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SOMMARIO 

Lo studio in oggetto ha come obbiettivo l’analisi dei fenomeni che caratterizzano sistemi di 

giunzione per attrito; come i collegamenti filettati. Questo tipo di giunzione noto ormai da 

millenni (una delle prime applicazioni è riconducibile ad Archimede) permette di trasformare una 

coppia torcente in una forza assiale, tipicamente utilizzata per bloccare due o più componenti 

grazie alle forze di attrito che nascono tra i corpi collegati. Uno dei principali punti di forza di 

questo tipo di accoppiamento è la possibilità di montare e smontare i particolari collegati oltre 

ad essere applicabile quasi a qualsiasi tipo di materiale. Per contro il sistema di giunzione è 

caratterizzato da un basso rendimento: solo una modesta quantità della coppia esercitata al 

serraggio viene effettivamente convertita in forza assiale. Inoltre la forza assiale ottenuta 

presenta tipicamente valori variabili all’interno di un ampio intervallo. Questo comportamento è 

dovuto all’effetto combinato di due distinti momenti d’attrito che nascono in un caso tra il 

sottotesta della vite o del dado e la superficie di uno degli elementi da bloccare, nell’altro tra i 

filetti di vite e madrevite. La relazione tra coppia di serraggio ed effettiva forza assiale ottenibile 

è molto sensibile all’effetto dei vari coefficienti d’attrito: questi coefficienti a loro volta 

presentano una significativa variabilità dovuta sia ai processi produttivi utilizzati per realizzare i 

vari componenti che ai diversi parametri di serraggio, come ad esempio la presenza di 

lubrificazione o la velocità di serraggio. I collegamenti filettati trovano ampia applicazione sia nel 

campo delle costruzioni civili che nel campo della meccanica, dove a causa di una sempre 

maggiore spinta verso una riduzione dei pesi ed una maggiore automatizzazione delle procedure 

di montaggio (si pensi al settore automotive), è necessario avere un accurato controllo sulle 

prestazioni del collegamento al fine di garantire la sicurezza della giunzione con tempi di 

assemblaggio e costi ridotti. Al fine di controllare un collegamento filettato occorre focalizzare 

l’attenzione sui tre principali fenomeni che lo governano: andamento dei coefficienti d’attrito in 

fase di serraggio, self-relaxation (diminuzione del tiro assiale offerto dalla vite nei primi secondi 

successivi al serraggio, dovuto ad un assestamento elastoplastico del materiale), self-loosening 

(perdita di tiro assiale nel tempo tipicamente sotto l’azione di carichi taglianti esterni). Di seguito 

verrà presentata una panoramica generale sull’argomento tratta dalla letteratura esistente, 

un’indagine sperimentale sull’effetto della lubrificazione con lubrificante solido sui coefficienti 



 
 

d’attrito per serraggi ripetuti e diversi trattamenti superficiali e l’effetto del numero di filetti in 

presa sulle prestazioni di un frenafiletti anaerobico. Queste analisi sono partite dallo studio di un 

caso reale di self-loosening su un collegamento filettato in un albero pignone di una trasmissione 

per macchine movimento terra, dove si evidenziano i vari fenomeni che caratterizzano questo 

tipo di collegamenti. L’attività di ricerca si pone l’obbiettivo di aumentare le conoscenze 

sull’effetto della lubrificazione sui diversi fenomeni che concorrono a determinare le prestazioni 

di un collegamento bullonato. 

 

ABSTRACT 

This study aims at analyzing  the phenomena which characterize  threaded connections. This type 

of joint has been known for thousands years (one of the first applications is attributable to 

Archimedes) allows transforming a torque into an axial force, typically used to lock two or more 

components thanks to the friction forces that arise between the connected bodies. One of the 

main strengths of this type of coupling is the possibility to assemble and disassemble the 

assembled parts; in addition, it can be applicable to almost any type of material. However, the 

joint system is characterized by a low efficiency: only a modest amount of the tightening torque 

is actually converted into axial force. In addition, the obtained axial force is typically affected by 

a large scatter. This behavior is due to the combined effect of two different friction effects that 

arise between the under-head of the screw (or nut) and the surface of the elements to be locked 

in the first case, and between the screw threads and female screw in the second one. The 

relationship between tightening torque and preload axial force is very sensitive to the effect of 

the various friction coefficients that rule the tribological behavior of the joint:, these coefficients 

have a significant variability due to the processes used to manufacture the components, and to 

the different tightening parameters, such as the presence of lubrication or the tightening speed. 

Threaded connections do have a wide array of applications, both in the field of civil engineering 

and in mechanics. For instance, in the automotive compartment, due to a steadily growing strive 

towards weight reduction and increased automation of assembly procedures, an accurate 

knowledge of the performance of threaded connections has recently become critical in order to 



 
 

achieve the safety of the junction at an adequate production cost. In order to control a threaded 

connection, it is necessary to focus on the three main factors that characterize its behavior: the 

coefficients of friction at tightening, the self-relaxation phenomenon (decrease of axial preload 

in the first few seconds after tightening, due to sinking of the load bearing area in the clamped 

parts), self-loosening (loss of axial preload, typically due  to the action of external shearing 

forces). In the following, literature review will be presented first, then it will be shown an 

experimental investigation on the effect of solid lubrication on the friction coefficients, carried 

out for repeated tightenings and different surface treatments. Moreover, the effect of the 

number of engaged threads on the performance of an anaerobic threadlocking adhesive will be 

examined. The need for these analyses arose from the study of an in-field failure occurred in a 

pinion shaft of a transmission for earth moving machines, which, as it will be shown in the 

following, probably failed due to a combination of the aforementioned typical issues of threaded 

components. The research has the aim of increasing the knowledge about the effect of 

lubrication on the different phenomena that contribute to determining the performance of a 

bolted connection. 
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1. GENERAL CONSIDERATIONS ABOUT THREADED CONNECTIONS 

 

1.1 Introduction 

Despite of their large diffusion and the great amount of studies conducted on the screw 

connections there are some different aspects which are not so clarified or the information is not 

available in the literature. In this first part, a review on the literature is carried out in order to 

analyze the different aspects which affect the relation between the tightening torque and the 

axial preload with some insights on the contact between the different parts involved. 

 

1.2 Definition of the characteristic dimensions of a thread 

Considering a metric standard profile (ISO M) Fig. 1.1, the thread section is triangular and the 

thread angle β on the longitudinal section of the screw is equal to 60°. 

 

Figure 1.1 The basic metric profile (from ISO 68-1) 
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Where: 

D is the basic major diameter of internal thread (nominal diameter) 

d is the basic major diameter of external thread (nominal diameter) 

D2 is the basic pitch diameter of internal thread 

d2 is the basic pitch diameter of external thread 

D1 is the basic minor diameter of internal thread 

d1 is the basic minor diameter of external thread 

H is the height of the fundamental triangle: PH
2

3
  

P is the pitch 

 

1.3 Relationship Between Tightening Torque and Preloading Force 

According to the scheme of Fig. 1.2 and Fig.1.3, it is possible to relate the axial preloading force 

FV to the peripheral force FU by means of the normal force FN and of the friction force [1]. 

 

Figure 1.2 Triangular thread in the longitudinal section of the screw 
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Figure 1.3 An example of a triangular thread and its equilibrium forces 

 

Define the geometrical mean diameter of the thread dthm (mm), according to Equation (1.1); 

assume µ’ as the friction coefficient of the triangular thread and p (mm) as the thread pitch. The 

force balance yields Equation (1.2) in which angle α is the lead angle of the thread (Equation (1.3)) 

and angle ρ’ is the friction angle of the triangular thread, as reported in Equation (1.4).. Utilizing 

dthm instead of the effective thread friction diameter dth which depends on thread contact 

pressure, introduces a comparatively small error [2] 

2

1dd
d thm


  (1.1) 

 'tan.   vu FF  (1.2) 













thmd

p


 arctan  (1.3) 

 'tan'    (1.4) 

The friction coefficient of the triangular thread µ’, differs from the friction coefficient of the 

square thread µ, since the thread angle β is measured on the longitudinal section of the screw, 

as shown in Fig. 1.2. The thread angle βN (Fig. 1.3) is measured on a section normal to the lead 

angle α: the angles on the two different planes are linked by a trigonometric relationship, 
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reported in Equation (1.5). A rigorous calculation of the μ’ coefficient is therefore given by 

Equation (1.6): 

 costantan N
 (1.5) 

  









2
tancos1' 22 

  (1.6) 

According to [3, 4] and to the force scheme in Figure 1.3, and as a consequence of the small value 

of angle α, Equation(1.6) transforms into Equation (1.7) 











2
cos

'



  (1.7) 

In the case of a metric standard (ISO M) profile the friction force is 15% higher than the equivalent 

one of the square thread because the friction coefficient of the triangular thread is µ’≈1.155µ: 

the triangular thread provides, with the same axial preloading force FV, a friction force greater 

than that produced by the square thread (15,5% more). The torque Tth related to the peripheral 

force FU on the screw after tightening, is given by Equation (1.8). 

 
2

'tan
2

thm
V

thm
Uth

d
F

d
FT    (1.8) 

The total torque T expression must take into account both the thread and the nut friction forces. 

Thus, Equation (8) must be rewritten as Equation (9) in which µA is the friction coefficient and db 

is the effective underhead bearing radius.  

  









22
'tan b

A
thm

Vbth

dd
FTTT   (1.9) 

If the diameter db is assumed equal to the mean of the internal dbi and external dbe diameters, an 

error depending on the pressure distribution in the underhead is introduced [5]. Due to the 

properties of the tangent function, Equation (1.9) can be rewritten as Equation (1.10): 
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   
    















22'tantan1

'tantan b
A

thm
Vbth

dd
FTTT 




 (1.10) 

Substituting Equations (1.3, 1.4, 1.7) into Equation (1.10) it is possible to obtain Equation (1.11), 

in the form reported by Shigley and Mischke [6], and Juvinall and Marshek [7]: 





















































22

2
cos

1

2
cos

b
A

thm

thm

thm

V

dd

d

p

d

p

FT 













 (1.11) 

Since p/(πd2)∙(µ/cos(α/2)) is negligible with respect to 1, Equation (1.11) becomes Equation 

(1.12), originally proposed by Motosh [8]: 


































22

2
cos

2

hm
A

tm
V

ddp
FT 






 (1.12) 

For the metric standard (ISO M) profile, Equation (1.12) can be rewritten as Equation (1.13): 











2
577.0159.0 b

AthmV

d
dpFT   (1.13) 

By applying Equation (1.11), the preloading force FV can be related to the total torque T once the 

friction coefficients μ and µA are known and it is well known that these coefficients are strongly 

influenced by the surface status or treatment (roughness or presence of lubricant and material 

deposition). In this formulation, it was neglected the three-dimensional effect which affects the 

torque T: such approximation introduces a very small error, in the order of 0.5% for a uniform 

contact pressure in the threads and a low dependence from the friction coefficient and the pitch. 

On the opposite, equation (1.13) introduces an error of 2% for the same contact pressure 

condition and a noticeable dependence from the pitch and the thread friction coefficient. [9] 
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1.4 Considerations about the actual underhead and thread diameter in the case of a uniform 

contact pressure 

In the previous section, it was illustrated how the bearing and thread diameters influence the 

relationship between tightening torque and preload in bolted joints(Equations (1.11,1.13)). Some 

hypotheses were introduced during the calculation of these diameters, in order to simplify the 

analytical solution. These assumptions are based on research carried out by Nassar et al. [2] [5]. 

