UNIVERSITY OF PADOVA
THE PH.D. SCHOOL ON INFORMATION ENGINEERING

DEPARTMENT OF INFORMATION ENGINEERING

A Unified Framework For Blood Data
Modeling In Dynamic Positron

Emission Tomography Studies

PHD THESIS

MATTEO TONIETTO

Supervisor: Alessandra Bertoldo

Professor

Padova, November 2016







Abstract

Quantification of dynamic PET images requires the measurement of radioli-
gand concentrations in the arterial plasma. In general, this cannot be derived
from PET images directly but it must be measured from blood samples taken
from the subject’s radial artery. The accurate measurement of parent radioligand
concentration in plasma is a major challenge due to the presence of radiometabo-
lites, i.e. molecules produced from the breakdown of the tracer in the organism

which still contain the radioactive isotope and that are found in plasma.

Through the application of radiochromatographic techniques, it is possible to
separate the contribute of the radiometabolites by measuring the fraction of un-
changed tracer over the total activity, the Parent Plasma fraction. However, these
measurements can only be performed on a subset of the plasma samples due to
the fast decay of the radioactivity. Therefore, the parent fraction measurements

must be fitted with a mathematical model to interpolate the missing values.

One key assumption of the tissue kinetic model is that the input function is
fully known and not affected by measurement error. Instead, after correcting for
the presence of radiometabolites, the resulting input function consists of noisy
and discrete samples. Consequently, a mathematical model is fit to the plasma

data to obtain a continuous and noise-free description.

In summary one has to apply at least two models to arrive at the final input

function: one for the parent plasma fraction and one for the input function.

The models currently used in literature are just empirical functions chosen
with the unique purpose of describing the data. They do not explicitly consider
the underlying physiologic processes of radioligand metabolism (e.g., the rate of

metabolism) or experiment variables (e.g., radioligand injection time).

The aim of this thesis was to develop and validate a unified framework for the

plasma data modeling, which was both biologically and experimentally informed,
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in order to achieve a better description of the plasma data. Moreover, an estima-
tion algorithm was also proposed which was able to adapt the complexity of the
models to the data available (manual versus automatic samples) exploiting basis
pursuit techniques already applied in PET. Furthermore, the algorithm was de-
signed to require minimal interaction from the user as most of initial parameters

are derived from the data itself.

Initially, a technique to include the duration of radioligand injection in any of
the existing parent plasma fraction model was developed to achieve a more accu-
rate description of the plasma measurements. This new formulation (here called
convoluted model) was tested on three datasets with different parent kinetics:
['!CINOP-1A, [''C]MePPEP, and [!!C](R)-rolipram. Results showed that convo-
luted models better described the fraction of unchanged parent in the plasma
compared with standard models for all three datasets (weighted residuals sum of

squares up to 25% lower).

Subsequently, this approach was extended also for the model of the input func-
tion. Instead of applying it directly to the standard input function models as for
the parent plasma fraction, a new formulation was derived from the tracer-tracee
theory to describe the kinetic of the parent in plasma. The resulting input func-
tion model was therefore based on physiological assumptions and it accounted
for the injection duration. This was compared against the standard models on
eight different datasets acquired from different PET facilities. The physiological
model provided a better fit of the noisy input function data in all the dataset con-
sidered, as measured by the Akaike Information index (up to 61% lower for the

physiological model).

In the final part, the tracer-tracee theory was applied also for the radiometabo-
lite model. Moreover, a completely automatic pipeline for the plasma data model-
ing was developed. This pipeline takes the raw plasma measurement as input and
returns a modeled input function ready to be used for tissue quantification. The
pipeline was tested on four different tracers ([!!C]PBR28, [!!C]MePPEP, [!!C]WAY-
100635 and [!!C]PiB) with automatic and manual blood sampling. The input
function estimated with it was shown to provide a better fit (weighted residuals
sum of squares up to 14% lower) of the tissue time activity curves in three of the
four datasets (for [!!C]PBR28 the difference was not significant) compared to the

standard input function.
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The final result of this thesis consists in a pipeline for the automatic fit of the

plasma data with physiologically and experimentally informed models.

Keywords
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Chapter ﬂ

Introduction

P ositron Emission Tomography (PET) allows to image the biodistribution and
kinetics of radiopharmaceuticals in brain with great accuracy and mini-
mum invasiveness [1]. Radiopharmaceuticals are chemical compounds in which
one or more atoms have been replaced by a radioisotope. This leaves the chemical
proprieties of the molecule unchanged so that, by virtue of the radioactive decay,
this can be used as a tracer in conjunction with a PET scanner. In fact, once
injected into the organism, the radiocompound will have the same metabolic be-
havior as the substance being traced (denoted as tracee). Moreover, radiolabeled
tracers can be produced with high specific activity, allowing the experimenter
to inject small tracer amounts (few nanomoles), thereby avoiding any unwanted

pharmacological effect [2].

PBR28
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Figure 1.1: Figure schematizes a typical dynamic brain PET experiment: from left
to right one of the chemical compound, in which one atom has been replaced by
a radioisotope (red circle), is injected intravenously at the beginning of the PET
acquisition, obtaining dynamic images of the tracer concentration in brain.
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Indeed, a PET radiolabeled agent must meet the requirements of being an ideal
tracer: it must be detectable by an observer; its introduction into a system must
not perturb the system being studied (i.e. the amount of tracer is very small com-
pared with the amount of tracee), and it must be indistinguishable with respect

to the properties of the tracee system being studied [3].

Dynamic PET exams produce three-dimensional images throughout the dura-
tion of the experiment, starting from the injection of the tracer into the subject
venous system. With reconstruction algorithm and corrections for the physical
effects such as attenuation and scatter, quantitatively accurate measurements of

regional radioactivity concentration can be obtained [4].

Interpreting these data by means of specific mathematical models can improve
the kind and quality of information that can be extracted allowing the quan-
tification of various physiological parameters. These includes enzymatic rates,
perfusion, protein synthesis or binding potential, accordingly to the tracer em-
ployed [5]. This information can be used to monitor the progress of neurological
diseases or to assess the effects of specific drugs, such as their penetration into
target sites, their binding to specific receptors and their effects on the metabolic

processes [6].

Since PET tracers can be assumed as ideal tracers, they can be studied through
the framework of compartmental modeling. Although several of such compart-
mental models have been proposed, based on different assumptions and with
various degrees of complexity and biological plausibility, they all describes the
kinetic of the tracer concentration in the tissue, Cr, which correspond to what the
PET scanner measures. However, to estimate the parameters of these models, it
is necessary to know also the input of the system, that is the concentration of the
tracer in the arterial plasma, which is known as the arterial input function or the

parent concentration C,.

In general, this cannot be derived from PET images directly but it must be mea-
sured from blood samples taken from the subject’s radial artery. An accurate
measurement of the input function is an essential step for PET images quantifi-
cation as this represents the forcing function of the tissue compartmental model,
substantially driving the kinetic estimation process. In compartmental models
the forcing function is assumed to be known without measurement error, thus
any inaccuracy present in the input function will be translated in a bias of the

tissue parameter estimates.
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Figure 1.2: Figure shows the three ingredients for the kinetic analysis of PET
images: the arterial input function (left), the kinetic model (middle) and the PET
images (right).

1.1 Notation

In this thesis the following notation will be used to indicate discrete values

(measured or derived):
e (;, is the whole blood concentration;

Ci is the total concentration in plasma (either free or bound to plasma

protein);

POB is the Plasma-Over-Blood ratio

PPf is the Plasma Parent fraction;

C, is the parent concentration in plasma, i.e. the input function;

Cret is the radiometabolite(s) concentration in plasma.

The same variables with the prefix y will indicate their time-continuous model
description, i.e. yC.: yPOB, yPPf, yC,, yC,e: the prefix w will indicate the
weights used for data fitting, specifically , i.e. wWCy, WPEf, wC,, WCpy;.

1.2 Measuring the input function

The accurate measurement of parent radioligand concentration in plasma is
a major challenge of quantitative PET imaging. Radiolabeled compounds injected
into the blood stream are exposed to a complex and unpredictable chemical en-
vironment and thus may break down in one or more metabolites. At least one
of these metabolites would contain the radioisotope and is therefore named ra-

diometabolite. To correctly quantify the binding of a radioligand, the amount of
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radiometabolites should be taken into account [7]. Depending on the chemical
characteristics of the radiometabolites and on the transport mechanism between
blood and tissue, the radiometabolites may remain confined to the vascular com-
partment, migrate into the tissue along with the parent radioligand or even be
created inside the tissue. Radiometabolites are often less lipophilic than their
parent, and therefore are less likely to cross the blood-brain barrier and enter the
brain. Thus, if the radiometabolites are confined to the blood compartment, only
the concentration of parent radioligand should be used as input for modeling the
tissue kinetics. By contrast, radiometabolites that cross the blood-brain barrier
or originate directly inside the tissue [8] must be incorporated into the model as

a second input or as an additional compartment, respectively.

Serial arterial blood samples are usually drawn during the PET scan, in order
to assess the concentration of parent radioligand over time. Blood samples may
be drawn manually or with an automated blood sampling system equipped with
an online detector or with a fraction collector. The online detector allows the best
definition of the peak, by continuously measuring arterial whole-blood concen-
trations. However, some manual blood samples are still required to obtain the
plasma concentration and to separate the parent from its radiometabolites. The
fraction collector instead provides discrete blood measurements as in the manual

sampling, but with a higher frequency and more precise timing.

The first quantity usually measured is the whole blood concentration C,, which
is obtained by inserting the blood sample into a gamma counter or directly from
the online detector. However, C;, includes the contribute of the blood cells, while
only the tracer in plasma is available for tissue exchange. Nevertheless, C, is still

measured for the blood volume correction in the tissue models.

Plasma is subsequently separated from blood cells by means of a centrifuge
and its total activity C,, is measured again with a gamma counter. In case the
automated blood sampling system was employed, the values of C; would be
known only on few manual samples. The common practice to obtain the Ci,
values for the other time points is to compute the Plasma Over Blood (POB) ratio

as:

Ctot ( t)
Cy(t)

POB(t) = (1.1)
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Figure 1.3: Blood samples processing: (top) blood samples are drawn at various
time points and their radioactivity is measured with a gamma counter obtaining the
whole blood activity - C,,. (Middle) The samples are then centrifuged to separate the
blood cells from plasma and the total activity in plasma - Cy,; - is measured again
with the gamma counter. (Bottom) The HPLC measures the fraction of activity due
to the parent in plasma - PPf

Fraction

and fit a mathematical function, yPOB, to it. The full time course of Cy, is then

estimated as:

Ciot(t) = Cy(t) - yPOB(1) (1.2)

Several choices are available for the form of yPOB, from polynomial to exponen-
tial functions. However, how much this choice affects the tissue estimates has
never been carefully investigated. Notably, this step is necessary only when the

online detector is employed.

The fraction of unchanged radioligand in plasma (the Plasma Parent fraction or

PPf) is measured with techniques such as high-performance liquid chromatogra-
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phy (HPLC), thin layer chromatography or other chromatographic methods. Since
radiometabolites are usually less lipophilic than the parent, they elute earlier on
HPLC. Thus, an online radiation detector attached to the HPLC will first measures
the peak(s) of activity related to the radiometabolites and then the peak of activity
related to parent (Figure 1.4). The value of the PPf at time t (PPf(t)) is hence
calculated as the ratio of the area under the curve of the parent peak (AUC,(t))

and the total area (AUC,(t)) in the radiochromatogram:

AUC,(D) AUC,(1)

pr(t) = AUCtot(t) - AUCp(t) + AUCmet(t)

where AUC,,; is the area under the curve of the radiometabolites peak(s).

