the behaviour of the trajectory, the correlation vanishes
with a rather short correlation time of order ⌧c(~/4⇡I) ' 0.4 supporting the analogy
with brownian motion. It appears that the phase function S(q, t) due to the wave
function generates a fluctuating evolution of the Bohm coordinates, which leads to
a fast loss of correlation.

If the Bohm coordinates QS of the subsystem is considered as a stochastic process,
than its properties are naturally characterised by the correlation function Eq. (3.43)
and its equilibrium distribution wS

eq(qS). The expected confinement of the rotor
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Figure 3.6: Correlation function G(⌧) of the first planar rotor coordinate.

angle clearly emerges from such a distribution which is displayed in Fig. 3.7. In the
same figure we have plotted also the equilibrium quantum distribution for the sake
of comparison. The two equilibrium distributions, the one pSeq(qS) deriving from the
evolution of the wave function, and the other wS

eq(qS) calculated from a single Bohm
trajectory, result to be very close

wS
eq(qS) ' pSeq(qS). (3.46)

Notice that the loss of correlation along the trajectory implies that the distribu-
tion wS

eq(qS) is independent of the choice of the initial values Q(0) of the Bohm
coordinates.

It should be stressed that the correspondence of Eq. (3.46) cannot be considered
as a general property for all quantum systems. Indeed one can use a single rotor
system as a counterexample where Eq. (3.46) does not hold. If the same previous
procedure is applied to an isolated confined rotor, with the same potential of our
model system, by choosing an active space of dimension N = 2 in order do deal
with a wave function with a nearly 50% probability of the ground state like for
the reduced density matrix of Table 3.2, one obtains two very different equilibrium
distributions like those displayed in Fig. 3.8. It should be mentioned that the asym-
metry on the profile of weq(q) derives from the difference of the randomly chosen
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populations of the two quantum states. At this stage one can conjecture that the
correspondence Eq. (3.46) found in our model system is a consequence of the multi-
particle interactions which are absent in the single rotor system. In Chap. 6 such a



3.3. BOHM COORDINATES AS MARKOV STOCHASTIC VARIABLES 57

correspondence is discussed rigorously and the reasons why Eq. (3.46) does not hold
in the single rotor system emerge naturally.

Finally we emphasise that the correspondence (3.46) is not an accidental result
of particular conditions employed for the calculation in our model system. As a
matter of fact we have similar evidences of the correspondence from calculations in
other conditions, for instance by using a confining potential with lower strength or
even in the absence of the confining potential.

3.3 Bohm coordinates as Markov stochastic variables

As reported in the previous section, explicit calculations with a many body model
system suggest that, even by considering Bohm theory at the level of single Bohm
trajectory, a correspondence exists according to Eq. (3.46) between probability den-
sity determined by the wave function and the coordinate distribution derived from
the trajectory. This is an important result since it allows a connection between
the standard quantum theory and the description of system evolution through a
single trajectory, without the need of the Bohm configurations ensemble and the
corresponding swarm of trajectories. On the other hand, such a connection has a
methodological role different from the Bohm ensemble. In particular we emphasise
the following three features. i) It is a correspondence concerning the subsystem
only, while the Bohm ensemble Eq. (2.11) deals with the overall isolated system. ii)
Its validity has to be restricted to the case of negligible fluctuations on the quan-
tum distribution Eq. (3.23) which then can be replaced by the equilibrium quantum
distribution Eq. (3.24). Only in this case the quantum distribution becomes time
independent and, therefore, it can be compared with Bohm coordinate distribution
which, by definition, is time independent. iii) Such a correspondence in general is not
exact, since there are evident counterexamples (Figure 3.8). The calculation results
simply suggest that quantum distribution and Bohm trajectory coordinate distribu-
tion are close in suitable conditions. On the contrary the Bohm ensemble Eq. (2.11)
is exactly verified once the third Bohm assumption Eq. (2.13) is introduced.

Besides these considerations, an important issue naturally arises: can the corre-
spondence Eq. (3.46) find a support beyond the evidences resulting from calculations
with specific model systems? In other words, can Eq. (3.46) be derived under partic-
ular conditions? A positive answer is found if the evolution of subsystem coordinate
in the single Bohm trajectory follows a stationary Markov process for a stochastic
variable [Gardiner (1986)]. A stationary Markov process is completely characterised
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by the equilibrium distribution wS
eq(qS) and the conditional probability distribution

wS
(qS,0|qS, ⌧). The former is obtained from the sampling of subsystem coordinates

QS(t) along a single Bohm trajectory, as we have done in our model system. The
latter requires the sampling of the correlation of coordinates QS(t) and QS(t + ⌧)

at two times separated by ⌧ , and it should satisfy the constraint of correlation loss
at long enough times:

lim

⌧!+1
wS

(qS,0|qS, ⌧) = wS
eq(qS). (3.47)

The distributions characterising the Markov process observed in a single trajec-
tory, can be used to describe also the probability density arising from an ensemble
of trajectories. Let us denote with ⇢S(qS, t) the probability density on the coordi-
nate for such an ensemble of trajectories. Given the initial distribution ⇢S(qS, 0),
the probability density at any time can be evaluated on the basis of the correlation
function wS

(qS,0|qS, ⌧),

⇢S(qS, t) =

Z
dqS,0 ⇢

S
(qS,0, 0)w

S
(qS,0|qS, t), (3.48)

and, according to Eq. (3.47), it will relax to the equilibrium distribution wS
eq(qS) at

long enough times
lim

⌧!+1
⇢S(qS, t) = wS

eq(qS). (3.49)

Let us now recognise the conditions under which the distribution on the trajectories
is stationary, that is ⇢S(qS, t) is time independent. Stationarity means that the
equivalence in Eq. (3.49) must be verified at all times,

⇢S(qS, t) = wS
eq(qS), (3.50)

and, therefore, the initial distribution ⇢S(qS, 0) = wS
eq(qS) is the unique condition

leading in Eq. (3.48) to a time independent distribution.

Let us apply these results to the ensemble of trajectories generated according to
the third Bohm assumption, and with the further conditions: a) stationary quantum
distribution for the subsystem, pS(qS, t) = pSeq(qS), b) stationary Markov process for
subsystem coordinate in a Bohm trajectory. Then the subsystem probability density,
according to the Bohm ensemble Eq. (2.11), is equivalent to the stationary quantum
distribution

⇢S(qS, t) = pS(qS, t) = pSeq(qS), (3.51)

because of condition a). On the other hand, because of condition b), the same prob-
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ability density can be computed according to Eq. (3.48) with ⇢S(qS, 0) = pSeq(qS) as
the initial distribution. However, such a probability density has only one stationary
form specified by Eq. (3.50). One can conclude that, as long as the two conditions
a) and b) are satisfied and, therefore, Eq. (3.50) and (3.51) are holding simultane-
ously, for the subsystem the quantum equilibrium distribution and the coordinate
distribution in a Bohm trajectory are equivalent,

pSeq(qS) = wS
eq(qS). (3.52)

This is the important result of the previous analysis which, however, is conditioned
by the validity of assumptions a) and b). In section 3.1 we have analysed the fluctu-
ations of the quantum distribution for the subsystem, by showing that they vanish
in the limit of an infinite size environment. This points out that in finite but large
enough systems, condition a) is satisfied only approximately, and the same type of
validity should be attributed to the equivalence Eq. (3.52). At this stage a specific
analysis about the general validity of the description of subsystem coordinate as a
Markov process is lacking even if, in analogy to classical brownian motion, one might
conjecture that such a feature is determined by the coupling amongst many degrees
of freedom. On the other hand the model results reported in the previous section
suggest that for systems characterised by random interactions amongst its compo-
nents, the subsystem evolution leads to distributions approximating Eq. (3.52).

3.4 Final remarks

We have considered the system of six confined planar rotors as a model to test the
representation of quantum systems by the single Bohm trajectory. For the subsystem
identified with one rotor, the others playing the role of the environment, we have
found the following main results from the numerical solution of Bohm theory: i) the
marginal quantum distribution derived from the wave function is nearly stationary,
ii) the Bohm coordinates evolves like a randomly fluctuating signal with a clear loss of
correlation with the time, iii) the rather close correspondence between the marginal
quantum distribution and the distribution of the Bohm coordinates. We stress the
interest of the last result in relation to the methodological status of Bohm theory.
If a correspondence exists between the quantum distribution derived from the wave
function and the distribution of the Bohm coordinates along a single trajectory,
albeit at the level of the subsystem, then the ensemble of trajectories together with
the postulate for their initial distribution is not mandatory to establish a connection
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between standard quantum theory and the configuration of Bohm theory. A more
direct picture of molecular systems would then be derived on the basis of a single
realisation of both the quantum state (the wave function) and the configuration (the
Bohm trajectory).

On the other hand, we emphasise that such a correspondence is presently an
observation supported by the numerical results for a particular model system. The
existence of conditions assuring the validity of the correspondences remains still
an open issue. The hypothesis that the Bohm coordinates behaves as a Markov
stochastic process has been used to justify the result, as shown in the previous
section.

We would like also to comment on the implications of the near stationarity of
the marginal quantum distribution for the subsystem, as shown in Fig. 3.4. This is
strictly a consequence of the vanishing of fluctuations of the reduced density matrix
in the thermodynamic limit as analysed by Fresch and Moro (2013). A direct relation
exists also with the typicality analysed by Bartsch and Gemmer (2009) even if in
their theory the effects of fluctuations in time are not separated from the distribution
within the ensemble. At any rate, a static picture of the subsystem properties would
be implied from these results, at odds with the opposite image of an ever fluctuating
world as suggested by the Classical Mechanics. We think that Bohm theory, in the
single trajectory approach, leads to a solution of these contradictory representations.
Indeed, as in displayed in Fig. 3.5, the fluctuating evolution of the Bohm coordinates,
very much like for a confined Brownian particle, results compatible with the nearly
stationarity of the marginal quantum distribution.

Finally, we consider the results described in this chapter a numerical evidences
that the single Bohm trajectory approach is a quantum method that justifies and
explains the prediction of conventional Quantum Mechanics, at least for a sub-
system interacting with the environment. For the sake of scientific investigation,
we hypothesise that the single Bohm trajectory approach is the correct methodol-
ogy for describing the behaviour of molecular systems and we will investigate the
consequences of this assumption in next chapters. The final goal is the full char-
acterisation of this approach and the identification of the the features of predicted
molecular motions.



CHAPTER 4

Constants of motion

We have verified through a numerical simulation (see Chap. 3) that the predic-
tions of conventional Quantum Mechanics and those of a single Bohm trajectory
are compatible. In particular, if one is interested in the description of a subsystem
interacting with the environment, that is the most common case in Chemistry, such
a correspondence emerges naturally. The single Bohm trajectory corresponding to
the coordinates of the subsystem samples the configuration space according to the
square modulus of the wave function. Since we assumed that this method is the
correct way for describing the molecular systems, we will investigate in detail its
features and its predictions, for instance the case of vibrational motion of molecules
during a vibrational transition in Chap. 5. In this chapter, we consider instead a
more fundamental issue of the theory. Which are the constants of motion for the
evolution of the system state (the set of configuration and wave function)?

In both Classical Mechanics and Quantum Mechanics, the solution of this prob-
lem is well known. For instance, in the framework of Classical Mechanics, the time
evolution of an isolated system is characterised by constant values of the energy,
total linear momentum and total angular momentum [Landau and Lifshitz (1976)].
Similarly, the expectation values of observables corresponding to operators that
commute with the Hamiltonian operator are time independent [Cohen-Tannoudji
et al. (1977a)]. Therefore, the expectation values of the Hamiltonian operator, to-
tal linear momentum operator and total angular momentum operator are conserved
over time for an isolated system. We would like to recall that the relevance of the
constants of motion, especially in Classical Mechanics, concerns the identification

61
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of constraints that have to be satisfied during the whole time evolution of the sys-
tem. It is particularly well known the representation of the classical motion on the
manifold corresponding to the surface of constant energy that is a subspace of the
phase space. A similar dimensional reduction can be performed for each constant of
motion.

In the framework of Bohm theory, the problem of recognising the constants
of motion arises when the focus shifts from a swarm of trajectories to a single
trajectory. Indeed, the ensemble average (on the Bohm configurations ensemble) of
every physical quantity is equal to the corresponding expectation value at any time.
Consequently, the ensemble averages of the energy, total linear momentum, total
angular momentum are constant during the time evolution. However, their value
along a single Bohm trajectory is not time independent. Consider, for instance,
that the quantum potential is explicitly time dependent. Therefore, by writing the
energy of the system as the sum of kinetic energy, potential energy and quantum
potential energy, its value is time dependent even if its ensemble average is instead
in correspondence with the expectation value of the Hamiltonian operator. In other
words, the single Bohm trajectory approach highlights the problem of identifying
the constants of motion.

In this chapter we investigate this issue and we propose a self-consistent pro-
cedure for defining the constants of motion in the framework of the single Bohm
trajectory approach. The basic idea is that of recovering the dynamical equations of
Bohm theory (Bohm equation and Schrödinger equation) as a result of a variational
problem, i.e., the variational formulation of Bohm theory. In general the variational
problem is based on the identification of the stationary point of a suitably defined ac-
tion functional. Then, by employing the Noether’s theorem [Kosmann-Schwarzbach
(2010)], one can recognise the constants of motion through the symmetries of the
action functional. For the sake of completeness, we recall that in Classical Mechanics
the time evolution of the system state can be defined either by solving the Hamil-
ton equations (equations of motion or dynamical equations) or by calculating the
stationary point of the action functional (principle of least action) [Arnol’d (1997)].
Albeit the two formulations are equivalent with regard to the dynamical equations,
the variational formulation results to be more convenient for the identification of the
constants of motion by employing the Noether’s theorem. The Noether’s theorem
establishes a clear correspondence between the symmetries of the action functional
and the conserved quantities [Giaquinta and Hildebrandt (1996a,b); Gelfand and
Fomin (2000)]. For instance, the classical action function of isolated systems is sym-
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metric with respect to time translation, space translation and space rotation. The
corresponding constants of motion are respectively the energy, the total linear mo-
mentum and the total angular momentum. We mention that there could be further
constants of motion that can not be inferred from the Noether’s theorem [Lutzky
(1979, 1978)]: they are determined by symmetries of the dynamical equations that
do not correspond to symmetries of the action functional.

We propose to adopt the same procedure also in the framework of Bohm theory
(in its single trajectory approach). Thus, some important issues arise. First of
all, it has to be defined an action functional, whose “variables” are both the Bohm
trajectory and the wave function. To the best of our knowledge, there is not a similar
functional in the Mathematical Physics literature whose variables are both trajectory
(time dependent Bohm configuration) and field (wave function). We would like to
mention that an action functional whose stationary conditions include a formulation
of Bohm equation has been proposed by Holland (2001a,b). However, this variational
problem ensures that the formulation of the Bohm equations with a structure similar
to the Newton law (see Eq. (2.7)) holds without specifying the time evolution of the
wave function (that is known by hypothesis). Therefore, also trajectories that do
not satisfy Bohm theory can be predicted depending on the initial conditions: the
constraint between the configuration and the velocity is not considered directly.
In our framework, the stationary conditions of the functional must be formally
equivalent to both the Bohm equation (i.e., Eq. (2.6)) and the Schrödinger equation,
in order to guarantee the full equivalence with Bohm theory. In particular, the
independence of the Schrödinger equation with respect to the system configuration
has to be assured. We tackle these issues in Sec. 4.1. Furthermore, the Noether’s
theorem has to be modified in order to be applicable to the action functional defined
in Sec. 4.1. As a matter of fact, the action functional derived in Sec. 4.1 does not
belong to the category of action functionals that are considered with the standard
formulation of the Noether’s theorem and this calls for a generalisation of a such a
theorem which is presented in Sec. 4.2.

Once these issues have been overcome, we use our generalised Noether’s theorem
to recognise the constants of motion of the Bohm problem. We verify that the time
independent expectation values are still conserved quantities also in this framework.
Furthermore, we prove that there are no further constants of motion deriving from
the single Bohm trajectory and corresponding to the symmetries of our action func-
tional. We would like to emphasise that both the definition of functional and the
generalisation of the Noether’s theorem are rather technical issues. For this reason,
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we present the derivations with the structure of theorems in order to highlight the
main result in the statement and to move the details to the proof.

4.1 Variational formulation of Bohm theory

In this section we introudece a suitable functional J [•] of the Bohm trajectory
Q(t) and of the wave function  (q, t) in such a way that its stationary conditions
are formally equivalent to the differential equations of Eq. (2.9) for the dynamical
equations. In other words, the objective of our analysis is the identification of
the action functional J [ , Q] such that the pair

�
Q(t), (q, t)

�
that satisfies the

condition
dJ [ , Q] = 0, (4.1)

is also solution of Eq. (2.9). For the sake of a simple nomenclature, we call hereafter
the pair Bohm trajectory and wave function the variational variables, since they are
the “variables” of the functional J [ , Q] and the unknown of the variational problem
of Eq. (4.1) as well. In this regard, one can interpret the problem of determining
the time dependence of configuration Q(t) and wave function  (q, t) such that they
satisfy the variational condition Eq. (4.1) as nothing more than a formalisation of
solving Eq. (2.9) in terms of a variational problem. For this reason, we refer to
the variational problem as the variational formulation of Bohm theory. Broadly
speaking, we aim to define the counterpart of the principle of last action (Classical
Mechanics) in the framework of Bohm theory: as the solution of Hamilton equations
can be determined through the stationary point of the action functional, our purpose
is of obtaining the trajectory Q(t) and the wave function  (q, t) in terms of solution
of Eq. (4.1).

It has to be emphasised that a variational formulation of conventional Quan-
tum Mechanics leading to the Schrödinger equation has been already defined in the
past [Kramer and Saraceno (1981)]. We mention a recent use of it that was aimed to
model non linear terms of the Schrödinger equation for the final goal of describing
solitons [Abbondandolo and Benci (2002); Benci et al. (2010)]. In the following we
recall briefly the variational formulation of Quantum Mechanics, since also the vari-
ational formulation of Bohm theory must lead to the Schrödinger equation, besides
the Bohm equation.

Let us denote the corresponding action functional as J0[R, S] with the variational
variables specified by means of the polar representation of the wave function  (q, t)
through its amplitude R(q, t) and its phase S(q, t). Similarly to what we have
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done for specifying the Schrödiger equation as in Eq. (2.3), the wave function has
been converted to its polar representation  (q, t) = R(q, t)eıS(q,t)/~. According to
Abbondandolo and Benci (2002), for a given time domain determined by the initial
time t0 and the final time t1, J0[R, S] action functional is given as

J0[R, S] =

Z t1

t0

dt

Z
C
dq L0(R,rkR, St,rkS, q)|R=R(q,t),S=S(q,t) (4.2)

with the following Lagrangian density

L0(R,rkR, St,rkS, q) =
nX

k=1

~2

2mk

|rkR|2 +
 
St +

nX
k=1

|rkS|2
2mk

+ V (q)

!
R2, (4.3)

where the subscripts t in St denotes the partial derivatives of S(q, t) with respect
to the time, St := @S(q, t)/@t. This compact notation will be used hereafter. For
avoiding undesired complications, we assume a configuration domain C = Rn with n

the number of degrees of freedom composing the quantum system. By imposing the
stationarity condition, dJ0[R, S] = 0, the Schrödinger equation in polar form, i.e.,
Eq. (2.3), is recovered. We do not prove explicitly that the condition dJ0[R, S] = 0

is equivalent to Eq. (2.3), since it is a common exercise of calculus of variations (see
Kramer and Saraceno (1981) and Abbondandolo and Benci (2002) for completeness).

Let us now consider the action functional J [R, S,Q] appropriate for Bohm theory
whose state evolution

�
Q(t), (q, t)

�
is fully specified by Eq. (2.9). As a matter of

fact it can be formulated by taking into account that i) it should include the action
functional J0[R, S] leading to dynamical equations for the polar components of the
wave function

�
R(q, t), S(q, t)

�
, and that ii) there should be a further component

denoted as J1[S,Q] responsible for the evolution of the Bohm coordinates Q(t)

J [R, S,Q] = J0[R, S] + �J1[S,Q]. (4.4)

In the above equation, � can be considered a strength parameter for the contribution
of J1[S,Q] whose meaning will be discussed at the end of this section. By taking
into account that Q(t) is a trajectory, for the contribution J1[S,Q] one expects the
action functional of Classical Mechanics with the Lagrangian:

nX
k=1

mk| ˙Qk(t)|2
2

� V (Q(t)) � U(Q(t), t), (4.5)

where both the mechanical potential V (q) and the quantum potential U(q, t) of
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Eq. (2.4) have to be included in the action functional J1[S,Q] for the Bohm trajec-
tory. Notice that we use a compact notation also for the time derivative of the trajec-
tory corresponding to the k-th degrees of freedom, i.e., ˙Qk(t) := dQk(t)/dt. Inspired
by the expected quantum Hamilton-Jacobi equation (2.3), the potential contribu-
tions can be specified according to the partial derivatives of the phase S(q, t) and,
therefore, one obtains the following trajectory component of the action functional

J1[S,Q] =

Z t1

t0

dt

(
nX

k=1

mk| ˙Qk(t)|2
2

+ St(Q(t), t) +
nX

k=1

|rkS(Q(t), t)|2
2mk

)
. (4.6)

In the following, we will prove that if the set
�
R(q, t), S(q, t), Q(t)

�
is a solution of

the variational problem dJ [R, S,Q] = 0, with J [R, S,Q] defined in Eq. (4.4), then
it solves also the system of differential equations of Eq. (2.9). In other words, the
solution of Eq. (2.9) is an extremal of the functional J [R, S,Q]. As anticipated
previously, we present the formal derivation as a theorem in order to delineate the
essential information in the statement and to leave the details in the proof.

Theorem 1. Let J [R, S,Q] be the functional defined on the set of functions
�
R(q, t),

S(q, t), Q(t)
�

that satisfies specific boundary conditions at t0 and t1
�
R(q, t0) =

R0(q), R(q, t1) = R1(q), S(q, t0) = S0(q), S(q, t1) = S1(q), Q(t0) = Q0, Q(t1) =

Q1

�
. Then each extremal of J [R, S,Q] solves the following system of differential

equations (Euler-Lagrange equations):8>>>>>>>>>>>><>>>>>>>>>>>>:

@S(q, t)

@t
+

nX
k=1

|rkS(q, t)|2
2mk

+ V (q) �
nX

k=1

~2

2mk

r2
kR(q, t)

R(q, t)
= 0

@

@t
R(q, t)2 +

nX
k=1

rk

✓
R(q, t)2

rkS(q, t)

mk

◆
= 0

mk
˙Qk(t) = rkS(q, t)

��
q=Q(t)

with k = 1, 2, . . . , n

mk
¨Qk(t) = �


rk

�
V (q) + U(q, t)

��
q=Q(t)

with k = 1, 2, . . . , n

. (4.7)

Proof. Let us denote with the set
�
R(q, t), S(q, t), Q(t)

�
an extremal of the functional

J [R, S,Q] and with
�
R(q, t)+ r(q, t), S(q, t)+ s(q, t), Q(t)+ x(t)

�
the corresponding

variation satisfying the boundary conditions r(q, t0) = r(q, t1) = s(q, t0) = s(q, t1) =

x(t0) = x(t1) = 0. Furthermore, R(q, t) and r(q, t) as well should vanish at the
boundaries of the configuration space C in order to ensure the integrability of the
squared modulus of the wave function in its domain. By definition, the differential
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variation of the function should vanish,

dJ [R, S,Q] = 0, (4.8)

for any admissible variations r(q, t), s(q, t), x(t) =

�
x1(t), x2(t), . . . , xn(t)

�
. By

calculating explicitly the differential variation of Eq. (4.8), one derives the following
integral equationZ t1

t0

dt

Z
R3n

dq

(
nX

k=1

~2

mk

rkRrkr + 2

✓
St +

nX
k=1

|rkS|2
2mk

+ V

◆
Rr+

+R2

✓
st +

nX
k=1

rkSrks

mk

◆)
+ �

Z t1

t0

dt

(
nX

k=1

mk
˙Qkẋk+

+

nX
j=1


rjSt +

nX
k=0

rj|rkS|2
2mk

�
q=Q(t)

xj +


st +

nX
k=1

rkS

mk

rks

�
q=Q(t)

)
= 0,

(4.9)

where we have omitted the functional dependence of the variational functions, e.g.,
s(q, t) is substituted by s and so on, for the sake of a compact notation. Notice that
the first and the second integral derive from the differential of the functional J0[R, S]

and the functional J1[S,Q] respectively. From a suitable integration by part, one
can separate the contributions of each variation r(q, t), s(q, t), x(t) of the variational
variables:Z t1

t0

dt

Z
C
dq

⇢
�

nX
k=1

~2

2mk

r2
kR +

✓
St +

nX
k=1

|rkS|2
2mk

+ V

◆
R

�
2r+

+

Z t1

t0

dt

(
�

nX
k=1

✓rkS

mk

� ˙Qk

◆
rks

�
q=Q(t)

�
Z
C
dq

"
@R2

@t
+

nX
k=1

rk

✓
R2rkSq

mk

◆#
s

)
+

+ �

Z t1

t0

dt
nX

k=1

(
� mk

¨Qk +


rkSt +

nX
j=1

rk|rjS|2
2mk

�
q=Q(t)

)
xk = 0.

(4.10)

Since r(q, t), s(q, t), x(t) are independent, the fundamental lemma of calculus of
variations ensures that the condition dJ [R, S,Q] = 0 holds if and only if each integral
of Eq. (4.10) vanishes independently. In other words, the condition of Eq. (4.10) is
equivalent to the following three constrains:Z t1

t0

dt

Z
C
dq

⇢
�

nX
k=1

~2

2mk

r2
kR +

✓
St +

nX
k=1

|rkS|2
2mk

+ V (q)

◆
R

�
2r = 0, (4.11)
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Z t1

t0

dt

(
�

nX
k=1

✓rkS

mk

� ˙Qk

◆
rks

�
q=Q(t)

�
Z
C
dq

"
@R2

@t
+

nX
k=1

rk

✓
R2rkSq

mk

◆#
s

)
= 0,

(4.12)Z t1

t0

dt
nX

k=1

(
� mk

¨Qk +


rkSt +

nX
j=1

rk|rjS|2
2mk

�
q=Q(t)

)
xk = 0. (4.13)

Let us consider Eq. (4.11) that has to hold for any admissible variation r(q, t),
i.e., any r(q, t) that satisfies the boundary conditions. This implies that

�
nX

k=1

~2

2mk

r2
kR(q, t) +

✓
St(q, t) +

|rkS(q, t)|2
2mk

+ V (q)

◆
R(q, t) = 0, (4.14)

in all the space-time points of the integration domain, D = {(q, t) with q 2 C, t 2
[t0, t1]}, for the fundamental lemma of calculus of variation. On the other hand,
Eq. (4.14) is precisely the quantum Hamilton-Jacobi equation corresponding to the
first equation of Eq. (4.7).

Let us analyse the implications of the constraint of Eq. (4.12) which is specified
as a time integral of two different contributions. The first one is proportional to
the strength parameter � and depends on the filed S(q, t) and s(q, t) evaluated only
along the trajectory path, q = Q(t). The second one is specified as an integral on all
the configuration domain C. The first contribution is further separated in the sum
of terms that are proportional to the gradient rks(q, t) respectively and evaluated
along the trajectory Q(t), that is the set of points (q, t) 2 C that belong to the
subdomain CQ =

��
Q(t), t) 2 C, 8t 2 [t0, t1]

 
. Since the integral must vanish for all

the admissible variations s(q, t), this must be true also for the subset of variations
whose spatial derivative rks(q, t) = 0 for all (q, t) 2 CQ and 8k. Correspondingly,
the first contribution vanishes and one has to consider only the second one which
should vanish for any s(q, t) of such a particular type of variations, leading to the
following condition of stationarity

@R(q, t)2

@t
+

nX
k=1

rk

✓
R(q, t)2

rkSq(q, t)

mk

◆
= 0, (4.15)

that is the second equation of Eq. (4.7). Notice that such an equation holds in all the
points of C, those of CQ included. Indeed, the vanishing of the spatial derivatives
rks(q, t) in CQ does not require a corresponding vanishing of s(q, t) at the same
points, so that also in CQ the square bracket term multiplying s(q, t) must van-
ish. Then, one can take for granted the condition of Eq. (4.15) so that the second
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contribution in Eq. (4.12) is lacking, and considers now the most general variation
s(q, t) with non vanishing gradient rks(q, t) in CQ. In order to ensure the validity
of Eq. (4.12), the vanishing of the first contribution for any choice of the gradient
rks(q, t) in CQ has to be imposed, so deriving the third equation of Eq. (4.7):

mk
˙Qk(t) � rkS

�
Q(t), t

�
= 0, with k = 1, 2, . . . , n. (4.16)

In order to visualise a simple exemplification of such a variation, let us consider a
set of arbitrary functions hk : [t0, t1] ! R such that hk(t0) = hk(t1) = 0 and the
variation specified as s(q, t) ⌘ qkhk(t) leads to an arbitrary time dependent gradient
rks(q, t) = hk(t) (and rjs(q, t) = 0 if j 6= k). It is then clear that the term
rkS/mk � ˙Qk multipling rks must vanish for all integration times in agreement
with Eq. (4.16).

Finally, we analyse Eq. (4.13). In order to ensure that the integral vanishes for
every admissible variation x(t), the following set of conditions for every k must hold

m ¨Qk(t) =

"
rk

✓
St(q, t) +

nX
j=1

|rjS(q, t)|2
2mj

◆#
q=Q(t)

= � ⇥rk

�
V (q) + U(q, t)

�⇤
q=Q(t)

,

(4.17)
where the last equality holds because of Eq. (4.14).

In this ways, it has been verified that if the set
�
R(q, t), S(q, t), Q(t)

�
is a station-

ary point of J [R, S,Q], then it is satisfies also the equations (4.14), (4.15), (4.16)
and (4.17).

Theorem 1 proves that the time evolution of the quantum state in the framework
of the single Bohm trajectory

�
Q(t), (q, t)

�
can be determined by solving the varia-

tional problem of Eq. (4.8), with the polar representation  (q, t) = R(q, t)eıS(q,t)/~ of
the wave function. In other words, we succeed in defining a variational formulation
of Bohm theory by employing the action functional J [R, S,Q] = J0[R, S]+�J1[S,Q]

having the Schrödinger component J0[R, S] of Eq. (4.2) and the trajectory compo-
nent J1[S,Q] of Eq. (4.6).

At this stage we would like to emphasise three features of this variational formu-
lation of Bohm theory. First of all, the time evolution of

�
Q(t), (q, t)

�
is determined

by a set of three differential equations if the wave function is converted to its polar
form: the Bohm equation and the system of differential equations in Eq. (2.3). On
the other hand, Theorem 1 establishes that the condition of Eq. (4.8) is equivalent
to a system of four differential equations (see Eq. (4.7)). As a matter of fact, the
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fourth equation in Eq. (4.7) does not provide any further conditions: once the tra-
jectory Q(t) satisfies Eq. (4.16), then Eq. (4.17) holds automatically because of the
quantum Hamilton-Jacobi equation.

Secondly, the stationary condition of Eq. (4.8) leads to the correct time evolution
equations Eq. (4.7) independently of the value of the strength parameter � used in
the definition of J [R, S,Q] (see Eq. (4.4)), with the only limitation of a non van-
ishing value, � 6= 0. In other words, the Euler-Lagrange equations of the functional
J [R, S,Q] are the set of the Euler-Lagrange equations corresponding to each func-
tional J0 and J1 independently. Therefore each element of the one parameter family
of functionals,

J�[R, S,Q] ⌘ J0[R, S] + �J1[S,Q] (4.18)

where � 2 R \ {0}, has the same extremal, that is the solution of Eq. (4.7). Notice
that we add the subscript � to the overall functional in order to stress the paramet-
ric dependence on �. To the best of our knowledge, this feature is uncommon in
variational problems and it induces an arbitrariness on the choice of the element of
the family J� for describing a system according to Bohm theory. However, the arbi-
trariness of the parameter � is the essential feature that ensures the independence of
the wave function with respect to the Bohm trajectory in the variational framework:
the same pair

�
R(q, t), S(q, t)

�
which is extremal of J0[R, S], is also extremal of the

overall functionals J�[R, S,Q] independently of the values of �. As matter of fact,
a functional without these features does not conserve the Euler-Lagrange equations
of the functional J0[R, S]. Such unconventional feature of the action functional has
consequences also for the identification of the constants of motion as we will describe
in Sec. 4.2.

Finally, it should be stressed that the functional J1[S,Q] can be written in a full
field theory format, analogous to the one of the functional J0[R, S] of Eq. (4.2), by
specifying it as

J1[S,Q] =

Z t1

t0

dt

Z
C
dq �(q � Q(t)) L1

�
˙Q,St,rkS

���
Q=Q(t),S=S(q,t)

, (4.19)

where the Lagrangian density L1

�
˙Q,St,rkS

�
is recovered from Eq. (4.6) by speci-

fying the action of the Dirac delta function:

L1

�
˙Q,St,rkS

�
=

nX
k=1

mk| ˙Qk|2
2

+ St +

nX
k=1

|rkS|2
2mk

. (4.20)
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This notation will be convenient in Sec. 4.2 in order to simplify the derivation of the
constants of motion through a suitable generalisation of the Noether’s theorem.

4.2 Generalised Noether’s theorem

As it has been recalled in the introduction of this chapter, the variational for-
mulation of a dynamical system, e.g., of Classical Mechanics, Quantum Mechanics
and Bohm theory, allows the identification of the constants of motion by employing
the Noether’s theorem [Giaquinta and Hildebrandt (1996a,b); Gelfand and Fomin
(2000)]. The theorem correlates the symmetries of the action functional J [•] (also
called Noether symmetries) to the conserved quantities which we denote as I. Even if
there are constants of motion that do not correspond to Noether symmetries [Lutzky
(1979, 1978)], the theorem has been extensively used in the framework of Classical
Mechanics [Arnol’d (1997)] and Field Theory [Folland (2008)]. For this reason it
is considered a common methodology and conserved quantities are often identified
with their corresponding symmetries. For instance the energy, total linear momen-
tum and total angular momentum of isolated systems are linked to the invariances
of the action functional respectively under time translation, space translation and
space rotation. In the following, we derive the constants of motion in the framework
of Bohm theory through the use of the Noether’s theorem. First of all, it has to be
considered that some features of the functionals belonging to the family J�[R, S,Q]

do not allow us to use directly the standard formulation of the Noether’s theorem.
The definition of the functional J1[S,Q] includes partial derivatives of the variational
variable S(q, t) that depend on the variational variable Q(t) through St

�
Q(t), t

�
and

rkS
�
Q(t), t

�
. This feature is not taken into account in the standard formulation of

the Noether’s theorem, and consequently the theorem has to be properly generalised.
Then, we employ the modified version of the Noether’s theorem for discussing the
constants of motion corresponding to a particular set of transformations, such as
time translation, space translation and space rotation, that leave the action func-
tional unchanged in the case of isolated systems. Notice that each functional of the
family J�[R, S,Q] is symmetric with respect to time translation, whereas reasonable
assumptions regarding the potential V (q) have to be made in order to ensure that
also the others two transformations leave the action functional unchanged.

However, one can anticipate some properties of the constants of motion before
a formal generalisation of the Noether’s theorem has been established. This can be
done by taking into account that i) the functional J0[R, S] leads to the Schrödinger
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equation independently of the Bohm equation and ii) the Euler-Lagrange equations
are the same for every functional of the �-dependent family J�[R, S,Q]. Therefore
the conserved quantities determined by the wave function evolution have to be time
independent also in the framework of Bohm theory since the wave function does not
depend on the Bohm trajectory. The expectation values of operators that commute
with the Hamiltonian operator are still time independent also in the framework of
Bohm theory, and they are derived on the basis of the symmetries of the functional
J0[R, S]. Let us suppose now that these constants of motion correspond also to
symmetries of the complete functional J�[R, S,Q]. This is the case if both the
functionals J0[R, S] and J1[S,Q] are independently symmetric. In this way one
identifies a first category of conserved quantities due to symmetries of both the
functionals J0[R, S] and J1[S,Q].