The first of these is to consider the mean geometrical underhead and thread diameter, instead 

of the actual one. The second assumption is that the friction coefficient is constant over the 

thread or in the underhead surfaces. Generally, the friction coefficient varies over the bolt 

surfaces due to the variation in the sliding speed, as the radial location from the fastener axis 

changes. A method to describe the variation is given by Rabinowicz [11] as: 

1.0










r

ri
ir   (1.14) 

Where i  is the value of the coefficient of friction in the contact point nearest to the minor 

radius minr and r  is the generic radius. For the purpose of calculating the magnitude of the error 

introduced with the mean geometrical diameters and the constant friction coefficient, a 

weighted average of the thread friction coefficient may be calculated: 






e

i

e

i

r

r

r

r

r

average

dA

dA

  (1.15) 

For the thread, dAbecomes: 




cos
2

dr
rdA   (1.16) 

 



















1

1052.1
2

9.1

t

t
iaverage




  (1.17) 
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Where: 

thi

the
t
r

r
  (1.18) 

rthe and rthi are respectively the external and the internal contact radius of the thread. At the end 

of fastener tightening, the amount of torque for the generic thread iT , consumed to overcome 

thread friction is: 

 
A

ri rdAPT   (1.19) 

Considering the mean friction coefficient and the effective thread contact radius, the torque 

needed to overcome thread friction can be written as: 

 
thi

thi

r

r

taveraget
i

averagei rdrPrr
F

T






 2
cos

 (1.20) 

Substituting Equation. (1.14) into Equation(1.19), and Equation(1.17) into Equation (1.20) and 

comparing the resulting expressions for iT , the effective thread friction radius rth results as 

follows: 

 
 















thi

thi

thi

thi

r

r

r

rthi
th

Pdrr

Pdrr
r

r








9.1

9.1

1.02

1052,1

1

 (1.21) 

Assuming P(r)=constant, Equation (1.21) becomes: 

 
      thi

t

t
thi

t

t

t

thit
th rr

r
r 
















1

)1(656.0

1
2

1

)1(
9.2

1

1052.1

1
9.1

9.2
9.0

2

9.2

9.1

1.02












 (1.22) 
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Repeating the same procedure for the bearing radius, dA and µbaverage in the underhead become: 

drrdA  2  (1.23) 

 



















1

1052.1
2

9.1

b

b
iaverage




  (1.24) 

Where: 

bi

be
b

r

r
  (1.25) 

rbe and rbi are respectively the external and the internal contact radius of the head. At the end of 

fastener tightening, the amount of torque in the underhead Tb consumed to overcome the 

friction torque is: 

 
A

rb rdAPT   (1.26) 

Considering the mean friction coefficient and the effective underhead contact radius, the torque 

dissipated to overcome friction in the underhead can be written as: 

 
bib

bi

r

r

baveragebvaverageb rdrPrrFT



 2  (1.27) 

Substituting of Equation. (1.14) into Equation (1.26), Equation.(1.23) into Equation (1.27) and 

comparing the resulting expressions for Tb, the effective bearing friction radius rb can be written 

as reported in Equation (1.28): 

 
      bi

b

b
bi

b

b

b

bib
b rr

r
r 
















1

)1(656.0

1
2

1

)1(
9.2

1

1052.1

1
9.1

9.2
9.0

2

9.2

9.1

1.02












 (1.28) 

For metric screws with hexagonal head designed according to ISO 4017, and for the most 

common dimensions from M6 to M48, the value of ϒth and ϒb vary within a small range. (see 
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Fig.1.4). Introducing the ϒth and ϒb values in Equations (1.22) and (1.28) one can calculate the 

errors introduced by considering the average diameters in place of the effective diameters, under 

the assumption of a constant contact pressure distribution.  

 

Figure 1.4 ϒth and ϒb trend for the different screw nominal diameter 

 

Considering the mean underhead radius rbm instead of the effective radius rb, for a constant 

pressure distribution, the error introduced on the bearing radius equation (1.29) has the trend 

reported in Fig.1.5 as a function of ϒb. For the hexagonal head screw this error is low but for a 

flanged screw it can grow up to more than 2%. 

b

bmb

r

rr
error


%  (1.29) 
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Fig 1.5 error on the underhead radius considering the mean radius instead of the effective radius, reported for the 

different values of ϒb 

 

 

Fig 1.6 error on the thread radius considering the mean or the pitch radius instead of the effective radius, reported 

for the different values of ϒth 

For the thread radius, the value of ϒth, decreases with the increase of the nominal diameter of 

the screw and with the decrease of the pitch (Fig.1.4). The error introduced when the mean 

diameter is adopted instead of the effective thread diameter equation (1.30) is negligible (less 

than 0,5%)), but when the pitch radius r2 is adopted instead of the mean radius, such error grows 

up to values between 1.5% and 2.5%, depending on the screw size. 
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th

thm

r

rr
error


%  (1.30) 

 

1.5 Considerations about the actual underhead and thread diameters, in the case of real 

contact pressure distribution 

In the previous section, it was shown how the effective contact diameter can be calculated for 

the thread and the underhead, under the assumption of constant pressure distributions on such 

surfaces. In general, the real pressure distribution could be very different from a uniform one, as 

some authors have already reported [2,5,9,12,13,14,15]. In order to evaluate the error 

introduced considering a constant pressure distribution instead of the actual one, the real thread 

contact radius and bearing contact radius were calculated for the real pressure distribution. In 

order to understand the effective pressure distribution in the thread and in the underhead, finite 

elements analyses (FEA) were performed, considering the commonly used fasteners with 

standard hexagonal head. 

 

In the case of the underhead, FEA has been performed on a screw-sleeve assembly. The primary 

purpose of such analysis was correlating the shape of the screw head to a pressure distribution 

in the case of a standard hexagonal head metric screw, size M8 and class 8.8, coupled with 

asleeve made of steel. The screw geometry was modeled according to the international standard 

ISO 4017. The secondary aim of this FEA analysis was to assess how the pressure distribution in 

the underhead is affected by a change in sleeve materials., The specimen was modeled in two 

dimensions, enforcing the axial symmetry of the model around y-axis (Figure 1.7).  

 

Figure 1.7 boundary conditions for the axisymmetric model  

The geometry was meshed with three-node triangular elements (PLANE 182 in the Ansys 

nomenclature). The resulting mesh is shown in Figure 1.3: a refinement window can be seen in 

the central area of the head. The general element size is set to d=0.5mm, whereas in the 
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refinement window it drops down to d’=0.025mm. In order to found the correct mesh sizing in 

the contact region, a convergence analysis was carried out. In order to achieve a progressive 

contact line counting at least ten elements [16,17,18] the contact region between the screw head 

and the sleeve underwent a further refinement of the mesh, resulting in an element size of 

d’’=0.001mm The overall number of nodes is n=144719.  

 

Figure 1.8 Not deformed mesh of the FEA model (under head region) 

 

The contact between the head and the sleeve is set as frictionless after a comparison between 

the results obtained with this condition and a friction coefficient set a 0.15 (Fig.1.9). The 

differences were found to be negligible and the frictionless condition has been chosen, in the 

light of its lower computational demand. The screw preload is simulated by a force applied at the 

lower end of the shank Fv=20,000N approximately equal to the preload recommended for an 8.8 

screw by the International standard ISO 898-1. The free face of the sleeve was fixed. The analysis 

was carried out considering the elastic-plastic properties of the materials: a bilinear isotropic 

hardening behavior was assumed. The material properties are reported in Tab. 1.1.  
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Figure 1.9 comparison between frictionless and frictional analysis 

Table 1.1. materials properties 

 

 

Focusing on the underhead contact area, the resulting normal stress distribution along y-axis is 

shown in Fig. 1.10. It can be seen that the normal stress show peaks at the inner and at the 

external radius of the thread, as expected for the case of a rounded indenter pushed against an 

elastic half-plane. This result is also consistent with the surface texture of the underhead area 

observed after tightenint: wear appears to be concentrated at the outer and inner boundaries of 

the contact region (Fig 1.11, from [19]). 
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Figure 1.10 Normal pressure distribution (underhead region) 

 

 

Figure 1.11 Surface texture after the tightening of an hexagonal  

metric screw over an aluminum sleeve 

 

For different sleeve materials, the normal stress distribution in the underhead keeps the same 

trend shown for steel in Figures 1.9 and 1.10, but with some difference in the peak values due to 

the different elastic modulus and elastic plastic behaviors (see Fig.1.12)  
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Figure 1.12 Contact pressure distribution in the underhead region 

 

Considering the normal stress distribution on the contact surface, it is possible to calculate by a 

numerical integration the effective contact radius for the different sleeve materials. The results 

obtained by the numerical integration are reported in Tab. 1.2 with the percentage difference 

obtained comparing this radius with the radius obtained by Equation (1.28) and with the mean 

geometrical radius. 

 

Table 1.2. Error in the bearing radius 
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Considering the results reported in Tab 1.2 the percentage error introduced by using rm instead 

of rb, in the calculation of the bearing friction torque component, for standard hexagonal head 

screw, is very low.  

For the thread contact, a FEA has been performed on a screw-sleeve assembly with a threaded 

sleeve. The primary purpose of such analysis was to understand the real behavior of the normal 

pressure on the thread surface: in the literature [2,5,9,12], some different pressure distributions 

on the thread are reported an the different effect on the effective thread radius are analyzed, 

but it is not identified a specific trend as the most likely occurring for the standard ISO thread. 

The screw and the thread of the sleeve were modeled according to the international standard 

ISO 4017 and following the tolerance recommended by ISO 965-1 for a thread connection 

combination 6H/6g. To model the components, tolerances corresponding to the maximum 

clearance condition have been used. The screw adopted for the analysis was a M8 class 8.8. In 

order to proceed with a FEA simulation, the specimen has been modeled in two dimensions, 

enforcing the axial symmetry of the model around y-axis (Fig.1.13). 

 

Figure 1.13boundary conditions for the axisymmetric model  
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The geometry has been meshed with three-node triangular elements (PLANE 182 in the Ansys 

nomenclature) The mesh is shown in Fig. 1.14: a refinement window can be seen in the central 

area. The general element size is d=0.5mm, whereas in the refinement window it drops down to  

d’=0.03mm. In order to find the correct mesh sizing in the contact region a convergence analysis 

was carried out. In the contact region between the screw head and the sleeve, a further 

refinement of the mesh was carried out, following the lines described above, with an elements 

size d’’=0.0015mm The overall number of nodes is n=535849 

 

Figure 1.14 Not deformed mesh of the FEA model (threaded region) 

 

The contact between the threads is set as frictionless. The screw preload is simulated by a force 

applied at the underhead surface, equal to Fv=20000 N (incremented in four load steps from 

5000N to 20000N) corresponding to the preload recommended for an 8.8 screw by ISO 898-1;the 

face of the sleeve was constrained by means of a frictionless support. The analysis was carried 

out considering the elastic-plastic properties of the materials with a bilinear isotropic hardening 

behavior. The materials properties are reported in Tab. 1.1. The analysis was carried out 

considering steel 42CrMo4 (commonly adopted for manufacturing 8.8 screws) and the same steel 

for the sleeve in the first case, whereas in the second case aluminum EN AW 7075 was selected 

for the sleeve. 
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Figure 1.14 Contact pressure distribution (threaded region screw and sleeve in steel) 

The resulting normal stress distribution along the y-axis (local coordinates system with Y-axis 

normal to the thread flank, X-axis parallel to the flank) is shown in Fig.1.15. It can be seen that; 

the normal stress is concentrated at the inner contact radius of the thread in the steel case. This 

behavior it is due to the greater stiffness of the sleeve thread. The tolerances adopted: 6g for the 

screw and 6H for the sleeve thread, is the most common in the practice. The thread dimensions 

resulting from this choice reduce the stiffness of the screw thread with respect to the sleeve 

thread. In fact, for the aluminum bushing, the pressure peak drops on the inner radius and the 

outer radius increases rather. (Fig. 1.15). The effective pressure distribution resulting in two 

peaks comparable to the extremes of the supporting surface. Considering the normal stress 

distribution on the contact surface, it is possible to calculate by a numerical integration the 

effective contact radius. The results obtained by the numerical integration are reported in tab. 

1.3 with the percentage difference obtained comparing this radius with: the pitch radius r2 

SCREW 

SLEEVE 
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suggested in the international standard VDI 2230 and adopted by several authors [14,15,19], the 

radius rth obtained by the equation (1.22) and the mean geometrical radius rthm.  

 

Figure 1.15 Contact pressure distribution in the thread region 

For the two different materials of the threaded sleeve, it has been observed a different load 

distribution between the threads. Fig 1.16 The results obtained are similar to those reported in 

the literature [20]. 

 

Figure 1.16 Load distribution in the first ten thread (90% of the total load). The first is the closest to the loaded face 

of the bushing 
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Each thread supports a different amount of load, but the trend of the pressure distribution is 

always similar. In fact, repeating the numerical integration for each thread the effective contact 

radius remain always the same. The difference between the different threads is negligible. 

Considering the results reported in Tab 1.3 the percent error introduced by using r2 instead of 

the effective thread radius obtained by the numerical analysis is, inexistent for the steel sleeve. 

While for the aluminum sleeve the minor error are obtained using the mean radius rthm. 

 

Table 1.3. Error in the thread radius 

 

1.6 Discussion 

 

Starting from the general equations proposed by Motosh and Shygley they were analyzed the 

effects of the pressure distribution and the speed on the thread and bearing radius following the 

consideration proposed by Nassar et al. In order to verify the equations proposed and clarify the 

real pressure distribution in the thread and in the underhead, some FEA analysis were performed. 

The result of this analysis have highlighted that for the hexagonal head screw, considering the 

mean geometrical radius of the underhead contact area is a good aproximation of the real 

condition as well as considering the pitch diameter instead of the effective thread diameter, at 

least when the screw and the nut are both in steel. When the nut is in aluminum the mean thread 

diameter, represent a better approximation.  
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2. ANALYSIS OF THREADED CONNECTIONS FOR DIFFERENTIAL GEAR PINIONS 

 

2.1 Introduction 

The present analysis deals with the failure analysis of a pinion shaft belonging to a differential 

gear for offroad machinery applications, namely wheel loaders. The motivations of the study 

arise from some in-field failures, which resulted in the fracture of the pinion shaft, originated at 

an external groove located at the end of its threaded portion. The issue has been tackled by 

means of analytical, numerical and experimental tools. The observed failures have been 

demonstrated to be due to the in-service loosening of a ring nut, whose function is to preload 

the tapered rolling bearings, which support the shaft.  

