
1. Introduction

Consider a community of species living in a space that

has several dimensions. The dimensions may relate to

limited resources or to attributes of importance. For ex-

ample, resource dimensions may be light and humidity for

plants or prey and space for animals. Examples of impor-

tance dimensions are population density (or total number)

and species biomass for plants as well as for animals. Our

aim is to measure the α-diversity of the given community

and to compare it with the diversities of other communi-

ties. The measures - indices and orders - shall be based not

only on one dimension but on several dimensions simul-

taneously and they shall also reflect possible interactions

between the dimensions.

There exists a classical literature on the univariate

measurement of diversity; see e.g., the comprehensive

and unified treatments by Pielou (1977), Solomon (1979),

Rao (1982), Patil and Taillie (1982) and many recent,

more special studies. Tóthmérész (1995) surveys and dis-

cusses twelve univariate methods of diversity ordering.

However, there exist rather few approaches to multivari-

ate measurement, e.g., Alatalo and Alatalo (1977) and

Loehle and Wein (1994).

Section 2 treats the univariate measurement. Several

popular diversity indices, the concentration curve and

concentration order, two evenness indices, and the Lorenz

order are surveyed. In Section 3, the multivariate Gini-

Simpson index is introduced. Section 4 presents a multi-

variate majorization, called relative dilation, and a multi-

variate concentration order together with monotonicity

properties of indices including a multivariate Rosenbluth

diversity index. Section 5 discusses a multivariate Gini ra-

tio and Section 6 concludes the paper.

2. Univariate indices and orders

If just one resource or one importance value is rele-

vant, a univariate measurement problem has to be solved.

Many indices have been proposed and used in the litera-

ture to measure the diversity of a given community in a

one-dimensioned space. Let the community consist of S

species and each of them use a share pi of the limited re-

source (or bear relative importance pi), i=1,2,...,S.

2.1 Indices of diversity

The following diversity indices have been widely

used in ecology,

• Number of species S,

• Shannon-Wiener index

,

• Gini-Simpson index

,

• Rényi’s α−entropy
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where log y denotes the natural logarithm of y. The family

Dα includes the Gini-Simpson index and, in the limit α →
1, also the Shannon-Wiener index. Rényi’s Dα is fre-

quently used in the following variant, which is mentioned

as the

• Hill index

To measure concentration, which is the opposite of diver-

sity, the Rosenbluth concentration index A is well known

in economics,

where

,

and p(i) is the i-th share ordered from below, p(1) ≤ p(2) ≤
... ≤ p(S) . To measure diversity, we introduce the

• Rosenbluth diversity index

.

All these diversity indices measure which shares of the

resource are used by how many species.

2.2 Concentration order

The distribution of resources among species is nicely

described by a graphical device, the concentration curve

(which is also popular in economics):

• Concentration rates:

Ci = p(S) + ... + p(S-i+1), i=1,2,..., S,

and draw the points

(0,0), (C1,1),...,(CS-1,S-1), (1,S)

in two-space and connect them by a piecewise linear

curve. This curve is the concentration curve. For each i,

the i-th concentration rate Ci equals the total share of the

resource held by the i “largest” species; its negative, -Ci,

serves as another index of diversity. The area G below the

concentration curve is related to the Rosenbluth diversity

index B, there holds B=(2G -1)/(2G +1).

When two communities P and Q are compared, the

first having S species and shares p1,...pS and the second

having T species and shares q1,...qT, both concentration

curves may be drawn. If the concentration curve of the

second lies below that of the first, we say that Q majorizes

P in concentration order. This is tantamount saying that

all concentration rates are larger with Q than with P; the

second community is more concentrated, that is less di-

verse than the first. Obviously, the concentration order

implies that S ≥ T. Actually, it implies much more,

namely:

Proposition 1: If one of two communities is less diverse

than the other in the concentration order then each of the

above mentioned diversity indices has a smaller value for

the first community than for the second.

The proposition is known. For A it follows from the

fact that B is an increasing function of the area below the

concentration curve. For Dα and, hence, for Hα it follows

from standard results on majorization (Marshall and

Olkin 1979, Tong 1983, Mosler 1994).

