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ABSTRACT 

 

We live in a constantly changing environment, characterized by climate changes, extreme 

weather events and the occurrence of more frequent geological hazards that have a strong negative 

impact on the territory and society, interrupting services, damaging buildings and infrastructure and 

jeopardizing the life of millions of people worldwide. For this reason, there is the need to build a 

society resilient to natural-hazards, which can understand how the natural system behaves and 

responds to natural and human-induced modifications and can adapt to these changes. The 

monitoring of the territory is necessary to comprehend the triggering factors and the mechanisms of 

geological hazards and to plan the most suitable actions to prevent and mitigate the risk. The 

monitoring of geological hazards with conventional ground-based techniques such as Global 

Positioning System (GPS) and levelling is usually expensive and time consuming, which limits the 

number of measured points and the overall duration of the surveys. One of the best way to overcome 

to these problems is to use remote-sensing techniques to monitor large portion of territory reducing 

operating costs and time. Advanced Differential Synthetic Aperture Radar Interferometry (A-

DInSAR) is one of the best tool to monitor and study ground displacements over very large portions 

of territory in a cost-effective way.  In this Doctoral Thesis, we applied A-DInSAR to the monitoring 

of the geological instabilities occurring in different areas characterized by unique geological and 

environmental features. The selected areas include different environments such as vegetate 

territories, low and steep topography, coastal areas, salty deserts, urbanized land, each of them 

affected by hazards of natural and anthropic origin such as landslides, subsidence and karstic 

activity. In each case study, the monitoring activity presented its own challenges that were overcome 

adopting specific technical solutions in the data processing and management. The aim of this work 

is to give an overview of the potential of A-DInSAR techniques when applied to the study of geological 

hazards in different environments. This can be useful to show to local Authorities that A-DInSAR can 

be fully integrated as part of the activities carried out to manage the territory and to prevent and 

mitigate the risk related to geological hazards.   
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RIASSUNTO 

 

Viviamo in un mondo in costante evoluzione, caratterizzato da cambiamenti climatici, eventi 

naturali estremi e dal verificarsi di sempre più frequenti catastrofi di natura geologica che hanno 

forte ripercussione sul territorio e sulla società, con l’interruzione di servizi, danni alle strutture e 

infrastrutture mettendo a rischio la vita di milioni di persone in tutto il mondo. Per questo c’è la 

necessità di costruire una società resiliente al rischio geologico e che sia in grado di capire in che 

modo la natura reagisce e si adatta ai cambiamenti sia naturali che causati dalle attività umane. Il 

monitoraggio del territorio è essenziale per riuscire a comprendere i meccanismi che portano al 

verificarsi di un evento e in questo modo riuscire a prevenire e mitigare il rischio con azioni ed opere 

adatte. Il monitoraggio e lo studio di eventi geologici quali subsidenze e frane attraverso tecniche 

geodetiche da terra come per esempio Global Positioning System (GPS) e livellazione è solitamente 

molto dispendioso sia in termini di tempo che di denaro, fattore che limita notevolmente il numero di 

misurazioni che si possono effettuare e la durata complessiva delle attività di monitoraggio. Uno dei 

metodi migliori per ovviare a questi problemi è l’utilizzo di tecniche di remote-sensing che 

permettono di investigare aree molto vaste con tempi e costi molto ridotti. Le tecniche Avanzate di 

Interferometria Radar Differenziale ad Apertura Sintetica (A-DInSAR) sono uno dei migliori 

strumenti per poter studiare i movimenti della superficie terrestre sia a scala regionale che locale 

con misurazioni ad elevata accuratezza e precisione in maniera economicamente vantaggiosa. In 

questa Tesi di Dottorato, le tecniche A-DInSAR sono applicate allo studio fenomeni geologici in 

diverse aree di studio. Le aree scelte comprendono zone densamente vegetate, pianeggianti e 

montuose, aree costiere e deserti salati, ognuna delle quali soggetta a instabilità sia naturali che 

antropiche come frane, subsidenze e fenomeni derivanti da attività carsica. L’applicazione di queste 

tecniche nei diversi contesti ha presentato difficoltà e sfide che sono state superate adottando 

specifiche soluzioni durante l’elaborazione dei dati satellitari. Lo scopo principali di questo lavoro 

è quello di mostrare le potenzialità delle tecniche A-DInSAR applicate in diversi contesti geologici e 

mostrare quali informazioni possono essere ottenute dall’utilizzo di dati SAR e quale contributo tali 

informazioni possono portare nell’ambito della pianificazione ambientale e territoriale. Questo può 

essere molto utile per dimostrare alle Autorità come l’integrazione di monitoraggi basati su tecniche 

A-DInSAR all’interno delle opere di prevenzione e mitigazione del rischio idrogeologico sia 

necessario per uno sviluppo sostenibile del territorio. 
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INTRODUCTION 

 

Climate change is nowadays one of the most controversial and complex subject discussed by the 

scientific community that arouses increasing interest among the governments, media and public 

opinion (Konisky et al., 2016). The impact of climate changes on the environment and the territory 

as consequence of the human activities is becoming more evident every year as it effects in different 

ways the daily life of hundreds of millions of people worldwide. The present-day increase of the 

oceanic water level, or sea level rise (SLR), is probably one of the major indicator of climate change. 

The melting of glaciers and ice-caps, the increase of the water temperature and the change in ocean 

circulations are the main factors contributing to the global-scale acceleration of SLR (Church et al., 

2013). The areas that are expected to become more vulnerable to flooding and land loss because of 

SLR are clearly the coastal communities (FitzGerald et al., 2008; Cazenave et al., 2014) where the 

10% of the world population lives (McGranahan et al., 2007). Examples of low-lying coastal cities 

highly vulnerable to SLR are Miami (Wdowinski et al., 2016), New York (Rosenzweig and Solecki, 

2013), New Orleans (Dixon et al., 2006), and Mumbai (Ranger et al., 2011) that were identified as 

the world’s most vulnerable cities to flooding (Hallegatte and Corfee-Molot, 2013). Coastal areas are 

also important ecosystems very sensitive to SLR, which preservation is crucial for biodiversity and 

habitat conservation (Crossland et al., 2005). Moreover, the occurrence of more frequent and severe 

extreme weather events, which relationship with climate changes is still under debate by the scientific 

community (Jankovich and Schultz, 2016), exposes people and property to great risk of damage. The 

impact of environmental hazards and disasters such as floods and landslides is greater in developing 

countries, often because the not adequate economic, social, political and cultural conditions act as 

factors of high vulnerability to natural disasters (Alcántara-Ayala, 2002). 

These events can be considered as natural, by means that human activity does not have direct 

control on them and their occurrence is very hardly predictable. On the other hand, human-induced 

hazards are easily predictable and are directly attributable to specific activities. Nevertheless, these 

hazards are generally localized but omnipresent, with very negative effects on territory and society, 

as each one of us can probably tell from his first-hand experience. Among the different anthropogenic 

hazards, one of the most frequent and evident is land subsidence, which occurrence is often related 

to underground water extraction activities, mining, and oil and gas production (Johnson ed., 1991; 

Donaldson et al., 1995; Galloway and Burbey, 2011). Also the over-exploitation and poor 

management of superficial water resources may lead to strong negative environmental, territorial, 

economical, and social impact as happened, for example, in these three major cases: the Dead Sea 

(Shwarz et al., 2016), the Aral Sea (Micklin, 2016) and the Urmia lake (Alizadeh-Choobari 2016). 

The interaction and coexistence between natural and anthropogenic phenomena affects the territory 

with damage to buildings, interruption of services and loss of human lives. Since we live in a changing 

environment, there is the need to understand the response of natural systems to both human and 

natural modifications, and build a societal resilience to natural disasters (Djalante, 2012). We have 

now the instruments and knowledge necessary to monitor the territory and understand how it evolves 

and reacts to human activities, which is one of key points for risk assessment and reduction. In fact, 
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assessing the evolution of the temporal and spatial distribution of the ground movements is essential 

to delineate the most affected areas and to understand the mechanisms involved (Yerro et al., 2014). 

In this way, it is possible to mitigate these events, to prevent damage and to plan more sustainable 

urban and territorial development. 

The monitoring of the territory can be carried out through ground-based geodetic techniques such 

as levelling, Global Positioning System (GPS) and total stations that are intensively used to perform 

very accurate measurements of ground displacements such as plate tectonic motion, volcanic activity, 

landslides and subsidence in several different scenarios. However, one of the main limit of these 

techniques is that the measurements are limited to individual points and cannot be carried out in 

adverse territory conditions or in inaccessible areas. Furthermore, the field campaigns are very time 

consuming and expensive, limiting the number of points that can be measured on each survey. This 

strongly reduces the extension of the area to be monitored, the survey frequency and the total duration 

of the monitoring activity. 

A big step ahead in the Earth surface monitoring systems has been brought in the 1970s by the 

idea of radar interferometry for topographic mapping (Graham, 1974) that potentially overcame to all 

the operational limits of the ground-based techniques. In 1978, the National Aeronautics and Space 

Administration (NASA) launched the SEASAT satellite equipped with the first Synthetic Aperture 

Radar (SAR) sensor (Allan, 1983; Elachi, 1991; Raney, 1982). Only after, Gabriel et al. (1989) 

described the capabilities of repeated acquisition SAR Interferometry (InSAR) to detect changes in 

the ground surface and provided the first description of Differential InSAR (DInSAR). This technique 

was successfully applied for the first time by Massonnet et al. (1993) to measure the movements 

produced by the 1992 earthquake in Landers, California. Since then, to maximize the potential of 

InSAR and permit time series analysis, different Advanced DInSAR (A-DInSAR) algorithms were 

developed such as Permanent Scatteres (PS) (Ferretti et al., 2001), Small BAseline Subset (SBAS) 

(Berardino et al., 2002), Interferometric Point Target Analysis (IPTA) (Werner et al., 2003), Stanford 

Method for Persistent Scatterers (StaMPS) (Hooper et al., 2004), Coherent Pixel technique (CPT) 

(Blanco-Sanchez et al., 2008), SqueeSAR™ (Ferretti et al., 2011). A-DInSAR is nowadays a well-

documented technique for the characterisation of ground motions over large spatial areas capable of 

detecting movements with metric resolution and millimetric accuracy. This technique can be applied 

to monitor and study earthquakes, volcanic activity, ice-sheet motion, landslides, land subsidence, 

sinkholes, and other geological hazards. An extensive review of InSAR, the different techniques 

developed, their applications and limits can be found in Ouchi (2013), Crosetto et al. (2016), 

Osmanoglu et al. (2016), and reference therein. 

In the past few years, the growing need to monitor the Earth surface to study and mitigate natural 

and human induced hazards lead to increasing investments in the space segment and in particular in 

the SAR technology. In 1991, the European Space Agency (ESA) started the first SAR mission 

entirely designed for Earth Observation (EO) with the launch of the ERS-1 satellite. Since then, 

several research and commercial SAR satellites were sent in orbit by the main space agencies, the 

Italian Space Agency (ASI), the Canadian Space Agency (CSA), ESA, the German Aerospace Center 

(DLR), and the Japan Aerospace Exploration Agency (JAXA). Each SAR satellite is unique in terms 

of equipped instruments (radar band, ground resolution, acquisition mode, look angle, etc.) and 

technical characteristics (orbital tube, acquisition frequency, etc.), providing data potentially suitable 

for every EO necessity and, at the same time, creating new opportunities and making possible new 
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applications. Today, the latest and most advanced SAR mission is represented by the two satellites 

Sentinel-1 constellation. The Sentinel-1A, the first of the twin satellites, was launched in April 2014 

by ESA, and was equipped with instrument designed specifically for EO purposes: C-band sensor, 

image swath of 250 km with the Interferometric Wide Swath (IWS) acquisition mode, spatial 

resolution of 5 m in Range and 20 in Azimuth, and repeat time of 12 days. Since April 2016, the 

launch of the twin satellite Sentinel-1B permitted to reduce this revisit time to 6 days, enhancing the 

Earth monitoring activities in terms of temporal frequency and overall quality of the achievable 

results. Despite the incredible potential of A-DInSAR techniques has been widely demonstrated and 

documented with hundreds of high quality scientific papers and publications, there is always the room 

for further improvements regarding the processing algorithms (e.g. phase unwrapping, degree of 

automation, processing speed), data validation and management, and applicability. For these reasons, 

the use of A-DInSAR as principal instrument to investigate areas characterized by peculiar geological 

and environmental conditions represents an important way to further test the potential and capabilities 

of this technique, highlighting its advantages and drawbacks and making possible the development 

of new applications. 

The research carried out in this Thesis addresses to give, through my practical experience, an 

overview of possible applications of A-DInSAR to geosciences, demonstrating in which way the 

information extracted from the exploitation of SAR images can support a sustainable territorial 

development and which are the benefits that these techniques can provide to local and regional 

geological and geomorphological studies, to the detection and monitoring of geological hazards and 

to the hydrogeological risk assessment and mitigation. The range of the presented applications is wide 

and regards five main case studies characterized by completely different environmental and territorial 

features and affected by different ground displacements of natural and anthropic origin, such as land 

subsidence, landslides and karstic activity. For each case study, all the available SAR images provided 

by different satellites including the new Sentinel-1A have been processed. The products and potential 

of Sentinel-1A are still not well known by the scientific community, so the use of this sensor in the 

different case studies can also provide an overview about the applicability of this new satellite. The 

use of different datasets allowed us to carry out monitoring activity that, in most cases, covered 25 

years, from 1992 to 2016. This gave us a unique opportunity to know and understand how the studied 

displacements evolve and behave, which is one of the key information necessary to properly carry 

out geo-hazards risk mitigation activities. Furthermore, the combination of results obtained from 

images acquired with different bands (X, C and L) is described, showing how the use of different 

radar wavelengths can sometimes be useful to better characterize the studied territory. The processing 

of the SAR images has been carried out through both the PS and the SBAS techniques using the 

SARscape© modules of ENVI. The performance of the two approaches depends on several factors 

among which the characteristics of the territory (vegetation coverage, scatterers quality and 

distribution) and of the displacement (velocity, spatial extent) under investigation. SBAS was used 

more frequently because it performs better over very wide areas characterized by distributed 

scatterers, while PS works well when subtle deformations must be detected and only small and 

isolated reflectors are available. Each case study presented challenges that were faced case by case, 

adapting the processing parameters and managing the results differently accordingly to our 

necessities. Further details about the adopted approaches are described in the corresponding Chapters. 
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The terms DInSAR and Advanced DInSAR (A-DInSAR) are used interchangeably throughout the 

Thesis, referring to the same class of multi-temporal DInSAR techniques. 

Part of the work was carried out during two main research periods spent at the Sarmap S.A. 

Company (Switzerland) and at the Rosenstiel School of Marine and Atmospheric Science (RSMAS), 

University of Miami, Florida (USA). 

 

The Thesis is structured as follows: 

 

In Chapter 1, the results obtained from the monitoring of the land subsidence affecting the 

territory of Ravenna (Italy) are presented. Four different SAR datasets, covering a period of 25 years, 

are exploited thought the SBAS technique. Different statistical analyses are applied to the obtained 

velocity and displacement maps in order to better comprehend the relationship between the high rates 

of subsidence detected and the main mechanisms that have influence on the subsidence in the area. 

A novel methodology is also applied to analyse in a systematic way all the measured points and fully 

exploit their informative content. The paper titled “From ERS-1/2 to Sentinel-1: two decades of 

subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy)” was published in 

GISscience & Remote Sensing (Fiaschi et al., 2016). 

 

In Chapter 2, the potential of the new ESA’s Sentinel-1A satellite is tested in the monitoring of 

a landslide-prone territory located in the Italian Pre-Alps. The PS technique applied to the Sentinel-

1A images acquired in descending and ascending orbits, allowed us to detect several shallow 

landslides in the study area.  To assess the capabilities of this new SAR sensor in densely vegetated 

territories, we compared the obtained results with the available PSI results obtained from ERS-1/2 

and ENVISAT images processed by Tele-Rilevamento Europa (T.R.E.) in the framework of the 

Territorial Italian Plan promoted by the Italian Environment Ministry. The location and extension of 

the landslides detected with the PS analysis are also overlapped with the available landslides 

inventory, showing areas affected by movement not mapped before. The work demonstrates the 

benefits of using the Sentinel-1A images for the continuous monitoring of the territory providing 

information useful for the landslides detection and characterization. The paper titled “Testing the 

potential of Sentinel-1 TOPS interferometry for the detection and monitoring of landslides at local 

scale” was submitted to Environmental Earth Sciences. 

 

In Chapter 3, is described a very interesting case study where for the first time the SBAS 

technique is applied to monitor 25 years of displacements in the Lisan Peninsula area, Dead Sea, 

Jordan. A very complete SAR dataset made of images acquired by different satellites in X, C and L-

bands was processed in order to produce the velocity and displacement maps of the entire study area. 

The results reveal the complexity of the displacement dynamics in the area, affected by very high rate 

of subsidence up to 200 mm/yr along the coastline, uplift in the northern section of the peninsula and 

differential movements in its southern section. The exploitation of X, C and L-band images, helped 

in better characterize the movements in the Lisan Peninsula, obtaining information over areas that are 

not possible to observe using only one sensor because of spatial decorrelation and/or complete loss 

of information where the movements are too fast to be detected by short wavelengths. The paper titled 
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“The monotonous rising of the Lisan diapir revealed by 25 years of DInSAR observations. Dead Sea, 

Jordan” was submitted to ISPRS Journal of Photogrammetry and Remote Sensing. 

 

In Chapter 4, we want to assess the contribution of land subsidence to the increasing coastal 

flooding hazard in the US Atlantic regions. DInSAR is applied to monitor land subsidence affecting 

Miami Beach (Florida) and Norfolk (Virginia) using PS and SBAS techniques. The analyses show 

several areas affected by moderate subsidence in both cities confirming the importance of considering 

also the localized subsidence as one of the main parameters in the flooding hazard assessment.  

 

In the Conclusions, a summary of the outcomes of this Thesis is finally presented. 

 

In the Appendix, a study concerning the negative impact of land subsidence on the territory and 

its relation with human development is presented. The Dead Sea area is taken as a model because it 

clearly shows what effects the human induced land subsidence has on the environment and on the 

development of a territory. The role played by remote sensing techniques (both visible and radar) in 

monitoring geomorphologic environmental degradation is empathized showing how a clear 

identification of geomorphic features is necessary to preserve the major assets at risk.  My 

contribution to this work concerned the processing of all the available SAR datasets with the SBAS 

technique, the post processing management of the results and the extraction of the subsidence values 

presented in the Results section. The paper “Sustainable development and anthropogenic induced 

geomorphic hazards in subsiding areas” was published in Earth Surface Processes and Landforms 

(Abou Karaki et al., 2016). 
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Abstract 

Land subsidence due to underground resources exploitation is a well-known problem that affects 

many cities in the world, especially the ones located along the coastal areas where the combined effect 

of subsidence and sea level rise increases the flooding risk. In this study, 25 years of land subsidence 

affecting the Municipality of Ravenna (Italy) are monitored using Advanced Differential 

Interferometric Synthetic Aperture Radar (A-DInSAR) techniques. In particular, the exploitation of 

the new Sentinel-1A SAR data, allowed us to extend the monitoring period till 2016, giving a better 

understanding of the temporal evolution of the phenomenon in the area. Two statistical approaches 

are applied to fully exploit the informative potential of the A-DInSAR results in a fast and systematic 

way. Thanks to the applied analyses, we described the behaviour of the subsidence during the 

monitored period along with the relationship between the occurrence of the displacement and its main 

driving factors. 

1. Introduction 

Differential Synthetic Aperture Radar Interferometry (DInSAR) is a very powerful remote 

sensing tool able to measure the displacements on the Earth surface with millimetric accuracy. The 

first description of DInSAR was given by Gabriel et al. (1989), and it was successfully applied for 
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the first time as a ground motion detection technique in the early ‘90s with the study of the Landers 

earthquake in California and the Mount Etna volcano in Italy (Massonnet et al., 1993, 1995). This 

method uses the phase shift between two radar acquisitions (SAR images) made over the same place 

at different times to generate an interferogram and calculate the ground deformation. The 

interferometric phase (Δφ) is made by different contributions: 

 

∆𝜑 =  ∆𝜑𝑡𝑜𝑝𝑜 + ∆𝜑𝑑𝑒𝑓 + ∆𝜑𝑜𝑟𝑏 + ∆𝜑𝑎𝑡𝑚 + ∆𝜑𝑛𝑜𝑖𝑠𝑒 

where Δφtopo is the contribution given by the topography, Δφdef is the contribution given by the 

deformation, Δφorb is the phase given by uncompensated difference in the satellite’s orbits, Δφatm is 

the phase component given by atmospheric effects, and Δφnoise is the systematic noise. One of the 

main advantages of the DInSAR approach, is that the topographic component of the phase (Δφtopo) is 

reduced using an external Digital Elevation Model (DEM) providing (qualitative) information on 

deformations, even with a reduced SAR data availability (Cascini et al., 2010). On the other hand, 

the main drawback is that analysing just one interferogram is not possible to remove the strong 

atmospheric disturbance that inevitably lead to inaccuracies in the detected movements, limiting its 

operational capability (Cascini et al., 2010). Furthermore, since DInSAR can only measure the total 

displacement between two points in time, it cannot distinguish between linear and non-linear motion. 

Hence, in order to cope with these limitations, a new class of DInSAR techniques called Persistent 

Scatterers Interferometry (PSI) was developed. In this work, we refer to PSI with the term Advanced 

DInSAR (A-DInSAR). There are two main A-DInSAR techniques: the Permanent Scatterers (PS) 

(Ferretti et al., 2000, 2001) and the Small BAseline Subset (Berardino et al., 2002). These techniques, 

exploit the information of multiple SAR acquisitions made over the same area to estimate and reduce 

the effects given by decorrelation phenomena and atmospheric phase shifts obtaining very accurate 

deformation measures over time. The PS technique analyses at full resolution dominant point 

scatterers (PS) that maintain phase stability over long periods. Any phase disturbance such as 

atmospheric artefacts and topographic inaccuracies are estimated and compensated retrieving the 

precise displacement of the PS. Since PS density is generally higher in urban environments, this 

technique is more suitable for ground deformation analysis in metropolitan areas (Soergel, 2010). 

The SBAS technique relies on the combination of interferometric pairs with small temporal and 

perpendicular baselines to measure the deformation of distributed scatterers. To enhance phase 

stability, a multi-look factor in Range and Azimuth is generally adopted but this leads to a reduced 

spatial resolution. The application of SBAS is more suited over large areas, where the absence of a 

high number of stable reflectors limits the applicability of the PS approach. For this reason, SBAS is 

widely used for Earth Observation purposes in several scenarios, such as low vegetated land, sparsely 

urbanized territory, and coastal areas. A-DInSAR has proven to be one of the most reliable tool for 

the detection and monitoring of different geological hazards such as earthquakes (Chini et al., 2016), 

landslides (Di Martire et al., 2016), subsidence (Tessitore at al., 2016) and volcanic activity (Meyer 

et al., 2015), and is nowadays widely used to map ground deformations due to natural and 

anthropogenic processes in different environments. Furthermore, one of the main advantages is the 

possibility to reconstruct the past behaviour of the displacement using archive data and perform time 

series analyses. This is useful in particular in the framework of geological hazard risk assessment and 

territory management; in fact, thanks to the analysis of the ground instability evolution it is possible 

to understand its cause-effect mechanism and to evaluate the most feasible corrective measures 
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(Tomás et al., 2005). While the monitoring of geological hazards with conventional ground-based 

techniques (e.g. inclinometers, levelling, GPS, etc.) is usually expensive and time consuming, A-

DInSAR techniques permit to reduce operating costs and working time especially when used for 

large-scale surveys. Despite the great benefits brought by the application of radar interferometry to 

the geological hazard monitoring, the exploitation of very large SAR datasets can produce huge 

amounts of data that are often difficult to properly manage and interpret. Statistical methods can be 

applied to analyse the A-DInSAR processing results to fully exploit their informative content. In this 

work, we present the outcomes in monitoring the land subsidence affecting the Municipality of 

Ravenna with 25 years of SAR data, starting from 1992 with the ERS-1/2 and ending with the 2016 

Sentinel-1A images. The obtained results are then cross-validated comparing two different A-

DInSAR approaches, the SBAS and the Coherent Pixel Technique (CPT) (Mora et al., 2003; Iglesias 

et al., 2014). Furthermore, we show the application of a new methodology based on statistical 

analyses to manage in a systematic way the obtained results and better describe the behaviour of the 

subsidence during the monitoring period along with the relationship between the occurrence of the 

displacement and its main driving factors. 

