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Abstract

In this paper, we study graphs whose matching polynomial have only integer zeros. A graph
is matching integral if the zeros of its matching polynomial are all integers. We characterize
all matching integral traceable graphs. We show that apart from K7 \ (E(C3) ∪ E(C4)) there
is no connected k-regular matching integral graph if k ≥ 2. It is also shown that if G is a
graph with a perfect matching, then its matching polynomial has a zero in the interval (0, 1].
Finally, we describe all claw-free matching integral graphs.
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1 Introduction

All graphs we consider are finite, simple and undirected. Let G be a graph. We denote the edge
set and the vertex set of G by E(G) and V (G), respectively. By order and size of G, we mean
the number of vertices and the number of edges of G, respectively. The maximum degree of G is
denoted by ∆(G) (or by ∆ if G is clear from the context). The minimum degree of G is denoted
by δ(G). In this paper, we denote the complete graph, the path and the cycle of order n, by Kn,
Pn and Cn, respectively. The set of neighbors of a vertex v is denoted by N(v). A traceable graph,
is a graph with a Hamilton path. An r-matching in a graph G is a set of r pairwise non-incident
edges. The number of r-matchings in G is denoted by p(G, r). The matching polynomial of G is
defined by

µ(G, x) =

bn2 c∑
r=0

(−1)rp(G, r)xn−2r,

where n is the order of G and p(G, 0) is considered to be 1, see [7, 8, 9, 10, 11]. For instance the
matching polynomial of the following graph
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is µ(G, x) = x5−5x3 +4x. By the definition of µ(G, x), we conclude that every graph of odd order
has 0 as a matching root. Furthermore, if θ is a matching zero of a graph, then so is −θ. We call a
graph, matching integral if all zeros of its matching polynomial are integers. A graph is said to be
integral if eigenvalues of its adjacency matrix consist entirely of integers. Since 1974, integral graphs
have been extensively studied by several authors, for instance see [2, 12]. It is worth mentioning
that if T is a tree, then its characteristic polynomial and its matching polynomial are the same,
see [6, Corollary 1.4, p.21]. Integral trees (so matching integral trees) have been investigated in [16].

In Section 2, we characterize all traceable graphs which are matching integral. In Section 3,
we study matching integral regular graphs and show that for k ≥ 2 there is only one connected
matching integral k-regular graph, namely K7 \ (E(C3) ∪ E(C4)). In order to establish our results,
first we need the following theorems:

Theorem A. [13] For any graph G, the zeros of µ(G, x) are all real. If ∆ > 1, then the zeros lie
in the interval (−2

√
∆− 1, 2

√
∆− 1).

Remark 1. Let G be a graph. Theorem A implies that if
√

∆− 1 is not an integer, then µ(G, x)
contains at most 2b2

√
∆− 1c + 1 distinct integer zeros and if

√
∆− 1 is an integer, then µ(G, x)

has at most 4
√

∆− 1− 1 distinct integer zeros.

Theorem B. [6, Corollary 1.3, p.97] If G is a connected graph, then the largest zero of µ(G, x)
has multiplicity 1. In other words, it is a simple zero.

Let t(G) be the number of vertices of a longest path in the graph G.

Theorem C. [6, Theorem 4.5, p.107] (a) The maximum multiplicity of a zero of µ(G, x) is at
most equal to the number of vertex-disjoint paths required to cover G.
(b) The number of distinct zeros of µ(G, x) is at least t(G).
(c) In particular, if the graph G is traceable then all zeros of µ(G, x) is simple.

Theorem D. [6] If θ is a zero of µ(G, x) with multiplicity at least 2 then for any path P we have
that θ is a zero of µ(G\P, x), where G\P is the induced subgraph of G on the vertex set V (G)\V (P ).

Theorem D is not stated as a theorem in [6], but is used in the proof of Theorem 4.5 of Chapter
6 of [6]. Both Theorems C and D rely on the curious identity

µ′(G, x)2 − µ(G, x)µ′′(G, x) =
∑

µ(G \ P, x)2,

where the sum is taken over all paths of G. For instance, if θ is a zero of µ(G, x) with multiplicity
at least 2 then it is a zero of both µ(G, x) and µ′(G, x) so the left hand side is 0 at θ, but the right
hand side is only 0 if all terms are 0.