In principle one might consider a second category of conserved quantities that
could derive from transformations that do not modify only a particular functional
J�[R, S,Q] of the family for a given value of the parameter �. In this case, the
two functionals J0[R, S] and J1[S,Q] are not independently symmetric under these
transformations. Then, the elements of this category are �-dependent and they
can not be identified as true constants of motion. Indeed, the dynamical equations
(Eq. (4.7)) derived according to the variational problem are independent of the value
of the strenght parameter �, and therefore the conserved quantities during the time
evolution of

�
Q(t), (q, t)

�
can not be �-dependent.

For this reason, we will investigate only transformations that leave both the func-
tionals J0[R, S] and J1[S,Q] unchanged and the corresponding constants of motion.
For each symmetry of J0[R, S] and J1[S,Q], one can define the conserved quantity I0

that is specified by the time evolution of the wave function: it is a time independent
expectation value. Furthermore, the quantity I0 is recovered by applying the stan-
dard formulation of the Noether’s theorem to the functional J0[R, S]. Since such
a procedure represents a standard application of the Noether’s theorem, it is not
reported in this thesis and it can be found in Giaquinta and Hildebrandt (1996a,b)
and Gelfand and Fomin (2000).

The real challenge concerns the identification of the constants of motion I1 re-
sulting from the functional J1[S,Q]. If they exist, one would get unconventional
constants of motion specified on the basis of the system configuration Q(t) along
a Bohm trajectory. However, as we mentioned in advance, the Noether’s theorem,
in its standard formulation, can not be applied to the functional J1[S,Q]. There-
fore, we derive a generalised version of the theorem that takes into account also
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the particular features of our functional. In this way, we propose a self-consistent
methodology for the identification of the corresponding conserved quantities I1.

Similarly to the standard derivation of the Noether’s theorem, we consider an
one parameter group of transformations8>>>>><>>>>>:

˜t = V0(t; ✏)

q̃k = Vk(q, t; ✏) with k = 1, 2, . . . , n

˜S
�
q̃, ˜t
� ��

q̃=V, t̃=V0
= S (q, t; ✏)

˜Qk

�
˜t
� ��

t̃=V0
= Xk(t; ✏) with k = 1, 2, . . . , n

(4.21)

that by hypothesis leaves J1[S,Q] unchanged. In Eq. (4.21) the functions V0(t, ✏),
V(q, t; ✏) = �V1,V2, . . . ,Vn

�
, S (q, t; ✏) and X (t; ✏) =

�X1,X2, . . . ,Xn

�
are the maps

that represent the transformation. They depend smoothly on the parameter ✏ and
they correspond to the identity transformation if ✏ = 0. Notice that the functions
Xk(t; ✏) do not depend on the variables q since they represent the transformation of
a variational variable, the trajectory of the Bohm coordinates, that depends only
on time. Furthermore, the infinitesimal generators of the above transformation are
defined according to the following equations,

v0(t) =
@V0(t; ✏)

@✏

����
✏=0

, vk(q, t) =
@Vk(q, t; ✏)

@✏

����
✏=0

,

s(q, t) =
@S (q, t; ✏)

@✏

����
✏=0

, xk(t) =
@Xk(t; ✏)

@✏

����
✏=0

.

(4.22)

Furthermore, we restrict the possible transformations by imposing the following
constraint:

nX
k=1

rkvk(q, t) = 0. (4.23)

In this way, the infinitesimal generator v(q, t) = (v1, v2, . . . , vn) is a solenoidal vector
field that can not represent neither compression or expansion of the space of config-
urations. It should be emphasised that Eq. (4.23) holds for the common transforma-
tions, such as time translation, space translation and space rotation. Consequently,
our method still represents an efficient and self-consistent way for investigating the
problem of conservations during the Bohm dynamics.

Moreover, it has to be stressed that the infinitesimal generators of Eq. (4.22),
s(q, t) and x(t), have not to be confused with the variations of Eq. (4.8), even if they
are tagged with the same symbols. Since they are employed in a different framework
and with different meanings, misunderstandings should be avoided.
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Finally, our formulation of the Noether’s theorem is proven in the following for
transformations as those of Eq. (4.21) under the constraint of Eq. (4.23). We employ
the functional of J1[S,Q] as specified in Eq. (4.19) in order to reduce as much as
possible the differences between our procedure and the standard derivation of the
Noether’s theorem. In the statement of Theorem 2 and in the proof as well, for
the sake of a concise notation, we omit the functional dependence of L1 and of its
partial derivatives, which should conform to that of Eq. (4.19) and Eq. (4.20).

Theorem 2. Let us suppose that the functional J1[S,Q] is invariant with respect
to the one parameter group of transformations, which have infinitesimal generators
s(q, t), xk(q, t), v0(t) and vk(q, t) such that

P
k rkvk = 0. Then for every extremal�

S(q, t), Q(t)
�

of the functional J1[S,Q], the configurational integral I1,

I1 =

Z
C
dq �(q � Q(t))


L1v0 +

@L1

@St

s+
nX

k=1

@L1

@ ˙Qk

xk

�
, (4.24)

where

s = s � Stv0 �
nX

k=1

rkS vk, xk = xk � ˙Qkv0, (4.25)

is time independent:
d

dt
I1 = 0. (4.26)

Proof. By Proposition 2, the transformed functional ˜J1
⇥
˜S, ˜Q

⇤
is independent of the

parameter ✏ and therefore:
d
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⇤
d✏
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= 0. (4.27)

By specifying the transformation according to Eq. (4.21) and repeating the mathe-
matical manipulations of the standard proof of the Noehter’s theorem, the functional
derivative of Eq. (4.27) becomes
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(4.28)
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where the term in the third line derives from the derivative d/d✏ of the Dirac delta
function �

�
q̃ � ˜Q(t)

�
and it is the main difference with respect to the standard

procedure. For further elaboration, it is convenient to integrate by parts the time
derivative according to the following relationZ t1

t0

dt

Z
C
dq �(q � Q(t))

(
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The restriction of the admissible transformations (Eq. (4.23)) allows one to verify
the following relation

nX
k=1

n
rk

⇥L1vk
⇤� vkrkL1

o
= 0. (4.30)

Equation (4.30), together with the hypothesis that
�
S(q, t), Q(t)

�
is an extremal of

J1[S,Q] (i.e., S(q, t) and Q(t) satisfy the equations of (4.23)), and the q independence
of v0, leads the sum of i) the second integral in the r.h.s. of Eq. (4.29) and ii) the
contributions to d

˜J1/d✏ which are reported in the second and the third lines of
Eq. (4.28) to the vanishing. The final result for the derivative of the functional is

d

˜J1
⇥
˜S, ˜Q

⇤
d✏

����
✏=0

=

Z t1
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dt
d

dt
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Since by hypothesis, such a functional derivative should vanish for any arbitrary time
interval, one verifies that the configurational integral I1 of Eq. (4.24) is a constant
of motion.

Once the generalised formulation of the Noether’s theorem has been proven, one
can identify the conserved quantities in the framework of Bohm theory. The first
step concerns the identification of the symmetries shared by J0[R, S] and J1[S,Q].
Then by using the standard formulation of the Noether’s theorem for fields like in
the treatment of Benci (2009), one can recognise the constants of motion

I0 =

Z
C
dq

⇢
L0v0 +

@L0

@St

s

�
. (4.32)
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arising form J0[R, S]. Finally, Theorem 2 allows the identification of the constants
of motion corresponding to the evolution of the Bohm coordinates. By employ-
ing the definitions of L1

�
˙Q,St,rkS

�
, s(q, t) and xk(t), the configuration integral

of Eq. (4.24) can be evaluated, so recovering the following explicit form for the
constants of motion:

I1 = s(Q(t), t) +
nX

k=1

mk
˙Q(t)
⇣
xk(t) � vk

�
Q(t), t

�⌘
. (4.33)

At this stage we take into account some common transformations, i.e., time trans-
lation, space translation and space rotation, in order to discuss the corresponding
conserved quantities. After a brief summary concerning the quantity I0, simple
considerations will allow us to recognise that no constants of motion correspond
to the symmetries of our action functional as regards the evolution of the Bohm
coordinates.

4.2.1 Constants of motion for isolated systems

In this subsection, we consider explicitly the constants of motion I0 of Eq. (4.32)
and I1 of Eq. (4.33) for isolated systems. In particular we refer to the time trans-
lation, space translation and space rotation since they satisfy the constraint of
Eq. (4.23). On the one hand, one can easily prove that both the functionals are
left invariant with respect to time translation. On the other hand, J0[R, S] is in-
variant under space translation and rotation if the potential V (q) has the same
symmetries. As a matter of fact, molecular system are considered as an ensemble of
particles whose interactions are described by a potential that depends only on the
distance between the particles. In this case, space translations and rotations leave
this kind of potential unchanged. It has to be emphasised that this in the natural
condition of isolated systems.

As regards the wave function dynamics described according to the functional
J0[R, S], it is well known that the expectation values of the Hamiltonian operator,
total linear momentum operator, and total angular momentum operator are con-
served. By using the definition of I0 in Eq. (4.32) it can be formally verified that
the constants of motion corresponding to the time translation, space translation,
space rotation are specified by the following expectation values

h (t)| ˆH| (t)i , h (t)| ˆP�| (t)i , h (t)|ˆL�| (t)i , (4.34)
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where ˆP� and ˆL� for � = (x, y, z) are the cartesian components of the total linear
momentum operator and the total angular momentum operator respectively. Since
the procedure for proving such a result is rather straightforward once each trans-
formation is represented according to Eq. (4.21), it is not reported here. For more
details, one could examine the the work of Benci (2009).

As regards the Bohm trajectory, the infinitesimal generators for these three trans-
formations are characterised by the following conditions:

s
�
Q(t), t

�
= 0, (4.35)

xk(t) = vk
�
Q(t), t

�
, (4.36)

for any time t. Equation (4.35) holds because we are not examining a transformation
of the variational variable S(q, t), but only of time and space. Furthermore, the
infinitesimal generators xk and vk have to be the same because the Bohm coordinates
must transform as the configuration space (Eq. (4.36)). Under these conditions, the
constants of motion corresponding to the Bohm trajectory, that is I1 of Eq. (4.33),
vanish

I1 = 0, (4.37)

for any of the previously mentioned transformations.
This result implies that these important symmetries do not correspond to any

constant of motion for the evolution of the Bohm coordinates, whereas they lead
to the time independence of well defined expectation values as regards the wave
function evolution.

4.3 Final remarks

In this chapter, we have investigated the constants of motion during the time
evolution of a quantum system according to the single Bohm trajectory approach. To
this aim, we have developed a variational formulation of Bohm theory and we have
employed the Noether’s theorem (both the standard formulation and a generalisation
proven by us) in order to correlate the constants of motion to the symmetries of the
system and of the action functional. It has to be emphasised that the existence
of a variational formulation of Bohm theory was not known and we succeeded in
defining the suitable action functional. Furthermore, we have verified that the time
independent expectation values are still conserved quantities also in the framework
of Bohm theory, since the wave function is independent of the Bohm trajectory. On
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the other hand, no constants of motion are determined by the symmetries of our
action functional associated to the Bohm coordinates. In conclusion, the Noether’s
theorem does not allow the identification of conserved quantities during the time
evolution of the Bohm coordinates.



CHAPTER 5

Single molecule vibrations

Despite the undeniable advantage of Bohm theory to describe the molecular mo-
tion in a quantum framework, it is still little known in Chemistry. To the best of
our knowledge, only few attempts of representing the electronic motion in atoms
through quantum trajectories are reported in literature [Colijn and Vrscay (2004,
2002, 2003)], in addition to the studies of wave packet dynamics as models of reac-
tivity pathways [Zhang (1999); Wyatt and Zhang (1996)]. Therefore, questions like
“which is the motion of a molecule?” or “what is it happening to a molecule during a
transition between two quantum states?” have not received any answer yet. One can
easily predict the average motion by employing the configurations ensemble: since
the average value of a coordinate at time t corresponding to a particular degree of
freedom qj is equal to its expectation value by Eq. (2.12) with B(q̂) = q̂j, it can be
computed by standard methods. However, this simple approach is too limited and
does not exploit completely the potentialities of Bohm theory: it does not supply
any kind of information about the behaviour of a molecule in a single system real-
isation, with a particular initial configuration. In other words, the characterisation
of the molecular motion based on a single Bohm trajectory is totally absent in liter-
ature. Its importance lies on the common idea that the atomic components (nuclei)
of molecules have precise spatial positions.

Therefore, the characterisation of the molecular motion with the single Bohm tra-
jectory approach is extremely worthwhile in Chemistry because of the possibility to
develop new paradigms about the molecular behaviour that do not rely on Classical
Mechanics. Consider for example the molecular vibrations: by employing the model

79
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of the harmonic oscillator, chemists are brought to explain the zero-point energy
in terms of residual motion also at the temperature of the absolute zero. However,
this interpretation is totally unjustified by Quantum Mechanics: the nuclei motion
is indescribable in Quantum Mechanics since the time evolution of the nuclear posi-
tions is unpredictable. Only by using Classical Mechanics, that takes into account
the instantaneous positions, the non-zero expectation values of the kinetic energy
and the total energy can be interpreted as evidences of the underlying movement,
i.e., the molecular vibration. However, the single Bohm trajectory approach allows
a check of this interpretation in the framework of a pure quantum theory of motion.

For this purpose, the examination of the motion of a single isolated molecule
can be useful. Even if the common chemical systems are composed of a number of
molecules of the order of an Avogadro’s number, the properties of single molecules
or even single atoms predicted by Quantum Mechanics (through common ab ini-
tio calculations) have been widely employed to interpret, describe and predict the
properties, including the reactivity, of complex chemical systems [Schatz and Ratner
(2002); Jensen (2013); Szabo and Ostlund (2012)].

The same idea can be adopted for Bohm theory by investigating the molecular
behaviour in simple cases of chemical interest, such as a single isolated molecule. In
particular we examine the vibrational motion. If the vibrational degrees of freedom
are well described by the corresponding ground state, the vibrational coordinates are
unexpectedly at rest: all the nuclei are motionless (as it will be examined with more
details in Sec. 5.1). It is obvious the great difference between this prediction and
our image about the molecular behaviour. Nevertheless, the absence of molecular
vibrations for a molecule in the ground state is exactly the Bohm prediction unlike
what is expected by employing a classical interpretation of the zero-point energy:
the idea of a residual motion due to the zero-point energy can be justified only in
the framework of Classical Mechanics, by interpreting the non zero kinetic energy
as the evidence of underlying moving particles. On the other hand, the ground state
corresponds to the condition of a molecule at the temperature of the absolute zero,
i.e., a “frozen” molecule, that can be easily imagined with static nuclei independently
of the zero-point energy. In order to “defrost” the molecule, a vibrational transition
induced by an external electric field can be employed. It can be shown that, once
the molecule is excited, it vibrates and the vibration is conserved in time.

In this chapter the vibrational motion induced by an external field will be exam-
ined and described according to the single Bohm trajectory approach. This example
has to be considered as the first attempt of describing the molecular motion, i.e., the
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time dependence of the vibrational coordinates of a single molecule, in the framework
of a quantum theory. In particular, we aim to supply an “incisive” representation
of this phenomenon in order to push the boundaries of the quantum trajectory de-
scription by including the spectroscopic information. In other words, we would like
to answer this question: what is happening to the molecular system throughout
the experiment in terms of molecular motion? The focus of our attention will be
on the nuclear motion for its importance concerning the reactivity of molecules: a
reaction is the movement of some nuclei from a molecule to another by definition.
First of all, we present the general methodology employed to correlate the features
of an external field to the motion predicted according to Bohm theory in Sec. 5.1
and a simple example in Sec. 5.2. Secondly, the method will be used to describe
the motion corresponding to the vibrational transition of diatomic and polyatomic
molecules in terms of a single Bohm trajectory in Sec 5.3. In order to examine
the motion of molecules some approximations have to be imposed. In particular,
we employ a simplified representation of the eigenstates of the molecular Hamilto-
nian. For this reason, also the predicted motion will be a accurate representation of
the real one, but it should conserve the main features according to the rationality
of the approximations. Finally, it has to be emphasised that our methodology is
not only helpful for describing the molecular motion, but also for highlighting some
unexpected behaviours.

5.1 Perturbation approaches for the Bohm trajectory

It is well known that approximated methods, such as perturbation methods,
were developed in the last century in order to describe the wave function dynamics
when the quantum system is interacting with external fields. [Cohen-Tannoudji et al.
(1977b)]. In the following, we present a quite straightforward way to transfer the
effects of the external field from the wave function to the Bohm trajectory. We
would like to emphasise that our approach is the first attempt of representing the
molecular motion of perturbed quantum systems with Bohm theory.

The problem of describing the motion of a single molecule in terms of a Bohm
trajectory and in the presence of an external field can be formulated as in the
following. If the dynamics of the Bohm quantum state

�
Q(t), (q, t)

�
induced by

the zeroth-order Hamiltonian ˆH(0) (molecular Hamiltonian) is known, how does the
trajectory change if the total Hamiltonian,

ˆH =

ˆH(0)
+ � ˆH(1)

(t), (5.1)
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is the sum of two contributions ˆH(0) and ˆH(1)
(t)? The Hamiltonian ˆH(1)

(t) is time
dependent unlike the time independent zeroth-order one ˆH(0) and it describes for-
mally the interaction with the external field. The parameter � is usually set to
unity, but it can be employed to define contributions of different orders due to the
external Hamiltonian ˆH(1)

(t) to the wave function.

Furthermore, we will focus on a chemically significant case: the dynamics of a
system interacting with a sinusoidal resonant perturbation, i.e, an oscillating electric
field, that is represented by the Hamiltonian operator

ˆH(1)
(t) = ˆW sin(!t)⇥(t), (5.2)

where ⇥(t) is the step function that ensures the introduction of the perturbation for
t > 0; ! is the frequency of the external oscillanting field; ˆW operator is specifying
according to the dipole moment operator µ̂ multiplied by the amplitude of the
electric field, ˆW = �µ̂E . Usually the effect of this perturbation is interpreted as the
transition between a pair of zeroth-order eigenstates having an energy difference �E

satisfying the resonance constraint, �E = !~. Additionally, only the transition from
the zeroth-order ground state |'gi

⇣
ˆH(0) |'gi = Eg |'gi

⌘
to a given k-th zeroth-order

excited state |'ki
⇣
ˆH(0) |'ki = Ek |'ki

⌘
will be taken into account. Indeed, it is

well known that the vibrational transitions of molecules can be reasonably described
by including in the analysis only two states of the vibrational Hamiltonian: one
can suppose that the vibrational degrees of freedom are in the ground state when
the system is isolated and only the perturbation causes the transition to a precise
excited state. The justification lies on the negligible populations of the excited states
according to the Boltzmann distribution as long as the thermal energy is insufficient
to populate them.

Our purpose consists in determining the coordinates evolution, that is the Bohm
trajectory, by considering the effects due to the external perturbation on a sys-
tem initially in the ground state. In this way, one can represent the motion of
the molecule during an excitation process completely within a quantum framework,
instead of describing the excitation process with Quantum Mechanics and the corre-
sponding motion with Classical Mechanics (or suitable semiclassical approximation).
The method developed by us is presented in this section by considering a generic
transition from |'gi to |'ki of one-dimensional system, whereas the application to
molecular systems will be investigated in Sec. 5.3.
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We propose to express the Bohm velocity field, labeled with a compact notation

⇤C(q, t) := m�1rS(q, t), (5.3)

by employing the wave function, or the corresponding corrections, determined through
the standard perturbation methods once the system begins to interacts with the ex-
ternal field. Then, once the velocity field is known, the trajectory has to be computed
by integrating the resulting Bohm equation. Notice that our idea consists in correct-
ing the velocity field, and consequently the Bohm equation, instead of the trajectory
directly. In this way, it is possible to exploit methodologies that are well known in
literature, i.e., the perturbation methods, in order to solve the Schrödinger equation
approximately. Once the wave function has been obtained, then the Bohm velocity
field is immediately defined through Eq. (2.5). In particular two different approaches
have been developed. The first one uses a perturbation method originally designed
for the description of the spin dynamics in the presence of a static magnetic field
and interacting with an oscillating perturbation [Pake (1950a,b)], e.g., an EPR or a
NMR experiment. This method allows the calculation of the wave function over a
long time domain by assuming that the magnitude of the external field is lower that
the zeroth-order Hamiltonian. In this way also the velocity field is known over a
long time window. The second strategy employs the standard perturbation method
which finds many applications in Chemistry. Such a procedure leads to corrections
of the wave function of the isolated system and of the velocity field as well. In
practice, it becomes convenient only when the corrections of the lower order well
represent the underlying dynamics. However, in this case one recovers an accurate
representation of the dynamics only within a limited time interval: the width of the
time window is strictly dependent of the number of correction terms considered. For
this reason, the first approach is more advantageous since it does not restrict the
examined time window. In the following, both these two methods are presented and
their predictions are compared.

Long time perturbation approach. The first perturbation method solves the
Schrödinger equation with the Hamiltonian of Eq. (5.1) and the external field of
Eq. (5.2) by supposing that the initial wave function is the zeroth-order ground
state | (0)i = |'gi and the external field causes the resonance between two zeroth-
order eigenstates only. In other words, it describes the dynamics of two levels in
resonance because of the interaction acting as a perturbation. Consider for example
a Morse oscillator and the condition ! = !1,g = (E1�Eg)/~ where E1 is the eigenen-
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ergy of the first excited state. This constraint ensures that the perturbation causes
only the transition from the ground state to the first excited state (k = 1). All
the other pairs of zeroth-order eigenstates are characterised by energy separations
!k0,k 6= !1,g. Therefore, the wave function dynamics concerns the eigenstates |'1i
and |'gi only. The same does not apply to the Harmonic oscillator: the frequency !
that induces the k : 0 ! 1 transition will induce also the transition k : 1 ! 2, once
the first excited state is populated enough. Then it will induce also the k : 2 ! 3

when the second excited state is populated enough and so on. Since the effects of
the perturbation involve more than two zeroth-order eigenstates, the approximate
solution of the Schrödinger equation obtainable with this approach is not valid. On
the other hand, the vibrational spectrum of molecules is anharmonic and the proce-
dure can be safely employed. Therefore, by assuming that the constraint described
above is satisfied, the resulting wave function of the system can be specified as

 (q, t) =

q
Pg(t)e

�ı!
g

t'g(q) +

q
Pk(t)e

�ı!
k

t'k(q), (5.4)

where
�
'g(q),'k(q)

�
are the eigenfunctions of ˆH(0) involved in the transition and�

Pg(t), Pk(t)
�

are the populations of the zeroth-order ground state and of the k-th
zeroth-order excited state respectively,q

Pg(t) = cos

✓
Wk,g

2~ t

◆
,

q
Pk(t) = sin

✓
Wk,g

2~ t

◆
, (5.5)

with Wk,g = h'k| ˆW |'gi. The time dependence of the populations in Eq. (5.5) is
derived by means of the perturbation method summarised in Appendix A, where
we take into account also the case of ! ' !k,g. It should be mentioned that the
phenomenology does not change significantly if the resonance condition is not strictly
satisfied. By examining Eq. (5.5), one can interpret the effects of the external field
in terms of induced excitation and induced de-excitation. Indeed, the populations of
the two states involved in the transition are characterised by an opposite dynamics:
initially the population of ground state decreases while the population of excited
state rises. Once the excited state is totally populated Pk = 1 (Pg = 0), the
field induces the de-excitation: the population of ground state increases and the
population of excited state is reduced. These two processes happen repeatedly as
long as the system interacts with the oscillating field for Wk,g 6= 0, with the matrix
element Wk,g representing exactly the coupling strength between the system and
the external field. In this regard, the assumption that the extern field represents a
perturbation for the system means formally that Wk,g/2~ ⌧ !k,g.
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Furthermore, by substituting the wave function of Eq. (5.4) into the Bohm equa-
tion, Eq. (2.5), a well-defined velocity field is obtained over a long time interval:

⇤C(q, t) = ~m�1

p
Pg(t)Pk(t) sin(!k,gt)

h
'kr'g � 'gr'k

i
Pg(t)('g)

2
+ Pk(t)('k)

2
+ 2

p
Pg(t)Pk(t)'g'k cos(!k,gt)

�����
q=Q(t)

.

(5.6)
In principle information about the motion could be inferred from Eq. (5.6) without
solving it neither analytically nor numerically, but through a qualitative analysis.
By neglecting the time dependence of the denominator of Eq. (5.6), one can suppose
that the periodic time dependence of the sine factor of the velocity field produces an
oscillating behaviour of the trajectory. Furthermore, one should take into account
the time dependence of

p
Pg(t)Pk(t) which will produce a modulation of the oscil-

lations. In particular the amplitude vanishes when one of the pair of eigenstates is
not populated (Pg = 0 or Pk = 0) and the system is motionless (⇤C(q, t) = 0). The
resulting trajectory will not be a simple modulated oscillation because of the coor-
dinate dependence of both the numerator and of the denominator. However, one
expects that the exact motion does not differ too much from the previous picture.

The second approach for determining the Bohm trajectory under the influence
of an external field is less direct than the previous one. Even if its predictions are
limited over a short time interval, the calculation of the corrections to the Bohm
velocity field requires a more complex elaboration. However, it has to be emphasised
that this second approach can be extended also to a generic perturbation and a
generic transition unlike the previous one that is limited to the resonance between
two zeroth-order states.

Short time perturbation approach. We propose to express the Bohm velocity
field, Eq. (5.3), as a series of corrections to the zeroth-order one ⇤(0)

C (q, t) corre-
sponding to the Bohm equation in absence of an external field:

⇤C(q, t) = ⇤
(0)
C (q, t) +

+1X
p=1

�p⇤
(p)
C (q, t). (5.7)

where p is the order of the correction and � is the parameter of the expansion. In
case of absence of the external field. The direct connection between the velocity field
and the wave function through Eq. (2.5) allows a straightforward definition of each
p-th order of correction of the velocity field. According to perturbative methods, the
wave function for a system with the Hamiltonian operator of Eq. (5.1) is expressed
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as a series of corrections to the zeroth-order one  (0)
(q, t),

 (q, t) =  (0)
(q, t) +

+1X
p=1

�p (p)
(q, t), (5.8)

where  (0)
(q, t) = hq| exp(�ı ˆH(0)t/~)| (0)i. The velocity field ⇤C(q, t) is defined

through Eq. (2.5) by employing the wave function of Eq. (5.8) and the p-th correction
order to the velocity field is equal to

⇤

(p)
C (q, t) =

@p⇤C(q, t)

@�p

����
�=0

. (5.9)

For a complete derivation of (p)
(q, t) see for instance Cohen-Tannoudji et al. (1977b)

or McQuarrie and Simon (1997).

If the magnitude of ˆH(1) is smaller than the magnitude of ˆH(0) and the focus is
on the first steps of the time evolution, only few terms of the two series reported
respectively in Eq. (5.7) and Eq. (5.8) are sufficient to represent accurately the
dynamics. The zeroth-order ⇤(0)

C (q, t) and the first-order ⇤(1)
C (q, t) correction of the

velocity field can be expressed by using the zeroth-order  (0)
(q, t) and the first-order

 

(1)
(q, t) correction of the wave function,

⇤

(0)
C (q, t) = ~m�1Im

(
 

(0)⇤
(q, t)r (0)

(q, t)

| (0)
(q, t)|2

)
, (5.10)

⇤

(1)
C (q, t) = ~m�1Im

(
r
"
 

(1)
(q, t)

 

(0)
(q, t)

#)
. (5.11)

In this way the initial steps of the trajectory of the system in the presence of the
external field ˆH(1)

(t) is determined through integration of

d

dt
Q(t) =

h
⇤

(0)
C (q, t) + ⇤

(1)
C (q, t)

i
q=Q(t)

(5.12)

Notice that the definitions of the velocity field corrections reported in Eq. (5.9)
hold for every external Hamiltonian ˆH(1)

(t) and every zero order wave function
 

(0)
(q, t) since  (p)

(q, t) is defined for every ˆH(1)
(t) and  (0)

(q, t). However, as
previously stated, our interest concerns the specific case of exciting a system initially
in the ground state through the interaction with an oscillating electric field with a
given frequency, such as the one of Eq. (5.2). In this case the motion is totally
determined by the transition induced by the external field. By assuming that the
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system is initially in the ground state, the zeroth-order wave function  (0)
(q, t) =

exp(�ıEgt/~)'g(q) does not drive the particles: ⇤(0)
C (q, t) = 0 since the eigenfunction

of the a ground state is real function ('g : R ! R) and therefore the phase of the
wave function is coordinate independent. In other words, the zeroth-order system is
characterised by the absence of motion. The motion is induced only by the transition
due to the interaction with the field. Formally this means that only ⇤(1)

C (q, t) is
essential in order to determine the trajectory and it is equal to

⇤

(1)
C (q, t) = � ~

m

p
Pk(t) sin(!k,gt)

d

dq

'k(q)

'g(q)
, (5.13)

where Pk(t) is the first order population of the excited state,

p
Pk(t) =

Wk,g

2~ t =
h'k| ˆW |'gi

2~ t. (5.14)

Notice that for this case, the first-order approximation of the wave function holds
until t ⌧ 2~/Wk,g: it is valid as long as the excited state is much less populated
than the ground state (

p
Pk ⌧ 1). The velocity field ⇤(1)

C (q, t) of Eq. (5.13) has
been obtained by substituting in Eq. (5.11) the wave function for the isolated sys-
tem  

(0)
(q, t) = exp(�ıEgt/~)'g, and the result of the first order perturbation,

 

(1)
(q, t) =

p
Pk(t) exp(�ıEkt/~)'k. In consequence of the absence of motion in

the absence of the external field, ⇤(0)
C (q, t) = 0, Eq. (5.12) can be simplified to

d

dt
Q(t) = ⇤

(1)
C (q, t)

����
q=Q(t)

. (5.15)

Again information about the motion could be inferred from Eq. (5.15) and Eq. (5.13)
through a qualitative analysis of the differential equation. For the same reasons
previously explained, one can suppose that the sine factor in the velocity field cor-
responds to an oscillating motion. In parallel, the linear increase of

p
Pk(t) in

Eq. (5.15), usually interpreted as the excitation of the system, causes an almost
linear increase of the amplitude of the oscillation. However, the motion should not
be exactly an oscillation because of the coordinates dependence of the velocity field.

Finally, we would like to stress that this second approach can be derived directly
from Eq. (5.6). First of all one can use an expansion of ⇤C(q, t) of Eq. (5.6) with
respect to

p
Pk(t) up to the first order. The justification is that

p
Pk(t) ⇠ 0

during the first steps of the dynamics. Then, the time dependence of
p
Pk(t) can be

further approximated according to Taylor series,
p
Pk(t) ' Wk,gt/2~. In this way,
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one can get Eq. (5.14) from Eq. (5.5) and Eq. (5.13) represents a special case of
Eq. (5.6). The simplification

p
Pk(t) ' Wk,gt/2~ is satisfactory for times such that

Wk,gt/2~ ⌧ 1. Therefore, one can understand why the second approach describes
the dynamics over a short time interval only.

Both the methodologies presented above are employed in Sec. 5.2 in order to de-
scribe the coordinate evolution of a simple quantum system, i.e., a Morse oscillator.
First of all, we consider the predictions based on the second approach for short time
interval. Then, the dynamics described by the more general approach over a long
time window is examined and compared. The results obtained for the Morse model
are then used also to describe successfully the case of molecular motion induced by
a vibrational transition in Sec. 5.3 by employing, because of its greater generality,
only the first perturbation approach.

5.2 Morse Oscillator

The Morse oscillator is a well known unidimensional quantum system [Morse
(1929); Dahl and Springborg (1988)] characterised by the following zeroth-order
Hamiltonian

ˆH(0)
=

~
2m

r2
+De(1 � e�aq

)

2, (5.16)

where De and a are the parameters of the Morse potential that is reported in Fig. 5.1.
The well depth defined with respect to the value of the potential in the limit of q !
+1 is represented by De and a corresponds to the “width” of the potential (smaller
value of a means larger well of the potential). Since the Morse potential reproduces
to a good approximation the internuclear potential of a diatomic molecule, the
Morse eigenstates are a good model for the vibrational eigenstates of such a type of
molecules (for example hydrogen chloride) and the corresponding Bohm coordinate
Q(t) can be interpreted as the internuclear distance, but this interpretation will be
discussed in more detail in Sec. 5.3. For the purpose of this section the coordinate
Q(t) is simply the position of the Morse oscillator.

Let us consider the Morse oscillator with De = 4.61 eV, a = 1.89 · 10�4 Å�1

and m = 0.98 Da (the reasons of such a choice will be motivated in Subs. 5.3.1).
The trajectory of the coordinate during a transition is determined by both the
magnitude of the field and the system properties (such as the eigenvalues of ˆH(0)

and the transition dipole moment). Suppose that the external field, with magnitude
E = 3 · 107 V m�1, causes the transition from the ground state to the first excited
state (! = !1,g) and that the transition dipole moment µ1,g is equal to 6.7 · 10�2 D
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Figure 5.1: Morse potential characterised by the parameters D
e

= 4.61 eV and a = 1.89 · 10�4 Å�1. The
black straight lines identifies the eigenvalues of each eigenstate with respect to the Morse
potential.

(see Subs. 5.3.1 for the explanations of the choice of µ1,g). The magnitude of E is
approximately the greatest one such that the interaction with the external field can
be classified correctly as a perturbation (W1,g/2~ ⌧ !1,g).

Under the above specified conditions, the Bohm coordinate begins to move when
the external field is activated and the corresponding trajectory Q(t) is determined
over a short time interval by integrating Eq. (5.15). The trajectory reported in
Figure 5.2 is obtained under the assumption that the initial position Q(0) is of the
bottom of the Morse potential, Q(0) = 0 Å. The trajectory has been determined by
numerically solving Eq. (5.15). We adopted the 4-th order Runge-Kutta algorithm
in order to solve the approximate Bohm equation [Press et al. (2007)]. The main
features of the trajectory can be observed in Fig. 5.2 and they are analogous to those
inferred through the qualitative analysis of the differential equation: the coordinate
oscillates with an amplitude that linearly increase in time. The frequency of the
oscillation corresponds exactly to the resonance frequency !1,g that in this case is
approximately equal to 0.57 fs�1: every t/⇡ = 1/! = 1.75 fs the coordinate Q(t)

inverts the direction of the motion. If the frequency ! of the external field does
not satisfy exactly the resonance condition, only the amplitude of the oscillation is
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Figure 5.2: Time evolution over a short time interval of the Bohm coordinate corresponding to the Morse
degree of freedom, during the transition between the ground and the first excited state. The
trajectory has been determined by integrating Eq. (5.15).

influenced, p
Pk(t) =

Wk,g

2~
sin

�
(!k,g � !)t/2

�
(!k,g � !)/2

, (5.17)

but the motion conserves its own frequency !1,g that depends on the energy difference
between the zeroth-order states involved in the transition (see for instance Cohen-
Tannoudji et al. (1977b) for the explanation of Eq. (5.17)). Furthermore the different
time dependence of

p
Pk(t), described by Eq. (5.17) instead of Eq. (5.14), has no

substantial effect on the motion: if ! is close to the resonance condition,
p
Pk(t)

evolution is characterised by a very small frequency and it is well approximated by
a linear increase. Finally, notice that the configuration dependence of the first-order
velocity field ⇤(1)

C (q, t) for the considered transition (Eq. (5.15)) does not influence
significantly the motion over the time window examined in Fig. 5.2: the motion is
fundamentally an oscillation. This kind of motion is representative of the dynamics
until the population of the excited state is negligible with respect to the population
of the ground state: P1 ⌧ P0. The time interval reported in Fig. 5.2 satisfies
this restriction: at t/⇡ = 100 fs the population of the first excited state can be
determined by Eq. (5.14) and one can easily verify that

p
P1 ' 1.6 · 10�3.