The main aims of this work are: i) to monitor the land subsidence affecting the territory of 

Ravenna using A-DInSAR techniques and extend the observed period to 2016 with the new Sentinel-

1A satellite; ii) to understand the subsidence trends over the 25 years period and determine which are 

the main controlling factors through the application of statistical analyses; iii)  to compare and cross-

validate the results obtained through two different A-DinSAR approaches and demonstrate the 

reliability of the measured subsidence rates; iv) to assess the capabilities of the Sentinel-1A sensor in 

the monitoring of sparsely urbanized areas. 

2. Study Area  

The city of Ravenna is located in the Emilia Romagna Region (northeast of Italy), where land 

subsidence of natural and anthropogenic origin occurs since the last century (Teatini et al., 2005). 

One of the main causes of the subsidence in the area is the over-exploitation of the methane-gas and 

water reservoirs that started in the ‘40s along with the industrial growth and gradually reduced around 

the ‘80s (Gambolati et al., 1999). Concerned by the very high values of subsidence registered, the 

Municipality of Ravenna started in the late ‘70s the construction of a new public aqueduct to exploit 

the surface water that led to a reduced aquifer overdraft (Gambolati et al., 1999). Today, even if the 

ratio of the anthropogenic subsidence (< -20 mm/yr) lowered a lot in respect to the previous decades, 

it is still ten times higher than the natural one (-2 mm/yr) (Gambolati et al., 1991). This represents a 

serious threat in particular for the coastal areas where the subsidence effect added to the mean sea 

level rise increases the flooding risk (Carbognin and Tosi, 2002). 

2.1. Geological settings 

The territory of Ravenna (Figure 1a) lies over the south-eastern portion of the Po River plain, an 

area of about 38,000 km2 bounded by the Alps in the north and the Apennines in the south (Teatini et 

al., 2005). The buried tectonic structures underlain around 2000 m of Quaternary sediments of Alpine 

and Apennines origin deposited under different environments, from continental to marine (Amorosi 
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et al., 1999; Carminati et al., 2003; Ghielmi et al., 2010). The pre-Quaternary basement is 

characterized by a complex structure of folds and faults that develop parallel to the main Apennine 

tectonic lines forming natural traps for the methane-gas (Gambolati et al., 1991). Several Pliocene 

and Pleistocene gas fields are located in thrusted anticlines, with depths ranging between 1000 m and 

4500 m, simple drape structures and stratigraphic traps. The Quaternary sequence is made of normally 

consolidated layers of alternating silty-clay, sand and sandy silt (Figure 1c). A multi-layer aquifer 

system developed in the first 500 m of sediments accumulated since the Pleistocene. This system is 

characterized by sediments deposited during transgressive and regressive stages. 

 

Figure 1. (a) Location of the study area; (b) Methane-gas reservoirs close to Ravenna. The yellow square is 

the area used for the cross-validation between the SBAS and CPT results. Basemap: 07/18/2016 Sentinel-2 

image; (c) Geological map of the study area and main locations. 

2.2. Mechanisms of the subsidence 

The subsidence affecting the Adriatic Sea coastline in northern Italy can be related to different 

anthropic and natural factors that vary locally: tectonic, glacial isostatic adjustment, reclaimed 

peatland oxidation, groundwater withdrawal, gas extraction, natural sediments compaction. The 

Regional Agency for the Environmental Protection (ARPA) of Emilia-Romagna Region and the 

Emilia-Romagna Region (2010) estimate the overall contribution of the natural subsidence in -1.4 

mm/yr at Ravenna, -2.5 mm/yr at Po river delta and -1 mm/yr at Venice. Gambolati et al. (1999), also 

modelled and calculated the natural subsidence due to sediments compaction with rates of -2.5 mm/yr 

at Ravenna, -4,-5 mm/yr in the Po river delta and 0.5 mm/yr at Venice. The present-day subsidence 

in the Po Plain is also given by the effects of the last deglaciation period that contributes with 

increasing values going from Venice (-1.1 mm/yr) to Ravenna (-3.5 mm/yr) (Carminati et al., 2003). 
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At regional scale, the main cause of the anthropogenic subsidence can be related to the combined 

effects of the extraction of underground water and methane-gas from on and off-shore reservoirs. At 

local scale, in particular along the coastline close to Ravenna, the high rates of subsidence are more 

related to the exploitation of the off-shore methane-gas fields closer to the shoreline (ENI and ARPA, 

2003) 

2.2.1. Subsidence due to methane-gas extraction 

In the Ravenna area, there are eight main gas fields (Figure 1b), five of which are off-shore and 

three on-shore. The production that started in the ‘70s is still ongoing at the present-day for most of 

the fields: only two fields are inactive, Ravenna Terra and Porto Corsini Terra, which exploitation 

stopped in 1992 and 2014, respectively. The most productive fields are Dosso degli Angeli and 

Angela-Angelina, with average annual production from 1980 to 2016 of 450 × 106 Sm3 and 600 × 106 

Sm3, respectively (http://unmig.mise.gov.it/). 

Angela-Angelina gas field is one of the major reservoirs in Northern Adriatic. The production 

started in 1973 and is still active. Due to its proximity to the coastline (around 2 km), and the high 

productivity rates (Figure 2) the impact on the coastline produced by the depletion of the reservoirs 

can be much higher than the one of the other gas fields (Gambolati et al., 1999). Gambolati and 

Teatini (1998), simulated the subsidence caused by the reservoir compaction and estimated a 

maximum influence range of around 6.5 km (Figure 1b). 

Dosso degli Angeli is an on-shore gas field located under the Comacchio Marshes, 20 km North 

of Ravenna. From the beginning of the production until 2004, the reservoir produced 30 × 109 Sm3 of 

methane gas. The average annual production was constant until 1990 with more than 1 × 109 Sm3. 

Afterwards, it slowly decreased till ending in 2004. In 2011 the production started again with an 

average annual production of 100 × 106 Sm3. ARPA (2010), estimated in 5 km the influence range of 

the reservoir. 

The Porto Corsini Terra gas field is located 6 km northeast of Ravenna. From 1980 until 2014, 

the average annual production was 20 × 106 Sm3. Bertoni et al. (1995), estimated a maximum 

influence range of about 5.5 km (Figure 1b). 

 

Figure 2. Production rate of the Angela-Angelina methane-gas field for the period 1990-2016. 
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2.2.2. Subsidence due to groundwater extraction 

Another anthropogenic component of the subsidence affecting the study area is related to the 

water extraction activities. Since the water withdrawal rate is strongly dependent on different factors 

among which the number of used wells, the depth and geology of the exploited reservoirs, and the 

climate, the subsidence rates vary locally. The water use in the Region can be divided in four main 

categories: civil, industrial, agricultural and livestock. According to ARPA (2010), from 2002 to 2006 

the simulated water withdrawals, in millions of m3/yr, were: 32 for civil use, 10 for industrial use and 

1 for livestock use (Figure 3). The water extraction rates for agricultural use are more variable because 

of its relationship with the climatic and seasonal conditions. The rates vary from 36 × 106 m3/yr to 10 

× 106 m3/yr. Most of the withdrawals (1.72 m3/s) for all the categories take place at depth ranging 

from -40 m to -100 m. Among these, the 54% of the extractions (0.94 m3/s) are from -10 m to -40 m. 

Only the extractions for industrial use take place in the deeper reservoirs ranging from -200 m to -

340 m of depth. 

 

Figure 3. Groundwater withdrawals in millions of m3 calculated for each type of well for the period 2002-

2006, redrawn from ARPA (2010). 

3. Methodology 

3.1. A-DInSAR processing and available datasets 

A-DInSAR techniques permit to obtain reliable deformation time series for the pixels that present 

good phase quality. The latter can be low due to geometrical and temporal decorrelation phenomena 

occurring in the interferograms. Therefore, a preliminary pixel selection is necessary to obtain 

trustworthy processing results. The pixel phase quality analysis can be carried out following three 

main criteria: (1) coherence stability (Berardino et al., 2002; Mora et al., 2003; Lanari et al., 2004); 

(2) amplitude dispersion index (Ferretti et al., 2001); (3) Temporal Sublook Spectral Coherence 

(Iglesias et al., 2014). In the first case (1), the pixels are chosen considering their mean coherence 

computed using all the multi-looked interferograms. Such pixel coherence is a function of the 

interferometric phase’s standard deviation (Blanco et al., 2006). The displacement information is then 

calculated choosing a coherence threshold value, only for the pixels that present a high interferometric 
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quality. The amplitude dispersion index (2) permits to select pixels with a stable electromagnetic 

response (when their signal-to-noise ratio is high). The latter method (3), applies a point-like coherent 

scatterers selection, taking into account the temporal axis. 

In the present work, A-DInSAR techniques have been used to get 25 years (1992-2016) of ground 

displacement monitoring in the Ravenna Municipality area exploiting four SAR datasets acquired by 

C- and X-band satellites. To this aim, the SBAS and CPT algorithms, respectively implemented in 

the SARscape® and SUBSOFT processor software packages have been used. Specifically, 57 ERS-

1/2 (C-band), 60 ENVISAT (C-band), 53 TerraSAR-X StripMap (X-band) and 30 Sentinel-1A 

Interferometric Wide Swath (C-band) images acquired in descending geometry have been processed 

with SARscape®. The main features of each dataset and their temporal coverage have been reported 

in Table 1. The processing window adopted (study area) is 18 km × 21 km focusing the monitoring 

activity on the city of Ravenna and its shoreline (Figure 1b). The SUBSOFT processor has been used 

to process only the ENVISAT and TerraSAR-X datasets over a smaller area (6 km x 3 km) in the 

industrial area of Ravenna (Figure 1b), in order to perform the comparison analyses between the two 

different approaches and cross-validate the results. 

 

Table 1. Details of the available SAR image datasets. 

Satellite ERS-1/2 ENVISAT TerraSAR-X Sentinel-1A 

Period covered 
05/10/1992-

12/13/2000 

04/02/2003-

09/22/2010 

02/25/2012-

04/05/2014 

10/12/2014-

01/11/2016 

Track No. 122 122 2 95 

Number of images 57 60 53 30 

Wavelength (cm) 5.6 5.6 3 5.6 

Incidence angle (°) 23 23 29 39 

Imaging mode SAR ASAR IM StripMap Wide Swath 

Polarization VV VV HH VV 

 

The SBAS processing workflow adopted in SARscape® consists of five main steps: (a) 

connection graph (CG) generation; (b) interferogram generation and unwrapping; (c) refinement and 

re-flattening; (d) first and second inversion; (e) geocoding. In the first step (a), the connection links 

between master and slaves image pairs are created based on the specified temporal and perpendicular 

baseline thresholds; (b) for each connection pairs the interferograms are generated and filtered using 

the Goldstein adaptive filter (Goldstein and Werner 1998). The phase is then unwrapped using the 

Delaunay Minimum Cost Flow (MFC) method (Costantini, 1998; Costantini and Rosen, 1999); (c) 

the constant and topographic phases are removed from the interferograms. Possible inaccuracies in 

the satellites’ orbits are corrected and phase ramps, if present, are removed; (d) the residual heights 

and displacement velocities are derived and used to re-flatten the interferograms. Then, the 

atmospheric phase component is removed and the displacement velocities are calculated; (e) the final 

products are geocoded to the chosen cartographic projection. 
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In Table 2 are reported the main parameters adopted to process the four SAR datasets with the 

SARscape® approach. To remove the topographic component of the phase, the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (DEM) with a resolution of 1 arc second (30 

m pixel size) was used. After the editing step in which the bad interferogram pairs are discarded for 

unwrapping and/or processing errors, a good amount of interferograms was still available. The edited 

CG plots for each dataset are reported in Figure 4. 

 

Table 2. Main parameters and thresholds adopted in SARscape® for the SBAS processings. 

Satellite ERS-1/2 ENVISAT TerraSAR-X Sentinel-1A 

Perpendicular thresh. 

(% of critical baseline) 
50 45 35 45 

Temporal thresh. 

(days) 
900 730 190 150 

Unwrapping thresh. 0.30 0.35 0.40 0.60 

Multi-look Rg/Az 1/5 1/5 5/5 5/1 

Resolution (m) 20 20 10 20 

No. of generated 

interferograms 
274 380 360 200 

 

 

Figure 4. Interferogram pairs selected with SBAS after the editing session for (a) ERS-1/2, (b) ENVISAT, (c) 

TerraSAR-X, (d) Sentinel-1A. 
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The SUBSOFT processor, used to process the ENVISAT and TerraSAR-X data only, was 

implemented at the Remote Sensing Laboratory (RSLab) of the Universitat Politècnica de Catalunya 

(UPC) and is based on the algorithms proposed by Mora et al. (2003) and by Iglesias et al. (2014). 

The algorithm scheme is made of three main steps: (a) generation of the best interferogram set; (b) 

selection of the pixels with reliable phase within the interferogram set; (c) pixels phase analysis to 

calculate the deformation time series. For the pixel selection, the Temporal Sublook Spectral 

Coherence method, described previously, has been chosen. This method permits the selection of 

point-like scatterers by replacing the spatial average, which generates a degradation of the spatial 

resolution, with a temporal one. Specifically, the method is based on the analysis of their spectral 

properties along time. After the pixel selection, a Delaunay triangulation between the selected pixels 

is generated. Finally, the linear and non-linear deformations are computed through a model of 

coherence estimation. 

With the SUBSOFT processor is not possible to generate Single Look Complex (SLC) (Level 1 

product) images directly from the raw data (Level 0 product), and of the 60 ENVISAT images only 

39 were provided by European Space Agency (ESA) as SLC. For this reason, only a smaller number 

of ENVISAT images covering the period 12/2005 - 09/2010 were processed to perform the cross-

validation. For ENVISAT, the adopted processing parameters consist of a maximum spatial and 

temporal baseline respectively of 300 m and 246 days, a multi-look factor of 15 × 3 in Range and 

Azimuth, and an unwrapping threshold of 0.40. Considering these parameters, the obtained 

displacement standard deviation was 1.5 mm. In total, 80 interferograms were generated. The 

topographic component of the phase was removed using the 30 m resolution SRTM DEM. 

For the TerraSAR-X data processing, a maximum spatial baseline of 125 m and a maximum 

temporal baseline of 125 days have been used. Considering the adopted spatial baseline threshold, 11 

images not respecting the constrain have been dropped. From the remaining 42 images, 220 

interferograms have been selected. The applied multi-look factor is 3 × 3 in Range and Azimuth, and 

the coherence threshold is 0.4, which implies a phase standard deviation of 15°: the corresponding 

displacement standard deviation is about 1 mm. The topographic component of the phase was 

removed using the 30 m resolution SRTM DEM. 

3.2. Statistical analyses 

Two statistical approaches were applied to the SBAS results in a Geographical Information 

System (GIS) in order to (a) identify the main areas affected by subsidence through the ground-motion 

areas detection and (b) comprehend the deformation mechanisms analysing their relationships with 

the main triggering factors.  

The ground-motion areas detection method proposed by Bonì et al. (2016) is addressed to 

simplify the analysis of very large point datasets resulting from A-DInSAR processing, using a fast 

and systematic procedure. The methodology allows us to identify areas that present significant 

movements, the ground-motion areas, considering specific patterns in the time series of each 

measured point. This method can be very useful to highlight areas with peculiar ground deformation 

behavior that may require more deep analyses. The applied procedure consists of two main steps: (1) 

the time series accuracy assessment is performed applying the approach proposed by Notti et al. 
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(2015) in order to correct anomalous displacements affecting the time series in a certain date; (2) 

different statistical tests are applied to find the spatio-temporal pattern of the Principal Components 

(PC) of the movement and the kinematic model of the measured points. In particular, the Principal 

Component Analysis was performed implementing a matrix organization location versus time (T-

mode) to detect the PC of ground-motion (Chaussard et al., 2014). The number of time-dependent 

components was detected for each dataset considering the change of slope in the Scree plot. Each 

component was represented by score maps as applied by others authors (Chaussard et al., 2014). More 

specifically, the PC scores obtained for each measured point represent the value of correlation with 

the trend of the PC in the whole dataset; the higher values correspond to higher correlation with the 

analyzed PC (Bonì et al., 2016). The software PSTime (Berti et al., 2013) was used to classify the 

time series into one of the three predefined target trends: uncorrelated, linear and non-linear (Berti et 

al., 2013). The approach is based on a sequence of statistical characterization tests that permit the 

automatic classification of each measured point. PSTime also detects the date (break-date) where an 

abrupt slope change in the non-linear time series is recorded. The evidence ratio of the breakpoint 

(BICW) index (Berti et al., 2013) is also assigned to the non-linear time series. The ground-motion 

areas were identified using a spatial cluster of the significant PC scores using a buffer zone of 50 m 

around each measured point. The PC score was used to find the spatial distribution of the ground-

motion areas using the approach implemented by Meisina et al. (2008). The obtained kinematic model 

of the measured points was combined with the ground-motion areas to identify linear and non-linear 

processes: values of BICW higher than 1.2 were selected to distinguish non-linear time series from 

the linear ground-motion areas. 

With the second statistical approach, the variance analysis is applied to the SBAS results, already 

imported in a GIS, to combine each measured point with the available ancillary data, evaluating the 

contribution to the subsidence of four main factors: geological setting, water extraction, gas extraction 

and land-use change. In particular, the analyses are carried out considering the relationship between 

the measured displacement values and the lithologies in the study area, the position of the water 

pumping wells, the distance from the methane-gas reservoirs and their production rates, the areas 

where land-use changes occurred. This method is based on the variances ratio and uses the 

distribution of Fisher-Snedecor (Fisher, 1942; Snedecor et al., 1967). 

4. Results and Discussion 

4.1. A-DInSAR SBAS results 

The results obtained from the SBAS processing are reported as cumulated displacement maps 

projected to the vertical (Figure 5). In total, we detected 53,000 points with ERS-1/2, 71,200 with 

ENVISAT, 304,000 with TerraSAR-X and 100,000 with Sentinel-1A. The range of the detected 

velocities in the entire monitoring period (1992-2016) goes from -35 mm/yr to +5 mm/yr. Data 

coverage is good for all the datasets and is concentrated over the urbanized areas that present high 

coherence values. Strong subsidence mainly occurs along the coastal areas with higher values 

registered in the north and south. Most of the city centre is stable, with displacement values in the 

range of ±5 mm for the entire period. 
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Figure 5. Vertical displacement maps obtained from the processing of (a) ERS-1/2 (1992-2000), (b) ENVISAT 

2003-2010, (c) TerraSAR-X (2012-2014) and (d) Sentinel-1A (2014-2016) SAR images through SARscape®. 

The black dots, from P1 to P8, are the locations of the points considered for the time series analysis. 

 

In Figure 5c and d, it is possible to notice a subsiding area detected in the north part of the study 

area (black square). This area is a solar panel field of recent construction that was completed in early 

2011 and expanded with two new small adjacent solar fields in early 2012. This area is clearly visible 

with both TerraSAR-X and Sentinel-1A datasets showing the capabilities of the latter in the 

monitoring of ground displacement even at local scale. The subsidence affecting this area is probably 

caused by the load produced by the panels structure itself over rural land. Here, the maximum 

displacement registered reached -21 mm during 2012-2014 and -11 mm in 2014-2016. 

To better understand the displacement patterns in the study area, the time series of seven control 

points (Figure 5a) have been analysed. The points were selected in the most critical areas, where the 
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resulted subsidence values are high, or in areas that present anomalous displacement in respect to the 

surroundings (e.g. localized subsidence in a generally stable area). The analysis takes into account 

the average displacement values of all the points that are within a distance of 100 m from the selected 

points in order to minimize the effect of outliers. For each point, the time series are generated (Figure 

6) considering as constant the displacement velocity in the temporal gaps between the different 

datasets: 28 months between ERS-1/2 and ENVISAT, 17 months between ENVISAT and TerraSAR-

X and 6 months between TerraSAR-X and Sentinel-1A. 

 

 

Figure 6. Cumulated displacement time series for the eight selected points reported in Figure 5a and c. 

 

Considering the CG plot of Figure 4a, the 57 images available for ERS-1/2 are not well 

distributed in time and present from 1992 to 1995 a large time gap of around 700 days that separates 

12 images (left side) from the main cluster (right side). Since we needed to analyse the subsidence 
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trends for the entire 1992–2000 period without losing any image, we adopted a temporal threshold of 

900 days in order to connect all possible pairs. Unfortunately, the 700-day temporal baseline 

interferograms presented temporal decorrelation and consequent low coherence that reduced their 

quality. For this reason, during the 1992-1995 period some phase unwrapping errors occurred and 

generated the anomalous displacement values that are visible in the time series of Figure 6. Taking 

into account the entire 1992-2016 period, the time series of the points located close to the coastline 

show an almost linear trend of deformation with low variation in the slope of the linear regression 

line. These points present the highest displacement values that were calculated as -250 mm at Lido 

Adriano (P3) and as -280 mm in the industrial area (P4). The time series obtained for the latter, shows 

an almost constant velocity for the entire period. Along the coastline, the point P3 presents a linear 

subsidence trend until 2001 (-7 mm/yr); the trend starts to increase from 2003 until the end of 2015 

(-11 mm/yr) and then it decreases again with values lower than the first period (-6 mm/yr). On the 

contrary, nine km to the north, the point located at Porto Corsini (P1) shows a constant increase of 

the displacement velocities from -7.8 mm/yr (1992-2000) to around -9.3 mm/yr (2014). The rates 

start to lower in 2014-16 with -5 mm/y. The points less affected by subsidence are the ones located 

at Ravenna (P5) with around -70 mm of cumulated displacement, and to the west of the study area in 

the towns of Savarna and Mezzano (points P6 and P7, respectively). Here the maximum displacement 

reached -60 mm in both locations. Even if the two towns are located at a distance of 5 km, there is a 

strong correspondence in the displacement trend that is not linear but presents fluctuations in the 

entire period. The slope of the linear fitting line remains constant during 1992-2010 with a velocity 

of around -2 mm/yr. The slope starts increasing from 2012 to 2013 and becomes steeper from April 

2013 to June 2015, when the velocity reaches -9 mm/yr. The time series of P8, located over the solar 

panel field, presents a clear seasonal trend during the period 2012-2016, detected by both TerraSAR-

X and Sentinel-1A satellites. 

4.2. Cross-validation with the CPT technique 

In order to assess the reliability of the results obtained with SBAS, the ENVISAT and TerraSAR-

X datasets have been re-processed using the CPT technique and the outputs have been used for the 

cross-validation. The two approaches based on different phase quality estimation criteria can provide 

complementary information. In fact, the amplitude-based criterion generally provides high point 

density that can be used to carry out analyses at high resolution, such as for the monitoring of 

buildings (Tomás et al., 2014). On the other hand, to monitor subsidence or volcanic activity over 

larger areas the coherence-based processing is generally better suited. For this reason, a good match 

between the results obtained with the two techniques (cross-validation) can give a good indication of 

the processing quality and can be used as an effective validation method. As shown in other 

comparison experiments between A-DInSAR techniques (e.g. Herrera et al., 2009), in spite of their 

different pixel selection criterion based on the phase quality estimation, both approaches exhibit good 

performance in estimating deformations; their main difference consists of the operative resolution. 

The ENVISAT and TerraSAR-X processing with CPT was carried out over a small area of 6 km 

x 3 km that covers the industrial area of Ravenna (Figure 1b), chosen because it is affected by very 

high rates of subsidence and presents high coherence values that permit to optimize the comparisons. 

The results, reported as vertical displacement map (Figure 7c and d), are in good agreement with the 
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SBAS results obtained over the same area (Figure 7a and b). The lower number of points obtained 

with the CPT in respect to SBAS (369 vs 5896 for ENVISAT and 16,500 vs 28,700 for TerraSAR-

X) is due to the more restrictive thresholds and higher multi-look factor adopted in the processing 

steps as described in Section 3.1. The time series of the four points selected for each dataset for the 

comparisons (Figure 8) show a good correspondence between CPT and SBAS in terms of mean 

velocity and displacement trends. It is possible to notice a shift in the calculated displacement of about 

2-3 mm/yr in each time series that is probably due to the different algorithm and methodology applied. 