As the concentration order has an obvious interpreta-

tion in terms of diversity and in view of Proposition 1, it

seems rather natural to postulate for any univariate index

of diversity that it should decrease with the concentration

order.

2.3 Indices of evenness

The measurement of evenness abstracts from the

number of species present in the community but focusses

on their relative importance. It quantifies the slope of the

importance value sequence and measures its flatness

(Whittaker 1972, pp. 217 ff).

The question is here which shares of the resource are

used by which parts of the species. Univariate indices that

measure non-evenness are

• Gini’s ratio

,

• Coefficient of variation

.

The coefficient of variation equals the standard deviation

of the pi divided by their mean. Indices of evenness are

obtained by going either to the negative or the reciprocal

of R and v.
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Both the Gini ratio R and the coefficient of variation

v are closely related with diversity indices, R with the

Rosenbluth diversity index B, and v with the Gini-Simp-

son index D2,

, (1)

. (2)

Equation (1) will be employed in the sequel to define a

proper multivariate extension of index D2.

The relevant partial order in the univariate measure-

ment of evenness is the Lorenz order, which is closely re-

lated to the concentration order. The piecewise linear con-

nection of the points

in two-space is the Lorenz curve of P with shares p1,...,pS.

If the Lorenz curve of a community Q lies below that of a

community P, then Q is said to majorize P in Lorenz or-

der. Note that in case S=T this is equivalent to majorizing

in the concentration order.

A natural postulate for any index of evenness is that it

should decrease with the Lorenz order. As the usual Gini

ratio equals twice the area between the Lorenz curve and

the diagonal of the unit square, the negative (or recipro-

cal) of the Gini ratio fulfills that postulate. The same does

the negative (or reciprocal) of the coefficient of variation.

3. A multivariate Gini-Simpson index

Now, we turn to the problem of measuring diversity

when there is more than one dimension of resources or

importance variables. Assume there are S species and J

resources and let pij denote the share of resource j that is

used by species i, S for all j. Assume that

every species uses at least one resource, that is, minj pij >

0 for every i. The shares of each species are collected in a

vector pi = (pi1,...,piJ), i=1,...,S.

I propose a multivariate Gini-Simpson index that is

based on a multivariate standardized variance as follows.

Define, for j,k = 1,..., J,

which corresponds to the covariance between the re-

sources j and k, and let Σ* = [ ] be the respective J ×

J matrix. More precisely, is S
2

times the covariance

between the vectors of shares which belong to resources j

and k. The J-variate Gini-Simpson index is defined by (1)

by substituting that is

,

and the corresponding Hill index is obtained as

.

Several properties are desirable postulates with any index

of diversity or evenness:

• Anonymity: The index does not change if the species

are renamed.

• Scale invariance: The index does not change if the

scale of measurement is changed in one or several

attributes.

• Continuity: The index is continuous in all its argu-

ments.

Proposition 2: The multivariate Gini-Simpson index D2

and the multivariate Hill index H2 fulfill the postulates of

anonymity, scale invariance, and continuity.

The proposition is obvious. The ranges of the indices

are

for D2,

for H2,

where ]. , . [ denotes the open interval. Further, any index

of diversity or evenness is supposed to increase with so-

called regressive transfers. In the next section, I introduce

a multivariate version of such transfers and state that D2

and H2 increase with them.

4. Multivariate orders of diversity and evenness

We first define a majorization order, relative dilation,

for comparisons of evenness. This order is also relevant

to diversity comparisons when the number of species does

not change. Afterwards, we define a concentration order
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for comparisons of diversity when the numbers of species

are different.

4.1 Multivariate dilations

Consider two communities P and Q which are charac-

terized by their sequences of share vectors p1,...,pS and

q1,...,qT, respectively. Note that the number of species, S,

in P may differ from the number of species, T, in Q. Com-

munity Q is said to be a relative dilation of P if there exist

numbers βik ≥ 0 such that

. (3)

For example, let

p1 = (0.6, 0.48), p2 = (0.4, 0.52), and

q1 = (0.3, 0.2), q2 = (0.5, 0.2), q3 = (0.1, 0.4),

q4 = (0.1, 0.2).

