
Bi-simulation Between P Colonies and
P Systems with Multi-stable Catalysts

Erzsébet Csuhaj-Varjú1 and Sergey Verlan2

1 Department of Algorithms and Their Applications, Faculty of Informatics,
ELTE Eötvös Loránd University, Budapest, Hungary,

Pázmány Péter sétány 1/c, 1117
csuhaj@inf.elte.hu

2 Université Paris Est, LACL (EA 4219), UPEC, F-94010, Créteil, France
verlan@u-pec.fr

Abstract. The general concept, called the formal framework of P sys-
tems provides a representation to study and analyze different models
of P systems. In this paper, two well-known models, P colonies and P
systems with multi-stable catalysts are considered. We show that the
obtained representations are identical, thus both models can be related
using a bi-simulation. This fact opens new approaches both for studying
P colonies and catalytic P systems.

1 Introduction

Due to different motivations, there have been several variants of P systems in-
troduced. However, all models have some common basic features as summarized
in [5, 9]. Among these characteristics we find

– a description of the initial structure or architecture (indicating the graph
relation between the compartments and any additional information as labels,
charges, etc.),

– a list of the initial multisets of objects present in each compartment at the
beginning of the computation,

– a set of rules, acting over objects and / or over the structure.

Usually, the configuration of a P system is represented by the current contents
of the compartments and the current structure of the system.

P systems work with transitions between configurations; a finite sequence of
such transitions of a P system Π starting with the initial configuration and end-
ing in some final configuration is called a computation. The final configuration
is usually given by halting.

To give a more precise description of the semantics, the following notions
(functions) were defined:

– Applicable(Π, C, δ) – the set of multisets of rules of Π applicable to the
configuration C, according to some derivation mode δ.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/129701745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

– Apply(Π, C, R) – the configuration obtained by the (usually parallel) appli-
cation of the multiset of rules R to the configuration C.

– Halt(Π, C, δ) – a predicate that yields true if C is a halting configuration of
the system Π using the derivation mode δ.

– Result(Π, C) – a function giving the result of the computation of the P
system Π when the halting configuration C has been reached. Usually, this
is an integer function. However, generalizations as for example, Boolean or
vector functions can also be considered.

We note that δ, above, differs from the dissolution symbol used in some P
system models.

The transition of a P system Π according to the derivation mode δ (usually,
the maximally parallel derivation mode) is defined as follows: the system changes
from a configuration C to C′ (written as C ⇒ C′) iff

C′ = Apply(Π, C, R), for some R ∈ Applicable(Π, C, δ)

The result of the computation of a P system is usually interpreted as the
union of the results of all possible computations.

The precise interpretation of the four notions (functions) above depends on
the chosen model of P systems. The goal of works [4, 5, 9] was to provide a con-
crete family of P systems based on the structure of network of cells together
with a series of definitions of the functions above. The obtained model as well
as the accompanying tools and methods together are called the formal frame-
work of P systems. It has the property that most of the existing models of
P systems could be obtained by a strong bi-simulation of a restricted version
(eventually, using a simple encoding) of this formal framework with respect to
different parameters, see [10] for some examples. We recall that a simulation of
one transitional system by another corresponds to an order relation on corre-
sponding equivalent states [6]. Basically, this means that a step in the simulated
system corresponds to one or several steps in the simulating one. In the case of a
strong simulation, one step of the simulated system is performed using one step
in the simulating system. If two systems can simulate each other, then we speak
about bi-simulation.

In this paper, based on formal framework we provide a strong bi-simulation
between two well-known models, namely P colonies and multi-stable (purely)
catalytic P systems. P colonies are a finite collection of agents which interact with
a shared environment via their own sets of programs. Each program is a limited
number of very simple rules. Under functioning, the agents act in a maximally
parallel manner and they change their own state and exchange symbols with
the environment. Purely catalytic P systems are given with multiset rewriting
rules where each rule has occurrences of distinguished symbols called catalysts.
In the original model, catalysts cannot change, in case of multi-stable catalytic
P systems catalysts are allowed to change only to some other, distinguished
catalysts.

Our bi-simulation demonstrates that although the two models are formally
different, one can be used to solve problems concerning the other one. For ex-

ample, both models are computationally complete, thus a proof for one of the
models can be ”translated” to a proof for the other one.

