
Introduction

The degree of equality among species relative abun-

dances, called evenness, is a basic property of a biological

community. Measures of evenness summarize the distri-

bution of abundance among community species without

regard to species names or labels. Maximum evenness

(1.0) occurs for an equiprobable (i.e., uniform) species

distribution, and the more relative abundances differ

among the species the lower the evenness is. The concept

of evenness is closely related to that of species diversity.

It is generally agreed that diversity measures should com-

bine two components: species richness (the number of

species in the community, N) and evenness. High species

richness and high evenness jointly imply high diversity.

Several evenness indices have been proposed (Taillie

1979, Smith and Wilson 1996). However, none seems to

be generally preferred. Summarizing a large data set into

a few numbers generally results in some loss of informa-

tion. Therefore, some would argue that evenness indices

conceal more than they reveal (Rousseau et al. 1999).

However, ecological data are often multivariate of high

dimension so there is a need for summarization. Since dif-

ferent evenness measures are attempting to quantify the

same aspect of community structure, they can be expected

to have a high degree of intercorrelation. In this paper, we

analyze the mutual relatedness of seven standard even-

ness measures. Ideally, there is a small set of measures

that characterize different aspects of the distribution of

abundance among community species without being mu-

tually redundant (Riitters et al. 1995, Basak et al. 2000).

Therefore, the purpose of this study was to determine (i)

the number of independent aspects of community struc-

ture that are summarized by these seven evenness meas-

ures, and (ii) the indices which best quantify these inde-

pendent aspects of community structure.

Requirements for an ecologically meaningful

evenness measure

Many authors (Taillie 1979, Routledge 1983, Smith

and Wilson 1996) have proposed criteria that an index

should satisfy in order to qualify as a measure of even-

ness. An ecologically acceptable measure of evenness

should be reasonably simple to compute and applicable to

any community independently of the underlying species-

abundance distribution (Alatalo 1981, Lande 1996). Fur-

thermore, it should be well-defined mathematically in a

way to be really useful in ecological applications. The

foremost requirement for a meaningful evenness index is

that it must be independent of the number of species
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(Smith and Wilson 1996). This requirement is based on

the assumption that community diversity can be parti-

tioned into two components, species richness and even-

ness. If the separation is incomplete, so that evenness is

affected by the number of species, then differences in

evenness values could result from differences in the spe-

cies count rather than any fundamental difference in com-

munity organization (Sheldon 1969).

As a precise formulation for this notion of inde-

pendence of species richness, Hill (1973) proposed that

replication should not change the value of community

evenness. Consider an N-species community charac-

terized by the relative abundance vector p = (p1, p2,…, pN)

such that 0 ≤ pi ≤ 1 and Σpi = 1. It seems reasonable that

replicating the N-species sequence n-times (and renor-

malizing) should multiply richness by n but leave even-

ness unchanged. Notice that this replication property is

part of Taillie’s (1979) more general requirement that an

evenness index maintains the natural ordering introduced

by the Lorenz curves used by economists to compare

wealth distributions.

The Lorenz curve is obtained by plotting the cumula-

tive species relative abundances as abscissa against corre-

sponding cumulative proportions of species as ordinates.

Arrange the components of the species relative abun-

dance vector p of a given community in descending order

so that the ranked abundance vector p# =

is obtained, where

The Lorenz curve is then defined as the polygonal path

joining the successive points: π0 = (0, 0), π1 = (p1
#
, 1/N),

π2 = (p1
#
+p2

#
, 2/N),…, πN = (p1

#
+p2

#
+... + pN

#
, N/N ) ≡

(1, 1) (Figure 1). The resulting diagram is similar to the

intrinsic diversity profile proposed by Patil and Taillie

(1979, 1982) for defining the concept of intrinsic diversity

order: both use as abscissa the cumulative species relative

abundances. However, the intrinsic diversity profile uses

as ordinate the cumulative number of species, whereas the

Lorenz curve uses as ordinate the cumulative proportion

of species. Patil and Taillie (1979, 1982) defined commu-

nity A to be intrinsically more diverse than community B

without reference to indices, provided B leads to A by a

finite sequence of forward transfers of abundance (for

mathematical details, see Patil and Taillie 1979, 1982).