2 Matching Integral Traceable Graphs

In this section, we show that there are finitely many matching integral traceable graphs and
characterize all of them. In fact, we will characterize those graphs whose matching polynomial has
only simple integer zeros. By Theorem C we know that the matching polynomial of a traceable
graph has only simple zeros. Hence this way we characterize matching integral traceable graphs.

Theorem 2.1. Let G be a connected graph whose matching polynomial has only simple integer
zeros. Then G is one of the following graphs: K1, K2, K7 \ (E(C3) ∪ E(C4)), G1 or G2, where
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G1 : G2 :

In particular, this is the list of matching integral traceable graphs.

Proof. Let n and m be the order and the size of G, respectively. It is enough to prove the first
part of the theorem as the second part of the theorem indeed follows from the first one: since G
is traceable, by Theorem C, the zeros of µ(G, x) are all distinct. Now, in order to prove the first
part, we consider two cases:

Case 1. n = 2k, k ≥ 1. Since G has even order and all zeros are simple, every zero of µ(G, x) is
different from 0. Let θ1, . . . , θk be the positive zeros of µ(G, x). Hence

µ(G, x) =

k∏
i=1

(x2 − θ2i ) = x2k − (θ21 + · · ·+ θ2k)x2k−2 + · · ·+ (−1)kθ21 · · · θ2k.

We have

m =

k∑
i=1

θ2i ≥
k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
=

n

12

(n
2

+ 1
)

(n+ 1) .

Thus for n ≥ 8, m >
(
n
2

)
, a contradiction. Now, assume that n ≤ 6. We consider three cases:

Case 1.1. n = 2. Hence G = K2 and µ(G, x) has zeros −1,+1.

Case 1.2. n = 4. Since ∆ ≤ 3, Theorem A implies that the zeros of µ(G, x) lie in [−2, 2].
Hence µ(G, x) = (x2 − 1)(x2 − 4) = x4 − 5x2 + 4. Thus m = 5 and so G = K4 \ e, for some edge
e. But µ(K4 \ e, x) = x4 − 5x2 + 2, a contradiction.

Case 1.3. n = 6. Since ∆ ≤ 5, by Theorem A the zeros of µ(G, x) lie in [−3, 3]. There-
fore µ(G, x) = (x2 − 1)(x2 − 4)(x2 − 9). Hence m = 14 and G = K6 \ e, for some edge e. Now, by
[6, Theorem 1.1(b), p.2] we know that for any graph H and its edge e = (u, v) we have

µ(H,x) = µ(H \ e, x)− µ(H \ {u, v}, x).

Applying it to H = K6 and H \ e = G, H \ {u, v} = K4 we find that

µ(G, x) = µ(K6, x) + µ(K4, x) = (x6 − 15x4 + 45x2 − 15) + (x4 − 6x2 + 3),

a contradiction.

Case 2. n = 2k + 1, k ≥ 0. Let 0, θ1, . . . , θk be the non-negative zeros of µ(G, x). Thus

µ(G, x) = x

k∏
i=1

(x2 − θ2i ) = x2k+1 − (θ21 + · · ·+ θ2k)x2k−1 + · · ·+ (−1)kθ21 · · · θ2k x.

It follows that

m =

k∑
i=1

θ2i ≥
k∑
i=1

i2 =
n(n2 − 1)

24
.

Hence for n ≥ 13, m >
(
n
2

)
, a contradiction. If n ≤ 3, then clearly G = K1. Now, we consider four

cases:
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Case 2.1. n = 5. Since ∆ ≤ 4, by Theorem A the zeros of µ(G, x) lie in [−3, 3]. Since
m = θ21 + θ22 ≤ 10, the positive zeros of µ(G, x) are either 1, 3 or 1, 2. In the first case,
µ(G, x) = x(x2 − 1)(x2 − 9). Hence m = 10 and so G = K5. Therefore, p(G, 2) = 5!