The fast decay of radioactivity, especially with 'C-labeled tracer, limits the
total number of samples that can be analyzed by chromatography. Therefore,
for kinetic modeling, PPf data points are generally fitted with a mathematical
function, with the purpose of obtaining a smooth and continuous yPPf curve from
a series of discrete noisy samples. Although PPf measurements are sometimes
linearly interpolated [10][11] the use of a model is preferable to minimize the

impact of measurement errors [12].The input function is then calculated as:

Cp(t) = Ciot(0) - yPPf(t) (1.4)

The choice of the yPPf model is a crucial step for kinetic modeling. Indeed, a
carefully selected yPPf model allowed Parsey and colleagues [13] to nearly halve
the retest variability of the total volume of distribution (Vr) of [''C]DASB com-
pared to the results obtained with the yPPf model commonly used in the litera-
ture. Furthermore, Wu and colleagues [14] showed that different models can lead
to significant differences in both binding potential (BP) and V; quantification of
[''CIWAY-100635.

Since the tissue models assume that the input function is not affected by mea-
surement noise and to obtain a continuous curve necessary for the numerical in-
tegrations involved in such models, also the input function is fitted with a model
(yCp). generating a continuous and noise-free curve. In summary, once the total
tracer activity in plasma is known one has to apply at least two models to arrive

at the final input function: one for PPf and one for C,.
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Figure 1.4: Figure show the radiochromatograms derived from the HPLC analysis
of: A) Human plasma sample at 10 min after the intravenous injection of ['! CINOP-
1A (733 MBq). There are at least four radiometabolites A and B = 22.1%; C =
6.5%; D = 2.4%; and parent = 69%. The parent radioligand eluted at 3.55 min
and was well separated from the rest of the radiometabolites. B) Human plasma
sample at 10 min after the intravenous injection of ['! CIMePPEP (625 MBq). There
are at least five radiometabolites A = 29.6%; B = 2.0%; C = 3%; D = 18.8%;
and parent = 62.6%. The parent radioligand eluted at 6.37 min and was well
separated from the rest of the radiometabolites. C) Human plasma sample at 6
min after the intravenous injection of [\ CJ(R)-rolipram (744 MBq). There are three
radiometabolites A = 2.34%; B = 1.42%; C = 2.05%; and parent = 94.2%. The
parent radioligand eluted at 2.95 min and was well separated from the rest of
the radiometabolites. All the radio analysis were done according to methodology
detailed in [9].

1.3 Modeling the Plasma Parent fraction

The model yPPf reflects the PPf properties: its value may range from 1 to O,
where 1 means that all radioactivity measured from the plasma sample is due
to the unchanged radioligand and O that the radioligand has been completely
metabolized. The PPf curve has usually an initial value of 1 and then decreases
monotonically and sigmoidally toward 0. However, different shapes are possible.
For example, the parent fraction of [!!C]DASB displays an initial rising phase

[13] probably because the parent, but not the radiometabolites, is trapped in the
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lungs. The majority of yPPf models can be categorized into three main classes:

Power models, Hill models and Exponential models:

Power models

First proposed by Watabe and colleagues [15] for [!!C]MDL 100,907 and then
extended by both Meyers and colleagues [16] for ['*FJCPFPX and by Hinz and
colleagues [17] for [''C]MDL 100,907 again, Power models are characterized by

the following general expression:

1
PPf(t) = ——— 1.5
YPRI(O) = T (1.5)
with a > 0, b > 1 and ¢ > 0. This model is characterized by a sigmoidal shape
that starts from 1 with a zero first derivative and then approaches O for t — oo.

For O < b £ 1, the model becomes a convex function.

Hill models

A Hill function was firstly used by Gunn and colleagues [18] to describe the
radiometabolite fraction of ['!CJ[WAY-100635. This model was subsequently used
to fit the PPf kinetic of many different radioligands such as (R)-[''C]Verapamil
[19], [''Clflumazenil [20] or [''C]NOP-1A [21]. A general expression for the Hill
model is given by:

(a-=1)-t°

with O < a < 1, b > 0 and ¢ > 0. The shape of the model is again sigmoidal,
but for t — oo tends to a instead of zero. This allows a better description of
radiotracers whose plasma concentration shows a plateau. An extension of the
Hill model was presented by Asselin end colleagues [22] for ['!C]JFLB457 and then
used for[''C]PiB [23] and ['®F]FLT [24]. Its formulation is

[(a=1)—d-t]-t°

YPRf(t) = 1 + p— (1.7)

Compared to equation 1.6, this formulation presents one extra parameter d,
which makes the model decrease toward an oblique asymptote whose slope equals
—d. This variation of the Hill model is thus suited for radioligands which are
rapidly metabolized and then slowly washed out. Particular care must be taken
when using this model for extrapolating PPf values at late times because it may

yield negative values. In this case, a nonlinear constraint should be used dur-
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ing the estimation of the parameters (i.e. constraining yPPf(t.,q) = O with t.q

representing the time of the end of the scan).

Exponential models

These models are characterized by a (multi)exponential decay. With minor
variations, they have been used for [''C]NNC 756 [25], ['!C]flumazenil [26] and
[''C]-(R)-PK11195 [27], among others. A general formulation is

n n
yPPf(t) = Ay + ZAie_ﬁ‘t, with ZAi -1 (1.8)
i=1 i=0
All parameters Ag, Ay, 4, ..., An A, are > 0 where n is an integer, usually < 3.

In the variation used for [''C]-(R)-PK11195 [28] the exponential decrease ap-
proached an oblique asymptote (Table 1.1). Similarly to the extended Hill model,
nonlinear constraints may be necessary when using an oblique asymptote, be-
cause extrapolations at late times may yield negative values. Although these
models are widely used in literature, they generally perform poorly during the
initial phase of the PPf, because the PPf may decrease more slowly than what the

exponential decay would predict [20].

Modeling the arrival of radiometabolites

The aforementioned models can be extended to include a delay term, t,, which
represents the interval before radiometabolites appear in plasma [16] [29][26] [28].
The models yPPf(t) are thus modified by substituting t with (t—t;) and constrained
to be equal to 1 for t < t,.

Moreover, the models might start from an initial value (PPfy) lower than 1. This
is done to account for the presence of co-injected radiochemical impurities and
the rapid formation of radiometabolites in the body during, for example, the first
pass of the radioligand through the lungs [17]. This can be included in the model
by multiplying yPPf(t) by PPf, [30] or by subtracting (1 — PPfy) from yPPf(t) [17].
The term PPf, can be estimated along with the model parameters or can be fixed to
the value measured in the first sample, provided that the first sample is acquired
early after injection. Oikonen [31] proposed to use the estimated PPf, to correct
for the metabolism that intervenes during sample handling, i.e. the metabolism
of the parent during the interval between blood drawing and analysis. It would be
preferable, however, to chemically inhibit blood metabolism at the time of sample
collection [32].
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Figure 1.5: Figure represents the power (A), Hill (B), and exponential (C) models
Jfor plasma parent fraction modeling. All models allow accounting for the metabolite
delay (ty) and non-unitary initial plasma parent fraction value (PPfy). In addition,
the Hill model allows accounting for the final plateau (a).

Compartmental models

yPPf models are empirical functions whose purpose is to describe plasma par-
ent data, without necessarily taking into account the underlying physiological
processes. Accounting for the physiology of the radioligand could nevertheless
be possible by implementing compartmental models. Huang and colleagues [33]
developed a generalized compartmental model to describe the conversion of an
injected radiotracer into its radiometabolites. The model uses the total activ-
ity in plasma as input and the concentration of each radiometabolite as out-
put. By identifying the model parameters, the full, noise-free time course of the
parent concentration in plasma can be estimated. The main limitation of this
approach is that the concentration of each radiometabolite in plasma must be
measured. In general, HPLC analyses are optimized to separate the parent from
the radiometabolites and not to isolate multiple different radiometabolites. Car-
son and colleagues [34] simplified this approach by lumping all the radiometabo-

lites in a single compartment. Another variation included a compartment for the
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red cells [35]. However, due to their complexity, compartmental models have
been used only for few radioligands, i.e. ['®F]FDOPA [35] [36] [37], ['°0]O2 [33],
['!Clraclopride [34] and ['!C]Thymidine [38].

Accounting for measurement errors

When information on measurement error is available, parameters can be es-
timated by weighting each data point according to the inverse of its variance [3].
The measurement error of the PPf samples is assumed to be additive, uncorre-
lated, with zero mean and unknown variance. In most studies, the variance is

assumed equal for all samples, which is equivalent to not weighting the data.

However, some studies assumed that the PPf variance is based on Poisson
statistics of the area-under-the-curve of parent peaks (AUC,) measured from
radio-HPLC [39] [21], that is:

Var(PPf) = AUC, (1.9)

This formula is based only on the statistic of the parent peak, while PPf is
derived from both parent and radiometabolites peaks (AUC,,). Considering both

contributes, the resulting formula is:

AUC, - AUC et

Var(PPf) =y - 3
(AuC, + AUC )

(1.10)

where y is a proportional constant which is estimated a posteriori. The full deriva-

tion of this formula is presented in Appendix C.1.

Another formulation of PPf variance was derived by Wu and colleagues [14] for a
HPLC equipped with a fraction collection system. The activity (v;, where i stands
for the i-th fraction) and the associated standard deviation (o;) were measured

with a well counter. The PPf variance was thus calculated as:

(Zief V) (Zier Oiz) - (e V) (Ziel Ui2)
(2 Ui)2

where I is the set of indices of the fractions containing the parent.

Var(PPf) = (1.11)

Table 1.1: Plasma Parent fraction models used in the literature

Tracer Equation References

Power model

continued . ..
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... continued
Tracer Equation References
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...continued

Tracer Equation References

Exponential model
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1.4 Modeling the input function

In general, the time course of a PET input function can be organized in three
parts: 1) a period of zero activity at the beginning of its time course due to
the tracer delivery, 2) a rapid rising period, and 3) an exponential-like clearance

phase.

One of the first general model to fit the arterial input function was proposed by
Feng and colleagues in [60]. Feng’s model was derived by the analytical solution
of a blood circulation system compartmental modeling describing the radiotracer
transportation through the human body. This model was validated for ['*F]FDG

assuming a bolus injection of tracer. Feng’s model formulation is:

0 t<t
yCpy(t) = ) (1.12)
A, (t — ) et 4 33 4, (e—ai(t—tm _ e—al(t—to>) t>t,

with &, indicating the initial delivery phase.

In practice, the radiotracer injection is not instantaneous but lasts from some
tens of seconds to few minutes. To describe this kind of behavior a second model
was presented as variation of Feng’s model and then extensively used in the liter-
ature. This consists in a straight line to the C, peak followed by a tri-exponential

decay. The formulation of the tri-exponential model is given by:

0 t<to
C,(t) = { T < (1.13)
yr - m(t—to) tO—t<tpeak :

Z?:] Aie_ai(t_tpeak) t Z tO

with t,q indicating the input function peak time. However, while fairly describing
the decreasing phase of the input function, the tri-exponential model provides only

a crude representation of its rising phase.
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kBq/ml @ Measured input function

I B Standard tri-exponential

Figure 1.6: Figure represents the fit (red line) obtained with the standard tri-
exponential model of the measured input _function (blue points) in a representative
L-[1-'1CJleucine subject. The injection protocol consisted of a short tracer infusion
with duration equal to 2 minutes. When the duration of the injection is > 1 min, the
standard tri-exponential model provides a bad description of the rising phase, as
can be observed in the zoomed panel.