In a wheel loader the primary power from the diesel engine is split up between hydraulics and 

drive train: the first one is responsible for lift/tilt movements of the bucket, whereas the latter 

transfers power to the wheels. The typical layout of hydraulic and mechanical powertrain is 

applicable not only to wheel loaders but also to many other working machines in the fields of 

agriculture, forestry and mining. Many details, including also schemes and drawings are 

contained in [1, 2]. Moreover, some interesting historical issues with related powertrain 

schemes, regarding the development of hybrid wheel loaders are also reported in [3]. The studied 

pinion shaft transmits the torque from the engine to the drive wheels through the crown wheel 

of the differential gear. It is supported during rotation by two tapered single row rolling bearings 

that are axially preloaded by means of a ring nut, which in turn engages with an external thread, 

cut into the shaft tail end Fig. 2.1a. After tightening, the inner races of the bearings come in 

contact by means of a sleeve and some laminated shims. The tightening operation is performed 

in torque control, by means of an electric spindle.  

 

Figure 2.1a Pinion shaft assembly 
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An observation of the fracture surface of some failed shafts indicates that fracture always 

propagates along the cross section of the shaft, whereas final fracture occurs on a 45 inclined 

surface with respect to the shaft axis, as shown in Fig. 2.1b, where the cracked transverse section 

is highlighted, and the region of final failure is also marked.  

 

 

Figure 2.1b Failed pinion shaft 

The inner splined that mates with the flywheel shaft is clearly visible by the tail side of the pinion 

shaft. The position of the cross section where failure occurs is well aligned along the shaft 

longitudinal axis to the groove at the end of the ring nut external thread. It must be pointed out 

that other similar groups did not experience complete failure, but an unexpected loosening of 

the ring nut, with resulting loss of bearing preload, was observed. The occurrence of the 

described breakage was the main motivation for this study, whose aim was to investigate the 

primary reason for the occurred failure. The investigation of the root cause of the observed ring 

nut loosening was a further point of discussion. It was finally important to state if this occurrence 

was likely to trigger the shaft complete failure and to indicate possible design improvements to 

overcome the described events. Considering the literature in the field of failure analysis, it must 

be pointed out that no studies are available, regarding similar fractures in a wheel loader pinion 

group. However, several investigations are reported on fatigue failures involving shafts in 

industrial applications. For instance, in [4] the failure of an extruder shaft is investigated by 

experimental in-field tests, material characterization and numerical models. The fracture of an 

agitator shaft in a pressure vessel is investigated in [5], where a careful analysis of the crack shape 

precedes numerical modeling. Analytical and numerical tools, as well as a careful fracture surface 

analysis, are finally used in [6], to explore the causes of the failure of a lift drive shaft operating 

under fatigue. The literature survey generally indicates that the combined use of experimental, 
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analytic and numerical tools along with a careful observation of the fracture surface is usually the 

most proper approach to tackle a failure analysis. 

Based on the reported outcomes, after a detailed analysis of the fracture surface, strain gauge 

tests were performed to determine the actual state of load, a lumped parameter model was 

developed to determine a suitable stiffness scheme and numerical models were used to estimate 

the state of stress. 

2.2 Materials and methods 

Some failed pinions shafts have been observed by an optical multifocus microscope, in order to 

study the failure mechanism, as suggested by the approach followed in a previous study [7]. The 

static and fatigue dimensioning of the shaft has been assessed, under the assumption that the 

bearings were preloaded properly. The analysis of the shaft has been performed considering an 

Ultimate Tensile Strength of the material UTS = 850MPa and a Yield Strength Sy = 630MPa. The 

resistance against fatigue is assessed by means of the Haigh diagram. In order to accomplish this 

task, the duty cycle of the wheel loader [1] has been analyzed. The loads on the shaft have been 

evaluated, considering the powertrain geometry and the well-known formulas for spiral bevel 

gears [8, 9]. Analytical and numerical analysis have been carried out, in order to estimate the 

stress distribution generated by the preload at the threaded connection and the stress 

concentration factor at the external groove at the end of the shaft threaded portion. The axial 

stiffness of the tapered roller bearings was provided by the supplier [9]. Lab tests have then been 

performed with the aim of determining the mean friction coefficient in the screw connection and 

the actual preload force generated upon the ring-nut tightening [10, 11]. The tightening force 

has been measured by an instrumented sleeve, where strain gages (1-LY11-1,5/120 by Hottinger 

Baldwin Messtechnik, HBM, Germany) were connected in a full Wheatstone bridge. Data 

sampling was performed by a NI C-DAQ 9184 equipped by the bridge module NI 9237 at the 

frequency of 10Hz.  

The same instrumented sleeve, assembled to the shaft, was then used for a further lab 

experimentation. The aim of this campaign was to get a full awareness about the bearing preload 

value and to assess if it was sufficient to warrant external load withstanding. The performed test 

consisted in the application of an external axial load over the pinion shaft, thus simulating the in-

service load, by a standing press (by Italsigma, Forlì, Italy) with a 100kN capacity. The load was 

on-line measured and increased until the rear side bearing lost contact with its race, i.e. until the 

full loss of the initial preload. This event was detected by the continuous monitoring of the load 

on the instrumented sleeve: its constant trend after an initial increase indicated the loss of 

preload. A numerical model was finally developed, in order to estimate the torsional loads that, 

during the service, may be transmitted through the bearing inner races and the interposed spacer 

to the ring nut and that are likely to be an additional reason for the preload loss. 
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2.3 Results and discussion 

The described problem has been initially tackled by the analysis of the fracture surface in the 

light of the actual in-service loads. Afterwards, the loads transmitted by the pinion to the shaft 

have been estimated, as well as the preload transmitted by the ring nut to the tapered bearings. 

The following step was the shaft fatigue assessment in its nominal design conditions. The possible 

occurrence of preload loss has been subsequently investigated by both numerical and 

experimental methods. Finally, the highly detrimental effect of preload loss has been discussed 

and the primary reason for the occurred failure has been determined. The chain of events that 

led to failure is presented considering also the faults observed in similar groups. 

2.3.1 Fracture surface and in-service loads 

A careful study of the fracture surface indicates that fracture substantially propagates 

perpendicularly with respect to the shaft axis. Considering an enlarged view of detail (1) of Fig. 

2, a nucleation point, where the crack is likely to have initiated, can be observed; similar initiation 

points are visible in a number of teeth of the inner splined. The final fracture occurs on a 4 angled 

surface, which is visible at the top of detail (2) shown in Fig. 2.2. On the other hand, fatigue crack 

initiation points have not been detected on the shaft external surface. The maximum torque Tmax 

is transmitted to the shaft during forward shoveling. However, this working condition is not highly 

frequent, considering the usual tasks performed by excavators. Conversely, a typical use 

condition is that summarized by the working cycle in Table 2.1 [1, 9], where the torque average 

values are much lower, approximately of 52%, with respect to Tmax. The fatigue assessment was 

conducted in the worst situation, i.e. considering the highest value of torque, Tmax, under a safe 

life design approach. 

 

Figure 2.2 Shaft fracture surface 
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table 2.1. distribution of working conditions 

 

2.3.2 Load transmitted to the shaft 

The loads acting on the shaft have been calculated by means of the well-known formulas, 

equations. (2.1), (2.2) and (2.3) for the driving spiral bevel pinion shown in Fig. 2.3 [8, 9].In the 

following formulas the symbols Ftp, Fap and Fsp respectively indicate the spiral bevel gear 

tangential, thrust and separating forces acting on the pinion. The pinion input torque and its 

mean diameter are respectively referenced as M and Dmp. Finally, the symbols γp, φp and Ψp 

are used for the bevel pinion pitch, pressure and spiral angles. 
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As a consequence of the application of these three forces, both a bending and a torsional 

moment are generated on the pinion shaft. Considering shaft rotation, a rotating bending fatigue 

load arises from the bending moment: this load cycle can therefore be regarded as a symmetric 

alternate one, with one cycle being completed upon each rotation. The torsional moment is 

conversely basically constant, as it may experience a reversal, only following reverse gear 

insertions. However, the number of torque reversals is several orders of magnitude lower than 

that of shaft rotations. Finally, the thrust force and the preload force generated by the ring nut 

tightening also induces a constant normal load on the shaft, however the generated state of 

stress is generally much lower than the bending component. Consequently, the global fatigue 

cycle consists of both a constant (static) term, which depends on the torsional and axial loads, 

and of an alternate part related to bending. The corresponding normal and shear stresses were 

combined together, by the calculation of the von Mises equivalent stress. 
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Figure 2.3 spiral bevel loads in the driving pinion 

2.3.3 Experimental determination of ring nut preload 

The preliminary knowledge of the friction coefficients at the ring nut underhead and in the 

threads is required, in order to compute the actual value of the induced preload force, as an 

effect of the controlled tightening torque. The estimation of a mean friction coefficient, which 

accounts for both frictions at the underhead and in the threads, is usually regarded as a valid 

alternative [11, 12]. This mean value can be computed as in equation (2.4) obtained from the 

equation (1.13) using d2 as the effective thread contact diameter. 

b
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Provided that the thread geometry and dimensions are known, the knowledge of the axial pre-

load FV is required, to achieve the estimation of the mean friction coefficient. For this purpose, 

an experimental campaign has been performed by a suitable strain gage instrumentation (Fig. 

2.4) composed by a ring component that is involved in the tightening process. In-field testing led 

to the estimation of the preload force, which is generated by the tightening torque on the ring 

nut, according to the current assembly procedure of the group.  
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Figure 2.4 a ring spacer has been instrumented for the in-field determination of the axial preload upon tightening 

Data processing led to the estimation of a mean friction coefficient µm between the values of 

0.13 and 0.15, which can be regarded as a steady-state value after the third tightening. However, 

when considering the first two tightenings, we observed a remarkable scattering affecting the 

measured preload force for the same value of the tightening torque and in the same lubrication 

conditions [7]. The outcomes of the present experimentation are well highlighted in the diagram 

of Fig. 2.5. 

 

Figure 2.5 axial pre-load on the ring nut, plotted vs. the number of repeated tightenings (tests performed by three 

different ring nuts) 
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2.3.4 Shaft fatigue assessment in nominal design conditions 

The static and fatigue shaft assessment has been performed under the assumption that the 

bearings are preloaded properly. In order to fulfil this task, the stress concentration factors in the 

region at the end of the ring nut thread, i.e. at the failure location, have been calculated under 

different load conditions, by Finite Element Analysis (FEA). The FEA analyses for the 

determination of the theoretical stress concentration factors have been carried out by means of 

the ANSYS code. Three different models have been prepared, one for each loading case. A two-

dimensional, axisymmetric model has been used in the case of axial load. The element type 

chosen was PLANE183, yielding a total node count of approximately 2.500 nodes Fig. 2.6. This 

model converged to a solution with a tolerance threshold of 1% with an average element 

dimension in the refinement area (radius end) of d=0.1mm Fig. 2.7. 

 

 

 

 

Figure 2.6 Axisymmetric model for the determination of Kt, axial load 
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Figure 2.7 FEA convergence diagram, average element dimension in the refinement area in abscissa – axial load 

In the case of bending load, the FEA model is three dimensional and the element type is a 

tetrahedral SOLID187: see Fig. 2.8. This model leverages a planar symmetry. Again, convergence 

(tolerance threshold 1%) is reached for an average element dimension in the refinement area of 

d=0.1mm and a total number of nodes of n=717.379: see Fig. 2.9. 

 

Figure 2.8 Model for the determination of Kt, bending load. Planar symmetry across XY axis. 
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Figure 2.9 FEA convergence diagram, average element dimension in the refinement area in abscissa – bending load 

Finally, the torsional case required a full three-dimensional model, made up of tetrahedral 

elements (SOLID187), as reported in Fig.2.10. According to the same criterium discussed above, 

convergence is found for an element average dimension in the refinement area of d=0.2mm Fig. 

2.11. This choice leads to a total number of nodes of n=565.133. 

 

Figure 2.10 Model for the determination of Kt, torsional load. 
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Figure 2.11 FEA convergence diagram, average element dimension in the refinement area in abscissa – torsional 

load 

The theoretical stress concentration factors are reported in Table 2.1 

 

Table 2.1 – Kt, Kf, q coefficients 

 

It is important to underline that the stress concentration factors reported in the Figures above 

are referred to the gross tubular section of the shaft. Hence, they are sensibly higher than those 

reported in Table 2.1 and used for the fatigue assessment: these are referred to the net section 

at the groove. The values of the stress concentration factors (Kt), along with those of the notch 

sensitivity q and of the fatigue concentration factors (Kf ) are reported in Table 2. In particular, 

the values of Kt have been directly yielded by FEA, whereas the values of q and Kf have been 

post-processed, based on Pilkey et al; Niemann et al [13,14] and considering the material UTS. 

The fatigue response has been assessed, multiplying the nominal values of stresses by the 

aforementioned Kf coefficients, and subsequently plotting the Haigh diagram, to consider the 

material fatigue strength. The calculations indicate that the shaft is correctly designed against 

both static loads and fatigue in the infinite life domain. The related Haigh diagram is shown in 

Fig. 2.12, where the representative point for nominal constraining condition lies within the safe 
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region with a safety factor in the order of 1.2 under the hypothesis of the same load ratio 

maintained up to failure.  

 

Fig. 2.12 Haigh Diagram in nominal working conditions (purple) and upon nut loosening (green) 

It may be argued that this is a quite low values, however, it is necessary to remark that the fatigue 

assessment was conducted, considering the worst condition listed in Table 2.1, which occurs with 

quite a low rate in the machine life. 