This can be explained considering the different parameters adopted during the processing, such as 

unwrapping coherence threshold and multi-look factor (see Section 3.1) that imply different 

displacement standard deviations: for TerraSAR-X, the obtained standard deviation was 1.5 mm with 

SBAS and 1.0 mm with CPT, while for ENVISAT, it was 5.0 mm and 1.5 mm with SBAS and CPT, 

respectively. The comparison depicts the goodness of the results obtained with the SBAS technique. 

 

Figure 7. Cumulated displacement maps over the industrial area of Ravenna used to cross-validate the results: 

a) ENVISAT processed with SBAS. b) TerraSAR-X processed with SBAS. c) ENVISAT processed with CPT. 

d) TerraSAR-X processed with CPT. The black dots, from E1 to E4 and from C1 to C4, are the locations of 

the points selected to perform the comparison between the time series obtained respectively from ENVISAT 

and TerraSAR-X. 
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Figure 8. Comparison between the time series obtained with SBAS and CPT processing of the control points 

selected in the industrial area of Ravenna for ENVISAT (E1-E4) and TerraSAR-X (C1-C4). 

4.3. Identification of ground-motion areas 

The ground-motion detection methodology was applied to the A-DInSAR results considering 

three main components of motion: PC1, which describes a movement away from the satellite (i.e. 

subsidence); PC2, which describes a movement toward the satellite (i.e. uplift); PC3, which describes 

a seasonal component of motion. The results reveal that PC1 accounts for the 80-90% of the variance 

for all datasets while PC2 and PC3 explain the variance in a range from 1% to 10% of ENVISAT, 

TerraSAR-X and Sentinel-1A results. Considering that PC1 better describes most of the components 

of motion in all datasets, the analyses were performed using only PC1. Figure 9 shows the spatial 

distribution of the ground-motion areas detected using PC1 of the four datasets. According to the 

methodology, six main subsiding areas have been identified: Porto Corsini (A1), the industrial area 
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(A2), Lido Adriano (A3), Lido di Dante (A4), the Southwest area of Ravenna (A5), Savarna and 

Mezzano (A6). 

 

Figure 9. In pink, the six ground-motion areas delimited by squares (A1: Porto Corsini; A2: Industrial Area; 

A3: Lido Adriano; A4: Lido di Dante; A5: South-west of Ravenna; A6: Savarna and Mezzano) detected using 

the PC1 main component of motion for (a) ERS-1/2 (b) ENVISAT (c) TerraSAR-X and (d) Sentinel-1A 

datasets. The white striped areas are the Corine Land Cover changes described in Section 4.4. 

 

After selecting the measured points localized in the six ground-motion areas affected by 

subsidence, the average velocity and the standard deviation for each dataset have been calculated 

(Table 3). Regarding the kinematic model, the results (Figure 10) highlight that 40-50% of the points 

measured using ERS-1/2 and ENVISAT datasets is characterized by a linear trend, 30-40% show a 

non-linear trend and 20-30% show an uncorrelated trend. Most of the measured points (around 43%) 

resulting from the TerraSAR-X data processing show a non-linear trend, while 30% is characterized 

by a linear trend and 27% by an uncorrelated trend. Unfortunately, the kinematic model analysis 
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cannot be performed with the Sentinel-1A results, because the automatic procedure can work only 

with time series longer than 22 months. 

 

Figure 10. Points measured with (a) ERS-1/2 (b) ENVISAT and (c) TerraSAR-X, classified by their kinematic 

model: linear trend in green, non-linear trend in red and uncorrelated trend in white. 

 

Table 3. Average vertical velocity (Vvert) and standard deviation (Std) calculated in the six different 

ground-motion areas for each dataset. 

Period 
  

10/05/1992-

13/12/2000 

02/04/2003-

22/09/2010 

25/02/2012-

05/04/2014 

12/10/2014-

11/01/2016 

Dataset  ERS-1/2 ENVISAT TerraSAR-X Sentinel-1A 

A1 

(Porto Corsini) 

Vvert (mm/yr) -7.23 -6.17 -7.91 -2.09 

Std (mm/yr) 2.34 1.31 0.85 0.85 

A2 

(Industrial area) 

Vvert (mm/yr) -6.37 -8.39 -10.05 -15.25 

Std (mm/yr) 2.17 3.35 4.49 9.46 

A3 

(Lido Adriano) 

Vvert (mm/yr) -6.83 -7.12 -7.07 -8.52 

Std (mm/yr) 1.24 2.07 1.27 0.90 

A4 

(Lido di Dante) 

Vvert (mm/yr) -7.94 -12.74 -7.45 -10.68 

Std (mm/yr) 0.92 1.47 0.94 1.12 

A5 

(Southwest of 

Ravenna) 

Vvert (mm/yr) -6.10 -5.23 -5.23 -2.72 

Std (mm/yr) 2.27 0.87 0.94 0.43 

A6 

(Savarna and 

Mezzano) 

Vvert (mm/yr) -3.70 -3.68 -10.11 -3.31 

Std (mm/yr) 0.78 0.69 0.72 1.76 

4.4. Interpretation of ground motion areas 

Statistical analyses were used to interpret which are the main factors influencing the detected 

ground motion areas. Unfortunately, the restricted availability of ancillary data limited the number of 

the possible factors to analyse. Anyway, the results obtained so far are in accordance with the main 

conclusions of the scientific literature (e.g. Teatini et al., 2005). 

A first analysis was carried out to evaluate the influence that the geology has on the deformation 

values, associating the available geological information (Figure 1c) to each point measured with 
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SBAS. For all the four A-DInSAR processings, the test has shown a high influence of the geology on 

the measured deformation with values increasing towards the coastline. Specifically, bigger 

deformations occur over the fluvial sands lithology with an average value of -27.4±26.5 mm for 1992-

2000, -26.5±27.8 mm for 2003-2010, -7.8±6.9 mm for 2012-2014, and -4.2±4.6 mm for 2014-2016. 

Small deformations are observed on the lithified marine dune with an average of -1.1±9.5 mm for 

1992-2000, -3.2±12.4 mm for 2003-2010, -1.5±5.3 mm for 2012-2014, and -2.6±6.1 mm for 2014-

2016. 

A second analysis was applied to assess the relationship between the water wells, classified by 

type of use (agricultural, civil and livestock) and the subsidence velocity. Unfortunately, no data about 

the pumping rates for each well is available, so the analysis is based only on their location. A fishnet 

with cell size of 1 km × 1 km has been created and the average velocity for each cell has been 

computed (Figure 11).  

 

Figure 11. Average vertical velocities of deformation computed with a fishnet of 1 km x 1 km for each dataset. 

The location of the three categories of water wells and the extension of the methane gas fields are superimposed 

to the fishnet used in the statistical analyses. 

 

The test does not show significant influence of the wells location on the subsidence velocities. A 

better correspondence was found only for the agricultural wells located in the northwestern part of 

the study area where agricultural activities continue to be prevalent. 
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In order to analyse the relationship between deformation and the gas extractions, the spatial 

correlation with the methane-gas field, the distance-velocity plots along with the gas production have 

been taken into account. We focused on Angela-Angelina and on Porto Corsini Terra gas fields. 

Regarding Angela-Angelina (Figure 12), the average velocity values of the points closer to the 

reservoir are respectively of -1.1±1.1 mm/yr, -11.1±1.3 mm/yr, -6.9±1.3 mm/yr and -7.8±1.1 mm/yr 

for ERS-1/2, ENVISAT, TerraSAR-X and Sentinel-1A. The intercepts of the diagrams are of -9 

mm/yr, -11 mm/yr, -6 mm/yr and -8 mm/yr for the four results.  

 

Figure 12. Velocity-distance plots for the Angela-Angelina gas field. (a) ERS-1/2 (b) ENVISAT (c) 

TerraSAR-X (d) Sentinel-1A. 

 

It is possible to notice a general decrease of the measured deformations for increasing distances from 

the reservoir. Considering the average velocities of displacement in A3 and A4, there is an increase 

in the subsidence rates in the period 2003-2010 in respect to 1992-2000 and in the period 2014-2016 

in respect to 2012-2014. The average velocity is higher in area A4 than in area A3. Considering the 

gas production activity in 1990-2016 (Figure 2), there is a quite good correlation with the measured 

deformations. The increase of the average velocity, detected using ENVISAT, can be related to the 

increase of the methane-gas extractions in 1998 (1748 × 106 Sm3). In 2012-2014, the decrease of the 

average velocity can be correlated with a decrease in the methane-gas production from an annual 

average of 734 × 106 Sm3 to 377 × 106 Sm3. Conversely, the increase average velocity detected in the 

period 2014-2016 in both A3 and A4 is not correlated with the methane-gas production. 

Even for the Porto Corsini Terra gas field, the analysis shows a general decrease of the 

deformations with increasing distance from the gas reservoir, especially in the northern side of the 

gas field (Figure 13) within a distance lower than 1 km. 
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Figure 13. Velocity-distance plots for the Porto Corsini Terra gas field. (a) ERS-1/2 (b) ENVISAT (c) 

TerraSAR-X (d) Sentinel-1A. 

 

The area closest to Porto Corsini Terra, A1, presents an increase of the average velocity from 2012-

2014 to 2003-2010, while in 2014-2016 the velocity rapidly decreased until -2.09 mm/yr. The high 

average velocities found in 1992-2014 may correspond to the combined effects of the extraction 

activities taking place in the two gas reservoirs close to the area: Porto Corsini Terra and Porto Corsini 

Mare Ovest (Figure 1b). Despite the low production rates of the first, the proximity to A1 (around 1.5 

km), may strongly influence the subsidence in the area. The maximum production in 2003 of 42.6 × 

106 Sm3 drastically lowered in the next years until ending in 2014. The Porto Corsini Mare Ovest 

reservoir is located around 5 km west of A1 and had a very high productivity in 2004-2008 with more 

than 260 × 106 Sm3. In this case, the production ended in 2016. The decrease in the average velocity 

in 2014-2016 (-2.09 mm/yr) reflects the reduced methane-gas production in the two gas fields in those 

years. 

4.5 Land-use change 

The contribution that land-use changes may have on the detected displacement rates was 

evaluated by overlapping the six ground-motion areas with the CORINE Land Cover (CLC) inventory 

(EEA, 2007) corresponding to the period covered by each dataset (Figure 9). The ground-motion 

areas extracted from the ERS-1/2 results were compared with the 1990-2000 CLC changes. In A2, 

part of the subsidence occurs in areas which land-use changed from salt marshes and non-irrigated 
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arable land to industrial/commercial unit. The displacement observed with the ENVISAT data 

matches with the 2000-2006 CLC changes. A correlation between land use changes from arable land 

to industrial/commercial unit was detected in A3. Also in A2, the motion areas partly match with 

land-use that changed from arable land to construction unit. Therefore, in A2 part of the subsidence 

seems to be correlated to the sediments compaction caused by the load produced by the new 

constructions. Comparing the 2012-2013 CLC changes with the TerraSAR-X results, the same 

correlation was observed in a small area of A3 where the same land-use change occurred. The ground-

motion area detected in A5 highlights a decrease of the average velocity from -6.10 mm/yr (1992-

2000) to -2.72 mm/yr (2014-16). Unfortunately, no CLC changes are available for this area after 

2006, but the comparison of the Google™ earth DigitalGlobe historic images Oct 17 2009 – Jun 7 

2014 (Figure 14) shows new constructions in areas used as arable land. This may explain the relatively 

high average velocity (-5.23 mm/yr) registered in the area during 2012-2014. The ground-motion area 

detected at Savarna and Mezzano (A6) is characterized by a high increase of the average velocity 

from around -3.7 mm/yr of 1992-2010 to -10.11 mm/yr of 2012-2014; it follows a rapid decrease in 

2014-2016 with -3.3 mm/yr. In this case, a strong correlation between the CLC change and subsidence 

did not result from the analysis. Only in few small areas of A6, the recent constructions that are visible 

comparing the Google™ earth DigitalGlobe historic images from 2006 to 2015 may explain local 

accelerations in the subsidence rates. 

 

Figure 14. (a) Ground motion areas detected for the TerraSAR-X results. In (b) and (c), the comparison 

between the Google™ earth DigitalGlobe images Oct 17 2009 and Jun 7 2014 showing new urban development 

in A5. 

5. Conclusions 

The land subsidence affecting the city of Ravenna and its surrounding was measured using 25 

years (1992-2016) of SAR data acquired by ERS-1/2, ENVISAT, TerraSAR-X and Sentinel-1A 

satellites. The A-DInSAR results reported as displacement maps projected to the vertical direction 

show subsidence up to -35 mm/yr affecting mainly the coastline and the industrial area of Ravenna. 

The analysis of the displacement time series was carried out over seven selected points that present 

mostly a linear trend. The points located along the coastline and in the industrial area present the 

highest displacement values in the 1992-2016 period, which was calculated as -250 mm and -280 

mm, respectively. Statistical analyses were applied in order to better understand the behaviour of the 
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displacement over time and to assess the role of the main factors that control the subsidence. The 

analyses revealed that the main driving factor of the subsidence along the coastline can be related to 

the exploitation of the on- and off-shore methane-gas fields. There is no evident relationship between 

the water extraction and the detected displacements, while the correlation with the geology appears 

to be strong. One more factor considered was the land-use change that in many restricted areas 

explains the high rates of subsidence caused by the sediments consolidation under the loading of 

newly developed residential or industrial areas. 

The results obtained with SBAS from the ENVISAT and TerraSAR-X images were cross-

validated through the comparison with the CPT processing over the industrial area of Ravenna. The 

analysis of the time series of four control points showed that the displacement trends obtained with 

both techniques were very similar, confirming the validity of the SBAS results. 

The study shows the benefits of a long term monitoring activity performed using A-DInSAR 

techniques thanks to which it is possible to monitor very large areas with metric resolution and 

millimetric accuracy. The availability of the new Sentinel-1A data, in particular, further improves the 

monitoring activity giving up to date information on the subsidence behaviour. The short revisiting 

time of 12 days of Sentinel-1A, not only permits to obtain better data coverage with increased points 

density, but also enhance the displacement time series analysis that now are sensible to seasonal 

trends, rainy periods or thermic variations. Furthermore, the launch in April 2016 of the twin satellite 

Sentinel-1B will reduce the revisiting interval to 6 days allowing us to perform near-real time and 

continuous monitoring activities. 

Anyway, A-DInSAR results must always be integrated with other analyses in order to fully 

exploit their potential. In our case, the statistical analyses proved to be reliable tools that, applied to 

the deformation and velocity maps obtained with SBAS, allowed us to better understand the 

subsidence trends, its main driving factors, and the relationship with the exploitation of the 

underground resources in the area. Future work will regard the extension of the monitoring activity 

with the latest Sentinel-1A and 1B images along with the integration of other ancillary data to improve 

the statistical analyses. 
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CHAPTER 2 

 

Testing the potential of Sentinel-1A TOPS interferometry for 

the detection and monitoring of landslides at local scale. 
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Abstract 

The recent Sentinel-1 mission, started by the European Space Agency (ESA) in April 2014, 

provides to the scientific community new capabilities for the monitoring of the Earth surface. In 

particular, the Terrain Observation by Progressive Scans (TOPS) imaging technique used in the 

Interferometric Wide swath (IW) acquisition mode, permits to acquire data over very wide areas (250 

km of swath extension) at 20 m spatial resolution, with 12-day revisit time, making it suitable for 

ground displacement monitoring applications. With more than one year of SAR images available, it 

is now possible to carry out monitoring activities of slow moving phenomena such as landslides at 

both regional and local scales. In this work, the potential of Sentinel-1A for the monitoring of shallow 

landslides occurring in the North-Eastern Italian Pre-Alps was tested. Two stacks of Sentinel-1A 

scenes acquired in both ascending and descending orbits were processed using the Permanent Scatter 

Interferometry (PSI) technique. The results, analysed in terms of PS density and quality, were 

compared with the ERS-1/2 and ENVISAT PSI database available from the Italian National 

Cartographic Portal to assess the capabilities of Sentinel-1A in detecting and monitoring landslides 

in respect to the previous satellite missions. The results of this work show the great potential of 

Sentinel-1A in the continuous monitoring of landslides-prone territories even at local scale. The 

achievable results can provide information that are useful to delineate the spatial and temporal 

evolution of landslides and precisely assess their rates of deformation. 

1. Introduction 

In the last years, Advanced Differential Synthetic Aperture Radar Interferometry (A-DInSAR) 

techniques have been widely used to detect, monitor and characterize displacements triggered by 

natural processes such as subsidence (Tomás et al., 2014), earthquakes (Wright et al., 2006), deflation 

and inflation of volcanoes (Biggs et al., 2009) and slope movements (Wasowski and Bovenga, 2014). 

In the case of landslides, the results obtained from A-DInSAR analyses are often not completely 

satisfying (Cascini et al., 2010). The reasons are to be found in both the technique and in the 
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deformation process itself. On one hand, the geometry of acquisition of the space-borne SAR sensors 

coupled with the topography of the area of interest cause shadowing effects and geometric distortions 

(i.e. foreshortening and overlay); on the other, the typology of the investigated landslide, in terms of 

slope, aspect, activity and the presence of vegetation, decorrelate the signal between the acquisitions 

(Chaabane et al., 2005; Colesanti and Wasowski, 2006; Wasowski and Bovenga, 2014; Wasowski et 

al., 2014). To tackle some of these limitations, the exploitation of dataset acquired by missions with 

more suited wavelengths and shorter revisiting time has been proposed (Tosi et al., 2016; Wasowski 

and Bovenga, 2014). Furthermore, to detect and monitor landslides occurring over vegetated areas or 

to measure large displacement rates and ignore phase decorrelation, new algorithms based on the 

amplitude off-set tracking were developed (Casu et al., 2011; Manconi et al., 2014; Michel et al., 

1999; Singleton et al., 2014). 

The Sentinel-1A mission, operated by European Space Agency (ESA) since April 2014, provides 

to the scientific community new capabilities for the quasi-continuous monitoring of the Earth surface. 

The Terrain Observation by Progressive Scans (TOPS) imaging technique, used in the Interferometric 

Wide swath (IW) acquisition mode, permits to generate SAR images over very wide areas (250 km 

swath dimension) at 20 m spatial resolution, with 12-day of revisiting time. Since April 2016, the 

launch of the twin satellite Sentinel-1B enhanced this temporal sampling capability by reducing the 

revisiting time to 6 days. With these increased interferometry-oriented design capabilities, the 

Sentinel-1 mission represents a very promising tool for ground displacement monitoring applications 

and at present, with almost two years of data acquisition, it is possible to carry out A-DInSAR 

analyses of landslides at both regional and local scales. Some Authors have already successfully 

tested the potential of Sentinel-1A data in updating landslide inventory maps and monitoring landslide 

activity (Barra et al., 2016; Lazecky et al., 2016; Wasowski et al., 2016). Even if different methods 

to assess the a-priori effectiveness of interferometric techniques have been proposed (Cascini et al., 

2009; Colombo et al., 2006; Plank et al., 2012, 2013), additional tests in different geo-environmental 

scenarios are needed, because the quality of the results, in particular for landslide analyses purposes, 

depends on several factors related to the geo-environmental features of the area under investigation 

and to the processing technique (Hanssen, 2005; Mahapatra et al., 2012), which can limit the 

reproducibility of the interferometric results in different areas (Wasowski and Bovenga, 2014). 

In this work, the potential of Sentinel-1A acquisitions to detect and monitor landslide phenomena 

affecting a densely vegetated area located in the North Eastern Italian Pre-Alps is tested. More than 

40 images acquired from ascending and descending orbits were processed using the Persistent 

Scatterer Interferometry (PSI) technique (Ferretti et al. 2001). The results were compared with the 

ERS-1/2 and ENVISAT PSI database available from the Italian National Cartographic Portal 

(www.pcn.minambiente.it). The quality of the outcomes was assessed in terms of persistent reflectors 

density and measurement accuracy (Colesanti and Wasowski, 2006) over the entire study area; in 

particular, the observations on two specific active slopes are reported and discussed. The strengths 

and weaknesses of the Sentinel-1A TOPS mode interferometry emerged during this study were 

likewise pointed out. 
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2. Study Area 

The Municipality of Trissino, covers an area of about 22 km2 in the Province of Vicenza (Veneto 

Region, Italian Pre-Alps, NE Italy) (Figure 1). The territory is characterized by elevations ranging 

from 800 m a.s.l. (West) to 100 m a.s.l. (South) with typical hillslope morphologies. The main 

geology consists of volcanic deposits such as lavas, pyroclastites and ignimbrites, which are overlaid 

by eluvial and colluvial deposits originated from the alteration of the volcanic substratum. The entire 

area is affected by a large number of different ground instabilities, which have been detected and 

classified according to Cruden and Varnes (1996) combining the information provided by the Italian 

Landslide Inventory (IFFI) archive compiled in 2008 and the geomorphological map produced by the 

2013 Italian Territory Development Plan (PAT) project. This information was updated through the 

analysis and interpretation of the available aerial photographs and orthophotos acquired from 1954 to 

2010. A total of 64 landslides, affecting the 18% of the Municipality of Trissino have been reported 

and classified by three main types of movement (Figure 1): earth flow, roto/translational slide and 

complex. Such instabilities are generally triggered by intense rain events as occurred in November 

2010, when an exceptional event (up to 500 mm of cumulated rainfall in 3 days) hit the Vicenza 

Province and the entire NE Italy causing several floods and triggering a very large number of mass 

movements. During the floods, the Soil Protection Division of the Vicenza Province received more 

than 500 warnings of instability phenomena (Floris et al., 2012) and in the Municipality of Trissino 

the activation of 12 landslides were documented (Figure 1). 

 
Figure 1. Location of the study area, the boundaries of the Municipality of Trissino, and the landslides 

within its territory. The blue dots are the location of the landslides occurred after the November 2010 

exceptional rainfall event. 
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Mass movements generally involve the debris coverage or the terrain up to a maximum depth of 

8 m, and occur mainly between 250 m and 400 m a.s.l. in the central section of the study area and 

between 450 m and 600 m a.s.l. in the western section. Most of the landslides occur along the N-S 

and E direction, while only few along the W direction. The average velocity of movement that 

characterize the instabilities over large areas is generally below 10 mm/yr, while smaller landslides 

generally occur suddenly with no warning signs. Even if these slope instabilities are not very large, 

they often occur near the urbanized areas damaging the buildings and the infrastructure, in particular 

the road network, and causing significant disruptions of daily life and high economic losses (Figure 

2). Landslides prevention and control works such as the installation of drainage systems were carried 

in the most critical areas and are constantly monitored by the local Authorities. 

 

Figure 2. Typical landslides occurring in the study area. In evidence the damage to the road network. (a) 

earth flow, (b) rotational slide/flow. 

3. Data and data processing 

The Sentinel-1A datasets processed in this study consist of 46 scenes acquired from 12/2014 to 

09/2016 with descending orbit number 95 and 42 scene acquired from 03/2015 to 09/2016 with 

ascending orbit number 117. The ground resolution achievable with the Sentinel-1A C-band sensor 

is around 20 m x 20 m applying a multi-look factor of 5 in Range and 1 in Azimuth. In order to reduce 

processing time, save disk space and, at the same time, to produce results that can be easily managed 

in a Geographic Information System (GIS) environment for the post processing analyses, the 

acquisitions were resized to comprehend exclusively the study area (the Municipality of Trissino). 

The processing of the available images has been carried out through the PSI technique using the 

Precise Orbit Ephemerides (POE) to reduce the errors related to the satellite orbit inaccuracies. The 

main steps of the processing can be synthesized as follows: i) first, the images are connected to create 

a network of master and slave pairs, using a single master image (Figure 3); ii) the images are 

coregistered onto the master acquisition and the coherence image, the interferograms and the related 

intensity images are generated. The interferograms are then flattened removing the constant phase 

(due to the acquisition geometry) and the topographic phase. For the latter, the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (Rabus at al., 2003) with 30 m pixel size was 
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used; iii) the phase-height pair-by-pair proportionality factors are estimated and removed from the 

flattened interferograms. The Persistent Scatterers (PS) candidates are then generated and the 

displacement information (i.e. velocity) is estimated using the linear model: 

 

𝐷𝑖𝑠𝑝 =  𝑉 ∗ (𝑡 − 𝑡0) 

 

where Disp is the displacement at time t and V is the displacement velocity; iv) the spatial and 

temporal variations related to the atmospheric phase are estimated and subtracted from the 

interferograms in order to calculate the final displacements. The atmospheric correction is performed 

applying two filtering methods: the Low Pass filtering, which accounts for the spatial distribution of 

the atmospheric variations and is implemented by using a square window of 1200 m; and the High 

Pass filter, which accounts for the temporal distribution of the atmospheric variations and uses a 

temporal window of 365 days. The PS candidates are then selected considering the coherence value, 

which identifies the level of backscattering that the targets on the ground maintain between two 

consecutive acquisitions. In this case, the coherence threshold was set to 0.80; v) finally, all PS 

candidates are projected onto the adopted Geographic Coordinate System (GCS) WGS84. To improve 

results quality, the PS candidates can be further filtered in this step considering the amplitude 

dispersion index (µ/σ), which represents the ratio between the average SAR intensity (µ) and the 

standard deviation (σ). In this case, the adopted threshold was 3.2. 