Chapter E

Improved Models for Plasma Parent Frac-

tion

I n the literature several different yPPf models are used, as shown in section

1.3. Although these are defined by different formulas, they all are empirical
functions chosen with the unique purpose of describing the PPf data. Thus,
they are commonly applied without explicitly considering underlying physiologic
processes of radioligand metabolism (e.g., the rate of metabolism) or experiment
variables (e.g., radioligand injection time). Some attempts to account for the
physiology of radioligand metabolism have been conducted with compartmental
models (see section 1.3). However, these methods require a priori knowledge of
the biochemical pathways of the radioligand, which are radioligand specific and

most of times not completely known.

In this chapter, a new modeling approach is presented, which could help im-
proving the description of the PPf measures by taking into account the duration of
the radioligand injection. This method lies in between the full physiologic model-
ing of the metabolism kinetic and the experiment-unrelated analytical function. In
fact, on the one hand, it allows including an experiment-specific variable into ac-
count while on the other hand it does not lose generality since it can be applied to
any of the aforementioned analytical functions that are currently the mostly used
PPf models. This method was validated on three radioligands ([*'C](R)-rolipram,
[!!CINOP-1A, and [!!C]MePPEP), which exhibit different blood and radiometabolite
kinetics and for which an unusually high number of PPf samples was available

(on average 15 per subject).
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2.1 Materials and methods

When the radioligand is administrated as a bolus, the injection duration is
assumed to be instantaneous, even if in practice it can last from some tens of
seconds up to few minutes. This may affect the initial phase of the PPf curve
since the organism is already metabolizing a part of the radioligand while the
rest has just been injected. Thus, in the first blood samples a mixture of newly
injected and recirculating radioligand might be present. To account for this effect,

the injection was explicitly modeled as a boxcar function:

O t<OVt>T
u(t, T) = (2.1)
0Lt T

e

where T represent the length of radioligand injection. u(t, T) is assumed to be the
input of a dynamic system whose impulse response function is a mathematical
function such as the ones currently used to model the PPf. The final formulation,

which was called the convoluted model, is given by:

yPPf « u(t, T)

- (2.2)
fo u(s, T)ds

yPPfC(t) =

where yPPf°(t) is the convoluted version of the radioligand-specific model yPPf
and = is the convolution operator. The integral at the denominator ensure the
normalization of the model in the interval [0; 1]. Notably, the amplitude of the
boxcar function appears at both the numerator and the denominator and can
therefore be ignored. To note that this new mathematical description does not
introduce any new parameter to be estimated because the value of T is known

from the experiment protocol.

2.1.1 Dataset

To test the validity of the convoluted yPPf¢ models compared with the stan-
dard ones, three different datasets acquired at the Molecular Imaging Branch of
the National Institute of Mental Health (USA) were considered. The radioligands,
characterized by different pharmacokinetic proprieties (i.e., faster or slower kinet-
ics) were ['!CINOP-1A, a nociceptin/orphanin FQ peptide receptor ligand (N = 22;
716+83 MBq, scan duration = 120 minutes) [61]; ['! CIMePPEP, an inverse agonist
for cannabinoid receptor type 1 receptors (N = 20, 657 + 76 MBq, scan duration =
90 minutes) [62]; and [“C](R]—rolipram, a ligand for phosphodiesterase 4 (an en-

zyme that metabolizes cyclic adenosine monophosphatase) in the brain (N = 24,
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420 + 144 MBq, scan duration = 90 minutes) [63]. Recruitment processes and
eligibility criteria are described in the original publications. The protocol was
approved by the Ethics Committee of the National Institutes of Health; all sub-
jects gave written informed consent. All the studies were conducted according
to the Declaration of Helsinki. Radioligands were injected intravenously over
1 minute using an automated pump, and blood samples were manually drawn
from the radial artery at 15-second intervals until 120 or 150 seconds, and then
at increasingly longer intervals until the end of the scan. Each input function

consisted of about 22 individual samples.

Blood sample processing

Plasma was first separated from blood cells by centrifugation. Activity in both
the whole blood C, and total plasma C;,; were measured on each sample. Sample
counts were consistently monitored and variable volumes were aliquoted to keep
the counting error in each sample < 2.5% (2000 counts) at 1 s.d. Radiometabolite
separation from parent plasma concentration was performed by HPLC on almost
every blood sample, as described in [9] obtaining an unusually high number of
PPf samples per subject (17 + 2 for ['!CINOP-1A; 13 + 2 for ['!C|[MePPEP, and
13 + 1 for [''C](R)-rolipram).

2.1.2 Radiometabolite Data Modeling and Statistical Analysis

Model parameter quantification

All three yPPf standard models (power, Hill, and exponential) and their cor-
responding convoluted versions were fitted to the PPf measures of each subject.
All models were considered in their more general form, i.e. including a delay
term t, and an initial value PPf, different from 1. The parameters for each model
and each subject were estimated using a maximum-likelihood nonlinear estimator
with a relative weighting scheme based on HPLC measurements. Measurement
error was assumed to be additive and uncorrelated with zero mean and variance
calculated with equation 1.10. Weights were then chosen as the inverse of the

variance, and the proportionality constant y was estimated a posteriori as in [64].

Criteria for model comparison.

The performance of the standard versus the convoluted version for power, Hill,
and exponential model classes were compared. Then, for each radioligand, the
optimal model to describe the PPf measures was selected considering the following

performance indices:
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1. Weighted residual sum of squares (WRSS): the Akaike’s Information Cri-
terion [65], which balances the WRSS with the number of model param-
eters, is generally used to compare different models. However, because
all the models considered had the same number of parameters, WRSS
was used to investigate model performance instead of Akaike’s Informa-
tion Criterion. In particular, we considered the percentage difference be-
tween the WRSS of convoluted and standard models, calculated as: %diff =
(WRSSstandara — WRSS convolutea) / WRSSstandar-

2. Coefficient of variation (CV) of the model parameter estimates: this index
returns information about estimate precision. It was calculated for each
model and each subject from the standard deviation derived by the inverse
of the Fisher information matrix, and expressed as a percentage of the es-
timated parameters. To note that, even if the yPPf model parameters do
not have any physiologic meaning about metabolite metabolism, the associ-
ated CVs are important since they return an indirect measure of the model

robustness.

3. Percentage of outliers, defined as the fraction of subjects in which at least
one estimated parameter had a CV > 1000%, excluding t,. Outliers are not
considered in the calculation of the other performance indices as they would
bias their estimates. Nevertheless, the percentage of outliers is indicative of

the model robustness.

4. Residual zero-line crossing: this index represents an indirect measure of the
polarization of the residuals. It is calculated as the number of times that
the weighted residuals cross the zero line, normalized by n — 1, where n is
the total number of samples. The expected value for the zero-line crossing
is 0.5 (as from a Bernoulli distribution with P = 0.5 and n — 1 trials). The

lower this number, the more polarized the residuals.

Impact on tissue kinetic quantification

The optimal yPPf model selected in the previous step (both in its standard and
convoluted version) was used to perform radiometabolite correction. Thus, two

input functions were generated for each subject:

YC5(t) = Cier(t) - yPPf (1) (2.3)
YC5(t) = Cioe(t) - yPPfE(t) (2.4)
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For the three radioligands considered, the optimal model to describe the kinetic
behavior at regional level was a two-tissue compartmental model (2TCM)[61] [62]
[63]. The rate constants K; (% /min), I, (1/min), ks (1/min), ks (1/min), and
V), (unitless) were estimated for each region with a maximume-likelihood nonlinear
estimator. The parameters of interest were:

o V= I;—; (1 + %): the total volume of distribution (mL/cm?®), which equals the
ratio at equilibrium of the concentration of radioligand in the brain to that

in the plasma [66];

e BPp = f;‘;i the binding potential (mL/cm?®), which refers to the ratio at

equilibrium of specifically bound radioligand to that in the plasma [66].

e BPyp = %: the nondisplaceable binding potential (unitless), which refers to
the ratio at equilibrium of specifically bound radioligand to that of nondis-

placeable radioligand in the tissue [66].

Positron emission tomography data measurement error was assumed to be
additive and uncorrelated, with zero-mean and Gaussian distribution. We defined
the diagonal elements of the error covariance matrix according to the formula
originally proposed by Mazoyer and colleagues [67]:

Var (C;) = yg (2.5)
Ay,
where C; represents the activity of the radioligand in a specific volume of interest
at the frame i, and A, is the duration of frame i. The proportionality constant y
is, as for the radiometabolite fit, an unknown scale factor estimated a posteriori
as in [64].

All the data were corrected for the radioligand decay and blood arterial delay
(defined as the time difference between the blood arrival from the radial artery
and the brain) [68]. The correlation between the V; values obtained with the two
different inputs, i.e., yC; and yC;, was calculated with Pearson’s R* coefficient

for all the regions for each subject.

The mean relative difference (MRD) was calculated as the average of the absolute
value of the relative differences, i.e. RD = 2 - (Vf - VTC) / (Vﬁ + VTC) The same
indices were considered also for BPp,BPyp, and the microparameters (i.e., K,
Io, ks,and k,) to evaluate which ones are the most influenced by the different

radiometabolite correction.
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2.2 Results

2.2.1 Convoluted versus standard models

A) [""CINOP-1A B) [''"C]MePPEP C) ['"'C](R)-rolipram
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Figure 2.1: The effects of radioligand injection on plasma parent fraction
modeling. The figure reports the weighted residual sum of square (WRSS) per-
centage difference, computed between convoluted plasma parent fraction yPPf°
modeling (accounting for the radioligand injection time) and standard yPPf model-
ing (applied without any information about radioligand injection time). A, B, and C
refer to [!! CINOP- 1A, [' CIMePPEP, and ['! C](R)-rolipram analysis, respectively. For
each radioligand, all the yPPf models were tested and intersubject mean (x) and
variability (error bars) of percentage difference between convoluted and standard
yPPf modeling are reported. Values falling in the red band (top) means the WRSS of
the standard model is lower than the corresponding WRSS of the convoluted model
(i.e., standard model performs better than convoluted one). The opposite for the
yellow band (bottom).

The use of a convolution term to account for the duration of radioligand injection
improved model fit performance for all radioligands and all yPPf models (Figures
2.1). In particular, the WRSS obtained using convoluted yPPf“ models was always
lower than the one obtained using the standard versions. However, the magnitude
of the relative WRSS difference depended on the yPPf function; it was relatively
small with the power model (1% + 6% on average), but significantly greater with

Hill and exponential (up to 21% and 25%, respectively). Since convoluted models
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better described PPf data than standard models, the optimal model selection for

each radioligand is presented using only the former.

2.2.2 Selection of the optimal plasma parent fraction model
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Figure 2.2: Optimal plasma parent fraction modeling in [*!CINOP-1A,
[*1C]MePPEP, and ['!C](R)-rolipram positron emission tomography (PET)
data. (A) Shows an example of the optimal plasma parent fraction (yPPf) model
in three representative subjects belonging to the three analyzed PET datasets; blue
open circles, green triangles, and red squares indicate [\ CINOP-1A, ['!CIMePPEP,
and ['! C](R)-rolipram metabolite data, respectively. (B-D) show the weighted resid-
ual time-activity course (PPf data - yPPf model prediction) for the same representa-
tive subjects (with the same order of datasets). Dashed lines indicated the —1/ + 1
confidence region as well as the zero line.
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2.2 Results

For all radioligands, Hill convoluted was the optimal model (Table 2.1).

