
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Big Data Analytics and

Application Deployment

on Cloud Infrastructure

Relatore:

Chiar.mo Prof.

Gianluigi Zavattaro

Presentata da:

Iacopo Talevi

II Sessione

Anno Accademico 2016/2017

Introduction

The work related to this project began in October 2016. It was born from

the collaboration between Mr.Alessandro Bandini and me, and has been de-

veloped under the supervision of professor Gianluigi Zavattaro. The main

objective was to study, and in particular to experiment with, the cloud com-

puting in general and its potentiality in the data elaboration field.

Initial guidelines were based on a University of Pennsylvania course. The

first goal was to study and delve into cloud technologies and the cloud world

in general. This was necessary because cloud computing is not covered in

the first three years of our university degree. We searched various materials

such as books, scientific papers, online courses, websites, practice guides and

anything that could be useful. After this screening operation, we selected

the most important materials for our project and we began to study them in

more details.

Once we had acquired the basic knowledge, we tried to always combine the

theoretical study with exemplifying practical experiences. For example we

found a very useful online course called “Intro to Hadoop and MapReduce”

that offered after each lesson some exercises or experiments to test and to

put into practise the learned knowledges through virtual machines.

We extended our experiments using real cloud platforms too, such as Amazon

Web Service (AWS). During the project we had to change platform and the

final version is realized through Google Cloud Platform. We used a collabo-

ration between our university and Injenia Group that offered us free credits

to work on our project within Google’s platform.

i

ii Introduction

We worked on this project also during our internal internship. With the

Professor, we identified the development of a Social Network integrated with

cloud data elaboration to offer useful integrated information as our final

objective. In particular we wanted to develop a University Social Network

specific for Bologna University.

The Social Network was initially developed using the Amazon services but

after a small problem with our free credits we decided to move to a IaaS

solution to avoid vendor lock-in problems and to obtain a more indipendent

solution.

Data elaboration is performed through MapReduce applications written in

Python and executed using Google App Engine. MapReduce is a program-

ming approach for solving big data analysis problems. Alessandro developed

the same applications also through a functional approach with the Scala lan-

guage and Spark platform, to compare the produced code.

Alessandro and I collaborated during the entire project, working side by side

on every aspect, but in general I focused my work on the Social Network

realization, with all aspects connected to the development of the interface

and the infrastructure configuration while Alessandro focused on the data

elaboration. For this reason, some aspects of the project will only be men-

tioned in this dissertation because they have already been covered in details

in Alessandro’s work.

This dissertation starts with a theoretical introduction on cloud comput-

ing, analyzing the main aspects, the keywords, and the technologies behind

clouds, as well as the reasons for the success of this technology and its prob-

lems.

After the introduction section, I will describe the three main cloud platforms

in the market. We directly used two of them.

Subsequently I am going to describe the main aspects of our practical project.

I will analyze the social network development, with the initial solution real-

ized through Amazon Web Services and the steps we took to obtain the final

version with its charateristics.

Introduction iii

To conclude, the last section is specific for the data elaboration and contains

a initial theoretical part that describes MapReduce and Hadoop followed by

a description of our analysis. I will explain the basic idea, the code and the

problems encountered.