2!22 6= 9,
a contradiction. In the second case, µ(G, x) = x(x2− 1)(x2− 4). Hence m = 5 and p(G, 2) = 4. It
follows that G is one of the following graphs:

Case 2.2. n = 7. Since ∆ ≤ 6, Theorem A implies that the zeros of µ(G, x) lie in [−4, 4]. Since
m = θ21 + θ22 + θ23 ≤ 21, the positive zeros of µ(G, x) are either 1, 2, 3 or 1, 2, 4. In the first case,
µ(G, x) = x(x2−1)(x2−4)(x2−9). So m = 14, p(G, 2) = 49 and p(G, 3) = 36. On the other hand,
|E(K7\(E(C3)∪E(C4)))| = 14, p(K7\(E(C3)∪E(C4)), 2) = 49 and p(K7\(E(C3)∪E(C4)), 3) = 36.
Since K7 \(E(C3)∪E(C4)) is 4-regular, [6, Exercise 4, p.15] implies that G is 4-regular. Obviously,
there are two non-isomorphic 4-regular graphs of order 7, K7 \ E(C7) and K7 \ (E(C3) ∪ E(C4)).
Therefore G = K7 \ (E(C3) ∪ E(C4)).

In the second case, µ(G, x) = x(x2 − 1)(x2 − 4)(x2 − 16) and m = 21. Hence G = K7 and so
p(G, 3) = 7!

3!23 6= 64, a contradiction.

Case 2.3. n = 9. Since ∆ ≤ 8, by Theorem A the zeros of µ(G, x) lie in [−5, 5]. Note
that m = θ21 + θ22 + θ23 + θ24 ≤ 36, so the positive zeros of µ(G, x) should be 1, 2, 3, 4. Thus
µ(G, x) = x(x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16). Hence m = 30 and p(G, 2) = 273. Furthermore,

p(G, 2) =

(
30
2

)
−
∑9
i=1

(
di
2

)
, where d1, . . . , d9 is the degree sequence of G. So we have the

following:

9∑
i=1

di = 60, and

9∑
i=1

d2i = 384.

But this contradicts the Cauchy–Schwarz inequality:

602 =

(
9∑
i=1

1 · di

)2

≤

(
9∑
i=1

12

)(
9∑
i=1

d2i

)
= 9 · 384 < 602.

Case 2.4. n = 11. Since ∆ ≤ 10, by Theorem A the zeros of µ(G, x) lie in [−5, 5]. Thus
µ(G, x) = x(x2 − 1)(x2 − 4) · · · (x2 − 25). Hence m = 55 and so G = K11. Therefore p(G, 5) =
11!
5!25 6= 14400, a contradiction.

3 Matching Integral Regular Graphs

In this section, we study matching integral regular graphs. We show the following theorem.

Theorem 3.1. If G is a matching integral k-regular graph (k ≥ 2) then it is disjoint union of
K7 \ (E(C3) ∪ E(C4)).

Let G be a graph of order n. Recall that t(G) denotes the number of vertices of a longest path
in the graph G. By Theorem A all zeros of a matching integral k–regular graph lie in the interval
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(−2
√
k − 1, 2

√
k − 1) and so the number of distinct zeros is at most 2b2

√
k − 1c+1. By the second

claim of Theorem C this is an upper bound for t(G), hence

t(G) ≤ 2b2
√
k − 1c+ 1.

On the other hand, t(G) ≥ k + 1 for a k–regular graph simply by choosing the vertices of a path
greedily. This already gives that k ≤ 14. On the other hand one can improve on the bound
t(G) ≥ k+ 1. The following lemma is practically an immediate consequence of a theorem of Dirac.

Lemma 3.2. Let G be a k–regular connected graph on n vertices. Then

t(G) ≥ min(2k + 1, n).

Before we prove this lemma let us deduce the following corollary.

Lemma 3.3. Let G be a matching integral k–regular graph, where k ≥ 3. Then G is a disjoint
union of a few copies of K7 \ (E(C3) ∪ E(C4)).

Proof. We can assume that G is connected since the set of matching zeros of a graph is the union
of the set of matching zeros of the components of the graph. If t(G) = n, where n is the number
of vertices then G is traceable and so by Theorem 2.1 it is K7 \ (E(C3) ∪ E(C4)). If t(G) 6= n then
t(G) ≥ 2k + 1. Then

2k + 1 ≤ t(G) ≤ 2b2
√
k − 1c+ 1

implies that k ≤ 2 contradicting the condition k ≥ 3.