After providing the bi-simulation and some examples, we discuss the results
and propose topics for future research.

2 Definitions and Notations

We assume that the reader is familiar with basic notions of formal language
theory and membrane computing; for further details consult [7] and [8].

For a finite multiset of symbols M over an alphabet V , supp(M) denotes the
set of symbols in M (the support of M) and |M | denotes its size, i.e., the total
number of its symbols. By |M |x, the number of occurrences of symbol x in M
is denoted. By V ◦ we denote the set of all finite multisets over V .

Throughout the paper, every finite multiset M is given as a string w, where
M and w have the same number of occurrences of symbol a, for each a ∈ V .

2.1 Network of Cells

In this section we provide a summarized version of the definition of a network of
cells, the class containing all networks of cells forming the structure of the formal
framework. The definitions are based on those given in [5]. This version considers
only static P systems where the membrane structure does not change under the
computation (this also includes systems with the dissolution of membranes).
We note that in [4], an extension of the formal framework to P systems with
dynamically evolving structure is proposed. However, in order to have a more
simple presentation, in this paper we will only consider the first variant. We
remark that in the case of static structures both variants coincide, although the
notation is slightly different.

Definition 1 ([5]). A network of cells of degree n ≥ 1 is a construct

Π = (n, V, w, Inf,R)

where

1. n is the number of cells;
2. V is an alphabet;
3. w = (w1, . . . , wn) where wi ∈ V ◦, for all 1 ≤ i ≤ n, is the finite multiset

initially associated to cell i;
4. Inf = (Inf1, . . . , Infn) where Infi ⊆ V , for all 1 ≤ i ≤ n, is the set

of symbols occurring infinitely often in cell i (in most of the cases, only
one cell, called the environment, will contain symbols occurring with infinite
multiplicity);

5. R is a finite set of rules of the form

(X → Y ;P,Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi, yi ∈ V ◦, 1 ≤ i ≤ n, are vectors
of multisets over V and P = (p1, . . . , pn), Q = (q1, . . . , qn), pi, qi, 1 ≤ i ≤ n
are finite sets of multisets over V . We will also use the notation

(1, x1) . . . (n, xn)→ (1, y1) . . . (n, yn) ; [(1, p1) . . . (1, pn)]; [(1, q1) . . . (n, qn)]

for a rule (X → Y ;P,Q); moreover, if some pi or qi is an empty set or some
xi or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from
the specification of the rule.

The semantics of the above rule is as follows: objects xi from cells i are
rewritten into objects yj in cells j, 1 ≤ i, j ≤ n, if every cell k, 1 ≤ k ≤ n,
contains all multisets from pk and does not contain any multiset from qk. In
other words, the first part of the rule specifies the rewriting of symbols, the
second part of the rule specifies permitting conditions and the third part of the
rule specifies the forbidding conditions.

For a rule r of the form above, the set

{i | xi 6= λ or yi 6= λ or pi 6= ∅ or qi 6= ∅}

induces a (hypergraph) relation between the interacting cells. However, this re-
lation does not need to give rise to a structure relation like a tree as in P systems
or a graph as in tissue P systems.

A configuration C of Π is an n-tuple of multisets over V (u1, . . . , un) satis-
fying ui ∩ Infi = ∅, 1 ≤ i ≤ n.

In the sequel, networks of cells as intermediate models will assist to establish
a bi-simulation between two variants of P systems, namely P colonies and P
systems with multi-stable catalysts.

2.2 P Colonies

Next we provide the concept of a P colony, based on the formalism given in [7].
A P colony Π = (O, e, f, C1, . . . , Cn), consists of n cells (agents) Ci, 1 ≤ i ≤

n, each of them consisting of a multiset of exactly k symbols and an environ-
ment consisting of initially a distinguished symbol e in an unbounded number of
copies. Every cell Ci has a set of programs {pi,1, . . . , pi,ki

}, where each program
pi,j consists of exactly k rules of the forms a → b (evolution rule or internal
point mutation), c ↔ d (one object exchange with the environment), or r1/r2
(priority rule, where r1 and r2 are arbitrary combinations of point mutation
and/or exchange rules).