Contents

Introduction i

1 Cloud Computing Introduction 1

1.1 General Introduction . 1

1.2 Technologies behind Cloud Computing 2

1.3 Cloud Keywords . 3

1.4 Cloud Computing Architecture 4

1.5 Cloud Computing Models . 5

1.5.1 Public Cloud . 5

1.5.2 Private Cloud . 6

1.5.3 Hybrid Cloud . 7

1.5.4 Community Cloud . 7

1.6 Cloud Services Reference Models 8

1.6.1 Infrastructure-as-a-Service (IaaS) 9

1.6.2 Platform-as-a-Service (PaaS) 10

1.6.3 Software-as-a-Service (SaaS) 11

1.6.4 Summary . 13

1.7 Service-and-Compliance-level Agreements 13

1.8 Cloud Economic Aspects . 13

1.8.1 Economic Advantages 14

1.8.2 Pricing Strategies . 14

1.9 Reasons of Cloud Success . 15

1.10 Obstacles and major Challenges of Cloud Computing 16

v

vi Introduction

1.11 Cloud Vulnerabilities . 18

1.12 Legal Issues of Cloud Computing 21

1.13 Energy Use and Ecological Footprint 22

1.14 Cloud Applications . 22

2 Cloud Platforms 25

2.1 Cloud computing at Amazon 25

2.1.1 EC2 and Connected Services 26

2.1.2 Storage Solutions . 28

2.1.3 Useful Services . 30

2.2 Cloud Computing: Google Perspective 32

2.2.1 Google AppEngine . 32

2.2.2 Storage Solutions . 34

2.2.3 Useful Services . 34

2.2.4 Develop, Deploy and Maintain process 35

2.3 Microsoft Windows Azure . 36

2.3.1 Compute Services . 37

2.3.2 Storage Solutions . 40

2.3.3 Azure Peculiarity . 41

2.4 Other Possibilities . 41

3 University Social Network 43

3.1 Interface . 44

3.2 First Attempt using AWS . 46

3.2.1 EC2 . 46

3.2.2 DataBase . 47

3.2.3 Amazon Elastic MapReduce 48

3.2.4 The end of the Amazon Experience 49

3.3 Application Development using our University Machines . . . 49

3.3.1 Cassandra . 49

3.3.2 Test Phase . 50

3.4 Google Solution . 50

Introduction vii

3.4.1 Machines Characteristics 51

3.4.2 Packages Installation 52

3.5 Conclusion . 53

4 Data Elaboration 55

4.1 MapReduce . 56

4.1.1 MapReduce Data Flow 57

4.1.2 MapReduce Features 58

4.1.3 Examples . 58

4.2 Hadoop . 60

4.2.1 Comparison between Hadoop and other alternative sys-

tems . 60

4.2.2 Hadoop Distributed File System (HDFS) 61

4.2.3 Hadoop Data Flow . 61

4.3 Analysis using Google App Engine 62

4.3.1 Job Types . 63

4.3.2 Stages . 63

4.3.3 Input Reader and Output Writer 64

4.3.4 Configuration Settings 65

4.4 MapReduce Pipeline example in Python 66

4.5 Our Elaboration . 68

4.5.1 Social Ranking . 69

4.5.2 Movie Ranking . 74

4.5.3 Movie Genres Ranking and Movie Suggestion 78

4.5.4 Performance Analysis 79

4.6 Data Elaboration Conclusion 82

Conclusions 83

A Code 85

A.0.1 Pipeline Adapter Classes 85

A.0.2 Map Task to generate the result on a single file 86

viii CONTENTS

A.0.3 Map Task to sort the result and return it in JSON format 86

A.0.4 Movie Genres Ranking 87

A.0.5 Movie Suggestion . 90

Bibliography 97

List of Figures

1.1 Cloud Computing Architecture.

Source: Mastering Cloud Computing Foundations and Appli-

cations Programming [1] . 4

1.2 Cloud Computing Reference Models.

Source: Mastering Cloud Computing Foundations and Appli-

cations Programming [1] . 9

3.1 SocialUNIBO homepage . 45

3.2 Advice Page . 46

3.3 Compute Engine instance creation form 51

4.1 Total computation time with a different shard number 81

ix

List of Tables

4.1 Execution time depending on the shard number 80

4.2 Average map calls per second depending on the shard number 81

xi

Chapter 1

Cloud Computing Introduction

This chapter will describe the basic knowledges about cloud computing

that Alessandro and me learned on the first part of our project. We dedicated

about three months, from November to January, to search and study various

materials from different sources. These knowledges that cover the principal

aspects of cloud computing has been foundamental during all phases of our

project to understand the most difficult concepts and the practical parts.

1.1 General Introduction

“Cloud computing is a utility-oriented and Internet-centric way of de-

livering IT services on demand. These services cover the entire computing

stack: from the hardware infrastructure packaged as a set of virtual ma-

chines to software services such as development platforms and distributed

applications.”[1]

The cloud originally was the Internet symbol in the network system diagrams,

but now this term is used to represent both components of the new cloud

computing system. In fact it is used to refers to the available applications

deployed on the cloud and to the hardware and software infrastructure in the

datacenters that compose and create the cloud.

1

2 1. Cloud Computing Introduction

Basic Idea Cloud computing is based on the idea to supply IT infrastruc-

ture like a public utility through a central system view where the hardware

is locate in large datacenters. This idea was considered realistic only dur-

ing the last ten years of the 20th century thanks to the developments of

infrastructure and the Internet that allow a fast and cheap user connection

with datacenters. Cloud computing is based on the client-server paradigm

usually with stateless servers. These characteristics are prefered because the

obtained systems are simpler, more scalable and robust.

The origin of Cloud Computing Cloud computing was made possible

only thanks to the technology development in the network infrastructure and

in the parallel and distributing computing field. In the beginning of the 2000s

all the big IT companies began to implement their cloud infrastructure. The

first was Amazon that released a first version of cloud computing service

called EC2 on 2006. In the following years Google, Microsoft, Apple, Oracle

and others entered this market.

Cloud Computing Revolution In the last years the developers’way to

think and realize applications and computing systems in general has been

radically changing connected with the cloud computing development. The

idea of everything as a service (XaaS), very common today, was borne with

the cloud computing where, as mentioned above, all the components of the

computing stacks can be requested and rented like a service.

1.2 Technologies behind Cloud Computing

There are some essential technologies that enabled the rise of cloud com-

puting:

Distributed System is the base of the cloud infrastructure. In fact this is

a collection of an enormous amount of independent systems that handle

1.3 Cloud Keywords 3

and share the workload. They appear to the user like a single system

with a single interface.

Virtualization allows the best usage of very powerful centralized datacen-

ters. In fact for example hardware virtualization allows deploying in-

dependent virtual machine on the same hardware. So a single powerful

server can be used at the same time by a lot of different users. This

technology has also other advantages like the possibility to dynamic

change the characteristics of each virtual machine and the possibility

to move these on different hardware at anytime.

Web 2.0 introduced interactive web applications that can substitute the

normal desktop versions with various advantages. All the software

offered through the cloud are based on this technology.

1.3 Cloud Keywords

Cloud computing can have different shapes but it is possible to find some

common keywords.

On demand For the end users the services are always accessible from any-

where, they need only a Internet connection.

Reliability The ability of cloud systems to perform its required functions

under stated conditions.

Scalability / Elasticity gives the possibility to adapt the infrastructure to

the business needs and the peak workload in any moments on-demand.

The system can add new components (Horizontal Scalability) or im-

proves the existing nodes (Vertical Scalability). The scalability con-

cept can be applied across the entire computing stack through cloud

computing, from the hardware components (like compute capability,

storage and networking) to the services and application components

that can be used and requested on demand.

4 1. Cloud Computing Introduction

Virtualization the cloud infrastructure are built through this technology

Cost Model all cloud forms implement a utility-based cost model (or pay-

per-use strategy), where the user pays only what he really uses.

1.4 Cloud Computing Architecture

A cloud physical infrastructure is usually composed by more than one

datacenter and it can be heterogeneous. Depending on the services offered,

different software layers can be used on the physical infrastructure. Usually

there is a component to create and manage the virtual machines and if nec-

essary a development platform or directly the applications that users can use.

Figure 1.1: Cloud Computing Architecture.

Source: Mastering Cloud Computing Foundations and Applications Pro-

gramming [1]

Different virtualization techniques are used to create the virtual machines,

to expose the complete infrastructure as a collection of virtual machines and

1.5 Cloud Computing Models 5

to create a runtime environment where users can deploy and manage their

applications.

1.5 Cloud Computing Models

The term Cloud refers to the infrastructure through which several differ-

ent services are offered to the users. Depending on who control the infras-

tructure (the administrative domain) and who can use the services there are

different deployment models.

1.5.1 Public Cloud

is the most common and famous cloud computing deployment model. It

is characterized by a company that sells cloud services to the general public

on a subscription basis. All customers who own a credit card to pay the

provider can use the services. They can access the cloud from anywhere and

at any time, this action requires only an Internet connection.

The cloud provider implements the service through a series of interconnected

datacenters. These datacenters are spread all over the world to offer users

good performances everywhere. They use the virtualization technology to

serve a large amount of customers with a smaller number of devices, offering

to each client a private and isolate computing environment. This situation

is called multitenancy.

In the last years, many small companies, in particular start-ups, used the

public cloud to obtain the IT resources that they need. This solution has

various advantages: they do not have to make a big initial investment to

build a private IT infrastructure, do not need to create immediately a com-

plete IT department that manage the infrastructure, do not have to predict

the resource that they will need in the future and they do not have to design

a final infrastructure because the cloud offers the possibility to adapt his

services with the business needs in any moment. Public cloud is also used

to extend a company IT infrastructure to serve momentaneous or particular

6 1. Cloud Computing Introduction

needs.

In the public cloud it is possible to find all type of cloud services: basic IT

infrastructure, of which the most famous provider is Amazon with Amazon

EC2, as well as platform services, a field in which Google is the top vendor

with Google AppEngine, and there are a very large number of cloud applica-

tions vendors providing all types of possible applications.