The obtained results were compared with the ERS-1/2 and ENVISAT PSI database available 

from the National Cartographic Portal (PCN) that were produced in the framework of the Special 

Remote Sensing Environment Plan, promoted by the Italian Ministry of Environment. Within the 

study area, the PSI results obtained from the following datasets were available: 79 descending ERS-

1/2 images (04/1992 - 11/2000); 29 ascending ERS-1/2 images, (05/1992 - 06/2000); 34 descending 

ENVISAT images (01/2003 - 06/2010); 34 ascending ENVISAT images, (12/2003 - 07/2010). 

 

 
Figure 3. Connection network between master (yellow dot) and slaves (black dots) images obtained from (a) 

46 Sentinel-1A descending scenes and (b) 42 ascending scenes. 
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4. Results 

The results obtained from the PSI analysis applied to the Sentinel-1A images are reported in 

terms of mean linear displacement velocity along the sensor Line of Sight (LOS) in Figure 4. Positive 

values are colour coded in blue and refer to natural radar targets (the PS) moving towards the satellite, 

while negative values (in red), testify a displacement far from the satellite. Although the selected 

parameters were quite restrictive, 6203 PS candidates were generated with the descending dataset, 

and 5855 with the ascending one. PSI analysis detects several areas affected by displacements, in 

particular in the north-west and the central sections of the Trissino Municipality. The range of the 

displacement velocities is generally low, with rates ranging from 2 mm/yr to 7 mm/yr, values that are 

in accordance with the type of instabilities affecting the area. As it can be noticed from Figure 4, most 

of the small urban agglomerates in the area are recording deformation patterns as consequence of the 

mobilization of the weak deposits triggered by intense rainfall. The use of images acquired in 

descending and ascending orbits permits a better characterization of the prevalent direction of the 

displacements allowing us to assess the components of plano-altimetric change. Furthermore, since 

the backscattering properties change with the satellite viewing geometry, the analysis of descending 

and ascending datasets increases the number and the spatial distribution of the PS within the area of 

interest. 
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Figure 4. LOS velocity maps obtained from descending (a) and ascending (b) Sentinel-1A data processing. 

White boxes indicate the specific unstable slopes reported in Figures 5 and 6. 

 

The shorter revisit time of Sentinel-1A in respect to ERS-1/2 and ENVISAT (12 vs 35 days) 

allowed us to obtain a much higher PS density (Table 1) that positively reflects not only on the 

quantity but also on the quality of the measurements. Despite the restrictive processing thresholds 

adopted, the Sentinel-1A results are still affected by a moderate level of noise generated by an overall 

low signal-to-noise ratio, which is probably consequence of the short temporal extent of the available 

images stack (Hanssen, 2005; Mahapatra et al., 2012). The presence of noise in the results can be 

noticed in Figure 4 from the moving PS (red and blue dots) in the stable area (green dots) in the 

section occupied by the city of Trissino. 

 
Table 1. Comparison between the PS results obtained with Sentinel-1A, ENVISAT and ERS-1/2: image 

acquisition geometry; total number of PS; PS density; velocity standard deviation (σ); percentage of moving 

PS. 

 

Satellite Geometry N. of PS PS/Km2 
Velocity σ 

(mm/yr) 

Moving PS (Vel ≠ ±1.5 

mm/yr) 

Sentinel-1A Descending 6203 283 0.54 12% 

ENVISAT Descending 1204 54 0.69 6% 

ERS-1/2 Descending 1305 59 0.35 7% 

Sentinel-1A Ascending 5855 267 0.69 18% 

ENVISAT Ascending 992 45 0.44 2% 

ERS-1/2 Ascending 803 36 0.43 7% 
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The comparison with the ERS-1/2 and ENVISAT PSI database shows a good agreement in the rates 

of movement and location of the landslides detected by each sensor (Figure 5 and 6). Figure 5, shows 

the displacements detected by the PSI analysis over area 1 of Figure 4. As reported by the people 

living in this area, several houses have recently shown fissures and displacements of walls and 

sidewalks as sign of the terrain mobilization. Moreover, the complexity of the movements and the 

lack of geomorphological evidences, makes difficult to precisely map the extension of the landslide. 

 
Figure 5. LOS velocity maps of the north section of the study area (area 1 of Figure 4) obtained from Sentinel-

1A (a), ENVISAT (b) and ERS-1/2 (c) datasets. The green lines indicate the mapped landslides. 

 

The opposite colour shift in the two datasets (blue for the descending acquisitions and orange for the 

ascending) witnesses a prevalent planimetric displacement toward E-SE of the buildings in the 

northern sectors; this direction of movement is in accordance with the one of the instability 

phenomenon. This result clearly shows the landslides distribution of activity (marked retrogressive) 

suggesting the necessity of reviewing its limits. 



34 

 

Figure 6, displays in detail another area affected by movement (area 2 of Figure 4). In the SW 

sector, the direction of displacement toward W revealed by the ascending orbit (positive values) is 

coherent with a retrogressive activity distribution of the instability. Furthermore, in the NE sector 

where no landslides were mapped before, it is clearly visible the toward satellite movement of the 

area mainly in the E direction given by the positive values of the detected PS in descending orbit.  In 

this case, of the 29 PS measured, 27 of them registered velocities in the range from 1.6 mm/yr to 3.6 

mm/yr, while only two present higher velocities of 5.4 mm/yr and 7.1 mm/yr, which is the maximum 

value registered in the entire study area. Thus, also in this case, the landslides delimitation should be 

updated and more in depth remote and ground based analyses are needed to characterize the landslide 

detected by the PSI analysis in the NE sector of Figure 6. 

 

Figure 6. LOS velocity maps of the middle section of the study area (area 2 of Figure 4), obtained from 

Sentinel-1A (a), ENVISAT (b) and ERS-1/2 (c) datasets. The green lines indicate the mapped landslides. The 

displacement time series for the selected PS (black cross) are reported in Figure 8. 

 

In order to assess the capabilities of the Sentinel-1A for landslide monitoring in such 

environment, the number of Sentinel-1A, ENVISAT and ERS-1/2 PS falling inside the mapped 

instabilities has been calculated (Table 2) considering a buffer of 50 m around each landslide. This 

buffer was adopted to compensate possible geocoding inaccuracies of the PS and unprecise 

delimitations of the instability phenomena. Assuming a threshold of PS≥4 as the minimum to monitor 

the temporal evolution of mass movements (Cigna et al., 2013; Herrera et al., 2013; Notti et al., 2010), 

the results are quite encouraging: up to 45% of the landslides contain a number of PS above the 

threshold. More than the 50% of the landslides (64% in the case of ascending orbit) has at least one 

PS falling inside their limits. According to these results, the descending orbit is more suitable to detect 
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flow type landslides than the slides, probably because of the morphological conditions of the 

investigated territory. The results obtained with Sentinel-1A represent a great improvement in respect 

to the performance obtained with ERS-1/2 and ENVISAT and are comparable to the results achieved 

by some Authors in other geomorphological contexts using medium and high resolution SAR data 

(Cigna et al., 2013; Herrera et al., 2013; Notti et al., 2010; Wasowski and Bovenga, 2014). 

 

Table 2. Number of PS falling in the mapped landslides. In brackets the percentage respect to the total of the 

instability phenomena (41 flows and 23 slides). 
 

Satellite Track 
Landslides 

with PS≥4 

Flows with 

PS≥4 

Slides with 

PS≥4 

Landslides with 

1≤PS<4 

Flows with 

1≤PS<4 

Slides with 

1≤PS<4 

Sent.-1A Desc. 23 (36%) 17 (41%) 6 (26%) 13 (20%) 10 (24%) 3 (13%) 

ENVISAT Desc. 10 (16%) 8 (19%) 2 (9%) 29 (45%) 18 (44%) 11 (49%) 

ERS-1/2 Desc. 17 (26%) 13 (32%) 4 (17%) 28 (44%) 18 (44%) 10 (43%) 

Sent.-1A Asc. 29 (45%) 19 (46%) 10 (43%) 12 (19%) 8 (19%) 4 (17%) 

ENVISAT Asc. 4 (6%) 2 (5%) 2 (9%) 26 (41%) 17 (41%) 9 (39%) 

ERS-1/2 Asc. 8 (12%) 5 (12%) 3 (13%) 24 (37%) 16 (39%) 6 (26%) 

 

The displacement trends of target reflectors selected in the stable area of the town of Trissino 

(Figure 7) and in an unstable area (Figure 8) are analysed in detail to further demonstrates the great 

improvement brought by the Sentinel-1A data for ground displacement monitoring purposes. In order 

to make the all the results comparable with the Sentinel-1A time series (624 days in total), a 630 days 

stretch was extracted from the original ENVISAT and ERS-1/2 time series: from January 2007 to 

October 2008 for ENVISAT, and from December 1996 until September 1998 for ERS-1/2. These 

stretches were chosen among those with the largest number of ENVISAT and ERS-1/2 acquisitions, 

covering the seasonal periods enclosed in the Sentinel-1A datasets (December 2014 – September 

2016). As it can be noticed from Figure 7, the number of measurements plays and important role in 

the interpretation of the time series. If from one hand the 47 Sentinel-1A acquisitions clearly define 

the stability of the PS in the investigated period, on the other, the 10 ENVISAT measurements resulted 

in a very noisy scattered plot. Better results were obtained by the ERS-1/2 dataset from which the 

stability of the area can be assumed even if some seasonal variations are evident. Assuming an 

expected value equal to 0 (no displacement) the standard deviations of the three measurements are 

0.76 mm, 5.03 mm and 2.16 mm respectively for the Sentinel-1A, ENVISAT and ERS-1/2 datasets. 
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Figure 7. Time series of a stable target selected in the town of Trissino: (a) Sentinel-1A, (b) ENVISAT, (c) 

ERS-1/2. 

 

Figure 8 shows that the displacement trend of a point located inside the landslide body of Figure 6, 

chosen as example, is evident with Sentinel-1A measurements (besides a clear unwrapping error in 

the fourth interferogram), while with ENVISAT and ERS-1/2 the noise is predominant, making 

difficult the correct interpretation of the movement trend. In the latter case, only by analysing a longer 

time series, as reported in Figure 8 d and e, the deformation trends can be correctly inferred. 
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Figure 8. Time series of moving targets selected over a landslide body obtained with Sentinel-A (a), ENVISAT 

(b), ERS-1/2 (c); (d) and (e) show the full-length time series respectively of ENVISAT and ERS-1/2. 

5. Conclusions 

In this work, we tested the potential of the new Sentinel-1A satellite SAR data in the monitoring 

of a densely vegetated area in the northern Italy affected by small to medium size landslides. To this 

end, 46 descending and 42 ascending Sentinel-1A images acquired respectively from 12/2014 to 

09/2016 and from 03/2015 to 09/2016 have been processed using the PSI technique. The results were 

compared with those of the ERS-1/2 (1992-2000) and ENVISAT (2003-2010) PSI archive available 

from the National Cartographic Portal of the Ministry of Environment, in order to verify their quality 

and applicability. Sentinel-1A results show that among the 64 mapped landslides, the 45% have more 

than 4 measured PS falling inside their limits, and the 64% have at least 1 PS. The movement rates 

are generally low, reaching at maximum 7 mm/yr. The obtained results show the great potential of 

the Sentinel-1A data in the continuous monitoring of landslides-prone territories not only limiting the 

activity at the regional scale, but also focusing on local scale phenomena. The high number of PS 

obtained with Sentinel-1A and the high temporal sampling rate of the measurements can help to better 

characterize the movements in the area, to delineate the extent of several landslides, and to detect new 

instability phenomena. Such results represent a great improvement in the detection and monitoring 

of landslides in respect to the previous ERS-1/2 and ENVISAT C-band satellites and they can be 

comparable to the results achievable by using high resolution X-band SAR data. Even if there are 
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only less than two years of acquisitions available, the measurements carried out with Sentinel-1A can 

correctly assess the rate of deformation of natural target reflectors. These results, as demonstrated, 

are hardly achievable in such a short period of time from previous satellite missions (e.g. ERS-1/2 

and ENVISAT). The availability of new images and the extension of the temporal coverage, will 

increase the overall quality of the achievable results. Moreover, the twin Sentinel-1B satellite 

launched in April 2016 will supply the scientific community with an additional set of SAR images 

that will permit, combining the data from both satellites, to lower the image frequency to 6 days, with 

great benefits in terms of detection capabilities and quality of the results. 

Sentinel-1 exploitation can provide very useful information about the spatial and temporal 

evolution of landslides. A continuous monitoring activity is crucial especially in critical areas to keep 

track of the landslides movement over time and to assess abrupt changes in the deformation rates. 

However, since the PS are limited to high backscattering object (namely, the buildings), it is not 

possible to rely only on A-DInSAR techniques to precisely delineate the extension of an active 

landslide, which limits may interest vegetated areas where no measure points are available. For this 

reason, geological surveys are always necessary in order to check the presence of geomorphological 

evidences that are sign of active movements. 
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Abstract 

This article presents and analyses the results obtained from Differential Interferometric Synthetic 

Aperture Radar (DInSAR) techniques applied to ERS-1/2, ENVISAT, ALOS-PALSAR, COSMO-

SkyMed, and Sentinel-1A datasets over the Lisan Peninsula, located in the southern part of the Dead 

Sea, Jordan. The novelty comes from the integration of three different frequencies to study the 

dynamics of a salt dome. The monitoring activity entirely covers the period extending from 1992 to 

2016. Five displacement maps have been produced, calibrated and then fused to provide a total 

cumulated map of the displacements in the area. The ground movements have been analysed by 

comparison with in-situ tectonic observations collected by various Authors since the mid-1980s. The 

study shows a monotonous rising of the Lisan diapir. The presented results can be useful to update 

the knowledge of the displacement rates occurring in the area and to better comprehend the complex 

dynamics of the Lisan Peninsula.  

1. Introduction 

The Dead Sea (DS) region (Figure 1a) is one of the best examples of the negative impacts that 

the over-exploitation of fresh water and mineral resources may have on the environment. Since the 

1950s, the DS’ main feeder, the Jordan River, has been diverted for civil and agricultural purposes in 

the region and as far as the Negev desert, in southern Israel. Nowadays, more than 90% of its water 

does not supply the terminal lake anymore. The natural evaporation rates of 1500 mm/year (Dayan 

and Morin, 2006) and the annual precipitations of only 60 mm/year (Klein, 1985) also contribute to 

the negative water balance. Consequently, the DS water level has dropped at an increasing pace: from 

395 m below Mean Sea Level (bMSL) in the 1960s to about 430 m bMSL in 2016 when the rate 

exceeded 120 cm/yr (Abou Karaki et al., 2016).  Up to now, the cumulated water level dropped by 

35 m and the lake shrunk by more than one-third. During the last five decades, secular equilibrium 

such as the meromictic state disappeared with a complete overturn of the water column during 1978-
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1979 (Steinhorn et al., 1979). In addition to this water depletion, an increasing amount of salt minerals 

is extracted from the water of the DS by the potash industries located in the southern shallow basin 

of the lake. On average, about one third of the DS water lost each year, is pumped into salt evaporation 

ponds to permit the harvesting of the potash minerals. Below the coastal zones, the seaward and 

downward migration of the fresh/saline groundwater interface, forces the riparian freshwater to flow 

at various pace through the underlying evaporitic layers mainly made of salt minerals and gypsum 

(Salameh and El-Naser, 2000; Closson and Abou Karaki, 2009; Yechieli et al., 2016). Dissolution-

related phenomena such as subsidence and sinkholes have appeared all along the former shoreline 

causing damage to the landscape and to the infrastructures such as bridges, roads, earthen dikes of 

the desalinization ponds, houses, hotels, resorts, and factories. The most active subsidence has 

occurred in the exposed lake bottom surrounding the Lisan Peninsula (LP) (Baer et al., 2002; Shimoni 

et al., 2002; Closson et al., 2003; Closson and Abou Karaki, 2009), located in the southern part of the 

DS (Figure 1b). Besides, the LP is also characterized by the activity of an underlying salt diapir, the 

biggest in the whole DS basin. The latter has been extensively studied by geophysicists in order to 

detect either oil reservoirs (deep surface) in relation with salt diapirs, or sinkholes and subsidence 

(near surface) to determine if assets along the coast are exposed to damage. Regarding the near surface 

studies, different surveying methods have been used such as: gravimetry (Abou Karaki, 1995; Choi 

et al., 2011), multidisciplinary geophysical approach (Frumkin et al., 2011), ground penetrating radar 

(Batayneh et al., 2002), seismic data interpretation (Mechie et al., 2009) and satellite interferometry 

(Baer et al., 2002; Shimoni et al., 2002; Abelson et al., 2003; Closson et al., 2003, 2011; Nof et al., 

2012, 2013; Yechieli et al., 2016). Despite the large number of published papers, only a few focused 

on the movements affecting the LP and its surroundings (e.g. Shimoni et al., 2002). Moreover, since 

Closson et al. (2011), there is no attempt to monitor the entire LP area with satellite interferometry 

techniques. This article aims to fill this gap by giving an updated overview of the ground 

displacements occurring in the area. Differential Interferometric Synthetic Aperture Radar (DInSAR) 

techniques have been applied to five independent SAR datasets covering the period from 1992 to 

2016. The images have been acquired by ERS-1/2, ENVISAT, ALOS-PALSAR, COSMO-SkyMed, 

and Sentinel-1A platforms. Five velocity and displacement maps have been produced and analyzed. 

Then, the five outputs have been combined to compute a cumulated displacement map of the last 25 

years. 
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Figure 2. a) Location of the Dead Sea. b) Study area and the main locations discussed in the text. The black 

line refers to the 415 m bMSL contour line derived from the February 2000 SRTM DEM. Basemap: 

20/07/2016 Sentinel-2 image. 

2. Geological Setting 

The DS is a hypersaline terminal lake located in the lowest point on continental Earth, at ~430 

m bMSL, in 2016. It formed in a pull-apart basin along the strike-slip Dead Sea fault (Mechie et al., 

2009). The basin is 150 km long, ≤15 km wide, <8.5 km deep (ten Brink and Flores 2012) and, in 

the southern part, comprises 10 km-thick sediments accumulated in the last 4-6 Ma (Garfunkel and 

Ben-Avraham, 1996; Al-Zoubi and ten Brink, 2001; Bartov et al., 2006; Ben-Avraham and Schubert, 

2006). During the Miocene until the Holocene, the accumulated sediments had mainly lacustrine and 

terrestrial origin (Picard, 1943; Zak, 1967; Baer et al., 2002). Two main formations occupy the first 

tens of meters along the DS shoreline: the Lisan Formation formed in late Pleistocene and the 

Holocene Ze’elim Formation (Begin et al., 1974; Sneh, 1979; Yechieli et al., 2016). According to 

(Sunna, 1986; Bartov et al., 2002; Closson et al., 2007), the Lisan Formation can be divided in three 

main Members: Upper, Middle and Lower. The Upper Member has a total thickness of 10 m and is 

made of alternating laminae of aragonite and detritus; the Middle Member has a total thickness of 12 

m, it includes layers of gypsum, detritus and alternating laminae of aragonite and detritus topped by 
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a 50 cm thick gypsum layer; the Lower Member is similar to the upper one and consists mainly of 

laminae of aragonite and detritus, with 1-2 cm thick salt layers, that alternates for a total of 8 meters. 

Three prominent gypsum layers of 50 cm in thickness cap this Member. The Ze’elim Formation 

mainly consists of layers of alternating laminae of aragonite and clastic material such as clay, sand 

and gravel (Baer et al., 2002; Yechieli et al., 2016). 

The LP, located entirely in Jordanian territory, is a salty desert 18 km long and 10 km wide. The 

highest elevation point is at ~318 m bMSL. This strip of land separates the two sections of the DS, 

the main body of water to the north (sea bottom at 730 m bMSL) and the shallower section to the 

south (sea bottom at 402 m bMSL) now entirely occupied by the evaporation ponds which 

construction started in early 1960s (Closson and Abou Karaki, 2014). These two sections were 

connected until 1978 by the Lynch strait that dried up as a consequence of the water level drop. The 

main body of the LP is formed by the Lisan Formation while the margins belong to the Ze'elim 

formation (Bartov, 1999; Baer et al., 2002). The sediments outcrop for a total thickness of 100 m, of 

which 40 m consists of the Lisan Formation (Closson et al., 2007). The Lisan diapir, a salt diapir 

elongated in the north-south direction, underlies the LP. The extension of this diapir has been 

discussed in different studies: Al-Zoubi and ten Brink (2001) using magnetic, gravity, seismic and 

boreholes data determined its size to be 13 km × 10 km with an average thickness of 6 km; Choi et 

al. (2011) calculated with gravimetric data a size of 20 km × 15 km and an average thickness of 5.5 

km; Meqbel et al. (2013) found a size of 17 km × 12 km and a maximum thickness of 5-6 km through 

magnetotelluric data; Hofstetter and Dorbath (2014) estimated through seismic data a size of 23 km 

× 13 km and average thickness of 4.3 km. The roof of the salt dome is located at 125 m below the 

surface (Bender, 1974). The Lisan diapir comprises different subdomes and a structural depression 

(Bartov, 1999). Two main sets of lineaments, related to different fault systems, are present in the 

peninsula: the first set with north-south direction, is located in the east; the second, with east–

southeast and west–northwest direction, is located in the south (Sunna, 1986). The surface in the 

southern part of the peninsula, presents structurally controlled semi-circular cracks and depressions 

presumably in correspondence of the diapir margins. According to Baer et al. (2002), their formation 

may be related to one or the combination of the following factors: dissolution of a specific layer; 

collapse of layers at the margins of the dome; dissolution of salt at the margins of the dome at 100-

250 m of depth. The presence of these depressions may also indicate the possible occurrence of a 

major plunging anticline (Sunna, 1986; Closson et al., 2007). A normal fault also bounds the 

peninsula in the north-western side (Bartov, 1999).  

3. Methodology and datasets 

An area of about 18 km x 22 km that covers the LP was selected as region of interest (Figure 1b). 

The available SAR datasets (Table 1) consist of: 24 ERS-1/2 covering the period 06/1992-06/2000 

and 32 ENVISAT covering 01/2003-06/2010, both acquired in C-band by the European Space 

Agency (ESA); 10 L-band ALOS-PALSAR acquired by the Japan Aerospace Exploration Agency 

(JAXA) from 11/2007 to 02/2011; 20 X-band COSMO-SkyMed (CSK) for the period 12/2011-

05/2014 acquired by the Italian Space Agency (ASI). Finally, we exploited 32 Sentinel-1A images 

acquired by ESA and covering the period 10/2014-05/2016. In addition, another Sentinel-1A dataset 

made of 30 images acquired in ascending geometry over the same period was processed and used to 
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assess the predominant component of the movements in the area. In order to retrieve the ground 

displacements information collected by each sensor, the Small Baseline Subset (SBAS) (Berardino 

et al., 2002) DInSAR technique was applied through the SARscape® software package. The SBAS 

relies on the combination of images pairs that have short temporal and spatial baselines to produce a 

stack of interferograms from which it is possible to calculate the deformation of each measured point 

on the ground. The generated interferograms were filtered using the Goldstein adaptive filter 

(Goldstein and Werner, 1998) and the interferometric fringes were unwrapped using the Delaunay 

minimum cost flow (MCF) algorithm (Costantini, 1998). The removal of the topographic component 

of the phase was carried out using the Shuttle Radar Topographic Mission (SRTM) digital elevation 

model (DEM) with a ground resolution of 1 arc second (30 m x 30 m pixel size). All the datasets were 

multi-looked differently in order to obtain the same ground resolution with a pixel size of ~20 m x 20 

m (Table 1). The areas along the shore that were exposed year by year by the DS lowering, were 

masked out in all the images using the 415 m bMSL contour line of the SRTM DEM, that refers to 

the water level in February 2000 at the time the DEM was produced (Figure 1b).  