The amplitude of the oscillation is conserved if the interaction with the external
field is interrupted. As previously specified in the qualitative analysis of the ap-
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Figure 5.3: Time evolution over a short time interval of the Bohm coordinate corresponding to the Morse
degree of freedom, during and after the perturbation. The red line represents the evolution
in the presence of the field. The green line represents the evolution when the external field is
switched off. The red section of the trajectory has been determined by integrating Eq. (5.15).

proximated Bohm equation, the amplitude increase corresponds to the population
increase of the excited state. Therefore, when the irradiation is switched off, the
populations of the two states involved in the transition do not change anymore and
the Bohm coordinate oscillates with constant amplitude. Figure 5.3 shows the time
evolution of the Morse oscillator previously considered in Fig. 5.2, but interrupting
the interaction with the external field at t/⇡ = 80 fs. Obviously, the system is iso-
lated again once it does no more interact with the external field. This means that the
Schrödinger equation and the Bohm equation can be solved exactly once the wave
function and the configuration at moment of the interruption of the perturbation
are known. Therefore, the green section of the trajectory reported in Fig. 5.2 has to
be considered the correct trajectory and this kind of oscillation is conserved as long
as the system Hamiltonian is provided only by ˆH(0). It has to be emphasised that
a periodic motion, i.e., a nearly perfect oscillation, is unexpected by examining the
Bohm equation, (see for example Eq. (5.6) for constant population for the absence
of the field). Indeed, the structure of the Bohm equation does not lead to a simple
explanation of this particular behaviour because of the coordinate dependence of
the velocity. Therefore, it should be considered just as a “numerical” evidence.

In the time interval examined above the motion is confined around the initial
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configuration. Even if the external field “defrosts” the Morse oscillator, its displace-
ment is only about 0.002 Å to be compared with a width of a Morse potential such
that of Fig. 5.1.

One can use the first perturbative method above described and summarised in
Eq. (5.6) to determine the evolution of the Morse oscillator interacting with the
external field over a long time window. Indeed the rational independence of the
Morse eigenvalues ensures that a resonance frequencies between the possible pairs
of eigenstates are different, so fulfilling the constraint for employing Eq. (5.6). The
integration of Eq. (5.6) with Q(0) = 0 Å is displayed in Fig. 5.4 for a short time
window, and in Fig. 5.5 for a longer time interval. By comparing qualitatively
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Figure 5.4: Time evolution over a short time interval of the Bohm coordinate corresponding to the Morse
degree of freedom, during the transition between the ground and the first excited state. The
trajectory has been determined by integrating Eq. (5.6).

Fig. 5.4 and Fig. 5.2, one can observe that the two perturbative methods supply the
same picture of the motion for the fist steps of the dynamics: the Bohm coordinate
oscillates with increasing amplitude. This result confirms the validity of Eq. (5.13)
in order to describe the evolution of the system until P1 ⌧ Pg. On the contrary,
the behaviour over a long time interval (see Fig. 5.5) is an oscillation with ampli-
tude modulated in time in accord with the qualitative analysis reported in Sec. 5.1.
The profile of Fig. 5.5 is composed of many oscillations with a very short period
in comparison of the displayed time window so that they can not be recognised in
the figure. The amplitude changes approximately from 0 Å to 0.17 Å with a much
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Figure 5.5: Time evolution over a long time interval of the Bohm coordinate corresponding to the Morse
degree of freedom, during the transition between the ground and the first excited state. The
trajectory has been determined by integrating Eq. (5.6).

larger displacement than the one previously discussed and shown in Fig. 5.2. As
expected, the amplitude vanishes when only one eigenstate involved in the transition
is populated. In other words, the coordinate is at rest when the wave function is a
stationary state (either the ground state or the first excited state). This occurs when
W1,gt/2~ = n⇡/2 with n 2 N according to Eq. (5.5). By taking into account the val-
ues of the transition dipole moment and of the field magnitude (µ1,g = 6.7 · 10�2 D,
E = 3 · 107 V m�1), one derives that the motion amplitude vanishes and the coordi-
nate is at rest at t/⇡ ' 0 ps (Pg = 1), 16 ps (Pk = 1), 32 ps (Pg = 1), 48 ps (Pk =

1), 64 ps (Pg = 1), 80 ps (Pk = 1), 96 ps (Pg = 1).

This behaviour appears unexpected according to the common interpretation of
a vibrational transition. Moreover, it could seem unreasonable as long as the effect
of an energy transfer is that of “freezing” the degree of freedom. Actually, it can be
explained and it is not unreasonable even in the framework of Classical Mechanics.
Let us consider a classic rigid rod pendulum. As a matter of fact, the pendulum is
characterised by two different equilibrium configurations, i.e., the two vertical ori-
entations, corresponding to different values of energy. One can think of pushing the
pendulum from one equilibrium condition to the other and consequently of increas-
ing its energy. Similarly, the Hamiltonian eigenstates represent the corresponding
equilibrium conditions in the framework of Bohm theory (they can be interpreted
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as mechanical equilibriums according to the comparison with the pendulum). The
transition from the ground state to an excited state is simply the transition from
one equilibrium to another. When the new equilibrium condition is reached, the
system is again at rest.

On the other hand, the particle position changes in time when the wave func-
tion is a linear combination of different eigenstates. The features of the motion are
determined by both intrinsic properties of the oscillator and the coupling between
the system and the external field. The energy difference between the eigenstates in-
volved in the transition establishes the frequency of inversion of the motion, whereas
the coupling, described by the matrix element W1,g = µ1,gE , determines the time
scale of the amplitude modulation. Another intrinsic feature is highlighted by the
asymmetry of the motion with respect to the bottom of the Morse potential. The
displacement is larger along the direction in which the potential slowly rises (q > 0 Å
as displayed in Fig. 5.1) than the direction in which the potential soars (q < 0 Å as
displayed in Fig. 5.1). This is caused by the asymmetry of the eigenfunctions 'g(q)

and 'k(q) with a corresponding larger probability of finding the particle on the right
side of the well.

When the interaction with the external field is interrupted, the populations do
not change any more and the amplitude is conserved. The motion during the tran-
sition process and when the Morse oscillator is not interacting with the external
field is shown in Fig. 5.6. By comparing Fig. 5.3 and Fig. 5.6, one can easily under-
stand that the amplitude of the motion after the end of the perturbation is strongly
dependent on the time of the switched off of the external field according to the
values attained to the populations Pg and Pk. When the wave function is almost an
eigenstate (either Pg ⌧ Pk or Pg � Pk), the amplitude is very small. Conversely,
a wide amplitude corresponds to almost equal values of the populations Pg ' Pk.
In any case, the motion becomes nearly a stationary oscillation after the switched
off of the perturbation. We would like to recall that this simple behaviour, i.e., a
nearly perfect oscillation, can not be derived directly from the formal structure of
the Bohm equation because of the spatial dependence of the velocity field: despite
the complexity of the equation of motion the numerical calculation shows that the
resulting trajectory is quite simple. One can reasonably think that the displacement
of the coordinate is too much limited around the initial position to display the effects
of the coordinate dependence of the velocity field. Because of the difficulties con-
cerning the analytical investigation of the Bohm equation, we propose to consider
this oscillating behaviour as an “numerical” evidence of the motion features.
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Figure 5.6: Time evolution over a long time interval of the Bohm coordinate corresponding to the Morse
degree of freedom, during and after the perturbation. The red line represents the evolution
when the system is interacting with the external field, while the green line represents the
trajectory in the absence of the field. The red section of the trajectory has been determined
by integrating Eq. (5.6).

It has to be emphasised that the all trajectories reported above describe the evo-
lution of the Bohm coordinate from the bottom of the Morse potential, that means
Q(0) = 0 Å. Different trajectories evolve from different initial configurations. For
instance, Fig. 5.7 displays three trajectories that depart from the initial configura-
tions Q(0) = 0 Å, Q(0) = 0.5 Å, Q(0) = �0.5 Å when the same Morse oscillator
(De = 4.61 eV, a = 1.89 · 10�4 Å�1) is excited from the ground to the first excited
state. The red trajectory of Fig. 5.7 is the same of Fig. 5.5. In all cases, the dy-
namics is represented by an oscillation at the resonance frequency with modulated
amplitude. However, it is evident that the trajectories initially at Q(0) = ±0.5 Å
display some unexpected features. First of all, the trajectories do not pass through
the bottom of the Morse potential. This phenomenon is totally at odds with Classi-
cal Mechanics in which case one expects the periodic displacement from the region
of larger potential energy to lower potential energy and in particular to the potential
minimum. However, it has to be recalled that in the case of Bohm trajectory the
motion is driven by the wave function which acts as the pilot wave. Consequently the
Bohm trajectory can be deeply different from the classical trajectory. Furthermore,
the Bohm phenomenology can be explained by employing the quantum potential
U(q, t) defined in Eq. (2.4). As explained in Chap. 2, the Bohm trajectory is also
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Figure 5.7: Time evolution over a long time interval of the Bohm coordinates corresponding to the Morse
degree of freedom, during the transition between the ground and the first excited state. The
trajectory has been determined by integrating Eq. (5.6) for three different initial configurations:
Q(0) = 0 Å (red line), Q(0) = 0.5 Å (green line) and Q(0) = �0.5 Å (blue line).

solution of a pseudo Newton equation with a force deriving from the gradient of
both the Morse potential and the quantum potential U(q, t). Regarding the Morse
oscillator system, one can suppose that the contribution of the quantum potential
leads to an overall potential having further minima besides that of the Morse poten-
tial. This can explain the unconventional confinement of the trajectories of Fig. 5.7
with Q(0) = ±0.5 Å.

The amplitude modulation changes strongly depending on the initial configura-
tion. In particular, it can be observed from Fig. 5.7 that the average amplitude of
the trajectory started from the bottom of the potential is larger than the average
amplitude of the two others. It is the configuration dependence of the velocity field
⇤C(q, t) of Eq. (5.6) that causes this difference. Around the values of q = ±0.5 Å
the magnitude of the eigenfunctions corresponding to the ground and the first ex-
cited state is small, since the Morse potential at those coordinates is greater than
the energy of the two eigenstates (see Fig. 5.1). Therefore, the coordinate oscillates
in a classically forbidden region and its displacement is limited around the initial
configuration. One can suppose that those additional minima of the quantum poten-
tial have a shape such that the motion is strictly confined. Moreover, the quantum
potential does not allow the escape of the particle from the classical forbidden region.
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Figure 5.8: Time evolution over a short time interval of the Bohm coordinate corresponding to the Morse
degree of freedom during the transition between the ground and the second excited state. The
trajectory has been determined by integrating Eq. (5.6).

We would like to emphasise two features of the single Bohm trajectory approach.
First of all, it allows the investigation of the evolution of the system for each pos-
sible initial configuration unlike the Bohm ensemble deriving from the sampling of
Q(0) according to the initial wave function. The evolution of a particular initial
configuration, that is a particular system realisation, can be examined only in the
framework of a single Bohm trajectory approach. Secondly, the single Bohm trajec-
tory approach is not only suited to representing atomic motion in molecules, but it
leads also to unexpected dynamical processes, like those displayed in Fig. 5.7.

Finally one can also investigate the case of a different transition. The same
Morse oscillator system (De = 4.61 eV, a = 1.89 · 10�4 Å�1) can be employed to
study the transition from the ground to the second excited state by using an external
oscillatory field with frequency ! = !2,g. In this case we assume that the transition
dipole moment µ2,g is 7.03 · 10�3 D (see Subs. 5.3.1 for details). The trajectory
for Q(0) = 0 Å is displayed over a short and over a long time interval in Fig. 5.8
and in Fig. 5.9 respectively. The main features of the motion are comparable
to the previous cases: the coordinate oscillates at the resonance frequency, !2,g =

1.13 fs�1. The amplitude increase is still linear over a short time interval, but
slower than the transition g ! 1 due to the different values of the transition dipole
moments (µ2,g = 7.03 · 10�3 D, µ1,g = 6.7 · 10�2 D). Therefore, one obtains different
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Figure 5.9: Time evolution over a long time interval of the Bohm coordinate corresponding to the Morse
degree of freedom during the transition between the ground state and the second excited state.
The trajectory has been determined by integrating Eq. (5.6).

periodicity and amplitude modulation of the oscillations. The transition dipole
moment is lower than the previous case, µ2,g < µ1,g, and so the time necessary
to populate the excited state is longer with smaller displacements. As it can be
verified by observing Fig. 5.9, the amplitude vanishes and the coordinate is at rest
for t/⇡ ' 0 ps, 150 ps, 300 ps, 450 ps, 600 ps, that is when only one eigenstate only
is populated. Notice that for this transition the displacement is larger along the
direction in which the potential soars (q < 0 Å as displayed in Fig. 5.1) unlike the
transition to the first excited state (see Fig. 5.5). This is due to the different profile
of the eigenfunctions for the excited state in the two cases. Since the second excited
eigenfunction has a nodal point of the right of well bottom, the motion is shifted on
the left where the second eigenfunction determines an higher probability of observing
the particle. Also this behaviour can not be recovered from Classical Mechanics and
it requires the use of a quantum theory of motion in order to be predicted.

In conclusion we have illustrated the capabilities of our method to describe the
motion of an one dimensional quantum system, a Morse oscillator, during a quantum
transition. These results will be employed in the Sec. 5.3 in order to describe the
vibrational transitions of molecules.
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5.3 Molecular vibrational motion

In this section we employ our method to describe the motion of a single molecule
during a vibrational transition. In our notation, the zeroth-order Hamiltonian ˆH(0)

is the molecular Hamiltonian whereas the external field is the perturbation that
acts on the vibrational degrees of freedom and induces the vibrational transition.
Since the molecules are composed of many nuclei that interact reciprocally, it is
reasonable to expect that the trajectory drawn by a particle, e.g., a nucleus, is
strongly correlated to the evolution of the others. However, if one is not interested to
the exact dynamics, but just to a good representation, then suitable approximations
can be adopted in order to identify simple equations of motion that provide the main
features of the dynamics. Then one can derive a representation of the molecular
motion where each vibrational degrees of freedom is excited separately and the
dynamics of the excited degree of freedom is independent of the others.

Some features of the description of molecular vibration in the framework of Quan-
tum Mechanics are used also for determining the Bohm trajectory. Within the Born-
Oppenheimer approximation, one identifies the internal potential dependent on the
set of nuclear coordinates qN in cartesian form. However, it turns out to be con-
venient to replace the cartesian coordinates of nuclei with the normal coordinates
q̃N [Wilson et al. (1955)] as specified by the set of vibrational qv, rotational qr and
translational qt coordinates: q̃N = (qv, qr, qt). The transformation is given by the
linear relation:

qN = qN,eq +m�1/2
⌅ q̃N (5.18)

where qN,eq is the set of cartesian coordinates that corresponds to the equilibrium
geometry and ⌅ is an orthogonal matrix. For the purpose of this thesis, it is suf-
ficient to know that qN,eq and ⌅ depend on the nuclear effective potential arising
from the electronic state and they can be computed by standard methods, already
implemented in commercial softwares. The diagonal matrix m�1/2 includes informa-
tion about the nuclear masses; if the i-th element of qN corresponds to one cartesian
coordinate of the �-th nucleus (with mass m�), then the i-th diagonal element of
the matrix m�1/2 is 1/pm�. In this way the position of all the particles is identified
by the generalised coordinate q̃ = (qe, q̃N) = (qe, qv, qr, qt). For the sake of complete-
ness, we would like to recall that qt is the set of three coordinates that identify the
position of the molecular center of mass. Only two coordinates are included in qr

if the molecular is linear and they define the orientation of the molecule, otherwise
the orientation has to be identified with three coordinates corresponding to the Eu-
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ler angles. Finally, the number of vibrational coordinates for linear and non linear
molecules is respectively of 3nN � 5 and 3nN � 6 (with nN the number of nuclei).

The coordinate transformation of Eq. (5.18) is particularly suitable when one is
interested in approximating the molecular eigenfunctions for values of the nuclear
coordinates that are close to a minimum of the nuclear potential, i.e., the equilibrium
geometry. The zeroth-order Hamiltonian ˆH(0) includes the kinetic operator of the
nuclei and the effective potential for the given electronic state; we assume that it can
be separated into the sum of vibrational, rotational and translation contributions,
ˆH(N)

=

ˆH(v)
+

ˆH(r)
+

ˆH(t). Correspondingly, ˆH(0) eigenfunctions can be factorised
into the vibrational 'k

v

(qv), rotational 'k
r

(qr) and translational 'k
t

(qt) components,

'k(q̃N) = 'k
v

(qv)'k
r

(qr)'k
t

(qt), (5.19)

where k = (kv, kr, kt) is the set of quantum numbers that tag the corresponding
eigenfunctions (vibrational, rotational or translational). The parametric dependence
of the rotational eigenfunctions on the the vibrational coordinates is neglected since
we consider only small displacements around the equilibrium geometry. This is
essential in order to ensure that 'k(q̃) of Eq. (5.19) is eigenfunction of ˆH(0).

We assume that the molecule is initially in the vibrational |'g
v

i ground state
whereas the rotational and the translational state is a linear combination of dif-
ferent eigenstates labeled concisely as the roto-tanslational state

��'(rt)
(0)

↵
. Fur-

thermore, we exclude the possibility of electronic transitions and we focus only
on the nuclear dynamics. In this way the electronic degrees of freedom and the
nuclear degrees of freedom are not entangled and a nuclear wave function can be
defined in a consistent way. The zeroth-order nuclear wave function is  (0)

(q̃N , t) =

exp(�ı ˆH(N)t/~)'g
v

(qv)'
(rt)

(qr, qt, 0) by definition, and it is equal to

 

(0)
(q̃N , t) = e�ı!

g

v

t'g
v

(qv)'
(rt)

(qr, qt, t) (5.20)

with !g
v

= Eg
v

/~ and Eg
v

is the vibrational eigenvalue corresponding to the ground
state ˆH(v)'g

v

= Eg
v

'g
v

. The roto-translational eigenfunction '(rt)
(qr, qt, t) is driven

by the roto-translational Hamiltonian, ˆH(rt)
=

ˆH(r)
+

ˆH(t), and it has a non-trivial
dependence on time as long as the initial state is not an eigenfunction of ˆH(rt). If
the molecule interacts with a sinusoidal resonant perturbation whose frequency cor-
responds exactly to a vibrational frequency, e.g., the energy difference between the
vibrational ground state and the kv-th vibrational excited state, then the perturbed
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wave function can be written as

 (q̃N , t) =

q
Pg

v

(t)e�ı!
g

v

t'g
v

(qv) +

q
Pk

v

(t)e�ı!
k

v

t'k
v

(qv)

�
'(rt)

(qr, qt, t). (5.21)

The terms
q

Pg
v

(t) and
q
Pk

v

(t) represent the populations of the vibrational eigen-
states involved in the transition. Notice that the roto-translation dynamics is not
influenced by the perturbation that acting on the vibrational states. Therefore, the
effects of the interaction with the external field are equivalent to produce a reso-
nance between two vibrational states and the first approach proposed in Sec. 5.1
can be employed. By following the same procedure reported in Appendix A, one
determines the time evolution of the vibrational populations, Pg

v

(t) and Pk
v

(t). As a
matter of fact, a result like Eq. (5.5) is recovered because of the equivalence between
the two cases:q
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with Wk
v

,g
v

= h'k
v

| ˆW |'g
v

i. In this way we can determine the evolution of the
molecular wave function when an external field is producing a vibrational transi-
tion. Notice that it has been assumed that the operator ˆW acts on the vibrational
eigenstates only.

Let us now examining the Bohm equation for the set QN(t) of the cartesian
coordinates of all the nuclei at time t. Since the electrons are non entangled with
the nuclei, the nuclear and the electronic trajectories are independent. The velocity
of the nuclei ˙QN(t) is defined through the Bohm equation Eq. (2.5) with the wave
function of Eq. (5.21). This latter is function of the normal coordinates and then the
velocity ˙QN(t) has to be expressed explicitly using the coordinate transformation of
Eq. (5.18):

d

dt
QN(t) = m�1/2

⌅

˜rS(q̃N , t)
���
q̃
N

=Q̃
N

(t)
, (5.23)

with ˜r = (@/@qv, @/@qr, @/@qt) and ˜QN(t) =
�
Qv(t), Qr(t), Qt(t)

�
is the set of the

Bohm normal coordinates at time t, as derived according to Eq. (5.18) from the
Bohm cartesian coordinates QN(t).

The wave function of Eq. (5.21) ensures that the vibrational velocity, dQv(t)/dt :=

rvS(q̃N , t) = @S(q̃N , t)/@qv, depends only on the vibrational coordinates Qv(t).
This can be easily proven by inserting the wave function of Eq. (5.21) into the
Bohm equation and by examining the vibrational components, i.e., rvS(q̃N): since
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the roto-translational eigenfunctions are independent of the vibrational variables qv
by assumption, the vibrational velocity dQv(t)/dt is given as
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where !k

v

,g
v

= !k
v

� !g
v

. Notice that in the above equation the mass matrix is not
reported, since the standard procedure to define the normal coordinates supplies
unitary mass for every vibrational degree of freedom [Wilson et al. (1955)]. More-
over, the above equation is a closed equation for of the vibrational coordinates. In
other words, the time evolution of the vibrational coordinates can be computed in-
dependently of the others degrees of freedom and vice versa. Of course the resulting
motion of each nucleus depends on both the vibrational and the roto-translational
trajectories, since the rotational rrS(q̃N , t) and the translational rrS(q̃N , t) veloc-
ities do not vanish. However, our interest is on the effect of the vibrations on the
nuclear motion. For this reason, the nuclear motion can be derived according to the
transformation of Eq. (5.18) once the vibrational trajectory Qv(t) is known and by
neglecting the contributions due to roto-translational motion.

We would like to emphasise that the result of a closed equation for a subset of
the molecular coordinates such as Eq. (5.24) was anything but obvious: as already
stressed, the non local nature of Bohm theory entangles the motion of different
particles even if they do not interact. In this case we were able to simplify the prob-
lem by selecting an extremely specific situation. The eigenfunctions are factorised
by transforming the cartesian coordinates in normal coordinates and it is assumed
an excitation of the vibrational degrees of freedom only, otherwise a simultaneous
excitation of both vibrational and roto-traslational states would correlate their mo-
tion. The investigation of this simple case is sufficient to highlight the main features
of the vibrational motion and to develop an accurate representation. In particu-
lar we examine the details of the vibrational transition of diatomic and polyatomic
molecules.

5.3.1 Diatomic molecules vibrations

For diatomic molecules, the natural vibrational coordinate qv is the difference be-
tween the internuclear distance and the equilibrium bond length. We chose to con-
sider an hydrogen chloride molecule HCl as the paradigm of this class of molecule.
Our perturbation method is able to illustrate how the internuclear distance between
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the hydrogen and the chlorine changes in time during a vibrational transition. Fur-
thermore, the result for the Bohm coordinate Q(t) previously reported in Fig. 5.2,
Fig. 5.6, Fig. 5.7 represent exactly the evolution of the bond length around the
equilibrium value, since the vibrational eigenfunctions of a diatomic molecule are
well approximated by the Morse eigenfunctions. Indeed Eq. (5.24) is equivalent
to Eq. (5.6) for a diatomic molecule with a monodimensional vibrational coordi-
nate. The only constrains are the values for the Morse parameters (De and a)
and the transition dipole moment (µk,g). The parameters employed to compute
the evolution of the Morse oscillator in Sec. 5.2 are exactly those of the hydro-
gen chloride [Herzberg (1963); Domcke and Mundel (1985); Benedict et al. (1957)]:
De = 4.61 eV, a = 1.89 · 10�4 Å�1, µ1,g = 6.7 · 10�2 D, µ2,g = 7.03 · 10�3 D. There-
fore the dynamics of the Bohm coordinate Q(t) reported in Figures 5.2 to 5.9 can
be interpreted as the fluctuation of the hydrogen chloride bond distance around its
equilibrium value of 1.27 Å. The condition Q = 0 Å corresponds to the assumption
that the distance between hydrogen and chlorine is initially the equilibrium bond
length.

It should be mentioned that a simpler model, like the Harmonic Oscillator, can
be employed. For diatomic molecules, the aim is of understanding the changes in
the vibrational motion due to the use of a rougher model than the Morse oscilla-
tor. This will be helpful in the next section where the description of polyatomic
molecules is taken into account. As previously discussed, the spectral structure of
the Harmonic Oscillator eigenvalues is not compatible with the perturbation method
that allows the calculation of the equation of motion reported in Eq. (5.24): the res-
onance frequency between the ground state and the first excited state is also the
resonance frequency between all the states whose quantum numbers differ for one
unit and, therefore, the external field does not establish a resonance between two
states only. Apparently, one can investigate only the coordinate evolution over a
short time interval by employing the standard perturbation analysis, but this lim-
its the range of applications. Nevertheless, one can use selectively the Harmonic
Oscillator model: since in a real molecule the vibrational vibrational energies are
rational independent, one can exploit only the Harmonic Oscillator eigenfunctions as
a reasonable approximation for the real (e.g., Morse) vibrational eigenstates. Then,
the equation of motion Eq. (5.6) can be solved by substituting the Morse eigen-
functions with the Harmonic Oscillator eigenfunctions, but by keeping the correct
resonance frequency. For instance, Fig. 5.10 and Fig. 5.11 display the fluctuations
of the HCl bond distance, under the harmonic approximation, over a short and over
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Figure 5.10: Time evolution over a short time interval of the Bohm coordinate corresponding to the HCl
vibrational degree of freedom modelled with the Harmonic oscillator eigenfunctions (red line)
and the Morse oscillator eigenfunctions (green line). During the displayed time window, the
transition between the ground and the first excited state occurs.
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Figure 5.11: Time evolution over a long time interval of the Bohm coordinate corresponding to the HCl
vibrational degree of freedom model with the Harmonic oscillator eigenfunctions. During the
time window displayed, the transition between the ground and the first excited state occurs.
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a long time window respectively. By observing Fig. 5.10 and comparing Fig. 5.11
with Fig. 5.5, one can verify that the main features of the motion are substantially
not affected by the substitution of the eigenfunctions. The motion is an oscillation
at the resonance frequency and with a modulated amplitude. The main differences
concern the symmetry and the confinement of the movement. With the Harmonic
Oscillator eigenfunctions, the motion results to be symmetric with respect to the
potential minimum (notice the symmetry of the trajectory Q(t) in Fig. 5.11 with
respect to Q = 0 Å), unlike the Morse model where elongations of the bond length
are preferred to the contractions (see Fig. 5.5). For the Harmonic oscillator the sym-
metry of the potential with respect to the elongation or contraction corresponds to a
symmetric profile of the eigenfunctions and, therefore, also the molecular vibrations.
Furthermore, the elongation of the harmonic oscillator is a bit longer than for the
Morse oscillator (Fig. 5.10).

Finally, we would like to summarise the main features of the vibrational motion as
derived from the application of our method to diatomic molecules. The vibrational
motion of an isolated molecule induced by an external field on the ground state is
essentially an oscillation at the resonance frequency. During the irradiation, that
means during the energy exchange between the external field and the molecule, the
amplitude of the oscillation is modulated by the coupling between the molecule and
the field. The initial energy transfer causes the beginning of the molecular vibration
and the increase of the amplitude of the oscillations. By using a fully classical model
this amplitude should increase indefinitely; on the contrary, if the transition involves
only two states, the molecule returns to be at rest when it is completely excited.
This is a fully quantum behaviour which has no counterpart in Classical Mechanics.
It can be interpreted as if a mechanical equilibrium is established whenever the wave
function is an eigenstate of the Hamiltonian operator and the coordinate is then at
rest. Furthermore, if the irradiation is interrupted, then the condition of isolation
of the molecule is restored and it conserves the absorbed energy. Consequently, it
vibrates continuously with an oscillation characterised by a constant amplitude.

Almost the same representation of the vibrational motion is recovered from
the application of our method to polyatomic molecules as it is explained in the
Subs. 5.3.2.

5.3.2 Polyatomic molecules vibrations

A polyatomic molecule is characterised by several vibrational degrees of freedom.
Generally, each eigenfunction of the vibrational Hamiltonian depends on all the
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vibrational coordinates. Therefore, Eq. (5.24) is equivalent to a set of nv = 3nN � 6

(or nv = 3nN � 5 if the molecule is linear) coupled differential equations and the
velocity of each vibrational coordinate depends also on the positions of all the other
vibrational degrees of freedom. In order to determine the vibrational motion either
this set of differential equations has to be completely solved or some simplifications
have to be taken into account in order to decrease the complexity of the problem. By
employing some reasonable simplifications, an approximation of the motion would
result, but hopefully preserving the main features of the vibrational dynamics.

For the purpose of supplying a good representation of the vibrations, the vibra-
tional eigenfunctions can be conveniently simplified by employing their harmonic
approximation. The nuclear potential can be well represented around the equi-
librium geometry with the Harmonic potential and consequently each vibrational
degree of freedom can be described as an independent Harmonic Oscillator. In the
case of a molecule with nv vibrational degrees of freedom, e.g., nv = 3 for H2O,
the harmonic approximation separates the set qv in monodimensional coordinates
qv

i

(with i = 1, 2, . . . , nv) each corresponding to a different Harmonic Oscillator.
Correspondingly the vibrational eigenfunctions are factorised into the product of
independent eigenfunctions 'k

v

i

(qv
i

) each for any i-th Oscillator, as reported below
for the ground state,

'g
v

(qv) =
n
vY

i=1

'g
v

i

(qv
i

). (5.25)

The first vibrational excited state correspond to the excitation of a single Harmonic
Oscillator. For instance, if the eigenfunction 'k

v

(qv) corresponds to the kv
j

-th ex-
cited state of the j-th Harmonic Oscillator, then it is equal to
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This approximation of the zeroth-order Hamiltonian eigenstates leads to a simplified
representation of the corresponding Bohm equation of motion.

Similarly to the case of vibrational, rotational and translational coordinates,
the separation of the vibrational coordinates into a set of independent Harmonic
oscillators corresponds to independent equations of motion for each oscillator if
the degrees of freedom are separately excited. In this case the general equation
of motion for the vibrational degrees of freedom interacting with an external field
(Eq. (5.24)) can be simplified by substituting the generic 'g

v

and 'k
v

with their
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harmonic counterparts Eq. (5.25) and Eq. (5.26):8>>>>><>>>>>:
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(5.27)
Given the formal equivalence between the first equation reported above and the
equation of motion for the bond distance of a diatomic molecule, one derives that
the trajectory Qv

j

(t) has the same main features of that displayed in Fig. 5.10 and
Fig. 5.11 for diatomic molecule.

We would like to clarify two issues regarding the derivation of the above equa-
tion of motion for polyatomic molecules. First of all, the Harmonic approximation
concerns only the vibrational eigenfunctions in such way that the Bohm equation
for the coordinate of each degree of freedom is independent of the others. The tran-
sition frequencies can be determined either experimentally or computationally. It is
obvious that this is a coarse grain method, but it is justifiable on the basis of the
limited difference that can be observed for a diatomic molecule by substituting the
Morse with the harmonic eigenfunctions (compare Fig. 5.5 and Fig. 5.11). Moreover,
the accuracy of the approach should be sufficient if the transition involves the first
few excited eigenstates as long as anharmonicity has a secondary role.

Secondly, the transformation from the normal modes to the cartesian coordi-
nates is less obvious than for diatomic molecules. In particular, the matrix ⌅ and
the equilibrium geometry qN,eq of Eq. (5.18) has to be determined previously in or-
der to transform the trajectory of the j-th vibrational coordinate into the trajectory
of the cartesian coordinates corresponding to each atom. Even if the trajectory of
the j-th vibrational degrees of freedom Qv

j

(t) is substantially the same for every
molecule, the resulting motion of the nuclei depends on the coordinate transforma-
tion formally described by the matrix ⌅. Moreover, one should take into account
also the effects due to rotations and translations, but we neglect their effect in the
following calculation in order to display only the feature of the vibrational motion.

As an example we consider the vibrations of H2O molecule, that are the bending
v1, the symmetric stretching v2 and the antisymmetric stretching v3.

Equation (5.27) has to be solved in order to obtain the trajectories Qv1(t), Qv2(t)

and Qv3(t). To this end, one needs to know the resonance frequencies and the tran-
sition dipole moments. We computed the resonance frequencies by employing an
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Hartree Fock method and 3-21G basis set. The calculations are run with Gaus-
sian09 [Frisch et al. (2009)]. Their values expressed in wavenumber are respectively
1799 cm�1, 3813 cm�1 and 3946 cm�1. The transition dipole moments for each tran-
sition are reported in literature [Shostak et al. (1991); Shostak and Muenter (1991)]
and they are 0.126 D for the bending, 0.015 D for the symmetric stretching, and
0.015 D for the antisymmetric stretching. Also in this cases, we assume that the
field magnitude is E = 3 · 107 V m�1 and that the molecule is initially in its equilib-
rium geometry ˜QN(0) = 0. We adopted the 4-th order Runge-Kutta algorithm to
solve the system of differential equations (5.27). Figure 5.12 displays the trajectory
Qv2(t) that represents the dynamics of the Harmonic Oscillator corresponding to the
symmetric stretching. Over the time window examined the system is excited and

�0.08

�0.06

�0.04

�0.02

0

0.02

0.04

0.06

0.08

0 20 40 60 80 100 120 140

Q

v
2
(t

)
/

Å

t/⇡ ps

Figure 5.12: Time evolution over a long time interval of the Bohm coordinate corresponding to the sym-
metric stretching v2 of H2O. During the displayed time window, the transition of the v2
vibrational degree of freedom between the ground and the first excited state occurs.

and then de-excited to the ground state. At t/⇡ ' 70 ps the system is fully excited,
P1=1, and at t/⇡ ' 140 ps it is in the ground state again. The time evolution of
the coordinate Qv2(t) keeps all the main features already observed and described
for the change of the bond length of a diatomic molecule. It is an oscillation at
the resonance frequency with a modulated amplitude. The behaviour of the other
vibrational coordinates Qv1(t) and Qv3(t) has the same features examined in detail
and the corresponding trajectories are not reported here.

Potentially more interesting, it is the corresponding nuclear motion. Knowing
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Table 5.1: Equilibrium geometry of H2O in the center of mass frame.

Atoms x / Å y / Å z / Å

oxygen 0.0 0.0 0.0657
hydrogen 0.0 �0.7575 �0.5214
hydrogen 0.0 0.7575 �0.5214

the time evolution of the vibrational degrees of freedom, Eq. (5.18) allows the iden-
tification of the nuclear coordinates:

QN(t) = qN,eq +m�1/2
⌅

˜QN(t) (5.28)

where QN(t) is the nuclear cartesian coordinates at time t whereas ˜QN(t) is the set
of normal coordinates (vibrational, rotational and translational) at time t. Also the
equilibrium geometry (Table 5.1) and the matrix ⌅ have been determined through
the HF/3-21G calculation. Since we neglect the effects of rotation and translation
onto the nuclear motion, then each cartesian trajectory is equal to Qv2(t) multi-
plied by one specific element of the matrix m�1/2

⌅ and shifted by its equilibrium
coordinate included in qN,eq. For example, the motion of the two hydrogens pro-
jected onto the y axis is reported in Fig. 5.13. There it is displayed the dynamics
over a short time interval during the excitation of the symmetric stretching v2. It
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Figure 5.14: Time evolution over a long time interval of the Bohm coordinate Q
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(t) corresponding to the
y component of one hydrogen atom during the symmetric stretching transition.

can be seen that the motion is still an oscillation at the resonance frequency and
with time dependent amplitude. Furthermore, both the hydrogen nuclei increase
or decrease their distance from the center of mass simultaneously. In this way the
nuclei describe a symmetric stretching. Over a long time scale the motion has again
the same characteristics as in Fig. 5.14 for one of the two hydrogen atom. Similar
consideration can be applied to the antisymmetric stretching, whose trajectory is
dispalyed in Fig. 5.15. As expected, the distance between the center of mass and
one hydrogen nucleus increases while the distance between the center of mass and
the other hydrogen nucleus other decreases.