For [''CJNOP-1A, the Hill model had the lowest mean WRSS (1.00E — 04 +
9.81E-05), the lowest CVs for all parameters (excluding ¢;), and the most random
residuals (0.48 of zero-line crossing) among the three models (Table 2.1). In
terms of outliers, parameter identification failed for only one subject. The good
performances of the Hill model for ['!C]NOP-1A were visually corroborated by
the good fit of the model to the PPf data (Figure 2.2A). The weighted residual
time course was consistent with the assumption made for the error variance law
(Figure 2.2B).

For [!!C]MePPEP, Hill convoluted had the lowest WRSS (1.77E—-05+1.27E—05),
the lowest parameter CVs (t, excluded) and random residuals (0.61 of zero-line
crossing; Table 2.1). Notably, the exponential model did not achieve reliable pa-
rameter estimates in 15% of subjects. Visually, the Hill model well fitted the
measured data (Figure 2.2A), and the weighted residuals (Figure 2.2C) were ran-
dom, with zero mean and variance equal to one (in agreement with the assumption

made for the variance error law).

When applied to the ['!C](R)-rolipram dataset, the yPPf models were simpli-
fied with PPf, constrained to 1. In fact, [“C](R)-rolipram was obtained in high
radiochemical purity (99.9% + 0.2%) and impurities were thus negligible. The
exponential model showed the lowest WRSS (3.29E — 06 + 5.48E — 06), but a sub-
stantial percentage of subjects (22%) had non-reliable parameter estimates (Table
2.1). In terms of parameter CV, both Hill and exponential models had similar
precisions (ranging from 8% to 22% for Hill and from 5% to 26% for the expo-
nential model), while the power model showed higher variability. Randomness
of the residuals was comparable between the three models. However, Hill model
did not yield any outliers, making it the preferred method to fit ['! C](R)-rolipram
data. Figures 2.2A and 2.2D, show an example of a Hill model description of

[''C](R)-rolipram PPf and the weighted residual time course.

2.2.3 Impact on tissue kinetic quantification

The estimates of the macroparameters were comparable with the ones reported
in the literature [61] [62] [63] [69] ([!!CINOP-1A: V; = 8.90 + 1.53mL/cm?®, BPp =
2.69 +0.94mL/cm®, BPyp = 0.49 + 0.23; ['!C]MePPEP: V; = 15.26 + 6.97mL/cm?®,
BPp = 14.50 + 6.99mL/cm?®, BPyp = 24.86 + 11.07; ['!C](R)-rolipram: V; = 0.59 +
0.12mL/cm®, BPp = 0.30 + 0.08mL/cm®, BPyp = 1.02 + 0.23).
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Among the three radioligands considered, ['!CINOP-1A (Figure 2.3A) showed
the greatest differences of the micro-parameters k3 and k; (MRD = 18% + 12% and
18% + 14% respectively) obtained with the two input functions, yet the differences
on the V; estimates were limited (MRD = 2% + 2%). Correlation coefficient on V
was R? = 0.98+0.04, range [0.86; 1]. Both measures of the binding potential, BPp
and BPyp, exhibited a greater difference (MRD = 8% + 7% and MRD = 10% + 8%
respectively) and a lower correlation (R*> = 0.88 + 0.12 and R?> = 0.90 + 0.12
respectively) than V7. Interestingly, ks and k, estimates were highly correlated
(on average R? = 0.98 + 0.03 and R? = 0.97 + 0.07 respectively) but they showed
a different range of correlation values (k3: [0.90; 1], ky: [0.69; 1]).

As regard [''C]MePPEP (Figure 2.3B), negligible differences in both macro- and

micro-parameter estimates (on average MRD < 3% and R? > 0.99) were observed.

Also [“C](R)—rolipram (Figure 2.3C) presented negligible differences on the macro-
parameters (MRD = 1% + 1% and R?> = 0.99 + 0.02 for V;, MRD = 3% + 2% and
R®> = 0.98 + 0.06 for BPp, MRD = 5% + 2% and R*> = 0.97 = 0.11 for BPyp).
Nevertheless, there was an important impact on the modeling of the PPf on the
micro-parameters on 4 subjects out of 24. In particular, ks and k; showed the
highest MRD and the smallest correlation (MRD up to 46% and R? down to 0.70
for k).

A) ['"CINOP-1A B) [''C]MePPEP C) [''C)(R)-rolipram
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Figure 2.3: Distributions of mean relative differences (MRDs) for micro- and
macroparameters estimated with yC, and yC;. Figure shows the boxplots
of the MRDs between K, k,, k3, ky and V;,BPp,BPyp estimated using the input
function corrected with the standard plasma parent fraction (yPPf) model and the
input function corrected with the convoluted yPPf¢ model. The MRD was calculated
between all the regions for each subject. A, B, and C show the results for [\ CINOP-
1A, ['1C]MePPEP, and ['!C](R)-rolipram, respectively.
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2.3 Discussion

This work sought to improve the accuracy of the estimation of the input func-
tion through a better modeling of the plasma parent fraction for the radiometabo-
lite correction. The aim was reached by introducing a modification of the existing
yPPf models, which improved the description of the PPf measures by taking into
account the duration of the radioligand injection. Three different radioligands
with different blood kinetics and with a rich sample size were used to validate our

modeling approach.

In this chapter, the standard yPPf models available in the literature were used
to obtain a better description of the PPf measured data by incorporating the
duration of radioligand injection into their mathematical formula (thereby creat-
ing convoluted models). These convoluted models always performed better than
standard models without increasing their complexity in terms of the number of
parameters to be estimated. In particular, the convoluted versions of both the
Hill and exponential models improved the PPf measure description up to 21%
and 25% in terms of mean WRSS. All radioligands were injected over the course

of 1 minute. It is expected that the longer the injection time, the higher the impact.

The Hill convoluted model was selected as the optimal model for the three
datasets in this study (['!CIJNOP-1A, [''C]MePPEP, and [!!C](R)-rolipram). This
model provided accurate and precise parameter estimates, and was flexible enough
to describe the final plateau in all the analyzed PPf data. As the present study
confirmed, the Hill function works well across different radioligands. However, it
may not be suitable for some radioligands that display very particular shapes of
the input function. For instance, the plasma parent concentration of ['!C|DASB
[13] actually increases over time, most likely because of an initial trapping of the

parent in the lungs; this would not be amenable to modeling with Hill function.

In terms of impact on tissue estimates, the convoluted yPPf¢ models showed
negligible influence on the macroparameter Vr and varying impact on BPp,BPyp,
and the microparameters, which can be more sensitive to the shape of the input
function (e.g., 18% of MRD of k3 and k; in ['!C]NOP-1A). However, it must be
taken into account that the true input function is not known but, as assumed
in other previous works [14] [70], a better description of the PPf should lead to
a more correct quantification of the tissue parameters. No clear relationship was
found between total plasma or PPf kinetics and the impact of modeling on the final
tissue estimates. Among the three datasets, [!C]MePPEP had the fastest kinetics,
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while ['!C](R)-rolipram showed the slowest ones. Nevertheless, [''CINOP-1A had
the highest sensitivity to yPPf and modeling. No relationship was found between

the MRD of the tissue estimates and the estimates themselves either.

This work used an unusually rich dataset acquired at the Molecular Imaging
Branch, National Institute of Mental Health, USA. The high number of HPLC
measurements (almost one per blood sample) provided optimal conditions for
selecting the best yPPf models and allowed us to avoid the use of complex mod-
eling approaches, particularly nonlinear mixed effects ones [70]. This data-rich
environment was exploited not only to derive the optimal model for describing
radiometabolite time course, but also to define a consistent and theoretically jus-
tifiable error model for the definition of wPPf modeling weights. The error law
used here accounted for the fact that the PPf is the ratio of two measurements
obtained from HPLC, and both of them are affected by a measurement error.
These two independent errors contribute to the final PPf error according to the
principle of propagation of uncertainty (see Appendix C.1). This error model was
validated a posteriori by analyzing the weighted residual randomness, its mean
value (expected to be zero), and variance (expected to be 1). Other error laws
(for instance, based on the unitary variance of the weighted residuals) failed to
satisfy the hypothesis (data not shown). Notably, the residual polarization was
checked using the zero-line crossing values while normality was tested using the
Anderson-Darling test. We tested three other error laws: the first assumed the
variance of the error to be constant among the PPf data, the second assumed
it proportional to the PPf data, and the third was the Poisson error law. The
weighted residual analysis showed that all of them overestimated the variance of

the first samples and underestimated the variance of the lasts.

2.4 Conclusion

Including the injection duration in the yPPf model description allows convo-
luted models to better describe the data compared with standard models. For
the radioligands studied, the Hill convoluted model provided better fits and more
precise parameter estimates than exponential fitting and power models. The final
kinetic results were influenced by how the input function was generated, although
the magnitude of this effect depended on the radioligand and on the parameters

considered.
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Physiological Model For The Input Func-

tion

After correcting for radiometabolites, the resulting input function consists of
noisy and discrete samples. Consequently, a model-based description of
the arterial samples is preferred. The most common models proposed in litera-
ture are the Feng’s model (Equation 1.12) [60] and the standard tri-exponential
model (Equation 1.13) [71], but they both present some limitations: Feng’s model
was developed for instantaneous bolus injection while in practice the injection
lasts from some tens of seconds to few minutes; tri-exponential model employs a
straight line from the starting time to the peak followed by a tri-exponential decay

but it provides a poor description of the initial part of the curve [72].

In the previous chapter a method which included the information of the tracer
injection length in the modeling of the radiometabolite fraction was proposed and
validated. The injection of tracer was modeled as a boxcar function and applied
as an input of an empirical dynamic system through the convolution operator.
Here, this approach is extended also to the input function modeling. However,
differently from the yPPf model, the form of the dynamic system is derived from
the theory of tracer-tracee, resulting in a more physiological model. Two novel yC,
models (named “convoluted models”), based on two different dynamic systems, are
hence proposed in order to ameliorate those currently used in literature (“standard
models”) and to derive a physiological description of the C, to be used in the
subsequent PET quantification step. Eight different PET datasets, acquired multi-

center, are considered for the yC, model evaluation, for a total of 201 PET exams.
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3.1 Materials and methods

3.1.1 Tracer-tracee theory and the input function model

The tracer-tracee theory for biological systems states that the tracer kinetics
can be described with a linear and time-invariant (LTI) model independently from
the fact that the tracee system is linear or not [3]. The general solution of a LTI
system is a sum of exponential functions, with the exponents (a;) being the system

eigenvalues and A; their coefficients:

N
hy(t) = Z Aje (3.1)
i=1

Equation 3.1 represents the impulse response function (IRF), that is the output
of a system following an impulse input. The same theory can be applied to a
PET experiment to describe the tracer kinetics in blood, with the output being
the plasma tracer concentration, and the input corresponding to the injection of
the tracer. In research PET setting, bolus injection is common practice, but the
tracer administration is not instantaneous and may last from 20-30 seconds up
to 1-2 minutes. This was modeled with the same boxcar function u(t) defined by
equation 2.1 for radiometabolites. The final model for the parent plasma activity
is therefore given by the convolution between the tracer injection u(t) and the

system impulse response function h,(t):

0 t<t
ycp(t) = (3.2)

hy(t —to) *u(t) t>t

where t; models the tracer arrival time from the injection at measurement site.
To note that the delay term is included in the IRF and not in u(t) as it depends on

the underlying system and it is independent from the input [60].