1.5.2 Private Cloud

Public Cloud has a lot of advantages for companies but it has also some

drawbacks. In particular these depend on the fact that the physical in-

frastructure is managed by the cloud provider so an external third-party

company. This situation could create problems to ensure the secrecy of con-

fidential information or other problems connected with the loss of control

on the system. Another aspect is that many companies, founded before the

cloud computing spread, already own a IT infrastructure and they do not

want to waste their investments. Rather, they may prefer to take advantages

from the cloud but using their own infrastructure; the solution is the Private

Cloud.

In this deployment model a company that own a large IT infrastructure im-

plement on it a private cloud system. Only the organization members can

use the offered services. They do not have to pay for the service but usually

they have some limitation for each user or for each project/department. As

mentioned above, this is a solution for companies that already have a big

amount of IT resources or that want to have complete control on their sys-

tem and in particular on their confidential information. The control of the

system allows also the company to ensure a specific quality of service and

to be sure that particular standards or procedures are followed during the

system management or the application deployment.

There exist a lot of open source or property softwares to deploy a cloud sys-

tem on a private infrastructure. The company needs one or more software

layers depending on what types of service it wants to offer.

1.5 Cloud Computing Models 7

1.5.3 Hybrid Cloud

As mentioned above, public and private cloud have some advantages and

some disadvantages. Public cloud offers huge amount of resources that enable

users to handle peak workload without problems but it suffers from security

threats and it does not give users a complete control of the system. Private

cloud, on the contrary, guarantees security for confidential information and

a complete control of the system but it has limited resources.

So the solution could be to compose the two models to take advantages from

both. In fact sometimes companies have some needs like confidentiality that

is unable to meet with a public cloud model. But they may also not own

enough IT resources to develop a completely private solution, so they can

compose the two models. They can use the positive aspect of each to serve

the specific organization’s needs and to cover the other model problems.

Usually this type of cloud is based on a private cloud that can use public cloud

resources to manage workload peak or to increase the computing capability

for a specific time period. This operation is called cloudbursting. In a hybrid

solution public cloud services can be also directly integrated in the private

cloud.

It is important for the company to have a good workload management system

that minimize the public cloud resources used and that immediately release

them when they are no more necessary, to optimize the costs. So the workload

management system in a hybrid cloud is more complex than public or private

cloud, this is also because it has to ensure that confidential information

are processed only in the private system and that the public infrastructure

perform only secondary operations with no secrecy problems.

1.5.4 Community Cloud

A community cloud is implemented through multiple infrastructure from

different administrative domains that work together. This happens because

in some occasions a group of companies or a community of people that have

8 1. Cloud Computing Introduction

the same needs decide to collaborate to create a cloud. They share their

resources to create the best solutions for their common needs. It is different

from public cloud where users with very different needs can use the same

services. This infrastructure is controlled by the community, usually through

democratic processes, and only the community members can use it.

Community cloud model identify also a situation where normal users share

their underutilized resources to create the cloud infrastructure. In this situ-

ation each user is at the same time a consumer and a provider of the cloud

services.

Community cloud has some positive aspects:

• the absence of a single services vendor allows a more flexible and open

system

• all the users collaborate to create the infrastructure. So it is spread

between the users and consequently there is not a single point of failure

identified by the provider datacenter

• the users are consumers and providers at the same time so there is not

a conflict between convenience and control

• this model is not realized through large polluting datacenters so it is

also more eco-friendly.

1.6 Cloud Services Reference Models

The cloud services offered to the users can be divided in three major cate-

gories, called reference models: Infrastructure-as-a-Service (IaaS), Platform-

as-a-Service (PaaS), and Software-as-a-Service (SaaS). They offer different

degrees of freedom because they are located at different levels of the software

stack.

1.6 Cloud Services Reference Models 9

Figure 1.2: Cloud Computing Reference Models.

Source: Mastering Cloud Computing Foundations and Applications Pro-

gramming [1]

1.6.1 Infrastructure-as-a-Service (IaaS)

is the most basic cloud service. Users request a basic computing infras-

tructure provided through virtual machines, created using hardware virtu-

alization. The machines have variable values of processing capacity, storage

and networking and they are priced depending on these values.

Users are totally independent about the softwares installed on the rented ma-

chines, they can choose all software components starting from the operating

system. On the contrary they do not have the control of the physical infras-

tructure, the hardware components, that is handled by the provider. Users

can request levels of IT resources, like processing, storage or networking and

the provider manage the physical infrastructure to satisfy the demand. The

hardware component are shared between the customers thanks to virtualiza-

tion technology.

This model is usually used to recreate a pre-existing server environment on

10 1. Cloud Computing Introduction

the cloud or to create a new one as independent as possible from the cloud

providers. It is the best solution for new companies that want a completely

customizable IT infrastructure without a big initial investment and without

software limitations.

The best advantage of IaaS with respect to a traditional private system, is

the ability to dynamically adapt the resources used to the workload. So the

over-provisioning problem is eliminated and the customers pay for the exact

amount of resources that their systems used. This feature is very useful for

systems with a volatile demand, because it allows to optimize the costs.

However, the high degrees of freedom implicate that the developers can not

use the convenient high level services offered by the providers and they must

have the necessary competence to create and administrate all parts of the

system.

1.6.2 Platform-as-a-Service (PaaS)

is the next step in the stack. It offers a development environment, consist-

ing of programming languages and tools. Users can create their applications

and they can deploy and run them directly and automatically in the cloud.

The elasticity feature and the fault-tolerance are automatically offered by

the system and they are managed by the provider. The developers can con-

centrate on the application development and management.

Paas increases the abstraction on the cloud and this is the main advantage of

this solution. In fact, it allows higher-level programming with dramatically

reduced complexity about the general/external aspects of the system. With

this model users must only set the environment settings without thinking

about the other low-level aspects. However, this can also represent a draw-

back, because the developer can only change these settings and therefore his

possibilities are limited by the platform characteristics. In fact users do not

control the physical infrastructure, the operating system and the low-level

services.

As a consequence, this solution might for example not be appropriate for

1.6 Cloud Services Reference Models 11

situations where a particular property programming language, tool, software

or environment are required. In addition the applications are closely linked

with the platform and the services that this offers, so that a vendor lock-in

problem must be considered. On the contrary, this solution is very convenient

for multiple developers from all over the world that collaborate to create an

application. In fact using a PaaS solution their work is shared immediately.

Practically PaaS has two main shapes. The first is a Web interface that

allows user to design, develop and deploy the application, the second is a

programming APIs and a set of libraries that users must use during the de-

velopment process. The most famous PaaS solutions is Google AppEngine

that provide an API and various libraries and Microsoft Windows Azure that

offer a platform to develop any type of applications on the top of the .NET

technology.