The computation starts in the initial configuration, i.e., the n-tuple of the
initial contents of the cells. It can be performed in the maximally parallel (par) or
in the sequential (seq) mode, the computation mode is assigned to the system at
the beginning. If no more program is applicable, then the P colony halts and the
result is collected as the number of distinguished symbols f in the environment.
The result of the computation of Π is denoted by N(Π).

We note that the result can be defined in such a way, too, that we consider
the number of all symbols in the environment which are different from e.

The number of cells, the maximal number of programs in a cell, and the
maximal number of rules in each program in a given P colony Π are called the
degree, the height, and the capacity of Π, respectively.

The family of sets of numbers computed in the derivation mode x for x ∈
{par, seq} by P colonies of capacity k, degree at most n ≥ 1 and height at most
h ≥ 1, without (resp. with) using priority rules in their programs, is denoted by
NPColx(k, n, h) (resp. NPColxK(k, n, h)).

Notice that a strong bi-simulation of the P colony model and the formal
framework can be given as follows.

– each rule a→ b in pij becomes rij : (i, a)→ (i, b);
– each rule a↔ b in pij becomes rij : (i, a)(0, b)→ (i, b)(0, a);
– each rule r1/r2 in pij becomes:

– p1ij : r1, p2ij : r2; [∅]; [{(i, a)}] if r1 is an evolution rule (a→ b)

– p1ij : r1, p2ij : r2; [∅]; [{(i, a)(0, b)}] if r1 is an exchange rule (a↔ b).

For the derivation mode, each program becomes a rule partition and then
the derivation mode requires to be maximal, but using exactly k rules from
each partition (or using all rules from a partition). In the sequential case, the
derivation mode prescribes to use only one partition (but all rules from that
partition).

Example 1 ([10]). Consider the following P colony Π having 3 cells. For sim-
plicity, we provide only the initial multisets and the programs of the cells.

– C1 contains the initial multiset aa and the following programs: p11 : a →
b, a↔ e, p12 : a→ c, a↔ e, p13 : b→ a, e→ a.

– C2 contains the initial multiset be and the following program: p21 : b ↔
e, e→ b.

– C3 contains the initial multiset ee and the following programs: p31 : e ↔
a, e↔ b, p32 : b→ f, a→ b, p33 : f ↔ a, b→ b.

Figure 1 shows a graphical representation of this system.
We transform this system to a network of cells Π ′ having 4 cells (numbered

from 0 to 3). Cell 0 corresponds to the environment. Cells 1, 2, 3 correspond to
the cells of Π and have the same initial contents as the corresponding agent. We
define Inf0 = {e}. System Π ′ contains the following rules:

Rules simulating programs from the first cell:

r111 : (1, a)→ (1, b) r112 : (1, a)(0, e)→ (1, e)(0, a)

r121 : (1, a)→ (1, c) r122 : (1, a)(0, e)→ (1, e)(0, a)

r131 : (1, b)→ (1, a) r132 : (1, e)→ (1, a)

Fig. 1. The P colony from Example 1.

Rules simulating programs from the second cell:

r211 : (2, b)(0, e)→ (2, e)(0, b) r212 : (2, e)→ (2, b)

Rules simulating programs from the third cell:

r311 : (3, e)(0, a)→ (3, a)(0, e) r312 : (3, e)(0, b)→ (3, b)(0, e)

r321 : (3, b)→ (3, f) r322 : (3, a)→ (3, b)

r331 : (3, f)(0, a)→ (3, a)(0, f) r332 : (3, b)→ (3, b)

We remark that the derivation mode of P colonies groups rules corresponding
to programs, uses maximal parallelism or sequential mode, and it requires that all
rules from a group should be used. Since working with one symbol, the group r111
and r112 from the above example is equivalent to the application of a single rule
r11 : (1, aa)(0, e) → (1, be)(0, a). Hence, we obtain that a program corresponds
to a more complicated rule, and k is the size of the left-hand side (LSH) of this
rule (and equal to the right-hand side, i.e., RHS). By considering such rules, the
evolution of a P colony becomes just maximally parallel or sequential.

