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SOME NOTES ON THE UPPER AND LOWER
RADICALS

by
TRAN TRONG HUE (Hanoi) and F. A. SZASZ (Budapest)

§ 1. Introduction

In the following only associative rings are considered. A radical class or
briefly a radical will mean a radical in the sense of Kuro§ and Amitsur. For
the basic concepts of the radical theory we refer to [2], [6] and [7].

For a given class M of rings, we denote the homomorphic closure of
M by H(M) and, the hereditary closure of M by J(M), these are,

HM) = {4 | 4 is a homomorphic image of some M-ring}
J(M) = {4 ] 4 is an accessible subring of some M-ring}

(M) denotes the upper radical class determined by M and £(L) denotes
the lower radical class determined by L.
The class M is said to be regular if it satisfies the following condition:

H(I) NMs¢ o, for every 0 It A€M

where I <t A means I is an ideal of 4. Note: we write I for the class {/} contain-
ing I as its member. '

A regular class may not contain the ring 0, for the sake of short state-
ment we shall assume that regular classes contain the ring 0.

It is well-known that if the class M is regular then
UM) = {4 | H(4) N M = 0)

In [5] W. G. Leavirt and Yu-LEE LEE have shown that if L is a homo-
morphically closed class of rings, then ,
L) ={4|JA/I) N Ls=«0 for every A[I = 0}

In 2 we shall consider conditions for classes L;, M;, i = 1, 2, such that
the upper and lower radical classes determine the same radical, that is,
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A class M of rings has been called special by V. A. ANDRUNAKIEVIS [1]
if it is a hereditary class of prime rings with the property:

If I < A with I € M then A/I* ¢ M, where I* is the two-sided annihilator
of I'in 4. ‘ :

A radical R is called special if R is an upper radical determined by some
special class. ” o

A problem concerning the notion of the special radical can be naturally
raised: ’

Find conditions for classes M and L auch that the upper radical deter-
mined by M and, the lower radical determined by L are special. This problem
will be solved in § 3.

ANDRUNAKIEVIS [1] has shown that every special radical is supernil-
potent. The following theorem will be neccessary later on.

THEOREM 1 (cf. [1], Theorem 6, pp. 198). Let R be a supernilpotent radical
then the upper radical determined by the class of all prime R-semisimple rings
s the smallest special radical containing R.

§ 2. The coincidence of upper radical classes and lower radical classes
2.1 Criterion for $(L) = U(M)

LeMMA 2. Let L be a homomorphically closed class. Then a ring A is £(L)-
semisimple if and only if J(4) N L = 0 holds.

ProoF. Assume a ring 4 be £(L)-semisimple since every semisimple class
of a associative rings is hereditary, so every accessible non-zero subrings of
A is £(L)-semisimple. This implies J(4) N L = 0.

Conversely, suppose that a ring 4 satisfies the condition J(4) N L = 0.
Assume B be a £(L)-ideal of the ring 4. cf B == 0 then every non-zero homo-
morphic image of B contains a non-zero accessible L-subring. In particular,
B has a non-zero accessible L-subring. From this it follows J(4) N L == 0,
a contradiction. Thus B = 0 and the ring 4 is £(L)-semisimple.

THEOREM 3. Sujopose that the class M is regular and the class L is homo-
morphically closed. Then (L) = UM) if and only if the following conditions
are satisfied:

(1)L NM=0,
(2) For every non-zero ring A, if J(A) NL =0 then H(A) N M 0.
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Proor. In view of Lemma 2, the necessity is straightforward.

~ Conversely, assume that the conditions of the theorem are satisfied. Since
L is homomorphically closed, so from the first condition follows that no ring
of L can be mapped homomorphically onto any non-zero M-ring. Hence the
inclusion L < U(M) holds. By the minimality. of the lower radical we have
(L) € UM). Now, suppose that a ring 4 does not belong to the class £(L).
By Lemma 2 the non-zero £(L)-semisimple ring 4/€(L)(4) has no non-zero
accesgible L-subrings. By the second condition the ring A4/2(L)(4) can be
mapped homomorphically onto some non-zero M-ring. This implies H )N
N M = 0 and so the ring A4 is not in U(M). Thus we have (L) = UM).

2.2. Criterion for UM,) = UM,)

TaeoreEM 4. Suppose M, (i =1, 2) are regular classes of rings. Then
UM,) = UM,) if and only if
HA) NM; >0

for every ring 4 in M, (i = 1, 2).

Proor. The necessity is obvious.

Now assume that the conditions of theorem are valid. We have to show
that UM,) = U(M,). Let 4 be an arbitrary ring in M; and, B any non-zero
ideal of 4. Since the class M, is regular so B can be mapped homomorphically
onto some non-zero M,-ring C. By the hypothesis the ring C can be mapped
homomorphically onto some non-zero M,-ring. This implies that every non-
zero ideal of A can be mapped onto some non-zero M,-ring.