Usually providers offers also a package to simulate the cloud environment on

a local machine. The developers use this to test their applications during the

development process. Once this phase is completed, they can easily deploy

and run the applications on the cloud. In this way they do not consume and

pay resources for incomplete applications.

1.6.3 Software-as-a-Service (SaaS)

is the top of the cloud stack. This acronym was used for the first time

in 2001 by the Software Information & Industry Association (SIIA). SaaS

model include a series of applications ready to use. These are accessible

through a web browser and an Internet connection. After the registration

process, customers must only enter their credentials in the application web-

site and they can immediately use them.

The applications are hosted in a cloud infrastructure that allows scalable fea-

ture and they are completely centrally managed by cloud providers. A SaaS

version of most desktop applications can be already found on the cloud. A

lot of different office automation, document management, social network and

others SaaS are already widely used, often without users knowing that they

12 1. Cloud Computing Introduction

are using this type of cloud service.

In this delivery model users can only use the applications, without controlling

any infrastructure parts or any operations during the development or after

the application deployment.

SaaS is based on the Web 2.0 technology that allow to use a web browser

as a normal application interface. SaaS is known as a one-to-many software

delivery model, so the same application on the same infrastructure is used

by multiple customers at the same time using the power of the cloud infras-

tructure.

SaaS is adapted for applications that for example are used from a huge

amount of users. In fact a big advantage of SaaS is that it removes problems

connected with software installation and software update. With traditional

software each user must execute these operations on his machine, but with

SaaS they are executed only on the cloud infrastructure by the provider

transparently to the users. Another advantage is that SaaS applications are

immediately accessible through any device that has a Internet connection

and a web-browser without develop a specific version. In addition SaaS are

advisable for users that need a software for a short period of time, in fact with

SaaS users pay a subscription for the application access but not a usually

considerable up-front costs for the licenses like for the desktop application.

Clearly SaaS model is not the best solution for all applications, for example

it is not a good fit when sensitive data should be inserted and stored or for

software where a real-time response is required. These problems are the con-

sequences of the execution on the cloud.

The most common example of SaaS is web-based email client. This solution

is composed by a web interface accessible through a normal web browser

that allows the user to execute the same operations of the desktop version.

A large number of other applications can be identified as SaaS. Very much

used in recent years are the cloud version of the office softwares. The most

famous example is Google Documents. This service allows users to create,

edit and manage a text document but also a presentation or other types of

1.7 Service-and-Compliance-level Agreements 13

file. Usually it is used with a cloud storage service like Google Drive. These

services together give the user a complete solution in the office software field.

1.6.4 Summary

As already mentioned, the development complexity depends on the model

adopted. IaaS is the most complex. It is very flexible but the developer must

manage all the aspects of the system and this requires a vast amount of

knowledge to develop a good application. PaaS offers tools to develop and

deploy the apps, so the developer can focus on the application logic, while all

other aspects are managed by cloud experts. To conclude, SaaSs are ready

applications accessible from the Web, the users need only to know the API

of the specific application in order to use it.

1.7 Service-and-Compliance-level Agreements

The Service-and compliance-level agreements usually abbreviate in SLA

is practically the contract between the provider and the consumer. It defines

aspects of the service like the service quality or the user and provider respon-

sibilities.

Usually the responsibilities vary depending on the delivery model adopted.

For SaaS the user has less control so he is responsible just for what he does

with the software. In the case of PaaS, the degrees of freedom for the user are

higher, so consequently increasing also the responsibility. Finally in IaaS the

user has total control of his system so he is responsible for all the operations

executed with his machine.

1.8 Cloud Economic Aspects

The cloud economic aspects can be divided in two main sections. The first

describes the economic advantages connected to the use of cloud computing,

14 1. Cloud Computing Introduction

the second instead analyzes the main pricing strategies adopted by biggest

providers.

1.8.1 Economic Advantages

Cloud Computing has some economic advantages.

As mentioned above, cloud computing has an immediate economic advan-

tage because it does not require any initial big investment to create an IT

infrastructure.

But it has advantages also in the long period, in fact through cloud comput-

ing a company can shift the capital costs for the IT into operational costs

that are more flexible and adaptable with the company situation. In partic-

ular there are some clear advantages, first of all thanks to cloud the company

deletes the deprecation and the maintenance costs of the IT assets, it can

reduce or delete the internal IT division with a big cost reduction and it does

not have to pay software licenses but only a subscription to cloud services

that is more flexible.

The company also removes all costs connected with the operativity of a pri-

vate datacenter, like electricity or cooling.

If a company already owns some IT resources, it can use the cloud services

only to manage workload peak or specific needs for a short time, without

increasing its private infrastructure, which would require other big invest-

ments. In the future, if the company wants to move completely to the cloud

infrastructure, it can then substitute its deprecated machine with cloud ser-

vices.

1.8.2 Pricing Strategies

Cloud computing has three main pricing strategies.

In the first the customers pay depending on how many units of time they

actually used the requested service. Amazon EC2 adopts this strategy, with

users selecting a machine type that has a specific cost per hour and paying

1.9 Reasons of Cloud Success 15

according to how many hours they used the machine.

In the second strategy each operation, like data transmission or memory

allocation, has a cost and the user pay depending on the operations that he

requests. In this case the developers should optimize their applications to

limit the operations number to reduce the costs.

The last strategy is based on a subscription price. The customers pay a

subscription and he can use the service for the amount of time established

in the contract. This strategy is used mainly for the applications offered

through the cloud (SaaS).

1.9 Reasons of Cloud Success

There are multiple reasons that have enabled the cloud computing suc-

cess. They are linked to the advanced technologies available. In fact IT

technologies are being constantly developed and in the last years software,

networking, storage, and processor technologies have taken enormous steps

forward. These allows cloud providers to offer better and more economic

services, optimizing the usage of their infrastructures. Among the reasons

for the success of the cloud we can find:

• the financial advantages for users thanks to the pay-per-use approach

and the avoidance of buying and maintenance costs (operational costs

related to IT software and infrastructure), as mentioned in 1.8.1.

• the high performances that users can obtain. Elaborations’time can

also be shortened by requesting more resources and using the paral-

lelization, i.e. relying on the cloud scalability in their applications.

• the services availability, as customers can access their data and they

can use the cloud services everywhere, at any time and through different

devices.

• the possibility to react rapidly to unplanned IT resources needs.

16 1. Cloud Computing Introduction

For these reasons cloud computing is considered by a vast amount of

very different companies. Some of them already use the cloud for specific

activities. For example, the New York Times used Amazon Cloud service,

in particular Amazon EC2, to convert its digital library in a new format.