Following this definition, the hypothetical community A

is intrinsically more diverse than community B if and only

if community A has its intrinsic diversity profile every-

where above that of community B. Notice that the order-

ing is only partial in that two communities need not be

intrinsically comparable. In this latter case, the intrinsic

diversity profiles of both communities cross one another.

Similarly, community A is intrinsically more even than

community B if and only if community A has its Lorenz

curve everywhere above that of community B. Conse-

quently, a measure of evenness E that is invariant under

species replication maintains the Lorenz ordering pro-

vided that E is consistent with the intrinsic diversity or-

dering when restricted to communities with the same

number of species (Taillie 1979). For instance, when di-

versity comparisons are restricted to communities with

the same number of species, since there is no fundamental

difference between diversity and evenness when species

richness is held constant, the intrinsic diversity ordering

is identical to the corresponding Lorenz ordering.

Index selection

We consider seven standard evenness indices that are

consistent with the Lorenz ordering. These indices in-

clude:

( , ,..., )# # #p p pN1 2 p p pN1 2
# # #.... .≤ ≤ ≤

Figure 1. Lorenz curve for

an artificial five-species

community with relative

abundances 0.40, 0.25, 0.20,

0.10, 0.05. Dotted line re-

presents the Lorenz curve

for a perfect even commu-

nity, i.e., for a community

where pi = pj for all species

pairs i, j = 1, 2,…, N.
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The index of Bulla (1994):

(1)

The Gini index, i.e., twice the area under the Lorenz

curve (Taillie 1979):

(2)

where i
#

denotes the rank of the i-th species within the

ranked abundance vector p
#
. Notice that I is related to

Camargo’s (1992) dominance index d′ by the simple rela-

tion I = 1 – d′, where

and pi
#

and pj
#

are the ranked relative abundances of the

i-th and j-th species, respectively so that, i
#

> j
#
.

Two indices proposed by Taillie (1979):

GM/AM (3)

and

HM/AM (4)

where AM, GM and HM are the algebraic mean, the geo-

metric mean and the harmonic mean of the species abun-

dances, respectively.

Three moments of Hill’s (1973) parametric evenness fam-

ily

where α is a parameter that ranges between 0 and ∞ (Tail-

lie 1979, Ricotta and Avena 2000):

E1,0 = (exp H)N
-1

(5)

where H is Shannon’s entropy

E2,0 = D
-1

N
-1

(6)

where D is Simpson’s dominance index , and

E∞,0 = pmax
�1

N
-1

(7)

where pmax is the proportional abundance of the most fre-

quent species.

Methods and results

In spring 1998 and 1999, 65 square sample plots 2 m

x 2 m in size were randomly selected to sample the vege-

tation that colonize the archaeological sites of Paestum

and Venosa (southern Italy). Each plot was subdivided

into 10 by 10 subunits. For each plot, presence/absence of

all vascular plants in each of the 100 subunits was re-

corded. The number of species per sample plot varied

from 8 to 22. The complete data are available from the

authors upon request. Vegetation cover values within

each sample plot was first normalized to sum to unity.

Next, the selected evenness measures O, I, GM/AM,

HM/AM, E1,0, E2,0 and E∞,0 were computed for each of

the 65 sample plots.

Simple summary statistics for the selected evenness

measures are shown in Table 1. The correlation coeffi-

cients of all pairs among the 7 measures are displayed in

the triangular matrix of Table 2.

Peet (1974) and Magurran (1988) distinguished two

groups of diversity and evenness indices. Type I indices

are most sensitive to the relative abundances of rare spe-

cies, while Type II indices are most affected by changes

in the abundance of the dominant species. Within this

framework, in Table 2, all genuine Type I measures (e.g.,

O, I, GM/AM and E1,0) form a group where all within-

group coefficient of correlations are larger than 0.9. Con-

versely, the remaining measures HM/AM, E2,0 and E∞,0

reflect dominance to varying degrees and show lower

pairwise coefficients of correlation. For instance, while

E∞,0 is clearly related to the abundance of the commonest

community species, HM/AM and E2,0 may be considered

as ‘hybrid’ indices with intermediate characteristics be-

tween Type I and Type II measures.

