
Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

Generalized P Colony Automata and Their
Relation to P automata ?

(Extended Abstract)

Kristóf Kántor, György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen

Kassai út 26, 4028 Debrecen, Hungary
{kantor.kristof, vaszil.gyorgy}@inf.unideb.hu

1 Introduction

P colonies are variants of very simple membrane systems, which resemble the so-
called colonies of grammars, see [7], that is, collections of very simple generative
grammars which work in cooperation, and together they are able to generate
fairly complicated languages.

P colonies also consist of a collection of very simple computing agents which
interact in a shared environment, see [8, 9]. The agents and the environment de-
scribed by multisets of objects which are processed by rules enabling the transfor-
mation of the objects and the exchange of objects between the colony members
and the environment. The rules are grouped into programs, and a computation
consists of a sequence of computational steps during which the colony members
execute their programs in parallel, until the system reaches a halting configura-
tion.

P colony automata, a variant of P colonies characterizing string languages
were introduced in [2], the variants called generalized P colony automata were
introduced in [5]. One of the motivations of introducing generalized P colony
automata was to make the model resemble more to P automata, which was
introduced in [4]. In the case of generalized P colony automata, the computation
of the colony defines an accepted multiset sequence, which is turned into a set
of accepted string by a non-erasing mapping (as in P automata).

2 P Automata and Generalized P Colony Automata

A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a construct
Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F) where

– V is the alphabet of the automaton, its elements are called objects;
– e ∈ V is the environmental object of the automaton;

? Research supported in part by grant no. MAT120558 of the National Research,
Development and Innovation Office, Hungary.

– 399 –

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/129702063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

– wE ∈ (V − {e})∗ is a string representing the multiset of objects different
from e which is found in the environment initially;

– (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is a multiset over V , it
determines the initial contents of the cell, and its cardinality |wi| = k is
called the capacity of the system. Pi is a set of programs, each program is
formed from k rules of the following types (where a, b ∈ V):

• tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and
communication tape rules, respectively; or
• nontape rules of the form a → b, or a ↔ b, called rewriting (nontape)

rules and communication (nontape) rules, respectively.
A program is called a tape program if it contains at least one tape rule.
(The names “tape” rule and “tape” program are motivated by the effect of
the use of these rules/programs: as “ordinary” automata read symbols by
processing an input tape, P colony automata read symbols by applying these
rules/programs. See below for more details.)

– F is a set of accepting configurations of the automaton which we will specify
in more detail below.

A genPCol automaton reads an input word during a computation. A part
of the input (possibly consisting of more than one symbol) is read during each
configuration change: the processed part of the input corresponds to the multiset
of symbols introduced by the tape rules of the system.

A configuration of a genPCol automaton is an (n+ 1)-tuple (uE , u1, . . . , un),
where uE ∈ (V −{e})∗ represents the multiset of objects different from e in the
environment, and ui ∈ V ∗, 1 ≤ i ≤ n, represents the contents of the i-th cell.
The initial configuration is given by (wE , w1, . . . , wn), the initial contents of the
environment and the cells. The elements of the set F of accepting configurations
are given as configurations of the form (vE , v1, . . . , vn), where

– vE ⊆ (V − {e})∗ represents a multiset of objects different from e being in
the environment, and each

– vi ∈ V ∗, 1 ≤ i ≤ n, is the contents of the i-th cell.

Instead of the different computational modes used in [2], in genPCol au-
tomata, we apply the programs in the maximally parallel way, that is, in each
computational step, every component cell non-deterministically applies one of its
applicable programs. Then we collect all the symbols that the tape rules “read”
(these multisets are denoted by read(p) for a program p in the definition below),
this is the multiset read by the system in the given computational step. A suc-
cessful computation defines in this way an accepted sequence of multisets: the
sequence of multisets entering the system during the steps of the computation.

Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F) be a genPCol automaton. The
set of input sequences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ (V − {e})∗, 1 ≤ i ≤ s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE , w1, . . . , wn), cs ∈ F, and

ci =⇒ ci+1 with
⋃

p∈Pci

read(p) = ui+1 for all 0 ≤ i ≤ s− 1}.

– 400 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

Let Π be a genPCol automaton, and let f : (V −{e})∗ → 2Σ
∗

be a mapping,
such that f(u) = {ε} if and only if u is the empty multiset.

The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

We define the following language classes.

– L(genPCol,F , com-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where
all the communication rules are tape rules,

– L(genPCol,F , all-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where
all the programs must have at least one tape rule,

– L(genPCol,F , ∗(k)) is the class of languages accepted by generalized PCol
automata with capacity k and with mappings from the class F where pro-
grams with any kinds of rules are allowed.

Let f : V ∗ → 2Σ
∗
, for some alphabets V and Σ, and let the mapping fperm

and the class of mappings TRANS be defined as follows:

– f = fperm if and only if V = Σ and for all v ∈ V (∗), we have f(v) =
{a1a2 . . . as | |v| = s, and a1a2 . . . as is a permutation of the elements of v};

– f ∈ TRANS if and only if for any v ∈ V (∗), we have f(v) = {w} for some
w ∈ Σ∗ which is obtained by applying a finite transducer to the string
representation of the multiset v, (as w is unique, the transducer must be
constructed in such a way that all string representations of the multiset v as
input result in the same w ∈ Σ∗ as output, and moreover, as f should be
nonerasing, the transducer produces a result with w 6= ε for any nonempty
input).