This activity is perfect for cloud computing because it requires a consider-

able amount of computing resources for a short period of time, so it is very

convenient to rent the necessary resources from the cloud. Thanks to the

big amount of computing resources rented, the task required only 36 hours.

After this period of time they do not incur in any other additional costs.

Small enterprises and start-ups too, have a lot of reasons to use the cloud

services. In fact they can obtain a complete IT infrastructure very quickly,

without any big initial investment and without employing staff resources,

that are usually limited in small companies, on the infrastructure. In the

future, they can then easily expand their infrastructure, according to the

business needs.

Other advantages can be found for the cloud providers. In fact they can

take advantages of the infrastructure concentration into large datacenters.

This allows cloud provider to save money optimizing the physical and staff

resources.

1.10 Obstacles and major Challenges of Cloud

Computing

In addition to the usual problems connected with the management of big

IT systems, such as the configuration of all components, cloud computing

presents other obstacles and challenges. These mainly depend on the dynamic

resource provisioning feature and the usage of virtualization technologies,

but also from other particular aspects of the cloud. Researchers are studying

these problems to find solutions.

• One of the most common problems of using public cloud, is connected

1.10 Obstacles and major Challenges of Cloud Computing 17

with confidential information security. Confidential data in fact

are stored and elaborated through an infrastructure managed by the

cloud provider so they could be stolen from the providers themselves,

as they are the ones that control the infrastructure, or from other users

that share the same physical machine as a consequence of the multi-

tenant technique when the security isolation is not perfectly imple-

mented. Private clouds could be a solution for highly sensitive applica-

tions, but it is not always possible and as we already known they have

some significant limits.

• Cloud users can freely request resources depending on their needs, but

this can create a cloud overload with availability problems and/or

unpredictable performances. This situation is inconvenient for all

users and there are some types of applications that can not accept it.

Usually providers ensure minimal performance parameters, described

in the service-level agreements (SLAs).

• A big challenge connected with resource allocation is the development

of a better and better cloud resource management system that

optimize the usage of the cloud provider resources and offers users a

better service in term of load balancing, QoS guarantees and capacity

allocation.

• A problem connected with the huge amount of resources used in a

cloud infrastructure and with the parallelization technique commonly

employed in the cloud is reliability. In fact, cloud tasks can involve

many nodes and - as it happens in a traditional system, but even more

in a cloud system - node failures must be taken into consideration and

handled. A better failure management gives benefits to providers, who

can then optimize their resource usage, and to users, by accelerating

tasks’executions.

• From the client’s perspective, a performance problem is the network

speed. In fact, in the last years data transfer bottlenecks connected

18 1. Cloud Computing Introduction

with low network capability, disadvantaged the cloud utilization. The

network development and the creation of better network infrastructures

in all advanced countries, are now reducing the impact of this problem.

• A big obstacle for a wider cloud spread is the lack of standards.

This could be translated in a vendor lock-in problem, that involves

very difficult and expensive operations to move an application from a

provider to a new one.

The lack of standard also create problems when users try to use services

from different vendors. As a consequence, the interoperability between

services from different providers is today extremely difficult.

A standardization process between the bigger providers should resolve

the problem and this will give users a bigger range of possibilities and

a more flexible systems. On this theme some researchers imagine the

cloud computing of the future as a totally open market, where the IT

resources are traded and rented from the best bidder.

1.11 Cloud Vulnerabilities

All IT systems are target of malicious attacks. So the providers should

protect their cloud infrastructures, that are nothing else than very big IT

systems.

As the clouds spread, malicious individuals are developing new security

threats and they are individuating new attack channels against cloud providers

or cloud users. For example malicious users can try to take advantage of mul-

titenant access supported by virtualization, that is a specific characteristic

of cloud infrastructures.

The amount of resources available make cloud infrastructures a very interest-

ing target for attackers that want to use these resources to execute large-scale

attacks.

Some vulnerabilities examples are:

• Cloud is subject to system availability threats. An example is con-

1.11 Cloud Vulnerabilities 19

nected with the Internet domain name servers. In fact the cloud ser-

vices are available only through the Internet so a problem with these

servers could make clouds inaccessible. In this case users can do noth-

ing to resolve the drawback or to use the services, they must wait until

the IDN servers return to work properly.

• However, cloud users - and in particular companies that use the cloud -

must take care in the authentication and authorization of their employ-

ees handling the difference between their internal policy and the cloud

policy. They must also try to prevent account or service hijacking.

• Cloud users should also consider and study the threats connected to

third-party data control in a time where privacy is a well-felt topic.

Sometimes, it is not easy to understand which type of situations users

should consider, especially because it might not be clear who really

controls the data (if there are subcontracts). For this reason the choice

of storing important data on cloud could be risky.

Another problem that users usually do not think of, is connected with

the deletion of confidential information stored on the cloud. In fact,

users can not know if the data they intended to erase have been really

deleted. In addition to this, users have no guarantee that even if the

data are correctly deleted, the next user that will use the same hard-

ware will not be able to recover some pieces of information.

Users do not have to only worry about external access to confidential

data but also about problems connected with data replication fails

and storage media failure. If important data are stored only in the

cloud and a failure of this type happens, such data could be perma-

nently lost.

On these themes the Amazon Web Services customer agreement, for ex-

ample, does not help boost user confidence as it states: “We . . . will

not be liable to you for any direct, indirect, incidental . . . damages

. . . nor . . . be responsible for any compensation, reimbursement,

20 1. Cloud Computing Introduction

arising in connection with: (A) your inability to use the services . . .

(B) the cost of procurement of substitute goods or services . . . or

(D) any unauthorized access to, alteration of, or deletion, destruction,

damage, loss or failure to store any of your content or other data”[6].

To ensure the secrecy of the data on the cloud someone think that cryp-

tography can be a solution. Clearly it presents some advantages and

some drawbacks as the system will require more time to process the in-

formation and this implies poorer performance. In addition it does not

resolve completely the security problem. In fact encrypt data trans-

missions or encrypt data stored are safer than the non-encrypt versions

but to process this information the cloud systems must decrypt the

data and so these are easily accessible in the memory. In particular in

systems based on the virtualization, extracting information from the

memory is not too complicated.

• Cloud providers instead must protect their infrastructure from the most

famous type of cyber-attack like DoS and SQL injection. An exam-

ple of famous historic malicious attacks directed to cloud services is the

one that occurred in May 2009, when a denial-of-service (DoS) attack

was carried out against Google, affecting the availability of several of

their services, including Google News and Gmail services, for various

days [2]. Usually security professionals study the attacks and use dig-

ital forensics to identify and resolve the security flaws, but in a cloud

environment where resources are shared between multiple users, this is

much more difficult and sometimes impossible.