This consideration yields to the following network of cells Π ′′ (working in
sequential or maximally-parallel manner):

r11 : (1, aa)(0, e)→ (1, be)(0, a) r12 : (1, aa)(0, e)→ (1, ce)(0, a)

r13 : (1, be)→ (1, aa)

r21 : (2, be)(0, e)→ (2, be)(0, b)

r31 : (3, ee)(0, ab)→ (3, ab)(0, ee) r32 : (3, ab)→ (3, fb)

r33 : (3, bf)(0, a)→ (3, ab)(0, f)

Since the number of combinations of objects in an agent is finite, it can be
represented by a single symbol, a state. Also, symbol e from cell 0 can be ignored
as it carries no information. This permits to deduce that a P colony corresponds
to a cooperative rewriting mechanism with the size of LHS or RHS at most k+1

and forbidding conditions (if checking rules are present). In the next section we
refine this observation by showing that the rewriting is performed in a catalytic-
like manner.

2.3 P systems with Multi-stable Catalysts

In this section we extend the notion of a P system with catalysts to that variant
where the catalysts can have multiple states. For catalytic P systems, consult
[7].

Let V and C be two disjoint alphabets, let k > 0, and let C have a partition
C = C1 ∪ · · · ∪ Cn such that 1 ≤ |Ci| ≤ k. We say that each partition is a
multi-stable catalyst and we define Period(Ci) = |Ci| the period of the catalyst
Ci, 1 ≤ i ≤ n.

In the sequel, the elements of a multi-stable catalyst Ci having period k will

be denoted by c
(j)
i , 1 ≤ j ≤ k.

A k-states multi-stable (purely) catalytic P system with n catalysts is a
construct Γ = (V,C,R,w), where V is the set of non-catalytic objects of Γ ,
C = C1 ∪ · · · ∪ Cn with catalysts Ci, having period at most k, 1 ≤ i ≤ n.

R is a finite set of rules where each rule is of the following form

c
(j)
i u→ c

(t)
i v, where 1 ≤ j, t ≤ Period(Ci), 1 ≤ i ≤ n and u, v ∈ V ◦.

The initial configuration of Γ , w is a multiset over V ∪ C, with at most one
element of each multi-stable catalyst Ci, i.e., w ⊆ (V ∪ C)◦, with the condition

that
∑Period(Ci)

j=1 |w|
c
(j)
i
≤ 1, 1 ≤ i ≤ n.

Notice that the rules of a multi-stable catalytic P system with multiple states
can easily be represented in the formal framework by [5],[10] as follows:

(0, c
(j)
i u)→ (0, c

(t)
i v), for all c

(j)
i u→ c

(t)
i v ∈ R.

As standard P systems, the k-states multi-stable (purely) catalytic P systems
Γ with n catalysts work by transitions of their configurations where the rules are
applied in the maximally parallel manner. A successful computation performed
by Γ is a finite sequence of transitions starting in its initial configuration and
ending by halting; the result of the computation is the number of non-catalytic
objects in the halting configuration. The result of the computation is denoted
by N(Γ).

3 Bi-simulation of the Two Models

In this section we demonstrate the equivalence of P colonies and multi-stable
(purely) catalytic P systems by using their representation in the above formal
framework.

We first show that any (recursively enumerable) set of numbers that can be
computed by a P colony (in the sense defined above) can be computed by a
multi-stable catalytic P system as well.

Theorem 1. For any P colony Π = (O, e, w0, P1, . . . , Pn) of size (k, n, h) there
exists a h′-states multi-stable purely catalytic P system Γ = (O,C,w,R) with n
catalysts with h′ ≤ h+ 1 such that N(Π) = N(Γ).

Proof. To simplify the presentation, we consider P colonies that do not contain
checking rules.

According to the discussion above (see also [10]), every P colony can be
represented by the formal framework. To this goal, any program p located in cell
i is replaced by a rule of the corresponding network of cells. Let p = p1 ∪ p2,
where pc contains all the communication rules and pr contains all the rewriting
rules of p. Let lhsc(p) (resp. rhsc(p)) denote the multiset of letters of all left-
hand (resp. right-hand) sides of the communication rules; we consider the same
notation for the rewriting rules, using the index r. For simplicity, we will speak
of sum of the left-hand sides (resp. right-hand sides) of the rules in the sequel
and we will use notation +.