Then, using

β11= 0.0, β12 =0.5, β13 = 0.2, β14= 0.3,

β21 = 0.5, β22= 0.0, β23 = 0.3, β24= 0.2,

we see that Q is a relative dilation of P.

Relative dilation may be interpreted in a dynamic con-

text as follows: Community Q changes to community P

while each species i in P takes part (T/S)βik of the re-

sources from each species k in Q. As a simple special case,

let S=T and assume that all species do not change re-

sources except two species, say i=1 and 2. This means

that βik = 0 if i,k ∉ {1,2}. In this case species 1 obtains

some part β12 of the other species’ resource vector and

retains part β11 of its own, and so does species 2 vice

versa. The special case is called a simple regressive trans-

fer from Q to P. Any relative dilation with S=T can be

split into a reverse series of simple regressive transfers,

each from one single species to another. A general relative

dilation with S ≠ T differs from the previous by a rescal-

ing, which multiplies the Q-shares with the factor T/S. For

details, see Koshevoy and Mosler (1997).

Relative dilation induces a partial order between com-

munities. When there is only one resource, J=1, this order

is equivalent to the usual Lorenz order of T⋅q1,...,T⋅qT

over S⋅p1,...,S⋅pS. Multivariate relative dilation implies

relative dilation in every single dimension.

Increasingness with respect to a simple regressive

transfer is a postulate for any index of evenness as well as

diversity:

• Regressive Transfer: The index increases if two spe-

cies exchange parts of their resources.

Proposition 3: The multivariate Gini-Simpson index de-

creases with relative dilations. In particular, it satisfies

the postulate of regressive transfer.

The proposition is proved by standard majorization argu-

ments (e.g., Mosler 1994).

4.2 Multivariate concentration order

To introduce multivariate versions of the concentra-

tion curve and the concentration order, we first define a

concentration function c(z) with argument z in the J-vari-

ate cube,

where the minimum is taken over all θ1,...,θS with

for all j.

The graph of c(z) is a set in (J+1)-space. If J=2, then it is

named the concentration surface, in larger dimensions the

concentration hypersurface.

Let us explain the concentration hypersurface. For a

given vector of resource shares, z ∈ [0,1]
J
, determines the

minimum size of an aggregate species which uses these

shares or more. The aggregate species consists of portions

θi of each species i, and the sum of the portions is the size

of the aggregate species. Its minimum size defines the

value of the J-variate concentration function at z. Note

that in case J=1 the concentration hypersurface is just the

usual concentration curve (Figure 1).

To compare two communities with respect to their di-

versity, their concentration functions may be employed.

If one concentration function is smaller than the other at

every argument z, the concentration hypersurfaces are or-

dered. We call this the multivariate concentration order.

It can be proved that relative dilation with equal spe-

cies number implies concentration order: If S=T and Q is

a relative dilation of P then the concentration function of

Q is smaller than that of P. Moreover, it can be shown that

index D2 decreases with the concentration order:

Proposition 4: If S ≥ T and the concentration hypersur-

face of Q is below that of P, then the Gini-Simpson index

D2 of Q is smaller than that of P.
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4.3 A numerical example

Consider a community of S=8 species with shares in

two resource dimensions. Let the transpose of the 8 × 2
matrix of shares be given by

Figure 1 exhibits the concentration curve of the first di-

mension alone, and Figure 2 the concentration surface of

both dimensions. The figures are reproduced from

Koshevoy and Mosler (1999). Curves like these may also

be mentioned as diversity profiles; the term was proposed

by Patil and Taillie (1979).

4.4 A multivariate Rosenbluth diversity index

As in the univariate case the Rosenbluth diversity in-

dex is determined by the area below the concentration

curve, in dimension J ≥ 2, the same can be done with the

concentration hypersurface. Let G denote the volume be-

low the concentration hypersurface. A multivariate

Rosenbluth diversity index is defined by

Concerning diversity orderings there holds:

Proposition 5:

(i) The multivariate Rosenbluth diversity index B satisfies

the postulates of anonymity, scale invariance, and conti-

nuity. There holds always B ≥ 0. The maximum B =

(S - 1)/(S + 1) is achieved if and only if all share vectors

are identical, that is pi = (1/S,...,1/S) for all species i.

(ii) B decreases with the multivariate concentration order

and, if S=T, also with the relative dilation order.