• An example connected with physical problems is “a lightning caused

a prolonged downtime at Amazon on June 29 and 30, 2012”[2], but also

any other catastrophic event or local problems in the area where a data-

center is located could stop the correct operativity of it or even destroy

the building. For these reasons and to have better performance every-

where, providers distribute the data centers in different geographical

1.12 Legal Issues of Cloud Computing 21

areas and they use a massive data replication between them.

For further details on the cloud security theme, it is possible to visit the

Cloud Security Alliance (CSA) website. “The Cloud Security Alliance (CSA)

is the world’s leading organization dedicated to defining and raising awareness

of best practices to help ensure a secure cloud computing environment”[8].

They periodically publish documents with the main cloud security threats

with explanations, examples and suggestions.

1.12 Legal Issues of Cloud Computing

There are some problems connected with the cloud and the different coun-

tries’laws. In fact in most cases the laws in force in many countries are old

and may not be suitable to regulate this new environment.

Another problem connected with the international spread of cloud datacen-

ters is that different countries usually have different laws in the data privacy

field. This means that different situations are created depending on where the

data are physically stored. European countries usually have stricter privacy

laws while for example in the U.S. the governative agencies can have more

freedom. On this theme the Russian Federation extended a law to oblige

data operators to manage all personal data of citizens of the Russian Fed-

eration through systems that are in the territory of the Russian Federation.

“The Federal Law ’On Personal Data’ Nr 152 dated 27 July 2006 (PDL), will

be supplemented by a new requirement stating that data operators (entities

performing functions of both controllers and processors, to use European ter-

minology) are obliged (subject to certain exceptions) to ensure the recording,

systemisation, accumulation, storage, clarification (update, change) and ex-

traction of personal data of citizens of the Russian Federation with the use

of databases located in the territory of the Russian Federation ”[9].

Probably an international regulations on matter and service-level agreements

that provide more adequate legal protection for cloud users would be desir-

able.

22 1. Cloud Computing Introduction

1.13 Energy Use and Ecological Footprint

As mentioned above, the cloud infrastructure consists of a series of large

data-centers. These consume a huge amount of energy and consequently they

have an ecological impact.

According to Shehabi et al. (2016), “US data centers consumed about 70

billion kilowatt-hours of electricity in 2014, representing 2 percent of the

country’s total energy consumption. That’s equivalent to the amount con-

sumed by about 6.4 million average American homes that year”(For more

details, the whole report can be accessed at the following link [7]).

These data are impressive, and they are growing steadily. It is estimated

that in 2020 consumption will increase to 140 billion kilowatt-hours, costing

about $13 billion in power bills.

To reduce the electricity consumption, so to save money and protect the en-

vironment, a concept called energy-proportional systems is usually adopted.

This method suggests to concentrate the workload in as few servers as pos-

sible. Thanks to this idea, the provider can put the unused machines in a

low-power mode and use them only when necessary.

1.14 Cloud Applications

There are different application types that run on a cloud infrastructure.

The most common are the web applications in general, but also processing

pipeline tasks like image processing or batch applications like software au-

tomatic testing are executed in the cloud. In general all applications that

require a big amount of resources for a small period of time could take ad-

vantage from cloud computing.

These applications cover a lot of different fields. Some examples are:

Scientific field usually applications in this field require very high perfor-

mance. Cloud can satisfy this request with the possibility to add a

potentially infinite amount of any types of IT resources. In addition

1.14 Cloud Applications 23

the cloud system is more flexible than a private system so the scien-

tists can use for each experiment the most suitable infrastructure. For

example the MapReduce programming model is often used to analyze

the huge amount of data collected during experiments.

A clear example of the usefulness and convenience of cloud computing

for science can be found in a Microsoft Research experiment, in which

researchers took a biology experiment that in a normal infrastructure

with 8 core CPUs, 14 GB RAM and a 2 TB local disk required about

six CPU-years and tried to execute its on a cloud. They used more

than 450 extra-large VMs from their data centers. The computation

finished in 14 days thanks to the vast amount of resources allocated.

Productivity field many features traditionally offered by desktop applica-

tions are now available also through cloud services. These new solutions

attract users because through cloud infrastructure the services but also

the data are available anywhere, at any time, and from any Internet-

connected device. In addition the cloud applications do not require any

installation or maintenance operations.

Example of very popular cloud applications for document storage are

Dropbox or Google Drive, while for the office automation the SaaS most

used possibility is Google Docs. These Google services are hosted in the

huge Google IT infrastructure and thanks to the cloud elasticity they

have always the necessary resources to satisfy the customer’s requests

from all over the world.

Social Networking field in the last ten years social networks have been

keeping records on the number of active users. This value has reached

a huge amount and consequently a huge amount of IT resources are

needed to manage all the user requests. Cloud computing is the solution

adopted to solve this problem.

24 1. Cloud Computing Introduction

Chapter 2

Cloud Platforms

There are three main public cloud services vendors: Amazon, Google and

Microsoft. These three possibilities will be analyzed in detail. During our

experience, we directly used Amazon and Google services. Other property

or open source cloud solutions exist and are widely used, but they will not

be treated in detail here.

2.1 Cloud computing at Amazon

With the spread of the cloud computing idea in the early 2000s Amazon

began thinking of entering this market. The intuition behind its strategy

was that it could use its powerful computing infrastructure not only for its

business core, the e-commerce, but also to offer cloud service to increase

the revenues. In 2006 Amazon was the first company that offered a public

cloud service, in particular in the IaaS field with EC2, an elastic computing

platform. In the following years Amazon extended its services and created

Amazon Web Services (AWS). AWS is a platform that offers a complete

range of cloud services and today it is probably the most famous and the

most used in the cloud world. It is growing steadily and in 2015 it became

a $10 billion business. Jeff Bezos, Amazon founder and CEO, described this

platform: “AWS offers more than 70 services for compute, storage, databases,

25

26 2. Cloud Platforms

analytics, mobile, Internet of Things, and enterprise applications. We offer

33 Availability Zones across 12 geographic regions worldwide, with another

five regions and 11 Availability Zones in Canada, China, India, the US, and

the UK to be available in the coming year”. This data display the dimensions

of this platform and the fact that it is continuously developed and expanded.

With it is vast range of services AWS allows developers to easily create simple

or complex applications with a lot of different programming solutions. To

administer and monitor his account, his billing and the services requested

the user can use the great Web-based console. This allows users to request

any of the possible operations on the AWS world. It is possible to interact

with the platform also through SOAP or RESTful Web service interfaces.

2.1.1 EC2 and Connected Services

EC2 is the most famous possibility in the IaaS world. EC2 and AWS

have consequently become increasingly popular. As mentioned earlier EC2

is an elastic computing platform that offers the possibilities to create and

run virtual machine instances. Users can customize the virtual hardware

requested or the software installed depending on their needs.