Finally, we would like to emphasise the similarity between the profile of the
cartesian trajectory in Fig. 5.14 and the stretching in Fig. 5.12. This reveals that the
main features of the vibrational motion of molecules, both diatomic and polyatomic,
are substantialy the same: the motion of each coordinate is an oscillation at the
resonance frequency and with a modulated amplitude.

5.4 Final remarks

In conclusion, we have been able to develop an approximate method that can de-
scribe the motion of molecules interacting with an oscillatory field in the framework
of the single Bohm trajectory approach. In particular, we have been inspired by the
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Figure 5.15: Bohm dynamics over a short time interval of the projection on the y axis of the first hydrogen
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stretching transition.

perturbation methods for solving the Schrödinger equation and we have proposed
approximate Bohm equations that take into account the interaction with the exter-
nal field (see Eq. (5.13) and Eq. (5.6)). Moreover, the method has been employed
to describe the vibrations of isolated diatomic and polyatomic molecules, when an
external radiation causes the transition from the ground to an excited vibrational
state. The resulting motion is qualitatively an oscillation with modulated ampli-
tude depending on the relative population of the states involved in the process.
The advantage of this approach is its capability to supply a characterisation of the
molecular motion within a full quantum framework. It has to be emphasised that
the modulation of the oscillation is the main quantum feature: in Classical Mechan-
ics a complete excitation of the system (Pk = 1) corresponds to a higher energy that
qualitatively means a larger amplitude of the vibration. On the contrary, with the
single Bohm trajectory approach, if the wave function is a stationary state then the
system is motionless. The stationary states correspond to mechanical equilibrium
conditions for the Bohm coordinates.
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Part II

Statistical Mechanics of a single

Bohm trajectory
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CHAPTER 6

Typicality of a single Bohm trajectory

As it has been already mentioned several times, Bohm theory is a deterministic
quantum theory such that the molecular motion can be exactly predicted by solving
the Bohm and the Schrödinger equation once the initial conditions (initial config-
uration and initial wave function) are established. In particular, the configuration
evolves by drawing continuous trajectory like in Classical Mechanics and defines
univocally the spatial position of the particles at any time.

However, the computational efforts that are necessary for solving the equations
of motion represent always limitations of any deterministic theory, not only of Bohm
theory. In other words, even if the behaviour of a system is well described according
to a particular theory, the difficulties for solving the dynamical equations can make
the description impracticable. For instance, the dynamical evolution of a macro-
scopic volume of water composed of an Avogadro’s number of molecules can not be
computed even with Classical Molecular Dynamics simulations that are well known
for the low computational cost of the corresponding algorithms (compared to the
quantum chemistry methods): the huge number of variables characterising a macro-
scopic volume of water makes this system unmanageable. Moreover, the solutions
of the dynamical equations can be unstable. Consider for example the Brownian
motion when the system is described according to Classical Mechanics. Even if
the equations of motion could be solved exactly for both the solvent molecules and
the Brownian particle, negligible differences in the initial conditions correspond to
completely different trajectories of the Brownian particle. Therefore, the round-off
error of a computer is sufficient to produce completely different trajectories with

115
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respect to the theoretical exact one. This behaviour emerges typically from the
complex network of interactions between the solvent and the Brownian particle and
it is rather common for systems composed of many molecules.

The same difficulties characterise also the Bohm theory. For instance, the expo-
nential growth of the computational cost for solving the Schrödinger equation with
the number of degrees of freedom is a well known fact that restricts significantly the
dimension of the system that can be investigated. In parallel, the Bohm equation
is strongly unstable even for small systems [Efthymiopoulos et al. (2007); Wu and
Sprung (1999); de Alcantara Bonfim et al. (1998); Frisk (1997)]. Thus, the applica-
tion of Bohm theory for describing chemical systems composed of many molecules
is very computational demanding. In other words, the theoretical advantages of
well representing molecules in a quantum framework seem to be in conflict with the
strong practical limitations. Therefore, one may wonder if there is a way of over-
coming the difficulties of the deterministic theory, but conserving some (at least) of
its advantages at the same time.

The answer is affirmative and statistical methods can be developed for this pur-
pose. For instance, Classical Statistical Mechanics succeeds in rationalising the
general behaviour of portions of matter when the systematic description based on
Classical Mechanics is completely powerless because of the insurmountable obstacle
of solving the equations of motions [Khinchin (1949)]. The general idea consists
in shifting the focus from a single state (the set of positions and momenta of all
the particles in Classical Mechanics) to a density distribution on the space of all
possible states (phase space) that evolves in time according to the Liouville’s theo-
rem [Schwabl and Brewer (2006)]. The density distribution describes the probability
to observe the system in a particular state and it allows the calculation of the aver-
age values corresponding to physical properties at any time. In this way the details
of the evolution of the system are neglected and the statistical properties emerge.
Notice that the Liouville theorem has no a great relevance in itself as regards Clas-
sical Mechanics: it is of fundamental importance for inferring statistical methods.
Conversely, its relevance in the framework of Bohm theory is not limited to the defi-
nition of stochastic equations (see Chap. 7), but it concerns also the correspondence
between conventional Quantum Mechanics and Bohm theory.

Therefore, we propose to proceed similarly to Classical Mechanics also for Bohm
theory: by defining a density distribution (or probability density) on the space of all
possible states (that are all the possible pairs of configuration and wave function)
and by determining the corresponding evolution by inferring the Bohm’s counterpart
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of the Liouville’s theorem. We would like to emphasise that we are not giving up to
the description of the molecular motion according to a single Bohm trajectory. The
statistical characterisation is necessary in order to well represent the properties of a
complex system composed of many molecules (that is perhaps the most common and
interesting chemical system). In any case, the single Bohm trajectory approach has
to be considered the basic description, whereas the corresponding statistical formu-
lation is a necessary rough representation. Furthermore, the statistical predictions
can be partial explained on the basis of the deterministic dynamics based on the
single Bohm trajectory.

We aim to characterise statistically Bohm theory in order to highlight some spe-
cific properties of the corresponding dynamics that are hidden in the complexity of
the deterministic description. In Chap. 7, we use statistical approaches for develop-
ing stochastic methods that can describe the molecular motion in the framework of
Bohm theory also for complex chemical systems. In this chapter, we lay the founda-
tions of this statistical method that is used in order to formally prove the existence
of a correspondence between the predictions of the conventional Quantum Mechan-
ics and those of the single Bohm trajectory approach. In more details, we define
first of all the Bohm’s counterpart of the Liouville’s theorem in Sec. 6.1 and its for-
mulation in the invariant subspaces Sec. 6.2. Secondly, we prove that the statistical
description is strictly related to the deterministic one in Sec. 6.3. In particular, it
can be demonstrated that the average of an observable on the equilibrium density
distribution (that is the stationary solution of the Liouville equation) is equivalent
to the time average of the same observable along a single trajectory for almost all
possible initial states. The time average can be considered a typical value of the ob-
servable, since it is independently of the initial conditions. This property is usually
related to the ergodicity: the evolution of a single state samples the dynamical space
according to the equilibrium density distribution. Furthermore, the correspondence
between the statistical description and the deterministic dynamics is sufficient to es-
tablish also a formal correspondence between the single Bohm trajectory approach
and the conventional Quantum Mechanics (Sec. 6.4). In other words, the statistical
representation, which is defined and characterised in this chapter, allows the formal-
isation of the correspondence highlighted in Chap. 3 and in particular in Fig. 3.7
through the numerical simulation. This formalisation has to be considered the main
result reported in this chapter since it proves the existence of an equivalence (under
some reasonable constraints) between the predictions of the conventional Quantum
Mechanics and the single Bohm trajectory approach beyond the numerical observa-
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tion of Sec. 3.2.3 and the a priori explanation of Sec. 3.3. In this way we support
formally our proposal of describing molecular systems according to a single Bohm
trajectory.

6.1 Liouville’s theorem

In the framework of Classical Mechanics, the Liouville’s theorem defines the evo-
lution of a probability density on the space of all possible states (hereafter called
dynamical space) for ensuring the conservation of the probability for a subset of
possible states. The differential equation that describes the evolution of the prob-
ability density is called in literature Liouville equation. In order to develop the
corresponding theorem for Bohm theory, first of all one has to identify the suitable
dynamical space. Secondly, the dynamical equation for the probability density has
to be inferred by imposing the conservation of the local probability. In the following,
both these two steps are examined in detail.

It is well known that the dynamical space is the phase space in the framework
of Classical Mechanics: it is the set of the possible positions and momenta of all the
particles of the system. By analogy, the dynamical space in the framework of Bohm
theory is the set of all possible pairs of configuration and wave function. Therefore,
it can be identified with the cartesian product of the space of coordinates, i.e., the
configuration space C, and the Hilbert space H:

C ⇥ H. (6.1)

Besides this simple consideration, an important issue arises: how can a probability
density on this space be defined? The source of the issue is the mathematical deep
difference between the configuration space and the Hilbert space. Broadly speaking,
the configuration space is a set of points {q} whereas the Hilbert space elements
are functions { (•)}. Notice that we use a different notation for the component
of a generic system state

�
q, (•)� with respect to component of the actual system

state
�
Q(t), (q, t)

�
similarly to what we have already done for the wave function

variable q and the specific coordinates at time t, Q(t), in Sec. 2.1: from this point
forward we employ capital letters, such as Q(t) and  (q, t), to indicate the system
state at time t and the corresponding lowercase symbols, such as q and  (•), to
indicate respectively generic elements of the sets C and H independently of the
actual conditions of the system. Moreover, the previous question has no obvious
answer because of the difficulties regarding to the definition of a density distribution
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on a space of function as the Hilbert space. However, by drawing inspiration from
previous works concerning the statistics of quantum pure states [Goldstein et al.
(2006); Fresch and Moro (2009, 2010a,b, 2011)], a suitable assumption can be made.
Despite a Hilbert space is generally infinity dimensional, we suppose the system’s
wave function belongs to a finite dimensional Hilbert space in order to exploit its
fundamental properties and simplifying the problem. We consider a N -dimensional
Hilbert space HN , called active space, instead of a generic Hilbert space H and we
represent a generic wave function  (•) belonging to HN according to its components
along the orthonormal basis set {�k(q)}:

 (q) =

NX
k=1

ck�k(q), (6.2)

where each ck = h�k| i is a complex number, ck 2 C. Once the basis set {�k(q)}
is established, each wave function  (•) 2 HN can be univocally identified with
a specific set of 2N real coefficients c := {Re(ck), Im(ck)} 2 R2N which is the
representation of the wave function on the basis set {�k(q)}. In this way each
possible state in the framework of Bohm theory,

�
q, (•)�, can be identified with

the variable z,
z := (q, c), (6.3)

defined as the set of configuration and of the wave function expansion coefficients.
The variable z has n+2N components: q includes the n coordinates for each degree
of freedom q = (q1, q2, . . . , qn) whereas c includes the real and imaginary part of each
of the N coefficients c =

�
Re(c1), Im(c1), . . . ,Re(cN), Im(cN)

�
. The corresponding

dynamical space ⌦0 is the cartesian product of the configuration space C and of the
coefficients’ domain D:

⌦0 = C ⇥ D. (6.4)

In this particular space ⌦0, that broadly speaking it is a set of points, a generic
probability density %⌦0

(z, t) finds an obvious definition similar to that of a proba-
bility density in Classical Statistical Mechanics: it is an integrable function in ⌦0

with unitary normalisation [Schwabl and Brewer (2006)]. Furthermore, the actual
system state

�
Q(t), (q, t)

�
is well represented by

Z(t) :=
�
Q(t), C(t)

�
, (6.5)

with C(t) =
�
Re(Ck(t)), Im(Ck(t))

 
and Ck(t) = h�k| (t)i. Let us recall that with
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our notation the capital letters, i.e., Q(t) and C(t), represent the actual system state
whereas the lowercase symbols, i.e., q and c, symbolise the generic element of ⌦0.
In this regard, the time evolution of Z(t) can be described according to the velocity
field ⇤0(z),

d

dt
Z(t) = ⇤0

�
Z(t)

�
. (6.6)

The velocity field ⇤0(z) includes the Bohm equation for the coordinate of each
degree of freedom in the first n components (⇤0,j with j = 1, 2, . . . , n) and the
representation of the Schrödinger equation on the basis set {�k} for the real and the
imaginary part of each coefficient Ck(t) respectively in the components ⇤0,n+2k�1

and ⇤0,n+2k with k = 1, 2, . . . , N . The explicit form of ⇤0(z) is reported in the
following for the sake of completeness:

⇤0,j(q, c) =
~
mj

Im
⇢PN

l,l0 c
⇤
l cl0�

⇤
l (q)rj�l0(q)PN

l,l0 c
⇤
l cl0�

⇤
l (q)�l0(q)

�
, with j = 1, 2, . . . , n, (6.7)

⇤0,n+2k�1(c) = � ı

2~

⇢ NX
l=1

h�k| ˆH|�li cl + h�l| ˆH|�ki c⇤l
�
, with k = 1, 2, . . . , N, (6.8)

⇤0,n+2k(c) = � 1

2~

⇢ NX
l=1

h�k| ˆH|�li cl � h�l| ˆH|�ki c⇤l
�
, with k = 1, 2, . . . , N. (6.9)

Notice that Eq. (6.7) is the Bohm equation, Eq. (2.5), for the k-th degree of freedom
with the wave function specified as a linear combination of the basis set elements
{�k(q)}. Equation (6.8) and Eq. (6.9) are respectively the dynamical equation for
the real and imaginary part of the coefficient Ck(t) obtained by representing the
Schrödinger equation on the basis set {�k(q)}. Furthermore, as the wave function
evolution described according to the Schrödinger equation is completely independent
of the configuration evolution (see for example Eq. (2.9)), also the time evolution
of the set of coefficients described according to Eq. (6.8) and Eq. (6.9) is also in-
dependent of the coordinates evolution. In other words, the independence of the
conventional quantum variables with respect to the Bohm variables is preserved
also in the representation above defined as one can easily verify.

Once the dynamical space is well characterised, then the Liouville equation can
be inferred by imposing the conservation of the local probability. The procedure
for defining the Liouville equation from that constraint is precisely the Liouville’s
theorem and it is presented in the following in reference to Bohm theory.

Let %⌦0
(z, 0) be an arbitrary initial density probability on the space ⌦0 and

V (0) ✓ ⌦0 be a subset of possible states in ⌦0. Then, the probability that the
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Ω0

z0 Z(t; z0)

V (0)

V (t)

V (t) = {z ∈ Ω0 | z = Z
(
t; z0

) ∀z0 ∈ V (0)}

Figure 6.1: Graphical representation of the dynamical space Ω0. The subset V (t) ⊆ Ω0 is the set of states
that evolve from the subset V (0) ⊆ Ω0 along the curve Z(t; z0). In the figure, some elements
of V (0) are connected to the corresponding elements of V (t) through hypothetical curves.

actual system state is initially one of the states belonging to V (0) is specified as

M(
V (0)

)
:=

∫
V (0)

dz �Ω0(z, 0). (6.10)

In other words, M(
V (0)

)
is the probability measure that the initial state of the

system is one of the possible sets of configuration and wave function represented
by the points z ∈ V (0) according to the probability density �Ω0(z, 0). Since this
probability is also called the “measure” of the set V (0), it has been labeled with
the symbol M(

V (0)
)
. Consider now each possible state of the system at time

t whose corresponding initial state (at time t = 0) belongs to V (0) through the
deterministic evolution: by solving Eq. (6.6) one obtains the curve Z(t; z0) that
maps each initial state z0 into the corresponding state at time t, that is z = Z(t; z0).
In our representation this curve maps the initial configuration and wave function
(symbolised by z0) to the configuration and wave function at time t (symbolised by
z). In this way one can define another subset of possible states in Ω0: V (t) ⊆ Ω0 is
the subset of states that evolved from the states in V (0) along the curves Z(t, z0)

∀z0 ∈ V (0). Formally it is defined in the next equation:

V (t) = {z ∈ Ω0 | z = Z
(
t; z0

) ∀z0 ∈ V (0)}. (6.11)

See Fig. 6.1 for a graphical representation of the definition of V (t). One can recognise
that V (t) is nothing more than the evolution of the states initially belonging to V (0).
For this reason the probability that the initial state of the system is one of the states
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in V (0) and the probability that the state of the system at time t is one of the states
in V (t) have to be the same,

M�
V (0)

�
=

Z
V (0)

dz %⌦0
(z, 0) =

Z
V (t)

dz %⌦0
(z, t) = M�

V (t)
�
, (6.12)

by ensuring the conservation of the local probability. This constraint defines uni-
vocally the evolution of the probability density %⌦0

(z, t) since it has to be valid for
every pair of subsets

�
V (0), V (t)

�
and for every time interval. This means that it

defines the Liouville equation. The precise derivation of the Liouville equation from
Eq. (6.12) is summarised in Appendix B, whereas here we report the final result:

@

@t
%⌦0

(z, t) + rz · ⇤0(z)%
⌦0
(z, t) = 0, (6.13)

where rz = (@/@z1, . . . , @/@zn, @/@zn+1, . . . , @/@zn+2N) and each partial derivative
corresponds to a partial derivative either in terms of coordinates q or in terms of
coefficients c according to the definition of z in Eq. (6.3). The first n components
of rz are the partial derivatives of the coordinates, while the remaining 2N are the
partial derivatives of the real and imaginary part of each coefficient. In this way the
Bohm’s counterpart of the Liouville equation has been established.

At this stage one could employ the Liouville equation for studying the evolution of
a generic probability density. However, our interest concerns mainly the correspon-
dence between the description based on the single Bohm trajectory approach and
that based on the statistical approach in order to establish also the correspondence
with the predictions of the conventional Quantum Mechanics. For this purpose, Li-
ouville equation can be further simplified by focusing on some suitable subspaces of
⌦0 called invariant parts or invariant manifold/subspaces [Hirsch et al. (1977)]. The
invariant subspaces of ⌦0 are subspaces with the property that an arbitrary state
belonging to one of this subspace remains inside it during the natural evolution.
In other words, if z0 belongs to an invariant, then all the points of curve Z(t; z0)

belong to the same invariant. In the Sec. 6.2 we propose a suitable separation of the
dynamical space in its invariant subspaces that facilitates the successive analyses.

6.2 Invariant subspaces

In the framework of deterministic theories, like Classical Mechanics or Bohm
theory, the relevance of the invariant subspaces is related to the dimensional reduc-
tion associated to their identification [Khinchin (1949)]. For example, the energy
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of isolated systems is conserved in Classical Mechanics. Consequently, if a system
is characterised by a certain value of energy, then one can identify a subspace of
the phase space (usually called surface of constant energy) whose states are char-
acterised by that precise value of energy and all the points of the curve describing
the state evolution belong to this subspace. In other words, the value of the en-
ergy represents a constraint that has to be satisfied during the time evolution and
it formally implies the reduction of the number of the degrees of freedom. If other
constraints are identified, then the number of degrees of freedom is further reduced.

The same idea can be employed also in the framework of Bohm theory. In this
case there are three important advantages: the dimensional reduction, the identifi-
cation of a suitable set of variables for describing the dynamics within the invariant
subspaces and the simplification of the dynamical equations (in particular those rep-
resenting the Schrödinger equation). By recalling that all the constants of motion
in the framework of Bohm theory are related to the wave function dynamics (see
Chap. 4), then the constraints identifying the invariants must concern the represen-
tation of the wave function in terms of its expansion coefficients c. Furthermore,
we have already examined in Chap. 3 a representation of the wave function that
highlights the constants of motion. Instead of representing the wave function on
a generic basis set, one can use the eigenfunctions of the Hamiltonian operator,
ˆH�k(q) = Ek�k(q). In this way the coefficients Ck(t) = h�k| (t)i can be specified
in polar form,

Ck(t) =
p
Pke

�ıA
k

(t), (6.14)

in terms of constant populations {Pk} and time dependent phases {Ak(t)}. As al-
ready mentioned in Chap. 3, the wave function at a given time  (q, t) is conveniently
specified through the set of N � 1 populations P = (P1, P2, . . . , PN�1) (one popula-
tion is determined by the normalisation condition, see Eq. (3.10)) and the N phases
A =

�
A1(t), A2(t), . . . , AN(t)

�
. Therefore, the actual system state in the framework

of Bohm theory can be represented with the set of configuration, phases and popula-
tions

�
Q(t), A(t), P

�
instead of Z(t) (Eq. (6.5)). In parallel, the set (q,↵, P ) replaces

the variable z (Eq. (6.3)). Notice that we use capital letter for the populations set
also without reference to the actual state in order to stress the time independence
of these parameters. The whole dynamical space ⌦0 is then separated into different
disjoint subspaces ⌦P each of then corresponding to a particular set of populations,

⌦0 =

[
P

⌦P , (6.15)
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for all the possible sets of populations. Since each element of the subspace ⌦P , that
is each configuration and each wave function for a given set of populations, is fully
specified in terms of coordinates and phases, we introduce the new variable

x := (q,↵). (6.16)

Correspondingly, ⌦P is parameterised with respect to the populations and it cor-
responds to the cartesian product of the configuration space C and of the pahses’
domain:

⌦P = C ⇥ [0, 2⇡)N . (6.17)

Notice that the domain of each phase variable is periodic between [0, 2⇡) by defini-
tion. Furthermore, the evolution of the system state is completely described within
the given subspace ⌦P and it can be represented by the time dependent variable

X(t) :=
�
Q(t), A(t)

� 2 ⌦P . (6.18)

In other words, the sets ⌦P are the invariants of the dynamical space in the frame-
work of Bohm theory. The subspaces ⌦P are the counterpart of the surfaces of
constant energy in Classical Mechanics. The set of coordinates and phases identi-
fies completely a particular configuration and a particular wave function once the
invariant subspace has been selected, so determining a significant reduction of the
dynamical variables. The state is univocally identified by z (Eq. (6.3)) that is the
set of n + 2N variables (coordinates q and coefficients c) in the whole dynamical
space ⌦0, whereas it is univocally identified by x (Eq. (6.16)) that is the set of
n + N variables (coordinates q and phases ↵) in the invariant subspace ⌦P . Also
the velocity field ⇤P (x) describing the dynamical equation for X(t),

d

dt
X(t) = ⇤P

�
X(t)

�
, (6.19)

is simpler than ⇤0(z) (see Eq. (6.7), (6.8), (6.9)):

⇤P,j(q,↵) =
~
mk

Im

8<:
PN

l,l0

q
PlPl0e

�ı(↵
l

0�↵
l

)�⇤
l (q)rk�l0(q)PN

l,l0

q
PlPl0e�ı(↵

l

0�↵
l

)�⇤
l (q)�l0(q)

9=; with j = 1, 2, . . . , n

(6.20)

⇤P,n+k = Ek/~ ⌘ !k with k = 1, 2, . . . , N (6.21)
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Equation (6.20) is equivalent to the Bohm equation, Eq. (2.5), for the k-th degree
of freedom, once the wave function is expressed as a linear combination of the
Hamiltonian operator eigenfunctions and its time dependence is replaced by the
phases dependence. On the other hand, Eq. (6.21) is the representation of the
Schrödinger equation in terms of phases, leading to their time dependence in the
form Ak(t) = Ak(0) + Ekt/~ for every k.

Because of the advantages that emerge by employing the invariants, i.e., the
reduction of dynamical variables and the simple representation of the wave function
evolution according to the phases, we focus on a single invariant subspace in the
following: we describe the evolution of both the Bohm state and the corresponding
probability density within a given invariant subspace instead of examining it in the
complete dynamical space. In this way, we assume implicitly that the populations
of the quantum system are known, since they determine univocally the invariant
subspace. This is similar to the idea of knowing the energy of the system in Classical
Mechanics. Like with the impossibility of determining the exact energy of classical
systems, there are neither theoretical methods nor experimental techniques that
allow a complete characterisation of the initial wave function and, consequently, also
of the populations. However, we aim to investigate the molecular motion according
to the Bohm coordinates and therefore we can suppose that the system populations
are established as well as it is commonly postulated that the system energy is known
in Classical Mechanics.

In this regard, the probability density %⌦P

(x, t) on ⌦P can be defined similarly
to what we have already done for ⌦0, and it describes the probability that the
system state at time t is the set of configuration and phases represented by the
point x 2 ⌦P . By imposing the conservation of the local probability, the following
Liouville equation can be derived for %⌦P

(x, t)

@

@t
%⌦P

(x, t) + rx · ⇤P (x)%
⌦

P

(x, t) = 0, (6.22)

where rx = (@/@x1, . . . , @/@xn, @/@xn+1, . . . , @/@xn+N) with each partial derivative
corresponding to a partial derivative either of a coordinate qk or of a phase ↵k ac-
cording to the definition of x in Eq. (6.16). The first n components of rx are the
partial derivatives of the coordinates while the remaining N ones are the partial
derivatives of the phases. In order to prove that the the predictions of the deter-
ministic evolution correspond to those of the statistical representation in ⌦P , the
fundamental ingredient is provided by the equilibrium density distribution %⌦P

eq (x),
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that is the stationary solution of the Liouville equation

rx · ⇤P (x)%
⌦

P

eq (x) = 0. (6.23)

Indeed, the deterministic evolution of a particular initial state x0 should sample the
space ⌦P according to %⌦P

eq (x) in ergodic conditions. However, a direct solution of
the above equation is rather complicated in general. An easier strategy consists in
guessing the solution and in verifying if it satisfies the constraint of Eq. (6.23). We
were inspired by the works of A. Valentini [Valentini (1991a,b)], where he investi-
gated the properties of the configuration space C in the framework of Bohm theory
and its statistical features. In particular, Valentini recognised that the square mod-
ulus of the wave function satisfies the continuity equation emerging from the natural
dynamics in the configuration space C and it represents consequently an invariant
measure of the configuration space. By bearing in mind that the time dependence
of the wave function is represented by the phases ↵ in our formalism, we identify
the stationary solution for each invariant subspace:

%⌦P

eq (x)
���
x=(q,↵)

=

X
k,k0

q
PkPk0

(2⇡)N
e�ı(↵

k

0�↵
k

)�⇤
k(q)�k0(q), (6.24)

where {�k(q)} are the eigenfunctions of the Hamiltonian operator. One can recognise
that the equilibrium density distribution %⌦P

eq (x) of ⌦P is the square modulus of
the wave function where the time dependence has been replaced by the phases
dependence:

%⌦P

eq (q,↵)
��
↵=A(t)

=

| (q, t)|2
(2⇡)N

(6.25)

with a suitable choice of the phases A(t). Indeed, the condition of Eq. (6.23) can be
rewritten as in the following by making explicit the partial derivatives,

NX
k=1

@

@↵k

!k%
⌦

P

eq (q,↵) +
nX

k=1

@

@qk
⇤P,k(q,↵)%

⌦
P

eq (q,↵) = 0. (6.26)

The above equation is satisfied by the equilibrium distribution of Eq. (6.24), because
of its equivalence with the continuity equation solved by the square modulus of the
wave function:

@

@t

��
 (q, t)

��2
+ r · ⇤C(q, t)

��
 (q, t)

��2
= 0, (6.27)

where ⇤C(q, t) is the Bohm velocity field according to the notation defined in Chap. 5
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(see Eq. (5.3)). The only difference between Eq. (6.26) and Eq. (6.27) is that the
second one is expressed implicitly for a particular set of phases associated to the
specific wave function at time t (that means a specific set of phases A0

(t) such that
| (q, t)|2 / %⌦P

eq (q, A0
(t))) whereas the first one is its generalisation for each possible

set of phases.

In the Sec. 6.3 we employ the equilibrium density distribution %⌦P

eq (x) in order
to establish the correspondence with the deterministic evolution. Moreover, we will
show that this correspondence is also the starting point for explaining the predictions
of the conventional Quantum Mechanics in terms of statistical properties of a single
Bohm trajectory.

6.3 Ergodicity of the single Bohm trajectory

Despite the title of this section is “Ergodicity of the single Bohm trajectory”,
we have to admit that an ergodic theorem appears to be indemonstrable in the
framework of Bohm theory exactly as it has been unprovable in the framework of
Classical Mechanics. By ergodicity we mean that the evolution of the system state
(the curve) samples the dynamical space according to the equilibrium density dis-
tribution supplied by the Liouville equation independently of the initial conditions.
An obvious counterexample in Classical Mechanics is given by the nonexistence of
a curve that can move from a invariant subspace of the phase space to another by
definition of invariant subspace: a single curve can not sample the whole dynamical
space. In the framework of Bohm theory, we have been less ambitious: we limited
ourself by considering the dynamics and the evolution of the probability density
inside an invariant subspace, ⌦P . However, it is not ensured that a subspace ⌦P

can not be further divided in smaller invariant subspaces. This is for instance the
case of Pl = �l,k for given k (that is the case of a stationary state) in the absence
of degeneration, where the Bohm equation predicts that all the coordinates are at
rest. Therefore, if the coordinates do not change in time there are no trajectories
sampling the space ⌦P according to the distribution %⌦P

e q(q,↵) = |�k(q)|2 for every
possible initial configuration Q(0).

Nevertheless, we can prove that some predictions of the single Bohm trajectory
approach and those of the statistical description are compatible under reasonable
conditions. Let us consider a generic observable that depends on the coordinates
B(q) and its average on the space ⌦P according to the equilibrium density distribu-
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tion (that hereafter we call equilibrium statistical average),

E⌦
P

eq [B] :=

Z
⌦

P

dqd↵ B(q)%⌦P

eq (x)
��
x=(q,↵)

. (6.28)

Consider also a generic initial state x0 2 ⌦P and the curve X(t; x0) which is the
solution of Eq. (6.19) with x0 as the initial condition. The corresponding Bohm
trajectory is the projection of the curve X(t; x0) on the configuration space C and it
is labeled Q(t; x0) in order to stress the dependence on the initial state x0.1 Then,
the time average of B(q) along the Bohm trajectory,

B(x0) := lim

T!+1

1

T

Z T

0

dt B
�
Q(t; x0)

�
, (6.29)

depends in general on the initial state x0: different initial states correspond to differ-
ent trajectories and to different time averages of the observable B(q). Nonetheless,
it can be proven that if the quantity B

�
Q(t; x0)

�
is characterised by a loss of corre-

lation, the time average B(x0) is equal to the equilibrium statistical average E⌦
P

eq [B],

B(x0) = E⌦
P

eq [B], (6.30)

for almost all the initial states x0 2 ⌦P except for a set of null measure. This
means that B(x0) is the typical value of the observable B(q): it is independent
of the initial state x0 of the system. In other words, the Bohm trajectories show
typicality as regards the time averages of the observables, since they are statistically
independent of the initial condition x0. This is similar to the time averages of the
expectation values that are statistically independent of the set of populations in the
thermodynamic limit (see Chap. 3 and Eq. (3.19)). Before explaining better what
can be really proven, let us describe the restrictions on the validity of Eq. (6.30).

First of all, Eq. (6.30) is valid for almost all the initial states. Therefore, we can
not exclude the existence of a subset ˜V ✓ ⌦P of points x0 such that B(x0) 6= E⌦

P

eq [B].
However, the demonstration ensures that, such a subset ˜V has always a null measure:
the probability that a randomly chosen point x0 belongs to ˜V vanishes. This can be

1Notice the difference between the terms “curve” and “trajectory”. The curve X(t;x0) is the function
that maps a generic initial state x0 to the state at time t according to the deterministic evolution. Each
point of the curve represents a pair of configuration and wave function. Instead the trajectory Q(t;x0)

describes only the evolution of the Bohm coordinates omitting the information about the wave function.
Formally, the trajectory is the set of the first n elements of the curve X(t;x0) according to the definition
of x in Eq. (6.16).
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expressed formally with the following equation

M�
˜V
�
=

Z
Ṽ

dx0 %
⌦

P

eq (x0) = 0. (6.31)

In other words, there are some initial states in ⌦P that do not ensure the validity of
Eq. (6.30), but the selection of one of those states as initial condition is statistically
impossible. In order to grasp better the idea of a set of points of null measure, one
can think about the probability of drawing a rational number Z from the set of real
numbers R. Despite there are infinite rational numbers inside R, the probability of
drawing a rational number is zero: the amount of real numbers is so much greater
than the amount of rational numbers in R, that it is impossible of getting a rational
number with a random sampling. The same idea has to be adopted also for ˜V and
⌦P .

Secondly, Eq. (6.30) is valid if the quantity B
�
Q(t; x0)

�
is characterised by a loss

of correlation. By defining the autocorrelation function of the observable B(q) as

GB(⌧) :=
1

�2
B

Z
⌦

P

dx0 %
⌦

P

eq (x0)�B
�
Q(t+ ⌧ ; x0)

�
�B

�
Q(t; x0)

�
, (6.32)

with �2
B = E⌦

P

eq

⇥
(�B)

2
⇤

and �B(q) = B(q)�E⌦
P

eq [B], Eq. (6.30) holds if and only if

lim

⌧!+1
GB(⌧) = 0, (6.33)

like in the evolution of Q(t; x0) according to a stationary Markov process, so recov-
ering a correspondence also with the stochastic interpretation developed in Sec. 3.3.
Despite the fact that Eq. (6.33) is the only assumption that has to be made, its
validity can be just checked through the analysis of the exact dynamics: there are
not considerations that can be made a priori in order to understand if a generic
observable B(q) is or is not characterised by a loss of correlation. On the other
hands, it can be observed numerically that this condition is easily satisfied in the
framework of Bohm theory for the significant instability of the Bohm equation that
causes a chaotic motion [Efthymiopoulos et al. (2007); Wu and Sprung (1999); de Al-
cantara Bonfim et al. (1998); Frisk (1997)]. Indeed, also systems composed of few
degrees of freedom (such as one or two degrees of freedom) show this specific be-
haviour even if the corresponding classical systems do not. According to these
numerical evidences, one can reasonably expect that Eq. (6.33) is easily satisfied
for observables of molecular systems, since they are composed of many particles.
This is also the case of the simplest chemical system, i.e., one hydrogen atom, which
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has six degrees of freedom (the coordinates of a nucleus and of an electron in the
cartesian space). However, the condition of Eq. (6.33) is not satisfied in the single
rotor system (with one degree of freedom) of Chap. 3 and therefore, the predictions
of the single Bohm trajectory do not correspond to those of Quantum Mechanics
(see Fig. 3.8).

Finally, it should be emphasised that Eq. (6.30) can be only justified, but not
exactly proved. By assuming that the observable B

�
Q(t; x0)

�
is characterised by a

loss of correlation, one can derive that the variance of the time average with respect
to the statistical average vanishes:

E⌦
P

eq

⇣
B(x0) � E⌦

P

eq [B]

⌘2�
= 0. (6.34)

The detailed proof is reported in Appendix C. Equation (6.34) means that the
deviations of the time average with respect to equilibrium average E⌦

P

eq [B] are sta-
tistically insignificant. It is exactly the statistical nature of such a result that does
not ensure that all the initial states x0 lead to the same time average B(x0) of
E⌦

P

eq [B]: Eq. (6.34) is compatible with a set of points with null measure for which
B(x0) 6= E⌦

P

eq [B]. In other words, Eq. (6.30) is valid only in a statistical sense as
specified by Eq. (6.34).