 

2.3.5 Occurrence of preload loss studied by experimental and numerical methods 

A sketch of the pinion layout, with the machined internal hole, is shown in Fig. 2.13, where the 

strain gauge location is also highlighted. Further details of the experimental setting are also 

available in Fig. 2.14, where the holed pinion (a) and the shaft loading and constraining on the 

standing press (b) are depicted. The result of the calibration tests in terms of the strain-load 

relationship is shown in Fig. 2.15. This is based on the recorded data under ramp load increase 
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Fig. 2.13 Sketch of the machined pinion shaft, where the strain gauges locations are highlighted 

 

Fig. 2.14 (a) Holed pinion with the applied strain gauges; (b) Shaft loading and constraining on the standing press 

 

and decrease. It can be remarked that the response linearity is very high, as confirmed by the 

linear correlation coefficient, being very close to one in the three replicated tests. Upon full 

assembly, a strain output in the order of 330μm/m has been recorded: based on the 
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aforementioned calibration relationship, it corresponds to an induced tensile load of 80kN on the 

shaft. The completely assembled pinion group (consisting of the shaft, the pinion bevel gear, the 

tightened ring nut and the preloaded tapered bearings) has been mounted on a standing press 

and suitably loaded, trying to simulate an in-service load on the powertrain. An axial load has 

been applied, acting directly on the pinion bevel gear, with simultaneous constraining of the shaft 

external body, as shown in Fig. 2.16. 

 

 

Fig. 2.15 Experimental calibration strain-load relationship 

 

Fig. 2.16 Experimental setting during the detachment test 
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As described in Section 1, this state of load was also investigated by a FEA model, which was then 

validated by comparing the strain results. The outcome of the conducted validation is 

summarized in Fig. 2.17, where the outputs of FEA simulations are plotted versus the 

experimental results. As it can be observed, the dots are very close to the dashed line 

representing the ideal condition of a full numerical-experimental agreement: the depicted 

outcome indicates a good consistency, considering also that average error does not exceed 5%. 

 

 

Fig. 2.17 Validation of the FEA model that accounts for the modified holed geometry andfor preload and external 

load effects 

The main motivation for this further trial arose from the outcomes of both the aforementioned 

numerical model and a further analytical one, where the stiffnesses of the entire group parts 

were regarded as lumped parameters. The results yielded by the two models were consistent, 

indicating that preload significant drop could be expected under a load a bit higher than 15kN. A 

scheme of the lumped-parameter stiffness modelling is shown in Fig. 2.18. The performed tests 

confirmed the occurrence of detachment, indicated by the abrupt drop of the force on the shaft, 

followed by a sharp slope change with final constant trend. The related graph is shown in Fig. 

2.19, where the axial force on the shaft, measured by the aforementioned instrumentation, is 

plotted vs. the force applied to the pinion. In particular, the shaft preload, initially around 80kN 
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in tension, is lowered, as the compressive force is gradually applied to the pinion. After an initial 

nearly constant trend, the load on the shaft linearly decreases until backward bearing 

detachment takes place. In this condition, for an applied load around 20kN, as an effect of the 

thrust load transmitted by the pinion, preload decreases under what can be regarded as its 

minimum threshold and is no longer sufficient to efficiently constrain the backward bearing that 

gets detached. When this event occurs, the entire load is withstood by the forward bearing and 

by the group case. The overall preload loss is around 15kN. This outcome proved to be well 

consistent with the aforementioned numerical and analytical predictions, which indicated that a 

preload loss was likely to occur under an axial load around 15 − 20kN. Further investigations have 

been carried out to get a complete awareness of the causes of ring nut loosening and of resulting 

preload loss. A FEA analysis of the pinion group indicated that the sleeve and the laminated shims 

mounted between the inner races of the bearings are responsible of a sort of torque bypass 

Fig.2.20 

 

 

Fig. 2.18 Lumped-parameter stiffness model of the parts involved in the group 
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Fig. 2.19 Force transferred to the shaft vs. the axial load on the pinion 

 

Fig. 2.20 Torque bypass between the head and the tail of the pinion shaft  

This has the undesired feature of transmitting a fraction of the pinion head torque to the splined, 

passing through the ring nut. The analysis has been carried out in the extreme conditions of 

maximum clearance and maximum interference, starting from the nominal coupling tolerance 

between the pinion shaft, the bearing inner rings and the inner sleeves. While both interference 

and clearance conditions may be generated at the interface between the internal diameter of 

the bearing inner race and the shaft, the inner sleeves and the shaft are always coupled with 

radial clearance. In the case of a radial clearance between the internal diameter of the bearing 

inner race and the shaft a considerable amount of the pinion torque, up to 18%, is transmitted 

by the pinion to the ring nut, whereas in the case of interference the amount drops down, but 

remains present. This outcome is due to the occurrence that, as an effect of the friction coupling 
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between the inner rings and the shaft, a portion of the pinion torque is transmitted directly to 

the shaft and to its inner splined. The present phenomenon is well highlighted in Fig. 2.21, where 

the two curves account for the two described conditions: the blue one refers to clearance, 

whereas the green one is related to interference. It can be remarked that, for a given value of 

torque at the pinion (horizontal axis), the two curves yield different values of the torque 

transmitted to the ring nut. In particular, under the clearance condition a higher amount of 

torque is transmitted to the ring nut, whereas, under the interference condition a higher amount 

of torque flows directly to the shaft and is not transmitted to the inner sleeve. 

 

Fig. 2.21 Torque transmitted to the ring nut in the two (extreme) coupling configurations, as a function of the 

pinion torque 

2.3.6 Effect of preload loss and primary reason for the observed failure 

The torque transmitted to the ring nut, in combination with a certain amount of preload scatter 

due to the variability of the frictional conditions of the threaded parts, may lead to a sudden 

loosening of the nut, which in turn makes the axial preload of the backward bearing drop down 

to zero. Therefore, the described torque bypass occurrence seems to be the main reason for the 

unexpected ring nut loosening that was observed in some shafts. Nut loosening, with consequent 

loss of bearing preload and bearing detachment from the body is a very serious outcome. In fact, 

under the hypothesis that the rear side bearing becomes ineffective, the actual constraining of 

the pinion shaft would drastically change. Both static and fatigue assessments have been 

repeated in this new less constrained configuration and the conclusion is that the shaft would no 
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longer be able to withstand the fatigue loads generated by the duty cycle. This occurrence is well 

highlighted in the Haigh diagram in Fig. 2.12, where a bearing detachment condition 

representative point has been appended. This point lies in the unsafe region, which indicates that 

a fatigue failure is likely to occur in this condition. Therefore, this outcome indicates that the 

observed shaft failure must be surely investigated in the frame of the nut loosening observed in 

similar groups, since loosening and resulting bearing preload loss directly leads to fatigue failure. 

 

2.4 Discussion 

The main outcome of this work is that the mechanical group appears to be well designed against 

static and fatigue loads, considering the nominal load cycle and under the hypothesis of regular 

constraining at both bearings. However, under the same load conditions, if backward bearing 

detachment takes place, fatigue failure is likely to occur. In addition, the adoption of spacers 

(sleeves and shims) between the inner races of tapered rolling bearings may lead to an undesired 

torque transmission to the threaded nut applied to the pinion shaft tail. The pulsing torques 

transmitted to the ring nut, regardless of pinion rotation direction, may induce a long-term 

loosening of the ring nut. This event has the detrimental outcome of worsening the constraining 

conditions and increasing the state of load of the shaft. The fatigue assessment has indicated that 

in this modified condition the shaft is no longer able to withstand the actual loads: therefore, 

failure occurs. The torque bypass towards the ring nut is the primary reason for nut loosening, 

which, in turn, is the reason for preload loss, triggering the finally failure. A proof to this chain of 

events preceding failure can be provided by the ring nut loosening that was observed in some 

shafts. These groups were then refurbished before failure occurrence. Moreover, the remarked 

fluctuation of the preload forces, which is likely to be due to a dimensional scattering affecting 

the mounted ring nuts, amplifies the observed variability of the mechanical response of the 

studied group. This fluctuation is probably a further reason for preload loss and nut loosening. 

Considering the outcomes of the performed studies, in order to overcome the described 

problems and to improve the pinion shaft reliability, the use of mechanical or adhesive locking 

devices in combination with spacers is strongly suggested. Moreover, the analysis of the aspects 

which affect the friction coefficient and the repeatability of the tightening process is critical in 

order to ensure a correct preload of the tapered roller bearings. 
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3. Experimental investigation on the influence of lubrication on the frictional characteristics 

of threaded joints 

 

3.1 Introduction 

The threaded joints find one of their major advantages in the possibility to be easily assembled 

and disassembled for maintenance purposes. But the friction condition at every tightening can 

be very different as the behaviours reported in fig.3.5. The most widely used tightening approach 

consists in the use of a torque wrench, with tightening torque being applied to the screw head 

or to the bolt nut and being subsequently increased up to a desired value. The recommended 

values usually depend on the required preload force and on the estimated value for the total 

frictional coefficient (at the underhead and in the threads). However, uncertainties on friction 

may reflect in an overestimation or underestimation of the actual clamp force, with consequent 

crew yield or lack of safety of the joint [1]. For this reason, the frictional properties of threaded 

connections and the main factors that are likely to affect the tribological response have been the 

subject of several studies. For instance, the effects of oil lubrication and of surface finishing at 

the underhead along with that of the screw technological process have been experimentally 

studied with reference to motorbike suspensions [2]. A Design of Experiment assisted campaign 

indicated that lubrication and underhead anodizing are highly significant at reducing friction. The 

role of a suitable lubrication, when using Titanium alloy screws for lightweight structures in the 

automotive field, has also been investigated [3]. Experimentation indicated that the tribological 

response is significantly enhanced, when applying Interflon BV ceramic paste, even in the case of 

repeated tightening. The important role of friction and consequently of lubrication in lightweight 

design is also confirmed by the investigations focused on Aluminum alloy threaded connections 

[4]. The evolution of friction in repeated fastening has been the topic of other papers, e.g. [6], 

where the role of wear at the underhead is also emphasized. The importance of an accurate 

estimation and control of the preload entity in order to warrant the reliability of the threaded 

joint is also emphasized in [7-8]. The relationship between the applied tightening torque and the 

resulting preload has been studied as well by numerical three-dimensional models [9]. Friction 

again proved to have a great influence on the aforementioned relationship. Further studies deal 

with the effect of friction on the fatigue life of bolted connections [10] and with the effect of 

tightening speed [11].  

Nowadays, there is an increasing interest in the development and application of suitable surface 

treatments or coatings with beneficial outcomes in terms of friction reduction. Regarding surface 

treatments, shot-peening may be cited: as an effect of shot impacts, micro dimples are created 

[12]. Tribometer tests indicated a significant reduction of friction, up to 40%, due to the 

increment of the contact points and to the generation of pockets for lubricant with consequent 

hydrostatic effect. Regarding coatings, some studies dealt with Diamond-like carbon (DLC) thin 

films. In particular, the tribological response of amorphous hydrogenated carbon films (a-C:H), 

hydrogen-free hard carbon films (a-C) and of Titanium-doped amorphous hydrogenated carbon 

films (a-C:H(Ti)) was the topic of the research in [13]. Pin-on-disc tests in both unlubricated and 
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lubricated conditions with continuous monitoring of friction and wear indicated that these 

coatings generally have a good response. Friction may be reduced even under 0.1, especially with 

the beneficial contribution of Ti doping. Further studies regard the tribological behavior of 

electrodeposited Zn–Ni coatings and of Zn- and Cd-based coatings. Experimental tests by 

tribometer confirmed a beneficial impact on both wear and friction even in dry conditions [14]. 

The effect of black oxidization was finally the topic of the study [15]. This type of coating is 

created by a process developed at the beginning of 1900 and is particularly suitable for the 

production of an attractive black finishing with positive outcomes from the points of view of 

corrosion resistance, lubricity and galling resistance [16]. Experimental campaigns reported in 

[17-19] reported a significant effect of black oxide surfaces at lowering friction. It must be pointed 

out that the aforementioned studies tackle the general application of the aforementioned 

treatments and coatings by tribometer tests: specific applications on threaded connections and 

related frictional tests involving screws are not present in the literature. The only exceptions are 

related to some works dealing with TiN, WC, TiC, TiCN and microcrystalline diamonds to be 

applied to abutment screws in the specific field of dental implants [20-22]. As far of lubricants 

are concerned, mineral oils have several industrial applications, for instance in gear units. When 

a liquid lubricant is used, the oil is usually spread on the entire screw, involving both the 

underhead and the threads. Whereas, the previously cited ceramic paste can be regarded as a 

solid lubricant used in the automotive fields, thanks to its stability even at high temperatures and 

to its efficiency even in case of multiple tightenings [3, 5]. In addition, it proves to be highly 

effective in applications with high pressure at the underhead [23] and in the threads to avoid 

stick-slip occurrence [3]. Several applications of the Interflon ceramic paste are mentioned in 

[24], where this lubricant was applied to different material screws used to fasten different 

material flanges. A further example of solid lubricant is Molybdenum disulfide (MoS2) that can 

be directly deposited on surfaces or can be regarded as an additive to be mixed up with liquid 

lubricants. It must be remarked that, as a solid lubricant is applied, it may be selectively spread 

on the entire screw or in some regions only. Regarding this point, the separate effects of 

lubrication at the underhead and in the threads are not reported in the literature. Finally, dry 

conditions are sometimes used for screws or bolts used for tightening gearboxes or machine 

cases, for which a limited amount of untightening and tightening procedures is expected during 

the overall life. Based on the literature survey, several coatings are generally available and are 

also promising from the point of view of the tribological response. However, their application on 

screws and bolts and the related outcome have been rarely investigated. The motivations to this 

work mainly arise from Refs. [14] and [15], dealing with Zinc-based coatings and with black 

oxidization: these treatments are commonly applied to screws, but there is a lack of knowledge 

on their actual effect on friction. Regarding lubricants, unlubricated, oil-lubricated and ceramic 

paste-lubricated conditions are compared, tackling also the issue of selective solid lubrication. 

