
Introduction

Avian community structure often is characterized by

examining a set of resource dimensions (e.g., diet, forag-

ing behavior, or microhabitat selection) and calculating

the degree of overlap between species pairs. However, an

analysis of functional feeding morphology may present

an alternate approach to community structure (Keast

1972, Hespenheide 1973, Karr and James 1975, Abbott et

al. 1977, Ricklefs and Cox 1977, Feinsinger et al. 1979,

Gatz 1979, Grant and Grant 1980, Ricklefs and Travis

1980, Ricklefs et al. 1981, Simberloff and Boecklen 1981,

Wiens and Rotenberry 1981, James 1982, Leisler and

Thaler, 1982, Rosenberg et al. 1982, Pöysä 1983, Grant

and Schluter 1984, Miles and Ricklefs 1984, Schluter and

Grant 1984, Schoener 1986a). In particular, morphologi-

cal traits may serve as ‘indicators’ of resource utilization

(Roughgarden 1974, Schoener 1974, 1986b, Benkman

1993, Moreno and Carrascal 1993, Koehl 1996). Hence,

an overall morphological index may reflect overall re-

source utilization of individual species (Rothstein 1973,

Grant et al. 1976, Grant and Price 1981, Feinsinger and

Swarm 1982). Owing to apparent seasonal variability in

competition and community structure (Fretwell 1972,

Pöysä 1986ab, DuBowy 1987, 1988, 1991, Green 1998,

but see Nudds 1983, Nudds and Bowlby 1984, Bethke

1991, Nudds et al. 1994), I would expect that overlap in

morphological space should be more closely related with

overlap in ecological space during ‘lean’ seasons, as this

would be the time of year when morphology should be

more selected to reduce interspecific competition.

Intrapopulation variation in feeding ecology or mor-

phology may be due to the intensity of interspecific com-

petition that each population experiences. Roughgarden

(1974) generated three predictions regarding how compe-

tition might affect niche width (equal to the sum of ‘be-

tween-phenotype’ and ‘within-phenotype’ components

where ‘between-phenotype’ component (BPC) is defined

as the variance of the frequency distribution for the differ-
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ent individual averages in the population, and the ‘within-

phenotype’ component (WPC) is the average variance of

each individual’s utilization function). First, with con-

stant species diversity but decreasing environmental pro-

ductivity, total niche width and BPC should decrease.

That is, as the range of resources available to all species

decreases, the range of resources utilized by each species

also decreases. Second, with fixed environmental produc-

tivity but decreasing number of competing species, total

niche width and BPC should increase. As the number of

competing species decreases, the range of resources util-

ized by each species should increase. Finally, with de-

creases in both environmental productivity and species

diversity, total niche width should remain constant, while

BPC should decrease. This prediction, mathematically

formulated in Roughgarden (1974), implies that produc-

tivity is more important than the number of competing

species in determining BPC; specifically, morphological

variation should correlate more strongly with environ-

mental productivity than species diversity. Niche width

and morphological variation should decrease with de-

creasing environmental productivity or increasing num-

bers of competing species.

To test the first set of predictions, this research exam-

ines the morphological correlates of community structure

in a guild of shallow-water foraging waterfowl (Anas

spp.). Seven congeneric species, Mallard (A. platyrhyn-

chos), Northern Pintail (A. acuta), American Wigeon (A.

americana), Gadwall (A. strepera), Northern Shoveler (A.