Thus the ring A is U(M,)-semisimple, and so each ring 4 in M, is U(M,)-
semisimle. Since U(M,) is the largest radical for which every ring in M,
is semisimple, we must have UM,) < UM,). Similarly, also UM,) < UM,)
holds. :

CorOLLARY. Let N be a subclass of a regular class M. Then U(N) = U(M)
if the following condition is satisfied:

For every non-zero ring A €M,
() H(A) N N =<0,

Proor. It is easy to see that if the condition («) is valid then the subclass
N is regular. So the conditions of Theorem 3 are satisfied.

REMARK. In general, the converse is not true. For instance, let 4 be a
non-zero simple ring. We take M = {4, 4 4+ A} and N = {4 + 4}. Clearly,

the class M is regular and U(N) = UM) but the condition (x) is not valid.
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2.3. Criterion for &(L;) = £(L,)

THEOREM 2. Let L, i =1, 2, be homomorphically closed classes. Then
£(L,) = &(L,) if and only if the following condition is satisfied:

(B) For every mon-zero ring A € L, J(A) NL;5<0 (i, =1, 2).

Proor. Suppose £(L,) = £(L,). Then every ring 4 in L, is a €(L,)-radical
and by Lemma 2 it follows J(4) N L; = 0.

Conversely, assume that the classes L;, i = 1, 2, satisfy the condition
of theorem. Let A be an arbitrary ring in L,: Since the class L, is homomorphi-
cally closed, so every homomorphic image of 4 is in L,. Therefore, by the
condition (8) every homomorphic image of A has a non-zero accessible L,-
subring. Hence the ring 4 is in £(L,). From that follows €(L,) < £(L,). Simi-
larly, also £(L,) < €(L,;) holds.

CoroLrARY. Let L, be a subclass of a homomorphically closed class L.
If J(4) N Ly« 0 holds for every mon-zero ring A in L, then L(Ly) = L(L),
provided that Ly is homomorphically closed.

§ 3. Criterion for the upper and lower radical to be special

Levmua 6. Let L be a homomorphically closed class of rings such that the
lower radical (L) determined by L is supernilpotent. Then the radical (L) is
special if and only if the following condition is satisfied:

(y) For a non-zero ring A if J(4) N L = 0 then
H(4) N P(L) == 0

where
P(L)= {4 |4 is a prime ring and J(4) N L = 0.

PxrooF. Let L be a homomorphically closed class of rings such that £(L)
is supernilpotent. By Lemma 2 every ring in P(L) is prime £(L)-semisimple.
By Theorem 1 the radical £(L) is special if and only if £(L) = U(P(L)).

Clearly, the relation L N P(L) = 0 always holds. Thus, by Theorem 3
(L) = U(P(L)) if and only if condition (y) is valid.

TaroREM 7. If L is a hereditary and homomorphically closed class contain-
ing all zero-rings then the lower radical £(L) is special if and only if the property
(y) is valid.
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Proor. In [4] HorFMAN and LEAVITT have shown that if L is hereditary,
then the lower radical (L) is hereditary. Hence, by the hypothesis, the radical
€(L) is supernilpotent. Thus the theorem is an immediate consequence of
Lemma 6.

LevmMa 8. Let M be a regular class of rings such that the upper radical U (M)
is supernilpotent. Then the radical UM) is special if the following condition is
satisfied:

(x) for every non-zero ring A € M,
HA)NM NP =0,

where P is the class of all jorime rings.

ProOF. Let M be a regular class satisfying the conditions of the lemma.
Consider the class N =M NP. By the Corollary of Theorem 4 we have
Y(M) = U(N) if condition («) is satisfied. Next, we denote the class of prime
U(M)-semisimple ring by N, that is, N, = M NP, where

(%) M= {4 |HI)NM>=0, for every 0= 1< 4}.

Clearly N < N,. Since class of prime rings and semisimple class are hereditary
so the class N, is hereditary.

Let aring 4 be in N,. By () the ring 4 can be mapped homomorphically
onto some non-zero ring 4 in M. By condition (y) the ring 4 has some non-
zero homomorphic image 4, in N. From this it follows that, for every ring 4
in N;, H(4) N N 5= 0 holds. By the corollary of Theorem 4 we have U(N,) =
= U(N) = U(M). Thus, by Theorem 1 the radical U(M) is special.

TaeoreEM 9. Let M be a regular class of rings. Then the upper radical
U(M) is special if the following three conditions are satisfied:

(i) M does not contain non-zero zero-m'ngé.
(ii) For each ring A, if 0 5= I < A and H(I) N M == 0, then H(4) N M= 0.
(iii) For every non-zero ring 4 € M,

HA) NM NP s=0.
Proor. In [3] ENERSEN and LeaviTT have shown that if the class N

satisfies the conditions (i) and (ii), then the upper radical U(M) is supernil-
potent. Thus, the theorem is an immediate consequence of Lemma 8.
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