Next we prove Lemma 3.2. We will use the following theorem of Dirac.

Lemma 3.4 ([5]). Let c(G) be the longest cycle of a connected graph G on n vertices. Assume
that G is 2-connected and has minimum degree at least k. Then c(G) ≥ min(2k, n).

Proof of Lemma 3.2. If G is 2-connected then by Lemma 3.4 we have c(G) ≥ min(2k, n). If
c(G) = n then clearly t(G) = n. If c(G) ≥ 2k + 1 we are done again. If c(G) = 2k < n then by
connectedness of G there is a vertex v not in the cycle which is connected to some vertex of the
cycle, but then there is a path of length at least 2k + 1.

If G is not 2-connected then it contains a cut vertex v. From v let us build up two vertex
disjoint paths in two different components of G − v greedily. By concatenating the two paths we
get a path of length at least 2k + 1.

Finally for k = 2 the following lemma is an immediate consequence of Theorem 2.1.

Lemma 3.5. For every positive integer n, Cn is not matching integral.

4 Matching Integral Graphs with a Perfect Matching

In this section we study the zeros of a matching polynomial of a graph with a perfect matching.

Theorem 4.1. If a graph G has a perfect matching then its matching polynomial has a zero in
the interval (0, 1]. If it has no zero in the interval (0, 1) then it is the disjoint union of some K2.

Proof. Let G be a graph on 2n vertices. Since G has a perfect matching we have p(G,n) 6= 0,
consequently

µ(G, x) =

n∏
i=1

(x2 − θ2i ),
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where θi 6= 0. Then

p(G,n− 1)

p(G,n)
=

n∑
i=1

1

θ2i
.

Next we show that
p(G,n− 1)

p(G,n)
≥ n.

Indeed, every perfect matching contains exactly n matchings of size n− 1, and every matching of
size n− 1 can be extended to a perfect matching in at most 1 way. Hence

n ≤ p(G,n− 1)

p(G,n)
=

n∑
i=1

1

θ2i

implies that mini θ
2
i ≤ 1, and if mini θ

2
i = 1 then θ21 = · · · = θ2n = 1. Hence the graph has

θ21 + · · · + θ2n = n edges which form a perfect matching, i. e., G is the disjoint union of some
K2.

We offer one more theorem in the same spirit. Let

f(t) =

{
t+ 1 if t 6= 1,
3 if t = 1.

The proof of the following theorem is practically the same as the proof of Theorem 4.1. The only
extra observation one needs is that a graph on t + 2 vertices without a 2–matching contains at
most f(t) edges.

Theorem 4.2. Let G be a graph with at least one edge. Assume that the multiplicity of 0 as a
zero of the matching polynomial of the graph G is t. Then the interval (0,

√
f(t)] contains a zero

of the matching polynomial of G.

5 Matching Integral Claw-free Graphs

In this section we study matching integral claw-free graphs.

Theorem 5.1. Let G be a connected matching integral claw-free graph. Then G is one of K1,K2

or G2.

Note that from the list of traceable matching integral graphs G1 and K7 \ (E(C3) ∪ E(C4)) are
not claw-free.

The proof of Theorem 5.1 is quite long, and so we summarize here the plan of the proof. First
we show that a connected claw-free graph always contains a matching which avoids at most one
vertex, so if G has even order then it contains a perfect matching, and if it has odd order then
the largest matching avoids exactly one vertex. This settles the multiplicity of 0 as a zero of the
matching polynomial. If G contains a perfect matching then Theorem 4.1 already gives that G
is K2. Then just as in case of regular graphs we try to find long paths in the graph. We fix the
largest degree ∆ and as we gain more and more information about the length of the longest path
we exclude the possibility of more and more values of ∆. By the time we stuck with the ideas of
finding long paths we will have enough information about the structure of G so that we get many
information about the matching polynomial. This way we can shrink the set of possible matching
polynomials. Then we translate it back to structural information about the graph and we finish
the proof.
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Lemma 5.2. Let G be a connected claw-free graph. Then it contains a matching which avoids at
most one vertex.