clypeata), Cinnamon Teal (A. cyanoptera), and Green-

winged Teal (A. crecca) co-occur during the winter in the

Central Valley of California, USA. These seven species

also co-occur during the breeding season in North Amer-

ica, except that Cinnamon Teal is replaced east of the

Rocky Mountains by Blue-winged Teal (A. discors), a

closely-related ecological equivalent. This guild was used

to examine relationships between morphology and com-

munity structure and between morphological variability

and ecological variability. Pöysä (1983) examined six

congeneric European species (including four species also

found in North America) and found that whereas neck

length may influence water depth favored by each spe-

cies, bill morphology may influence differences in diet

among species foraging at the same depth. Nudds and

Bowlby (1984) and Nudds et al. (1994) attempted to cor-

relate bill morphology with foraging ecology, while

Nudds and Kaminski (1984) attempted to correlate sexual

size dimorphism with resource partitioning in this same

guild. All of these studies found few significant correla-

tions, perhaps because they examined community struc-

ture during summer when resources are abundant and

there is little evidence of interspecific competition

(Nudds 1983; DuBowy 1987, 1988; but see Bethke 1991

for alternative viewpoint). I would expect that feeding

morphology should be more closely correlated with food-

resource overlap during winter, because species should

partition food resources during ecological ‘crunches.’

Additionally, North American mallards (here I use a

lower case “m” to designate an ecological type rather than

a particular species) exhibit geographical and ecological

replacement and provide a useful group with which to test

Roughgarden’s (1974) predictions of the role that inter-

specific competition plays in determining intraspecific

variation. Currently, the taxonomic status of this group is

in question (American Ornithologists’ Union 1983, Ank-

ney et al. 1986), and I use trinomials where necessary to

differentiate among populations (Bellrose 1976, Palmer

1976). The common Mallard (A. platyrhynchos platyr-

hynchos) is found throughout most of North America, es-

pecially west of the Appalachian Mountains. However,

on the East and Gulf Coasts of North America the Mallard

is replaced by other populations. In Greenland the Mal-

lard is replaced by Greenland Mallard (A. platyrhynchos

conboschas) which looks similar to the nominative Mal-

lard. Other geographical and ecological replacements are

dusky, monochromatic forms. Along the Atlantic Coast

from the Maritime provinces to Georgia, Mallard is re-

placed by Black Duck (A. rubripes). In southern Florida

and along the Gulf Coast Mallard is replaced by Florida

Duck (A. fulvigula fulvigula) (Florida) and Mottled Duck

(A. fulvigula maculosa) (Louisiana and Texas), respec-

tively. In the highlands of central Mexico (and formerly

north to New Mexico and Arizona) Mallard is replaced by

Mexican Duck (A. platyrhynchos diazi). The number of

potentially competing congeneric species which co-occur

during winter with these forms varies roughly in a north-

south direction (Table 1). Moreover, environmental pro-

ductivity of these winter areas varies on a north-south gra-

dient as well. Consequently, some mallards winter in very

productive areas with few competing species, other mal-

lards winter in productive areas with many competing

species, and still other mallards winter in less productive

areas with few competing species. These gradients in en-

vironmental productivity and numbers of syntopic spe-

cies permit testing of Roughgarden’s (1974) predictions.

These predictions for North American mallards are sum-

marized in Table 1 and are as follows: Florida (fulvigula)

Ducks should show the greatest degree of morphological

variation and largest niche width as they winter in highly

productive areas with few potentially competing species.

Mottled Ducks (maculosa) also winter in very productive

areas, but six congeneric species co-occur during winter.

Consequently, morphological variation and niche width

are predicted to decrease (prediction 2, above). Con-
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versely, Black (rubripes) and Mexican (diazi) Ducks both

also winter in areas with few competing species, but en-

vironmental productivity in these areas during winter also

is reduced. Consequently, morphological variation and

niche width again are predicted to decrease (prediction 1,

above). Further north, Greenland Mallards (conboschas)

winter in environmentally poor areas with virtually no

other congeneric species. Polymorphism should further

decrease, while niche width should not decrease further

(prediction 3, above).