 

Table 1. Main features of the available SAR datasets used in this study. 

Satellite 
Band/ 

λ (cm) 

Acquisition 

geometry 

Revisit 

time (days) 

Multi-look 

Rg/Az 
Look angle 

ERS-1/2 C/5.6 Desc 35 1/5 23° 

ENVISAT C/5.6 Desc 35 1/5 23° 

ALOS-PALSAR L/23.8 Asc 46 2/6 39° 

CSK X/3.1 Desc 16 10/9 41° 

Sentinel-1A C/5.6 Desc/Asc 12 5/1 39° 

 

The selection of an appropriate reference point located over an area with zero vertical displacement 

or with known deformation is crucial to obtain reliable results. Considering the complexity of the 

movements affecting the LP and the lack of Global Position System (GPS) stations in the area, an a-

priori knowledge of the movement rates is necessary to identify the areas that can be used as reference. 

The identification of the stable areas was based on the information obtained from the work done by 

Shimoni et al. (2002) in which are reported the differential interferograms of the LP for several time 

intervals from July 1992 to March 1999, and by Nof et al. (2012) that presented the LOS velocity 

map of the entire DS basin for the period 1993-2001. Thanks to the modules implemented in 

SARscape®, several reference points (≥7) were selected in the identified stable areas highlighted in 

Figure 2. In this way, it is possible to reduce the errors in the estimation of the displacement velocity 

due to a misplaced single reference point. 
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Figure 2. The red squares are the location of the stable areas used as reference for the SAR images processing. 

Basemap: 20/07/2016 Sentinel-2 image. 

 

To get knowledge of the displacements in the LP area starting from the early 1990s until 2016, 

several SAR images acquired by sensors working with C, X and L bands have been exploited. The 

use of different spectral bands in the monitoring of the same territory may lead to obtain results that 

differ in terms of data coverage and overall quality. Such a difference is the consequence of the 

different interactions between the incident energy coming from the radar antenna and the 

characteristics of the illuminated ground surface. The amount of radar energy returned to the antenna 

that is used to produce the amplitude image and to compute the variations of distance between antenna 

and ground scatters, is mainly a function of the physical and geometric characteristics of the irradiated 

surface. The main parameters influencing the backscattered signature (backscattering radar cross 

section or backscattering coefficient) include surface roughness, dielectric constant (moisture and 

temperature), and spatial structure. The backscattering signal is also controlled by the radar 

frequency, the polarization and the incidence angle. Figure 3 illustrates, as example, the difference 

between the LP “landscapes” when observed in X, C and L band. 
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Figure 3. Backscattered energy of the LP with regards to: a) X, b) C, and c) L wavelengths. The colours range 

is from black (low) to white (high). Black colour means that all the energy transmitted is reflected away from 

the antenna and there is no information, neither in the amplitude, nor in the phase. White colour means the 

opposite. In this case, the grey level depends on the surface roughness, which is a parameter related to the 

incident wavelength. This is illustrated in a very convincing way by comparing the amplitude images of the 

peninsula in X-band (light grey) and L-band (black). 
 

In the LP area, the amplitude value is inversely proportional to the wavelength used: the shorter 

wavelength of X-band scatters back to the antenna more energy over smoother surfaces such as the 

peninsula main body, while the longer L-band does not, at the exception of the southern and eastern 

areas where an incised drainage system developed and created canyons. As a consequence, in that 

context, X-band images provided the best signal, followed by C-band, and L-band. However, since 

the subsidence in the DS area can be extremely rapid with the appearance of sinkholes, the quality of 

the outputs is reverse as L-band is able to manage a wider range of ground displacements than C-

band and X-band. In particular, in the Lynch Strait, X-band has provided the deformation field 

associated with strong subsidence related to sinkholes; while L-band was able to perform 

measurements in the most affected zones at the exception of the ground collapse itself. Furthermore, 

over the areas of the peninsula corresponding to the salt domes, the range of ground movement is 

very wide, with displacement velocities that vary from few millimetres per year to tens of centimetres 

per year. The exploitation of each sensor has, in this case, its advantages and drawbacks: X-band is 

more sensitive to subtle deformations but leads to a complete loss of information where the 

movements are too fast; L-band is recommended to map the areas with very fast movements, but 

losing the sensibility to smaller deformations. C-band is closer in wavelength to X-band but being 

less sensitive, it provides a good compromise. 

4. SBAS processing results and discussion 

The exploitation of five different SAR datasets with DInSAR SBAS technique allowed us to 

produce detailed maps of the movements along the radar Line Of Sight (LOS) affecting the LP area 

for more than two decades. The location, extension and evolution of the displacement areas along 

with the subsidence and uplift rates were studied analysing the time series for each monitored period. 

The LOS velocity and displacement maps are presented in Figure 4 and 5, respectively. In the adopted 

colour scale, positive values, in blue, represent uplift while negative values, in red, represent 

subsidence. The stable areas are in green. The range of displacement considered as stable was set to 
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correspond to a mean velocity threshold of around ±1.5-2 mm/yr accordingly to the duration of the 

period covered by each dataset: ±12 mm for ERS-1/2 and ENVISAT, ±5 mm for ALOS-PALSAR, 

±3 mm for CSK and Sentinel-1A. This, allowed us to better distinguish between the moving and 

stable areas even for short monitoring periods such as the one covered by the CSK and Sentinel-1A 

datasets, 17 months and 19 months, respectively. 

 

Figure 4. LOS velocity maps: a) 1992-2000 (ERS-1/2); b) 2003-2010 (ENVISAT); c) 2007-2010 (ALOS-

PALSAR); d) 2011-2014 (CSK); e) 2014-2016 (Sentinel-1A). Basemap: 20/07/2016 Sentinel-2 image. 

 

From the velocity maps presented in Figure 4, it is possible to delineate two distinct movement 

areas: the peninsula, characterized by low velocities, and the coastal and peripheral areas affected by 

more intense deformations. Both subsidence and uplift are present in the first, while only subsidence 

is present in the second. In the peninsula, maximum subsidence rates of -7.3 mm/yr were registered 

in the south during 2007-2010, while maximum uplift values of 15.6 mm/yr were registered in the 

northern part during 2011-2014. Along the coastline, the maximum rates of displacement registered 

were of -181.7 mm/yr in correspondence of the Wadi Araba mouth during 2014-2016. Similar rates 

of subsidence up to -181 mm/yr were detected in 2007-2010 along the northern coastline close to the 

LP wave-cut platform. Considering the C-band datasets only (Figure 4 a, b and e), it is possible to 

notice a general increase with time of the deformation velocities in the wave-cut platform where the 

subsidence rates went from -13 mm/yr (1992-2000) to -41 mm/yr (2003-2010) and reached -87 mm/yr 

(2014-2016). 
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Figure 5. LOS displacement maps: a) 1992-2000 (ERS-1/2); b) 2003-2010 (ENVISAT); c) 2007-2010 

(ALOS-PALSAR); d) 2011-2014 (CSK); e) 2014-2016 (Sentinel-1A). In a) the letters are the locations of the 

main areas affected by displacement: (A) wave-cut platform; (B) northern tip; (C) southern body; (D) Lynch 

strait; (E) Wadi Araba mouth; (F) Gohr Al Haditha and Gohr Al Mazra’a. Basemap: 20/07/2016 Sentinel-2 

image. 

 

Considering the displacement maps of Figure 5, six main deformation zones were detected 

(Figure 5a): the wave-cut platform (A); the northern tip (B); the southern body (C); the Lynch strait 

(D); the Wadi Araba mouth (E); Ghor Al Haditha and Ghor al Mazra’a (F). 

The results obtained with the ERS-1/2 images (1992-2000), show subsiding areas mainly in A, 

with maximum values of -150 mm, and in D with -170 mm. Moderate subsidence up to -50 mm, 

affected narrow and elongated semi-circular areas in C. Uplift occurred mainly in the eastern side of 

the peninsula with the highest values in B (60 mm). Uplift was detected in C between the semi-

circular depressions as result of the differential movement of the salt diapir subdome. Large areas not 

covered by data, corresponding to territories with very low temporal coherence, were located in the 

mud plains of D and in the agricultural fields of F.  

ENVISAT (2003-2010) results show strong subsidence up to -430 mm affecting the north-

western shore of A. Subsidence up to -53 mm was detected in C. High values of subsidence (-230 

mm) were registered also in D. Despite most of the cultivated land in F remained not covered by data, 

increasing subsidence values up to -83 mm were detected moving north towards the shoreline. The 

area in B reached a maximum uplift of 62 mm.  

L-band ALOS-PALSAR (2007-2011) results presented an increased data coverage that extended 

over most of the monitored area. Very high subsidence values were detected in the northeast (-700 

mm) and northwest (-806 mm) margins of A. In C the maximum subsidence registered was -35 mm. 
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Very strong subsidence was recorded in D (-394 mm) and E (-830 mm). Data coverage extended also 

over the shoreline in F and partly over the cultivated lands, where increasing subsidence up to -485 

mm was detected moving closer to the shoreline. Uplift occurred along the western border of the LP. 

A maximum uplift of 38 mm was registered in B.  

The location and distribution of the subsiding areas resulted from the CSK dataset (2011-2014), 

were in accordance with the ALOS-PALSAR results, even if the detected rates were lower due to the 

shorter band used by the CSK sensor (3.1 cm) in respect to the ALOS-PALSAR (23.8 cm). The shore 

in A registered the highest subsidence value of -332 mm, while E was affected by subsidence up to -

282 mm. Most of B presented strong uplift up to 32 mm. Uplift was also registered in C and in the 

western side of the peninsula (around 15 mm).  

Sentinel-1A (2014-2016) results presented the best data coverage, thanks to the combination of 

the C-band and the short revisit time (12 days). The north-western section of A and E registered the 

highest subsidence values of -365 mm and -403 mm, respectively. Increasing subsidence occurred 

also in F moving from the cultivated fields (-20 mm) to the shoreline (-245 mm). Uplift up to 49 mm 

was registered in B. Uplift with lower values also occurred in C and in the western side of the 

peninsula. 

In order to assess the evolution of the displacement in the LP area, the cumulated displacement 

maps of the five time intervals covered by the SAR datasets were produced. Since the deformation 

calculated along LOS varies depending on the incidence angle, the direct use of the displacement 

values obtained with different satellites is not recommended for the production of cumulated 

displacement maps. For this reason, the deformation rates were projected to the vertical direction 

assuming a zero horizontal component of the movement in the study area. This assumption was 

confirmed by the comparison between the results obtained with the Sentinel-1A images acquired in 

descending and ascending geometries that shows very similar rates of deformation over the peninsula 

and along its coastline with no change in the sign of the velocity vector, which implies the 

predominance of vertical movements. Moreover, a dominant vertical component of movement along 

the DS shoreline is also described in Baer et al. (2002). The vertical deformation (Vdef) was then 

extracted using the equation:  

Vdef = LOSdef / cos θ 

 

where, for each measured point, LOSdef is the deformation calculated along LOS and θ is the 

incidence angle. Using the first available ERS-1/2 image (11/06/1992) as starting date, the time 

intervals considered were: 06/2000 – 06/2010 – 02/2011 – 05/2013 – 05/2016, corresponding to the 

ERS-1/2, ENVISAT, ALOS-PALSAR, CSK and Sentinel-1A datasets. The stacking procedure was 

carried out only for the pixels overlapping in each displacement map. The adopted classification is 

similar to the one described previously, but in this case the range of displacement chosen as stable 

was fixed at ±20 mm. The five different displacement maps were combined into one (Figure 6) in 

order to assess the total displacement in the 25-year period (1992-2016). The measured values of 

displacement, despite the inaccuracies and the errors related to the adopted technique, may be lower 

than the real one, since the displacement occurring in the time gaps between the datasets was not 

taken into account. 
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Figure 6. Total vertical cumulated displacement map for the period 1992-2016. Basemap: 25/07/2016 

Sentinel-2 image. 

 

The results were validated overlapping the main lineaments and faults of the LP to the 1992-

2016 cumulated displacement map (Figure 6). The reported geological features are based on the field 

work done by Sunna (1986) and Bartov et al. (2006) imported in a Geographic Information System 

(GIS).  The visual inspection of the map shows a good accordance between the SBAS results and the 



52 

 

field data: the very high values of uplift registered in the northern area can be explained with the 

presence of the fault that strikes with southwest-northeast direction on the west side of the LP. 

Furthermore, the semi-circular depressions and the uplifting zones located in the southern area match 

perfectly with the pattern of the lineaments delimiting the salt diapir subdome.  

The displacements occurring in the area were also described through two sections drawn over 

the northern and southern part of the peninsula. Section 1 (Figure 7) is located on the northern margin 

of the wave-cut platform, and starts from the shoreline (A) to a stable area at the top of the platform 

(A’) just before the uplifting zone. In 1992-2000 the displacement reached almost -100 mm at the 

shoreline, then the rates increased more than four times and reached around -440 mm in 2010, -500 

mm in 2011, -700 mm in 2013 and a maximum value of -940 mm in 2016. It is worth noting that the 

section starts in proximity of a large collapsed area. Here, the Arab Potash Company constructed 

during the late 1990s a salt evaporation pond to increase the potash productivity. In March 2000, the 

pond was completely destroyed by the collapse of 1650 m of the earthen dike as consequence of the 

severe increase of the subsidence activity in the area (Closson and Abou Karaki 2009, 2014b). 

 

Figure 7. Vertical displacement values calculated over the section located in the northern part of the LP, from 

A to A’. The dashed black line represents the topography elevation extracted from the SRTM DEM along the 

section. 

 

Section 2 (Figure 8) was drawn in the southern part of the peninsula over the two main semi-

circular depressions and the two distinct uplifting areas, from B to B’. According to Figure 4, the two 

depressions are located in the section at a distance of 450 m and 1250 m while the main uplifting 

areas are at 2200 m and 4000 m. From 1992 to 2000 the displacement values in the two depressions 

were -41 mm and -36 mm, while in the two uplifting areas 20 mm and 22 mm, respectively. After 

2000 the displacement rates increased drastically: but while the subsidence stopped in 2011 after 

reaching a maximum value of -75 mm, the uplift increased over the entire period, reaching 35 mm in 

2010, 44 mm in 2013 and almost 50 mm in 2016. These values correspond to velocities that are steady 

around 2-2.4 mm/yr. The results, showed a steady uplift that characterized the LP during the entire 

monitored period (1992-2016): this is in contrast with the findings of previous studies in which the 
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authors describe the Lisan diapir uplift as episodic and not monotonous (Shimoni et al., 2002; Closson 

et al., 2011). 

Figure 8. Vertical displacement values calculated over the section located in the southern part of the LP, from 

B to B’. The dashed black line represents the topography elevation extracted from the SRTM DEM along the 

section. 

 

Assessing the mechanisms that control the displacements in the DS area is beyond the scope of 

this study, but few considerations can be drawn from the presented results. Combining the 

information provided by the scientific literature and the DInSAR results of this study, four main 

controlling mechanism can be identified: dissolution, tectonic, diapirsm, compaction or, more likely, 

their combination.  

Dissolution related phenomena could explain the high rates of subsidence found along the 

coastline in the Gohr Al Haditha area and in the wave-cut platform. In the latter, the subsidence could 

be enhanced by the Lisan diapir upward movement that forces the salt to migrate from the periphery 

to feed the rising mass, as explained in Shimoni et al. (2002). The coastal subsidence could also be 

caused by the compaction of the marl layers as consequence of the DS level lowering (Baer et al., 

2002). 

The combination of sediments compaction and salt dissolution can explain the very high 

subsidence rates found in the Lynch Strait, where the entrenchment of the Wadi Araba in the erodible 

sediments lowers the brackish water table and causes the dissolution of the buried salt layer (Closson 

et al., 2010), and in the Wadi Araba mouth where the transported sediments accumulate rapidly 

loading the underlying layers. 

The displacements in the peninsula are mainly controlled by the diapirism, even if the high rates 

of uplift detected with DInSAR cannot be entirely explained by the diapir upward movement itself. 

Hence, other controlling factors must be considered. The formation and rising of the diapir subdomes 

may explain the presence of semi-circular depressions around the diapir margins. A large number of 

faults and lineaments serve as preferential paths for the water flow that controls the localized 

dissolution of the salt layers. 
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5. Conclusions 

In this work, we monitored the evolution of the Lisan Peninsula area over a period of 25 years, 

from 1992 to 2016, through the SBAS DInSAR technique. SBAS revealed to be extremely useful to 

measure the entity of the movements occurring in the area and, at the same time, to detect and map 

the most affected areas. The results show an increase in the displacement rates, for both the subsidence 

and uplift, starting from the 2000.  The area most affected by subsidence is the shoreline, where every 

year the constant dropping of the DS level exposes new portion of territory. The uplift occurring in 

the north part of the peninsula is probably caused by the displacements of the faults striking in the 

area. Semi-circular depressions occur around minor uplifting areas in the southern part of the 

peninsula as consequence of the salt diapir upward movement. The validity of the SBAS results is 

confirmed by the good agreement with the concealed tectonic features and lineaments reported in 

literature. The Sentinel-1A satellite used in this study demonstrated its great potential as a tool for 

continuous monitoring activity over areas affected even by very fast displacements. The obtained 

results updated the knowledge of the karst dynamics in the Lisan Peninsula, and could be used as the 

starting point for further studies in the area. DInSAR techniques showed to be a very useful tool for 

assessing geological and geomorphological features, especially in areas characterized by bad 

environmental conditions (not easily accessible) and with very few (or none at all) field data available. 

Further studies are necessary to better understand the mechanisms that control the displacements in 

the area and their interactions. Future work will regard the DInSAR mapping of the after-2000 

emerged DS shore using Digital Surface Models (DSM) generated with long baseline interferometric 

pairs. This will allow us to correctly calculate the deformation rates of the coastal areas recently 

exposed and to better characterize the subsidence phenomena that are strictly related to the DS water 

level decline. 
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Abstract 

The Atlantic coast of U.S. is one of the most vulnerable areas to Sea Level Rise (SLR) due to its 

low elevation, large population, and economic importance. The effect of SLR has felt mostly in low-

lying coastal communities, such as the City of Miami Beach and Norfolk, Virginia that are facing in 

the last years the occurrence of more frequent flooding as consequence of the increasing rates of the 

relative SLR. However, some of the increased flooding frequency might have caused by land 

subsidence affecting only some sections of the cities. In this short paper, Differential Synthetic 

Aperture Radar Interferometry (DInSAR) techniques are used to assess the contribution of localized 

land subsidence to the increasing flooding hazard in Miami Beach and Norfolk, Virginia. ERS-1/2 

images are exploited using the Permanent Scatterers (PS) and the Small Baseline Subset (SBAS) 

techniques in order to retrieve the velocity maps of the two study areas, and detect which part of the 

cities are more affected by subsidence. Results yield localized subsidence at a rate of -2 - -3 mm/yr, 

mostly along the western section of the city of Miami Beach and up to -5 mm/yr is some areas of 

Norfolk. This study shows the importance in considering the local subsidence in the flooding hazard 

assessment and mitigation plans. 

1. Introduction 

Climate changes are causing the warming of the oceanic water and the melting of glaciers and 

ice-sheets that contribute to the rise of the water level at global scale. Sea Level Rise (SLR) increased 

dramatically since last century: the rates that were estimated to be about 1.2 mm/yr for the period 

1901-1990, more than doubled during 1996-2010 reaching 3.1 mm/yr (Hay et al., 2015). One of the 

most evident effects of global SLR is the increase of the flooding hazard in many countries in the 

World, in particular in low-lying coastal areas such as the Atlantic regions of U.S (Figure 1a). The 

U.S. Atlantic coast is, in fact, one of the most vulnerable areas to SLR due to its low elevation, large 

population concentrations, and economic importance (Wdowinski et al., 2016). Here, around 2 

million people are living on land below 1 m of the high tide threshold and are at high risk of flooding 

hazard (Strauss et al., 2012). Flooding hazard is particularly intense in areas characterized by local 
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accelerations of the relative SLR that can be produced by land subsidence: since sea level is measured 

by a local tide gauge relatively to a single location on the land surface, if the land is sinking the 

relative sea level rises faster than the global seal level. The cities of south Florida and of the mid-

Atlantic regions are particularly vulnerable to relative SLR acceleration as they are experiencing an 

increasing occurrence of flooding events in the last years. 

In south Florida, Miami and Miami Beach (Figure 1b) are among the economically most 

vulnerable city to SLR in the world (Melillo et al., 2014). A recent flooding hazard study of Miami 

Beach have shown that since 2006 the flooding frequency increased by 400% in respect to the 

previous decade (Figure 2) (Wdowinski et al., 2016). The study attributed the flooding frequency 

increase to a decadal-scale accelerating rates of SLR that occurred most likely due to the weakening 

of the Florida Current/Gulf Stream system. However, some of the increased flooding frequency might 

have caused due to local land subsidence occurring in sections of the city built over reclaimed 

swamps. Even the communities in the Chesapeake Bay area, such as Norfolk, Virginia, (Figure 1c) 

are facing increasing flooding events due to relative SLR accelerations. The sea level in the 

Chesapeake Bay area is monitored by the National Oceanic and Atmospheric Administration 

(NOAA) (Zervas, 2009) through 15 tide gauge stations that provide hourly measure of tide level. The 

Sewells Point gauge station, located at the Norfolk Naval Base (Figure 2b), is collecting data since 

1928 showing relative SLR rates of approximately 5 mm/yr over the past decades (Boon et al., 2010; 

Atkinson et al., 2013). The consequence of these rates can be dramatic considering the low elevations 

and the flat topography of Norfolk and its surroundings. Local SLR in the Bay is enhanced by regional 

and local subsidence with rates ranging from about -1.3 mm/yr to -4.0 mm/yr (Boon et al., 2010). 

 

Figure 1. a) U.S. Atlantic coastline. b) Miami Beach area. c) Norfolk area. 
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The precise assessment of the flooding hazard in a particular area requires the knowledge of the 

factors that have influence on the flooding frequency, such as tide level, topography and land 

movement. Since data distribution and quality is usually not uniform across the territory, some areas 

may lack of one or more information. Moreover, the datasets used for the production of flooding 

hazard maps can be inaccurate and incomplete. In the case of Norfolk, despite the good amount of 

sea level data provided by the tidal gauge stations in the Chesapeake Bay area, the subsidence and its 

impacts on local SLR rates are still not well-documented (McFarlane, 2012). In the Miami Beach 

area, only one tide gauge station is available and is located at Virginia Key (Figure 1b), 5 km 

southwest of the city. No other data about local subsidence are available.  

In both examples, the lack of monitoring instruments such as Continuous Global Positioning 

System (CGPS) stations limits the knowledge of land subsidence affecting those areas. Furthermore, 

with conventional ground based survey methods is difficult to achieve a high density of measured 

points over very large areas, limiting the possibility to detect localized subsidence. In this study, we 

assess the contribution of localized land subsidence to the increasing flooding occurrence in the cities 

of Miami Beach and Norfolk through Differential Interferometric Synthetic Aperture Radar 

(DInSAR) techniques.  

 

 

Figure 2. Flooding frequency in Miami Beach by type of cause. It is possible to notice a significant increase 

in tide flooding events since 2006.The reported events were collected from different sources: media reports, 

claims and city documentation. (after Wdowinski et al., 2016). 

2. Study areas 

2.1. Miami Beach 

Miami Beach is a densely populated strip of land, around 10 km long and 2.5 km wide at its 

largest point, located between the Biscayne Bay and the Atlantic Ocean, few kilometres away from 

the South Florida coastline. It extends for 18.2 km2, and, as of 2016, has a population of around 

92,000 inhabitants. The construction of Miami Beach started in the 1870s with the drainage of 

mangrove swamps and the reclamation of new land over which the city growth and became one of 

the most important vacation locality in the U.S.  Miami Beach is historically an area affected by 

flooding events related to heavy rain, storm surges and high tide. Since the last decade, the increasing 

frequency and magnitude of these events is cause of major discomfort to the population and damage 
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to the properties. Flooding events have affected mostly the neighbourhoods located in the western 

part of the city, that presumably were built over reclaimed land around 80-90 years ago. In 2014 the 

Municipality started a five-year project in order to protect the city from the flooding: with a total 

expense estimated in 600-700 million of dollars, the plan is to install up to 80 water pumps in the 

most critical areas and to raise roads and seawalls across the city. 