Proof. This is a well-known statement which can be found in the book of J. Akiyama and M. Kano
[1]. See also [14, 15].

Next we start our hunting to long paths. Our main tool is the following lemma and its corollary.

Lemma 5.3. Let H be a graph such that H has largest independent set of size at most 2. Then H
has either a Hamiltonian cycle or there are two vertex-disjoint cliques in H covering all vertices
of H.

To prove Lemma 5.3 we will use the following theorem of Chvátal and Erdős [4]. It can also be
found in the book of Bondy and Murty [3] as Theorem 18.10.

Lemma 5.4 ([4]). Let G be a graph on at least 3 vertices. If, for some s, G is s-connected and
contains no independent set of more than s vertices, then G has a Hamiltonian cycle.

Proof of Lemma 5.3. Clearly, if G is 2-connected then with the choice of s = 2 Lemma 5.4 im-
mediately implies our statement. If G is not connected then it is easy to see that G must be the
union of two disjoint cliques. While, if G has a cut vertex v, then G− v must be the union of two
disjoint cliques and v must be adjacent to all elements of at least one of the cliques. So we are
done in this case too.

Lemma 5.5. (a) Let G be a connected claw-free graph with a vertex v of largest degree ∆. Then
for any u ∈ N(v) there is a path Pu starting at u which covers all vertices of N(v) ∪ {v}.
(b) We have t(G) ≥ ∆ + 1, and if V (G) 6= N(v) ∪ {v} then t(G) ≥ ∆ + 2.

Proof. Part (b) is an immediate consequence of part (a) since |N(v) ∪ {v}| = ∆ + 1, and if
G 6= N(v)∪ {v} then by the connectedness of G there is a w adjacent to some u ∈ N(v) so we can
extend Pu with w.

To prove part (a), let H be the graph induced by the neighbors of v. Then H has largest
independent set of size at most 2, otherwise there would be a claw in G with center v. Then by
the previous lemma H has either a Hamiltonian cycle or there are two vertex-disjoint cliques in
H covering all vertices of H. In both cases there is a path Pu starting at vertex u which covers
V (H) ∪ {v}.

After all this praparation we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. For a positive integer r let s(r) be the number of integers in the interval
(−2
√
r − 1, 2

√
r − 1). Clearly, this is 2b2

√
r − 1c+1 if r−1 is not a perfect square, and 4

√
r − 1−1

if r − 1 is a perfect square. So far we know that

∆ + 1 ≤ t(G) ≤ s(∆).

From this, it follows that 2 ≤ ∆ ≤ 14. Furthermore, if ∆ + 1 = s(∆) then t(G) = ∆ + 1 and then
G = N(v) ∪ {v}. In particular, it is traceable, but we already described all traceable claw-free
graphs: K1,K2 and G2 (and their largest degrees are 0, 1 and 3). The following table shows the
values of s(∆) and ∆ + 1. The case ∆ = 13 contradicts ∆ + 1 ≤ s(∆). This table also shows that
we can exclude the possibility of ∆ ∈ {2, 10, 12, 14}, because in these cases ∆ + 1 = s(∆).

r 2 3 4 5 6 7 8 9 10 11 12 13 14

2
√
r − 1 2 2.82 3.46 4 4.47 4.89 5.29 5.65 6 6.32 6.63 6.92 7.21
s(r) 3 5 7 7 9 9 11 11 11 13 13 13 15

s(r)− (r + 1) 0 1 2 1 2 1 2 1 0 1 0 -1 0
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Our next goal is to show that it is not possible that k(∆) = 1, and if k(∆) = 2 then the
multiplicity of some θi with |θi| > 1 is at most 1. Note that k(∆) = 1 if ∆ ∈ {3, 5, 7, 9, 11}, and
k(∆) = 2 if ∆ ∈ {4, 6, 8}.

Let k(r) = s(r) − (r + 1), it expresses how much longer the longest path can be than ∆ + 1
if r = ∆. As before let v be a vertex of degree ∆ and N(v) denotes its set of neighbors. We will
show that if k(∆) = 1 then G \ (N(v) ∪ {v}) is an empty graph on some vertices, and if k(∆) = 2
then G \ (N(v) ∪ {v}) is a union of K1 and K2.