Methods

Specimens were measured at the Museum of Verte-

brate Zoology, University of California, Berkeley, the

Academy of Natural Sciences of Philadelphia, the Ameri-

can Museum of Natural History (New York), the National

Museum of Natural History (Washington, D.C.), and the

Reading Public Museum (Reading, Pennsylvania). I

tested relationships between morphological variation and

resource utilization or community structure by examining

museum specimens of the representative species and gen-

erating an index of morphological space by collecting

data on a series of morphological parameters concerned

with foraging - bill length, culmen length, bill width, bill

perimeter, number of lamellae, nail width, hind toe

length, and tarsal length (index of body size). I also de-

rived an index of interlamellar spacing by dividing pe-

rimeter by number of lamellae. For the waterfowl com-

munity structure study I used only birds collected during

winter in the Central Valley of California. For the mallard

study, I divided Black Ducks into two populations, a

northern population, individuals of which were collected

in New England or the maritime provinces of Canada, and

a southern population, individuals of which were col-

Table 1. Predictions of morphological variation in North American mallards (based on Roughgarden 1974).

a

Numbers for species diversity refer to the number of congeneric species which commonly and occasionally winter with these
species, respectively.

b

Arrows indicate direction of decreasing morphological variation or niche width.
c

Black Ducks winter along
the east coast of the United States where winter conditions and productivity vary, with typically harsh winters in the northern part of
the range (Canada and New England), and milder conditions along the southern portion of the range (Chesapeake Bay and
Carolinas).
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lected in the Carolinas, because environmental conditions

are not uniform throughout the winter range of Black

Ducks; northern populations usually experience much

harsher conditions (D. Jorde, pers. comm.). Most museum

specimens were collected during the early part of the 20
th

century before extensive hybridization between forms oc-

curred (Palmer 1976). Consequently, introgression is not

a cause of morphological variation either within or among

populations (museum specimens) and can be ignored in

this study.

Variation within species was measured by calculating

the morphological variance of all normalized (log-trans-

formed) morphological variables. Before calculating

variances, each log-transformed variable was transformed

further by subtracting the mean value for that variable

from each value of that variable. This caused the mean

values of each transformed parameter to equal zero, and

any differences in total variance among species would be

due to real variation and not due to different scalings of

each population. The variances of each parameter were

summed to give a total morphological variance for the

population, and this total variance is equal to the sum of

the eigenvalues of the principal components matrix (Pi-

mentel 1979).

For the waterfowl community study, overlap or simi-

larity between species pairs was measured by means of

Principal Component Analysis (PCA) and by calculating

mean nearest neighbor distances (Ricklefs and Travis

1980). PCA of the above-measured morphological pa-

rameters yielded an index of the size of the morphological

space occupied by the entire set of species, while mean

nearest neighbor distances gave a measure of density of

species packing. The latter measurements then were com-

pared to seasonal resource utilization indices to test if spe-

cies packing in morphological space is correlated with

species packing in ecological space. Specifically, species-

pair overlaps in ecological space were plotted against

overlap in morphological space. Ecological overlap val-

ues (Dij) for species pairs were taken from DuBowy

(1987, 1988), whereas morphological similarity values

were calculated by using the formula from Ricklefs and

Travis (1980):

dij = [Σ(Xik - Xjk)
2
]
1/2

where dij is the Euclidean morphological distance be-

tween species pairs, and Xik and Xjk are the mean values

of the logarithms of morphological parameter k for spe-

cies i and j, respectively. For the mallard study, stepwise

discriminant analyses were performed to differentiate

among populations. Additionally, total morphological

variance for each population was calculated as described

above.

Results

Waterfowl community structure

Based on morphological parameters, the seven Anas

species which occur syntopically during winter exhibit

striking differences from one another (Table 2, Fig. 1).