Beyond what can be mathematically proven, one can speculate about the im-
plications of Eq. (6.34) and Eq. (6.30). In particular, if Eq. (6.30) holds for any
observable B(q), then almost all the possible curves X(t; x0) correspond to Bohm
trajectories that sample equally the configuration space C. This can be explained
in terms of proof by contradiction. Consider a set of curves that do not satisfy
such a condition. If the set of all the points belonging to these curves has a null
measure then they can be neglected. Otherwise, there is a set of points x0 of finite
measure such that at least one observable does not satisfy Eq. (6.34) and this is in
contradiction with initial hypothesis that Eq. (6.30) holds for any B(q). Then one
can define a probability density weq(q) on the configuration space by considering the
sampling produced by one curve (one single evolving state) in order to calculate the
time average of the observable B(q)

B(x0) =

Z
C
dq B(q)weq(q). (6.35)

Also the density distribution weq(q)
�
as B(x0)

�
is a typical property of the Bohm

dynamics that does not depend on the actual condition of the system. Through
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Eq. (6.30) and the definition of E⌦
P

eq [B], one obtainsZ
C
dq weq(q)B(q) = B(x0) =

Z
C
dq B(q)

Z
[0,2⇡)N

d↵ %⌦P

eq (x)
��
x=(q,↵)

. (6.36)

Finally the following relation is derived

weq(q) =

Z
[0,2⇡)N

d↵ %⌦P

eq (q,↵), (6.37)

by assuming that Eq. (6.30) holds for all possible observables B(q). Equation (6.37)
means that a single trajectory of the Bohm coordinates samples the configuration
space according to the same marginal density distribution of %⌦P

eq (q,↵). It should
be stressed that a similar result was obtained in the analysis of the numerical ex-
periment described in Chap. 3 by considering the distribution with respect to the
subsystem coordinates only. The numerical observation of the Chap. 3 can be con-
sidered as an evidence, at least in that case, about the ergodicity due to loss of
correlation.

In Sec. 6.4, we show explicitly that the previous considerations allow the defini-
tion of a formal correspondence between the evolution of a single Bohm trajectory
and the conventional Quantum Mechanics. As it can be easily realised, the essential
ingredient of such a correspondence is %⌦P

eq (x).

6.4 Expectation values from a single Bohm trajectory

In this section it is shown how the expectation values of the standard Quantum
Mechanics emerge from the statistical properties of a single Bohm trajectory. Let
us introduce the marginal density distribution %Ceq(q) on the configuration space C
by integrating the equilibrium distribution %⌦P

eq (q,↵) on the phases variables. It
can be easily verified that in the case of rational independence of the Hamiltonian
eigenvalues (but similar conclusion can be derived also in more general conditions),
the time average of the square modulus of the wave function (which can be specified
according to the populations) is the same of %Ceq(q):

%Ceq(q) =
NX
k=1

Pk|�k(q)|2 = lim

T!+1

1

T

Z T

0

dt | (q, t)|2, (6.38)

independently of the initial phases A(0) of the wave function. The only constraint
is that the populations of the wave function have to be the same of the invariant
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subspace ⌦P of the dynamical space ⌦0. Once Eq. (6.38) is recognised, the statistical
average E⌦

P

eq [B] can be specified by the time average of the corresponding expectation
value of the operator B(q̂):

E⌦
P

eq [B] = lim

T!+1

1

T

Z T

0

dt h (t)|B(q̂)| (t)i . (6.39)

Furthermore, on the basis of Eq. (6.30), the time average of the same quantity along
the single Bohm trajectory is equivalent to the time average of the corresponding
expectation value,

lim

T!+1

1

T

Z T

0

dt B
�
Q(t; x0)

�
= B

�
x0

�
= E⌦

P

eq [B] = lim

T!+1

1

T

Z T

0

dt h (t)|B(q̂)| (t)i ,
(6.40)

for almost all the initial states x0 2 ⌦P . In this way, a clear connection is established
between the properties of a single Bohm trajectory and the expectation values.
In this framework the time average along a single Bohm trajectory and the time
average of the expectation value of a particular observable B(q) become statistically
equivalent.

The case of an observable (labeled b in Chap. 3) of a subsystem interacting with
the environment is even more interesting. By recalling what was already explained in
Chap. 3, i.e., that the expectation values corresponding to the subsystem quantities
become time independent in the thermodynamic limit, then the time average of the
expectation value is no more necessary. It can be proven that the time average along
the single Bohm trajectory b(x0) of the observable b(qS) (where qS are the subsystem
coordinates) is equivalent to the corresponding expectation value at any time:

b(x0) = h (t)|b(q̂S)| (t)i = lim

T!+1

1

T

Z T

0

dt h (t)|b(q̂S)| (t)i . (6.41)

In this way the correspondence between the statistical properties of a single Bohm
trajectory and the expectation values is direct. In the case of a finite size system in
proximity to the thermodynamic limit, one can reasonably expect that the expec-
tation values are almost the same of their time averages with the above equation
holding only approximately. In any case, it has to be emphasised that this result
permits the interpretations of the expectation values of a subsystem (that is an
open quantum system such as a single molecule interacting with the environment)
in terms of average properties of an underlying dynamics according to the single
Bohm trajectory approach. In other words, by supposing that the single Bohm tra-
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jectory approach is the correct method for describing molecular systems, then the
conventional expectation values can be described in terms of the time average of
the corresponding observables along the trajectory. Furthermore, the condition of
an open quantum system (a single molecule interacting with the other molecules) is
the most common experimental condition and also the most investigated one. This
is the reason that makes the correspondence of Eq. (6.41) for a generic subsystem
extremely important in order to validate the single Bohm trajectory approach.

6.5 Complementary results

For the sake of completeness, we would like to emphasise two features of the
previous derivations, that are not directly related to the main topic of this chapter.

First of all, Eq. (6.22) is formally equivalent to the Liouville equation in Classical
Mechanics. The only differences concern of course the definition of the variables x

and of the velocity field ⇤P (x). Let us recall that in the Bohm framework x rep-
resents a generic quantum state

�
q, (•)� in terms of coordinates and phases with

established populations, whereas its counterpart is given by the set of the positions
and momenta of all the particles in Classical Mechanics. Similarly, ⇤P (x) represents
the Bohm equation and the Schrödinger equation, and it has to be substituted with
the Hamiltonian equations of motion when dealing with Classical Mechanics. Be-
sides these differences, the two formulations of the Liouville equation are equivalent
and this allows the definition of the Liouville operator,

ˆL := �ırx · ⇤P (x) (6.42)

also in the framework of Bohm theory. The imaginary unit ı ensures that the Liou-
ville operator has some specific properties, e.g., the symmetrised Liouville operator
is an hermitian operator, that will be useful in the Chap. 7 where we shall derive
stochastic equations of motion for a subset of Bohm coordinates on the basis of the
formal equivalence between the Liouville equation in Classical Mechanics and in the
framework of Bohm theory, written as

@

@t
%⌦P

(x, t) + ıˆL%⌦P

(x, t) = 0. (6.43)

Secondly, it has to be clarified that our statistical characterisation is different
from the Bohm ensemble previously invoked in Chap. 2 and Chap. 3. Bohm pre-
sumed that the wave function of the system was known and only the initial config-
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uration is unknown. Moreover, the initial density distribution on the configuration
space was set equal to the square modulus of the initial wave function by assump-
tion. In our approach the probability density is defined on the space ⌦P that in-
cludes both the possible configurations and the possible wave functions conveniently
parametrised in terms of phases. Our fundamental idea consists in developing a sta-
tistical formulation of the single Bohm trajectory approach in order to manage the
cases where the computational cost for solving the dynamical equations is too high.
Furthermore, it has been proven that the statistical predictions can be explained
in terms of the behaviour of a single Bohm trajectory: we formalised the corre-
spondence between the statistical description and the deterministic one (the single
trajectory). However, the Bohm statistical ensemble can be obtained from our sta-
tistical method as a peculiar case by setting conveniently the initial condition and
solving Eq. (6.22), since the Liouville equation is valid independently of the initial
density distribution %⌦P

eq (x). Therefore, the Bohm probability density on the config-
uration ensemble in our notation is the following particular solution of the Liouville
equation,

%⌦P

(x, t)
���
x=(q,↵)

=

Z
dq0d↵0 | 0(q0)|2�

�
q � Q(t; q0,↵0)

�
�
�
(↵� A(t;↵0)

�
, (6.44)

where  0(q0) = hq0| 0i is the initial wave function whereas Q(t; q0,↵0) and A(t;↵0)

are the components of the curve X(t; x0). Indeed by integrating the probability
density of Eq. (6.44) on the phases variables, one obtains a probability density on
the configuration space that is equivalent to the square modulus of the wave function
| (t)i = exp(�ı ˆHt/~) | 0i in agreement to the Bohm ensemble:Z

[0,2⇡)

d↵ %⌦P

(x, t)
���
x=(q,↵)

= | (q, t)|2. (6.45)

We would like to stress that the Bohm ensemble is nothing more of a particular solu-
tion of our Liouville equation by conveniently setting the initial density distribution
%⌦P

(x, 0).

6.6 Final remarks

In this chapter we have investigated the statistical properties of a single Bohm
trajectory. First of all, we have developed the Bohm’s counterpart of the Liouville
equation for describing the evolution of a generic density distribution. The station-
ary solution, i.e., the equilibrium probability density, has been employed to establish
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a correspondence between the statistical description and the deterministic one. Fur-
thermore, the statistical method is essential in order to explain some properties of
the conventional Quantum Mechanics in terms of the properties of the single Bohm
trajectory. In particular, one can prove that the time average of an expectation
value is equivalent to the time average of the corresponding observable along a sin-
gle Bohm trajectory under reasonable conditions (that is the loss of correlation).
In the case of observables related to subsystem properties, e.g., a single molecule
interacting with the environment, the expectation values become time independent
in the thermodynamic limit. Therefore, they can be defined with the time average
of the observable along a single Bohm trajectory. In other words, the expectation
values can be interpreted as average properties corresponding to the deterministic
evolution described in terms of the single Bohm trajectory.

It has to be emphasised that this last correspondence is particular significant
since the molecular systems usually are composed of many molecules, but one is
typically interested in the properties of a single molecule. Finally, this statistical
method validates formally the description based on a single Bohm trajectory and it
can be employed also for inferring quantum stochastic equations as it is examined
in the Chap. 7.
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CHAPTER 7

Emergence of Quantum Stochastic

Behaviour

Classical Mechanics, conventional Quantum Mechanics and Bohm theory are
limited by the computational cost of solving the dynamical equations (respectively
Newton equation, Schrödinger equation and Bohm equation). For example, the
problem of computing the exact trajectory of a Brownian particle in a macroscopic
volume of water is an unfeasible task also in the framework of Classical Mechanics
because of the huge number of variables: one should take into account the position
and momentum of the Brownian particle as well as the positions and momenta of
all the water molecules. This limitation is particularly relevant when the variables
can be divided in two sets and only one set includes the interesting (“relevant”)
variables whereas the other includes the remaining (“irrelevant”) variables. It can
be understood that the position of the Brownian particle is more significant for
characterising the Brownian motion than the positions and momenta of the water
molecules. However, all the variables have to be taken into account for examining the
deterministic evolution of the system because of the interactions between the system
components. Similarly, the coordinates corresponding to each degree of freedom
and the wave function (or the phases in the representation defined in Chap. 6)
have to be well characterised for describing the evolution of a macroscopic quantum
system in the framework of Bohm theory. Also in this case, one can be interested
in the behaviour of a single molecule interacting with the solvent. For instance,
when a conformational change is occurring, the motion of the solvent molecules is

137
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less significant than the dynamics of the degrees of freedom that characterise the
molecular conformation.

In this regard, it might be extremely useful the development of dynamical equa-
tions for the interesting variables that are autonomous, by approximating the ef-
fects due to the other variables. It is well known that Stochastic Methods can be
employed for this purpose: they are currently standard procedure in the frame-
work of Classical Mechanics and they are very shared by several fields of Chemical
Physics [Gardiner (1986)]. Stochastic equations succeed in representing satisfacto-
rily different kinds of dynamical processes by modelling the fluctuating effects due to
the irrelevant variables. For example, the description of a chemical reaction can be
successfully accomplished by examining the dynamics of the relevant concentrations
of some components. The use of stochastic equations for these reactive processes
is already a common approach [Gillespie (1992, 2007); Gillespie et al. (2013)]. It
can be mentioned a recent attempt of representing a two-states kinetics that takes
into account how the system is observed and the noise corresponding to the measure
process [Prinz et al. (2014)]. Furthermore, stochastic methodologies are extremely
powerful when one is interested in the conformational motion of macromolecules of
biological interest, such as proteins. The domain motion is fundamental in determin-
ing the biological functions and the relaxation processes in spectroscopy experiments,
e.g., NMR. Recent efforts aim to understand the correlation between the internal
dynamics and the global motion of proteins [Ryabov and Fushman (2007); Wong
et al. (2009); Ryabov et al. (2012)].

The same methodologies can be adopted also in the framework of Bohm the-
ory: stochastic equations can substitute the deterministic ones (Bohm equation and
Schrödinger equation). To this end, two approaches can be implemented. The first
one consists in modelling the stochastic equations on the basis of some evidences
and some expectations about the behaviour of the relevant variables. Consider for
example the Bohm trajectories of the six interacting rotors described in Chap. 3.
By observing Fig. 3.5, one can suppose that the Bohm trajectory of each rotor
could be well represented as a diffusion process according to the Smoluchowski
equation. However, the complexity of the dynamical equations (Bohm equation
and Schrödinger equation) and the absence of a significant number of studies about
Bohm dynamics makes this approach unfeasible. The second strategy is more sys-
tematic and allows a formal derivation of the stochastic equations by starting from
the Liouville equation, which has been defined in the context of Bohm theory in
Chap. 6. This second way is known in literature as Nakajima-Zwanzig projection
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operator techniques [Zwanzig (2001); Nakajima (1958); Henderson (2012)].

In this chapter we adopt the projection operators to infer the stochastic equations
for a reduced number of variables in the framework of Bohm theory and the general
procedure is summarised in Sec. 7.1. The final goal is the definition of an approx-
imate method for describing open quantum systems, for instance a single molecule
interacting with its environment (the other molecules). The method should allow an
extension of the conventional quantum description of a single molecule by including
both the coordinates trajectories and the fluctuating effects due to the environment.
At this stage a question without an obvious answer arises: which are the relevant
variables that have to be included by the stochastic equations in order to ensure
an accurate description of the corresponding dynamics? Whereas one can try to
guess the relevant variables for a system represented with Classical Mechanics, the
same conjecture is more difficult in the framework of Bohm theory for the reasons
mentioned above, i.e., the absence of a relevant number of studies. Two different
methods for two different sets of relevant variables are examined in this chapter (see
Sec. 7.3 and Sec. 7.4). After the theoretical derivation of the corresponding stochas-
tic equations, we compare their predictions with the behaviour emerging from the
deterministic dynamics for different model systems (described in Sec. 7.2) in order
to validate each methodology. In particular, the second stochastic approach, which
is the most efficient, replaces the Bohm equation, determining the set of all the
particle velocities according to the full wave function, with a stochastic equation
that approximates the velocity of a subset of coordinates from the corresponding
reduced density matrix. In this way one can represent the motion of an open quan-
tum system, i.e., a single molecule interacting with the environment, according to
a quantum theory of motion. Furthermore, this method can be suitable in order to
examine reactive systems, as for example a conformational change of a molecule in
solvent. Our approach could supply precise information about the time evolution of
the molecular geometry by taking into account the molecular geometry itself and the
fluctuating behaviour of the solvent. Additionally, it is a quantum method devel-
oped in the framework of a quantum theory without any reference to a description
based on Classical Mechanics. In this way one can avoid “mixed” methods that rely
on both Classical and Quantum Mechanics without a clear definition of the border
between one description and the other.
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7.1 Projection operator techniques

In this section we summarise briefly the projection operator procedure adopted
(and firstly developed by Nakajima (1958) and Zwanzig (1960)) to infer the approx-
imate stochastic equations from the differential equations, describing the determin-
istic dynamics. The stochastic equations determine the evolution of a subset of all
the variables that define the system state. In other words, they characterise approxi-
mately the dynamics of open systems by employing only the set of the corresponding
variables. It has to be emphasised that the same procedure can be employed in many
contexts, e.g., both Bohm theory and Classical Mechanics, since it is rather general
and unrelated to a specific framework. Therefore, we make comparisons between
our derivation and the Brownian motion for some relevant cases, in order to set our
procedure in a more conventional field.

The problem of describing the dynamics of a limited number of degrees of freedom
for a quantum system composed of a huge number of molecules in the framework of
Bohm theory can be formally formulated as in the following. Consider the suitable
dynamical space and the dynamics of the actual system state. In the framework
of Bohm theory the appropriate dynamical space is ⌦P , defined in Eq. (6.17), and
the dynamics of the actual system state is described by the curve X(t; x0) solving
Eq. (6.19) with initial condition x0. Notice that we adopt the representation of the
Bohm state as the set of configuration and phases in order to employ the formula-
tion of the Liouville’s theorem developed in Chap. 6. Assuming that the interesting
dynamics is described by the relevant variables XR(t; x0), then the projection op-
erator techniques define stochastic equations that depend on the relevant variables
xR only.

The procedure, represented schematically in Fig. 7.1, consists in inferring the
Fokker-Planck equation by employing the projection operator ˆP, once the Liouville
equation and the relevant variables are identified. It is well known that the Fokker-
Planck equation replaces the Liouville equation for the distribution %R(xR, t) de-
scribing the probability that the relevant variables xR take some specific values at
time t. Furthermore, there is a formal correspondence between the Fokker-Planck
equation and the Langevin equation if the fluctuating effects of the neglected vari-
ables are modelled as a white noise ⇣(t) [Gardiner (1986)]. In other words, if the
Fokker-Planck equation replaces the Liouville equation, then the Langevin equation
can be interpreted as the replacement of the dynamical equation for the relevant vari-
ables. In the following we summarise the procedure that defines the Fokker-Planck
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Figure 7.1: Schematic representation of the projection operator procedure for identifying the stochastic
equations (Fokker-Planck and Langevin equation). The dynamical equation and the Liouville
equation are defined in Chap. 6 (see Eq. (6.20), Eq. (6.21) and Eq. (6.42)). The Fokker-Planck
operator is labelled ˆ

�

R whereas a
�
X

R

(t)
�

and b
�
X

R

(t)
�

are the coefficients of the Langevin
equation. The white noise is represented by ⇣(t).

equation through those steps:

(i) the representation of the system states in terms of relevant xR and irrelevant
xI variables;

(ii) the identification of the equilibrium density distribution %Req(xR) for the relevant
variables;

(iii) the definition of the projection operator ˆP;

(iv) the projection of the Liouville equation, for obtaining the corresponding Fokker-
Planck equation.

These steps can be already found in the works of Zwanzig [Zwanzig (1960, 1964)],
but they define an exact projected Liouville equation (see Eq. 7.7). The effects of
the irrelevant variables are taken into account through the memory of the process
involving the relevant variables. In order to obtain the corresponding Fokker-Planck
equation (see Eq. (7.12)) the memory of the process has to be approximated and
the specific simplifications are summarised in Appendix D.

First of all the relevant variables have to be recognised. The generic state of
the quantum system, that is the set x of configuration and phases according to our
representation, has to be separated in the set xR of nR relevant variables and the
set xI of nI irrelevant variables,

x ����! x = (xR, xI). (7.1)
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The total number of variables nR+nI has to be equal to n+N (with n the number
of the degrees of freedom and N the dimension of the Hilbert space) that is the
dimension of the dynamical space ⌦P (Sec. 6.2). Furthermore, the transformation
of Eq. (7.1) establishes also a separation of the dynamical space in two subspaces,

⌦P = ⌦R ⇥ ⌦I , (7.2)

such that xR 2 ⌦R and xI 2 ⌦I . Broadly speaking, the projection operator tech-
niques “project” the deterministic dynamics of the curve X(t; x0), belonging to the
dynamical space ⌦P , onto the space ⌦R, i.e., the space of the relevant variables.
The projection of the curve X(t; x0) onto ⌦R is represented by XR(t; x0). The den-
sity distribution %R(xR, t) describes the probability that the relevant variables xR

in the space ⌦R take a certain value at time t. The stochastic equations are closed-
form expressions into the space ⌦R. However, the choice of the relevant variables
is anything but obvious in the framework of Bohm theory. For instance, if one is
interested in examining the conformational dynamics of a specific molecule, then the
coordinates that represent the molecular geometry belong almost certainly to the set
xR. But, do these coordinates complete the set xR? Which are the other significant
variables for describing the interesting phenomena? In the following of this chapter
we propose two answers to these questions (Sec. 7.3 and Sec. 7.4), but for now let
us assume to know the relevant set xR: for the purpose of this section, one has just
to bear in mind that xR is a set of nR relevant variables, xR = (xR,1, xR,2, . . . , xR,n

R

)

and they are known.

The second step concerns the identification of the equilibrium density distri-
bution %Req(xR) on the space ⌦R. In Chap. 6, %⌦P

eq (x) on the space ⌦P has been
recognised as the stationary solution of the Liouville equation through Eq. (6.23).
By considering the transformation of Eq. (7.1) and the separation of the dynamical
space according to Eq. (7.2), one can define the equilibrium density distribution
%Req(xR) as the marginal distribution with respect to %⌦P

eq (x). In other words, %Req(xR)

is the equilibrium distribution %⌦P

eq (x) integrated on the irrelevant variables,

%Req(xR) :=

Z
⌦

I

dxI %
⌦

P

eq (x)
��
x=(x

R

,x
I

)
. (7.3)

The time evolution of the relevant variables XR(t; x0) should sample the space ⌦R

according to the marginal density distribution %Req(xR), in the same way as the curve
X(t; x0) should sample the dynamical space according to %⌦P

eq (x) in the ergodic
condition.
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Once %Req(xR) is identified, the projection operator ˆP can be defined. Let f(x)

be a generic function of the whole set of variables. The following equation fully
characterises the projection operator ˆP onto the subspace ⌦R:

ˆP
�
%⌦P

eq (x)
�1/2

f(x) =
�
%⌦P

eq (x)
�1/2 R⌦

I

dxI

⇥
%⌦P

eq (x)f(x)
⇤
x=(x

R

,x
I

)

%Req(xR)
. (7.4)

The result of the projection is the average of the function f(x) with respect to
the irrelevant variables xI weighted by the equilibrium density probability %⌦P

eq (x)

and multiplied by the term
�
%⌦P

eq (x)
�1/2. Since the purpose of the procedure is

the definition of the Fokker-Planck equation through the projection the Liouville
equation (see Fig. 7.2), the projection operator has to act on the probability density
%⌦P

(x, t) as well as on the Liouville operator.

Therefore, it is convenient to employ the operator ˆP on the symmetrized Liouville
equation instead of the original equation. In this way two main advantages arise.
The first one is that the symmetrized Liouville operator ˆ

˜L is a hermitian operator un-
like ˆL. Secondly, the action of ˆP on the symmetrized probability density %̃⌦P

(x, t) is
proportional to the probability density integrated on the irrelevant variables. For the
sake of completeness, we recall that the symmetrized Liouville equation defines the
evolution of the symmetrized probability density %̃⌦P

(x, t) :=
�
%⌦P

eq (x)
��1/2

%⌦P

(x, t),

@

@t
%̃⌦P

(x, t) + ıˆ˜L%̃⌦P

(x, t) = 0, (7.5)

where ˆ

˜L :=

�
%⌦P

eq (x)
��1/2

ˆL
�
%⌦P

eq (x)
�1/2. Indeed, it can be proven that if %⌦P

(x, t)

satisfies the Liouville equation (Eq. (6.43)), then Eq. (7.5) holds for obvious reasons.
Since the projection operator defined in Eq. (7.4) is linear and time independent,
the symmetrized Liouville equation can be written as a pair of equations8><>:

@

@t
ˆP%̃⌦P

(x, t) + ıˆPˆ

˜L
⇣
ˆP +

ˆQ
⌘
%̃⌦P

(x, t) = 0

@

@t
ˆQ%̃⌦P

(x, t) + ıˆQˆ

˜L
⇣
ˆP +

ˆQ
⌘
%̃⌦P

(x, t) = 0

(7.6)

where ˆQ is the projection operator complementary to ˆP, ˆQ :=

ˆ1 � ˆP. The second
equation in (7.6) can be solved formally for ˆQ%⌦P

(x, t) and the solution can be
substituted in the first equation in (7.6) (see Zwanzig (1964)). In this way an
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equation for the projected probability density is obtained,

@

@t
%̃P
(x, t) = �ıˆPˆ

˜L%̃P
(x, t) �

Z t

0

d⌧ ˆK(⌧)%̃P
(x, t � ⌧), (7.7)

where %̃P
(x, t) is a compact notation for the result of the action of the operator ˆP

on the symmetrized probability density,

%̃P
(x, t) := ˆP%̃⌦P

(x, t), (7.8)

and ˆK(⌧) is the kernel operator defined as

ˆK(⌧) = ˆPˆ

˜LˆQ e�ı⌧Q̂ ˆ̃L
ˆQˆ

˜LˆP. (7.9)

We would like to emphasise some features of Eq. (7.7). First of all, it is still an
exact equation for the evolution of %̃P

(x, t): no approximations have been adopted.
The only assumption concerns the initial density distribution that is arbitrary and
selected in such a way that ˆQ%⌦P

(x, 0) = 0, since we are interested in the prob-
ability density of the relevant variables. The kernel operator ˆK(⌧) includes the
memory of the whole process in order to compensate for the loss of information due
to the projection and to determine the time evolution of %̃P

(x, t) exactly. Broadly
speaking, the memory of the process substitutes the information neglected by pro-
jecting the Liouville equation. Despite the use of the projection operator, %̃P

(x, t)

is still function of all the variables, but it is proportional to the probability density
%⌦P

(x, t) integrated on the irrelevant variables. By employing Eq. (7.4), it can be
easily verified that

ˆP%̃⌦P

(x, t) =

�
%⌦P

eq (x)
�1/2

%Req(xR)

Z
dxI %

⌦
P

(x, t)
��
x=(x

R

,x
I

)
, (7.10)

where the result of the integration is the marginal density distribution %R(xR, t) with
respect to the irrelevant variables:

%R(xR, t) :=

Z
dxI %

⌦
P

(x, t)
��
x=(x

R

,x
I

)
. (7.11)

Finally Eq. (7.7) can be simplified in order to obtain a closed-form expression for
%R(xR, t) that depends on the relevant variables only. The most common approxi-
mation leading to the Fokker-Planck equation concerns the memory of the process:
it is usually assumed that the memory of ˆK(⌧) extends over a short time interval.
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In other words, the evolution of the relevant variables is a Markovian process by hy-
pothesis. We summarise the essential steps for inferring the Fokker-Planck equation
from Eq. (7.7) under the Markovian hypothesis in Appendix D, and in the following
it is reported only the resulting Fokker-Planck equation:

@

@t
%R(xR, t) = �

h
rR⇤R(xR)%

R
(xR, t) � rR · %Req(xR)�(xR)rR

�
%Req(xR)

��1
%R(xR, t)

i
,

(7.12)
where rR = (@/@x1, @/@x2, . . . , @/@xn

R

), ⇤R(xR) is the averaged velocity field and
�(xR) can be interpreted as the matrix of the diffusion coefficients similarly to the
case of the diffusion of a Brownian particle in Classical Mechanics. The k-th element
of the averaged velocity field ⇤R,k(xR) describes the deterministic evolution of the
k-th relevant variable and it is equal to

⇤R,k(xR) =
1

%Req(xR)

Z
⌦

I

dxI

⇥
%⌦P

eq (x)⇤P,k(x)
⇤
x=(x

R

,x
I

)
. (7.13)

As regards the matrix of diffusion coefficients, each element depends generally on
the relevant variables according to their definition:

�k,k0(xR) =

Z +1

0

d⌧
1

%Req

Z
⌦

I

dxI

h�
%⌦P

eq

�1/2
�⇤P,k e�ı⌧Q̂ ˆ̃L

�⇤P,k0
�
%⌦P

eq

�1/2i
x=(x

R

,x
I

)
,

(7.14)
with�⇤P,k(x) the fluctuation of the k-th component of the velocity field with respect
to its average value,

�⇤P,k(x) = ⇤P,k(x) � ⇤R,k(xR). (7.15)

However, it is usually assumed that each �k,k0(xR) is a constant parameter, i.e.,
�k,k0(xR) ' �k,k0 . Notice that in Eq. (7.13), Eq. (7.14) and Eq. (7.15), the index k

can assume the values 1, 2, . . . , nR. Finally, the Fokker-Planck operator is

ˆ

�

R
= rR · ⇤R(xR) � rR · %Req(xR)� rR

�
%Req(xR)

��1 (7.16)

and the corresponding Langevin equation (see Gardiner (1986)) is

d

dt
XR(t) = ⇤R (XR(t)) + �

rR %Req (XR(t))

%Req (XR(t))
+ (2�)1/2 ⇣(t), (7.17)

where the averaged velocity field ⇤R,k and the diffusive contribution �rR%
R
eq/%

R
eq

represent the deterministic dynamics, while the third term (2�)1/2 ⇣(t) describes
the fluctuating dynamics. The Fokker-Planck equation determines the evolution
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of a generic initial density distribution of the relevant variables %R(xR, t) and the
corresponding Langevin equation models the dynamics of XR(t; x0). This is the
general procedure which, however, leaves open the issue of the identification of the
relevant variables that are essential to determine the ingredients of ˆ�R, i.e., ⇤R(xR),
%Req(xR) and �; once they are established, then the stochastic equations (Fokker-
Planck equation and Langevin equation) can be used to examine the properties of
the relevant variables. In order to verify the accuracy of the stochastic method,
its predictions have to be compared with the deterministic dynamics. In Sec. 7.2
we define a model system that is employed for the comparison of the deterministic
predictions with the stochastic ones, for two different sets of relevant variables and
system conditions.

7.2 Model system

In order to analyse the predictions of the stochastic equations for different sets of
relevant variables, we consider an hypothetical quantum system whose deterministic
dynamics can be calculated by solving the Bohm and the Schrödinger equations
exactly. This system is composed of n = 6 interacting harmonic oscillators and it
could represent n interacting vibrational degrees of freedom, such as the vibrational
degree of freedom of n diatomic molecules. The set q = (q1, q2, . . . , qn) includes
the coordinate corresponding to each oscillator. By hypothesis, the first oscillator
represents the open quantum system (or subsystem) of interest whose behaviour
should be well described according to the stochastic method; the other oscillators
play the role of the environment. Since this model system is rather similar to
the system of n confined, randomly coupled, planar rotors examined in Chap. 3
(see the subsections 3.2.1 and 3.2.2), we characterise it on the one hand by briefly
summarising the common features of the two models, particularly those regarding
the numerical methodologies. On the other hand, we go into detail as regards their
differences:

(i) each coordinate qi is not periodic and the Hilbert space Hi for each oscillator
can not be generated by means of the Fourier basis set;

(ii) we consider the possibility that the harmonic frequency of the subsystem could
be different with respect to that of the oscillators composing the environment;

(iii) the interaction between the oscillators has been modelled with a random ma-
trix [Wigner (1967); Brody et al. (1981)] instead of the random potential of



7.2. MODEL SYSTEM 147

Eq. (3.32);

(iv) the initial conditions have been selected according to either the RPSE (Chap. 3)
or an arbitrary non-equilibrium conditions.

If the stochastic method represents accurately both the equilibrium and the non-
equilibrium case, then it could be used for describing and interpreting the molecular
motion during a realistic spectroscopic experiment. Broadly speaking, the inter-
action with the external field establishes a condition of non-equilibrium, e.g., a
vibrational or vibronic excitation; afterwards the system relaxes in order to restore
the equilibrium conditions. With this new methodology, it is possible to improve
the representation proposed in Chap. 5 and regarding the excitation of isolated
molecules, by including also the effects of the environment.

Now, getting down to details, the model system is composed of n = 6 interacting
harmonic oscillators. The Hilbert space for the whole system is the tensor product
of the Hilbert space for each oscillator, H = H1 ⌦ H2 ⌦ . . . ⌦ Hn. Each element of
the space Hi can be fully specified by means of the orthonormal basis functions

'l
i

(qi) =
1p
2

l
ili!

⇣m!i

⇡~

⌘1/4
Hel

i

✓r
m!i

~ qi

◆
e�

m!

i

q

2
i

2~ , (7.18)

with li an integer index that can take the values li = 0, 1, 2, . . . , and Hel
i

(•) the li-th
Hermite polynomial. Each function 'l

i

(qi) is the li-th eigenfunction of the harmonic
Hamiltonian operator ˆH

(0)
i for the i-th single oscillator with frequency !i, that is

ˆH
(0)
i = � ~2

2m

@2

@q2i
+

1

2

m!2
i q

2
i . (7.19)

The eigenvalue ✏l
i

corresponding to the eigenfunction of Eq. (7.18) is obviously
✏l

i

= (li + 1/2)~!i. The Hamiltonian of the whole system is

ˆH =

ˆH(0)
+ � ˆV (r)

=

nX
i=1

ˆH
(0)
i + � ˆV (r), (7.20)

where ˆV (r) represents the interaction between the oscillators and � is a parameter
that sets the magnitude of the interaction in order to ensure that it plays the role of a
perturbation with respect to ˆH(0). The interaction ˆV (r) is modelled with a random
matrix as it is described in the Subs. 7.2.1. Notice that the oscillators have the
same mass, but their characteristic frequency !i can be different. This feature will
be employed in order to test the flexibility of the stochastic methods for reproducing
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accurately different deterministic dynamics.
Finally, we recall the classification of the first oscillator as the subsystem S of

interest and the identification of the environment E with the other five oscillators.
Therefore, the operator ˆH1 is the subsystem Hamiltonian operator ˆHS =

ˆH1 and its
eigenvalues ✏l

S

= ✏l1 represent the energy of the corresponding eigenfunctions. Sim-
ilarly, the environment Hamiltonian operator is ˆHE =

Pn
i=2

ˆHi, and its eigenvalues
are ✏l

E

=

Pn
i=2 ✏li with lE = (l2, l3, . . . , ln). We study the time evolution of different

initial conditions, i.e., a specific initial configuration Q(0) and a specific initial wave
function  (q, 0), by focusing on the properties of the subsystem. In all the cases
which are examined in the following, the same frequency is taken into account for
the oscillators composing the environment, !i = !E 8i = 2, 3, . . . , n, whereas the
frequency of the first oscillator !1 = !S is either equal or different with respect to
!E depending on the investigated conditions.

7.2.1 Numerical methods

Similarly to the study in Chap. 3, numerical methods have been employed i) to
determine the eigenstates of the full system Hamiltonian ˆH, ii) to establish the initial
conditions, iii) to compute the Bohm trajectory. Furthermore, numerical solutions
of the stochastic equations (deriving later in this chapter) are taken into account.

First of all, we identify the Hamiltonian eigenstates through the numerical diag-
onalization of ˆH matrix representation. For this purpose, we consider the basis set
{|li} whose elements |li are defined according to the equation

ˆH(0) |li = E
(0)
l |li , (7.21)

where l = (l1, l2, . . ., ln) and

|li =
nO

i=1

|'l
i

i , E
(0)
l =

nX
i=1

✏l
i

. (7.22)

We would like to recall that each function 'l
i

(qi) of Eq. (7.18) and each element
|'l

i

i of Eq. (7.22) are related as 'l
i

(qi) = hqi|'l
i

i and the eigenstates |li of ˆH(0) are
conveniently ordered in such a way that the corresponding eigenenergies E

(0)
l are

sorted in ascending order. Moreover, we will refer to E
(0)
l as both the eigenvalue

of ˆH(0) corresponding to |li and the energy of |li. Hereafter, it is assumed that all
possible wave functions of the system belong to the finite dimensional subspace H0

(the “computational” Hilbert space) of the whole Hilbert space H = H1 ⌦ H2 ⌦
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. . . ⌦ Hn. From a computational point of view this is necessary for employing
the matrix representation of the operators. In this regards, we define H0 as the
Hilbert space generated by the basis set {|li} that includes only the eigenstates of
ˆH(0)with eigenenergies E

(0)
l smaller than the cutoff energy E

(0)
tr of the truncation:

H0
:=

nL
l |li with E

(0)
l < E

(0)
tr

o
. By representing the operators on the basis set

{|li}, ˆH(0) is a diagonal matrix whose elements are the eigenvalues
n
E

(0)
l

o
, whereas

the operator ˆV (r) has been modelled with a random matrix whose elements are
gaussian distributed according to the following statistical constraints:

Vi,j = 0, (Vi,j)
2
=

1

2 � �i,j
, (7.23)

where �i,j is the Kronecker delta. Finally, the eigenstates |Eki of ˆH are identified
by linear combinations of the basis set elements |li according to the numerical di-
agonalization. It has to be emphasised that the use of a finite number of elements
for the basis set is necessary for performing the numerical computation, but it can
be justified as long as the random potential is a perturbation compared to ˆH(0). As
already explained in Chap. 3, the diagonalization of the full Hamiltonian is influ-
enced mainly by the coupling between basis elements with similar energies E(0)

l , and
this allows an efficient truncation of the Hamiltonian matrix representation. From
a technical view point, the sampling of ˆV (r) elements and the diagonalization of the
Hamiltonian have been performed by employing the software routine Armadillo, a
C++ linear algebra library [Sanderson (2010)]. The considerations about the effects
of E(0)

tr different values are reported in Chap. 3 and not repeated here since they are
essentially identical.