For a vertex u ∈ N(v) let Gu be the graph obtained from G by deleting N(v) ∪ {v} except u.
Let Cu be the component of u in Gu. We show that if k(∆) = 1 then |Cu| ≤ 2, and if k(∆) = 2
then |Cu| ≤ 3. Let u1, . . . , ur be the neighbors of u in Cu. The vertices u1, . . . , ur have to form a
clique otherwise there would be a claw u, v, ui, uj with center u for some non-adjacent ui and uj .
This means that we can add a path u1u2 . . . ur to the path Pu covering N(v) ∪ {v}. In particular,
this means that in the case k(∆) = 1 we have r ≤ 1, and in the case k(∆) = 2 we have r ≤ 2.
If k(∆) = 1 and r = 1 the vertex u1 cannot have further neighbor in Cu so |Cu| = 2. Similarly,
if k(∆) = 2 and r = 2 the vertices u1 and u2 cannot have further neighbors in Cu: if some w is
adjacent to say u1 then wu1u2Pu be a path of length ∆ + 4. If k(∆) = 2 and r = 1 the vertex u1
can have at most one further neighbor, but not more: if u2 and u3 are adjacent to u1 then they
are adjacent to each other too since otherwise we have a claw u1, u, u2, u3 with center u1, but then
u2, u3, u1, Pu is again a path of length ∆ + 4. Finally, if k(∆) = 2 and r = 1, and the vertex u1 has
a further neighbor u2, then u2 cannot have further neighbors in Cu, so |Cu| ≤ 3. This proves that
if k(∆) = 1 then |Cu| ≤ 2, and if k(∆) = 2 then |Cu| ≤ 3. In particular, it shows that if k(∆) = 1
then G \ (N(v)∪{v}) is a disjoint union of K1, and if k(∆) = 2 then G \ (N(v)∪{v}) is a disjoint
union of K1 and K2.

Now let P be the path going through N(v) ∪ {v}. If θ is a zero of µ(G, x) with multiplicity at
least 2 then by Theorem D we have that θ is a zero of

µ(G \ P, x) = µ(K1, x)α1µ(K2, x)α2 = xα1(x2 − 1)α2 ,

where α2 = 0 if k(∆) = 1. If k(∆) = 1 then it means that θ = 0, and if k(∆) = 2 then it means
that θ ∈ {−1, 0, 1}. Since in a connected claw-free graph there is always a matching which avoids
at most 1 vertex we have that the multiplicity of 0 as a zero is at most 1. This means that if
k(∆) = 1 then all zeros are simple, but then by Theorem 2.1 we know the complete list of these
graphs. In the list the only claw-free graphs were K1,K2, G2.

Next we study the case of k(∆) = 2. Recall that it follows from the table on page 7 that
the case k(∆) = 2 implies that ∆ ∈ {4, 6, 8}. Note that in this case all integers in the interval
(−2
√

∆− 1, 2
√

∆− 1) must be a zero of µ(G, x) since otherwise the number of distinct zeros is at
most s(∆)− 2 ≤ ∆ + 1 (the missing zero cannot be 0 since if G contains a perfect matching, then
we are done by Theorem 4.1), and so t(G) = ∆ + 1. In this case Part (b) of Lemma 5.5 implies
that V (G) = N(v) ∪ {v}, and Part (a) of this lemma shows that the graph is traceable, and we
have discussed this case already.

So we have the remaining cases for ∆ = 4, 6, 8:

µ(G, x) = x(x2 − 1)α(x2 − 4)(x2 − 9),

µ(G, x) = x(x2 − 1)α(x2 − 4)(x2 − 9)(x2 − 16),

µ(G, x) = x(x2 − 1)α(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25).

Next we prove that the cases ∆ = 6, 8 are not possible and in case of ∆ = 4 there are 7 vertices
of degree 4, all other vertices are of degree 1.
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Let ai be the number of vertices with degree i. Then ai = 0 if i > ∆ or i = 0 (G is connected),
and

∑
ai = n is the number of vertices;

∑
iai = 2m, two times the number of edges; and∑

i2ai =
∑
d(u)2 = m(m+ 1)− 2p(G, 2).