This study deals with these topics, by an experimental approach on steel screws, following the 

recommendations of ISO 16047 [10]. A number of statistical methods, ranging from fractional 

factorial Design, to One and Two-way Analysis of Variance ANOVA and to pairwise tests has been 

used to tackle the aforementioned questions. In addition, a case study on the effect of repeated 
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tightening in a Planetary gearbox with and without the adoption of ceramic paste has been 

reported. 

 

3.2 Effect of coatings and a suitable lubrication on the friction coefficient 

 

3.2.1 Materials and methods 

All the tests were performed on M14 X 2 8.8 class hexagonal head steel screws, with a length 

between 50 and 60 mm. Their technical features are summarized in Table 3.1. Moreover, for the 

sake of clarity a sketch of the threads with related dimensions is shown in Fig. 3.1. 

Table 3.1. Main features of the tested steel crews 

 

 

 

Fig. 3.1. A detail of the screw and nut threads with related dimensions 
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The performed trials were aimed at the determination of the total frictional coefficient, μtot, 

considering friction at the underhead and in the threads. The entire experimentation was carried 

out by a testing machine (Test GMBH, Model 201), capable of manually applying tightening 

torque and rotation on screw head with simultaneous measurement of both the applied torque 

and the resulting preload. The test bench was equipped by a torque and an axial load measuring 

devices, respectively with full scales of 1,100Nm and 300kN and with 0.5% accuracy. In addition, 

the testing device was provided with a steel test-bearing-plate (type HH) to be posed under the 

screw head, having a 30μm average roughness, 15.5 mm diameter holes and all the other 

features conformal to the recommendations of the aforementioned Standards. A rendering of 

the screw testing machine is shown in the section view in Fig. 3.2. 

 

Fig. 3.2. A sketch of the test bench utilized in the experimental campaign 

 

The tests were conducted by fixing the bolt nut and applying the tightening moment to the screw 

head by a wrench. It was applied at a constant rotational speed with on-line measurement of the 

induced axial preload. The tightening procedure was gradually incremented until preload 

increased up to 75% of the axial load at yield point (55,200N). The total frictional coefficient was 

then computed in this condition by Eq. (3.1), where T and Fv respectively indicate the tightening 

torque and then axial preload, p is the pitch, d2 is the pitch diameter and Db is the mean diameter 

at the underhead. 
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This formula, available in [25], is based on the assumption that a total frictional coefficient, 

averaged between those at the underhead and in the threads, can be considered. Further details 

can be found in this Reference. 

The experimental part was divided into three campaigns: a screening analysis was initially 

performed by the tool of the fractional factorial design assisted by the Taguchi method [26-27]. 

The use of the L8 magic square made it possible to arrange a campaign involving 5 factors, 

considering only 8 treatment combinations. Ten replications were performed for statistical 

evidence reasons, for an overall number of 80 experiments. It made it possible to individuate the 

two most significant factors, i.e., screw coating and lubrication. Afterwards, the analysis was 

deepened: the following campaign, based on a Two-Way ANOVA, involved the aforementioned 

factors with the aim of comparing their role on friction and of investigating a possible interaction 

between them. For this purpose, two different levels of lubrications were considered. The 

involved lubricants were a solid one consisting in a ceramic paste (Interflon Paste HT 1200) and 

a liquid one, consisting in an industrial mineral oil (Shell Omala S4 WE 320). The ceramic paste 

was spread both at the underhead and in the threads, whereas, for oil lubrication the entire 

screw was immersed into a bath containing the oil. All these procedures were performed by the 

same operator. The final campaign was then focused on the effects of lubrication. In this case, 

the effect of ceramic paste application, at the underhead or in the threads only, was compared 

to the effects of the oil and of the dry condition. For this purpose, the tools of One-Way ANOVA, 

of pairwise (Least Significant Difference and Newman-Keuls) tests and of orthogonality were 

used. The orders of all the tests were fully randomized, following the recommendations of the 

most widely known statistics manuals [26-27].  

 

 

3.2.2 Preliminary screening analysis 

A screening analysis was carried out first, to investigate the importance and the significance of a 

number of factors, and to determine which factors could be conversely neglected in the further 

analysis. The considered factors included the surface coating of the screw, the surface treatment 

of the washer located beneath the screw head, the state of wear of the washers, the coating of 

the nut, the lubrication of the joint. Two levels were considered for each factor: the considered 

factors along with the related levels are described and summarized in Table 3.2.  
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Table 3.2. Factors and related levels involved in the screening experiment 

 

 

Table 3.3. Treatment combinations of the screening experiment and related notation 

 

 

As mentioned above, a number of ten replications was chosen to warrant sufficient evidence of 

the acquired data. This choice is due to the fact that the tightening operation usually has a great 

scatter in the results, due, for example, to the tightening speed, to a not constant lubrication and 

to the geometrical tolerance of the components involved in the assembly. As a consequence, 
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considering a full factorial design 25 with 10 replications would have required a number of 320 

experiments to be run, which was considered to be too high for a screening test. Therefore, this 

number was lowered, by fractionating the experimental design. For this purpose, the technique 

of fractional factorial design was adopted: the L8 magic square by Taguchi made it possible to 

easily manage a 25-2 experiment with just 8 treatment combinations to be processed. Therefore, 

80 trials were performed: a detail of the 8 treatment combinations, expressed according to the 

Yates notation is reported in Table 3.3 [26-27], where “0” and “1” are referred to the “low” and 

“high” levels of Table 3.2. For instance, the treatment combination in the first row was obtained, 

considering all the factors at their low levels, whereas the second one was obtained for the C, D 

and E factors at their high levels (A and B factors at their low level). The treatment combinations 

are indicated by the more compact Yates notation in the first column, Further details are available 

in Ref. [26]. The results retrieved for the mentioned combinations are collected in Table 3.4, in 

terms of the total frictional coefficient. The main effects of the five factors were determined 

according to the L8 by Taguchi and to the Yates Algorithm: they are shown in the bar graph in Fig. 

3.3 along with their signs. Table 3.4. Results in terms of frictional coefficients determined for the 

8 treatment combinations 

 

Table 3.4. Results in terms of frictional coefficients determined for the 8 treatment combinations 
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Fig. 3.3. Bar graph indicating the main effects of the investigated factors along with their signs 

 

The results were then statistically processed by the tool of augmented ANOVA [26-27], used also 

in [28-30], to determine the significance of the five parameters. The results are reported in Table 

3.5, where the acronyms SSQ, DoF, MSQ, Fcalc. and p.v respectively indicate Sum of squares, 

Degrees of freedom, Mean Squares, Fisher’s ratio and p-value. The term Total indicates the total 

amount of variance, split into the effects of any single factor, the uncertainty-related term (Error) 

and a Residual. It must be pointed out that the Error term accounts for all the other factors, other 

than those in Table 3.2, that are likely to affect the frictional coefficient. In particular, the 

connection actual surface, contact geometry and external environment can be cited among these 

factors that, with their variations, may have an effect on the output variable, causing a noise 

commonly regarded as uncertainty. A sufficiently high number of replications, usually higher than 

5, is necessary to reliably estimate uncertainty. Considering the widely accepted [26-27] 5% 

significance level, the parameters related to lubrication and to screw surface coating are highly 

significant and their effects are indeed the highest. Whereas, the effects related to the nut 

surface condition and to the washer previous use have a very low importance and are widely 

below the significance threshold. The effect of the washer type is also significant, even if it is 

lower than the other previously mentioned significant ones. A significance response indicates 

that the effect of those factors is evident, if compared to the uncertainty of the experiment: in 

other words, it can be separated from that of all the other aforementioned factors responsible 

of noise. Whereas, a not significance response indicates that the effect is confounded due to 

higher uncertainty.  Based on these results, and considering also that the effect of underhead 

finishing has been already studied in literature (for example in [2]), the following campaigns were 
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focused on the determination of the effects of screw coating and of different lubrication 

procedures on the frictional response. 

Table 3.5. Augmented ANOVA to determine the significance of the effects 

 

 

3.2.3 Experimental results 

 

As mentioned in the Introduction Section the following campaigns were aimed at studying the 

combined effects of screw coating and of lubrication and at a more detailed investigation on 

lubrication. The first campaign was framed within a two-factor ANOVA with six treatment 

combinations and ten replications each for a total of 60 experiments. No washer was used: the 

bolts were tightened, by torque application to the screw head posed on the test bench bearing-

plate. The high strength (class 8) zinc coated nut was maintained constrained during the 

tightening procedure. The bearing-plate hole was changed after each trial. The results are 

collected in Table 6. As mentioned, the second campaign was focused on the effect of lubrication: 

this was regarded as single factor and was studied at different levels by the tools of a One-way 

ANOVA. In particular, five levels were considered with ten replications each for a total amount 

of 50 tests. The aforementioned levels corresponded to full (at the underhead and in the threads) 

Interflon lubrication, Interflon lubrication at the underhead only, Interflon lubrication in the 

threads only, full lubrication in Oil and dry conditions. The undernut was always lubricated (by 

Interflon or Oil). Black oxidized screws with related heads posed on the aforementioned steel 
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bearing-plate were used for the experiment. No washer was used and the substrate of the 

bearing-plate was new for each trial. The related results are summarized in Table 3.7. 

Table 3.6. Results in terms of frictional coefficients related to lubrication and screw coating effects 
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Table 3.7. One factor ANOVA involving Interflon or Oil full or partial lubrications 

 

 

3.2.4 Discussion 

The results of the first campaign, detailed in Table 3.6, where processed by the tool of two-way 

ANOVA to determine the significance of the two factors and of their interaction. The output is 

reported in Table 3.8, where the acronyms SSBR and SSBC, respectively indicate “Sum of Squares 

Between Rows” and “Sum of Squares Between Columns”. These two terms are respectively 

related to the impacts of the “row” and of the “column” factors, i.e. Screw coating and 

lubrication, considering again Table 6. The other acronyms retain the same meanings as in Table 

3.5. The results indicate that the two factors are highly significant. Their interaction is also 

significant at the 5% significance level, even if it is much weaker (it turns to be negligible at a 3% 

significance level). The results can be commented in the light of the bar graph in Fig. 3.4, where 
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the excursion intervals of the results, from minimum to maximum values are also sketched. Zinc 

coating generally has the effect of significantly lowering the frictional coefficient, by an amount 

of approximately 20%. Its effect is similar in all the studied lubrication conditions, i.e. for dry 

contact surfaces, with Oil and Interflon lubrications. This similarity of the effects confirms that a 

not strong interaction is present. Regarding lubrication, Oil lubrication leads to a drop of the 

frictional coefficient by about 15%, whereas Interflon lubrication makes it possible to achieve a 

further drop by 17%, corresponding to a total drop by 32%. Therefore, on one hand, solid 

lubricant proved to be more effective than liquid one, consistently with the results of [3]. On the 

other hand, black oxides and Zinc coating are both effective at reducing friction, but zinc coating 

has a more beneficial effect. This effect can be related to surface smoothening or to the shearing 

of the treated surface. A brief remark must be finally made, regarding the possible effect of the 

initial smearing state and of the screw-structure interaction on the final actual lubrication and on 

its overall effect. This point is often a key issue, as serious failures [31] may arise from a not 

proper application of a lubricant, resulting in too high or too low preload. All the screws were 

lubricated by the same operator and the results exhibit a remarkably decreasing scatter, when 

comparing the frictional response in dry conditions to that under Oil and, especially, Interflon 

lubrication. This occurrence indicates that, despite the aforementioned issues, a final uniform 

lubrication can be obtained anyway. This positive outcome and stable behavior of the applied 

liquid and solid lubricants is also testified by their uniform response under repeated tightenings 

[3, 5]. Regarding the ceramic paste, it is worth remarking that, on one hand the smearing 

procedure must be performed manually, but, on the other one, visual inspection is usually 

sufficient to make sure of the correct lubricant application. This check is even facilitated by the 

color contrast between the ceramic paste and the screw surface.   