2.2. Norfolk 

The city of Norfolk, Virginia, is a densely populated area of around 250,000 inhabitants, located 

in the lower Chesapeake Bay, the largest estuary in the U.S. The geology of the area is mainly made 

of late Plesistocenic deposits of marine origin; Holocenic alluvium and beach deposits can be found 

along the northern coastline, while swamps and lagoons in the south (Scott et al., 2010 and references 

therein). The entire Chesapeake Bay area is affected by subsidence caused by two main factors: 

Glacial Isostatic Adjustment (GIA) and underground water extraction. A third contribution to the 

subsidence may also be given by the compaction of the fill sediments within the Chesapeake Bay 

Impact Crater (Powars and Bruce, 1999), but the rates at Norfolk are minimum (Egglestone and Pope, 

2013) and can be neglected. GIA is the response of the Earth crust to the deglaciation of the 

Laurentide ice sheet started at the end of the last ice age, around 20,000 years ago. The postglacial 

rebound manifests as uplift in the areas around the Hudson Bay and as subsidence south of it (Sella 

et al 2007). In the Chesapeake Bay area, GIA is estimated to generate subsidence rates in the order 

of -0.6 - -1.8 mm/yr (Engelhart and Horton, 2012). The Subsidence caused by groundwater extraction 

activities acts more locally in respect to GIA. Localized water pumping contributes to the sediments 

compaction with rates estimated in -3.8 mm/r and -4.8 mm/yr in two cities close to Norfolk, and its 

effect extends in the Norfolk area with rates of -2.8 mm/yr (Egglestone and Pope, 2013; Ezer and 

Atkinson, 2016). Considering the total contribution of GIA and water extraction, the land subsidence 

in the Chesapeake Bay area causes more than half of the observed relative SLR (Egglestone and Pope, 

2013). The Norfolk community is experiencing flooding events with increasing frequency and 

duration that is cause of growing concern for the authorities and the population. Lately, many local- 

and state-level initiatives were taken as a response to the increased flooding hazard in Virginia with 

particular attention to communities like Norfolk, bringing together researches, local authorities, 

professionals and the population to discuss about the increasing flooding risk and to develop 

mitigation and adaptation strategies (Ezer and Atkinson, 2016). 

3. Methodology 

Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that uses two 

or more SAR images to generate maps of surface deformation. A SAR image is generated when a 

microwave beam, emitted by an antenna mounted on a satellite, reaches a target on the Earth surface 

and bounces back to the receiver containing information of the amplitude and phase of the signal. 

InSAR uses the phase shift between two SAR images acquired over the same area at different times 

to generate an interferogram and calculate the movement of the targets on the Earth surface. The 

interferometric phase (𝜑int) is given by different contributions: 
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𝜑𝑖𝑛𝑡 =  𝜑𝑓 + 𝜑𝑡𝑜𝑝𝑜 + 𝜑𝑑𝑖𝑠𝑝𝑙 + 𝜑𝑎𝑡𝑚 + 𝜑𝑒𝑟𝑟  

 

where, 𝜑f is a constant phase value generated by an ideally flat Earth, 𝜑topo is the phase given by the 

topography, usually removed using an external Digital Elevation Model (DEM), 𝜑displ is the phase of 

the ground deformation, 𝜑atm is the phase of the atmospheric effects, and 𝜑err is the non-linear phase 

considered as error given by the noise. When multiple SAR image acquisitions are made over long 

periods (months or years), using the DInSAR technique it is possible to measure and keep track over 

time of the surface displacements. DInSAR is nowadays widely used in a broad range of applications, 

in particular for the monitoring of the Earth surface and its processes such as landslides, land 

subsidence, volcanic activity, earthquakes, ice-sheets motion etc. A comprehensive review of the 

technique and its applications can be found in Ouchi (2013). In this study, we used two main DInSAR 

techniques: the Permanent Scatterers (PS) (Ferretti et al., 2001) and the Small Baseline Subset 

(SBAS) (Berardino et al., 2002). Both techniques use stacks of interferograms to generate 

displacement maps calculated along an inclined direction of observation, the Line of Sight (LOS). 

While PS relies on point targets with stable reflectivity over time and works well on urbanized areas 

only, the SBAS takes into account the distributed scatterers and works well even in open areas. One 

of the key point of DInSAR is the possibility to perform the time series analysis for each point 

measured on the ground. 

4. Datasets and data processing 

We analysed two sets of SAR images available from the European Space Agency (ESA) archives, 

both acquired in C-band (5.6 cm wavelength) by the ERS-1/2 satellites (Table 1). The first dataset, 

covering the Miami Beach area, consists of 23 scenes acquired from 1993 to 2005; the second, 

covering the city of Norfolk, is made of 27 scenes acquired from 1993 to 1998. The maximum ground 

resolution achievable through the ERS-1/2 images is 20 m x 20 m applying a multi-look of 1 - 5 in 

Range and Azimuth, respectively. The exploitation of the available datasets was carried out through 

the PS and SBAS techniques. In the case of Miami Beach, the PS technique provided the best results, 

since the sinking areas are only limited to localized features (i.e. buildings) along the coastline, and 

the application of SBAS resulted in a loss of sensitivity to the very small deformation values that 

characterize this area (~ -2 mm/yr). This effect can be explained considering that PS physically 

represents the motion of the dominant scatterer in the resolution element, while SBAS the average 

motion of the several scatterers in the resolution element (Shanker et al., 2011). On the other hand, 

in the Norfolk area, the SBAS gave the best results, with data coverage much higher than PS. For the 

PS processing, using a single master date (16 Jan 1997), 22 interferograms were generated (Figure 

3a). Only the points with a spatial correlation values (coherence), from 0 (minimum) to 1 (maximum) 

higher than 0.75 were used. With the SBAS, we generated 133 interferograms (Figure 3b) using a 

temporal baseline of 1200 days and a spatial baseline of 60% (in respect to the critical baseline). In 

this case, the correlation threshold adopted was 0.35. To remove the topographic component of the 

phase, the Shuttle Radar Topography Mission (SRTM) DEM with a ground resolution of 30 m has 

been used. Since the deformations in both areas are the consequence of sediments compaction that 

can be assumed to be prevalently vertical, the measurements obtained with DInSAR were projected 

from the LOS to the vertical direction according to the incidence angle of each measured point on the 
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ground, around 23.3° for ERS-1/2. The results, reported as velocity maps, were classified in a 

Geographic Information System (GIS) using a colour scale from blue to red, in which positive values, 

in blue, are the points moving towards the satellite (i.e. uplift), while negative values, in red, the 

points moving far from the satellite (i.e. subsidence). The stable points, in green, are the ones with 

velocities in the range of ±1.5 mm/yr. 

 

 

Figure 3. Connection network (black lines) between the available SAR scenes (black dots) obtained for a) 

Miami Beach with the PS technique and b) Norfolk with the SBAS technique. The red dot corresponds the 

image used as master. 

 

Table 1. Available SAR datasets 

Study Area Period N° of images Revisit time Orbit 

Miami Beach 03/05/1993-01/09/2005 23 35 days 240d 

Norfolk 19/06/1992-09/11/1998 27 35 days 192d 

 

  

(a) 

(b) 
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5. Results and discussion 

5.1 Miami Beach 

The results obtained from the PSI processing over the Miami Beach area, are reported as vertical 

velocity map in Figure 4a. The results, yield to localized subsidence with rates ranging from -1.6 

mm/yr to -3.8 mm/yr in particular over the western coastal areas. The time series analysis of four 

selected points shows the linearity of the deformations in the monitored period (Figure 5). One of the 

most affected areas is located in the middle section of the city built over reclaimed swamps. In this 

area, the buildings were classified by their construction year, showing that most of them were built 

in the ‘20s and the ‘30s and from the ‘40s to the ‘50s, while only few are of more recent construction, 

from the ‘60s to 2015. The sinking of these buildings is mainly related to the compaction of the 

underneath sediments used to fill the swampy areas as consequence of the overload produced by the 

structures themselves. If we consider the age of the oldest houses in the area, around 80-90 years, the 

total rate of settlement can be calculated using a linear model of deformation: only the first years after 

the application of the load are, in fact, the most critical and are well represented by a hyperbolic 

consolidation model instead of a linear one (Tan et al., 1991; Chung et al., 2009; Kim et al., 2010). 

Considering the mean subsidence velocity in the area of -2.27 mm/yr, the total displacement estimated 

from the year of construction up to 2016 is around 18-20 cm. Because of this, taking into account the 

combined effect of SLR and subsidence, the houses that were originally built on higher ground at 1 

m m.s.l., are now exposed to higher flooding hazard than the rest of the city. The comparison between 

the location of flood claims between 1998 and 2012 in the Miami Beach area (Figure 4b) and the 

1993-2005 velocity map depicts the good correlation between the reported flooding events and the 

areas affected by subsidence detected by DInSAR. This suggests the possible contribution of 

localized subsidence to the increased flooding hazard in some areas of the city. 



65 

 

 

Figure 4: a) Vertical velocity map of the Miami Beach area obtained with the PS technique. b) Location of 

flood claims during the years 1998-2012 (after Wdowinski et al., 2016). For the selected points (triangles), the 

time series are shown in Figure 5.   
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Figure 5. Vertical displacement time series of the points selected in four representative areas of Miami Beach 

affected by subsidence. 

5.2) Norfolk  

Considering that the entire Chesapeake Bay area is subject to subsidence, the results obtained 

from the SBAS processing over city of Norfolk are the expression of the differential movements of 

the measured points in respect to the sinking land surface. To obtain the real entity of the subsidence 

in the area, the contribution of the regional subsidence must be added to the DInSAR measurements. 

The results obtained from the SBAS analysis are reported as vertical velocity map in Figure 6: most 

of the city lies over a relatively stable territory; only few localized areas are affected by subsidence 

up to -5 mm/yr. In particular, 2,500 m in length of the Hampton Roads Beltway close to the Norfolk 

International Airport shows subsidence rates ranging from -2 mm/yr to -4 mm/yr (Figure 7a). This is 

one of the main designated hurricane evacuation route for people in vehicle to flee the Virginia Beach 

and Norfolk areas, as reported from the Virginia Department of Emergency Management. The 

presence of subsiding areas along the route may increase the flooding hazard in case of storm surges 
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making very difficult for the authorities to properly plan an evacuation. Localized subsidence occurs 

also in the surroundings of the bridges that cross the Wayne Creek (Figure 7b), north of the city. Here, 

the settlement rates ranges from -2 mm/yr to -4.8 mm/yr. Similar rates of subsidence affect the tip of 

the peninsula in the northern section of the city and the west flank of the man-made island where the 

entrance to the tunnel that connects Norfolk to Hampton is located (Figure 7c). Localized subsidence 

up to -4.3 mm/yr affects also the Lamberts Point coal terminal, while the subsidence is more evident 

in the near Naval Base of Portsmouth where the rates reach -4.8 mm/yr (Figure 7d). The displacement 

time series of the points selected for each area are reported in Figure 8. 

 

 

Figure 6: Vertical velocity map of the Norfolk area obtained with the SBAS technique. The red squares are 

the main areas affected by land subsidence reported in Figure 7.  
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Figure 7. Localize subsidence in the city of Norfolk. a) Hampton Road Beltway. b) Bridge area at the Wayne 

Creek. c) Peninsula tip and tunnel island. d) Lamberts Point terminal (right) and Portsmouth naval base (left). 

For the selected points (triangles) the time series are shown in Figure 8. 

 



69 

 

 
Figure 8. Vertical displacement time series of the points selected in the main areas of Norfolk affected by 

subsidence. 

6. Conclusions 

Global SLR is the main source of the increased flooding hazard along the low-lying coastal 

communities, such as the Atlantic regions of U.S. In these areas, flooding hazard can also be enhanced 

by relative SLR accelerations given by land subsidence. In this work, we assessed the contribution of 

land subsidence to the increased flooding hazard in two cities highly vulnerable to flooding: Miami 

Beach and Norfolk, Virginia. Two stacks of ERS-1/2 SAR images are processed using the PS and 

SBAS techniques. The results reported as velocity maps projected to the vertical direction, show that 

localized subsidence affected the city of Miami Beach in particular along the western coastal area, 

where the city was built over reclaimed land 80-90 years ago. The subsidence rates are in the range 

of -1.6 mm/yr - -3 mm/yr, from which it is possible to estimate through a linear consolidation model 

the total displacement since the city was built in around 18-20 cm. The results obtained over Norfolk, 

Virginia give measure of the movement relative to a reference point located outside the city limits 
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that is affected by the regional subsidence that occurs in the entire Chesapeake Bay area. For this 

reason, only the subsidence referred to that point can be calculated. The vertical velocity map shows 

that most of the city lies over a relatively stable territory: only few critical areas, such as part of the 

Hampton Road Beltway, are affected by subsidence up to -4 mm/yr.  In this case, the presence of 

localized subsidence must be considered by the Authorities for the plan of the most suitable escape 

routes in case of hurricane or storm alert and for a proper management of the flooding risk in the area. 

This study shows the importance of performing analyses addressed to calculate the localized 

subsidence that may affect residential areas and critical infrastructures such as highways and bridges; 

this is crucial in particular in areas highly vulnerable to flooding. The information provided by the 

application of DInSAR techniques for the monitoring of the territory, can be used to point out the 

areas more vulnerable to flooding and to produce more detailed flood hazard susceptibility maps. 

Continuous monitoring activities carried out with cost-effective technical solutions such as satellite 

interferometry, are necessary to be able to adopt more efficient mitigation measures to reduce the 

vulnerability of people and goods exposed to flood risk. 

Future work will consist in the extension of the monitoring activity with the Sentinel-1A and 1B 

images once available over the U.S. This will allow us to determine the evolution over time of the 

subsidence trends and quantify the contribution of the subsidence on the actual flooding frequency in 

the studied areas. 
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CONCLUSIONS 

 

This Thesis has dealt with the use of satellite-based Differential Synthetic Aperture Radar 

Interferometry (DInSAR) techniques for the monitoring of the Earth surface in different locations. In 

particular, we focused on the detection and monitoring of geo-hazards such as landslides, subsidence 

and ground displacement caused by karstic activity. The motivation to carry out this work is to further 

improve the knowledge of the applicability of DInSAR techniques; to show which are the benefits of 

the exploitation and integration of SAR images acquired by different sensors; the importance of an 

appropriate post-processing management of the obtained results; to highlight the necessity to 

continuously monitor the territory in order to reduce the risk related to geological disasters. Moreover, 

part of the work is aimed to test the applicability of the Sentinel-1 satellite. In this Chapter the main 

findings of each case study are briefly summarized. 

In Chapter 1, we used 25 years of SAR data to monitor the anthropogenic land subsidence 

affecting the city of Ravenna (NE Italy) and its coastline. The exploitation of four different SAR 

datasets with the SBAS techniques, allowed us to update the knowledge of the subsidence occurring 

in the study area and to assess its relationship with the main controlling factors. The time series 

analysis carried out on several control points showed that the deformation trends are almost linear in 

the industrial area of Ravenna and along the coastline, where the maximum values of subsidence 

registered were respectively of -280 mm and -250 mm during the 1992-2016 period. From the 

exploitation of the 200 available SAR scenes, we generated more than 500 thousands data points that 

we analysed though two statistical approaches in order to fully exploit their informative content. The 

analyses revealed that the main driving factor of the subsidence along the coastline could be the 

exploitation of the methane-gas fields, while there is no evident relationship with the water extraction 

activities. Land-use changes must also be taken into account to explain the high rates of subsidence 

caused by the sediments compaction under the loading of the new buildings that was detected in many 

locations of the study area. A second statistical approach, based on a new methodology called 

“ground-motion areas detection method” was used to precisely delineate the extension of the areas 

most affected by subsidence thanks to the automated analysis of the time series patterns. In this work, 

we demonstrated the benefits of a long term monitoring activity performed using DInSAR techniques 

thanks to which it is possible to reconstruct and analyse the trends of displacements occurring over 

wide areas starting from the 1992 with the ERS-1 satellite until today with the Sentinel-1 mission. 

Furthermore, we highlighted the importance of performing an adequate post processing management 

of the obtained results in a proper environment (e.g. GIS) to be able to extract information that 

otherwise might be lost. 

In Chapter 2, we tested the capabilities of the Sentinel-1A satellite in a territory of the Italian Pre-

Alps (NE Italy) affected by localized landslides. The study area is characterized by dense vegetation 

cover and the lack of large urban centres, which limits the number of high coherent scatterers. 

Furthermore, the typical landslides occurring in the area, mainly earth flows and roto-translational 

slides, are characterized by very slow movements, in the order of few millimetres per year, and 

generally interest localized non-urbanized areas making difficult their detection with DInSAR 
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techniques. To cope with these problems, we applied the PS technique that works at full resolution 

and is more suitable to measure subtle deformation over isolated targets. The C-band (5.6 cm 

wavelength) and the short revisit time (12 days) of Sentinel-1A allowed us to obtain a large number 

of PS (around 6000) and to detect several mass movements. In addition to the 64 already known 

landslides, other new areas affected by movements were detected. The use of Sentinel-1A images 

acquired by both ascending and descending geometries was necessary to enhance PS coverage and to 

obtain information about the components of plano-altimetric change. Despite the great benefits 

provided by the DInSAR monitoring activity, it can only serve to provide complementary information 

about the landslides activity, supporting the planning of the field works and directing the geological 

surveys that are needed to precisely assess the presence and extension of active landslides. The 

continuous monitoring activity performed with Sentinel-1 data can be successfully implemented in 

early-warning systems to recognise precursory signs of slope failure and reduce the potential risk 

related to landslides activity. 

In Chapter 3, the Lisan Peninsula located in the Jordanian Dead Sea area was monitored through 

the SBAS technique. We exploited five different SAR datasets acquired with X, C, and L-band, in 

order to retrieve the measure of the displacements occurring in the area. The produced velocity and 

displacement maps revealed the complexity of the karst dynamics of the peninsula: the entire 

coastline is affected by very high rates of subsidence that every year exposes at increasing pace new 

portion of land. A maximum subsidence rate of -200 mm/yr was registered by ALOS-PALSAR in 

the Wadi Araba delta, while in the same area Sentinel-1A measured a maximum rate of -185 mm/yr. 

The Lisan Peninsula is also characterized by uplift in particular in its norther tip as consequence of 

the rising of the underlying salt diapir. Differential movements with peculiar semi-circular shapes 

that correspond to the margins of the diapir subdome were detected in the southern section. We 

produced the cumulated displacement map of the last 25 years, combining the information provided 

by the five analysed datasets. The sections drawn over the map showed that: the subsidence rates 

drastically increased after 2000 when the water decline rate reached -1 m/yr; the salt diapir raised 

constantly over the entire monitored period with rates in the order of 2 mm/yr - 2.4 mm/yr. The 

reliability of the obtained results was confirmed by the good correspondence between the tectonic 

features reported in literature and the location and extension of the detected displacements. We 

demonstrated that using and integrating SAR datasets acquired with different radar bands leads to 

obtain complementary results. We also showed that DInSAR can be applied for geological and 

geomorphological monitoring activity over areas characterized by bad environmental conditions. 

In Chapter 4, we demonstrated that the use of DInSAR to monitor territories highly vulnerable 

to floods can be very useful to correctly assess the flood hazard and plan the more suitable mitigation 

strategies. We focused the attention on two cities along the Atlantic coastline of U.S., Miami Beach 

and Norfolk (Virginia) that are highly vulnerable to flood hazard as consequence of the combined 

effect of global sea level rise and land subsidence. Considering the technical limits of the PS and 

SBAS approaches in relation with the different density and distribution of the scatterers between the 

study areas, we used the PS to monitor Miami Beach, while SBAS was used for Norfolk. 

Unfortunately, only ERS-1/2 archive data were available for both areas, since no other datasets, 

including Sentinel-1, provided a number of scenes sufficient to perform multi-temporal analyses. 

Despite the limited amount of available data, we were able to detect localized subsidence in both 

localities. The measured subsidence rates ranges from -1.6 mm/yr to -3.8 mm/yr in Miami Beach and 
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from -2 mm/yr to -4.8 mm/yr in Norfolk. These results are quite interesting because they depict how 

the localized subsidence, even if occurring with low rates, may further expose portions of the territory 

to increased flooding hazard. Hence, the investigation of ground settlement using DInSAR is 

recommended to improve the flooding hazard assessment.  These considerations can be extended to 

any coastal community where the risk related to flooding is high. 
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Abstract 

In many areas of the world, subsidence related to the lowering of the water table is modifying 

the landscape and provoking costly environmental hazards. We consider the Dead Sea (the Earth’s 

lowest lake) as a model. Its water level was 395 m bMSL in the 1960s. Due to water diversions in the 

catchment area, as of 2016, the level has dropped to about 430 m bMSL. Here, as in other parts of the 

Anthropocene world, from China, to Iran, to Turkey, to Canada and the United States, consequences 

of human interventions are rapidly modifying the environment. Aggressive geomorphic processes 

leading to accelerated degradations are taking place and affecting landforms and infrastructures. In 

Tectonic terms, the lake is a pull-apart basin resulting from the motion of the Dead Sea Transform 

fault. Since the 1960s, a slice of brine of about 35 km3 has been lost. The water table is dropping more 

rapidly in the lake than in the coastal zone creating an ever-increasing head difference. Consequently, 

groundwater moves towards the sea to compensate for the imbalance, provoking the reactivation of 

the area’s paleo-channels with subsidence, sinkholes, and landslides. Since the 1980s, industrial-

touristic infrastructure has covered newly emerging lands in geomorphic hazards-prone areas of the 

coastal zone. 

Time series analysis of high to very high resolution visible/radar satellite images acquired from 

the 1970s to present, revealed major landscape evolution. Such dynamic systems prevailing in recent 

decades permitted the study of human/environment interactions to help minimize their effects. 

Major deformations of an industrial dike were analysed and quantified. The results underline the 

necessity in the Anthropocene of careful analysis of relevant data sources acquired before and during 

subsidence, particularly in karst topography zones and prior to the development of major human 

activities in economically appealing environments around the world. 
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1. Introduction 

Human social life takes place in buildings and with infrastructures created by engineers. 

Historically, beside houses, prestigious military and religious edifices such as the Petra monuments 

in Jordan (Ortloff, 2014), the Great Pyramid of Giza in Egypt (Barsoum et al., 2006) or the Aleppo 

Castle in Syria (Khirfan, 2016) have constituted major engineering structures. Other ancient 

infrastructures also include roads, bridges and dams: e.g. the Pont du Gard in France (Bossy et al., 

2000), or the Zhaozhou Bridge in China – the oldest and largest stone arch bridge in the world – 

(Dajun, 1994). Their safety was guaranteed by a very long trial and error process and by conservative 

empirical measures. Likewise, nowadays, in Japan – the country most exposed to powerful geo-

hazards – residents’ feeling of safety in megacities is based on the fact that a given number of threats 

has been correctly anticipated and tackled by scientists who provided satisfactory designs against 

most common probable natural or induced hazards. 

Past and present structures have been built in a particular paradigm. This paradigm assumes that 

the materials constituting these edifices and the materials on which their foundations rest have a 

critical mechanical resistance, above which they break. Designers do their best to ensure that the 

forces induced in these materials once assembled within these structures are low enough to avoid 

breakage. The difficulties of the exercise are significant and numerous (Delage, 2003). Beside gravity, 

it is difficult to predict other mechanical forces that will affect structures. They come from a variety 

of natural or induced hazards. Computer-age developments in statistical analysis provide tools for 

predicting the forces to be faced by the structures more precisely, but they need a sufficiently rich 

database gathered by rigorous observations across a significant period of time. Furthermore, buildings 

and their safety are constructed to be used for limited, specific periods of time – generally one or a 

few human generations – assuming that the parameters controlling the stability issue remain 

practically unchanged. 