We denote the above defined language classes as LX(genPCol, Y (k)), where
X ∈ {fperm,TRANS}, Y ∈ {com-tape, all-tape, ∗}.

3 New Results on Systems with Input Mappings from
TRANS

For any class of mappings F , we have (see [6])

1. L(genPCol,F , com-tape(k)) ⊆ L(genPCol,F , ∗(k)) and
L(genPCol,F , all-tape(k)) ⊆ L(genPCol,F , ∗(k) for any k ≥ 1; and

2. L(genPCol,F , X(k)) ⊆ L(genPCol,F , X(k + 1)) for any k ≥ 1 and X ∈
{com-tape, all-tape, ∗}.
The computational capacity of genPCol automata with input mappimg fperm

was investigated in [5] and [6]. It was shown that Lperm(genPCol, ∗(1)) = L(RE),
thus, it is not surprising, but the same holds also for the class of mappings
TRANS.

– 401 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

Proposition 1.

LTRANS(genPCol, ∗(1)) = L(RE).

A similar result holds for all-tape systems with capacity at least two. From
[6] we have that Lperm(genPCol, all-tape(k)) = L(RE) for k ≥ 2, and we can
show the same for systems with input mappings from TRANS.

Proposition 2.

LTRANS(genPCol, all-tape(k)) = L(RE) for k ≥ 2.

For systems with capacity one, it is not difficult to see that all regular lan-
gugaes can be characterized, but a more precise characterization of the corre-
sponding langugae classes are still missing.

Proposition 3.

REG ⊆ LTRANS(genPCol,X(1)), for X ∈ {all-tape, com-tape}.

The characterization of langugaes of com-tape systems is an interesting re-
search direction. Similarly to systems with input mapping fperm, we have the
following, where r-1LOGSPACE denotes the class of languages characterized by
so-called restricted one-way logarithmic space bounded Turing machines, see [3]
for more on this complexity class.

Proposition 4.

LTRANS(genPCol, com-tape(2)) ⊆ r-1LOGSPACE.

As the class of languages characterized by P automata is strictly included
in r-1LOGSPACE, the above statement does not give any information on the
relationship of the power of P automata and genPCol automata. We know,
however (see [6]), that genPCol automata with fperm and com-tape programs
can characterize languages that cannot be accepted by P automata using the
mapping fperm.

As P automata with sequential rule application and input mappings from
TRANS characterize exctly the language class r-1LOGSPACE, the relationship
of this language class and genPCol automata with input mappings from TRANS
seems to be an especially interesting research direction.

Further, the effect of using checking rules, as defined in [8] for P colonies, is
also an interesting topic for further investigations, just as the investigation of
systems with other classes of input mappings besides fperm.

References

1. L. Ciencialová, E. Csuhaj-Varjú, A. Kelemenová, Gy. Vaszil, Variants of P colonies
with very simple cell structure. International Journal of Computers Communica-
tion and Control, 4 (2009), 224–233.

– 402 –

Proceedings of CMC18 Bradford, UK – 24-28 July, 2017

2. L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú, Gy. Vaszil, PCol automata: Recog-
nizing strings with P colonies. In: M. A. Mart́ınez del Amor, Gh. Păun, I. Pérez
Hurtado, A. Riscos Nuñez (eds.), Eighth Brainstorming Week on Membrane Com-
puting, Sevilla, February 1-5, 2010, Fénix Editora, 2010, 65–76.

3. E. Csuhaj-Varjú, M. Oswald, Gy. Vaszil, P automata. In [10], chapter 6, 144–167.
4. E. Csuhaj-Varjú, Gy. Vaszil, P automata or purely communicating accepting P

systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (eds.), Membrane
Computing. International Worskhop, WMC-CdeA 2002, Curtea de Arges, Roma-
nia, August 19-23, 2002, Revised Papers. LNCS 2597, Springer Berlin Heidelberg,
2003, 219–233.

5. K. Kántor and Gy. Vaszil Generalized P Colony Automata Journal of Automata,
Languages and Combinatorics 19 (2014), 145–156.

6. K. Kántor and Gy. Vaszil On the Class of Languages Characterized by Generalized
P Colony Automata Accepted.

7. J. Kelemen, A. Kelemenová, A grammar-theoretic treatment of multiagent sys-
tems. Cybernetics and Systems, 23 (1992), 621–633.

8. J. Kelemen, A. Kelemenová, Gh. Păun, Preview of P colonies: A biochemically
inspired computing model. In: M. Bedau et al. (eds.), Workshop and Tutorial Pro-
ceedings. Ninth International Conference on the Simulation and Synthesis of Living
Systems (Alife IX). Boston Mass., 2004, 82–86.

9. A. Kelemenová, P Colonies. In [10], chapter 23.1, 584–593.
10. Gh. Păun, G. Rozenberg, A. Salomaa, editors, The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.

– 403 –