Table 3.8. Two-factor ANOVA to determine the significance of the effects of screw coating and of lubrication 
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Fig. 3.4. Bar graph indicating the effects of screw coating and of lubrication on friction 

 

The final step consisted in the detailed analysis of lubrication. The results in Table 3.7 were 

processed by One-way ANOVA: the output is reported in Table 3.9, which confirms, as expected, 

the high significance of the studied factor. Its effect is related to the term SSBC, acronym of “Sum 

of Squares Between Columns”, indicated in the first row of the Table.3.9 

Table 3.9. One-factor ANOVA in the investigation of the effect of lubrication 

 

The analysis was therefore deepened with the aim of allocating the sources of variance. In 

particular, it was interesting to compare the effect of the ceramic paste lubrication, when the 

lubricant is applied to the entire screw or just at the underhead or in the threads. The related 

response needed to be compared to that in dry condition or in Oil full lubrication. For this 

purpose, the tool of pairwise tests was used. In particular, two test types were applied: the Least 

Significant Difference (LSD) and the Newman-Keuls Test. The first one compares the difference 

of two column means (considering the results in Table 7) to a fixed threshold. It depends on the 
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Mean Squares Error (MSE), namely the ratio between the Error term in Table 3.9 and its degrees 

of freedom, and on the number of replications. The second one adopts a variable threshold, 

which increases, as the difference between column means increases [26]. From this point of view, 

this second test, which adopts a generally higher threshold, is more reliable, when pointing out 

significant differences. The fixed threshold for the first test, namely the LSD, is computed in Eq. 

(3.2), where R indicates the number of replicated tests, 10. Whereas, the threshold for the 

Newman-Keuls Test (NKD) is indicated in Eq. (3.3), where q is a coefficient provided by Ref. [26]. 

This coefficient assumes different values, depending on the number of steps separating the 

column means, when they are ordered in increasing order. This occurrence makes it possible to 

have a variable threshold. For the sake of clarity, column means are appended at the bottom row 

of Table 3.7. The results of the comparisons along with the considered thresholds are reported 

in Table 3.10. 

R
MSEtLSD

2
          (3.2) 

R

MSE
qNKD            (3.3) 

Table 3.10. Pairwise Tests by LSD and Newman-Keuls methods 
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Considering in particular the Interflon lubrication, the frictional response with lubrication at the 

underhead only, was compared to that when only the threads are lubricated. Both the tests 

indicate that the differences are significant. Afterwards, the response with lubrication in the 

threads only was compared to that in dry conditions. In this case, the measured friction 

coefficients are quite close and the difference of column means is below the thresholds for both 

tests. Whereas, when comparing the response with lubrication at the underhead to that without 

lubrication, a significant difference is indicated by the LSD Test. It can be remarked that the 

Newman-Keuls Test, which is more reliable, since it considers a much higher (about 37%) 

threshold (0.019 vs. 0.013), was consistent to confirm this result. This is an interesting outcome 

that indicates that Interflon lubrication in the threads retains a much lower importance than that 

at the underhead. Conversely, lubrication at the underhead is essential to reduce friction 

affecting the bolt preload. This outcome indicates that the tribological response upon tightening 

is steered more by the contact at the underhead rather than by the contacts in the threads. This 

contact is generally affected by the actual roughness of the surface at the underhead. Therefore, 

friction at the underhead is the main responsible of torque dissipation, i.e, of the amount of 

tightening torque that is lost due to friction and is not converted into axial preload. As a matter 

of the fact, lubrication at the underhead and limited friction between the mating surfaces provide 

the benefit of significantly lowering the amount of dissipated torque, thus allowing a much higher 

torque to be transferred to the shank and converted into axial preload.  

The same tool of pairwise tests indicates that Interflon lubrication, even when carried out at the 

underhead only, is more effective than Oil lubrication. These results can be summarized by the 

bar graph in Fig. 3.5, where solid vertical lines indicate significant differences between the 

adjacent distributions, the bar extensions are proportional to mean values and excursion ranges 

from minimum to maximum values are added. The results of the pairwise tests were finally 

refined by the tool of orthogonality (used also in [28-30]), which made it possible to split the 

sources of variance in the performed experiment. The results of this analysis are summarized in 

the cake diagram in Fig. 3.6. 
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Fig. 3.5. Bar graph indicating the results at different levels of lubrication along with their excursion ranges 

 

 

Fig. 3.6. Cake diagram summarizing the sources of variance determined by its orthogonal decomposition 
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Considering the outputs of the pairwise tests, the results under full Interflon lubrication and 

under underhead lubrication were merged together and compared to those in Dry conditions or 

with lubrication in the threads only. The results in these conditions were also regarded as merged 

together. It can be pointed out that the largest amount of variance, 84% of the total, is related 

to this contribution. Another, much smaller, source of variance is related to the response under 

full lubrication and with lubrication at the underhead only. Very small and not significant slices 

correspond, finally, to a residual and to the response in dry conditions vs. that with lubrication in 

the threads only. The results of the augmented ANOVA are reported in Table 3.11. 

Table 3.11. Augmented ANOVA in the investigation of the effect of lubrication 
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3.3 Effect of a suitable lubrication on the friction coefficient for repeated tightening 

operations 

In the previous paragraphs the effect of a suitable lubrication with a ceramic paste it is taken into 

account for different coating of the fasteners. In order to evaluate the effect of the same 

lubrication condition on the friction coefficient for a repeated tightening, it was analyzed the case 

of a Planetary gear boxes. The present work has been carried out by means of both numerical 

finite element analyses and experimental stress analysis techniques. 

3.3.1 Introduction 

Planetary gearboxes generally consist of a ring gear, which is connected with the input and output 

flanges by means of several screws, equally spaced along the diameter. These screws must 

provide enough axial preload to the parts in order to allow the assembly withstanding the design 

breakaway torque. The axial preload is easily found, provided that the geometry of the screw and 

the friction coefficients in the thread and in the underhead are known. How is reported in the 

previous paragraphs the friction coefficient have a strong impact on the performance of the 

threaded joints, and are in turn affected by several parameters as: (i) the materials in contact 

[24,32-35], (ii) the wear or corrosion of the surfaces [2,6,36], (iii) their state of lubrication 

[3,31,37,38], (iv) the coating characteristics [39] and (v) the tightening speed [40]. Moreover, the 

literature reports that a better exploitation of the screw material may be achieved, if the 

coefficients of friction take values within a certain interval [41]. Due to manufacturing reasons, 

simultaneous torque–angle control [37,42] or more sophisticated means (e.g. that reported in 

Heyman and Chern [43]) to assess the achievement of a correct preload during assembly are not 

feasible for the particular gearbox that was the object of this investigation. Therefore, since the 

tightening torque remains the only controlled parameter during the assembly procedure, it is 

mandatory to characterize the friction coefficients accurately. Other than this, maintenance 

operations introduce one more issue: in fact, the wearing conditions and, consequently, the 

friction coefficients experience significant changes through repeated tightenings. Due to this 

occurrence, the axial preload is expected to encounter strong fluctuations, although the 

retightening torque is retained constant. As a consequence, loosening in operation conditions is 

likely to occur, which may lead to undesired relative displacement between the ring gear and the 

flanges and sometimes induce more serious failures. [44] The present research aims at 

characterizing the evolution of the coefficient of friction through multiple tightenings, in the 

presence or absence of lubricants. An instrumented sleeve is used for measuring the screw 

preloading force during repeated tightenings Fig. 3.7. The mean friction coefficient of the joint is 

then calculated back, by means of a widely known formula [3,36], as a function of the geometry, 

the preload torque estimated by a torque wrench and the axial preload value measured by the 

instrumented sleeve. The tests have been carried out considering both dry and lubricated 

surfaces, over a set of five re-tightening operations. 
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Figure 3.7: Sketch of the specimen for the evaluation of the screw initial preload FV. 

 

 As detailed in [2,3] the instrumented sleeve must be interposed between the screw underhead 

and the flange. In order to recreate the actual boundary conditions in terms of frictional behavior 

of the underhead, the specimen shall be manufactured with the same material, roughness and 

surface treatment of the flange. In the present case, the flanges are manufactured with cast iron 

EN GJS 500-7U(EN 1563:1997,22 see Table 3.12), whereas the ring gear is made of steel. The 

flanges have a mean roughness Ra 5 µm and a mean hardness HB30 240. The parts are joined 

together by means of twenty M20, L 160 mm, class 12.9 (ISO 898-1: 1993[46]) black oxidized 

socket head screws, whose characteristics are summarized in Table 3.12. 
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Table 3.12: Cast iron EN GJS500 - 7 properties, according to [45] 

 

 

Table 3.13: Screw characteristics, according to [46-47] 

 

 

 

3.3.2 Finite elements analysis  

In order to assess the overall behavior of the joint before the experimental tests, a finite elements 

analysis has been performed on the gearbox. The primary purpose of such analysis was 

correlating the preload applied to the screws to the strain measured on the external surface of 

the planetary gear. The secondary aim of the FEA analysis was to assess whether the bolt preload 

chosen for the experimental tests would be suitable, considering the mechanical characteristics 

of the assembly. The FEA model has been developed in ANSYS Workbench R.12. 
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Figure 3.8: Mesh of the FEA model (quarter geometry) 

 

The geometry of a quarter of the gearbox has been used, leveraging the double planar symmetry 

of the structure. It was analyzed a quarter of this in order to considering the effect of all screws 

in a specific point. The strain distribution in the gearbox is not homogeneous in the thickness. 

The model has been meshed with four-node tetrahedral elements (SOLID187 in the Ansys 

nomenclature). The mesh is shown in Fig. 3.8: a refinement window can be seen in the central 

area of the external surface of the ring. The general element size is a=5mm, whereas in the 

refinement window it drops down to a’=1mm. The overall number of nodes is n=270,506.  

  

(a) (b) 

Figure 3.9: (a) Coordinate system, (b) load application 
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The contacts between the upper flange and the ring and between the ring and the lower flange 

are set as bonded, pure penalty, with the normal stiffness controlled by the software. The 

coordinate system is shown in Fig. 3.9 (a), whereas the loads can be seen in Fig. 3.9 (b). The 

preload set on each screw M20 TCEI 12.9, equal to Fv = 172,580N, has been simulated by the 

application of two equal forces Fv, sharing the same line of action, but opposite in sign. The forces 

represented by the downwards pointing arrows in Fig. 3.9 (b) are applied to an annular region, 

and represent the forces transmitted to the upper flange by the head of the screw. The upwards 

pointing arrows in Fig. 3.9 (b) indicate the forces applied to the threaded portion of the lower 

flange of the gearbox. The lower flange is externally constrained by means of a frictionless 

constraint applied to its base surface. The application of the aforementioned forces Fv leads to 

the state of stress depicted in Fig. 3.10, which refers to the normal stresses along the x axis in the 

gearbox. 

 

 

Figure 3.10: σx stresses generated by the screw preload Fv 

 

In Fig. 3.10, the area where the values of the stresses σx fall within the range [- 96 MPa; -86 MPa] 

is shown in white color, whereas the flags indicate some local values of σx. During the 

experimentation, a strain gauge will be applied on the external surface of the ring, with its main 

axis aligned with the axis of the ring (x-axis), as shown in Fig. 3.10. The signal of this strain gauge 

is sampled, in order to have an additional reading of the screws preload values: this arrangement 

allows to double check the correct reading of the sleeve specimens directly in the field. The sleeve 

specimen shown in Fig. 3.7 is instrumented by a quarter-bridge strain gauge, applied to its 

external cylindrical surface, with the main axis aligned with the screw axis. In order to obtain an 

accurate measurement of the force acting on the screw through the axial strain of the sleeve, it 
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is mandatory that such axial stress/strain state exhibits a uniform distribution over the entire 

section at the measurement point on the sleeve. 

 

 

Figure 3.11: Equivalent compressed area. 

 

Referring to Fig. 3.10 and Fig. 3.11, DW=30mm is the screw head external diameter, DA=40mm is 

the external diameter of the bushing, Dh=21mm is the hole diameter and Lk=60mm is the length 

of the bushing. In the present case, DW < DA < DW + Lk, hence the equivalent compressed area of 

the joint can be calculated, according to [48], by means of the following expression: 
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If a more accurate estimation is needed, some alternative formulations may be found in [26]. By 

comparing the value obtained by Eq. (3.4), to the nominal sectional area of the specimen: 

 

  222 910
4

mmDDA hAn 


 (3.5) 

 

According to this quite rough estimation, it can be observed that about twenty percent of the 

volume of the specimen remains uncompressed. Alternatively, according to [32], the angle of the 

substitutional deformation cone φE can be evaluated as follows: 
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 )ln(193.0)ln(013.0348.0arctan yLE    (3.6) 

 

Eq. (3.6) holds true in the case of cylindrical tapped thread joint, where LW is the length of the 

sleeve specimen. Symbol βL=Lk/Dw represents the length ratio of the joint, whereas y=DA/DW is its 

diameter ratio. In the present case, βL=2 and y=1.33, therefore φE=22.4°. It must be pointed out 

that the substitutional deformation cone angle is not identical to the angle formed by the screw 

axis and a segment connecting the outermost point of the bearing area in the underhead with 

the point at the external surface of the sleeve at which the y-axis pressure equals zero [32]. 

Nonetheless, it can be verified by means of FEA that such angle well defines a volume in which 

the y-axis pressure stays below 10% of the nominal contact pressure pn=FV/An. In order to 

proceed with a FEA simulation, the specimen has been modeled in two dimensions, imposing the 

axial symmetry of the model around y-axis (Fig. 3.12). The geometry has been meshed with eight-

node elements (PLANE 183) for a total amount of about 18,000 nodes with an average size of 

0.5mm. The screw-bushing contact is managed by a frictionless, pure penalty, contact 

formulation. The screw preload is simulated by a force applied at the lower end of the shank, 

equal to Fv=172,580N. The resulting normal stress distribution along the y-axis is shown in Fig. 