Since the definition of the P colony requires that if a program is used, then all
of its rules should be applied, therefore we obtain that the execution of a program
p is equivalent to the following rule given in terms of the formal framework:

(i, x)(0, y)→ (i, x′)(0, y′), where (1)

x = lhsc(p) + lhsr(p), y = rhsc(p),

x′ = rhsc(p) + rhsr(p), y′ = lhsc(p).

Since in every step of the computation every cell in a P colony contains a
constant number of objects equal to its capacity k, each cell contents can be
interpreted as a number z in base k + 1 having exactly |O| bits. Alphabet O is
equal to {o1, . . . , os} and any oi (and e) can appear in any contents in at most
k copies. Thus |O| bits represent the number of occurrences of object oi in a cell
contents c. Under this interpretation, the rules of a program specify some other
number z′ equal to the value of the contents of the cell after the application
of the program. Since the number of rules in a program is exactly k, for each
number z and program p there is exactly one number z′ associated.

We remark that for a cell i having h programs there are at most h+1 different
possible configurations of the cell contents. We number these configurations from
1 to ih, where ih ≤ h+ 1. Let f be a bijection between all possible values of cell
configurations and 1, . . . , ih. Thus, we can rewrite 1 as follows:

(i, c(f(z)))(0, y)→ (i, c(f(z
′)))(0, y′), where (2)

y = rhsc(p), y
′ = lhsc(p), 1 ≤ z, z′ ≤ ih.

We can further transform this rule as follows:

(0, c
(f(z))
i y)→ (0, c

(f(z′))
i y′) (3)

It can clearly be seen that this rule corresponds to a rule of a multi-stable
(purely) catalytic P system.

Hence, starting from the P colony Π, components of Γ can be constructed.
We first remark that object e in P colonies act as an empty symbol, so we
replace all its occurrences by λ in the obtained catalytic rules. First, the initial
multiset of Γ is determined from the initial configuration of Π. Since every rule

c
(f(z))
i y → c

(f(z′))
i y′ of Γ correspond to the application of a program p in Π

described above, it can easily be seen that any transition from configuration
c1 to configuration c2 of Π corresponds to the application of an m-tuple of
rules in Γ , where m ≤ n. Notice that depending on the applicability of their
programs, some components may remain inactive. Since the initial multiset of
Γ contains at most n catalysts, Γ has only catalytic rules, at any computation
step as many catalytic rules are applied in parallel as possible, i.e. at most n.
Since these rules correspond to programs of pairwise different components of Π,
every computation in Γ corresponds to a computation in Π as well. Thus, it is
easy to see that the number of non-catalytic objects at halting of Γ is equal to
the number of objects in the environment of Π which are different from e at
halting. ut

Example 2. Let us consider P colony Π from Example 1. We recall the corre-
sponding rules.

– C1 contains the initial multiset aa and the following programs:
p11 : a→ b, a↔ e, p12 : a→ c, a↔ e, p13 : b→ a, e→ a.

– C2 contains the initial multiset be and the following program:
p21 : b↔ e, e→ b.

– C3 contains the initial multiset ee and the following programs:
p31 : e↔ a, e↔ b, p32 : b→ f, a→ b, p33 : f ↔ a, b→ b.

Let O = {a, b, c, e, f}, and let o1 = a,. . . ,o5 = f , in this order. The different
cell contents are A = (aa, be, ce, ee, ab, bf) which correspond to numbers 00002,
01010, 01100, 02000, 00011, 010010 in base k + 1 = 6. For simplicity, let us
denote these numbers by s1, s2, s3, s4, s5, and s6, respectively.

Then by constructing the multi-stable catalytic P system we obtain the fol-
lowing rules:

– Cs1
1 → Cs1

1 a, , Cs1
1 → Cs3

1 a, Cs2
1 → Cs1

1 ,
– Cs2

2 → Cs2
2 b,

– Cs4
3 ab→ Cs5

3 , Cs5
3 → Cs6

3 , Cs6
3 a→ Cs5

3 f .

Next we show that the sets of numbers computed by multi-stable catalytic
P systems can be computed by P colonies as well.

Theorem 2. For any h-states multi-stable catalytic P system Γ = (O,C,w,R)
with n catalysts there exists a P colony Π = (O, e, w0, P1, . . . , Pn) of size (k, n, h)
such that N(Π) = N(Γ) holds.