PCA reveals a central cluster of three species (Cinnamon

Teal, Northern Pintail, and Gadwall) with more ‘typical’

bill morphologies surrounded by four ‘peripheral’ species

(Green-winged Teal, Northern Shoveler, Mallard, and

American Wigeon). The component loadings (both unro-

tated and rotated) indicate that component 1 comprises

mainly culmen length, bill width, perimeter length, and

number of lamellae, while component 2 comprises mainly

nail width and interlamellar spacing (Table 3). These two

components account for 94.8% of the variance among

species. Northern Shovelers have widened, elongated

bills with small interlammelar spacings. Conversely,

American Wigeon have short, stubby bills with moderate

interlamellar spacings, and Mallards have moderately-

sized bills with wide interlamellar spacings. Total vari-

ance within species also shows an interesting trend.

Northern Shoveler, the most specialized forager, has the

lowest total variance for males and a close second for fe-

males (Table 2). Conversely, Green-winged Teal, one of

the more generalized species, has the highest total vari-

ance for males and females.

Examination of the ecological overlap values

(DuBowy 1987, 1988) of nearest neighbors in morpho-

logical space yields surprising results. Six of the seven

overlap values for nearest morphological neighbors have

six of the eight highest values for food overlap during

winter (Fig. 1, see also DuBowy 1988). The lone excep-

tion is Northern Shoveler which has the greatest nearest

neighbor distance and which during winter does not show

a high overlap value with any other species (DuBowy

1988, 1996). The three core species also show high eco-

logical overlap values among each other.

When ecological overlap (determined by overlap in

food items) is plotted against morphological distance by

season, several seasonal differences are apparent (Fig.

2a,b). During summer some species pairs exhibit high

overlaps for food items (Dij = 0.3 - 0.5), even though they

are morphologically dissimilar (dij = 1.6 - 2.0). However,

this pattern is not found in winter. During winter, species

pairs which are morphologically dissimilar show low

overlap values for food items (Dij = 0.02 - 0.2). Addition-

ally, the entire winter plot lies closer to the abscissa (i.e.,
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the plot appears ‘compressed’), due to the fact that virtu-

ally all food overlap values between species pairs de-

crease in winter. The slopes of the linear regressions

through the summer and winter points are almost equal,

with a lower y-intercept in winter, implying a similar mor-

phology/ecology relationship during both seasons. How-

ever, the product-moment correlation coefficient for sum-

mer is better (rs = -0.887) than the corresponding

correlation coefficient for winter (rw = -0.301), implying

a closer fit between morphology and ecology during sum-

mer.

Statistical tests on the correlation between overlap in

feeding morphology and food types were conducted using

Monte Carlo techniques. Simple linear regression statis-

tics were not appropriate due to the nonindependence of

pairwise points. Instead, the summer and winter values for

food overlap (Fig. 2) were randomly interchanged. Be-

cause morphology did not change between seasons, the

only variant between seasons was overlap in food types.

Product-moment correlation coefficients were calculated

on the hypothetical (randomized) summer and winter

Table 2. Means of variables and total variance for wintering ducks.

a

Species: MALL = Mallard, PINT = Northern Pintail, GADW = Gadwall, WIGN = American Wigeon, SHOV = Northern Shoveler,
CNTL = Cinnamon Teal, GWTL = Green-winged Teal.

b

Total variance is the sum of the variances for each character.

Figure 1. Principal components analysis of bill morpholo-

gies of co-occurring dabbling ducks. C = Cinnamon Teal;

D = Gadwall; G = Green-winged Teal; M = Mallard; P =

Northern Pintail; S = Northern Shoveler; W = American

Wigeon.
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Table 3. Component loadings for bill morphology of wintering waterfowl.