Part (i) and monotonicity in the concentration order

are immediately seen from the definition. Many other

properties of the multivariate concentration order are

found in Koshevoy and Mosler (1999).

[ ]' . .

. .

. .

. .

. .

. .

. .

. .
pij = 0179 1519

0065 0877

0521 1715

0214 2809

1563 2348

0715 3155

1915 0238

1781 0384

B

G
J

J

G
J

J

=
−

+
+

+

1

1

.

Figure 1. The concentration curve for one dimension.

Figure 2. The

concentration

hypersurface for

two dimensions.
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5. A multivariate Gini ratio

To measure evenness in more than one dimen-

sion,various extensions of the usual Gini ratio are possi-

ble. Instead of defining a multivariate Gini ratio through

Equation (2) and the above multivariate Rosenbluth in-

dex, I introduce a notion which is easier to handle.

The multivariate Gini ratio is given by

with

being the Euclidean distance. Note that R reduces to the

usual Gini ratio when J=1.

Proposition 6:

(i) The multivariate Gini ratio R satisfies the postulates of

anonymity, scale invariance and continuity. There holds

always R ≥ 0. The minimum R=0 is achieved if and only

if all share vectors are identical.

(ii) R has the following ceteris paribus property: If we add

a (J+1)-th dimension in which the species do not differ,

the Gini ratio changes by a factor J/(J + 1) only.

(iii) R is strictly increasing with relative dilation.

Thus, as an index of evenness, the negative (or the re-

ciprocal) of the multivariate Gini ratio increases with the

reverse of a relative dilation. Part (i) of the proposition is

immediate from the definition; for (ii) and (iii) see

Koshevoy and Mosler (1997).

The question remains in which respect an index of

evenness like R differs from an index of diversity like D2

or B. Consider the following postulates:

• Replication invariance: The index remains un-

changed if the community is replicated to k ≥ 2 simi-

lar communities, that is, if each species i, which

holds a vector (pi1,...,piJ) of resource shares, is sub-

stituted by k different species each holding a vector

(pi1/k,...,piJ/k).

• Replication monotonicity: The index increases

strictly if the community is replicated to k≥2 similar

communitities.

• Cardinal replication monotonicity: The index in-

creases by a factor k if the community is replicated

to k ≥ 2 similar communities.

Proposition 7:

(i) R satisfies the postulate of replication invariance.

(ii) D2, H2 and B satisfy the postulate of replication mono-

tonicity.

(iii) H2 satisfies also the postulate of cardinal replication

monotonicity, but D2 and B do not.

The proposition is easily verified from the definitions.

Thus, the principal difference between diversity and

evenness is that a diversity index increases under replica-

tion, while an evenness index remains constant.

6. Concluding remarks

To compare the diversity and evenness of communi-

ties, I have presented several indices and orderings and

discussed their relations. Also, I introduced a new diver-

sity index, the multivariate Gini-Simpson index, and in-

vestigated some of its properties.

Throughout the paper, diversity and evenness have

been compared at given points in time or space. All meas-

ures presented here are local in the sense that no resource

gradients and no allocation of species in some niche hy-

perspace are considered. They are also static in the sense

that no evolution of diversity over time is modelled.

Several variants of the above multivariate indices

make sense. Other Gini-Simpson indices are obtained by

plugging other notions of multivariate variance into

Equation (1). In particular, the trace of the matrix Σ*
may

be used in place of the determinant; then a multivariate

Gini-Simpson index, , is obtained which neglects pos-

sible interactions between the dimensions. Note that a

properly transformed index, , can be additively

decomposed into the diversities of single dimensions.

Also, there are different ways to extend the Gini ratio

to several dimensions. As the univariate Gini ratio equals

twice the area between the Lorenz curve in two-space, a

J-variate Gini ratio has been defined as the volume of a

certain convex body in (J+1)-space (Mosler 1994,

Koshevoy and Mosler 1997); this Gini ratio has similar

properties as the above one but needs heavier computa-

tions. Also, distances other than the Euclidean may be

employed in the multivariate Gini ratio, e.g., with differ-

ent weights in the dimensions.

Multivariate entropy indices have been proposed and

investigated by Maasoumi (1986).
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