Proof. We construct Π as follows. P colony Π has n cells and each cell i has
Period(Ci) programs. Now we will show how these programs are constructed.

Consider a rule cjiu → ctiv ∈ R. We suppose that |u| = |v|. If this is not the
case, then we complement the smaller multiset by adding the needed amount of
symbols e. That is, if |u| < |v| then let u′ = u+e|v|−|u|. Suppose that u = u1 . . . us
and v = v1 . . . vs. We will construct the program pj corresponding to this rule.
It will be composed from two parts. The first part will contain communication
rules that simulate the rewriting of u to v in the above rule. The second part
contains rewriting rules that allow to complement the encoding of the catalyst
state by the contents of the cell.

In order to determine the corresponding rewriting rules we should first find
an encoding for each state of the catalyst. This encoding can be obtained as a
solution of the following integer optimization problem.

k → min,∑
a∈O

xi,ja = k, 1 ≤ j ≤ Period(Ci),

xi,ja ≥ |v|a, xi,ta ≥ |u|a, for any cjiu→ ctiv ∈ R, (4)

xi,ja ∈ N, a ∈ O, 1 ≤ i ≤ n, 1 ≤ j ≤ Period(Ci).

The inequalities state that the symbols that are sent out (resp. received in)
by the exchange rules of the P colony belong to the coding of state j (resp. t) of
the catalyst Ci.

We remark that since inequalities 4 do not impose an upper bound value
for xi,ja , there is always a solution for this system. In case of several possible
solutions, we prefer solutions having the maximal number of symbols e.

The capacity of the P colony is the value k.

Let xi,ja , a ∈ O, 1 ≤ j ≤ Period(Ci) be a solution of the above problem.

Let Code(cji) =
∑

a∈O a
xi,j
a . Let cjiu → ctiv ∈ R and let |u| = |v| = s, dj =

Code(cji)−v and dt = Code(cti)−u. Suppose that dl = dl1 . . . d
l
m, l ∈ {j, t}. Then

pj = (v1 ↔ u1; . . . vs ↔ us; d
j
1 → dt1; . . . djm → dtm).

Now we are able to construct the colony: for every Ci, 1 ≤ i ≤ n, P colony
Π will have component Pi. The programs belonging to Pi are obtained from
the rules Cj

i u→ Ct
iv, in the above described manner. Notice that any program

of Π, determined above encodes the application of the corresponding catalytic
rule, thus, the programs to be applied and the catalytic rules correspond to each
other. Since at the beginning of the computation the initial state of Γ contains
at most one element of each multi-stable catalyst and both systems apply the
maximally parallel computation, we obtain that the two systems compute the
same set of numbers. ut

Example 3. To demonstrate the previous construction, we add an example.

Consider the following multi-stable catalytic P system Π = (O,C,w1, R1).

1.1 : C1
1a→ C2

1bc 2.1 : C1
2 → C2

2 3.1 : C1
3 → C2

3a

1.2 : C1
1a→ C3

1c 2.2 : C2
2b→ C2

2 3.2 : C2
3c→ C1

3b

1.3 : C2
1ac→ C1

1aa 3.3 : C1
3 → C3

3

We transform rules 1.1, 2.2 and 3.1 by adding symbol e in order to balance
the number of symbols at both sides:

1.1 : C1
1ae→ C2

1bc 2.2 : C2
2b→ C2

2e 3.1 : C1
3 → C2

3a

Then the corresponding minimization problem is the following:

k → min

xi,ja + xi,jb + xi,jc + xi,je = k, 1 ≤ i, j ≤ 3

x1,1b ≥ 1, x1,1c ≥ 1, x1,2a ≥ 1, x1,2e ≥ 1,

x1,1c ≥ 1, x1,3a ≥ 1,

x1,1a ≥ 1, x1,1c ≥ 1, x1,2a ≥ 2

x2,2e ≥ 1, x2,2b ≥ 1

x3,1a ≥ 1, x3,2e ≥ 1, x3,1c ≥ 1, x3,2b ≥ 1

xi,ja ∈ N, a ∈ O, 1 ≤ i, j ≤ 3.