In [60] it was suggested that the tracer behavior in the circulatory system may
have a pair of repeated eigenvalues, i.e. the solutions to the characteristic equa-
tion associated with the LTI system contain a double root. In this case, the system

impulse response would have the following form:

N
hy(1) = Agte™ ™" + Z Aot (3.3)

i=1
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where —a, is the repeated eigenvalue. To note, assuming an impulse as input,

this would result in the Feng’s model of equation 1.12

In total two new convoluted models were introduced: the tri-exponential convo-
luted model, which used equation 3.1 with N = 3 as system impulse response, and
the Feng convoluted model, which instead used equation 3.2 as system impulse
response, again with N = 3. These two models were compared versus the stan-
dard models, i.e. Feng’s model (equation 1.12) and the tri-exponential standard

model (equation 1.13).

3.1.2 Dataset

Eight datasets acquired in four different PET centers were used to compare

convoluted versus standard models:

e ['!CIMePPEP, an inverse agonist for cannabinoid receptor type 1 receptors
(N = 20, 657 = 76 MBq, scan duration = 90 minutes) acquired at the Molec-
ular Imaging Branch (MIB) of the National Institute of mental Health (NIH)
(USA) [62];

e [''CINOP-1A, a nociceptin/orphanin FQ peptide receptor ligand (N = 22;
716 = 83 MBq, scan duration = 120 minutes) acquired at the NIH-MIB [61];

° [“C](R)—rolipram, a ligand for phosphodiesterase 4 (an enzyme that metab-
olizes cyclic adenosine monophosphatase) in the brain (N = 24, 420 + 144
MBq, scan duration = 90 minutes) acquired at the NIH-MIB [63];

¢ [!!C]PBR28 binds to the translocator protein, a marker of brain immune
activation (N = 23, 680 + 14 MBq, scan duration = 90 minutes) acquired at
the NIH-MIB [73]

e L-[1-''C]leucine is one of the 20 standard amino acids and it has a relevant
role in the constitution and maintenance of the muscular tissue (N = 49,
925 + 187 MBq, scan duration = 90 minutes) acquired at the Section on
Neuroadaptation and Protein Metabolism (SNPM) of NIH [74]

¢ ['®FJFDG, a glucose analog widely employed for studying tissue metabolism
(N = 15, 180 + 12 MBq, scan duration = 90 minutes) acquired at the PET
Research Center, University of Pittsburgh [75]

e [''C]PiB stands for Pittsburgh Compound-B, an analog of thioflavin T, radio-

tracer used in PET scans to image beta-amyloid plaques in neuronal tissue
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(N = 18, 560 + 160 MBq, scan duration = 90 minutes) acquired at the PET
Research Center, University of Pittsburgh [75]

e ['!CIDASB is a compound that binds with high affinity and selectivity to the
serotonin (5-hydroxytryptamine, or 5-HT) transporter (N = 30, 570 + 104
MBq, scan duration = 90 minutes) acquired at the Department of Radiology,

Columbia University [13].

Table 3.1: Dataset

Number of Number of Injection

Tracer subjects samples time (s) PET Center
['!C]MePPEP 20 19 60 NIH-MIB
['!C]NOP-1A 22 24 60 NIH-MIB
[''C](R)-rolipram 24 23 60 NIH-MIB
['!C]PBR28 23 24 60 NIH-MIB
L-[1-!!C]leucine 49 41 120 NIH-SNPM
['|FIFDG 15 38 20 Univ. of Pittsburgh
[''CIpiB 18 30 20 Univ. of Pittsburgh
['!C]DASB 30 31 30 Columbia Univ.

3.1.3 Parameter estimation and statistical analysis

The model for the measured input function C, is assumed as:
Cp = pr(a, tl) + e(ti) (34)

where t; is the time of the i-th measurement, yC,(9, t;) is one of the tested input
function model with parameter vector 8, and e(t;) is additive Gaussian noise with

zero mean and variance equal to yB:

e ~ N(0, yB) (3.5)

In this formulation y is an unknown constant and B is a diagonal matrix (noise
is assumed independent) whose elements are calculated as 1/z as commonly done
with radiation measurements [76]. The parameters were hence estimated using a
maximum-likelihood non-linear estimator with weights chosen as the inverse of
the sample error variance. The unknown constant y was estimated a posteriori as
in [64].
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Model performances were compared using:

e Akaike Information Criterion (AIC) [65]: a paired t-test on the AIC indices
(Bonferroni corrected for multiple comparison) was performed for each cou-

ple of models assessed;
e precision of the parameter estimates in terms of Coefficient of Variation (CV);

¢ visual inspection of the model fits and weighted residuals to check whether
the models properly describe the data and the assumptions on the measure-

ment error are met.

3.2 Results

Convoluted models (either Feng’s or tri-exponential) consistently reached the
lowest AIC index for all the datasets considered compared to their standard ver-
sion (Figure 3.1). These differences were statistically significant according to the
paired t-test on the AIC indices (Bonferroni corrected for multiple comparison) for
all datasets but ['®F]FDG (Table 3.2).

When compared Feng convoluted against the tri-exponential convoluted model,
the first reached significantly lower AIC for [!CI]NOP-1A, [''C](R)-rolipram and
[''C]PBR28. For the remaining datasets, differences were not statistically signifi-

cant.

Table 3.2: p-value from paired t-test on AIC indices. The symbol * indicates that
the difference in the AIC values were significant, i.e. p-value < 0.0083 (Bonferroni
threshold).

. . Feng
Feng Feng Feng Tri-exp Tri-exp cony
Tracer VS VS VS VS VS VS
. Feng Tri-exp Feng Tri-exp Tri-exp
Tri-exp
conv conv conv conv conv
['!C]MePPEP * * * * * 0.22
['!CINOP-1A 0.06 * * * * *
[''C](R)-rolipram * * * * * *
['!C]PBR28 0.50 * * * * *
L-[1-!!C]leucine 0.03 * * * * 0.08
['®FIFDG 0.33 0.04 0.34 0.02 0.83 0.02
[''C]PiB * * * * * 0.30
['!CIDASB 0.04 * * * 0.01 0.35
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Figure 3.1: Mean and standard deviation of the Akaike Information Criterion for
each model and each dataset (the lower, the better)

In terms of visual inspection of model fits, both convoluted models provided
comparable good description of the C, measurements (Figure 3.2). No significant
differences between the models in terms of weighted residuals were found. As
regard the performance of the standard models, Feng’s model often underesti-
mated the peak of the radiotracer concentration while the tri-exponential model
provided a very poor description of the rising phase of the C,, in particular when

the injection time was longer than 60 seconds (e.g. L-[1-''C]leucine, Figure 3.2).

When considering ['®F]FDG, all models performed similarly, as already con-

firmed by the AIC analysis.

As regard the precision of the parameter estimates, all models had reliable
parameter CVs (< 100%) except for the slowest exponent in Feng’s model (both
As and az of Equation 1.12) which was often poorly estimated. A limited number
of subjects across the datasets was excluded from the comparison due to the

non-convergence of the estimator (maximum 7% in ['8F]FDG dataset).

3.3 Discussion

Taking into account the experimental protocol (i.e. the length of radiotracer

injection) always improved the AIF description. This effect was particularly evident
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with longer injection times (T > 60s), which is common practice in the majority
of PET studies, but it was still present even for shorter protocols (T = 20s and
T = 30s, as in [''C]PiB] and ['' CIDASB).

As regard the model selection, Feng convoluted model better performed com-
pared to the tri-exponential convoluted model in terms of parsimony criterion,
even though this difference was significant only in 3 datasets out of 8 (for ['!CINOP-
1A, [''Cl(R)-rolipram, and [''C]PBR28). Moreover, when we considered the yC,
model description, weighted residuals and precision estimates, no clear differ-

ences could be detected, as both models behaved similarly.

In conclusion, including the injection duration in the yC, model description al-
lows convoluted models to better describe the data compared to standard models.
This approach has general applicability to all dynamic PET studies as it is not re-
lated to the particular tracer metabolism or the system physiology but it depends
only on the experimental protocol of the exam. Notably these approaches do not

increase model complexity, since the duration of the injection is a priori known.
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Chapter ﬂ

A Unified Framework For The Automatic

Input Function Estimation

The aim of this chapter is to develop and validate a unified framework for
the plasma data modeling, which is both biologically and experimentally
informed. The approach used in the previous chapter for the modeling of the
arterial input function is extended also for the radiometabolites without focusing
on any tracer in particular. Given the different arterial sampling procedures
employed worldwide, an estimation algorithm is also developed which is able to
adapt the complexity of the model to the data available (manual versus automatic
samples) by borrowing ideas from the spectral analysis [36] and basis pursuit
techniques [77] already applied in PET. Furthermore, the algorithm is designed in
order to require minimal interaction from the user as most of initial parameters
are derived from the data itself. This approach is tested on four different tracers
([''CIPBR28, [''C]MePPEP, [''CIWAY-100635 and [''C]|PiB) with automatic and

manual blood sampling.

4.1 Materials and methods

4.1.1 Models of plasma input and radiometabolite data

In this section the important equations of the input function model presented
in the previous chapter are reported. The same approach is then applied to the
model of the radiometabolites. Moreover, it is shown how to estimates both models

using basis pursuit methods.
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Plasma input function model: theory

The theory behind the model of the input function was presented in section

3.1.1. Here we report the important equations. The model of the input function

is given by:
0 t<t
ycp(t) = (4.1)
hy(t—t) *u(t) t>t
where
N
mm:}}mﬂt 4.2)
i=1
and

O t<OVit>T
u(t) = (4.3)
T 0<t<T

Plasma input function model: estimation

In Equation 4.1 and 4.2 , the unknown variables to be estimated are the
number of exponential functions N, their coefficients A;, their exponents a;, the

tracer injection duration T if unknown and the delay .

This problem shares some similarities with the dynamic PET quantification
problem solved by spectral analysis technique [36]: instead of fitting the nonlinear
model for increasing values of N, one can generate a grid of many (N > 100)
possible values for a;, calculate the convolution e %{~© x y(t) for all the pre-
selected components, and then use a constrained linear optimization algorithm

to estimate the coeflicients A;.

In standard spectral analysis the identification of a unique solution is obtained
by constraining the A; coefficients to be non-negative. This approach guaran-
tees the identification of a sparse solution (where most of the N values of A; are
returned as zero) but at the same time limits the method applicability to those
systems without cycling connections [78]. Unfortunately this is not the case for
the blood circularity system [60]. Nevertheless some assumptions can be taken
to solve Equation 4.1: from both theoretical [60] and empirical evidence [79], it is
known that the sum of all the A; coefficients of the IRF equals zero, with A; > O

for each coeflicient except the one associated with the highest exponent (hereby
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called ap). The existence of a negative coefficient would prevent the use of a non-
negative least square (NNLS) estimator. However, we can re-write the impulse

response function with all positive coefficients as follows:
N
hy(t) = Z Ajet — Age! 4.4)
i=1

where Ay is the module of the negative coefficient associated to ag, A; > 0, ay > a;.

Since we imposed that the sum of all coefficients equals zero, it follows that

Ao = YN A;. Thus, we can write:

N
hy(t) = ZAi (et — g%t (4.5)
i=1
and the model for the input function yC, of Equation 4.1 becomes:

0 t<t
yCy(t) = (4.6)
Zﬁ\i LA (e—ai(t—tw _ e—ao(t—to)) su(t) t>to

with A; > 0 and ay > a;.