In particular, for ∆ = 4 we have

4∑
i=1

ai = 5 + 2α,

4∑
i=1

iai = 26 + 2α,

4∑
i=1

i2ai = 110 + 2α.

Then

0 ≥ −2(a2 + a3) =

4∑
i=1

(i− 1)(i− 4)ai =

(
4∑
i=1

i2ai

)
− 5

(
4∑
i=1

iai

)
+ 4

(
4∑
i=1

ai

)
= 0,

so a2 = a3 = 0 and a4 = 7, a1 = 2(α− 1).
For ∆ = 6 we have

6∑
i=1

ai = 7 + 2α,

6∑
i=1

iai = 58 + 2α,

6∑
i=1

i2ai = 382 + 2α.

Then

0 ≥
6∑
i=1

(i− 1)(i− 6)ai = 18,

a contradiction.
For ∆ = 8 we have

8∑
i=1

ai = 9 + 2α,

8∑
i=1

iai = 108 + 2α,

8∑
i=1

i2ai = 1032 + 2α.

Then

0 ≥
8∑
i=1

(i− 1)(i− 8)ai = 132,

again contradiction.

Next we eliminate the case ∆ = 4. In this case we know that 7 vertices have degree 4, and the
rest of the vertices have degree 1. Clearly, two degree 1 vertices cannot be adjacent, because G is
connected. One vertex of degree 4 cannot be adjacent to two vertices of degree 1 since there would
be a claw in the graph. We can assume that there are indeed vertices of degree 1 since otherwise
all zeros would be simple. In this case we know from Theorem 2.1 that the only candidate is
K7 \E(C3) ∪E(C4) which is not claw-free. If we delete all degree 1 vertices we get a graph G′ on
7 vertices where all degrees are 3 or 4. Both 3 and 4 should exist since we assumed the existence
of degree 1 vertices, and it cannot occur that all degrees are 3 since the number of edges would be
7 · 3/2 = 10.5. Clearly, G′ is still claw-free as it is an induced subgraph of G.

We show that G′ contains a Hamiltonian cycle. G′ is clearly connected since G is connected.
We show that G′ is also 2-connected. Indeed, if there were a cut-vertex u then since the minimum
degree of G′ is at least 3, the only possibility is that G′ − u has 2 components of size 3 and every
vertex is connected to u, but then u has degree 6. Then again we use Dirac’s theorem, Lemma 3.4:
the graph contains a cycle C of length at least 6. If the length is 7 then we are done. If the
length of C is 6, then let the vertices of C be v1 . . . v6 and v7 be the remaining vertex. The degree
of v7 is at least 3, if it is adjacent to 2 neighboring vertices of C then we can extend C to a
Hamiltonian cycle. Since the degree of v7 is at least 3, the only case we have to consider is when
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v7 is adjacent to vertices of even indices, or those of odd indices. By symmetry we can assume
that v7 is adjacent to v1, v3, v5. Next observe that if any 2 of v2, v4, v6 are adjacent then there is
a Hamiltonian cycle: if v2 and v6 are adjacent then v1v2v6v5v4v3v7v1 is a Hamiltonian cycle, the
other two cases are symmetric to this one. Since the minimum degree of G′ is at least 3, the vertex
v2 has to be adjacent to v5, the vertex v4 has to be adjacent to v1, and v6 has to be adjacent to v3.
The obtained graph is actually a K3,4 with classes v1, v3, v5 and v2, v4, v6, v7. This graph doesn’t
contain a Hamiltonian cycle, but it contains a lot of claws, for instance v1, v2, v4, v6. If we add one
more edge which we can assume to be v2v4 by symmetry then it will contain a Hamiltonian cycle:
v1v7v3v6v5v4v2v1.

Now we can show a path consisting of 8 vertices in G: start at some pendant vertex, and after
jumping to its unique neighbor go through a Hamiltonian path of G′. Hence t(G) = 8 > 7 = s(4),
so G cannot be matching integral. Hence we eliminated the case ∆ = 4 too. We are done.

We conclude the paper with the following question:

Question. Is it true that there are finitely many matching integral 2-connected graphs?

Acknowledment. We thank the referees for their careful reading and helpful comments.
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