Delta Works, the series of construction works in the Netherlands designed to protect land around 

the Rhine– Meuse–Scheldt delta, are widely considered a major infrastructure in the timeline of 

human history. However, Dutch designers have recently faced a real anthropogenic problem since 

the project’s completion (van Koningsveld et al., 2008). In 1997, the last storm surge barrier was 

inaugurated. It was the latest work of the 40-year-old mega-project. The same year, Douglas (1997) 

published the article ‘Global Sea Rise: A Redetermination’. Dutch planners never imagined that after 

the completion of their major infrastructure, it would become necessary to rethink the whole project 

because of sea level rise on a global scale. When one of the fundamental parameters is not adequately 

evaluated, the whole edifice can collapse. Another example of this principle is evident in Jakarta, the 

capital city of Indonesia, where an important part of the urbanized area is sinking due to the over-

exploitation of the groundwater resources (Abidin et al., 2015a, b). Floods and subsidence cause 

costly damage year after year. One of the proposed solutions consists of the setting up of sea walls, 

reclaimed land, and retention ponds in front of the city. What will be the height chosen for those 

dikes? A value computed from data recorded in the past or one based on a forecasting model(s) for 

the next century? How can sustainable infrastructures be better built in an unstable environment? Are 

there successful strategies for ensuring more successful major projects in the Anthropocene (Crutzen 

and Stoermer, 2000)? This paper addresses these questions based on a natural laboratory experiment: 
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the development and protection of major infrastructures along the Dead Sea coast, where the lake 

level is now dropping at the rate of 1.2 m/yr. 

In Jordan, kilometric dikes, top hotels and resorts are threatened by subsidence around the Dead 

Sea. During the last two decades, monitoring of the Dead Sea area has allowed us to study the actions 

of primary stakeholders. Our working hypothesis is that the outcomes of this experiment will shed 

light on key geomorphic hazards elements to help create more sustainable major engineering projects 

in the Anthropocene. 

The results we present in this paper concern the geo-hazards that are currently affecting the Arab 

Potash Company (APC) ‘dike18’ and salt evaporation pond ‘SP-0A’. A 3 km deteriorating segment 

of the 12 km long industrial dike is the focus of our analysis (Figure 1: rectangle; Figure 2). 

Furthermore, our investigations highlight the limits of the classical geotechnical approach to secure 

major infrastructures in extreme environmental conditions which are prevailing in the Dead Sea area 

in general and in many other parts of the world as well. 

We emphasize the role played by remote sensing techniques (visible and radar) in monitoring 

geomorphologic environmental degradation. We also show that clear identification, interpretation and 

field verification of geomorphic features is the key to preserving major assets at risk. 

2. Key Parameters of the Dead Sea Natural Laboratory 

2.1. Base level drop 

The Dead Sea’s water drainage area covers 41,650 km2 (EXACT, 1998). It occupies the bottom 

of a pull-apart basin and its coastal zone represents the lowest emerged place on Earth at 429.90 m 

below the Mean Sea Level (bMSL) as of March 2016 (www.water.gov.il). In the early 1960s, the 

shoreline elevation was 395 m bMSL. In 1976-1979, the lake was about 1,000 km2, compartmented 

in two sub-basins: northern and southern, linked by the Lynch Strait, and separated by the Lisan 

Peninsula (Figures 1 and 2). Since that time, the Dead Sea’s surface has shrunk by a third, 

predominantly in the shallower southern part. 

http://www.water.gov.il/
http://www.water.gov.il/
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Figure 1. The Dead Sea is a hypersaline terminal lake located in the Middle East (inset). Its southern part is 

now exploited by Jordan and Israel. Mineral companies harvest salt on both sides of Wadi Araba (borderline). 

Their saltpans and dikes cover the southern lagoon. The hatched area corresponds to a saltpan destroyed on 

March 22, 2000 after the collapse of dike19 over 1650 m. The white rectangle around Cape Molyneux defines 

the area analysed in the results section. 
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2.2. Rapid geomorphologic developments 

Concomitant to the drop in water level, secular environmental balances disappeared: the brine 

stratification vanished in 1978–1979 (Steinhorn et al., 1979); rivers’ longitudinal profiles rejuvenated 

(Bowman et al., 2010; Storz-Peretz et al., 2010), bridges’ basements were excavated and even 

collapsed; since the 1980s, subsidence, landslides (Figure 3) and thousands of sinkholes proliferated 

along the Dead Sea shore (Abou Karaki and Closson, 2012).  

 

 

Figure 2. Cape Molyneux in 02-04-2007; view from the Western escarpment. The picture shows dike18’ 

segment that was abandoned in February 2015 for safety reasons. A lens of fresh/brackish water is located 

below the Lisan peninsula. It is in equilibrium with Dead Sea water stocked in salt pans. The local base level 

is Wadi Araba. Water circulates below the ponds owing to a network of conduits located in the damaged zone 

of a fault mapped in the 1970s by Neev and Hall (1978). Resurgence underlines the connection between the 

Lisan and Wadi Araba. 

2.3. Original young halo karsts system 

There are several examples of major drying water bodies in the world other than the Dead Sea; 

the water level of Lake Urmia in Iran has been decreasing, provoking an increase in salinity, since 

1995. This is also due to the diversion of rivers which used to discharge into the lake, there are now 

concerns that salt storms will affect the region all around (Hassanzadeh et al., 2011; Agha Kouchaka 

et al., 2015). In Asia, the Aral Sea began to decline rapidly in the 1990s after 30 years of gradual 

recession because Soviet authorities had diverted waters for agricultural purposes. The evaporation 

resulted in salt deposition. The leftover salt made the land unsuitable for agriculture. This salt can be 

carried by the wind causing salt storms that are ruining crops in the surrounding area and are causing 

diseases (Elpiner, 1999). There are concerns that the Dead Sea too will face harmful salt storms in 

the future (Abu-Qdais, 2008). However, by comparison with the Dead Sea ecological disaster, Aral 

Sea and Urmia Lake do not present sinkholes proliferation. 
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Figure 3. On August 11, 2012, a landslide destroyed the Holliday Inn front beach. A tractor was moved about 

two meters below the lake level. No one was present over the beach except the tractor driver. The day after, 

he records a video with his smartphone from which this capture was extracted. 

 

Hence, the drastic water level lowering is not enough to explain numerous ground collapses. The 

fundamental differences are the karstic nature of the shore and the tectonic settings (Abou Karaki, 

1987; Closson and Abou Karaki, 2009a). 

In terms of sinkholes proliferation, the Dead Sea illustrates a karstic area affected by a sharp drop 

of the water table. Many karstic zones in the world feature similar issues. For example, in Tournaisis, 

the densely populated region of Belgium, dewatering operations in large quarries have lowered the 

piezometric heads and reactivated a paleo karst system covered by several decametres of 

Mesocenozoic deposits consisting of marls, sand and clay (Kaufmann and Quinif, 2002). Sinkholes 

destroyed buildings and threatened a high-speed railway, a motorway, and a waterway. In China, over 

the last 15 years, more than 10,000 sinkholes have appeared across the karst lands (Dereck Ford, 

2011, personal communication). The water table decline is due to the over-pumping by industries. As 

an illustration, when new boreholes were sunk into limestone beneath an alluvial plain to supply the 

new town of Shuicheng, 1,200 sinkholes developed within less than 10 years (Waltham, 2009). These 

examples show that when the natural compensation mechanism becomes too slow with regard to the 

dynamics of the anthropogenic perturbation, the available energy of this unbalanced system is 

dissipated through mechanical and chemical erosions in the karstic drainage network. Progressively, 

the unstable conduits provoke geomorphic deformations and ground surface collapses. 
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2.4. Karstic nature of the Dead Sea shore 

Lake Lisan, the Dead Sea’s ancestor, existed between 70,000 and 13,000 years B.P. (Haase-

Schramm et al., 2004), and extended from 110km north of the present Dead Sea to 40 km to its south. 

During the Late Pleistocene, its water level was around 180 m bMSL (Abu Ghazleh, 2011). In 

southern Syria, the volcanic region of Jabal Arab-Druz erupted approximately 11,000-10,000 years 

ago. Salameh and Al Farajat (2007) observed that thick basalt flows reduced the catchments’ area 

from 157,000 km2 to 41,650 km2. They deduced that a new equilibrium state appeared in the 

hydrological budget of the lake. Its level stabilized around 400 m bMSL, creating the Dead Sea. Salty 

minerals soak coastal margins from 180 m bMSL downwards. The salinity of the surrounding 

groundwater increased with absolute prevalence of chloride (Salameh and Hammouri, 2008). 

During the Holocene, the lake level fluctuated (Abu Ghazleh, 2011) creating favourable 

conditions for the development of a halo karsts system. The soluble rocks consist of alluvium and 

colluvium soaked with salt. In addition, from the 1990s onward, dozens of drilled boreholes revealed 

a salt layer, 6 m to 30 m thick, sandwiched between the Lisan (Pleistocene–Holocene) and Ze’elim 

(Holocene) Formations (Abelson et al., 2003; Yechieli et al., 2006). Radiocarbon dating gave an age 

range of 10,200-10,800 years, contemporary to the disappearance of Lake Lisan (Ezersky and 

Frumkin, 2013, and references therein). 

During the Holocene, this salt layer was dissected by faults related to the tectonic setting. During 

the last 50years, such discontinuities have promoted underground drainage concentration and have 

helped to rebalance the perturbed hydrogeological system. Faulting allows greater subsurface water 

flow, and then mechanical and chemical erosions enlarge conduits over time, rapidly posing threats 

to infrastructures located above. Geophysical campaigns have shown that sinkhole clusters along the 

western coast are above the edge of the salt layer. Ezersky and Frumkin (2013) interpreted this co-

occurrence as the position of a dissolution front moving progressively lake-wards. However, their 

conceptual model has to be put into perspective. From Corona pictures we found evidence of an active 

sinkholes zone from as early as May 1968 located next to the shore of the former southern lagoon 

(Figure 4: insets A-D). Even if this zone is found above the edge of the salt layer, its dynamics cannot 

be explained by a moving dissolution front since that part of the lake dried-up later in the 1970s, then 

was filled again artificially. Over the 1968 picture (Figure 4: inset B) the collapses’ dispersion 

suggests two parallel lineaments oriented SW–NE. The site of these sinkholes attests to the fact that 

(whatever the conditions) the Dead Sea shores are prone to dissolution and reactive to variations in 

the hydrogeological setting. This is a crucial point to keep in mind when dealing with problems related 

to the base level fluctuations there (drop or rise).  
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Figure 4. Corona pictures acquired in 1968–05-30 (A-B-C; ref: DS1103-2203DA178_b) and 1969–07-30 (D-

E-F; ref: DS1107-1106DA011). A&D: Context, Dead Sea southern area; B&E: Zoom over the sinkholes’ area; 

C&F: Individual sinkholes. This zone is still active in 2016. 

2.5. Anthropogenic actions 

The difference of 35 m between the Dead Sea level in the 1960s and the 2010s is due to two factors: 

water diversions upstream that are responsible for about 66% of the drop in water, and siphoning of 

the brine by mineral companies, which represent 33% (Tahal Group and GSI, 2010). In the early 

1960s, with great geotechnical difficulties, the Israeli Dead Sea Works (DSW) developed a salt 

evaporation pond system over the western part of the 402 m bMSL southern basin (Closson and 

Abou Karaki, 2014a). Fifteen years later, APC finalized a similar infrastructure on the eastern 

Jordanian side (Figure 1: dike1 and saltpan “SP-01”). The profits of DSW and APC are proportional 
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to their ability to meet the market demand. The fertilizers trade has grown consistently during the 

last few decades in parallel with economic developments in China, India, and Brazil. DSW and APC 

capacities for production are linked to the size of their evaporation ponds. The two companies 

therefore aim to occupy emerging flat zones, left dry by the receding Dead Sea. They thus consider 

the continuous shrinking of the lake as providing them new opportunities: in practical terms, the 

emergence of new empty spaces means they can create new production units. This iterative process 

started in the 1960s but stopped on 22 March 2000 (Closson et al., 2003) when the 12 km earthen 

dike19 collapsed and 55 million m3 of brine went back to the Dead Sea (Figure 1: hatched area). 

3. Material and Method 

Dike18 slow destruction phenomenon was investigated as follows: 

3.1. Photographic / satellites / maps data collection 

Aerial photographs of the Lisan peninsula and the Lynch Strait at the scale of 1:25,000 (Figures 

1 and 2) are available from the 1950s, prior to the process that initiated the lowering of the Dead Sea 

level (Closson, Lamoreaux, et al., 2007). From 1962 to 1973, Corona pictures were used (Figure 4). 

Digital versions of the pictures were created by scanning a 30 times enlarged photograph at 300 

pixels/inch (image and description courtesy of USGS). The ‘pixel’ size ranged from decametres to a 

few metres in the best cases. From 1973 to present, Landsat scenes pixel resolution improved (60m, 

then 30 m, and finally 15 m) and the number of images and spectral richness increased, allowing the 

mapping of soil moisture on newly emerged lands in this pure mineral environment (Closson and 

Abou Karaki, 2014b). Panchromatic SPOT-1 images were also used. Owing to their 10m resolution, 

they have provided crucial information on the karstic development in 1986 and 1992. 

From 1992 onwards, C-band radar images of ERS-1/2 and ENVISAT satellites have been used 

to map the ground deformation fields at centimetre to millimetre scales with differential 

interferometry techniques (Closson et al., 2003). From 2007, L-band ALOS-PALSAR data were 

processed (Closson et al., 2010a) as well as the very high resolution radar images of COSMO-SkyMed 

in X-band (2011–2013). The latest complemented the information acquired in the visible window at 

nearly the same resolution or better (Closson and Abou Karaki, 2014b). In 2014, Sentinel-1A radar 

data have provided new inputs in the line of the previous ones (Closson et al., 2015). 

In the 2000s, very high resolution optical infrared images were available allowing detailed 

monitoring of the landscape evolution. Those images supported several field campaigns (Closson et 

al., 2010b). 

3.2. Images processing, geocoding, diachronic analysis in a common geographic 

framework 

Information from radar images was elaborated using interferometric processing techniques. From 

2000 to 2003, the software used was an in-house development carried out at the Space Centre of 

Liege, Belgium (Closson et al., 2003). From 2007 onwards, COS software were used such as the 

Radar Mapping Suite™ (Erdas Imagine) of and SARscape® (Sarmap). In 2015, SARPROZ™ was used 
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to process Sentinel-1A data (Closson et al., 2015). The SBAS service on G-POD (Casu et al., 2014) 

was successfully applied over the whole Dead Sea from a dataset of ENVISAT images (2003–2010). 

The results confirmed the processing carried out with SARscape®. Two techniques were applied: 

DInSAR combining 2, 3, and 4 images, and time series processing: PS and SBAS (Ferretti et al., 

2001; Berardino et al., 2002). Table 1 summarizes and compares the two main techniques used. 

Regarding the optical images (aerials and satellites), the most conspicuous work concerned the 

geo-referencing of the various files with great precision and accuracy, in order to compare them in a 

standard geographic space. The main difficulty was to position the images based on ground control 

points that have remained unchanged for more than 50 years. Additionally, as the area is uninhabited, 

only natural features could be considered. East of the Lynch strait, the bushes that grow along wadis 

were used, while to the west, the vegetation in sinkholes provided the necessary points (Closson et 

al., 2007). The bushes are present in all images because they are highly resistant to flash floods and 

extreme climatic and edaphic conditions. They appear clearly because of the contrast between the 

dark colours of their leaves over the white background surface. As they are numerous, they can be 

interconnected by straight lines and thus provide a stable geodetic triangulation-like network. These 

bushes allowed the positioning of dozens of ground control points several kilometres around the area 

of interest. ArcGIS software was used to for geometric corrections using spline functions. 

 

Table 1. Interferometric techniques used to map the deformation fields. 

 

Ground control points also exist in the saltpans owing to salt pillars growing from bottom to surface. 

These pillars are visible due to their appearance as white spots in dark water. Their small size allows 

for location with pixel precision. Further, they proved to be important markers in the analysis of 

underground water circulation. In several places inside saltpan ‘SP-0A’ (Figure 1), they lay next to 

sinkholes. Quality control was performed using GPS tracks recorded during field surveys. 

Once properly geocoded, the images have been processed to find sinkholes, subsidence, 

landslides or other anomalies, such as soil moisture related to dike seepage. In this pure mineral 

environment, the area of interest presented two extreme cases: water (100% moisture) and Lisan 

peninsula surface (0% moisture). The digital numbers acquired over the dried-up Lynch Strait were 

classified in various categories based on these two extreme classes (Closson and Abou Karaki, 

 Differential InSAR Time Series processing PS/SBAS 

Requirements A minimum of 2 images are necessary 

but 3 to 4 images can be combined 

if no external digital elevation 

model is available. 

Generally, a minimum number of 

20 images for PS and 8 

images for SBAS are 

necessary. 

Qualitative assessment Relevant for a surveillance/probing 

system. 

Very good for modelling and 

forecasting. 

Quantitative assessment The ground movement is indicated in 

fringes of colours, each fringe 

represents a change ranging from 

1cm to 5cm (depending the 

frequency used X, C, and L).- 

Vertical movements of about 2cm 

to 3cm can be detected. 

The ground movement is indicated 

in colour coded pixels.- 

Interpretation is more reliable 

as atmospheric effects can be 

minimized. 

The average vertical movement is 

about 1.5mm/yr. 
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2014b). This allowed an efficient way to detect seepage at the surface of the Lynch Strait, especially 

from infrared channels. 

3.3. Vectorization of the pertinent elements 

Using analysis of photographic/satellites/maps, we aimed to understand how the landscape has 

evolved from one precise moment to another and to reconstruct that evolution. Also, one goal among 

others was to position the shoreline (base level) accurately. We focused on the phenomena of 

subsidence, collapses and tectonic settings. Seven field campaigns have been performed in the 2000s. 

Thousands of pictures have been taken and hundreds of them were also geo-located (Closson et al., 

2007). Special care was directed to spots showing surface collapses proliferation in the study area. 

All elements (points, lines, and polygons, i.e. ‘shapefiles’) significant for the understanding of salt 

karst evolution were vectorised in view to produce maps. 

4. Results 

To quantify significant deformations of dike18, the monitoring of the ground instabilities 

occurring along the dike was carried out exploiting four different SAR datasets with the SBAS 

technique through the SARscape® software. The SAR datasets consist of: 10 C-band ERS-1/2 images 

covering the period 10/1997–12/2000; 10L-band ALOS-PALSAR, period 11/2007–02/2011; 20 X-

band COSMO-SkyMed, period 12/2011–05/2013; 32 C-band Sentinel-1A, period 10/2014– 05/2016. 

The ALOS-PALSAR images were acquired in ascending geometry, while all the other datasets were 

collected in descending geometry. Among the available datasets, the proper sets have been chosen 

dropping the images acquired during the periods of building and major repair leading to strong 

coherence decrease. In particular, we dropped the ERS-1/2 images from 06/1992 to 02/1997 

corresponding to dike 18 building period, and all the ERS-2 images after 12/2000 that were unusable 

because of satellite gyro system failure. 

The processing chain of each dataset requires the selection of an adequate set of parameters to 

optimize the results. Considering the high phase decorrelation occurring in the areas over dike18 and 

the characteristics of each sensor, the computation have been performed only for the points with 

coherence, in a range from 0 (minimum) to 1 (maximum), greater or equal to: 0.35 for ERS-1/2; 0.35 

for ALOS-PALSAR; 0.30 for COSMO-SkyMed; and 0.50 for Sentinel-1A. The vertical 

displacements and velocity maps obtained were used to extract the deformation along the 12-km-long 

dike18. The dike was divided into segments 500 m long, and the average value of all the pixels falling 

in a buffer of 40 m of each segment was calculated. The results are reported in Tables 2 and 3, where 

negative values, in red, represent subsidence while positive values, in blue, represent uplift. The 

sections with velocity in the range ±1.5 mm/yr are considered stable and coloured in green. 

The sections in the table with missing data may correspond to areas with phase decorrelation due 

to either (1) constant dike repair work or (2) very high ground deformations not detectable by the 

sensor or (3) drastic change in the dielectric parameters of the ground due to brine seepage from the 

pond towards the base level (Wadi Araba). 

The deformation rates of ERS-1/2 are much lower in comparison with the other datasets, probably 

because the movements are too fast to be detected by the sensor. In fact, the ERS-1/2 works in C-
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band (5.6 cm wavelength) and its revisit time is 35 days. This can bring a complete loss of coherence 

in the areas with very fast movement or a partial registration of the displacement information. In 

comparison, even if COSMO-SkyMed and Sentinel-1A work with X-band (3.1 cm) and C-band (5.6 

cm), they have shorter revisit time of 16 days and 12 days respectively, making them suitable to 

register higher displacements. Despite the very long acquisition interval (45 days), ALOS-PALSAR 

sensor uses a 23 cm L-band that can detect movements four times faster with respect to the C-band. 

The results show three major areas affected by uplift during 1997–2000: from 0+000 to 5+500, 

from 8+000 to 10+000 and from 11+000 to 12+000. Segments from 6+000 to 8+000 and from 10+000 

to 11+000 were affected by subsidence. In the period 2007–2016, most parts of the dike registered 

moderate to high subsidence. Very strong subsidence up to 207 mm/yr was detected from segments 

6+000 to 8+500. These segments, in fact, are located in the areas most affected by vertical 

movements, as described in previous studies (Closson and Abou Karaki, 2014b). Moderate uplift was 

registered by COSMO-SkyMed (2011–2013) from 2+500 to 5+000. In the four monitored periods, 

the displacement rates are generally decreasing from the central part of the dike to its periphery, with 

the lowest values detected in the last segment, from 11+500 to 12+000. 

 

Table 2. Cumulated vertical displacement and velocity on dike18 for the period 1997–2011. Chainage 0+000 

(the zero reference point) along dike18 is located at the intersection between dike1 and dike18 (see Figure 7 

and 8). 
 

 Dike 18 – Cumulated vertical displacement and velocity 

Satellite ERS-1/2 ALOS-PALSAR   

Period 10/1997-12/2000 11/2007-02/2011   

Chainage (m) 
Displacement 

(mm) 
Velocity 
(mm/yr) 

Displacement 
(mm) 

Velocity 
(mm/yr) 

  

0+000 0+500 4.3  1.8  -84.9  -27.4   Legend 

0+500 1+000 5.9  2.2  -53.1  -17  Subsidence 

1+000 1+500 - - - -  Uplift 

1+500 2+000 12.3  4.2  -182.1  -55.1   Stable 

2+000 2+500 2.9  1.2  5 6.4    

2+500 3+000 19.6  5.9  -28.3  -7.2    

3+000 3+500 14 4 -98.7  -25.3    

3+500 4+000 8.7  4 -84 -20.1    

4+000 4+500 9.7  5.3  -51.1  -14.2    

4+500 5+000 3.9  3.3  -2.3  0.03    

5+000 5+500 19.2  6.4  -73.8  -16.1    

5+500 6+000 -0.4  0.6  -150.2  -33.7    

6+000 6+500 -12.1  -3.3  -266.2  -75.8    

6+500 7+000 -26 -9.9  -420.9  -123.8    

7+000 7+500 -15.6  -5.1  -639.5  -188.3    

7+500 8+000 -7.3  -2.2  -503 -153   

8+000 8+500 15 7.5  -431 -133.9    

8+500 9+000 - - -128.2  -35.3    

9+000 9+500 13.5  3.6  -23.7  -6.8    

9+500 10+000 3.7  2.4  -8.4  0.9    

10+000 10+500 -14 -5.2  -18 0.7    
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10+500 11+000 -28.7  -7 -30.2  -8.6    

11+000 11+500 44.8  14.6  -119.6  -34.2    

11+500 12+000 10.6  3.5  -17.5  -7.8    

 

Table 3. Cumulated vertical displacement and velocity on dike18 for the period 2011–2016. Chainage 0+000 

(the zero reference point) along dike18 is located at the intersection between dike1 and dike18 (see Figure 7 

and 8). 