Given t,, T and ag, one can generate a grid of N values of a; from O to ay < agp,
compute the terms (e‘“f(t‘t") - e‘“O(t‘tO)) * u(t) and use a weighted non-negative
optimization algorithm to estimate a sparse solution for A; (the convolution can

be solved analytically, see Appendix A.1).

In this way we solved the issue of estimating the number of exponential func-
tions to be used, the values of their coeflicients and their exponents, as they are

automatically inferred from the data by the NNLS estimator.

In some cases, the NNLS algorithm can select two adjacent bases. These are
known as double lines and are due to the discrete nature of the g; grid: the “real” a;
is not present in the grid, thus the NNLS splits the element in two adjacent parts.
Under the assumption that consecutive elements result from this phenomenon,
we replaced them with a single element whose coefficient was calculated as the
sum of the two adjacent coefficients and the exponent was calculated as the aver-

age between the two adjacent exponents weighted for their respective coefficient,
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as done in [68]:

Anew = Ai + A 4.7)
Gy = aiA; + a1 A 4.8)
A+ A

In practice ty, T and q, are unknown and must be estimated before the NNLS

estimator could be applied.

As regard the delay term t,, we relied on the method presented in [80] by Muggeo
to find break-points when fitting piecewise terms in regression models. Briefly,
the rising part of the input function was modeled with a flat (zero) line from from
t =0to t = tp and a straight line from zero at t = &, to Cy(tpear) at t = tyeqr, Where
tpear is the time of the input function peak. The method of Muggeo consists in an
iterative algorithm to estimate the breakpoint ¢, of piecewise linear models and,
under the assumption that such breakpoint exists, it is guaranteed to converge

to the optimal solution in a finite number of steps (see appendix B.1).

As regard the injection duration T, this is usually known from the experimental
protocol. However, in case of manual injections, the duration is susceptible to
intra- and inter-operator variability and T has to be estimated. It can be shown
that under the assumption that ay is large, the injection time can be approximated

as T = tpear — o (s€e appendix B.2 for the mathematical derivation).

For the last parameter a,, we propose the use of a grid search over a range of
possible values. For each candidate value, C, is fitted with the model in Equation
4.6 using a weighted NNLS algorithm as yC, = NLLS(C,, t,. T, ap), where t, and
T are estimated as above. The value for q, is selected as the one returning the

minimum Weighted Residual Sum of Squares (WRSS).

Finally, the three parameters (ty,T,q,) can be further refined using a gradient

descent algorithm, as for example the Levenberg-Marquardt.

Radiometabolite model: theory

In [33] it was proposed to model the appearance of radiometabolites with a
compartmental model whose input is the concentration of the parent, i.e. the
unchanged tracer, and the outputs are the concentrations of the various ra-

diometabolites produced.
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The major drawbacks of this model is that one needs to know both the com-
partmental structure, which is tracer specific, and the concentration of each ra-
diometabolite in plasma. In general, HPLC analyses are optimized to separate
the parent from the radiometabolites and not to isolate multiple different ra-
diometabolites. This last issue can be solved by lumping all the radiometabolites

compartments in a single one, as done in [34].

As regard the model structure instead, since a compartmental model is a special
case of a LTI system, it is always possible to write its system impulse response as

a sum of exponential functions:
M
Pred(t) = ) e (4.9
j=1

Thus the concentration of all the radiometabolites lumped together (C,,) can

be modeled as:

0 t<typ+t
YCret = (4.10)
hmet(t - tl) * ycp(t) t> tO + tl

where t; is an optional parameter which represents the delay with which the

radiometabolites appear in plasma.

This system describes the metabolism of the parent concentration in plasma
and it is independent from the compartmental structure (and thus from the

tracer).

Radiometabolite model: estimation

As for the plasma input model, the model solution requires to estimate the
number of exponential functions M, their coefficients B; and their exponents j;
(Equation 4.9 and 4.10).Opposite to the input function model case, there is no
a priori knowledge on the positivity of the coefficients B;. However, we can still
generate a grid of possible exponents f;, calculate the basis e Bt yCp(t) for
each of them and then employ a sparse algorithm to obtain an estimation of
how many basis are necessary, along with their exponent values and coefficients

(positive or negative).

The estimator chosen for this study was the Sparse Bayesian Learner (SBL)

[81], already used in PET kinetic analysis [77]. Very briefly, the method imposes
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a Gaussian prior with zero mean for all the coefficients B;. The variance of each
prior is estimated from the data and, if a base is not necessary, this becomes very
small, shrinking the estimate of the associated B; towards zero. The method is
fully automated and it does not require to set parameters controlling the amount
of sparsity in the solution (as opposed to other sparsity estimator, as for example
LASSO [82]).

The additional model parameter t;, controlling the delay of radiometabolites
arrival respect to the input function, can be estimated using gradient descend

algorithm at the top of the SBL algorithm, as for the input function model.

4.1.2 Complete pipeline for plasma data modeling

The models presented above describe the time-course of C, and C,,;. However,
the data available from a PET experiment are usually C,,; and PPf. The relation

between them is:

Ctot(t) = Cp(t) + Cmet(t) (4.11)

PPf(t) = (V) (4.12)
Cp(t) + Cmet(t) .

In this section we will present the complete pipeline, that starting from the raw
data of C;; and PPf returns the model of the input function yC, to be used for

PET tissue quantification.

For the sake of clarity, the dependence from time was dropped in this para-
graph. The steps involved to estimate the input function yC, from C,,; and PPf

measurements are represented in Figure 4.1.

i An initial approximation of the input function is calculated as:
Co" = Cyt - lin(PPf) (4.13)
where the operator lin(-) is the linear interpolation.

ii C"is fitted with the input function model described in Equation 4.6, obtaining
yCy'*. The weights wC," are derived from the law of uncertainty propagation

assuming lin(PPf) error-free (see Appendix C.3):

et — WCot

P lin(PPf)2 14
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iii An approximation of the radiometabolite concentration is derived as (from
Equations 4.11 and 4.12):

Cnet = yCMit . ———~L (4.15)

iv Cpe is fitted with the yCpee model of Equation 4.10, using yCy* derived from
step (ii). The weights wC,,.; are derived from the law of uncertainty propaga-

tion, assuming yC;™ error free (see Appendix C.4):

wPPf (4.16)

v The model for the plasma parent fraction is calculated from yC;* and yCpe

(from step ii and iv) by:

init

yC,

A 4.17)
ycllom + yCmet

yPPf =

vi The discrete input function is generated from the raw C,,; data and the esti-
mated yPPf as:

Cp = Ctot . yPPf (4 18)

vii As last step, C, is fitted with the input function model of Equation 4.6, ob-
taining the definitive input function yC,. The weights are calculated assuming

yPPf to be error-free (see Appendix C.3):

wCio;
wC, =
yPEf?

(4.19)

In this last step the nonlinear parameters ty, T and ay can be set to the values

found at the first step or refined again.
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ii) CiMt is fitted with the input function model using
a NNLS estimator:
yCIit = NNLS(CM, ¢, T, ag)
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concentration is obtained as:
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iv) Cinee is fitted with the radiometabolite model,
using yCIM* as input and a SBL estimator:

yCmet = SBL(Cmet' YCLmt: tl)

\ 4

v) Model for PPf is calculated as:
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yCp

yc;)mt + ¥Ciet

vi) Final estimation of the input function
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vii) C, is fitted with the input function model using

a NNLS estimator:
yCp = NNLS(Cp, to, T, @)

L

N\

J

* Cinet
- ycmet

- yPPf

Fraction

Figure 4.1: Flowchart representing the complete pipeline for plasma data model-
ing. The pipeline takes as input the raw Cy,; and PPf and returns a modeled yC,
ready to be used for the tissue quantification and it is_fully automated. A complete
explanation of each step is detailed in the main text.
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4.1.3 Dataset

The automatic pipeline was tested on four different datasets, two with manual
("' CIWAY-100635 and ['!C]PiB) and two with automatic blood samples (['!C](R)-
rolipram and [''C]MePPEP).

e The [''C]WAY-100635 dataset was composed by dynamic brain PET images
and blood samples of 16 healthy subjects. Details of the acquisition were
described in [14]. Briefly, C,,; was measured on 35 samples per subject col-
lected every 5 seconds with a fraction collector system for the first 2 minutes,
and manually thereafter at longer intervals. PPf was instead measured on
7 samples at times 1, 2, 5, 10, 30, 60 and 90 min after the tracer injection.

Brain images were segmented in 16 different regions of interest (ROIs).

e The ['!'C]PiB dataset was composed by 20 healthy subjects from a previous
study [75]. For each subject, Cy, was measured on 29 arterial samples
extracted by pump every 10 sec for 2 min and then every 20 sec for 2 min,
followed by manual draws at 6, 12, 20, 30, 40, 50, 60, 80 and 90 min after
injection. PPf was measured on the 7 samples taken at times 2, 6, 12, 20,

40, 60 and 90 min. Brain images were segmented in 22 different ROIs.

e The [''C|PBR28 dataset was composed by 19 healthy subjects from a pre-
vious study [83]. Whole blood concentration, C,, was measured with an
automated blood sampling system equipped with an online detector at a
rate of 1 sample per second for the first 15 min. Manual samples were
drawn at times 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 and 90 min from
which C;,; was measured. The POB, as ratio between C,,; and C, in these 12
samples, was fitted using an extended Hill model (Equation 1.7) and used to
correct the automatic Cb measurements for the non-plasmatic contribute,
thus estimating C,, for all samples. PPf was measured on the 8 manual
samples taken at times 5, 10, 15, 20, 30, 50, 70 and 90 min. Brain images

were segmented in 215 different ROIs.

e The [''C|MePPEP was composed by 6 healthy subjects who were part of
an ongoing study aiming to investigate the role of cannabinoid receptors
in schizophrenia. Whole blood concentration, C,, was measured as for
[''C]PBR28 with an automated blood sampling system equipped with an
online detector at a rate of 1 sample per second for the first 15 min. Manual
samples were drawn at times 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 and
90 min from which C,,; was measured. POB correction was performed using

an extended Hill model as before while PPf was measured on the 8 manual



Chapter 4. A Unified Framework For The Automatic Input Function Estimation

samples taken at times 2, 5, 10, 20, 30, 50, 70 and 90 min. Brain images

were segmented in 215 different ROIs.

4.1.4 Pipeline implementation settings

The 4 datasets were all analyzed using the same settings for the automatic
pipeline: as regard the input function model, &, T and a, were initialized as
described above. The grid search for the initial value of a, was composed of 20
values log-spaced from 1 min ! to 50 min (note that this grid is used only to
find the initial value of a, that will be further refined by the gradient descent
algorithm). The a; grid was composed by 500 elements log-spaced from 0 min™ to
0.99-ao min''. The B; grid was instead composed by 100 elements log-spaced from
0 min! to 0.5 min*. The NNLS estimator used was part of the standard linear
algebra function implemented in MATLAB® (www.mathworks.com). The SBL estimator

is freely available at http://www.miketipping.com/downloads.htm.

Both C,,; and PPf were assumed to be corrupted by additive independent Gaus-
sian noise with zero mean and variance known up to a proportionally constant. As
regard PPf, the variance of the noise was assumed uniform for all measurements
(data of the radiochromatogram were not available), while for C,,; we assumed
the variance proportional to its value (see Appendix C.2). Weights were then cho-
sen as the inverse of the variance, i.e. wPPf(t) = 1 and wC(t) = Cii(t)™!. For
[''C]PBR28 and ['!C]MePPEP, to avoid overfitting of the initial part of the curve
due to the much higher number of automatic samples in the first 15 minutes,
the weights of the automatic samples were normalized such that their sum was
equal to the sum of the weights of the manual samples. In this way, automatic

and manual samples gave the same contribute to the data fit.