The intrinsic dimensionality of the selected evenness

measures was further assessed using standardized princi-

pal component analysis (PCA) available through the

SYN-TAX 5.02 package (Podani 1993).

The component scores of each evenness measure

(i.e., correlations with axes) for the first two principal

components are represented in Figure 2. These two com-
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Table 1. Summary statistics for the selected evenness

measures. Std. Dev. = standard deviation; CV = coefficient

of variation.

Mean     Std. Dev.     CV
O        0.537     0.089       0.167
I        0.425     0.091       0.215
GM/AM    0.507     0.117       0.231
HM/AM    0.311     0.104       0.335
E1,0 0.529     0.114       0.215
E2,0 0.368     0.107       0.290
E∞,0 0.205     0.064       0.311
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ponents together explained 96.4% of total variance, the

eigenvalues being 5.98 and 0.78 (85.3% and 11.1%, re-

spectively). There is a rule of thumb suggesting that those

principal components are retained in standardized PCA

whose associated eigenvalues are greater than one (Riit-

ters et al. 1995), i.e., components with lower variance than

the variance of the original variables are omitted. The first

principal component met this criterion, whereas the sec-

ond was retained because it appeared to be uniquely and

strongly associated with E∞,0 (see Figure 2) confirming

the different behavior of this Type II index with respect to

all others. In other words, due to the very high redundancy

among the selected evenness measures, the original data

set may be summarized in a simpler way by the first two

principal components.

Discussion

To facilitate comparisons among different communi-

ties, it is worth considering a choice of single evenness

measures that could be used as surrogates of the first two

principal components (Riitters et al. 1995). This is a

somewhat arbitrary decision, but there are some guide-

lines that may facilitate the choice. A first simple rule is

to choose the measures with the highest score on each

principal component.

Due to the high redundancy among the indices ana-

lyzed, the scores of each measure of evenness on the first

principal component are generally very high. As shown in

Figure 2, E1,0 is the measure with the highest loading on

the first principal component, followed by the Gini index

I. As mentioned above, the second principal component is

strongly associated only with the E∞,0 index. Therefore,

it seems reasonable to interpret the second principal com-

ponent as representing changes in the abundance of the

dominant community species.

However, there are also different criteria for selecting

the most suitable measure to be used as a surrogate of the

first principal component. For example, as suggested by

Magurran (1988), an effective evenness measure must be

able to distinguish between communities with similar

species abundance structures. The index effectiveness

will therefore depend on the range of values it takes over

the communities of interest. In this view, as shown in Ta-

ble 1, HM/AM is the measure with the highest coefficient

of variation (CV = 0.335).

One additional criterion proposed by He and Orlóci

(1993) is that the selected evenness measure be interpret-

able in information-theoretical terms. In this view, the

evenness measures derived from Hill’s (1973) general-

ized evenness family Eα,0 are monotone transformation

of Rényi’s (1970) measure of divergence

Table 2. Pairwise correlation coefficients among the selected evenness measures (n = 65).

O       I      GM/AM    HM/AM     E1,0 E2,0 E∞,0

O       1.000   0.965  0.962    0.837     0.954    0.844    0.557
I               1.000  0.979    0.889     0.971    0.885    0.657
GM/AM                  1.000    0.937     0.953    0.834    0.567
HM/AM                           1.000     0.818    0.671    0.419
E1,0 1.000    0.954    0.725
E2,0 1.000    0.862
E∞,0 1.000

Figure 2. Principal components

ordination of evenness measures

on the first two axes.
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(8)

where p = (p1, p2, …, pN) denotes an a priori (i.e., refer-

ence) relative abundance vector, and q = (q1, q2, …, qN)

the observed abundance vector. Hα(q||p) measures the in-

formation gain on p contained in the observation of q and

is defined only for pi > 0 (i = 1, 2,…, N) and if there is a

one-to-one correspondence between the elements of p

and q (Rényi 1970). For a perfectly even reference vector

p (i.e., if pi = pj for all species pairs i, j = 1, 2,…, N), Hill’s

(1973) parametric evenness Eα,0 is related to Hα(q||p) by

the simple expression (Ricotta and Avena, unpublished

data):

Hα(q||p) = -log Eα,0 (9)

Therefore, both measures E1,0 and E2,0might be adequate

surrogates of the first principal component within the con-

text of a general theoretical framework based on informa-

tion theory.