Secondly, the initial wave function | (0)i has to be established. In order to fulfil
this objective, the RPSE procedure can be employed (see Sec. 3.1 for details). One
can assume that the wave function belongs to an N -dimensional subspace of H0,
called active space,

HN :=

(
NM
k=1

|Eki with EN < Emax < EN+1

)
(7.24)

that is the subspace due to the eigenstates of ˆH with eigenvalues smaller than the
parameter Emax. By specifying the initial wave function | (0)i as a linear combina-
tion of the basis elements |Eki belonging to the active space HN , the coefficients of
the expansion can be expressed in terms of populations (P1, P2, . . . , PN) and phases
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�
A1(0), A2(0), . . . , AN(0)

�
| (0)i =

NX
k=1

p
Pke

�ıA
k

(0) |Eki . (7.25)

The RPSE procedure samples randomly the N � 1 independent populations, as-
suming that they are equally distributed on their domain. Furthermore, also the N

independent phases are selected randomly from the uniformly distribution on their
domain. The parameter Emax has to be smaller than E

(0)
tr since it is reasonable to

suppose that the effects of the basis set {|li} truncation are more pronounced for
the eigenstates |Eki with higher energies. So Emax is selected small enough to make
the truncation effects negligible (see the considerations about the effects due to dif-
ferent E

(0)
tr values in Subs. 3.2.2). The RPSE selects a “typical” wave function as

explained in Chap. 3: the expectation values are characterised by a pure fluctuating
evolution about their typical values. Broadly speaking, the dynamics corresponding
to a RPSE initial wave function is the equilibrium dynamics. The observation of
a non-equilibrium dynamics would require the selection of a particular initial wave
function.

We consider a specific initial conditions for analysing also the non-equilibrium
dynamics: we examine an initially isolated subsystem that begins interacting with
the environment at t = 0. At time t < 0 the subsystem is supposed to be unentangled
with the environment with a factorised wave function of the whole system. For this
reason, the initial wave function can be written as

| (0)i = �� S
(0)

↵⌦ �� E
(0)

↵
, (7.26)

where
��
 

S
(0)

↵ 2 HS := H1,
��
 

E
(0)

↵ 2 HE := H2 ⌦ H3 ⌦ . . . ⌦ Hn and HS, HE

are respectively the Hilbert space of the subsystem and of the environment. Notice
that the computational limitations demand that | (0)i belongs to the computational
Hilbert space H0

=

nL
l |li with E

(0)
l < E

(0)
tr

o
and this requires for a suitable choice

of
��
 

S
(0)

↵
and

��
 

E
(0)

↵
that it is made by employing the following procedure. Let

us consider |li of Eq. (7.22) and its factorisation according to the tensor product
between the specific basis set elements |lSi 2 HS and |lEi 2 HE:

|li = |lSi ⌦ |lEi . (7.27)

For the sake of completeness, we recall that |lSi = |'l1i and |lEi =Nn
i=2 |'l

i

i with
lS = l1 and lE = (l2, l3, . . . , ln) in such a way that l = (lS, lE). We specify the
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Figure 7.2: Representation of the basis set elements |l
S

i, |l
E

i and |li of the Hilbert spaces H
S

, H
E

and
H0 ordered with respect to the corresponding eigenvalues in the case the system is composed
of two oscillators. It has been assumed that !

S

= 2!
E

and E
max

= 6 !
E

~.

subsystem initial wave function
��
 

S
(0)

↵
and the environment initial wave function��

 

E
(0)

↵
according to the following equations,

��
 

S
(0)

↵
=

X
l
S

2L
S

q
P S
l
S

|lSi , (7.28)

��
 

E
(0)

↵
=

X
l
E

2L
E

q
PE
l
E

e�ı�
l

E |lEi , (7.29)

where LS is an arbitrary set of lS and LE is the set of lE, such that the eigenvalue
E

(0)
l of the Hamiltonian ˆH(0) corresponding to the eigenstate |li = |lSi⌦|lEi satisfies

the inequality E
(0)
l < Emax 8lS 2 LS and 8lE 2 LE.

Consider for example a system composed of two non interacting oscillators whose
eigenstates are represented in Fig. 7.2. One oscillator is the interesting subsystem
and the other is the environment. Their frequencies satisfy the equation !S = 2!E

by assumption. On the left hand side of Fig. 7.2 it is displayed how |lSi and |lEi are
ordered with respect to their corresponding eigenenergies according to the equations
ˆHS |lSi = ✏l

S

|lSi and ˆHE |lEi = ✏l
E

|lEi. On the right hand side of Fig. 7.2 it is
displayed how |li = |lSi ⌦ |lEi is distributed as a function of the energy E

(0)
l =

✏l
S

+ ✏l
E

. If we assume that LS = (0, 1) and Emax = 6 !E~, one can observe that the
set LE includes the lE labels (0, 1, 2). This can be verified with a simple reasoning.
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Even if E(0)
l < Emax for lE = 3 and lS = 0, this is not true for lE = 3 and lS = 1.

Since the definition of LE imposes that E
(0)
l < Emax 8lS 2 LS and 8lE 2 LE, then

lE = 3 does not belong to LE since there is a l0S 2 LS such that E
(0)
l0 > Emax with

l0 = (l0S, lE).

With this approach the initial wave function is defined as a linear combination of
some elements of the basis set {|li} characterised by eigenvalues E

(0)
l smaller than

Emax instead of E(0)
tr , which determines the computational truncation of the basis set.

The use of Emax aims to get close to the limit that the initial wave function belongs
to the active space HN similarly to the RPSE sampling. Indeed, it is reasonably
expected that the norm of the initial wave function component (Eq. (7.26), with��
 

S
(0)

↵
and

��
 

E
(0)

↵
defined respectively in Eq. (7.28) and Eq. (7.29)), belonging

to the active space, is greater then the norm of the component belonging to the
complementary space as long as the interaction is a perturbation. However, we are
aware that | (0)i can not belong exactly to HN ; the above described method tries
to mimic the condition of an initial wave function belonging to HN as much as
possible.

Then the problem of selecting | (0)i corresponds to the choice of the coeffi-
cients

�
P S
l
S

 
,
�
PE
l
E

 
, {�l

E

}. In order to ensure the normalisation of the wave func-
tion, the parameters

�
P S
l
S

 
and

�
PE
l
E

 
have to sum to one:

P
l
S

2L
S

P S
l
S

= 1 andP
l
E

2L
E

PE
l
E

= 1; for the set {�l
E

} there are no constraints. From a technical point
of view, we select the parameters

�
PE
l
E

 
using the algorithm originally proposed for

determining the RPSE populations [Fresch and Moro (2009)]: they are statistically
sampled according to a uniform distribution and guaranteeing that the normalisation
condition holds. Similarly, also the parameters {�l

E

} have been randomly chosen
inside the interval [0 � 2⇡). The coefficients

�
P S
l
S

 
are instead picked arbitrarily in

order to examine a particular phenomenology. Once the initial wave function has
been established and written as a linear combination of the eigenstates |Eki of ˆH,
by using the numerical diagonalization, the solution of the Schrödinger equation is
specified at an arbitrary time as in Eq. (3.39).

For solving numerically the Bohm equation and computing the deterministic
Bohm trajectory of the oscillators, we adopted the Runge-Kutta method [Press
et al. (2007)] at the 4-th order. This is fully equivalent to what we have done for
determining the Bohm trajectory of the six rotors in Chap. 3.

As regards the numerical solution of the stochastic equations (Fokker-Planck
and Langevin equation), we use common algorithms. For example, the Langevin
equation can be solved by employing the Euler method [Press et al. (2007)] that is
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Figure 7.3: Hypothetical initial probability density %R(x
R

, 0) on the space defined by the unidimensional
relevant variables x

R

. The probability density %R(x
R

, 0) vanishes approximately outside the
region between the endpoints x

R,1 and x
R,NI+1. This region is further separated in N

I

intervals
whose endpoints are x

R,i

and x
R,i+1 for each i-th interval, with i = 1, 2, . . . , N

I

.

computationally less expensive than the Runge-Kutta method. Since the effects of
the irrelevant variables are represented by a white noise in the Langevin equation,
then the solution XR(t) can not be the exact projection of the deterministic dynam-
ics on the relevant variables and one can use less accurate and less stable algorithm
as the Euler method. In addition, for some cases we need to compute the average
values predicted according to the Fokker-Planck equation. However, instead of solv-
ing directly this partial differential equation, we exploit the equivalence between the
predictions of the Fokker-Planck equation and of a conveniently sampled swarm of
Langevin trajectories [Gardiner (1986)]. Indeed one can determine the evolution of
Ntra Langevin trajectories (through the Euler method) whose initial conditions xR,0

are distributed according to the initial probability density on the relevant variables
%R(xR, 0). Then, each average property can be computed using the swarm of tra-
jectories and it corresponds to the average property predicted by the Fokker-Planck
in the limit of Ntra ! +1. The only numerical difficulty concerns the sampling
of xR,0 according to %R(xR, 0). For accomplishing this task, one can implement a
common Monte Carlo method, otherwise, if the space of the relevant variables is
an unidimensional space, as it is in our case, we propose an alternative approach.
Consider an initial density distribution %R(xR, 0) as in Fig. 7.3; once the domain
region where the density distribution does not vanish is identified, then this region
has to be separated in NI intervals with the same length. In Fig. 7.3 this region is
delimited by the endpoints xR,1, xR,N

I

+1 and the extremes of the i-th interval are
identified by xR,i, xR,i+1. The central point of each interval is the initial condition
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of a number of Langevin equations proportional to the probability that the relevant
variable belongs to that specific interval initially. In other words, the number of
trajectories Ntra(i) that depart from the central point of the i-th interval is defined
by

Ntra(i) ' Ntra

Z x
R,i+1

x
R,i

dxR %R(xR, 0). (7.30)

The above equation is not an exact equivalence since Ntra(i) is the natural number
closest to the value of the r.h.s. of Eq. (7.30). The choice of selecting the middle point
of each interval as the initial condition of Ntra(i) Langevin equation is reasonable
as long as the length of the intervals is small compared to the length of the region
[xR,1 � xR,N

I

+1] and %R(xR, 0) changes negligibly inside each interval. Furthermore,
the white noise ensures that different Langevin trajectories evolve from the same
initial condition. In the limit of Ntra ! +1 and NI ! +1, this approach should
provide the same results as the Monte Carlo method. From a technical view point,
the values of the parameters are set to xR,1/

p
~/m!S = �5, xR,N

I

+1/
p

~/m!S = 5,
NI = 100, Ntra = 10000 for all the numerical simulations examined.

In the following, we analyse the predictions of the stochastic equations for the
model system described above under different conditions and we compare the results
with the deterministic behaviour.

7.3 Smoluchowski-Bohm equation

As already explained, we aim to describe the behaviour of an open quantum
system (a subsystem of interest) with stochastic equations defined in the framework
of Bohm theory. By bearing in mind the projection operator technique summarised
in Sec. 7.1, the Fokker-Planck equation and the Langevin equation can be defined for
a chosen set of relevant variables xR. Of course, the coordinates qS of the molecules
composing the subsystem, or some of their degrees of freedom, belong to the set
of relevant variables since our purpose is the description of their behaviour. This
means that the coordinate qS = q1 of the first oscillator in our model system is one of
the relevant variables. However, do these coordinates complete the set xR? Should
some coordinates of the environment or some phases be included too? To a first
approximation, one can reasonably suppose that qS is sufficient for well representing
the dynamics of the subsystem with stochastic equations. Indeed, the trajectories
of the six rotors of Chap. 3 (see Fig. 3.5) resemble a diffusion process that can be
characterised according to the classical Smoluchowski equation [Gardiner (1986)].
This stochastic equation is well known to represent the dynamics of the coordinates
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corresponding to relevant degrees of freedom, e.g., the coordinates of the center of
mass of a Brownian particle. Therefore, we propose to classify the same variables
as the relevant ones and to infer an analogous equation in the framework of Bohm
theory that we call “Smoluchowski-Bohm” equation. Thus, the sets of relevant and
irrelevant variables are defined as,

xR = (qS), xI = (qE,↵), (7.31)

where ↵ represents the wave function according to the formalism defined in Chap. 6.
The coordinates of the molecules composing the environment are labeled qE and with
reference to the six oscillators qE = (q2, q3, . . . , qn). At this stage, the projection
operators can be fruitfully employed to derive the following equilibrium density
distribution and averaged velocity field,

%Seq(qS) =
X
l
S

,l0
S

�l0
S

,l
S

'⇤
l
S

(qS)'l0
S

(qS), (7.32)

⇤S(qS) =
~
m

Im

(P
l
S

,l0
S

�l0
S

,l
S

'⇤
l
S

(qS)rS 'l0
S

(qS)

%Seq(qS)

)
, (7.33)

that define the Fokker-Planck operator ˆ

�

S. We would like to emphasise some de-
tails concerning Eq. (7.32) and Eq. (7.33). They define the marginal equilibrium
density distribution and the averaged velocity field by assuming that the subsystem
of interest is the single oscillator of the model system, but their generalisation is
straightforward. Secondly, the elements of {'l

S

(qS)} are the eigenfunctions of the
subsystem Hamiltonian ˆHS, namely the eigenfunctions of the first harmonic oscil-
lator: 'l

S

(qS) = 'l1(qS) = hqS|lSi. The time average of the reduced density matrix
element �l0

S

,l
S

in the representation of the basis set {'l
S

} is obtained by the integra-
tion on the ↵ variables. Third, %Seq(qS) is defined in Eq. (7.3) with %⌦P

eq (x) of Eq. (6.24)
and similarly ⇤S(qS) is defined in Eq. (7.13) with ⇤P,j(x) of Eq. (6.20). In order
to calculate the integrals on the irrelevant variables qE involved in the definition of
%Seq(qS) and ⇤S(qS), it is convenient to write the eigenstates |Eki of the Hamiltonian
ˆH (labeled �k(q) in Eq. (6.24) and Eq. (6.20)) as linear combinations of the basis
set {|li} elements through the numerical diagonalization |Eki =

P
l |li hl|Eki. This

leads to the factorisation of the function 'l(q) = hq|li as the product of a subsys-
tem function and an environment function, 'l(q) = 'l

S

(qS)'l
E

(qE). Finally, we tag
the marginal equilibrium density distribution, the averaged velocity field and the
Fokker-Planck operator with the label S instead of the generic R used in Eq. (7.3),
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Eq. (7.13) and Eq. (7.16), for highlighting that the selected relevant variables are
the coordinates of the subsystem S.

Despite Eq. (7.32) and Eq. (7.33) characterise completely the operator ˆ

�

S, other
considerations can be invoked in order to further simplify the stochastic model.
Indeed, the time average of the reduced density matrix is almost always equal to
the canonical reduced density matrix for typicality [Goldstein et al. (2006); Fresch
and Moro (2013)] (see also the statistics of quantum pure states in Sec. 3.1):

�̂ ' e�Ĥ
S

/k
B

T

TrS
n
e�Ĥ

S

/k
B

T
o , (7.34)

where the thermodynamic limit has been considered. This means that its matrix
representation on the basis set {'l

S

(qS)} of the eigenfunctions of ˆHS is a diago-
nal matrix. By assuming that Eq. (7.34) holds, the averaged velocity field ⇤S(qS)

vanishes since the eigenfunctions 'l
S

(qS) are real functions ('l
S

(qS): R ! R). Con-
sequently the Fokker-Planck operator is

ˆ

�

S
= �rS · %Seq(qS)� rS

�
%Seq(qS)

��1 (7.35)

and the Langevin equation is

d

dt
QS(t) = �

rS %
S
eq (QS(t))

%Seq (QS(t))
+

p
2�⇣(t). (7.36)

These two equations are formally equivalent to the classical Smoluchowski equa-
tion and the corresponding Langevin equation. All the quantum features of the
motion are taken into account by the density distribution %Seq(qS) that depends on
the eigenfunctions of the subsystem Hamiltonian. For this reason, we refer to the
Fokker-Planck equation with the operators ˆ

�

S as the Smoluchowski-Bohm equation.
In the following, we compare the predictions of Eq. (7.35) and Eq. (7.36) with those
of the deterministic dynamics. In particular we consider two different cases. In
the first case the system is already in equilibrium by sampling the wave function
according to the RPSE statistical ensemble. In the second case, the subsystem is
initially unentangled with the environment, which plays the role of a thermal bath
warming the subsystem. Notice that the diffusion coefficient � has to be determined
through the deterministic dynamics of QS(t) interpreted as the result of an experi-
mental observation. This approach is equivalent to that commonly employed in the
framework of classical stochastic methods for recognising the value of the diffusion
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Table 7.1: Diagonal elements of the equilibrium reduced density matrix �
lS ,lS , with their canonical values

reported between parentheses.

lS �l
S

,l
S

0 0.496 (0.456)
1 0.272 (0.250)
2 0.139 (0.137)
3 0.0618 (0.0749)
4 0, 0234 (0.0410)
5 6.71 10�3 (0.0224)
6 1.14 10�3 (0.0123)
7 6.50 10�7 (6.73 10�3)

coefficient �.

7.3.1 Equilibrium dynamics

We consider six identical oscillators (!S = !E), coupled by a random potential
with magnitude � = 0.001 !E~. The truncation energy is E

(0)
tr = 10.5 !E~ and

the cutoff energy is Emax = 9.5 !E~. Therefore, the dimension of the computa-
tional Hilbert space is 1716 and the dimension of the active space is N = 924.
By sampling the initial wave function according to the RPSE procedure, one can
examine the deterministic wave function dynamics by solving the Schrödinger equa-
tion. The corresponding equilibrium reduced density matrix is almost diagonal
(�l

S

,l0
S

/�l
S

,l
S

< 1/100) and the diagonal elements are reported in Table 7.1. Like
with the model system of six interacting rotors, the decrease of the diagonal com-
ponents �l

S

,l
S

with the subsystem energy (see Table 7.1) suggests a canonical form,
i.e., �l

S

,l
S

/ exp(�✏l
S

/kBT ), but this is not the case. Indeed, the hypothetical
canonical coefficient (1/kBT ) has been determined from the ratio �0,0/�1,1, and it
is 1/kBT = 0.602 (!S~)�1. The corresponding elements of the canonical density
are reported in Table. 7.1. Their deviations with respect to �l

S

,l
S

are evident: the
model system is not large enough to reach the thermodynamic limit. However, it
can be stated that the system resembles that of thermodynamic equilibrium, e.g.,
the reduced density matrix is a diagonal matrix.

The deterministic dynamics of the Bohm coordinates can be computed once the
initial configuration is established. We assume that the initial positions of all the
oscillators is the of bottom of the potential, Qi/

p
~/m!i = 0 8i = 1, 2, . . . , n. The

subsystem Bohm trajectory QS(t) is displayed in Fig. 7.4. Similarly to the case of
the system composed of six rotors, QS(t) dynamics displays a fluctuating behaviour.
In this case the trajectory is confined because of the harmonic potential as well as



158 CHAPTER 7. EMERGENCE OF QUANTUM STOCHASTIC BEHAVIOUR

�4

�3

�2

�1

0

1

2

3

4

0 10 20 30 40 50 60 70 80

Q

S
(t

)/
p ~/

m
!

S

!Et/2⇡

Figure 7.4: Deterministic time evolution of the Bohm coordinate of the first oscillator of the model system
during the equilibrium dynamics (the initial wave function is sampled according to the RPSE
statistics).

it was confined for the rotors by the cosine potential. In order to characterise the
statistical properties of the trajectory QS(t), the probability density wS

eq(qS) and its
autocorrelation function GQ

S

(⌧) are analysed. We recall that the probability density
wS

eq(qS) is defined in such a way that the following equation holds for any observable
of the type b(qS),

lim

T!+1

1

T

Z T

0

dt b (QS(t)) =

Z
dq b(qS)w

S
eq(qS). (7.37)

The probability density wS
eq(qS) and the autocorrelation function GQ

S

(⌧) are shown
in Fig. 7.5 and Fig. 7.6 respectively. Figure 7.5 clearly shows that the coordinate is
distributed within a finite range and the probability of finding the particle outside is
negligible. This confirms the hypothesis of a strongly confined motion based on the
observation of the trajectory in Fig. 7.4. Furthermore, the fast loss of correlation
(see Fig. 7.6) highlights the fluctuating character of the motion. These two features
are similar to those already observed for the six rotor system in Chap. 3 and they
can be reasonably interpreted as the evidences of a stationary Markov process as in
Sec. 3.3. However, the stochastic theory presented in Sec. 7.1 is now available to
represent this behaviour, in the effort to avoid the exact solution of the deterministic
equations that are computationally too expensive for systems with a size larger than
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= 1.4884 ~/m!

S

.

our model.

In order to use the Smoluchowski-Bohm equation the essential ingredient is the
equilibrium density distribution %Seq(qS) that can be exactly computed in the case
of our model system. Moreover, it can be compared with the distribution wS

eq(qS)

obtained from the sampling of the Bohm trajectory and interpreted as the exper-
imental observation. The two distributions %Seq(qS), wS

eq(qS) are shown in Fig. 7.7
together with a gaussian (normal) distribution N(µ, �2

q
S

), parametrised according
to the average µ = 0 and the variance �2

q
S

= 1.4884 ~
m!

S

, of the Bohm coordinate
QS. Notice that the equilibrium density distribution %Seq(qS) is very close to wS

eq(qS).
This result is not surprising since %Seq(qS) is formally equivalent to the distribution
pSeq(qS) defined in Chap. 3 (compare Eq. (7.32) with Eq. (3.42)). Albeit they have
been obtained from different type of analysis and for different purposes, but they
are represented by the same function. In other words, the equilibrium density dis-
tribution %Seq(qS) for the relevant variables qS is equivalent to the time average of
the wave function square modulus | (q, t)|2 integrated on the degrees of freedom of
the environment. In our representation of the Bohm state (Q(t), (q, t)) in terms of
coordinates and phases (Q(t), A(t)), the average on the phases corresponds to the
time average of the wave function. This can be considered as an additional evidence
of the emergence of the conventional quantum properties, such as the equilibrium
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distribution predicted according to the wave function, from the dynamics of a single
Bohm trajectory. This issue has been already examined in detail in Chap. 3 and
Chap. 6. For the purposes of this chapter, the important issue is the correspon-
dence between the equilibrium distribution %Seq(qS) of the stochastic theory and the
statistical properties of the deterministic dynamics, i.e., wS

eq(qS).

It should be stressed that the equilibrium probability density %Seq(qS) can not
be computed for a macroscopic system by evaluating the integral in Eq. (7.3). The
problem can still be handled in two ways. The first consists in modelling the subsys-
tem Hamiltonian ˆHS, by computing the corresponding eigenfunctions and assuming
that �̂ satisfies the canonical condition of Eq. (7.34). The second strategy reproduces
the profile of wS

eq(qS) through the fitting with a suitable set of functions. Whereas
the first approach can be very useful for the general case, the second one is suited to
describe the single oscillator of our model because of the similarity between %Seq(qS)
and gaussian distribution properly parametrised (see Fig. 7.7). By assuming that
the following equality holds

%Seq(qS) =
e�q2

S

/2�2
q

Sp
2⇡�q

S

, (7.38)

with �2
q
S

= 1.4884 ~
m!

S

, the characterisation of QS(t) dynamics through the stochas-
tic equations is further simplified. As long as the Smoluchowski-Bohm operator of
Eq. (7.35) represents a Gaussian Markov process, an exponential function is recov-
ered for the correlation function of the Bohm coordinate,

GQ
S

(⌧) :=

R
dqS qSe

�⌧ �̂S

%Seq(qS)qSR
dqS q2S %

S
eq(qS)

= e
� �

�

2
q

S

⌧
, (7.39)

with a correlation time inversely proportional to the diffusion coefficient �. By com-
paring such a result with the computed correlation function displayed in Fig. 7.6, the
diffusion coefficient can be fitted to the value � = 0.1414 2⇡m/~. The effectiveness
of such a fitting clearly emerges in the comparison done in Fig. 7.8 between the two
correlation functions. The value of the diffusion coefficient � (� = 0.1414 2⇡m/~)
has been determined by trying different reasonable values in order to obtain the
maximum possible agreement between the deterministic autocorrelation function
and the one defined in Eq. (7.39).

A this point the Fokker-Planck operator is completely characterised according to
the equilibrium density distribution %Seq(qS) and the coefficient �. Consequently, also
the Langevin equation is fully defined and the stochastic version of QS(t) dynamics
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can be computed. In particular, if Eq. (7.38) holds, the following simple form of the
Langevin equation can be employed:

d

dt
QS(t) = � �

�2
q
S

QS(t) +
p
2�⇣(t). (7.40)

By solving the above equation, the stochastic trajectory QS(t) has been determined
and it is shown in Fig. 7.9 together with the result of the deterministic calculation.
Of course evident differences exist between the two kinds of trajectories. As a mat-
ter of fact, the stochastic methods (including the classical stochastic methods) can
not supply the exact single trajectory since the environment effects are described
as random forces (the white noise of Eq. (7.40)), but they reproduce correctly the
statistical properties, like the loss of correlation or the sampling of the qS space.
By repeating the analyses also for the stochastic trajectory, one recovers the same
distribution weq(qS) and the same correlation function GQ

S

(⌧) obtained for the de-
terministic one. Moreover, the trajectory obtained by solving exactly the Bohm
equation is strictly dependent on the initial conditions and it changes to a large
extent with a slightly different initial position of the particles because of the chaotic
nature of the motion. For this reason the knowledge of the exact trajectory has a



7.3. SMOLUCHOWSKI-BOHM EQUATION 163

�4

�3

�2

�1

0

1

2

3

4

0 10 20 30 40 50 60 70 80

Q

S
(t

)/
p ~/

m
!

S

!Et/2⇡

deterministic
stochastic

Figure 7.9: Time evolution of the Bohm coordinate of the first oscillator of the model system in the
equilibrium experiment. One trajectory has been determined by solving exactly the Bohm
equation (red line), whereas the other by solving the corresponding Langevin equation (blue
line).

secondary role in opposition to the knowledge of its statistical properties.
In conclusion, the above proposed Smoluchowski-Bohm equation characterises

accurately the equilibrium dynamics of a subsystem once the equilibrium density
distribution %Seq(qS) and the diffusion coefficient � have been established. As regards
%Seq(qS), one can model the subsystem Hamiltonian to determine it. On the contrary,
the diffusion coefficient � has to be considered as a free parameter of the method and
to be obtained from the analysis of the deterministic dynamics, similarly to what it
is done for classical stochastic methods in the framework of Classical Mechanics.

In the next subsection, we examine the predictions of the stochastic equations
for describing the dynamics in the case of non-equilibrium conditions.

7.3.2 Thermalisation dynamics

We consider the same system of six oscillators with !S = !E characterised by the
same values of the parameters, � = 0.001 !E~, E(0)

tr = 10.5 !E~, Emax = 9.5 !E~,
but with the initial wave function which is not sampled according to the RPSE
statistic. As anticipated in Subs. 7.2.1, we examine the case of a subsystem initially
unentangled with the environment. Whereas the coefficients

�
PE
l
E

 
and {�l

E

} are
randomly sampled, we select suitable coefficients

�
P S
l
S

 
. In particular we assume
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Table 7.2: Diagonal elements of the initial �
lS ,lS (0) and of the equilibrium �

lS ,lS reduced density matrix.
The canonical values are reported between parentheses.

lS �l
S

,l
S

(0) �l
S

,l
S

0 0.5 0.523 (0.484)
1 0.5 0.271 (0.251)
2 0 0.128 (0.130)
3 0 0.0541 (0.0673)
4 0 0.0183 (0.0349)
5 0 4.60 10�3 (0.0181)
6 0 5.84 10�4 (9.36 10�3)
7 0 8.19 10�7 (4.85 10�3)

that LS = (0, 1) and that the subsystem wave function is equally distributed between
the ground and the first excited state:

P S
l
S

= 0.5 8lS = 0, 1. (7.41)

In order to rationalise the wave function dynamics and in particular the subsys-
tem behaviour, one can compare the the diagonal elements of the initial reduced
density matrix �l

S

,l
S

(0) with those of the equilibrium reduced density matrix �l
S

,l
S

.
Their values are reported in Table 7.2. Subsystem states with lS > 2 become pop-
ulated after the interaction with the environment unlike in the initial state. One
can suppose that the dynamics establishes an energy flux from the environment to
the subsystem and consequently the excited eigenstates of the subsystem will be
populated during the time evolution. This can be further visualised by examining
Fig. 7.10, where the time evolution of the elements �0,0(t), �1,1(t) and �0,1(t) is dis-
played. After such initial change, the element �0,0 becomes almost identical to its
equilibrium value, while the element �1,1 decreases in time until to reach its equi-
librium value �1,1. This corresponds to increases the excited states populations and
the warming of the subsystem, while the ground state population is approximately
conserved. It should be recalled that in this process the trace of the reduced den-
sity matrix is conserved. On the other hand, the off-diagonal element �0,1 oscillates
with angular frequency !S (coherent dynamics). The amplitude of its oscillation
decreases because of the decoherence processes due to the interaction with the en-
vironment. For �0,1 as well as for all the other off-diagonal elements, the amplitude
of the oscillation becomes negligible in equilibrium conditions leading with the time
to a nearly diagonal reduced density matrix. One can observe that for !Et/2⇡ > 25

the elements of the reduced density matrix are almost time independent and equal
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Figure 7.10: Deterministic time evolution of the reduced density matrix elements �0,0 (red line), �1,1 (blue
line) and of the real part of �0,1 (green line) during the thermalisation dynamics. The black
dashed lines represent the corresponding equilibrium values.

to their equilibrium values. In other words, for !Et/2⇡ > 25 the system has reached
the equilibrium. However, the system is still not large enough to ensure the thermo-
dynamic limit. By comparing the equilibrium and the canonical values of �̂ (where
1/kBT = 0.658 (!S~)�1 has been determined through the ratio �0,0/�1,1), it can
be verified that the model system just resembles the thermodynamic equilibrium.
We classify such a kind of dynamics as a thermalisation process that warms the
subsystem through the increase of its energy: the excited states become populated.

The Bohm trajectory of the oscillator representing the subsystem of interest is
shown in Fig. 7.11. The displayed time interval is shorter than in Fig. 7.4 in order
to highlight a significant change of features in the time evolution of the Bohm coor-
dinate corresponding to the subsystem. In particular, the motion is approximately
an oscillation for !Et/2⇡ < 15: a distinctive frequency can be recognised from
Fig. 7.11 in correspondence to the oscillator frequency !S. This type of behaviour
is conserved until the the subsystem ground and first excited states are the main
populated states. Once the equilibrium is established (!Et/2⇡ > 25) the trajectory
is characterised by a fluctuating profile, similarly as the initial wave function was
sampled according to the RPSE. For recognising this similarity between the two nu-
merical experiments, one can compare the trajectory of Fig. 7.4 and the trajectory
of Fig. 7.11 for !Et/2⇡ > 25. During the time interval between !Et/2⇡ = 15 and
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Figure 7.11: Deterministic time evolution of the Bohm coordinate of the first oscillator of the model system
during the thermalisation dynamics (the initial wave function is factorised into the subsystem
wave function and environment wave function).

!Et/2⇡ = 25, the motion is approximately a mixture of the two behaviours. The
dynamics of the reduced density matrix of the subsystem is initially coherent be-
cause of the particular initial conditions where the ground state and the first excited
state are equally populated (see Fig. 7.10). The corresponding Bohm trajectory is
approximately an oscillation at the frequency of the coherence between the two sub-
system states. On the other hand, when the reduced density matrix is almost the
equilibrium density matrix (!Et/2⇡ > 25), then the Bohm coordinate fluctuates
as in the previous case (equilibrium dynamics). For this reason, we use the term
“coherent dynamics” also for the time evolution of the Bohm coordinate as regards
the initial time evolution, while we call the second regime “fluctuating dynamics”.

If the Bohm trajectory is analysed in terms of its equilibrium distribution wS
eq(qS)

and the autocorrelation function GQ
S

(⌧) the results are comparable with those of the
previous case (see Fig. 7.5 and Fig. 7.6). For this reason, they are not shown again,
but they will be taken into account when examining the stochastic description.

In this case (thermalisation dynamics) also the analysis of the deterministic ex-
pectation values of subsystem observables, b(t) = h (t)|ˆb| (t)i, is significant, unlike
the previous numerical simulation. In equilibrium conditions the expectation values
of the subsystem observables b(t) are almost time independent because of the time
independence of the reduced density matrix (see Eq. (3.21)). Conversely, the non-
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Figure 7.12: Deterministic time evolution of the expectation value for the subsystem coordinate during the
thermalisation dynamics.

equilibrium dynamics is characterised by relaxation to the equilibrium value [Fresch
and Moro (2013)]. One can suppose that the non-equilibrium dynamics of the expec-
tation values should be represented according to the Fokker-Planck equation with
a suitable choice of the initial distribution. This hypothesis might be reasonable
since their equilibrium values, b(t) ' b, have been already described in terms of the
equilibrium average on the dynamical space according to %⌦P

eq (x) (see Sec. 6.4 where
we proved that E⌦

P

eq [b] = b ' b(t)). In particular we focus on the expectation value
of the subsystem coordinate

qS(t) = h (t)|q̂S| (t)i = TrS {qS�̂(t)} , (7.42)

that should evolve significantly in time until the equilibrium is reached. The com-
plete time evolution of qS(t) from the deterministic dynamics is shown in Fig. 7.12
and resembles the time evolution of the element �0,1(t) of the reduced density matrix
(see Fig. 7.10). Similarly to the time evolution of the Bohm coordinate, also the dy-
namics of the expectation value qS(t) shows two different regime. For !Et/2⇡ < 15,
the expectation value oscillates with !S frequency and the decrease of the amplitude
of oscillations is the consequence of the reduced density matrix decoherence dynam-
ics. For !Et/2⇡ > 25, the amplitude of the oscillation is negligible in consequence of
the equilibrium dynamics. In this case, the deviations of the expectation value from
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subsystem coordinate and of the subsystem Bohm coordinate Q
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thermalisation dynamics.

the equilibrium value do not vanish completely because of the limited dimension of
the environment: the system resembles the thermodynamic limit. This behaviour of
qS(t) is exactly the one expected according to the statistic of quantum pure states
which has been summarised in Sec. 3.1.