4.1.5 Method evaluation

Our automatic algorithm was tested against the standard pipeline, consist-
ing into fitting a tracer-dependent mathematical model for PPf and the standard
model for C,, i.e. a straight line from ¢, to the peak followed by a tri-exponential

decay (Equation 1.13). The weights were defined as for the automatic method.

For the standard method, PPf data of [!!C]PiB, [!!C|PBR28 and ['!C]MePPEP
were fitted with an extended Hill model (Equation 1.7), while for ['!C]WAY-100635
we used the standard Hill model (Equation 1.6) as suggested in [14]. The input
function data were derived by multiplying C,,; data with the estimated yPPf, and


www.mathworks.com
http://www.miketipping.com/downloads.htm

4.2 Results

fitted with the standard model (Equation 1.13). The value of ¢, was estimated with

the Muggeo technique as in the automatic method.

We compared the automatic pipeline vs. the standard method on two different
levels of analysis. First, the model descriptions of the plasma data obtained with
the two methods were analyzed in terms of weighted residuals, that had to be
uncorrelated with zero mean, following the assumptions on the model error. We
applied the Wald-Wolfowitz runs test for the randomness of the residuals and the

one sample t-test for the value of the mean that has to be equal to zero.

Then, we evaluated the impact of the input function derived by automatic and
standard method on the tissue quantification estimates. We fitted a two tissue
compartmental model with both input functions to all the ROIs for [!C]WAY-
100635, [''C]PiB and ['!C]MePPEP, and a two tissue compartmental model with
vascular trapping [84] for ['!C]PBR28. For each ROI, we compared the WRSS ob-
tained with both input functions by calculating the percentage relative difference

(RD) respect to the arithmetic mean, that is:

WRSSaut - W IaSSstan
RD = 200 - (4.20)
WRSS .t + WRSSstan

where WRSS,,; and WRSSq;,, are the WRSS obtained with the automatic and
standard input function respectively. The percentage relative difference respect
to the arithmetic mean was also calculated for the volume of distribution Vi,
and the binding potential BPyp, defined from the model micro-parameters as in
[66]. Relative differences on model micro-parameters were also included in the
comparison. Sign test was used to detect if these were significantly different from

Z€Ero.

4.2 Results

4.2.1 Plasma data analysis

The automated pipeline accurately described the plasma data in all the sub-
jects of the four datasets, regardless the presence of manual or automatic samples.
An example of the method performances obtained for each tracer is reported in
Figure 4.2. The peak of C;,; was well described in both its rising and decreasing
phase and the PPf was correctly modeled (zoomed images in all panels). The me-
dian number of exponential function used to fit C, was 5 for [''CIWAY-100635
and [''C]PiB, 6 for [''C]JPBR28 and 4 for ['!C]MePPEP. The median number of
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exponential functions used to fit C,,.; was instead 2 for ['!CJWAY-100635 and 3

for the other tracers.

There were no differences in the PPf description with the automatic pipeline
and the standard method: the PPf weighted residuals were uncorrelated and
consistent with the assumptions on the measurement error in both cases. When
considering the weighted residuals of C,; instead, the automatic pipeline out-
performed the standard method (Table 4.1). For ['!CJWAY-100635 and [''C]PiB
(manual sampling), the weighted residuals were in agreement with the measure-
ment error assumptions for all the subjects when using the automatic pipeline.
On the contrary, 63% and 50% of the subjects showed correlated weighted resid-
uals when using the standard pipeline. The same held for ['!C]PBR28 (automatic
samples): when using the standard method, most of the subjects failed either the
randomness test or the t-test, while for the automatic pipeline only 4 out of 19
subjects had non-random weighted residuals. [''C]MePPEP was the most chal-
lenging dataset: both with the automatic and standard pipeline the majority of
the subjects presented correlated residuals. However, the automatic pipeline still
outperformed the standard method, since for the latter 4 out of 6 subjects failed
the t-test on residuals mean.

Table 4.1: Cy; weighted residuals analysis: table shows the number of subjects
for which the Wald-Wolfowitz runs test (for correlated residuals) and the t-test

(for mean different from zero) found deviations from the error model assumptions.
Results are reported separately for the automatic or standard pipeline

Automatic pipeline Standard pipeline

Correlated Mean Correlated Mean

T
racer residuals #0 residuals #0
['!C]WAY-100635 16 0 0 10 2
[*'C]PiB 20 0 0 10 0
[''C]PBR28 19 4 0 13 12
[''C]MePPEP 6 4 0 5 4

4.2.2 Impact on tissue data quantification

The use of the input function obtained with the automated pipeline signifi-
cantly improved the tissue data description for all the tracers considered except
[!C]PBR28 (Table 4.2). In more details, the WRSS relative difference showed a
median improvement of —4% +21% (p = 0.004) for [''CIWAY-100635; —14%+31%
(p < 0.001) for [''C]PiB and —5% + 12% (p < 0.001) for ['!C]MePPEP. There was
no difference in the WRSS for ['!C]PBR28 (—0.005% + 24%, p = 0.96).
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Figure 4.2: Examples of plasma data fit for a representative subject of each tracer
obtained with the automatic pipeline.
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The impact on the macro-parameter estimates of Vr was significant for all the
tracers but ['!C]PBR28, for which it was —0.016% +6% (p = 0.93). The differences
ranged from —8% + 9% (p < 0.001) for ['!CIWAY-100635 to 5% + 3% (p < 0.001)
for ['!C]MePPEP. As regard the binding potential BPy, estimates were statistically
different only with the automatic sampled datasets: —24% + 13% (p < 0.001) for
[''CIPBR28 and —13% +25% (p < 0.001) for ['!C]MePPEP. Micro-parameters were
also affected by the input function modeling for all the tracers considered (Table
4.2).

Table 4.2: Impact of the plasma data processing pipeline on tissue estimates.
The impact on the tissue quantification is reported as relative differences between
the kinetic parameters obtained using the input function derived with the auto-
matic pipeline and those obtained with the input_function derived with the standard
pipeline. The relative difference on the tissue WRSS is also reported (when negative,
the input function from the automatic pipeline produced a better description of the
tissue data, i.e. lower WRSS). * p < 0.05

Relative difference (median + median absolute deviation)

Tissue
Tracer WRSS K 1 k2 k3 k4 ki Vb VT BP, 'ND
[1'C]WAY- —4+ 1+ 9+ 2+ 3+ -4+ -8+ -2+
100635 21%* 5% 21%* 25% 10%* 17%* 9%* 28%
(I CIPIB 14+ -10+ -8+ -19% -20+ 15+ -2+ -2+
31%* 3%* 3%* 17%* 26%* 22%* 8%* 19%
0+ -3+ —-18+ -32+ -9+ —45+ 36=% 0+ —-24+
11
[CCIPBR28 o100 5% 12%° 19%° 13%° 16%° 12%° 6% 13%
—5+ -1+ —-17+ —-28+ -—13+ 19+ 5+ —13+
11
[FCIMePPEP 1 o0e 90t 24% 22%° 11% 9%* 3% 25%"

4.3 Discussion

In this work, we presented a unified and biologically informed framework for
the plasma data modeling, which is grounded on the tracer-tracee theory. Both
yC, and yC,s models included the duration of the tracer injection in their formu-
lation, thus taking advantage of both physiological and experimental information.
Furthermore, we proposed an algorithm which requires minimal interaction with
the user, making the modeling of data of different tracers acquired with different
sampling modalities more robust and flexible. We tested this automatic pipeline

with four different tracers acquired in two different centers: one employed an
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online detector for the automatic measurement of the blood samples, the other
performed manual sampling. Performance were compared against the standard

modeling approach.

Method implementation

A key aspect in the implementation of the pipeline was the use of a sets of basis
functions for identifying both yC, and yC,,; models. This allows to avoid the direct
estimation of a high number of parameters in a non-linear fashion with all the
related problems, such as the definition of appropriate initial estimates which
may differ from tracer to tracer. The need to set the initial values is replaced by
the simpler setting of just two extreme exponents for the grid of basis and of the

total number of elements.

As regards the q; grid related to yC,, we used 500 elements but obtained similar
results with a number varying from 100 to 1000 elements (data not shown). The
computational cost increased with the number of elements, but from the user
standpoint this increase is negligible (few seconds) even with 1000 grid elements
and the automatic sampled dataset. Nevertheless, 500 elements represent a good
trade-off between estimate precision and algorithm efficiency. The grid range was
simple to set as the first value can be set to O while the largest must be less
than ag: in our implementation we set it at 99% of the value of ay. An important
aspect of this implementation is that it allows to automatically select the number
of exponents needed to describe the data. The median number of elements for
yC, ranged from 4 to 6, which correspond to a much more complex model than
the standard one. Since the standard model has weighted residuals that resulted
correlated for most of subjects, it is probable that this model is too parsimonious

to describe C, data.

Also when considering the radiometabolite model, the number of grid elements
had again no impact. On the contrary, the grid range was more important: the
minimum B; can be safely set to O, while choosing a maximum value too high
(By > 1) resulted in overfitting of the C,,; for a few subjects (Figure 4.3). In this
case, especially at the beginning of the curve, the model highest component fits
also the measurement error and results in spurious large oscillations (zoomed
panel). This is not physiological but it can be easily identified by visual inspection

and corrected by reducing the maximum value of S;.

One additional advantage of this implementation is that one does not have

to select an empirical function to fit the PPf. The model selection for the ra-
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diometabolites is inherently performed by the SBL estimator when it determines
the number of exponential functions to be used. In this case, the median number
of elements selected by the SBL estimator for yC,,.; ranged from 2 to 3, in line with
the standard yPPf models (see Section 1.3). No deviance from the error model as-
sumption were found with either the standard or the automatic pipeline for the
description of PPf. However, due to the low number of samples it is possible that

the tests had not enough statistical power to detect an effect.

5 x x : :

4 ° ]
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=
g «
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Figure 4.3: Example of overfit in a ['! CIMePPEP subject: the yC,,; model in solid
line was obtained using a maximum value of the 3 grid equal to 2min~!. It can be
noted inside the red circle that the solid line tends to pass perfectly through the first
two C,,e¢ samples producing a large non physiological oscillation (overfitting). This
effect can be easily identified and resolved by decreasing the maximum value of
the S grid (0.5min™! for the yC,,; model in dashed line)

Pipeline performance

In PET study the true input function is not known, therefore it was not possible
to determine if this unified modeling approach was more accurate than the stan-
dard approach. However, as an indirect test, we first assessed whether the model
descriptions of the plasma data respected the assumptions on the measurement
error. Then, we fitted the tissue time activity curves using the input functions
derived with both approaches and the one generated with the automatic pipeline
better described the tissue data (statistically lower WRSS). Notably, the impact on

the tissue parameter estimates was in general smaller for V; (in module < 10%)
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and higher on BPyp (in module up to 24%) and micro-parameters (in module up
to 45%). This result was in line with the results obtained in Section 2.2.3 and
other studies [13] [14] where the input function was found to be a major source

of variability in the kinetic analysis of dynamic PET images.

Efficient tissue quantification by exploiting analytical convolution

A further advantage of the proposed input function model is that the same
convolution calculated for the radiometabolite model can be used for tissue quan-
tification, where the tissue model is yCr(t) = hr(t) * yC,(t), where hy(t) is a sum of
decaying exponential functions [35]. Therefore, the solution of the tissue model
can be implemented analytically exactly as for the radiometabolites model (see
Appendix A.2). This results in a huge speedup of the computation: compared
to the numerical convolution with a 1 sec integration step, the analytical form
was 16 times faster. The proposed input function model can therefore reduce the

computational burden of tissue quantification, especially at the voxel level.