Virtual Machine Characteristics For the virtual machine hardware con-

figuration users can choose one of the predefinite standard virtual machine

models or they can create a customized version where they select the amount

of each type of resource, from CPU core to memory. There are a lot of dif-

ferent standard instances available with different characteristics for the most

common needs. The models start from very basic machine to high perfor-

mance versions. They are classified according to the main characteristics,

with different types for general purposes or for high-CPU or high-memory or

high-storage or high-GPU capability needs, and it is also possible select mi-

cro instances for applications with very low resource need. In each class the

instances differ by the amount of resources available. For the pre-defined in-

stances the prices start from $0.0059 per hour and they can arrive to $13.338

2.1 Cloud computing at Amazon 27

per hour but they depend on the zone selected. All these information can be

easily found on the official website.

Virtual Machine Basic Software For the basic software installed when

the machine is created, Amazon gives the possibility to choose between a vast

range of precreated Amazon Machine Images (AMI). These images provide

the operating system, some libraries and some basic software. Users can se-

lect one existing AMI that is created by Amazon professionals so it is usually

adapted for cloud and ready to use. But if they have particular needs they

can also decide to create a personal AMI with customize software and using

it in one or more of their instances to quickly recreate the same environment.

On top of the AMI, users can install any software they need. It is important

to remember that users have the root privileges so they can manage com-

pletely their instances and they can execute any type of operations like in a

private machine.

Virtual Machine Deployment and Management When a user decides

the resource characteristics and the AMI, he must specify the availability

zones where he want to create the instance. This choice depends for example

on the user preferences between minimizing costs or reducing communication

latency or other characteristics. Clearly the instance cost per hour is tied

with the amount of resources requested and it depends also on the zone where

the instance is created. When the creation procedure is completed, the user

can run and stop the instance in any moment through a command-line tools

or the AWS console. To access the instance and to execute any type of

operations with the root privileges in a safe manner the user can associate

to the instance a key pair that allows him to control the system remotely. In

addition, the user can control the access possibility to his machine through

the firewall configuration and the security groups rules.

Elasticity Service We know that one of the most interesting cloud fea-

ture is the elasticity. To use this feature with the EC2 service, Amazon

28 2. Cloud Platforms

offers an automatic scaling system called AutoScaling. This service regulate

the instance characteristics or it creates new instances or delete the oldest

depending on the workload without the user intervention. Users must only

specify their personal conditions for example in terms of maximum costs or

maximum or minimum number of instances activated simultaneously and the

system handles the workload as well as possible respecting these indications.

2.1.2 Storage Solutions

Another important service that usually is used with EC2 to store and

manage information is Simple Storage System (S3). It provides distributed

raw storage capability and it is based on buckets, virtual containers, that

contain data represented through objects.

Buckets and Objects A bucket is stored in a specific datacenter inside an

availability zone depending on the customer request. Usually it is replicated

to avoid fault problems and for a better content distribution.

Objects can be anything from a simple file to entire disk images and they

are stored in binary form.

Users can associate some metadata to the buckets or to the objects to char-

acterise and to later easily individuate the information stored.

Information Access Information stored in S3 are accessible from every-

where through a Representational State Transfer (REST) interface. So all

the possible operations on the data can be translated in a HTTP request

using the correct address to identify the target. Anything in S3 is repre-

sented by a uniform resource identifiers (URIs) under the s3.amazonaws.com

domain. So users can use GET or HEAD requests to obtain information,

PUT or POST operations to insert information and DELETE to remove in-

formation from buckets, objects or metadata depending on the address used.

The access is controlled through an Access Control Policies (ACPs). Ini-

tially this allows only the owner to access the buckets or the objects, but he

2.1 Cloud computing at Amazon 29

can change the policies through the XML configuration file. The owner can

grant the permission only to other S3 users. To share the information with

non-authenticated users, S3 offers the possibility to generate signed URIs

that allow requests for a limited amount of time from anyone that provide a

correct temporary access token.

S3 Limitations S3 service can be seen like a distributed file system so the

information can be shared between different instances. It is necessary to note

that S3 has some limitations to obtain a highly efficient final result. The most

significantly restriction is that the S3 entity can not be manipulated. This

service is thought for static information so renaming, modifying or relocating

operations are not allowed. To execute any change users must remove the

bucket or the object and he must completely re-upload the new version with

drawbacks in terms of costs and time required.

Another inconvenience, although possibly less relevant, is that a S3 solution

is organized only in buckets that contain objects, it is not possible to create

a file hierarchy through directory or subdirectory. This limitation can be

easily solved using an adequate object name system. Each object must have

a unique name in the bucket. This is the only characteristic required for the

object names. It is important to note that path separators characters can

also be used. So users can use the first part of the object names to represent

what would be the object path in a normal filesystem.

Amazon Elastic Block Store (EBS) is a service that provide persis-

tent storage to EC2 using the S3 service. The storage capability is provided

through volumes that are mounted during the instances startup and that

survive to the instances shutdown. EBS offers a different high-level S3 pos-

sibility usage.

Database In the database field Amazon offers different possibilities. Users

can use their favourite third-party DBMS installing it with a correct EC2

AMIs, or they can use one of the available Amazon services in this field.

30 2. Cloud Platforms

• There are many AMIs available that provide a DBMS. They cover all

the most used possibilities like Microsoft SQL Server, MySQL, Oracle,

PostgreSQL and others.

• The basic Amazon possibility is Amazon SimpleDB. This service offers

a flexible relational database so it is suitable to store semistructured

data. It is important to note that it has some constraints to obtain

high performance also with big amount of data. It is based on three

components:

– Domains are the top-level element and they are similar to tables

in the relational model.

– The domains contain items, that are similar to relational model

raws but with a flexible structure. Each item is a collection of

attributes.

– An attribute is a key-value pair.

So items in the same domain can have different attributes and this

property makes this solution more flexible than traditional relational

database.

• Another possibility is Amazon DynamoDB, a fully managed NoSQL

database known for low latencies and scalability. It has a great docu-

mentation and it can easily interact with a lot of different programming

languages.