Figure 2. Ecological (food) overlap plotted against morphological distance for all species pairs during summer (a) and win-

ter (b).

a b
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communities. The exact probability of the statistical sig-

nificance of the winter versus summer relationship was

calculated as the number of iterations in which the differ-

ence between the product-moment correlation coefficient

for the hypothetical winter community and the corre-

sponding summer correlation coefficient was less than or

equal to 0.586 (rw - rs), divided by the number of total

hypothetical relationships constructed (number of itera-

tions of the model = 100,000). Concurrently, the actual

summer and winter points (Fig. 2) were tested to see if the

product-moment correlation coefficients differed signifi-

cantly from random. The product-moment correlation co-

efficient of each hypothetical summer or winter commu-

nity was compared to the correlation coefficients of the

actual summer (rs = -0.887) and winter (rw = -0.301) rela-

tionships. The exact probabilities of the significance of

the correlation coefficients for winter and summer were

calculated as the number of random relationships with

product-moment correlation coefficients more negative

(i.e., smaller) than the corresponding actual correlation

coefficients divided by the total number of correlation co-

efficients generated (total iterations = 100,000). Of the

three correlation-coefficient statistics generated, the only

one which was statistically significant was whether the

summer morphology/food plot was statistically different

than random (p = 0.0015). The difference between winter

and summer correlation coefficients was non-significant

(p = 0.3555), while in the case of the winter plot, the prob-

ability was also non-significant (p = 0.9517), owing pri-

marily to the scatter of points at the low end of the graph

(i.e., near the origin). The product-moment correlation co-

efficient for the winter relationship being less significant

than that for summer implies that species with similar bill

morphologies ‘overcompensate’ and reduce their food

overlap more than would be expected based solely on dif-

ferences in bill morphology, perhaps by employing other

mechanisms (e.g., foraging behavior, habitat segregation)

to reduce overlap in food items taken by each species.

Intraspecific variation in North American mallards

Based on stepwise discriminant analysis, North

American mallards exhibit typical trends in bill morphol-

ogy (Fig. 3). Based on the mean values for the group cen-

troids, bills of males are larger than females (canonical

variable 1) and both sexes (especially females) exhibit

Bergmann’s rule, i.e., increasing bill size with increasing

latitude (from Mexican and Mottled Duck to Greenland

Mallards) (canonical variable 2). Bill size is roughly cor-

related with body size in Anas (in fact, bill size is occa-

sionally used as a measure of body size), so the bills of

these birds agree with Bergmann’s rule, rather than con-

tradict Allen’s rule of decreasing appendage size with in-

creasing latitude. However, an examination of means and

variances for various morphological characteristics (Ta-

ble 4) does not show much agreement with Roughgar-

den’s (1974) predictions (Table 1). In females, the highest

population variance is found in Florida Ducks, as pre-

dicted, and variance decreases both towards Mottled

Ducks and towards Greenland Mallards, although not in

a uniform progression. In males, the predicted trend is not

discernible; if anything the trend is reversed, with vari-

ance increasing going both towards Mottled Ducks and

Greenland Mallards.

Discussion

Differences in bill morphology among closely related

waterfowl species and concomitant differences in forag-

ing and food items have been known for years (Lack

1974, Pöysä 1983). However, these differences have

never before been examined with regard to seasonal vari-

ation in waterfowl community structure. Because bill

morphology is an immutable characteristic once adult

size is attained (unlike seasonally variable internal or-

gans), an obvious question is what is the cost of a bill mor-

phology which might hinder foraging optimization during

‘fat’ seasons, i.e., times when foraging specialization is

not necessary and, indeed, may be counter productive.

The cost associated with the ‘wrong’ bill morphology

(perhaps expressed as an increase in capture or handling

Figure 3. Means of centroids from discriminant function

analysis of morphologies of North American mallards.

Males are designated by capital letters, females by lower-

case letters. Symbols: A, a = Greenland Mallard; B, b =

northern Black Duck; C, c = southern Black Duck; D, d =

Mexican Duck; E, e = Mottled Duck; F, f = Florida Duck.
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time/energy) is probably offset by a reduction in search

time by foraging on an abundant food type (DuBowy

1997). Conversely, foraging shifts by Anas species in the

presence or absence of potentially competing congeneric

species have been observed in Europe (Pöysä 1986ab,

Green 1998). The effects of a static bill morphology on

foraging shifts are not known.