 

Satellite COSMO-SkyMed Sentinel-1A   

 Period 12/2011-05/2013 10/2014-05/2016   

Chainage (m) 
Displacement 

(mm) 
Velocity 
(mm/yr) 

Displacement 
(mm) 

Velocity 
(mm/yr) 

  

0+000 0+500 -33 -26.1  -66 -54.9   Legend 

0+500 1+000 -9 -9.2  -119.1  -83.7   Subsidence 

1+000 1+500 -17.6  -15.4  -110.5  -70.6   Uplift 

1+500 2+000 -69 -49.4  -107.6  -69.4   Stable 

2+000 2+500 -29.5  -21.5  -69.3  -42.6    

2+500 3+000 4.5  4.6  -45.6  -26.2    

3+000 3+500 9.3  7.6  -42 -22.5    

3+500 4+000 7.8  7.7  -52.5  -31.2    

4+000 4+500 0.6  1.7  -52 -29.8    

4+500 5+000 3.3  2.9  -36.8  -17.6    

5+000 5+500 -58.4  -43.8  -115.1  -64   

5+500 6+000 -97 -73.5  -179.5  -99.4    

6+000 6+500 -97.7  -72.7  -245.5  -149.5    

6+500 7+000 -131.7  -96.5  -267.2  -167   

7+000 7+500 -211.8  -152.8  -346 -207.4    

7+500 8+000 -178 -129.9  -195.2  -117.2    

8+000 8+500 -164.7  -125.5  -165 -96.8    

8+500 9+000 -113.2  -86.4  -115.7  -63.9    

9+000 9+500 -66.1  -51.1  -112.9  -61.2    

9+500 10+000 -41.9  -35.2  -108.2  -63.8    

10+000 10+500 -35.7  -30.3  -79.1  -47.6    

10+500 11+000 -5.6  -5.2  -40.7  -21.6    

11+000 11+500 -3.3  -3.5  -42.2  -20   

11+500 12+000 12.8  8 -10.4  -6.1    

 

The overall results concerning dike18 allow characterizing the development of a halo karst 

system below the southern part of saltpan SP-0A in five major phases: 

4.1. 1953–1979: drying up of the Lynch strait and early stage of a fault induced karst 

system development in the southern part 

The main landscape geomorphic elements around Cape Molyneux before the drying up of the 

Lynch Strait and the Southern lagoon are summarized in Figure 5. This was the case prior to APC 
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dike system completion (1979–1982). The shoreline position is derived from 1:25,000 aerial 

photographs taken in September 1953. At that time, the lake level was 393 m bMSL. 

During the past millennia, a mature karst network developed in the sub-horizontal salty marl 

layers of the Lisan Formation over the peninsula. The latest has been divided into two members 

(Lower and Upper) according to diatomite zone (Begin et al., 1974). The lower laminated member is 

composed mainly of very fine varved laminae. The upper white cliff member (Abed, 1985), has higher 

detrital sediments than the laminated member and contains some centimetres-thick beds of gypsum 

and aragonite in the southern part. The lithological boundary represented in Figure 5 was mapped by 

Bartov et al. (2006). The Lisan is a plain (Figure 2) with isolated hills, punctuated by SE–NW 

elongated depressions. The latest are points of infiltration – recharge zone – in which Tamarix shrubs 

grow. This halophytic vegetation attests that unsaturated water with respect to salt is present at 

shallow depth although rainfall is only 70 mm/yr. Based on observations done elsewhere in the 

peninsula and discussions with APC engineers, recharge water also originates from the adjacent area 

of Ghor Mazra’a owing to a dense network of faults connecting the peninsula to the eastern rich 

aquifers fed by ~200/300 mm/yr rainfall over the Moab Plateau (about 10-15 km eastwards). The 

karst system’s porosity is characterized by fractures, bedding plane, and solutionally-enlarged voids 

such as channels and conduits developed from initial discontinuities (Rosendahl et al., 1998). It allows 

for rapid water flow. 

Neev and Hall (1978) identified a transversal faulted zone, oriented S60°E, across the southern 

Dead Sea basin. It connected the eastern and western boundary fault systems, and affected the 

southern part of Lisan peninsula and the Lynch Strait. Faults and fault scarps bound Cape Molyneux. 

Erosional escarpments formed a 20–40 m step. In the southern part, one exposed fault strikes S67°E 

(Figure 5). Its trace is underlined by series of groundwater seepage and gullies. Brackish water is 

seeping and flowing downhill carving fretted valleys. The southern beach area displays structurally 

defined sag-ponds while the western coast is narrow and shows cave entrances (discharge zone), 

metres-wide in height, and decametres-wide in length (Closson, Lamoreaux, et al., 2007). 

The energy dissipated in the karst system derives from three main sources of imbalance: the Dead 

Sea base level fluctuations, the uplift/subsidence related to the activity of the Lisan salt diapir, and 

the vertical displacements contributing to the formation of the pull-apart structure, with the type of 

extensional component evidenced in the focal mechanism of the 1979 earthquake calculated by Arieh 

et al. (1982). The availability of unsaturated (aggressive) water is demonstrated by the growth of 

Tamarix shrubs. 

Under the Lisan peninsula, fissured Lisan marls are in contact with the sea. A lens-shaped body 

of brackish groundwater is buoyed by the denser Dead Sea. This brackish water literally floats on, 

and is in a state of balance with, the hypersaline water (Closson, Lamoreaux, et al., 2007). In the 

1950s and 1960s, the Dead Sea water receded slowly. By the principle of ‘communicating vessels’, 

the lens-shaped body of brackish water uniformly followed the lowering movement. 

When the recession of Dead Sea water accelerated in the 1970s, only the most fissured places 

like the damaged zones associated with the major transversal fault (Neev and Hall, 1978) allowed a 

faster underground flow. Consequently, chemical and mechanical erosions occurred along the 

exposed faults and fractures crossing the Lynch Strait. This period corresponds to the early stage of a 

karst system development or to its reactivation since the Dead Sea level fluctuated in the past (Klein 

and Flohn, 1987 and references therein). Retrospectively, after four decades of observations, a large 
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number of sinkholes and subsidence co-occurred with faults (Abelson et al., 2003; Closson, 2005; 

Yechieli et al., 2006; Closson and Abou Karaki, 2009a). 

 

Figure 5. Cape Molyneux in the 1950s, 8 m of brine covered the shallow Lynch Strait. This landscape 

represents a secular equilibrium between a karst system and its environment. 

4.2. 1979–1998: switch between the Dead Sea and the Wadi Araba base levels 

From 1953 to 1970, the Dead Sea water level dropped slowly (3 m in 17 years) but at an accelerating 

pace. The shoreline moved southwards and westwards. Corona pictures have shown that Tamarix 

shrubs had time to develop over the newly emerged lands (Figure 6). This vegetation evidenced the 

circulation of unsaturated water below the wave-cut platform and 

migration of the discharge zones lakeward (Figure 6: seepage area). Structurally defined sag ponds 

also appeared over the emerged platform (Figure 6: linear swamps). 

Until the 1970s, Wadi Araba poured into the southern Dead Sea lagoon. During the building of 

the saltpan systems between the 1960s and the early 1980s, riparian states agreed to channel Wadi 

Araba across the shallow southern basin, along the borderline, up to the Lynch Strait and the northern 

Dead Sea basin (Figure 1). As a consequence, the longitudinal profile of Wadi Araba was controlled 

by the dropping Dead Sea level in the northern basin. Since the 1980s, therefore, the river has been 

continuously entrenching in the soft Lisan salty marls. The sediments are transported and deposited 

in a delta formed in the northern part of the Lynch Strait. 

In 1982, after completion of an APC solar evaporation system in the southern sector of the Dead 

Sea, the very first sinkholes were observed in different places around the Lisan Peninsula. 
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Figure 6. Emergence of the Lynch Strait and the Southern Dead Sea lagoon at the end of the 1970s. Wadi 

Araba becomes the new local base level. 

 

 

Figure 7. Development of a young and dynamic salt karst system across the new emerged lands. (Situation: 

early 1990s). 

4.3. 1998–2001: saltpan SP-0A operational in the Lynch Strait 

In the early 1980s, APC built up saltpan SP-01 next to the southern Lisan Peninsula (Figure 7). The 

brine elevation was 395 m bMSL (equal to the 1960s Dead Sea elevation). From that moment, a 

brackish water lens was re-established below the southern part of the Lisan peninsula at an elevation 

of 395 m bMSL. On its western side, the lens was around 5 m above Wadi Araba (400 m bMSL). The 

water in the lens moved directly towards Wadi Araba, crossing the path of the future dike18 (Figure 

7: access road). 

In the southern part of the Lynch Strait, the underground water flow was more rapid in damaged 

fault zones. Mechanical erosion of the conduits took place, leading to a young, dynamic, and 

reactivated halo karst system characterized by subsidence and sinkholes at the surface (Figure 7: sag 

ponds). Moreover, saltpan SP-01 (encompassed by earthen dike1) was built over porous (fractured) 

sediments. A significant part of the Dead Sea brine that was supposed to be stored in that reservoir 
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seeped into the subsurface to reach Wadi Araba a few hundred metres away, next to dike1 (Figure 7: 

Seepage area). The re-activated halo karst system was also used by the brine seeping from reservoir 

SP-01. 

It is obvious from a panchromatic SPOT-1 image that this halo karst system was no longer at its 

initial stage of development in 1992. It had reached an intermediate stage where individual sinks had 

enlarged and merged with those in adjacent areas to form solution valleys (Figure 7: sag ponds). 

Further, a flash flood event occurred during the winter of 1992. Ancient subsurface flow paths 

were suddenly reactivated. More than 70 sinkholes appeared across the access road that would have 

turned into dike18 (Figure 7: sinkholes). APC modified the design of the initially projected 12 km 

long dike (dike18, saltpan SP-0A, Figure 1), in order to bypass a 1.6 km long lineament of ground 

collapses and subsidence. As demonstrated by Figure 4 examples, the Dead Sea shores are very 

reactive to variations in the hydrogeological setting and are prone to dissolution. 

From January 1996 to December 1997, during SP-0A construction phase, several additional 

incidents occurred (Tabbal and Mansour, 2009): vertical settlement of around 2–3 m in very soft 

clays, artesian conditions associated with sand and salt layers, and the development of sinkholes. The 

12 km long dike was built to create a 95 Mm3 pond at a cost of $32 M over a ground composed of 

soft to very soft silt-clay and massive salt rock (Lisan marls). 

In 1997, a leak was discovered. Technical studies were conducted in collaboration with local and 

international experts, including Sir Alexander Gibb & Partners, who designed the dam. The reports 

indicated that the problem could be due to a sinkhole formed back in 1996, or to the development of 

seepage processes under the dam that caused internal erosion, as a consequence of an artesian water 

basin with a high water level (Atlas Investment Group, 2003). 

In early 1998, during impounding operation, a landfill jetty 300 m long, 30 m to 60 m wide, was 

rapidly built from dike18 towards the basin centre due to seepage flow through a large channel below 

the dike. Since that time, this zone has been very active (Closson, Lamoreaux, et al., 2007) and it 

remains so in October 2015. 

In 2001, dike18 was seriously damaged. Saltpan SP-0A was emptied. The production unit went 

back into service 5 years later. 

4.4. 2002–2006: dike18 repair 

Once saltpan SP-0A was emptied, the water lens below the Lisan (395 m bMSL) moved down to 

reach the elevation of Wadi Araba (~405 m bMSL). The fault-controlled halo karst system continued 

its development owing to that water lens and also to the brine seeping from SP-01 reservoir. Aerial 

and satellite images attest that the karstic activity continued (Closson and Abou Karaki, 2014b), e.g. 

salt deposits were detected over saltpan SP-0A bottom from artesian springs. 

4.5. 2007–2015: post-repair damages 

Field campaigns carried out between 2004 and 2009 have shown that, although repair works 

improved the safety coefficient, they failed to stop the problems. Many cracks and backfilled 

sinkholes were continuously located (Closson and Abou Karaki, 2009b). 
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By July 2008, a 400 m long dike segment was enlarged to improve safety conditions, tripling its 

width since 1997. In early 2011, APC launched a bid to fill underground cavities with cement on a 

150 m dike segment, to protect a deteriorating part of dike18. The works included drilling 

approximately 40 boreholes to an average depth of 40 m through the dike body and foundations. 

Subsurface cavities and boreholes were filled with a grout mixture. 

In December 2012, we identified a circular structure within SP-0A from a Worldview-2 image 

acquired on 2 April 2011 (Figure 8: circle around artesian spring). The structure was the biggest ever 

identified in the area (~300 m in diameter). A map of its deformation field was computed with 

COSMO-SkyMed images (Closson and Abou Karaki, 2014b). This circular feature was previously 

unknown and proved after further analysis to be associated with other circular features identified as 

sinkholes dating back to the mid-2000s. This ‘finding’ raised lots of questions regarding the origin of 

the underlying cavity, the capabilities of sinkhole prediction models developed in the area, as well as 

the strategies, approaches, and methods used by engineers and geophysicists to deal with such 

features. Analysis of satellite images revealed that this depression appeared after September 2006. 

Evidence of underground water circulation there dates back to the mid-1980s. Processing of satellite 

radar data has revealed that the overall diameter of the subsidence area is around 600 m across, 

threatening the stability of a more than 1km long section of dike18, which holds some 95 Mm3 of 

Dead Sea brine. 

In April 2013, a tender was launched to raise the height of dike18 on a 6450 m long segment and 

to perform risk control works. In February 2015, the SP-0A production unit was finally cut off from 

the first 3 km of dike18 in order to avoid its complete destruction (Figure 8: new dike). Four factors 

were identified that justifies this costly decision: (1) underground water circulating below the pond, 

from the Lisan Peninsula to the Dead Sea and Wadi Araba; (2) Dead Sea brine seeping from SP-0A 

and from a juxtaposed saltpan; (3) underground water circulation below the Lynch Strait owing to the 

supply of Wadi Araba; (4) natural settlement of the recently emerged coastal zones. 

Nevertheless, the route of the new dike was poorly thought out. An important part of the karst 

system was by-passed (Figure 8: salt pillar). The new dike presents clear signs of weakness in areas 

affected by subsidence detected in 2011. 

 

Figure 8. Mature halo karst system and amputation of 3 km of dike18. 
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5. Discussion 

In the Anthropocene, it is becoming more and more obvious that the human intellectual and 

technical capacities to introduce profound alterations to the environment are increasing more rapidly 

than the human capacity to understand all the consequences and future effects of these actions. Our 

study indicates that the questionable approach of neglecting the dynamic nature of environmental 

parameters is costly. Since its construction in 1998, SP-0A (Figure 1) has been out of service for 25% 

of its lifetime. Repairs aiming to adapt SP-0A to problems (not solving them) totalling US $16 M 

represent an extra expenditure of half the original cost of the project. Furthermore, early in 2015, 15% 

of the saltpan area was amputated. All this was predictable and avoidable. 

The idea of an expansion scheme in the Dead Sea area dates back to the 1980s. At that time, the 

Dead Sea sinkhole problem was spatially very limited and generally unknown to the public. In the 

early 1990s, during the design phase of dike18, one of the major elements of the industrial 

development in the area, dozens of sinkholes occurred across the trace of the future dike (Figure 7). 

In 1993, top world consultants were contacted and provided advice, but their warnings did not stop 

the project. APC engineers found technical solutions to build up a lucrative dike system in the 

southern Dead Sea basin. Even so, these projects did not benefit from careful and effective ideas based 

on sound investigations and realistic models regarding how the coastal environment of the Dead Sea 

would behave with a lower lake level. 

It is clear that if the lake level and water table changes had been taken into account during the 

feasibility studies and design phase, the lifespan of major infrastructures such as dikes, bridges, and 

hotels would be drastically improved. For decades, scientists have developed concepts and robust 

methods to predict the consequences of lowering a base level and the associated groundwater table. 

It is known that lowering the groundwater table and displacing the fresh/brackish water interface will 

induce rapid karstification where optimal geological conditions for the development of the 

phenomena exist. See Bakalowicz (2015) for a recent synthesis study covering the Mediterranean 

area. 

Investigations regarding responsibility for the setbacks such as the amputation of dike18 (Figure 

8), or the earlier collapse of dike19 and the front beach of a five-star hotel (Closson et al., 2003; Abou 

Karaki and Closson, 2012), have highlighted some weaknesses inherent in the technical decision-

making process and the general framework in which these types of projects originate, were designed 

and realized. 

There are four categories of stakeholders in major projects including those of the Dead Sea: (1) 

fund providers; (2) engineers, architects, and planners; (3) companies chosen to build up the 

infrastructures; and (4) security engineers. They all have in common a desire to contribute to the 

building of successful and lucrative infrastructures. The economic concept of sustainability is 

understood as the time needed to achieve a return on investment, and the way to preserve employment. 

Fund providers are coming from diverse perspectives and want a rapid return on their 

investments. They have profits in mind and are determined to achieve their goals. Environmental 

constraints are secondary issues for most of them. By way of an illustration, in 2004, investors 

presented a project for a harbour and boat cruises along the Dead Sea coast, in spite of the fact that 

the lake level was receding at a rate projected to exceed 1m/yr. 
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Engineers, architects, and planners have generally established their offices outside the project 

area. They are working on a range of global projects and are in charge of project design. Their 

knowledge of the environmental setting of any particular project is generally poor, or at best based 

on a limited dataset centred over the parcels they have to valorise. They clearly tend to minimize 

geomorphologic constraints. For example, a US-based architect’s office was in charge of the “Detailed 

Master Plan” for the “Jordan Dead Sea Development Zone”. They proposed to transform the Sweimeh 

area, in the northern section of the Dead Sea, into a kind of Californian Riviera. In their virtual 

landscapes, the rivers are in a state of equilibrium, while in reality, the rivers are entrenching, creating 

steep canyons with very unstable slopes. The architectural firm also positioned future resorts over 

active landslides. The real environment, and in this case geomorphologic consequences, are neglected 

or reshaped without taking into account the dynamic nature of ongoing deformations. 

Companies qualified to construct infrastructures are a mixture of local and international 

enterprises. In general, local workers are more informed about the environmental issues in their areas 

of work because staff and engineers spend months at a time in the field. However, their objectives 

consist of the realization of the project, not of planning or questioning it. As an example; during the 

building phase of the Dead Sea Holiday Inn Resort, the beachfront suffered sinkholes and landslides. 

The project was nevertheless completed as it was initially designed, without adequate adaptations. In 

August 2012 the beachfront was destroyed again by a hectometre-size landslide. A tractor shifted 

several metres below the lake level (Abou Karaki and Closson, 2012). This is similar to the case of 

the APC’s dike18 in which the access road was destroyed by sinkholes in that neither project was 

adequately questioned (Figure 7). 

Security engineers in charge of preserving the projects once they are completed are locals who 

are fully aware of the Dead Sea’s environmental degradation, although they lack a synoptic view and 

a sound understanding of the underlying mechanism. Their jobs consist of finding solutions to 

preserve assets at risk. Their methods and approaches to solving these problems are hardly 

sustainable, and usually involve quick and dirty repairs. Depending on their background and 

experience, they may or may not be open minded and ready to adapt their work to new ideas and 

techniques. In the case of APC, the Board of Directors and the Head of Security were aware of the 

results from and effectiveness of radar interferometry techniques and the benefits they could get in 

the frame of a well-adapted monitoring as far back as the year 2000 (Closson et al., 2003). However, 

it took more than a decade before the company began using radar remote sensing techniques. Present-

day security engineers admitted that it was the only technique able to provide relevant and confident 

inputs in the management of the sinkholes’ threat. 

Dike19 collapse on 22 March 2000 represented a turning point in the study of hazards associated 

with the dropping of the water level in the Dead Sea because we succeeded in detecting precursory 

deformations several years before the destruction of the dike (Closson et al., 2003). From the early 

2000s, and on, we have been continuously monitoring the Dead Sea area with regular field surveys 

complemented by visible and radar images processing and interpretations. Up to now, in the 

expression ‘early warning system’, the word ‘early’ must be understood as early enough to avoid a 

disaster by taking timely effective preventive measures and remedies for the case of already existing 

projects, or designing new ones in an appropriate conservative manner to ensure the sustainability of 

the infrastructures despite the environmental accurately forecasted alterations, including in worst case 

scenarios. This approach has proven to be efficient and successful. For example, in May 2008, based 
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on a model of sinkholes propagation in Ghor Al Haditha (Closson and Abou Karaki, 2009a), we 

warned the Numeira Dead Sea Salt and Mud Factory employees about a strong sinkholes threat. One 

year later the factory was moved to a safer area some 30km southwards, and the factory was totally 

destroyed. In December 2012, we informed APC of an important threat for dike18. Our prediction 

was correct and in February 2015, 25% of the 12 km dike18 was amputated as a preventive remedial 

measure. In August 2015, a new warning was sent to APC because the dike built to isolate the most 

dangerous part of dike18 is itself threatened in two places. Indeed, the route chosen for the amputation 

did not take into account another sinkhole site detected over images acquired in April 2011. This was 

a success in the sense that dike18 did not collapse in a catastrophic way as dike19 did, but it clearly 

shows the limitations of engineering at an exclusively local scale to solve an issue with a wider 

regional scale component. 

Evidence of embryonic cracks and failures are difficult to detect remotely in densely urbanized 

areas, even with the best available resolution images. This is the particular problem of hotels of the 

northern Dead Sea. Such cases necessitate additional and more detailed field inspections because 

lives hang much more in the balance in these areas. At the Dead Sea, the collapse of buildings or 

hotels in sinkhole areas must be expected because such catastrophes happen worldwide, if subsidence 

and surface conditions are mature enough. One such recent incidents was in Florida, at the Summer 

Bay Resort in Clermont where dozens of guests were quickly evacuated after a sinkhole opened, 

destroying the hotel close to Disney World on 12 August 2013. Guests reported cracking sounds and 

windows breaking shortly before the building collapsed. 

Based on previous results, we are growing more confident in the future success of the early 

warning system approach. The certainty of progress in space techniques is also enhancing our 

optimism concerning the future capabilities of detection. Owing to the Copernicus program (Sentinel-

1A and B data are free of charge, with a revisit period of 12 days, and then 6 days when satellite B 

will be fully operational); the detection possibilities of ground deformations will increase in future 

years. This will allow for geo-hazard forecasts to increase in frequency and improve in accuracy so 

as to be dealt with more effectively. 

Regarding the strategies that might increase the success of engineering projects, scientists 

working on karst can provide critical input. In recent years, important studies aimed at evaluating the 

impact of human activities on the karst environment have been carried out. For instance, the Karst 

Disturbance Index (KDI), proposed by van Beynen and Townsend (2005), and later modified by 

North et al. (2009), measures the disturbance induced by humans on karst, taking into account five 

categories (geomorphology, atmosphere, hydrology, biota and cultural factors), with each category 

described by several attributes. The KDI approach makes results readily understandable for policy-

makers and the wider public. Another approach was the Karst Sustainability Index (KSI; van Beynen 

et al., 2012) that takes into account 25 indicators related to the environment, economy, and society. 

It was created as a standardized metric for sustainable development practices in karst settings, aimed 

at comparing sustainability practices temporally and spatially to highlight those specific areas where 

remedial policies or actions are needed. 
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6. Conclusions 

The expansion scheme around the Dead Sea including the building of industrial dikes and 

touristic resorts is an economic necessity. However, the effects of the reduction in water level on the 

landscape and its stability cannot be ignored in the future if we are to guarantee a reasonably 

acceptable level of development sustainability in either the Dead Sea area, or in similar worldwide 

economically promising and environmentally sensitive areas. 

The main obstacle to this sustainability is the lack of a synoptic view of ongoing geomorphologic 

alterations and environmental threats. A wide vision is mandatory to precisely position any project in 

a broader context, and to understand how it will interact with other components of the environmental 

system. 

In Sweimeh on the northern Dead Sea coast where Dead Sea hotels are located, there are now 

many indications that the coast is unstable. Landslides are becoming more frequent and more severe. 

Costly damage recorded in the last two decades underlines the economic need for designers to think 

differently about the safety and sustainability of the infrastructures they design. Without adaptation 

and innovative preventive planning, common techniques taught in universities are insufficient in the 

Dead Sea and similar dynamic environments, even though they are successfully applied in many 

places worldwide. Among other things, cost-effective monitoring and early warning systems based 

on detecting the precursory deformations signalling future collapses should be set up to mitigate the 

consequences of major accidents, or even to prevent them altogether with suitable and effective early 

measures. 

Results of adopting a systematic monitoring of the area with these techniques can be the basis of 

an effective early warning system capable of detecting potential threats early enough to take action, 

preserve expensive investments, and avoid disastrous consequences. 

For a given project, the principle “observe-plan-do-check-adjust” should be applied each time a 

new stakeholder is involved. 

Based on the habits of the new generation of stakeholders, each project should ideally have 

traceability for the common good and to enable stakeholders to learn from failures. In the 

Anthropocene more than ever, every project should have a platform where different stakeholders can 

communicate in complete transparency and share relevant information. 

The implementation of indices like KDI and KSI, specifically developed for karst, may represent 

an important step in accurately defining the problems related to this fragile environment and 

developing proper land use planning and management techniques. 
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