4.4 Conclusion

The novel biologically informed plasma and radiometabolite models, in con-
junction with the estimator algorithm here proposed, were able to provide ex-
cellent fits of the plasma data for all the four tracers considered. The method
showed superior fits compared to the standard pipeline, for both manually and
automatically measured blood samples. The method is fast and requires minimal

interaction from the user.
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Conclusion

I n this thesis, a unified framework for the plasma data modeling was derived

from the principles of the tracer-tracee theory and used to describe the con-
centration of the tracer and its radiometabolites in plasma. Moreover, the frame-
work incorporated the information of the tracer injection duration, resulting in
a more realistic description of the tracer kinetic in plasma. Hence, the mod-
els derived were both physiologically and experimentally informed, resulting in a
more accurate description of the plasma data compared to the standard models

currently used in the literature for a wide range of tracers.

The choice of the models for the radiometabolites correction and the input
function was shown to significantly affect the final tissue estimates, suggesting
that the standard models, providing a poorer fit of the plasma data, may introduce

a bias in PET quantification.

In order to promote the use of these models also in clinical practice or in those
PET centers lacking proper modeling skills, an automatic pipeline for the estima-
tion of these models was developed. This automatic pipeline took as input the
raw plasma data and, requiring minimum interaction with the user, returned the
model of the input function ready to be used for PET tissue quantification. More-
over, the automatic pipeline was able to correctly fit the physiological models both

when automatic or manual plasma samples were available.

In conclusion, since the input function is a major source of variability in PET
experiments, the methodological advancements proposed in this thesis are be-
lieved to positively impact the field, promoting a standardization of the plasma

data modeling.
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Appendix

Analytical expression of physiological mod-

els

A.1 Model of the input function yC,

Since the convolution is a linear operation, we can write the yC, model for

t> tp as:
N
yC,y(t) = ZAi (e7=) s u(t, T) — &™) u(t, T)) (A.1)
i=1

Thus, we just need the analytical solution of an expression of the form ®(a, t) =

e =) 5 y(t, T), which is given by:

1—e_a(t_t0)
h<t<T+1
O(a.t) = { o)) (A.2)
——— t2 T+t
The special case of a = O results in:
(t=to)
— L <t<T+1
(0, t) = { ' (A.3)
T t>T+ 1
The final expression for the yC, model is given by:
0 t<t
yGp(t) =1 (A.4)
Zi=1 A (D(a;, t) — DO(ap, b)) t> 1
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A.2 Model of the radiometabolites yC,,.;

Similarly, we can write the model yC,, for t > t, as:

M N
YCna(t) = D By| D A€ x e s u(t, T) = 0 5 e x u(t, T))|  (A5)
j=1 i=1

In this case we need the analytical solution of expressions of the form Y(a, 8, t) =

e =0 g7t 5 u(t, T), which is given by:

ﬁ(l—e'“(‘_‘O))—a(l—e_ﬂ(l_lO))

Lh<t<T+t
_ B(a-B)T
Y(a B. 1) = a(e*ﬁ(t—rofa’l‘)_ae—ﬁ(t—ro))_ﬂ(e—a(t—to—T)_e—a(t—to)) (A.6)
B BT t>T+ 1t
Special cases are:
(t=to)?
— th<t<T+1
¥(0,0,t) =4 27T (A.7)
(ol ~(-t"T 5 4 g
2T =
e~ t=0) 4 g(t—ty)-1
¥(a.0.0) = (t tjazT(t t0-T) p=te Tl (A.8)
e At )_emal"lo~1) 4 qT
ST t>T+ 1t
e B10) 4 B(t—tg)-1
s M e*ﬁ(t*fo)_e*ﬂ(t*TO’T)+j3T t> T .
22T 2T+
1-e~=0) (1+a(t—ty))
h<t<T+1
Yla at)= fa(tfto—To)fli (t=to=T))—e~(0) (1 + a(t—ty)) (4.10)
e al —to—a2T—e a(t—ty tZ T + tO

To note, in case one wants to include also the optional parameter t; in the model
yCret» he must substitute t, with ty + t; in all the above formulas. The final

expression for the yC,. model is given by:

0 t<t
yCy(t) = (A.11)

S B 2 AW B ) — Wao. 8. 1))| t> 1
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Initial parameters for yC,

B.1 Estimation of ¢,

The Muggeo method [80] allow to find break-points when fitting linear piece-

wise terms in regression models. Considering the following model:

y(t) = at + b(t — to)H(t — tp) (B.1)

where t; is the break-point we want to estimate; H(t — t;) is the Heaviside step
function, i.e. H(t) = 1 for t > 0, O otherwise; a is the slope of the first segment,
from t = 0 to t = t, and b is the difference in slope between the left and the right
segment, i.e. the slope for t > t, is given by a + b.

We want to fit this model to the first part of C,, for t < tpeq.. In other words, we
approximate the rising part of the curve with two linear segments. The slope of
the first segment will be zero, as at the beginning of C, there is no activity, thus
a flat line (a = 0). After ty, the slope will be b. Following the algorithm in [80], at

the s-th iteration, the steps are:

e Fix t(()s) and calculate two auxiliary variates:
U(t) = (t — £HH(t — ) (B.2)
V() = —H(t - t§) (B.3)
e Fit the following linear model to Cp(t < tpeqr):

Yo = BOU M) +yI VD) (B.4)
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e Improve the break-point estimate:

R AT (B.5)
Y ORI :

e Repeat until convergence.

The algorithm was initialized with t(()l) = 0.5 - theqe and convergence criteria was
set as | y® |< 1E — 6. For all subjects, algorithm converged in less than 10

iterations.

B.2 Estimation of T

Considering the term ®(q;, t) — ®(ao, t) of Equation A.4 for t > T + t,. The time

of its peak, tyeqc, can be found imposing:

d(@(a; 1) - D(ap. 1) _

” 0 (B.6)
e ailt=to) _ g=ao(t=to) _ s=ailt=to=T) 4 s=ao(t-o=T) _ @ (B.7)
e ) (1 — eaT) = g ®(t=l0) . (] _ gT) (B.8)

—a; (t — tp) +log(1 — e“T) = —ay (t — tp) + log(1 — e®T)  (B.9)
a;T _ aoT _
b — log(e 1) N log(e 1)

t= (B.10)
Ao — G4 Ao — G4
The solution has three terms: ft,, logfz{e)a# d logg#. For a; — +o00, the
1 T_ 1
second term goes to zero, while lim; e log(aj# = T. Since ay is the largest

exponent, this is a fairly good approximation and the resulting solution does not
include dependency from a;. Thus, independently from the number and the values
of the exponential functions selected from the a grid, we can write T ~ tpeqc — bo

(as ap is not infinite the correct relation is T < tpeqc — to).



Appendix

Measurements error models

In this appendix the derivation of the variance associated with the measure-

ment error of PPf, C;,;, C, and C,, are presented.

C.1 Ppf

Starting from Equation 1.3:

PPf(t) = AUG(0) (C.1)
AUC,(t) + AUC ner(t) )

Both AUC,(t) and AUC,(t) represent a sum over time of radioactive counts.
These are random processes that can be approximated as Gaussian distributions
whose variance is proportional to the mean. The Gaussian approximation holds
well when the number of counts is "high" [76]. Thus, the variance of the two

processes can be expressed as follows:

Var(AUC,(1)) = y - AUC,(1) (C.2)
Var(AUC (1)) = y - AUCe(t) (C.3)

where y is the unknown proportionally constant, which is assumed equal for
both AUC,(t) and AUC,,(t) (this is an approximation as the radiometabolites are
usually eluted earlier in the HPLC, thus they have a higher signal-noise ratio due

to the longer radioactive decay affecting the parent peak).

To derive the variance of PPf, we used the formula of propagation of variance

[85] that, for a function f(x, y) is given by:

of

2
Var(f) = [—] - Var(x) + o

of
a] [6_y] Var(x, y) (C.4)

6 2
—f - Var(y) + 2
6x 6y
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where Var(x, y) is the covariance between x and y, while §f/6x and &f/6y are the

partial derivate of f with respect to x and y respectively.

Assuming AUC,(t) and AUC,,«(t) to be independent, their covariance was zero.
Thus, the formulation of the variance of PPf(t) was calculated as follows (for the

sake of clarity, the dependency from the time t has been omitted in the following

passages):
sepf |
Var(PPf) = - Var(AUC,) + | ———— | - Var(AUC,,., C.5
(PEf) [5AUC] (AUC,) 6AUCmet] ( ¢) (C.5)
~ AUC e ’ uc, —AUG, ’ AUC (C.6)
= |@auc, + aucw? | YAV * |Gauc, + aucpr | YAYCm '
~ AUC - AUC et - (AUC,, + AUC ner) -
B (AUC, + AUC o) ’
AUC, - AUC
=y L e (C.8)
(AUC, + AUCer)
C02 Ctot

In case Cy, is measured directly from a gamma counter, it represents a radioac-
tive count and thus its variance can be approximated by a Gaussian distribution

with variance proportional to the mean:

Var(Ci(t)) = y - Cior(t) (C.9)

C:x must be corrected for the radioactive decay, which is done multiplying the
measured radioactivity per e, where 7 is the disintegration constant and it is
equal to A = In2 /T, o, with Ty, representing the isotope half-life (T}, = 20.4min
for 'C and 109.8min for '8F); and t,, is the time at which the sample is measured.

To note that t,, # t. The variance of C,, is therefore more correctly calculated as:

Var(Cep (1)) = y - € Cyou(t) (C.10)

Using this correction, the assumption that y is constant between different time

points is less critic.

Instead, when the automatic sampler is used, C, is derived from Equation 1.2:
Cior(t) = Cp(t) - yPOB(t) (C.11)



The variance of C, is modeled as for C,;:

Var(Cp(t)) = y - €*"™ Cy(t) (C.12)

Thus, using Equation C.4 for the propagation of variance, the variance of Cy,

when using an online sampler is calculated as:

Var(Cio(t)) = yPOB(t)? - Var(Cy(t)) (C.13)

Cc.3 G,

C, is calculated from Equation 1.4 :
Cp(t) = Ciar(t) - yPES (1) (C.14)

Applying the formula for the propagation of variance (Equation C.4), its variance

is equal to:

Var(Cy(t)) = yPPf(t)* - Var(Cyy(t)) (C.15)

C.4 Cou

Chet is calculated from Equation 4.15 :

1 — PPf(b)

PPI(D) (C.16)

Cmet(t) = ycp(t) :

Applying the formula for the propagation of variance (Equation C.4), its variance

is equal to:

yCy(0)
PPf(t)?

2
Var(Cre(t)) = ( ) - Var(PEf(1)) (C.17)

Equation C.16 use the modeled input function yC, and the raw PPf to calculate

Crnet- One can also use the raw C,, instead of the raw PPf:

Cret(t) = Cior(t) — ycp(t) (C.18)

In this case the variance would simply be:

Var(Cre(t)) = Var(Cio(1)) (C.19)



Appendix C. Measurements error models

Finally, C,,; can be calculated using only raw data as:
Crret(t) = Cior(1) - (1 = PEf(1)) (C.20)
When applying Equation C.4, now both terms contribute to the final variance:

Var(Cper(t)) = (1 = PPf(£))* - Var(Cio(t)) — Cior(t)* - Var(PPf(t)) (C.21)
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