Before the stochastic analysis, we would like to emphasise some differences be-
tween the Bohm trajectory QS(t) for the subsystem and the corresponding expec-
tation value qS(t) that are compared in Fig. 7.13. During the coherent regime, both
the the trajectory and the expectation value are mainly characterised by an oscil-
lating dynamics. The profile of the trajectory is less regular than the corresponding
expectation value because of the fluctuating nature of the Bohm trajectories. How-
ever, the main feature is almost the same: an oscillation with !S frequency. On the
other hand, the dynamics during the equilibrium regime is deeply different. Indeed,
the expectation value is approximately time independent, whereas the Bohm trajec-
tory shows a fluctuating dynamics as already discussed in Chap. 3. The transition
between the two types of regimes is an excellent opportunity for highlighting their
differences regarding the equilibrium dynamics. This is particularly important since
it allows us to stress the impossibility of describing the equilibrium dynamics with
the expectation values as long as they are almost time independent. The Bohm
coordinates are the suitable tool to display the time evolution hidden in the nearly
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constant expectation values.
Once the deterministic dynamics has been completely examined, one can fo-

cus on the stochastic predictions. Similarly to the analyses of Subs. 7.3.1, we take
into account the marginal equilibrium distribution %Seq(qS) and the autocorrelation
function GQ

S

(t). The distribution %Seq(qS) has been both exactly computed and ap-
proximated with a gaussian distribution with amplitude �2

q
S

= 1.4161 ~/m!S. The
comparison between wS

eq(qS), %Seq(qS) and the gaussian distribution are shown in
Fig. 7.14. Also in this case the marginal equilibrium distribution %Seq(qS) is compat-
ible with the statistical properties of the deterministic dynamics wS

eq(qS) and it can
be approximated with a gaussian distribution: the differences between a gaussian
function with �2

q
S

= 1.4161 ~/m!S and %Seq(qS) are negligible. Consequently, we
assume that Eq. (7.38) holds also in this case with �2

q
S

= 1.4161 ~/m!S. Therefore,
the autocorrelation function GQ

S

(⌧) satisfies the equivalence of Eq. (7.39) and it is
plotted in Fig. 7.15 with � = 0.1345 2⇡m/~. The differences between the determin-
istic and the stochastic autocorrelation are not relevant since the main feature (the
exponential decay) is well reproduced. Also in this case we select the value of the
diffusion coefficient � by fitting the correlation function.

It should be noticed that %Seq(qS) and � are slightly modified with respect to the
equilibrium experiment (compare the values of the parameters �2

q
S

and � for the
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two simulations). The differences can be attributed to the fact that the quantum
dynamics is realised in different dynamical spaces. As a matter of fact, in the
thermalisation experiment, the initial wave function | (0)i does not belong to the
active space and the populations are not randomly sampled according to RPSE
statistic. However, the statistical properties (%Seq(qS) and �) appear to be resilient to
the choice of deeply different initial wave functions, since they are almost conserved
in the two experiments.

Independently of these considerations, one can compute the stochastic trajec-
tory and the stochastic average value. As regards the stochastic Bohm trajectory,
it has been computed by solving Eq. (7.40) with the correct value of the parameters
�S
q
S

, � and it is compared to the deterministic one in Fig. 7.16. The fluctuating
behaviour (!Et/2⇡ > 25) is well reproduced, whereas the initial coherent dynamics
is totally missing in the stochastic trajectory. This was expected since an oscil-
lating motion in the framework of Classical Mechanics can not be recovered from
the Smoluchowski equation; similarly, the Langevin equation corresponding to our
Smoluchowski-Bohm equation can not predict the coherent motion of the Bohm
trajectory. In other words, the Smoluchowski-Bohm equation describes only the
fluctuating dynamics.
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Figure 7.16: Time evolution of the Bohm coordinate of the first oscillator of the model system in the
thermalisation experiment. One trajectory has been determined by solving exactly the Bohm
equation (red line), whereas the other by solving the corresponding Langevin equation (blue
line).

This can be further verified by comparing the expectation value qS(t) and the
average value ES

[qS](t) defined according to the formal solution of the Fokker-Planck
equation,

ES
[qS](t) =

Z
dqS qS e�t�̂S

%S(qS, 0), (7.43)

where %S(qS, 0) is a suitably chosen initial probability distribution on the relevant
variable qS. We select %S(qS, 0) according to the square modulus of the initial wave
function integrated on the environment degrees of freedom,

%S(qS, 0) :=

Z
dqE | (q, 0)|2 =

X
l
S

,l0
S

2L
S

q
P S
l
S

P S
l0
S

'⇤
l
S

(qS)'l0
S

(qS) (7.44)

with q = (qS, qE). The last equality in Eq. (7.44) holds because of our assumption
regarding the initial wave function (see Eq. (7.26) and Eq. (7.28)). The profile of
%S(qS, 0) is reported in Fig. 7.17. By solving numerically the Fokker-Planck equation
with the initial condition of Eq. (7.44), one can determine the time dependence of
the average value ES

[qS](t). The result is shown in Fig. 7.18 and compared with
the expectation value of the observable qS as derived from the time dependent wave
function. The deep differences between the two profiles are evident and highlight the
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incapability of the Smoluchowski-Bohm equation of describing the correct dynamics
in non-equilibrium conditions.

In conclusion, the Smoluchowski-Bohm equation represents accurately the equi-
librium dynamics like a purely fluctuating (diffusion) process. However, it fails to
describe the non-equilibrium dynamics, since it does not predict the coherent (os-
cillations) process. This problem can not be solved by a better determination of
the equilibrium probability density %Seq(qS) or the diffusion coefficient �: it is an
intrinsic feature of this stochastic equation. In the framework of classical stochastic
methods, one can employ a different Fokker-Planck equation in order to characterise
the oscillating dynamics, such as the Kramers-Klein equation. In the framework of
Bohm theory a projection of the Liouville equation onto the space defined by the
relevant variables qS and the corresponding velocity is still insufficient. Therefore,
we consider a completely different type of projection in the Sec. 7.4.

7.4 Bohm equation driven by reduced density matrix

In this section, we answer more precisely to the question that we have already
introduced at the beginning of Sec. 7.3: which are the relevant variables? As we have
examined in Sec. 7.3, the coordinates qS of the molecule composing the subsystem
belong necessarily to the set of relevant variables. As long as we aim to describe the
dynamics of the Bohm coordinates QS(t) corresponding to the subsystem degrees
of freedom, the variables qS have to belong to the relevant variables. However
we have verified, through numerical simulations on the model system in different
conditions, that qS is insufficient for describing all possible phenomenologies. On
the one hand, the equilibrium dynamics is well represented with the Smoluchowski-
Bohm equation, but the coherent dynamics is far the possible behaviours that can
be examined with this stochastic equation. On the other hand, the non-equilibrium
dynamics is certainly the most interesting one from different points of view. For
instance the experiments in Chemical Physics usually examine the response of a
system to perturbations that moves the system out-of-equilibrium. Therefore, an
efficient methodology has to take into account the out-of-equilibrium dynamics if it is
intended to deal with realistic experiments. Furthermore, the chemical reactions are
often represented as a dynamical processes from an equilibrium state to a different
one, that passes through non-equilibrium states. For these reasons, we would like
to improve our stochastic approach in order to represent also the non-equilibrium
dynamics.
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By bearing in mind this final goal, the set of relevant variables has to be modified.
One can reasonably think that the coherent dynamics of the thermalisation process
of Subs. 7.3.2 arises from the pilot role of the wave function and not from the
environment dynamics. The hypothesis is that the environmental degrees of freedom
influence randomly the motion of the subsystem coordinates in both the equilibrium
and the thermalisation dynamics. Conversely, the phases dynamics representing the
pilot role of  (q, t) should be at the origin of the initial oscillating behaviour due to
the particular initial wave function in the thermalisation process. With this regard,
the pilot role of the wave function, characterised by the phases, is exactly what the
Smoluchowski-Bohm equation is not able to take into account. Therefore, the set of
relevant and irrelevant variables are defined as in the next equations:

xR = (qS,↵), xI = (qE). (7.45)

Unlike what we have previously done (see Eq. (7.31)), we include the phases in the
set of relevant variables. In other words, the idea of averaging the effect of the phases
dynamics on the subsystem motion appears to be too limited when one is interested
in the relaxation towards the equilibrium. By using the set of relevant variables of
Eq. (7.45), the projection operator procedure supplies the new equilibrium density
distribution and the new averaged velocity field:

%Leq(qS,↵) =
1

(2⇡)N

X
l
S

,l0
S

�l0
S

,l
S

(↵)'⇤
l
S

(qS)'l0
S

(qS), (7.46)

⇤L,q
S

(qS,↵) =
~
m

Im

(P
l
S

,l0
S

�l0
S

,l
S

(↵)'⇤
l
S

(qS)rS'l0
S

(qS)

(2⇡)N%Seq(qS,↵)

)
, (7.47)

⇤L,↵
k

(qS,↵) = Ek/~ = !k with k = 1, 2, . . . , N, (7.48)

where ⇤L,q
S

(qS,↵) is the component of the averaged velocity field for the subsystem
coordinates, whereas ⇤L,↵

k

(qS,↵) is the component for the k-th phase and Ek is
the k-th eigenvalue of the Hamiltonian operator ˆH of the whole isolated system.
Similarly to the previous case, {'l

S

(qS)} is the set of the ˆHS eigenfunctions. By
comparing Eq. (7.46) and Eq. (7.47) with Eq. (7.32) and Eq. (7.33) respectively,
one can observe that the main difference regards the reduced density matrix. Only
the time averaged elements of the reduced density matrix

�
�l0

S

,l
S

 
are included in

%Seq(qS) of Eq. (7.32) and ⇤S(qS) of Eq. (7.33). On the other hand, the ↵-dependence
of %Leq(qS,↵) and ⇤L(qS,↵) is modulated by the reduced density matrix, �(↵). This
should not be unexpected since the procedure for obtaining the above equilibrium
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density distribution and averaged velocity field is the same as the one employed for
defining Eq. (7.32) and Eq. (7.33) except for the integration on the phases.

We would like to emphasise two additional features of the above equations. First,
the velocity field ⇤L,↵(qS,↵k) is the same of the deterministic case (see Eq. (6.21)).
Since the evolution equation of each phase is independent of the other and of the
Bohm coordinates, it is conserved in the projection procedure. Second, the averaged
velocity field for the subsystem Bohm coordinates depends on the phases that fully
represent the dynamical information of the wave function in our formalism. In other
words, the whole set of phases specifies the information included in the wave function
for the isolated system, i.e., the subsystem and the environment together. However,
only the information included in the reduced density matrix is essential for defining
%Leq(qS,↵) and ⇤L,q

S

(qS,↵). Only the “local” representation of the wave function for
the subsystem (open quantum system), that is the reduced density matrix, is neces-
sary in order to determine the averaged velocity field for the subsystem coordinates.
For this reason, we tag the equilibrium density distribution, the averaged velocity
field and the Fokker-Planck operator with the label L instead of the generic R used
in Eq. (7.3), Eq. (7.13) and Eq. (7.16). The purpose is that of highlighting the
relevant information for describing the motion of the subsystem which is provided
by the subsystem Hamiltonian eigenfunctions {'l

S

(qS)}, the reduced density matrix
�(↵) and the subsystem coordinates qS. Furthermore, when it is possible, we spec-
ify the ↵-dependence of each function, e.g., %Leq(qS,↵) and ⇤L,q

S

(qS,↵), by writing
explicitly that it is modulated by the reduced density matrix, e.g., %Leq

�
qs, �(↵)

�
and

⇤L,q
S

�
qS, �(↵)

�
. For these reasons, we call the new Fokker-Planck equation as the

“Bohm equation driven by reduced density matrix”. The resulting Fokker-Planck
operator ˆ

�

L is

ˆ

�

L
= !r↵ +rS ·⇤L,q

S

�
qS, �(↵)

�� rS · %Leq
�
qs, �(↵)

�
� rS

�
%Leq
�
qs, �(↵)

���1 (7.49)

so that the corresponding Langevin equations are given as8>><>>:
d

dt
QS(t) = ⇤L,q

S

�
QS(t), �(A(t))

�
+ �

rS %
S
eq

�
QS(t), �(A(t))

�
%Seq
�
QS(t), �(A(t))

�
+

p
2�⇣(t)

d

dt
A(t) = !

,

(7.50)
where r↵ = (@/@↵1, @/@↵2, . . . , @/@↵N) and ! = (!1,!2, . . . ,!N). In this way, a
deterministic dynamics is derived for the phases, since the dissipative term of the
Fokker-Planck operator

⇣
rS · %Leq � rS

�
%Leq
��1
⌘

acts only on the subsystem coor-
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dinates. As a matter of fact, the dynamical equation for the phases is still the
deterministic one because of i) the independence of the Schrödinger equation with
respect to the Bohm dynamics and ii) the inclusion of all the phases in the set of
the relevant variables.

When the system is in equilibrium conditions, the reduced density matrix is al-
most always the same of the canonical reduced density matrix, �̂(t) ' �̂ / e�Ĥ

S

/k
B

T

(see Eq. (7.34)). This means that the ↵-dependence of � is negligible, i.e., �(↵) ' �.
Correspondingly, the operator ˆ

�

L becomes the same of the Smoluchowski-Bohm
equation once a deterministic term for the phases is included:

ˆ

�

L ' !r↵ +

ˆ

�

S. (7.51)

This can be verified by taking into account that the averaged velocity field vanishes,
⇤L,q

S

�
qS, �(↵)

�
= 0 and obviously %Leq(qS, �(↵)) ' R d↵ %Leq(qS, �(↵)) = %Seq(qS) when

Eq. (7.34) is satisfied. In this way the coordinates dynamics is independent of
the phases dynamics, and vice versa. Therefore, the equilibrium dynamics of the
subsystem coordinates can be described according to the above equation as well as
with the Smoluchowski-Bohm equation, since the same behaviour is recovered in
both the cases. Thus, we can be sure that the stochastic Bohm equation driven by
reduced density matrix represents correctly the equilibrium dynamics and we have
now to investigate its capability of describing also the non-equilibrium dynamics.
One can reasonably suppose that the correct representation of the coherent motion
emerges from the averaged velocity field ⇤L,q

S

�
qS, �(↵)

�
that vanishes in equilibrium

conditions, whereas the dissipative term is mainly responsible of the fluctuating
motion.

We consider particularly the interesting case with the following initial density
distribution,

%L(qS,↵, 0) = �(↵� ↵0)%
S
(qS, 0). (7.52)

It represents a complete knowledge of the initial phases, whereas the subsystem
coordinates are distributed according to %S(qS, 0). By bearing in mind that ˆ

�

L

describes a deterministic evolution for of phases and defining ˆ

�

S
�(↵) :=

ˆ

�

L � !r↵, it
is possible to verify that the formal solution of the Fokker-Planck equation is

%L(qS,↵, t) = �
�
↵� A(t;↵0)

�
e�t�̂S

�(↵)%S(qS, 0), (7.53)

where A(t;↵0) is the evolution of the initial phases ↵0 according to their determin-
istic dynamics (see Eq. (6.21)). This allows the definition of a closed-form expres-
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sion for the marginal density distribution with respect to the phases, %S(qS, t) :=R
d↵ %L(qS,↵, t), whose time evolution is determined by the following Fokker-Planck

operator

ˆ

�

S
�(t) = rS · ⇤L,q

S

�
qS, �(t)

�� rS · %Leq
�
qs, �(t)

�
� rS

�
%Leq
�
qs, �(t)

���1 (7.54)

that depends on the reduced density matrix parametrically, �(t) = �
�
A(t;↵0)

�
.

Once the time evolution of the reduced density matrix �(t) is known, then the time
evolution of %S(qS, t) through the Fokker-Planck equation with ˆ

�

S
�(t) (Eq. (7.54))

and of QS(t) through the corresponding Langevin equation are determined. Notice
the differences between the Fokker-Planck operator ˆ

�

S
�(t) and ˆ

�

S in Eq. (7.35): both
the operators determine the time evolution of a probability density such as %S(qS, t)
(that depends on qS only), but ˆ

�

S
�(t) includes also the time evolution of the reduced

density matrix as a parameter of the model. This is similar to the Bohm equation
that establishes the velocity of all the particles once the wave function dynamics is
known. The main difference is that a local information, i.e., the reduced density
matrix, is necessary for our stochastic equations, whereas the total wave function is
essential for the deterministic dynamics. It has to be stressed that this property is
rather uncommon in the framework of the stochastic methods and it emerges from
the independence of the wave function with respect to the Bohm trajectory.

The stochastic Bohm equation seems to have an evident disadvantage: the com-
plete knowledge of the ↵-dependence of the reduced density matrix is required. This
level of information can be reached by exactly solving the Schrödinger equation, that
is unfeasible if one would like to describe macroscopic systems with our stochastic
method. Nonetheless, we examine the predictions of this stochastic method by
computing �(↵) for our model system (more details about the �(↵) calculation are
reported in Sec. 3.2.2). On the other hand, the difficulties arising when dealing with
macroscopic systems are discussed in more detail in Subs. 7.4.3; there we will explain
that the subsystem dynamics can still be obtained from the Fokker-Planck operator
ˆ

�

S
�(t) (Eq. (7.54)) by exploiting the information about the time evolution of the re-

duced density matrix �(t) to be determined through both models and experimental
techniques.

7.4.1 Thermalisation dynamics

In this subsection, we employ Eq. (7.49) and Eq. (7.50) for representing the
motion of the oscillator composing the subsystem in our model during the thermali-
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sation process, whose deterministic dynamics has been presented in Subs. 7.3.2. On
the one hand, we compute the equilibrium distribution %Leq

�
qS, �(↵)

�
, since it can be

neither determined with simple considerations as the Smoluchowski-Bohm equation
nor suitably approximated with a common distribution like the Gaussian distribu-
tion. On the other hand, the diffusion coefficient has to be determined through
an analysis of the deterministic dynamics. By observing Fig. 7.15, one can notice
that the Smoluchowski-Bohm equation predicts accurately the loss of correlation
with the diffusion coefficient � = 0.1345 2⇡m/~. Given the equivalence between ˆ

�

L

and ˆ

�

S in equilibrium conditions, Eq. (7.51), we use the same value of the diffusion
coefficient as a first approximation.

At this stage, we solve the Langevin equation (7.50) with the appropriate initial
condition (QS(0), A(0)). Furthermore, we determine also the average value EL

[qS](t),

EL
[qS](t) :=

Z
dqSd↵ qS%

L
eq(qS,↵, t) (7.55)

according to the solution of the Fokker-Planck equation with initial distribution

%Leq(qS,↵, 0) = � (↵� A(0))

Z
dqE | (q, 0)|2, (7.56)

where q = (qS, qE) and � (↵� A(0)) is the Dirac delta function. Like in the analy-
sis of Subs. 7.3.2, we assume that the coordinate of the oscillator representing the
subsystem is initially distributed according to the subsystem initial wave function
(see Eq. (7.44) and Fig. 7.17), whereas the phases dynamics is exactly known (they
are distributed according to a Dirac delta function). Figures 7.19 and 7.20 show
the stochastic trajectory QS(t) compared to the deterministic one and the average
value EL

[qS](t) compared to the expectation value qS(t) respectively. The trajec-
tories displayed in Fig. 7.19 are not perfectly overlapping, but as already recalled,
the stochastic methodologies can not reproduce the exact single trajectory since the
effects of the irrelevant variables are modelled in terms of white noise. Neverthe-
less, the stochastic trajectory conserves the main features of the deterministic one.
For example, one can notice that the initial motion is roughly an oscillation at the
resonance frequency of the oscillator, !S. The stochastic oscillation is more irregu-
lar than the deterministic, since the subsystem is initially isolated. The stochastic
trajectory is immediately influenced by the random force, whereas the effects of the
environment on the subsystem motion are weaker in the first steps of the dynamics
because they are initially unentangled. However, both the coherent and the fluctu-
ating regimes are correctly reproduced with our stochastic equation. As previously



7.4. BOHM EQUATION DRIVEN BY REDUCED DENSITY MATRIX 179

�4

�3

�2

�1

0

1

2

3

4

0 5 10 15 20 25 30 35 40

Q

S
(t

)/
p ~/

m
!

S

!Et/2⇡

deterministic
stochastic

Figure 7.19: Time evolution of the Bohm coordinate of the first oscillator of the model system. One
trajectory has been determined by solving exactly the Bohm equation (red line), whereas the
other by solving the corresponding Langevin equation (blue line).

emphasised, the precise equivalence between the two trajectories can not be achieved
because of the strongly chaotic character of the deterministic trajectory: the round
off error is sufficient for computing completely different trajectories. Nevertheless,
we would like to emphasise the qualitative similarity between the two trajectories
that witnesses the accuracy of the stochastic equations in representing the main
features of the deterministic motion.

The comparison between the average value and the expectation value is perhaps
more impressive, since it is shown that they are nearly equivalent. The impor-
tance of this result is double. In the first place, it confirms the accuracy of the
Langevin equation. Since the average value EL

[qS](t) has been determined by av-
eraging the observable qS on a swarm of suitably distributed Langevin trajectories
(see Subs. 7.2.1), one can recognise that the differences between the stochastic and
the deterministic trajectory in Fig. 7.19 tend to vanish in average. In other words,
these differences arise from the approximate modelling of the effects of the irrele-
vant variables, but our model is precise enough to preserve the main features of the
deterministic behaviour, such as the average values. Secondly, this result confirms
again the interpretation of the expectation values in terms of statistical properties
emerging from the underlying deterministic dynamics of the Bohm theory as already
pointed out in Chap. 6.
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Figure 7.20: Time evolution of the expectation value corresponding to the subsystem coordinate. One
profile has been determined through the exact solution of the Schrödinger equation (red line),
whereas the other by numerically solving the Fokker-Planck equation (blue line).

On the basis of the results illustrated in Fig. 7.19 and in Fig. 7.20, it can be
stated that the stochastic method of this section succeeds in well representing the
out-of-equilibrium dynamics of our model system. In order to further verify the
capabilities of this stochastic method, we will consider another case: the relaxation
of the subsystem oscillator from the initial condition of equally populated ground
and first excited states to the final equilibrium state with a large population of the
ground state. In the following, we examine both the deterministic and the stochastic
predictions for this case.

7.4.2 Relaxation dynamics

We consider again the model system of six interacting oscillators, when the ini-
tially partially excited subsystem relaxes because of the interaction with the envi-
ronment. Then, in order to investigate this relaxation dynamics, it is necessary to
couple the subsystem to a “cold” environment. For this purpose, it has been as-
sumed that !S = 3!E. The parameters of the simulation are set to � = 0.001 !E~,
E

(0)
tr = 12.5 !E~ and Emax = 11.5 !E~. Similarly to the thermalisation dynamics,

the subsystem and the environment are initially unentangled. The subsystem wave
function is equally separated between the ground state and the first excited state,
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Table 7.3: Diagonal elements of the initial �
lS ,lS (0) and of the equilibrium �

lS ,lS reduced density matrix.
The canonical values are reported between parentheses.

lS �l
S

,l
S

(0) �l
S

,l
S

0 0.5 0.893 (0.887)
1 0.5 0.102 (0.101)
2 0 4.15 10�3 (0.0116)

namely LS = (0, 1) with
P S
l
S

= 0.5 8lS = 0, 1. (7.57)

The coefficients
�
PE
l
E

 
and {�l

E

} are randomly sampled.

Like with the thermalisation process, the subsystem dynamics due to the wave
function evolution can be examined by considering the reduced density matrix. The
diagonal elements values of the initial reduced density matrix �l

S

,l
S

(0) and those
�l

S

,l
S

of the equilibrium one are compared in Table 7.3. One can reasonably suppose
that the quantum dynamics establishes an energy flux from the subsystem to the
environment. Even if the two excited states of the oscillator are partially populated,
one can observe that the subsystem is fundamentally de-excited when the system
has reached the equilibrium: the main consequence of the dynamics is relaxation
of the subsystem oscillator to the ground state. This can be further visualised by
examining Fig. 7.21, where the time evolution of the elements �0,0(t), �1,1(t) and
the real part of �0,1(t) is displayed. During the first steps of the dynamics the ele-
ment �0,0(t) increases in time meanwhile �1,1(t) decreases. This can be interpreted
in terms of a de-excitation process. In parallel, the off-diagonal element �0,1(t) os-
cillates at frequency !S (coherent dynamics) with a decreasing amplitude because
of the interaction with the environment (decoherence dynamics). For !Et/2⇡ > 20

the system is in equilibrium and the displacements of the reduced density matrix
elements from their equilibrium value tend to vanish. The residual time dependence
of �0,1(t) is caused by the limited dimension of the model system: it is not large
enough to reach the thermodynamic limit. This can be further verified in Table 7.3
by comparing the equilibrium values of the reduced density matrix with those of
the canonical density matrix where 1/kBT = 2.17 (!S~)�1 (1/kBT has been de-
termined through the ratio �0,0/�1,1). The main features of the reduced density
matrix dynamics highlight a relaxation process due to thermal interaction with the
environment.

As regards the deterministic dynamics of this system, the Bohm trajectory for
the subsystem coordinate is displayed in Fig. 7.22. Like with the thermalisation



182 CHAPTER 7. EMERGENCE OF QUANTUM STOCHASTIC BEHAVIOUR

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

R
en �

l0 S

,l
S

(t
)o

!Et/2⇡

�0,0(t)

�1,1(t)

�0,1(t)

Figure 7.21: Deterministic time evolution of the reduced density matrix elements �0,0 (red line), �1,1 (blue
line) and of the real part of �0,1 (green line) during the relaxation dynamics. The black dashed
lines represent the corresponding equilibrium values.

process, the trajectory is characterised by two different behaviours. During the first
steps of the dynamics, it is approximately an oscillation at the resonance frequency
of the oscillator, !S = 3!E. Indeed, for !Et/2⇡ < 10, the periodicity of the motion
is evident; for !Et/2⇡ > 20 the oscillating character is lost and the result is a fluc-
tuating profile. In the intermediate time interval, the trajectory shows a behaviour
that is neither a pure oscillation nor a pure fluctuation. Also in this case, we label
the first steps of the time evolution, the out-of-equilibrium dynamics, as the coher-
ent dynamics and fluctuating dynamics the time evolution in equilibrium conditions.
The main features of this motion are similar to those of the Bohm trajectory in the
thermalisation experiment.

One obvious difference between the two cases is the frequency of the oscillation
with respect to the resonance frequency of the oscillators composing the environ-
ment: in this case !S = 3!E, whereas previously !S = !E. Another diversity
emerges from the analysis of the trajectory in terms of its equilibrium density distri-
bution wS

eq(qS) that is shown in Fig. 7.23, where also the gaussian distribution with
�2
q
S

= 0.6232 ~/m!S and the equilibrium density distribution %Seq(qS) are displayed.
By comparing Fig. 7.23 and Fig. 7.14, it can be noticed that the motion is confined
more closely to the bottom of the harmonic potential during the relaxation dynam-
ics than during the previous thermalisation experiment (see the different values of
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Figure 7.24: Deterministic time evolution of the expectation value corresponding to the subsystem coor-
dinate during the relaxation dynamics.

�2
q
S

). This is due to the different populations of the subsystem eigenstates. Once
the thermalisation reaches the equilibrium, the first five states of the subsystem
are effectively populated (see Table 7.2). This feature is absent in the relaxation
process: only the ground and the first excited state are significantly populated once
the equilibrium has been established. As matter of a fact, the ground and the first
excited state correspond to an higher probability of finding the oscillator closer to
the potential bottom than with the others excited states. Consequently, during the
relaxation dynamics the Bohm trajectory is restricted within a smaller region than
in the thermalisation case.

This different confinement is not evident if one examines the expectation value
qS(t) = h (t)|q̂S| (t)i instead of the Bohm trajectory. Indeed, by comparing
Fig. 7.24, where qS(t) is shown for the relaxation process, and Fig. 7.12, one can
notice that the amplitude of the oscillations is almost the same in both cases (ther-
malisation and relaxation). Of course, the two profiles differ in the frequency of
the oscillation. It has to be emphasise that the vanishing amplitude of the oscilla-
tion around the average value in the fluctuating regime has a quite different origin
in the thermalisation process with respect to the relaxation. In the first case, the
reduced density matrix is almost the same of the canonical reduced density ma-
trix; therefore, �(t) is approximately time independent and consequently also all
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Figure 7.25: Correlation function G
QS (⌧) of the first oscillator coordinate Q

S

(t) in the relaxation ex-
periment. One correlation function has been determined by analysing the deterministic
dynamics (red line), whereas the other through Eq. (7.39) with � = 0.05292 2⇡m/~ and
�2
qS

= 0.6232 ~/m!
S

(blue line).

the subsystem expectation values are time independent. On the other hand, after
the relaxation dynamics, the reduced density matrix represents a subsystem that is
nearly in the ground state, i.e., almost in a stationary state, and this is the origin
of the approximate absence of dynamics for the expectation values.

In order to compare this deterministic dynamics with the stochastic predictions,
we have to select a value for the diffusion coefficient �. By bearing in mind that �
was determined by modelling the autocorrelation function of the Bohm trajectory
GQ

S

(⌧) according to the Smoluchowski-Bohm equation for the thermalisation pro-
cess, one can repeat the same approach in this numerical experiment. We employ the
gaussian function to approximate the equilibrium distribution %Seq(qS) (in this case
�2
q
S

= 0.6232 ~/m!S) and then we use Eq. (7.39) for modelling the autocorrelation.
Once again, the idea is tuning the value of � in order to maximise the equiva-
lence between the deterministic correlation function and the result of the stochastic
model of Eq. (7.39) with �2

q
S

= 0.6232 ~/m!S. Figure 7.25 shows the deterministic
autocorrelation function and the stochastic one obtained through Eq. (7.39) with
�2
q
S

= 0.6232 ~/m!S and � = 0.0592 2⇡m/~.

Once the value of the diffusion coefficient has been identified, one can com-
pute the stochastic trajectory QS(t) and the average value of the observable qS, i.e.,
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Figure 7.26: Time evolution of the Bohm coordinate of the first oscillator of the model system in the
relaxation experiment. One trajectory has been determined by solving exactly the Bohm
equation (red line), whereas the other by solving the corresponding Langevin equation (blue
line).

EL
[qS](t). We would like to recall that the equilibrium density distribution %Leq(qS,↵)

has been exactly determined since the ↵-dependence of the reduced density matrix
must be known. Furthermore, the initial density distribution %L(qS,↵, 0) satisfies
Eq. (7.56). The resulting QS(t) and EL

[qS](t) are displayed respectively in Fig. 7.26
and Fig. 7.27. Each stochastic profile is compared to its corresponding determin-
istic one: the stochastic QS(t) with the deterministic QS(t) and the average value
EL

[qS](t) with the expectation value qS(t). Also in this case the predictions of the
stochastic approach are in agreement with the deterministic dynamics. Even if the
deterministic and stochastic Bohm trajectories illustrated in Fig. 7.26 are not the
same, the stochastic method is able to recognise the main features of the determin-
istic evolution, such as the initial coherent motion and afterwards the fluctuating
motion. On the other hand, the average values EL

[qS](t) and the expectation value
qS(t) are perfectly overlapped in Fig. 7.27.

In this way, we have verified the validity of Eq. (7.49) and Eq. (7.50) for rep-
resenting the quantum dynamics of a subsystem interacting with the environment.
The only limitation seems to concern the knowledge of the reduced density ma-
trix, but some strategies can be adopted in order to avoid such a difficulties as we
illustrate briefly in the Sec 7.4.3.
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Figure 7.27: Time evolution of the expectation value corresponding to the subsystem coordinate in the
relaxation experiment. One profile has been determined through the exact solution of the
Schrödinger equation (red line), whereas the other by numerically solving the Fokker-Planck
equation (blue line).

7.4.3 Beyond the exact reduced density matrix

The development of the stochastic equations in the framework of Bohm the-
ory was aimed to avoid the computational limitations for describing the molecular
motion of a subsystem interacting with the environment. The stochastic Bohm
equation driven by reduced density matrix simplifies the problem of computing the
Bohm trajectory, since the time evolution of the subsystem coordinates is defined
according to the following Langevin equation:

d

dt
QS(t) = ⇤L,q

S

�
QS(t), �(A(t))

�
+ �

rS %
S
eq

�
QS(t), �(A(t))

�
%Seq
�
QS(t), �(A(t))

�
+

p
2�⇣(t). (7.58)

The averaged velocity field ⇤R,q
S

(qS, �(↵)) and the equilibrium density distribution
%Leq (qS, �(↵)) are fully specified according to the basis functions {'l

S

(qS)} and the
reduced density matrix �̂. For determining the subsystem eigenfunctions {'l

S

(qS)},
one can suitably model the subsystem Hamiltonian, ˆHS. However, it has been
supposed that the reduced density matrix is known. This means implicitly that the
exact solution of the Schrödinger equation is known, since this is the only way to
determine the ↵-dependence of the reduced density matrix. Of course, this is an
impossible task when one is dealing with large or macroscopic system and this is
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precisely the type of systems that we would like to represent with our stochastic
method. Therefore, our method is apparently afflicted with the same computational
limitations of the deterministic theory: we reduce the computational efforts for
determining the Bohm trajectory for some interesting coordinates, but the bottle
neck is still the Schrödinger equation.

On the other hand, the problem can be overcome. If one is interested in the co-
ordinates dynamics, as we are, there are different models that describe the evolution
of the reduced density matrix independently of exact solution of the Schrödinger
equation. The idea consists in assuming that the phases dynamics is known, such
as in Eq. (7.52). Then, one can investigate the time evolution of the subsystem (in
terms of %S(qS, t) or QS(t)) by using the Fokker-Planck operator ˆ

�

S
�(t) of Eq. (7.54).

This is convenient because ˆ

�

S
�(t) does not depend on the generic �(↵), but on the

actual �(t) reduced density matrix that can be either modelled or partially deter-
mined through experimental techniques. For instance, different models have been
developed to investigate the relaxation processes in open quantum systems mostly
based on quantum master equations. The contributions of A. G. Redfield [Redfield
(1957, 1965)] and G. Lindblad [Lindblad (1976); Gorini et al. (1976)] are particularly
renowned in this field. Their approach consists in projecting [Nakajima (1958)] the
whole dynamics of the wave function, represented in terms of the density matrix,
onto the reduced density matrix with the assumption that the subsystem of interest
is weakly coupled to the environment. Nowadays, these approximate equations for
the reduced density matrix are rather common for describing the dynamics of open
quantum systems [Breuer and Petruccione (2007)]. Furthermore, there are also ex-
perimental techniques that can supply some kind of evidences about the reduced
density matrix dynamics. It can be mentioned that advanced 2D spectroscopy tech-
niques, such as photon echo spectroscopy, provide suitable tools for investigating
the reduced density matrix dynamics [Jonas (2003); Jeske et al. (2015); Hayes and
Engel (2011)]. For example, by combining experimental and theoretical approaches,
one can determine the reduced density matrix dynamics corresponding to some in-
teresting vibrational degrees of freedom [Turner et al. (2011)]. Therefore, one can
employ a not obvious property of our stochastic method: despite we include all
the phases in the set of the relevant variables, only the information carried by the
reduced density matrix is relevant for determining the stochastic dynamics of the
subsystem coordinates. Theoretical methodologies or experimental techniques can
be efficiently used to approximately determine the reduced density matrix.

Finally also the diffusion coefficient � can be determined without knowing the
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deterministic dynamics as we have done in the previous examples. Indeed, if the re-
duced density matrix dynamics is determined in some way also the time dependence
of all the expectation values is known. The diffusion coefficient � can be selected
by tuning its value in order to ensure that the average of an observable EL

[b](t) is
the same of the corresponding expectation value b(t).

Our stochastic method allows the accomplishment of the original purpose: it is
in an efficient method for representing the molecular motion of a subsystem within
a quantum framework. What remains to be realised is just its application to a real
molecular system.