We can regroup inequalities by the corresponding state:

k → min

xi,ja + xi,jb + xi,jc + xi,je = k, 1 ≤ i, j ≤ 3

x1,1a ≥ 1, x1,1b ≥ 1, x1,1c ≥ 1

x1,2a ≥ 2, x1,2e ≥ 1

x1,3a ≥ 1

x2,2b ≥ 1, x2,2e ≥ 1

x3,1a ≥ 1, x3,1c ≥ 1

x3,2b ≥ 1, x3,2e ≥ 1

xi,ja ∈ N, a ∈ O, 1 ≤ i, j ≤ 3.

The minimal value of k is equal to 3 and one of possible solutions yields to
the following codes for cji :

x c11 c21 c31 c12 c22 c13 c23 c33
Code(x) abc aae aaa eee bee ace bee eee

We remark that catalysts C2 and C3 can be represented only using two
symbols.

The obtained P colony is shown in Fig. 3.

Fig. 2. The P colony constructed in Example 3.

4 Conclusions

In this paper we have shown a strong bi-simulation between the model of P
colonies and pure multi-stable catalytic P systems. This result was obtained by
using the formal framework for P systems as intermediate step.

As immediate consequence of the results of this paper, it is possible to rewrite
existing results from the area of P colonies in terms of multi-stable catalytic
P systems and conversely. These investigations are topics of future research.
Another consequence is the possibility to conduct proofs in terms of purely
catalytic P systems (that tend to be simpler) and automatically transform them
to P colonies.

Furthermore, this article allows to establish the correspondence between dif-
ferent extensions of P colonies (see [3]) and particular variants of catalytic P
systems. For example, the evolving environment extension [2] corresponds to
the same multi-stable catalytic P systems, so it can be simulated by a P colony
with a greater capacity. Homogeneous P colonies [1] correspond to catalytic P
systems having same rules for all catalysts.

Other possible extensions can also be discussed. For example, non-pure cat-
alytic systems would correspond to P colonies having special rules allowing to
evolve objects by themselves in the environment. Another possibility that follows
from our constructions is to consider P colonies where the capacity is different
in each cell.

5 Acknowledgement

The work of E. CS-V. was supported by NKFIH (National Research, Develop-
ment, and Innovation Office), Hungary, grant no. K 120558.

References

1. L. Cienciala, L. Ciencialová, and A. Kelemenová. Homogeneous P colonies. Com-
puting and Informatics, 27(3):481–496, 2008.

2. L. Ciencialová, L. Cienciala, and P. Sośık. P colonies with evolving environment.
In A. Leporati and C. Zandron, editors, Proceedings of the 17th International Con-
ference on Membrane Computing (CMC17), pages 105–118, 2016.

3. L. Ciencialová, E. Csuhaj-Varjú, L. Cienciala, and P. Sośık. P colonies. Bulletin
of the International Membrane Computing Society, 1(2):119–156, 2016.

4. R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez, and S. Verlan. A formalization of
membrane systems with dynamically evolving structures. International Journal of
Computer Mathematics, 90(4):801–815, 2013.

5. R. Freund and S. Verlan. A formal framework for static (tissue) P systems. In
G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, and A. Salomaa, editors,
Membrane Computing, 8th International Workshop, WMC 2007, Revised Selected
and Invited Papers, volume 4860 of LNCS, pages 271–284. Springer, 2007.

6. R. Milner. An algebraic definition of simulation between programs. In Proceed-
ings of the 2Nd International Joint Conference on Artificial Intelligence, IJCAI’71,
pages 481–489, San Francisco, CA, USA, 1971. Morgan Kaufmann Publishers Inc.

7. G. Păun, G. Rozenberg, and A. Salomaa, editors. The Oxford Handbook of Mem-
brane Computing. Oxford University Press, 2009.

8. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume
1–3. Springer, 1997.

9. S. Verlan. Study of language-theoretic computational paradigms inspired by biol-
ogy. Habilitation thesis, Université Paris Est, 2010.

10. S. Verlan. Using the formal framework for P systems. In A. Alhazov, S. Cojo-
caru, M. Gheorghe, Y. Rogozhin, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing - 14th International Conference, CMC 2013, Chişinău, Republic
of Moldova, August 20-23, 2013, Revised Selected Papers, volume 8340 of Lecture
Notes in Computer Science, pages 56–79. Springer, 2013.