3.12. It can be seen that, about one third Lk underneath the screw – bushing contact surface, the 

stresses are: (i) uniformly distributed over the whole section and (ii) equal to pn=FV/An=190MPa. 

Looking at Fig. 3.12, one can appreciate how the uncompressed volume (pressure below 10% of 

the nominal contact pressure pn) is actually delimited by a paraboloid of revolution (and not a 

straight segment) connecting the outermost point of the screw head with the external surface of 

the sleeve: this occurrence is in good agreement with [32]. For the sake of an accurate strain 

reading, it can be concluded that the strain gauge shall be positioned at half the length of the 

sleeve or below. 
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Figure 3.12: σy stress distribution along the sleeve specimen, substitutional deformation cone angle φE. 

 

 

3.3.3 Experimental test 

A total amount of six specimens has been manufactured and instrumented, each underwent 

three equally spaced (120°) roughness measurements on both faces. This task has been 

performed by means of a roughness meter Zeiss Handysurf E-30A. The results are reported in 

Table 3.14. The upper face of the specimen is the one which mates with the screw underhead: 

this face is identified in the following by capital letter “A”, whereas the face at the opposite end 

is called “B”.  
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 Table 3.14: Underhead roughness measurements.  

 

 

From the data in Tab. 3.14, it can be concluded that the grand mean of the surface roughness of 

the specimens’ face “A” is Ra_M=4.81μm, which is in good agreement with the roughness values 

prescribed for the gearbox flanges. As a means to assess the conformity of the specimen material 

with the requirements reported in Tab. 1, hardness measurements have been performed on 

three randomly selected bushings. The samples have been taken on the “B” face of the sleeve, 

so as not to impair the surface characteristics of the “A” side. The results are summarized in Table 

3.15. 

Table 3.15: Brinell hardness test HB30. 
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By comparing the data of Tab. 3.15 with the data reported in Tab. 3.12, it can be concluded that 

the specimen material conforms to the specifications contained in [45]. Fig. 3.13 shows the test 

arrangement, during screw preloading. The specimens have been instrumented by means of 

strain gauges made by Vishay Micro measurements, model CEA-06-375UW-350Ω, with a grid 

length of 9.53mm. 

 

  

(a) (b) 

Figure 3.13: Test arrangement (a) overall view (b) close up of the specimen 

 

As for the numerical – experimental correlation, the axial stress on the outer surface of the 

gearbox has been sampled by means of a strain gauge made by HBM, model 1-LY43-10-350Ω, 

with a grid length of 10mm. This sensor has been applied with the main grid axis aligned with the 

gearbox axis, as shown in Fig. 3.14. All the strain gauges have been sampled by means of the 

control unit Vishay P-3500. 
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Figure 3.14: Position of the strain gauge at the outer surface of the ring 

 

In the case of dry surfaces, the upper face of the load cell and the threaded portion of the screw 

have been degreased by means of cleaner Loctite 7063. In the case of tightening with ceramic 

paste HT1200, the surfaces have been cleaned by means of Loctite 7063, and then greased with 

ceramic paste on the screw thread and underhead, as shown in Fig. 3.15. 

 

 

Figure 3.14: Application of the ceramic paste 

 

The application of the paste has been performed before the first tightening and never repeated 

for subsequent tightenings. The sleeve has then been mounted between the screw underhead 

and the flange of the gearbox, as indicated in Fig. 3.13. In order to account for the extra-length 

due to the sleeve, a longer screw (L=220mm) had to be used. All the other characteristics of this 

longer screw are identical to those of the original screw. During the tightening operation, the 

screw-sleeve assembly is connected in series [32, 2, 36], hence, the knowledge of the axial strain 

of the sleeve (whose geometrical and material parameters are known) easily leads to the initial 

preloading force of the screw. Provided that the tightening torque is simultaneously measured 
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by means of a torque wrench, it is then possible to compute the mean friction coefficient μm of 

the joint by means of Eq. (3.7): 

 

b
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Symbol T in Eq. (3.7) represents the preloading torque, whereas FV is the initial preload, p is the 

pitch, d2 is the mean diameter of the threaded portion of the screw and Db is the mean diameter 

of the underhead. The aim of the experimental campaign was to measure the mean friction 

coefficient of the joint, both for dry and lubricated surfaces of the thread and of the underhead. 

The evolution of the mean friction coefficient over a set of five consecutive tightenings has been 

studied as well. Therefore, the influence of lubrication on the surface wearing behavior has been 

determined, when multiple re-tightenings take place. The test sequence has been arranged as 

follows: 

 

1. Five consecutive dry tightenings of a single screw at T=400Nm, sleeve specimen number 1; 

2. Five consecutive dry tightenings of a single screw at T=400Nm, sleeve specimen number 2; 

3. Five consecutive dry tightenings of a single screw at T=400Nm, sleeve specimen number 3; 

4. Five consecutive tightenings with ceramic paste of a single screw at T=400Nm, sleeve 

specimen number 4; 

5. Five consecutive tightenings  with ceramic paste of a single screw at T=400Nm, sleeve 

specimen number 5; 

6. Five consecutive tightenings with ceramic paste of a single screw at T=400Nm, sleeve 

specimen number 6; 

7. Tightening of the whole set of twenty screws, at T=687Nm, repeated twice, with application 

of ceramic paste and acquisition of the strain at the ring gearbox, for the numerical – 

experimental correlation. 

 

All the tests, except the last one, have been performed at a preloading torque of 400Nm by 

means of a hand operated torque wrench made by Torqueleader, model 400, with three 

replications for each lubrication condition. The single screw tightening, as described in steps from 

1 to 6 has been performed with the remaining screws of the gearbox being fully tightened. It is 
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then important to point out that each replication has been performed with a new screw-

specimen pair, so that the current results were not affected by the tests at the previous steps. 

For actual manufacturing operations, the specified preloading torque of the gearbox screws is 

T=687Nm, while most of the tests have been performed at 400Nm. This choice is due to the issue 

that tightening at T=687Nm is not feasible with the hand operated torque wrenches that were 

available at the test facility. In fact, the actual components are assembled by means of impact 

wrenches. Since the influence of the tightening speed and of the preload level on the friction 

coefficients may not be negligible [38, 40], the test listed at point 7 has been conceived as a 

double check of the previously calculated friction coefficients (at reduced torque level and 

tightening speed) for the case of lubricated joint. In other words, the strain gauge on the ring 

allows to verify that, when T=687Nm is achieved by means of an impact wrench and μm is 

assumed equal to the mean value calculated based on the outcomes of the previous tests, the 

actual preload of the screws is suitably close to the value calculated by means of Eq. (3.8): 

)5,0577,0159,0( 2 mmm
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3.3.4 Results 

The data obtained by the experimental investigation are collected into the bar graphs of Fig. 

3.15(a) and (b). Each graph has scatter bands reporting maximum and minimum measured 

values. The dry joint has a mean friction coefficient (average of three measurements) of µm=0.311 

at first tightening, which grows up to µm=0.394 at fifth tightening. Over five re-tightening 

operations, the increase is in the order of 27% with a peak up to 38%. The paste lubricated joint 

has a mean friction coefficient (average of three measurements) of µm=0.162 at first tightening, 

which slightly decreases at µm=0.153 at fifth tightening, corresponding to a negligible variation 

of about 6% over the entire set of re-tightening operations. This outcome can be easily confirmed 

also by the analysis of the variance of the results (ANOVA) [2, 26, 28, 50–55] at a very high 

confidence level (around 90%): thanks to paste lubricating effect, the tribological behavior is 

made independent of the retightening operation. Considering the graphs reported in Fig. 3.15, it 

is interesting to highlight that lubrication yields an additional beneficial effect in terms of a 

remarkable reduction of the scattering. From the quantitative point of view, the ‘‘Sum of Squares 

Within’’ (SSW) term, which is the estimator of uncertainty in the ANOVA, is decreased by a factor 

60 (for the same number of degrees of freedom), as an effect of the paste application. As for the 

preload values, that of the dry screw has a mean value of 53kN at first tightening which drops 

down to approximately 42kN at fifth tightening. The evolution of the initial preload of the screw 

in the dry condition is highlighted by triangular indicators in Fig. 3.16.  
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(a) (b) 

Fig. 3.15: Mean friction coefficient evolution for (a) dry and (b) paste lubricated joint 

 

 

 

Figure 3.16: Initial preload evolution across a set of five re-tightening operations: dry and lubricated conditions  
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(a) (b) 

Figure 3.17: (a) Sleeve surface after dry tightening, (b) Sleeve surface after tightening with ceramic paste  

 

The underhead contact area of the sleeve (surface “A”) exhibits remarkably different wear 

patterns, depending whether the joint is lubricated or not. The two pictures in Fig. 3.17 (a) and 

(b) represent a sleeve underhead surface, which operated in the dry condition and a sleeve 

underhead surface treated with ceramic paste respectively. Across five re-tightening operations, 

the ceramic paste treated surface undergoes far less degradation with respect to its homologous 

operated in the dry condition. The large pits visible in Fig. 3.17 (a) are due to a noticeable amount 

of material removal, as it can be appreciated in Fig. 3.18. This image refers to a sleeve that 

operated in the dry condition across five re-tightenings, just after screw removal: the large 

amount of iron debris can be clearly seen. 
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Fig. 3.18 Large amount of iron debris just after five re-tightenings and screw removal 

 

 

  

(a) (b) 

Fig. 3.19 Screw underhead after operation: (a) dry tightening, (b) tightening with ceramic paste  
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As a matter of the fact, a screw counterface, which operated in the dry condition for five re-

tightenings exhibits a noticeable amount of material transfer from the cast iron surface to the 

steel surface, as shown in Fig. 3.19 (a). Such occurrence is in quite good agreement with the 

findings of Riahi and Alpas [56], who identified a similar behavior in the case of severe sliding 

wear of grey iron – steel pairs. On the contrary, the paste lubricated steel surface shown in Fig. 

3.19 (b) displays no material transfer. As far as the validation test (#7 in the list above) is 

concerned, a friction coefficient being equal to the mean value at first tightening (μm=0.162) is 

initially assumed. Then, a tightening torque of T=687Nm is assigned to the twenty screws of the 

gearbox, by means of an impact wrench. Based on these assumptions, Eq. (3.8) gives FV=166kN: 

if the coefficient of friction was estimated correctly, this force should be acting on each screw. 

For such a value of FV, the FEA model forecasts a normal stress along the x-axis of 87MPa at the 

application point of the strain gauge. During the test, σx=100MPa has been sampled. The error, 

in the order of 13%, substantially validates the previously calculated friction coefficients. 

 

3.3.5 Discussion 

The dry joint exhibited a remarkable increase of the friction coefficient, associated with a 

proportional decrease of the initial preload, due to a severe degradation of the mating surfaces. 

The addition of a ceramic paste proved to yield beneficial effects, since it leads to a significant 

decrease of the friction coefficient value, with consequent remarkably higher values of the 

preload. Moreover, the lubricated joint shows a constant friction coefficient over the entire set 

of repeated tightenings, with a much reduced scattering. This occurrence is due to the capability 

of the lubricant of preserving the iron surface from material removal, which in turn leads to 

severe wear. 
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4. Experimental investigation on the influence of the engagement ratio on the performance 

of a medium strength treadlocker 

 

4.1 Introduction 

Adhesively bonded joints are used in many mechanical applications, because they offer several 

advantages, such as the reduction of weight, the increasing of strength and the improvement of 

fatigue and fretting corrosion performances. These advantages have been demonstrated to be 

effective in the case of interference fitted and adhesively bonded joints [1], namely, hybrid joints, 

whatever is the production system. Many researches evaluated the strength of these joints in 

dependence of several variables, such as the assembly pressure level [2], the type of materials in 

contact [3-4], the curing methodology [5], the operating temperature [6-7], the loading type [8-

9] and the type of joining technique [10-11]. In order to reduce the self-loosening phenomenon 

on bolted connections increasing the untightening torque, some anaerobic adhesives, named 

treadlockers, have been used since a long time. Threadlockers are divided, according to their 

static shear strength, between strong, medium and weak. In addition to their strength, these 

adhesives influence the tribological behavior of the threaded joint in different ways, due to their 

nature and especially the rate of polymerization. This type of adhesive begins to polymerize when 

confined in the airless pockets left by the roughness and the clearance between the mating 

surfaces. Generally, high strength threadlockers start to polymerize already during the tightening 

phase, causing an increase of the apparent friction coefficient of the joint, vice versa the medium 

and low strength types cause a decrease in the friction coefficient with respect to the dry state 

as reported in Loctite report. As seen in previous paragraphs, the adoption of a lubricant during 

tightening, leads to homogenizing the axial force generated by the screw, making the joint more 

accurate in terms of correlation between tightening torque and preload. Application of strong 

threadlockers is usually limited by adhesives manufacturers to joints which are not intended to 

be disassembled, such as head studs (these usually undergo angle controlled tightening). In order 

to obtain a lubricant effect united with an appreciable increase of the breakaway torque, a 

medium strength treadlocker could be chosen. However, in certain applications this kind of 

adhesive may not be adequate to achieve the desired breakaway torque. In order to increase 

such breakaway torque, one of the possible solutions is to increase the number of engaged 

threads, thus increasing the adhesion surface. In the literature [12] it has been proven that the 

performance of one of the most common medium strength threadlockers, (Loctite 243 by 

Henkel), is strongly influenced by the coupling pressure. In the previous sections, it has been 

shown that pressure on the thread contact surface varies between different threads of a same 

screw. Due to this, an increase in the untightening torque not proportional to the number of 

threads engaged may be expected. In order to evaluate the performance of a medium strength 

threadlocker for different engagement ratios (ER), defined as the ratio between the length of the 

screw engaged in the nut over the nominal diameter of the screw, an experimental campaign 

was carried out for three different levels of ER and three different screw nominal diameters. In 
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addition, for the different levels of ER it was decided to consider three different materials, due 

to their different characteristics of load distribution between the treads and their different 

affinity with the adhesive. (Tab 4.1) 

 

4.2 Materials and methods 

The research focuses on Loctite 243, due to its great diffusion which in turn leads to a large 

availability of information in the literature. The screws adopted were standard hexagonal head 

class 8.8, M6, M8 and M10, zinc coated, along with the respective zinc coated steel washers 

(according to ISO 898-1, ISO 7089). The experimental setup comprises: three machined plates 

Fig.4.1, manufactured with different materials, which allow to obtain different engaged lengths 

and a plane surface, perpendicular to the hole, some instrumented sleeves which allow to 

measure the preload force generated by the screw (Fig.4.2), an electronic torque wrench used to 

control the tightening and untightening torque and a cleaner, Loctite 7063, used to degrease the 

plate before tightening.  