7.5 Final remarks

In this chapter the problem of developing an efficient stochastic formulation of
Bohm theory has been investigated. The original purpose was the definition of
a quantum method able to describe accurately the molecular motion of a subsys-
tem (such as a molecule of interest or even some relevant degrees of freedom) that
is interacting with a macroscopic environment. We have introduced two different
approaches. The Smoluchowski-Bohm equation represents the dynamics of the co-
ordinates corresponding to the relevant degrees of freedom only. In equilibrium
conditions, its predictions are in agreement with the full deterministic calculations.
However, it is not able to characterise the non-equilibrium dynamics. On the other
hand, the inclusion of the phases in the set of the relevant variables allows the
definition of the stochastic Bohm equation driven by reduced density matrix that
reproduces the correct behaviour in both the equilibrium and non-equilibrium con-
ditions. Despite the inclusion of the whole set of phases amongst the relevant vari-
ables, only the reduced density matrix is essential to establish the coordinates time
evolution of the subsystem. This feature is fundamental since it allows the use of
both theoretical methods and experimental techniques to model the dynamics of
the reduced density matrix. In this way, the stochastic equations describe the mo-
tion of the degrees of freedom corresponding to the reduced density matrix. The
motion of molecule in very complex systems, such as in reactive systems, could be
characterised in this way. Consider for instance a change of conformation induced
by an external radiation. Our method has the potentiality of well representing the
motion of this kind of processes if the dynamics of the reduced density matrix has
been previously determined. The main advantage is the intrinsic quantum nature
of the methodology, sharing with Classical Mechanics only the physical meaning of
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the coordinates QS(t), and without any arbitrary separation of the system into a
quantum and a classical parts. The entire description can be done in the framework
of a quantum theory suitably simplified in order to manage the huge number of
variables of a macroscopic system.

Furthermore, the importance of the method is not only related to its capability
of representing the molecular dynamics, but also to supply information that the
conventional Quantum Mechanics can not provide. For example, how much time is it
necessary in order to complete a reaction? Since no observable/operator corresponds
to the time variable, then this question has no answer in the framework of Quantum
Mechanics. On the contrary, Bohm theory is the natural framework in order to find
an answer: by following the the nuclear movement one can determine the time length
of the events. In this regard, our stochastic approach can extend the ensemble of
information that can be determined with quantum theoretical methodologies.



CHAPTER 8

Conclusions

The development of quantum methods that characterise the molecular motions
completely is essential in Chemistry. First of all, the idea of molecule is always
related to a set of particles with a specific spatial position. Consider for example to
draw a molecule. This operation sets implicitly the position of the particles com-
posing the molecule, i.e., of the nuclei. Nevertheless, Quantum Mechanics, that is
considered the best theory at our disposal to describe molecular systems, does not
provide precise positions of the quantum particles, including the nuclei. The statis-
tical predictions of Quantum Mechanics do not establish a formal map between the
quantum formalism and our chemical representation of what a molecule is without
ambiguities. This issue is not only related to the problem of representing molecules
with a quantum theory, but it has important implications in the understanding of
chemical reactions. For example, in an autoprotolysis process a proton is trans-
ferred from a water molecule to another. However, the position of the proton has
to be known at any given time in order to examine the extent to which the reaction
proceeds.

We have developed a quantum approach that characterises molecular systems
as composed of particles and it does not break the quantum laws. In this regard,
Bohm theory is the suitable quantum framework because i) it characterises quantum
systems in terms of wave function and coordinates (positions) of all the particles ii)
it gives exactly the same prediction as conventional Quantum Mechanics by exploit-
ing an ensemble of all possible trajectories. Our contribution is aimed to represent
accurately the molecular behaviour according to the single Bohm trajectory, i.e., a

191
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quantum molecular trajectory. The most appealing feature of our approach concerns
the possibility of examining the molecular motion with a quantum method that al-
lows the emergence of unexpected phenomenology. For instance, the vibrational
degrees of freedom turn out to be at rest if the molecule is in its vibrational ground
state, whereas the amplitude of the vibration is deeply related to the “mixing” be-
tween ground and excited state during a vibrational transition. Common paradigms
based on Classical Mechanics can not predict this specific behaviour that results
from the pilot role of the wave function.

Furthermore, it has been proven that the statistical properties of a single Bohm
trajectory establish a formal correspondence with conventional Quantum Mechan-
ics. For instance, the expectation values are correlated to the time average of the
corresponding quantities along a single trajectory. In this way, the predictions of
Quantum Mechanics can be interpreted as the observed statistical properties of an
underlying deterministic dynamics, the Bohm dynamics indeed. One may think that
Quantum Mechanics characterises the surface of a more precise theory that appears
as Quantum Mechanics, but that is “bigger on the inside”. This theory is the Bohm
theory formulated according to the idea that molecular systems are fully represented
by a single trajectory.

The theoretical advantages of this approach are limited by the high computa-
tional cost of solving both the Schrödinger and the Bohm equation. Therefore, only
small systems seem to be examinable according to the deterministic description.
From this point of view the applicability of the single Bohm trajectory approach
appears to be confined to the motion of a molecule in vacuum. On the other hand,
the motion of a molecule (or even some relevant degrees of freedom like the vibra-
tional coordinates) interacting with the environment (the other molecules) is the
real problem of interest. Therefore, we have derived efficient stochastic theories,
through projection operator technique; in this way also the motion of open quan-
tum systems can be examined by taking into account the quantum fluctuations due
to the quantum degrees of freedom (Bohm coordinates) of the environment.

In this regard, one could use our stochastic equations, in parallel to experimen-
tal data (e.g., 2D spectroscopy) for representing the motion of open quantum sys-
tems. An interesting application is certainly the analysis of reactive systems where
transformations of chemical interest occur, such as conformational changes (as the
photoisomerization of azobenzene) or proton transfers (as photoinduced tautomer-
ization). Our stochastic method has all the potentialities to accomplish the goal of
representing the molecular motion accurately along a quantum molecular trajectory.



APPENDIX A

Perturbation method for two levels system

in resonance

The perturbation methods solve approximately the Schrödinger equation when
the considered quantum system is not isolated, i.e., it is interacting with an external
field. It is particularly interesting the case of a two levels system interacting with an
oscillating external field: if the perturbation is weak enough, then the wave function
can be determined over a long time interval with a good accuracy. In the following
we present the procedure for the approximate solution of the Schödinger equation
according to Cohen-Tannoudji et al. (1977a,b).

Let us assume that the system wave function belongs to a two dimensional Hilbert
space with basis set composed of the two eigenstates |'gi and |'ki of a zeroth-order
Hamiltonian operator ˆH(0) corresponding respectively to the eigenvalues !g~ and
!k~. The Hamiltonian operator is the sum of the zeroth-order one and an oscillating
contribution (the perturbation),

ˆH =

ˆH(0)
+

ˆW sin(!t)⇥(t), (A.1)

where ⇥(t) is the step function that ensures the introduction of the oscillating con-
tribution for t > 0 and ˆW operator is the dipole moment operator multiplied by
the amplitude of the electric radiation. Then the wave function in the interaction
picture can be expressed as follows

| (t)i = cg(t)e
�ı!

g

t |'gi + ck(t)e
�ı!

k

t |'ki . (A.2)
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In this representation, solving the Schrödinger equation is equivalent to solve the
following system of differential equations for the coefficients cg(t) and ck(t):8>><>>:

d

dt
cg(t) = � 1

2~

⇢h
eı!t � e�ı!t

i
Wg,g cg(t) +

h
eı(!�!

k,g

)t � e�ı(!+!
k,g

)t
i
Wg,k ck(t)

�
d

dt
ck(t) = � 1

2~

⇢h
eı(!+!

k,g

)t � e�ı(!�!
k,g

)t
i
Wk,g cg(t) +

h
eı!t � e�ı!t

i
Wk,k ck(t)

� .

(A.3)
By examining Eq. (A.3) one can easily verify that the time evolution of one coeffi-
cient is strictly dependent on the other and the system of differential equations can
not be easily solved. However, some useful considerations can be done in order to
simplify the problem and to determine an approximate solution. First of all, certain
coefficients cg(t) and ck(t) are proportional to e±ı(!�!

k,g

)t that are constant in time
when the perturbation satisfies the resonance condition: ! = !k,g. On the other
hand e±ı!t and e±ı(!+!

k,g

)t oscillate in time. By assuming that the temporal varia-
tions of the coefficients cg(t) and ck(t) proportional to either e±ı!t or e±ı(!+!

k,g

)t is
due principally to the exponential term, then the contribution of these terms in the
integration of the differential equations is negligible. In other words, if both cg(t)

and ck(t) do not change very much over a time interval of the order of 1/!k,g, then
the integration of the exponential terms over a large number of periods is almost
zero. Therefore, Eq. (A.3) can be simplified to the following system of differential
equations: 8><>:

d

dt
cg(t) = � 1

2~Wg,kck(t)

d

dt
ck(t) =

1

2~Wk,gcg(t)

. (A.4)

Differentiating one of the above two equations and substituting the result into the
other equation, one obtains:

d

2

dt2
cg(t) = � 1

4~2
|Wk,g|2cg(t), (A.5)

that is a closed equation for the coefficient cg(t). The above equation and the
analogous for the coefficient ck(t) can be easily solved once the initial conditions
are established. For instance, if the initial wave function is the eigenstate |'gi, the
initial conditions are

(
cg(0) = 1

ck(0) = 0

,

8><>:
d

dt
cg(0) = 0

d

dt
ck(0) =

Wk,g

2~

, (A.6)
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where the second set of initial conditions has been determined through Eq. (A.4).
In conclusion the solution of Eq. (A.3) is approximately8>><>>:

cg(t) = cos

✓
Wk,g

2~ t

◆
ck(t) = sin

✓
Wk,g

2~ t

◆ . (A.7)

It has to be emphasised that the approximation adopted to solve Eq. (A.3), that
is cg(t) and ck(t) not changing very much over a time interval of the order of 1/!k,g,
is satisfied if Wk,g/2~ ⌧ !k,g. In other words, it is satisfied if the perturbation is
weak with respect to the zeroth-order Hamiltonian. Moreover, in case ! is close to
!k,g but not strictly equal, the system of differential equations (Eq. (A.3)) is still
soluble. By a employing comparable simplification, one obtains

ck(t) =

s
|Wk,g|2

|Wk,g|2 + ~2
(! � !k,g)

2 sin

 r
|Wk,g|2

~2
+ (! � !k,g)

t

2

!
. (A.8)

Equation (A.8) is the equivalent to Eq. (A.7) for the coefficient ck(t), while cg(t)

is determined through the condition of normalisation of the wave function: cg(t) =p
1 � |ck(t)|2. Notice that the excited state will be never totally populated if the

resonance condition does not hold: Eq. (A.8) proves that ck(t) can not satisfy ck(t) =

1 for every possible time t since (! � !k,g) 6= 0.
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APPENDIX B

Conservation of the local probability

The Liouville’s theorem defines the differential equation that a density distribu-
tion has to fulfil in order to ensure the conservation of the local probability. We recall
in the following the main steps that are necessary to translate this constraint about
the probability conservation to a differential equation. We employ the notation used
in Chap. 6 with regard to Bohm theory even if the procedure is totally general and
it can be used also in different frameworks. For the sake of completeness, we repeat
some considerations already reported in Chap. 6.

Consider a dynamical space ⌦0 (that is the set of all possible states) and the
evolution of a specific initial state z0 according to the dynamical equation

d

dt
Z(t) = ⇤0

�
Z(t)

�
. (B.1)

The solution of the above equation with initial condition z0 is the curve Z(t; z0):
given an initial state z0, the curve identifies the state of the system at time t. Notice
that both the state Z(t) and the velocity field ⇤0(z) are composed of n+2N elements
(see Chap. 6). Consider also two subsets V (t) and V (0) of ⌦0 such that

V (t) = {z 2 ⌦0 | z = Z
�
t; z0

� 8z0 2 V (0)}. (B.2)

The elements of the two subsets are related by the deterministic evolution: each
element belonging to V (t) is the state at time t resulting from the evolution of
a particular initial condition represented by an element of V (0) according to the
deterministic evolution described by the curve Z(t; z0).
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Once the probability M�
V (0)

�
, that the system state belongs to V (0) initially,

is defined, then the probability M�
V (t)

�
that the state belongs to V (t) at time t

must be the same since the elements of V (t) are the natural evolution of the states
in V (0). Broadly speaking, the probability has to be conserved along the curves.
This condition takes the name of “conservation of the local probability” and means
formally

M�
V (0)

�
=

Z
V (0)

dz %⌦0
(z, 0) =

Z
V (t)

dz %⌦0
(z, t) = M�

V (t)
�
, (B.3)

for every arbitrary initial probability density %⌦0
(z, 0). In other words, the proba-

bility M�
V (t)

�
is time independent

d

dt
M�

V (t)
�
= 0. (B.4)

The differential equation that describes the evolution of a generic probability den-
sity (Liouville equation) can be inferred from Eq. (B.4). First of all, the time depen-
dence of M�

V (t)
�

has to be explicited and the change of variables z = Z(t; z0) ! z0

is particularly suitable for this purpose:

M�
V (t)

�
=

Z
V (0)

dz0 |J(t)|%⌦0
�
Z(t; z0), t

�
, (B.5)

where |J(t)| is the determinant of the Jacobian matrix with elements Ji,j(t) =

@Zi(t; z0)/@z0,j. By inspecting Eq. (B.5), one can notice that the time dependence
of M�

V (t)
�

is specified by the time dependence of the integrand unlike in Eq. (B.3)
where also the domain of integration is time dependent. Secondly, the time deriva-
tive of each term of the integrand has to be taken into account in order to represent
the condition of Eq. (B.4) as a constraint for the time evolution of the probability
density %⌦0

(z, t). By the rule of differentiation of the determinant, one can prove
that

d

dt
|J(t)| =

X
k

��J (k)
(t)
��, (B.6)

where J (k)
(t) is the Jacobian matrix whose elements of the k-th column are substi-

tuted by their time derivative: J (k)
i,j (t) = Ji,j(t) if j 6= k and J

(k)
i,k (t) =

@
@z0,k

dZi(t; z0)/dt.
Furthermore, each determinant in Eq. (B.6) can be written explicitly,

d

dt
|J(t)| =

X
k,i

(�1)

i+kJ
(k)
i,k

��Ci,k(t)
��. (B.7)



199

Notice that Ci,k(t) is the minor of the Jacobian matrix with respect to the i-th row
and the k-th column. By taking into account Eq. (B.1) and the definition of J (k)

i,j ,
one obtains

d

dt
|J(t)| =

X
k,i,j

(�1)

i+k @⇤0,i(z)

@zj

����
z=Z(t;z0)

@Zj(t; z0)

@z0,k

��Ci,k(t)
�� (B.8)

=

X
i,j

(�1)

i+j @⇤0,i(z)

@zj

����
z=Z(t;z0)

X
k

(�1)

j+k @Zj(t; z0)

@z0,k

��Ci,k(t)
��. (B.9)

Except for the elementary rearrangement of the terms, the only difference between
Eq. (B.8) and Eq. (B.9) is that we introduced the term (�1)

2j in such a way that the
sum over the k-th index can be easily calculated: it vanishes unless j = i. IndeedP

k(�1)

j+k @Z
j

(t;z0)
@z0,k

��Ci,k(t)
�� is the determinant of a matrix with two equal rows if

j 6= i as one can easily verify by recognising that @Zj(t; z0)/@z0,k = Jj,k(t); instead,
it is the determinant of the Jacobian matrix if j = i. Therefore,

d

dt
|J(t)| = |J(t)|rz⇤0(z)

����
z=Z(t;z0)

, (B.10)

where rz = (@/@z1, . . . , @/@zn, @/@zn+1, . . . , @/@zn+2N). As regards the probability
density %⌦0

�
Z(t; z0), t

�
, its total time derivative satisfies the following equation

d

dt
%⌦0
�
Z(t; z0), t

�
=

"
⇤0rz%

⌦0
(z, t) +

@%⌦0
(z, t)

@t

#
z=Z(t;z0)

. (B.11)

All things considered, the time derivative of the probability M�
V (t)

�
of Eq. (B.5)

is

d

dt
M�

V (t)
�
=

Z
V (0)

dz0 |J(t)|
"
%⌦0

(z, t)rz⇤0(z)+⇤0rz%
⌦0
(z, t)+

@%⌦0
(z, t)

@t

#
z=Z(t;z0)

.

(B.12)
In order to ensure that the condition of Eq. (B.4) holds for every possible subspace
V (0) ✓ ⌦0, the integrand term of Eq. (B.12) included in the square brackets must
be zero. In other words, the probability density %⌦0

(z, t) has to satisfy the following
differential equation

@%⌦0
(z, t)

@t
+ rz⇤0(z)%

⌦0
(z, t) = 0, (B.13)

that is the Liouville equation. We would like to recall that the Liouville equa-
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tion determines the time evolution of a generic initial density distribution: given
the probability density at time zero %⌦0

(z, 0), its evolution %⌦0
(z, t) is completely

established by Eq. (B.13).



APPENDIX C

Ergodic observables

The idea of ergodicity is widely employed for explaining the predictions of Statis-
tical Mechanics in terms of the underlying deterministic evolution [Khinchin (1949)].
Maybe the most common interpretation in the framework of Classical Statistical Me-
chanics is that a single trajectory describing the evolution of the system state (the
set of positions and momenta of all the particles) samples the phase space accord-
ing to the equilibrium density distribution (that is the stationary solution of the
Liouville equation). Nevertheless, it is well known that such an idea of ergodicity is
unprovable for a general system [Tolman (1938)] and moreover there are also some
obvious counterexamples like the existence of invariant subsets. On the other hand,
if one focuses on the dynamics of a reduced number of variables characterised by a
loss of correlation, e.g., the position of one specific particle, then it can be proved
that some predictions of the statistical approach correspond to those of the deter-
ministic description. In this appendix, we recall the main steps that are necessary in
order to demonstrate such an equivalence in the framework of the Bohm theory. In
particular, by taking into account observables of the coordinates only, B(q), one can
verify the equivalence between the time average along a single trajectory and the
statistical average. We examine the problem inside the invariant part ⌦P defined in
Sec. 6.2, but the procedure can be easily extended also for the whole dynamical space
⌦0. The only restriction is the loss of correlation of B(q) during the deterministic
evolution.

Consider the invariant part ⌦P and the curve X(t; x0) that describes the evolution
of the initial state x0. The corresponding Bohm trajectory is the projection of
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the curve X(t; x0) on the configuration space and it is labeled Q(t; x0) in order to
emphasise its dependence on the initial conditions, namely coordinates and phases.
By defining the time average along the single trajectory B(x0) of the observable
B(q) that is function of the coordinates only,

B(x0) := lim

T!+1

1

T

Z T

0

dt B
�
Q(t; x0)

�
, (C.1)

and its equilibrium statistical average

E⌦
P

eq [B] :=

Z
⌦

P

dqd↵ B(q)%⌦P

eq (x)
��
x=(q,↵)

, (C.2)

according to the equilibrium probability density %⌦P

eq (x, t), one can prove that

E⌦
P

eq

⇣
B(x0) � E⌦

P

eq [B]

⌘2�
= 0, (C.3)

if the quantity B
�
Q(t; x0)

�
is characterised by a loss of correlation (Eq. (6.33)). As

already explained in Chap. 6, Eq. (C.3) means that the fluctuations of B(x0) around
E⌦

P

eq [B] are negligible. In other words, the two averages are equal for almost all the
initial conditions x0 2 ⌦P except for a set of null measure. The demonstration
that Eq. (C.3) holds is reported here in the simplest possible way and for this
reason we assume that E⌦

P

eq [B] = 0 without loss of generality: if E⌦
P

eq [B] 6= 0,
the same procedure described in the following can be employed for the observable
�B(q) = B(q) � E⌦

P

eq [B]. In this regard, the condition of Eq. (C.3) is equal to
E⌦

P

eq

h�
B(x0)

�2i
= 0. The demonstration consists in writing E⌦

P

eq

h�
B(x0)

�2i as the
sum of different terms that vanish simultaneously.

Let us consider E⌦
P

eq

h�
B(x0)

�2i by adding and subtracting the square of the

quantity B
T
(x0) := (1/T )

R T

0 dt B
�
Q(t; x0)

�
to the integrand:

E⌦
P

eq

h
B

2
i
=

Z
⌦

P

dx0 %
⌦

P

eq

⇣
B

2 �
⇣
B

T
⌘2⌘

+

Z
⌦

P

dx0 %
⌦

P

eq

⇣
B

T
⌘2
. (C.4)

To deal with a compact notation, we keep implicit the x0-dependence of %⌦P

eq (x0),
B(x0) and B

T
(x0). The above equation is valid for every value of the parameter

T . In addition, the quantity B
T approaches the time average B for all x0 2 ⌦P

by increasing the value of T
⇣
notice that B = limT!+1 B

T
⌘
. Therefore, one can

realise that the first integral of Eq. (C.4) is negligible for some values of T , while the
second integral can be written by employing the autocorrelation function in order to
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exploit the property lim⌧!+1 GB(⌧) = 0 and prove that also this integral vanishes
in some limits. We can now analyse in detail each integral of Eq. (C.4).

As regards the first integral in Eq. (C.4), the integration domain can be usefully
separated in two subdomains. In particular one can define V✏(T ) such that V✏(T ) =n
x0 2 ⌦P s.t.

���B2 �
⇣
B

T
⌘2��� < ✏

o
with ✏ a positive real number arbitrarily small

and V ✏(T ) the complementary subset, V ✏(T ) = ⌦P \ V✏(T ). The second integral in
Eq. (C.4) can be expressed by using the correlation function GB(⌧):Z

⌦
P

dx0 %
⌦

P

eq

⇣
B

T
⌘2

=

1

T 2

ZZ T

0

dt1dt2

Z
⌦

P

dx0 %
⌦

P

eq

�
x0

�
B
�
Q
�
t1; x0

��
B
�
Q
�
t2; x0

��
(C.5)

=

�2
B

T 2

ZZ T

0

dt1dt2 GB(t2 � t1) =
2�2

B

T 2

Z T

0

d⌧ (T � ⌧)GB(⌧),

(C.6)

where
GB(t2 � t1) :=

1

�2
B

Z
⌦

P

dx0 %
⌦

P

eq (x0)B
�
Q(t2; x0)

�
B
�
Q(t1; x0)

�
, (C.7)

and �2
B = E⌦

P

eq [B2
]. Notice that the autocorrelation function of Eq. (C.7) depends

only on the difference t1 � t2 and not on the absolute values (t2, t1) because of the
conservation of the local probability ensured by %⌦P

eq (x0) obtained as the stationary
solution of the Liouville equation. In other words, the autocorrelation function is
invariant under time translation (since this properties is a well known feature of the
correlation function, its proof is not reported in this thesis). In Eq. (C.6) the change
of variables (t1, t2) ! �

⌧ = (t2 � t1), t = t2
�

has been adopted and the integral over
the variable t has been solved. Furthermore, the integration domain of the variable
⌧ can be separated: it can be defined the parameter a✏ in such a way that G(⌧) < ✏

for every ⌧ > a✏. The assumption that the observable B(q) is characterised by a
loss of correlation is necessary in order to ensure the existence of the parameter a✏

in agreement with the previous definition. For instance, if the correlation function
oscillates periodically around zero, a ⌧ 0 can be found such that GB(⌧) < ✏ for values
of ⌧ around ⌧ 0. However, it does not exist an a✏ such that GB(⌧) < ✏ for every
⌧ > a✏.

Therefore, one can verify that the absolute value of E⌦
P

eq

h
B

2
i

satisfies the follow-
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ing inequality

���E⌦
P

eq

h
B

2
i��� (���� Z

V
✏

(T )

dx0 %
⌦

P

eq

⇣
B

2 �
⇣
B

T
⌘2⌘����+ ���� Z

V
✏

(T )

dx0 %
⌦

P

eq

⇣
B

2 �
⇣
B

T
⌘2⌘����

+

2�2
B

T 2

���� Z a
✏

0

d⌧ (T � ⌧)GB(⌧)

����+ 2�2
B

T 2

���� Z T

a
✏

d⌧ (T � ⌧)GB(⌧)

����
)
,

(C.8)

for every value of the parameters T and ✏. At this stage, it has only to be verified
that each integral of the above equation is negligible. Since T and ✏ are arbitrary
parameters, then the limit of the absolute value of each integral on r.h.s of the above
equation can be taken into account considering T and ✏ approaching respectively +1
and 0. In the first integral B2 �

⇣
B

T
⌘2

< ✏ by definition of V✏(T ) and consequently
the inequality ���� Z

V
✏

(T )

dx0 %
⌦

P

eq

⇣
B

2 �
⇣
B

T
⌘2⌘����  ✏Meq

�
V✏(T )

�
(C.9)

holds, wiht M�
V✏(T )

�
the equilibrium measure of the set V✏(T ) defined accord-

ing to Eq. (6.10) and the equilibrium density distribution %⌦P

eq (x). As T ! +1,
Meq

�
V✏(T )

� ! 1 because of the normalisation condition and the limit ⌦P =

limT!+1 V✏(T ). As regards the second integral of Eq. (C.8), the quantity BM(T ) :=

maxx02⌦
P

���B2 �
⇣
B

T
⌘2��� can be defined, a value of T can be chosen such that

Meq

�
V ✏(T )

�
< ✏ and hence,���� Z

V
✏

(T )

dx0 %
⌦

P

eq

✓
B

2 �
⇣
B

T
⌘2◆����  ✏BM(T ). (C.10)

Notice that it must exist a value of T such that Meq

�
V ✏(T )

�
< ✏ since B

T ! B

everywhere on the space ⌦P under the condition T ! +1, by definition of B
T :

the number of elements belonging to V ✏(T ) decreases by increasing the value of T
and consequently also the corresponding measure Meq

�
V ✏(T )

�
. The third integral

in Eq. (C.8) can be simplified by using the maximum value of the autocorrelation
function, i.e., GB(0) = 1, and by solving the integral. In particular, we employ the
condition 2Ta✏ � a2✏ ' 2Ta✏ which is valid if T � a✏. The result is

2�2
B

T 2

���� Z a
✏

0

d⌧ (T � ⌧)GB(⌧)

����  2�2
Ba

T
. (C.11)
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Also the fourth integral in (C.8) can be overrated. In the integration domain, the
autocorrelation function is always less than ✏ by definition of a✏. We assume also
that (T �a✏)

2 ' T which is reasonable if T � a✏. Therefore, the following inequality
is fulfilled

2�2
B

T 2

���� Z T

a
✏

d⌧ (T � ⌧)GB(⌧)

����  ✏�2
B. (C.12)

Then in conclusion, the absolute value of the variance E⌦
P

eq

h
B

2
i

satisfies the following
inequality ���E⌦

P

eq

h
B

2
i���  ✏

�M�
V✏(T )

�
+ BM(T ) + �2

B

�
+

2�2
Ba

T
. (C.13)

Since the simplifications of Eq. (C.9), Eq. (C.10), Eq. (C.11) and Eq. (C.12) hold
under the hypothesis of T sufficiently great and the parameters (T, ✏) are completely
arbitrary, one can consider the conditions T ! +1 and ✏ ! 0 for

���E⌦
P

eq

h
B

2
i��� of

Eq. (C.13). Under this conditions the r.h.s. of the above equation approaches zero
and therefore

E⌦
P

eq

h
B

2
i
= 0, (C.14)

for the reason that E⌦
P

eq

h
B

2
i

is a positive real number that is less than or equal to
zero for the constraint of Eq. (C.13) under the conditions T ! +1 and ✏ ! 0.
The above expression proves that the fluctuations of the time average B(x0) around
the statistical average E⌦

P

eq [B] are negligible. This means that the time average of
the observable B(q) along a single Bohm trajectory is equal to the corresponding
statistical average E⌦

P

eq [B] for almost all the initial conditions. The observables
characterised by this equivalence are called ergodic.
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APPENDIX D

Projection operators

In this appendix, we focus on the mathematical steps that are necessary in
order to simplify Eq. (7.7) and to define the corresponding Fokker-Planck equation,
Eq. (7.12).

Consider the projected equation (7.7) that defines the exact time evolution of
%̃P
(x, t) since all the effects due to the history of the process are considered through

the kernel operator ˆK(⌧). This equation is reported also in the following for the
sake of completeness,

@

@t
%̃P
(x, t) = �ıˆPˆ

˜L%̃P
(x, t) �

Z t

0

d⌧ ˆK(⌧)%̃P
(x, t � ⌧), (D.1)

with

ˆK(⌧) := ˆPˆ

˜LˆQ e�ı⌧Q̂ ˆ̃L
ˆQˆ

˜L, (D.2)

%̃P
(x, t) := ˆP%̃⌦P

(x, t) =

�
%⌦P

eq (x)
�1/2

%Req(xR)
%R(xR, t). (D.3)

At this stage each addend in the r.h.s of Eq. (D.1) has to be examined in detail. The
task of the procedure is the definition of a closed-form expression into the space ⌦R

of the functions that depend on relevant variables. For this purpose, the second ad-
dend, that describes the memory effects of the stochastic process through the kernel
operator ˆK(⌧), will be approximated, whereas the first one will be written in terms
of operators that act on the subspace ⌦R. In other words, the procedure consists in
neglecting memory effects and in expressing suitably the operators ˆPˆ

˜L (first addend

207
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of Eq. (D.1)), ˆQˆ

˜L and ˆPˆ

˜LˆQ both in the kernel operator.
First of all, we assume that the dynamical process involving the relevant variables

is memoryless and this means that ˆK(⌧) does not vanish only for small values of ⌧ :
ˆK(⌧) ' 0 for ⌧ > ✏ with ✏ a small number. In this regard, the following simplification
is reasonable Z t

0

d⌧ ˆK(⌧)%̃P
(x, t � ⌧) '

Z +1

0

d⌧ ˆK(⌧)%̃P
(x, t), (D.4)

since t � ⌧ ' t and the integral on the interval [t,+1) is negligible because of the
hypothesis about the ⌧ -dependence of the kernel operator.

As regards the first addend and in particular ˆPˆ

˜L, one can verify the validity of
the equality

ˆPˆ

˜L%̃P
(x, t) = ˆP

�
%⌦P

eq (x)
�1/2

ˆL†%
R
(xR, t)

%Req(xR)
(D.5)

by employing both the adjoint operator of the Liouville operator and the property
ˆ

˜L
�
%⌦P

eq

�1/2
= 0. Furthermore, the operator ˆL† can be separated into the sum of

differential operators: some of them take the first derivative with respect to the rel-
evant variables, and the others take the first derivative with respect to the irrelevant
variables,

ˆL†
= �ı⇤P · rx = �ı

(X
x2R

⇤P,krk +

X
x2I

⇤P,krk

)
, (D.6)

where k 2 R (k 2 I) tags the k-th variable that belongs (does not belong) to the set
of relevant variables and the corresponding velocity field, ⇤P,k(x). Since ˆL† acts on
functions that depend on the relevant variable only, the differential operators ⇤P,krk

with k 2 I can be neglected without any approximation. Thus, by employing the
definition of the projection operator (see Eq. (7.4)), one obtains the average velocity
field of relevant variables

⇤R,k(xR) :=
1

%Req(xR)

Z
⌦

I

dxI

⇥
%⌦P

eq (x)⇤P,k(x)
⇤
x=(x

R

,x
I

)
(D.7)

and the first addend of Eq. (D.1) can be consequently written in the following concise
way

ˆPˆ

˜L%̃P
(x, t) = �ı

�
%⌦P

eq (x)
�1/2

⇤R · rR
%R(xR, t)

%Req(xR)
, (D.8)

where ⇤R(xR) = {⇤R,k(xR)} and rR = {rk} for every k 2 R.
As regards the second addend, and in particular the kernel operator, the analysis

can be further separated for the operator ˆQˆ

˜L and for the operator ˆPˆ

˜LˆQ. First of all,
the term ˆQˆ

˜L%̃⌦P

(x, t) can be simplified by repeating the same procedure adopted
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for ˆPˆ

˜L%̃⌦P

(x, t), since the operator ˆQ is defined as ˆQ =

ˆ1� ˆP. The result is that

ˆQˆ

˜L%̃P
(x, t) = �ı

�
%⌦P

eq (x)
�1/2

�⇤R · rR
%R(xR, t)

%Req(xR)
, (D.9)

where
�⇤R,k(x) = ⇤P,k(x) � ⇤R,k(xR) (D.10)

and ⇤P,k(x), ⇤R,k(xR) are linked through Eq. (D.7).

Secondly, the analysis concerning the operator ˆPˆ

˜LˆQ is less direct the previous
ones. Consider the following integral written according to the Dirac notation,D�

%⌦P

eq

�1/2
g
��� ˆPˆ

˜LˆQ
����%⌦P

eq

�1/2
f
E
:=

Z
⌦

P

dx
�
%⌦P

eq (x)
�1/2

g(x)ˆPˆ

˜LˆQ
�
%⌦P

eq (x)
�1/2

f(x)

(D.11)
for every possible pair of functions g(x) and f(x). Since the operators ˆP, ˆQ and ˆ

˜L

are self-adjoint operators, the above integral is equal toD
ˆQˆ

˜LˆP
�
%⌦P

eq

�1/2
g
��� �%⌦P

eq

�1/2
f
E
. (D.12)

The bra part of the integral can be expressed in a more useful way by recognising
that the argument is analogous to the l.h.s. of Eq. (D.9). In other words, the features
of %̃P that ensure the validity of Eq. (D.9) are the same of ˆP

�
%⌦P

eq

�1/2
g: they are

functions of the relevant variables multiplied for
�
%⌦P

eq (x)
�1/2. Therefore, one can

verify that equality between the integral of Eq. (D.12) and the next integralD�
%⌦P

eq

�1/2
[�ı�⇤R · rR]

�
%⌦P

eq

��1/2
ˆP
�
%⌦P

eq

�1/2
g
��� �%⌦P

eq

�1/2
f
E
, (D.13)

holds. Then, one can write the above integral with the same bra and ket of Eq. (D.11)
by employing the adjoints of the operators included in the bra. Since the above
procedure holds for every pair of functions f(x) and g(x), the operator ˆPˆ

˜LˆQ has to
satisfy the following equation

ˆPˆ

˜LˆQ = �ıˆP
�
%⌦P

eq (x)
��1/2 rR ·�⇤R

�
%⌦P

eq (x)
�1/2

. (D.14)

Once both the equivalences of Eq. (D.9) and of Eq. (D.14) are taken into accout,
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the term ˆK(⌧)%̃P
(x, t) can be written as

ˆK(⌧)%̃P
(x, t) = �ˆP

�
%⌦P

eq

��1/2 rR ·�⇤R

�
%⌦P

eq

�1/2
e�ı⌧Q̂ ˆ̃L

�
%⌦P

eq

�1/2
�⇤R ·rR

%R(xR, t)

%Req(xR)
.

(D.15)
By performing the integration on the ⌧ variable and using the projection operator
ˆP, one obtains

Z +1

0

d⌧ ˆK(⌧)%̃P
(x, t) = �

�
%⌦P

eq (x)
�1/2

%Req(xR)
rR · %Req(xR)�(xR) rR

�
%Req(xR)

��1
%R(xR, t),

(D.16)
where the matrix of the diffusion coefficients is conveniently defined according to
the following equation

�k,k0(xR) =

Z +1

0

d⌧
1

%Req(xR)

Z
⌦

I

dxI

h�
%⌦P

eq

�1/2
�⇤P,k e�ı⌧Q̂ ˆ̃L

�⇤P,k0
�
%⌦P

eq

�1/2i
x=(x

R

,x
I

)
,

(D.17)
with k, k0 2 R.

Finally, the results of Eq. (D.8) and Eq. (D.16) can be merged in order to simplify
the initial equation, that is Eq. (D.1) and the result is

@

@t
%R(xR, t) = �

h
%Req⇤RrR

�
%Req
��1

%R(xR, t) � rR · %Req� rR

�
%Req
��1

%R(xR, t)
i
.

(D.18)
The above equation is equivalent to Eq. (7.12) reported in Chap. 7. In order to
prove this last step, one has to recognise that %Req(xR) satisfies

rR⇤R(xR)%
R
eq(xR) = 0. (D.19)

This can be simply verified by integrating the Eq. (6.23) on the irrelevant variable xI .
Therefore,

rR⇤R(xR)%
R
eq(xR)f(xR) = %Req(xR)⇤R(xR)rRf(xR) (D.20)

for every f(xR). If one chooses f(xR) =

�
%Req(xR)

��1
%R(xR, t), then Eq. (D.20)

establishes the equivalence between Eq. (D.18) and Eq. (7.12).
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