Ricklefs and Travis (1980) attempted to correlate

morphological similarity and ecological overlap for 11

temperate-zone scrub communities described by Cody

(1974). Unfortunately, Cody (1974) did not tabulate or

categorize the feeding behaviors of these scrubland birds.

Consequently, Ricklefs and Travis (1980) were unable to

correlate morphology and feeding, but rather, were forced

to attempt to correlate morphology with overlap in habitat

distribution and vertical foraging height. Species pairs

widely dissimilar in morphology often had high ecologi-

cal overlap values. Miles and Ricklefs (1984) were able

to show a correlation between morphology and foraging,

but the relationships were between morphology and for-

aging behavior (attack mode, perch height, etc.) rather

than food type.

Table 4. Means of variables and total variance for North American mallards.

a

Black Ducks were divided into northern and southern populations (see Methods).
b

Morphological variation predictions based on
Table 1.

c

Total Variance is the sum of the variances for the listed characters.
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The mallard data, however, do not support Roughgar-

den’s (1974) predictions on population variation in re-

sponse to interspecific competition. Although the trend

roughly holds for females (Florida Ducks have the most

variability and variance decreases towards both Mottled

Ducks and Greenland Mallards), the trend does not hold

for males. In fact, for males the trend is nearly reversed.

This may be due to at least three factors. First, with de-

creasing available resources species ideally should con-

tract their resource utilization around some core of opti-

mally exploited resources. Roughgarden (1974) predicted

that productivity is more important than the number of

competing species in determining the BPC; specifically,

morphological variation should correlate more strongly

with environmental productivity than species diversity.

Such a contraction does not occur in North American mal-

lards during winter from south to north. Rather, northern

populations (Black Ducks and Greenland Mallards) are

utilizing resources not present (or available) in the diets

of southern forms (e.g., mollusks) (Palmer 1976). Second,

the catholic diet of mallards may preclude any attempt to

measure niche breadth as a function of resource produc-

tivity and interspecific competition. While environmental

productivity decreases during winter from south to north,

mallards shift their foraging to other more abundant re-

sources. This major shift in resource utilization and the

wide range of prey items taken might make mallards in-

appropriate for testing Roughgarden’s (1974) hypotheses.

Perhaps only species which have fairly narrow diets (e.g.,

insectivorous lizards) may be appropriate for testing.

Third, as with the community structure data, there may be

little correlation between morphology and winter ecol-

ogy. Species pairs (including a mallard form at each loca-

tion) may reduce overlap more than would be expected

based solely on bill morphology. If this were true, feeding

morphology within a population might vary inde-

pendently of interspecific competition or resource abun-

dance.

Typically, studies relate morphology to niches during

the breeding season (Ricklefs and Travis 1980, Miles and

Ricklefs 1984, Nudds and Bowlby 1984, Nudds and

Kaminski 1984, Nudds et al. 1994, but see Grant et al.

1976, Grant and Schluter 1984, Schluter and Grant 1984).

Alternatively, I propose that morphological correlations

with feeding ecology or community structure should also

be examined during the winter season (or other time of

year when resources are in short supply). During these pe-

riods interspecific competition may be intense, and reli-

ance on morphologically-mediated feeding strategies

which reduce this competition may be high. However, it

should also be noted that organisms have additional

mechanisms (such as foraging behavior or habitat selec-

tion) which further may reduce interspecific competition

for food resources. Consequently, species-pairs may have

lower food overlap than predicted by morphology alone,

as demonstrated in Figure 2. Although differences in bill

morphology may enhance resource partitioning during

‘fat’ times (Nudds and Bowlby 1984, Nudds et al. 1994),

I propose that interspecific differences in morphology

should be considered, in part, to also explain resource par-

titioning during ‘lean’ seasons. An integrated morpho-

logical/behavioral/ecological approach should be

adopted when attempting to discerne differences in com-

munity organization.
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