 

Fig. 4.1 Machined plates 
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Fig. 4.2 instrumented sleeves 

 

The sleeve design adopted the same procedure described in paragraph 3.3.2, downstream the 

manufacturing phase they were instrumented with a quarter-bridge strain gauge, applied to the 

external cylindrical surface, with the main axis aligned with the screw axis. The threaded plates 

were made in three different materials: steel, cast iron and aluminum, whose details are given in 

Table 4.1. In fig. 4.3 it is shown the setting up of a generic specimen to be tested where it is 

possible to see the hole drilled part at the bottom of the plate (the nut of Figure 4.3) which 

controls the engagement length Lt. Each plate is provided with nine holes for each nominal 

dimension of the screws, equally divided between the three selected ER levels: 1, 1.5, 2. The 

expression of ER is given in Equation 4.1. 
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Fig. 4.3 Screw assembled with the sleeve, the plate and the washer 

d

Lt
ER   (4.1) 

Table 4.1 

 

 

4.3 Experimental test 

For each material, ER and size of the screw three specimens were tightened sequentially by hand, 

recording the tightening torque and the axial preload generated. After curing for 48 hours at 

room temperature (as reported in the data sheet of the threadlocker to obtain a complete 

polymerization) the untightening of the screws was performed, recording the breakaway torque. 

For each repetition of the tightening operations and for each screw dimension the instrumented 
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sleeves were always the same, only the washer was changed at each tightening, in order to have 

the same friction condition in the underhead and, therefore, to isolate the effect of the 

threadlocker on the threads. The screws were tested as received, without degreasing them and 

the threadlocker was applied on the screw in the treads nearest to the tip, thus during the 

rotation the nut pushed the adhesive along the screw. This procedure is reported in the 

datasheet of the threadlocker for the application in through threaded holes (Fig 4.4). 

 

 

Figure 4.4 Threadlocker application 

 

The adhesive remain entrapped in the volume between the threads (Fig 4.5) due to the 

tolerances adopted in the screw and in the nut, usually for commercial parts the tolerance is 6g 

for the screw and a 6H for the nut [ISO 965-1].  

 

 

Figure 4.5 distribution of the adhesive 

 

The screws were tightened following the prescription of the international standard ISO 261. The 

tightening operation was performed in torque control with a torque wrench: Torcotronic II 8455-

120 produced by Gedore. The torque levels adopted are reported in Tab. 4.2. 
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Table 4.2 

 

 

4.4 Results 

All the materials have a mean friction coefficient (average of three measurements) which grows 

up increasing the number of engaged threads. Fig 4.6 

 

Figure 4.6 mean friction coefficient behavior for different materials in function of ER 

The untightening torque Tu showed a linear behavior as well: Tu increases for increasing ER fig. 

4.7 and fig. 4.8. For both friction coefficient and untightening torque, the behaviors were 

confirmed by the analysis of the variance of the results (ANOVA) [9,27–34] at a very high 

confidence level (around 90%) for steel and aluminium nut. The cast-iron specimens showed a 

greater scatter in the results, which does not allow to draw any conclusions about the effect of 

ER over the untightening torque.  
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Figure 4.7 untightening torque for steel nut 

 

 

Figure 4.8 untightening torque for aluminium nut 

For each combination between size of the screw and thread material the equation of the curve 

was calculated and reported in the plots of Figures. 4.7 and 4.8. Both steel and aluminum nuts 

showed an increasing slope of the curves when the nominal diameter of the screw was increased.  
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4.5 Discussion 

The increasing effect of the ER on the friction coefficient can be considered localized in the 

thread, thanks to the adoption of a new washer in the underhead for each tightening. This finding 

makes the hypothesis of a lubrication effect of the threadlocker, at least in the case of aspect 

ratios ER greater than unity, less reliable. This behavior is due to a localized reduction of clearance 

between the threads, caused by an increase of the coupling length and probably to a beginning 

of polymerization due to a greater tightening time. In conclusion, the friction coefficient showed 

a dependence from ER. Increasing ER from 1 to 2 the friction coefficient grows up of 30% for the 

aluminum nut and 20% for the steel nut. Considering the results reported in section 3.2.1, where 

for a commercial nut (ER near to 1), the mean friction coefficient was measured and the mean 

friction coefficient measured for ER 1 with steel nut plus threadlocker the difference is negligible 

(µm=0.145 from section 3.2.1, µm=0.149 for the threadlocker). On the contrary, for the aluminum 

nut, it was observed a mean friction coefficient lower than that recorded for the steel nut, this 

result is quite unexpected for this material [13, 14]. This result can be explained by the lower 

wettability of the aluminum surface, which in turn leads to an overall lubricating effect of the 

adhesive during the tightening process. 

Regarding the effect of ER on the untightening torque, it is possible to highlight that for a certain 

material the slope of the curves increases when the nominal diameter increases. This behavior 

depends on the relation between the untightening torque and ER that also depends on the pitch 

and on the screw diameter, as shown in Equation (4.2). 

 

ERd
p

ERdd
pdnrAT mcu 


 3

2
22

2
2

  (4.2) 

Equation 4.2 is a  proportional analysis of the parameters which influence the relation between 

Tu and ER. In this equation, τ is the maximum shear stress of the adhesive, A is the adhesion area 

for one pitch, rmc is the mean radius of the contact area and n is the number of engaged pitches. 

The contact area, the mean radius and the number of pitches can be expressed as a function of 

the pitch diameter d2. All the constant values are omitted, τ is conserved due to its dependence 

on the clearance between the threads. This dependence is reported in the datasheet of the 

adhesive. Fig. 4.9 
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Figure 4.9 residual strength as a function of clearance between the joined parts for steel specimens [Loctite 243 

data sheet] 

 

The clearance between the threads for the whole screw dimensions can approximatively change 

from 0.03mm to 0.170mm considering a coupling tolerance 6H/6g (ISO 965-1) and, consequently, 

a difference of 20% can be found in the shear strength.(Fig.4.9). The curves referring to the 

aluminum nut exhibit a minor slope (Fig.4.8) if compared with those relevant for steel (Fig.4.7). 

This occurrence can be framed within the general lower wettability of aluminum surfaces with 

respect to steel ones [15, 16, 17]. Considering the macroscopic effect of ER on the untightening 

torque it can be concluded that the increasing ER produces a linear increasing of the breakaway 

torque. Increasing ER from 1 to 2, Tu increases its value of 25% for the steel nut and of 10% for 

the aluminum nut. 
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5. Conclusion 

Starting from the general equations proposed by Motosh and Shygley to correlate the tightening 

torque with the axial force generated by the screw during the tightening, the effects of the 

different approximations introduced in these equations have been analyzed. One of the main 

cause of the error in the correlation between the tightening torque and the axial force, has been 

identified by Nassar’s works in the assumption of a constant pressure distribution on the threads 

and on the underhead. However he has analyzed the effects of different pressure distribution 

without clarifying what the pressure distribution exactly is because strongly affected by the shape 

and the materials of the bodies involved in the screw connection. In order to assess the real 

pressure distribution, some FEA analyses were carried out considering the standard metric 

screws with hexagonal head. Despite their great diffusion and the large amount of information 

about the stress concentration factor in the threads or in the underhead, in literature it is not 

available an exhaustive quantity of data about pressure distribution, especially for different 

materials in contact and for this type of head. Thanks to these analyses it was possible to 

determine the correct contact radius to use in the equations. The analyses have highlighted slight 

differences in the effective radius compared to the mean radius for all the different materials 

analyzed. Starting from this clarification on the relation between the axial load and the tightening 

torque, a real case on selfloosening has been analysed. In this study it was highlighted that the 

adoption of inner sleeves to control the preload of the tapered roller bearing can transmit an 

undesired torque to the ring-nut and in addition that, if this ring-nut is not properly tightened – 

due to an uncontrolled friction torque – the pinion shaft could exhibit problems of selfloosening. 

However, the main reason for the adoption of the inner sleeve is the necessity to control the 

preload of the bearings with an imposed displacement instead of an accurate control of the 

tightening process, with an exact knowledge of the friction coefficient involved. This experience 

has highlighted the necessity of investigating the friction coefficients involved in the tightening 

process. Moreover, it is important to understand how we can control and regularize their 

behaviour, for a repeated tightening, perhaps with the adoption of a suitable lubrication. 

In order to investigate the effect of different surface coatings and different lubrication conditions, 

an experimentation campaign has been carried out applying the tools of fractional factorial 

design, Magic square Taguchi method and orthogonal decomposition of variance. Based on the 

result of the screening, the attention was then focused on the effects of the screw pleating and 

of lubrication. The following investigation, which involved these two factors, indicated that Zinc 

coated screws exhibit a lower friction coefficient with respect to black oxidized ones. This is 

reduced by approximately 20% both in dry condition and under ceramic paste or oil lubrication. 

Ceramic paste by Interflon proved to be highly effective at decreasing friction. The related 

coefficient is reduced by 32% with respect to dry conditions and by 17% in comparison to Oil 

lubrication. A moderately significant interaction was detected between the studied factors. 
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A further campaign was, then, aimed at deepening the analysis of lubrication. The most 

interesting result, achieved by running a One-way Analysis of Variance, followed by pairwise tests 

and orthogonal decomposition, is that paste lubrication at the underhead has an essential role 

at enhancing the tribological behaviour of the joint. In particular, it dramatically reduces the 

amount of tightening torque that is lost by friction at the underhead, and which cannot be 

converted into axial preload. On the other hand, the lubrication in the threads retains a minor 

importance and appears to be even ineffective, when comparing the threads in dry condition. 

Variance decomposition indicates that a very large amount (84%) is due to the different 

tribological response in lubricated conditions (full or only underhead) with respect to other 

conditions, regardless of the screw being completely dry or lubricated in the threads only. 

Moreover, one of the main advantages of the screwed connections is the possibility to 

disassembly the parts connected. But what happens to the friction coefficient when the 

tightening operation is repeated? In order to address this issue, a second experimental campaign 

has been performed on a differential gear box, focusing on the effects of the ceramic past 

previously analysed. In this investigation the dry joint exhibited a remarkable increase of the 

friction coefficient, associated with a proportional decrease of the initial preload, due to a severe 

degradation of the mating surfaces. The addition of a ceramic paste proved to yield beneficial 

effects, since it leads to a significant decrease of the friction coefficient value, with consequent 

remarkably higher values of the preload. Moreover, the lubricated joint shows a constant friction 

coefficient over the entire set of repeated tightenings, with a much reduced scattering. This 

occurrence is due to the capability of the lubricant to preserve the iron surface from material 

removal, which in turn leads to severe wear. At the end of this experimentation it was clarified 

the effect of a solid lubricant, the ceramic paste, never investigated before. Another possibility 

to obtain a lubricant effect and in addiction an increase of the untightening torque is the adoption 

of a medium strength threadlocker. Different studies are available in literature, but nobody has 

investicated the effect of the number of threads engaged on the untightening torque. A new 

experimental campaign has been, therefore, carried out in order to highlight the influence of the 

engaged threads. The outcome of the tests indicates that the increase of ER produces a linear 

increase of the untightening torque for steel screws and nut made by steel or steel screws and 

aluminium nuts. For steel nuts and ER=1 it was detected a friction coefficient similar to the dry 

case, which significantly increases when ER increases. For the aluminium nuts it was observed 

the same trend with ER, but starting from a significantly lower value respect to the value retrieved 

by the literature. Therefore a relevant lubricant effect has been highlighted only for the 

aluminium nuts. 