Finally, Molinari (1989) suggested that, in cases of

two-species assemblages, an ecologically acceptable

evenness index should keep a linear relationship between

minimum and maximum evenness. Allow that a given

evenness measure E ranges between zero when the even-

ness is minimum (i.e., if there is a species with propor-

tional abundance approaching 1, then the abundances of

all other species approach zero) and unity when evenness

is maximum. For a community composed of two species,

we would assign an evenness value close to zero to the

case where pi → 0 and pj → 1. Conversely, we would as-

sign an evenness value of 1.0 to the case where pi = pj =

0.5. For an ideal evenness measure sensu Molinari (1989),

because the pi = 0.25; pj = 0.75 case is the intermediate

between the extreme cases pi → 0; pj → 1, and pi = pj =

0.5, we can assign it the intermediate evenness value of

0.5. In the same manner, by averaging the pi = 0.25; pj =

0.75 and the pi = pj = 0.5 cases, we obtain the relative

abundances pi = (0.25 + 0.5)/2 = 0.375 and pj = (0.75 +

0.5)/2 = 0.625 to which we can assign the evenness value

0.75. Iterating this procedure, we can assign evenness val-

ues to all possible cases of two-species communities. It is

worth noticing that if the values obtained by this proce-

dure are plotted against the relative abundance pi, the out-

come is a straight line (Figure 3). In this way, since we

may know a priori the evenness values obtained from any

community composed of two species, we can use two-

species communities to evaluate the performance of any

evenness measure intended to be applied to species-rich

communities. For instance, if we compare two multi-spe-

cies communities using an evenness index with an ideal

Molinari shape (i.e., with a linear response ranging from

minimum evenness up to unity), it can be argued that,

since the index keeps a linear relationship to evenness, the

differences obtained in the resulting values are due to ac-

tual differences in community organization, rather than to

index values bearing a non-linear relationship to evenness

(Molinari 1989). Among the selected evenness measures,

only the index of Bulla O and the Gini index I display a

linear Molinari shape (Smith and Wilson 1996).

However, it is easily shown that in the most extreme

case of a dominant species whose proportional abundance

is very close to one, the minimum value assumed by both

O and I approaches 1/N. Therefore, both indices lack the

desirable property of varying between zero and one. In

particular, for a two-species community, Omin= Imin= 0.5.

This shortcoming obviously cannot be solved by simple

index normalization. For instance, the resulting normal-

ized evenness index En = (E – 1/N)/(1 – 1/N) is not invari-

ant under species replication violating the foremost re-

quirement for an ecologically meaningful evenness index.

Conclusion

We tested here the mutual relatedness of seven stand-

ard measures of evenness. Principal component analysis

H
q

p

i

ii

N

α

α

αα
( || ) logq p =

− −
=
∑

1

1 1
1

Figure 3. Evenness values for

all possible abundance rela-

tionships in two-species com-

munities for an ideal evenness

measure sensu Molinari

(1989).
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was used to identify two individual components that rep-

resent the most important aspects of the distribution of

abundance among community species. We further sug-

gest that these two principal components can be repre-

sented in a simpler way by two evenness measures. The

second principal component is clearly associated to

changes in the abundance of the dominant species and can

be best represented by E∞,0. Conversely, regarding the

first principal component, the choice depends to some ex-

tent on the user’s requirements: if a linear Molinari shape

is important, the Gini index is the most adequate choice

due to its higher coefficient of variation with respect to the

index of Bulla (see Table 1). If the Molinari shape is not

important, due to its direct interpretation in information

theoretical terms, our recommendation for surrogating the

first principal component is E1,0.
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