2.1.3 Useful Services

Over the years the services offered are multiplying. Today a wide range of

basic and sophisticated services are available and they allow users to create

a complex and complete IT infrastructure. These include for example:

• networking support through Amazon Virtual Private Cloud (VPC),

Elastic Load Balancing, Amazon Route 53 and Amazon Direct Connect

2.1 Cloud computing at Amazon 31

• caching systems through Amazon ElastiCache. It uses a Memcached-

compatible protocol to give at EC2 instances a fast data access like a

cache memory

• applications communications through Amazon Simple Queue Service

(SQS) and Amazon Simple Notification Service (SNS). These facilitate

communications between applications deployed in the AWS infrastruc-

ture. Amazon SQS allows asynchronous communications using message

queues and Amazon SNS is more specific for heterogeneous applications

• scalable and complete email service through Amazon Simple E-mail

Service (SES)

• content delivery network through Amazon CloudFront. It is a service

that offers an automatic way to implement a content delivery network

for static or dynamic Web pages using strategically located Amazon

virtual machines all over the world

• and others . . .

A service that deserves a more specific analysis is Elastic MapReduce

(EMR) because it is very useful and widely used. It allows developers to

process large amount of data with the MapReduce programming paradigm.

This offers an easy platform for MapReduce application supporting multi-

ple programming languages. This service is based on Apache Hadoop as the

MapReduce engine. The word “elastic” highlights the dynamism of this ser-

vice where users can easily dynamically size the cluster or change the single

machine characteristics according to the specific current needs.

All these services can be easily used together to create complex and flexible

systems. Developers can use some specific services like CloudWatch to ana-

lyze, control, manage and optimize their applications and the services used.

To find all the possibilities for each need, users can visit the official AWS

website and the related documentation.

32 2. Cloud Platforms

2.2 Cloud Computing: Google Perspective

In the cloud computing world Google is the most known vendor of Software-

as-a-Service (SaaS). Probably its most used and famous application is Gmail.

In 2016 Google announced that this service had more than 1 billion monthly

active users. But Gmail is only one of the wide range of software that Google

offers through SaaS delivery model. Other famous examples are Google Drive,

Google Docs, and Google Photo. Some of the reasons why these applications

are widely used are:

• usually they are free of charge for individual users,

• services are hosted in the Google datacenters that guarantee high per-

formance and a fast access from anywhere in the world at any time,

and

• Google reputation implicitly ensure the users about the great quality

of the services.

For developers, SaaS applications are accompanied by a Platform-as-a-Service

(PaaS) possibilities. The most famous service of this type of delivery model

is AppEngine. Initially it supported only Python but today various program-

ming languages can be used, like Java, PHP, NodeJS, Ruby and this list is

constantly updated. This fact proves that Google is constantly investing and

increasing its cloud offering.

This offering already contains also IaaS possibilities with a large range of

various services for every need, although they are less famous and not widely

used.

2.2.1 Google AppEngine

Google AppEngine is the main Google PaaS solution. So it offers a devel-

opment and runtime environment to easily create scalable cloud applications.

Clearly it offers convenient automatic solutions to use one of the main cloud

2.2 Cloud Computing: Google Perspective 33

advantage, the elasticity, taking advantage of the large Google datacenters.

But it gives also the possibility to use a collection of other services that can

be integrated in an application to facilitate its implementation. So services

like in-memory caching, messaging, or cron tasks can be directly used in the

applications without implementing anything more.

AppEngine Software Development Kit (SDK) A very handy Google

AppEngine feature is the possibility to develop the applications locally on the

developer machine using the AppEngine Software Development Kit (SDK).

The main advantage of this possibility is certainly economic. In fact using

the local version developers must not pay nothing during the application de-

velopment and test. The SDK simulates perfectly the cloud environment so

once the application is completed the developer need only upload the same

code on the real cloud without changing anything and he can directly deploy

the application. Google offers a terminal command that allows to migrate

the local application on the cloud without the need for other operations. De-

velopers can use their account settings to set costs limitations or performance

constraints that the applications must respect.

Infrastructure The platform can be analyzed starting from the infras-

tructure. This is based on many servers within Google datacenters spread

all over the world. Each HTTP request is sent to a server that host the

specific application. This server handles the request and execute all the nec-

essary operations. The infrastructure monitors the load of each application

and if necessary allocates other resources to the existing machines or creates

new machines to manage all the incoming requests.

RunTime environment The runtime environment is then deployed on

the infrastructure. This is the layer where the applications are managed

and executed. It has different responsibilities, one of them is certainly the

isolation and the security of each application context and the servers security.

This involves that each application is not influenced from others hosted in

34 2. Cloud Platforms

the same machine and that the execution and the data stored are safe. In

other words, it provides applications with a sandbox. However at the same

time this component must also ensure the servers security from the threat

coming from applications.

2.2.2 Storage Solutions

Applications that run on this environment have different storage possi-

bilities. Each solution is specific for particular storage situation. Developers

must choose the correct implementation depending on the volatility of the

data and if these are static or dynamic. Other characteristics like required

performance should also be considered. The three main classes are:

• in memory-cache

• storage for semistructured data

• long-term storage for static data

that usually are all used together.

In particular the most interesting situation is the storage of semistructured

data. The Google service for this purpose is called DataStore. It manages

data like objects, each of which is associated with a key used to retrieve the

information stored. DataStore is similar to a relational database but the

objects do not have a strict structure and this is the reason why this solution

is suitable for semistructured data. Clearly this advantage has a drawback,

as the absence of a predetermined schema involves some limitations on the

available operations. These limits are nonetheless useful to ensure high per-

formance also with large dataset and so they guarantee the scalable property.

2.2.3 Useful Services

The applications developed through AppEngine can use a vast range of

already developed services to execute the most common operations without

2.2 Cloud Computing: Google Perspective 35

writing new code. This implies that developers can use and assemble these

services like small bricks to create the final applications.

A clear example can be found in the account management problem. In fact

many different applications must implement this feature so Google offers the

possibility to use the Google Accounts Service. It is developed and main-

tained by IT professionals, so it offers a great service. In addition it uses the

Google’s authentication system that guarantee high-level security standard.

It is very flexible because it allows developers to associate profile settings like

key-value pair to a Google Account. The key-value form allows the storage

of any useful information for any application types. Developers can directly

integrate this service in their applications without waste energy to reimple-

ment a basic feature.

Task Queues and Cron Jobs are other two examples for asynchronous com-

putation. The first allows a later execution of a task and the second gives

the possibility to decide a specific moment when to execute the code that

might not coincide with the instant when the web request is received.

But, as mentioned above, a vast range of other services is available.

2.2.4 Develop, Deploy and Maintain process

Google supports developers during the complete application life cycle,

from the development phases to the monitoring process after the application

release, offering the necessary functionalities.

As mentioned above, developers can start building their applications using

the Google SDK on their local machine. The SDK simulates perfectly the

AppEngine runtime environment and it offers some functionalities to help

the developers. Google offers different SDK depending on the programming

language selected. For Java that is one of the most adopted language Google

provides also a Google AppEngine plug-in for the Eclipse platform. Python,

that is spreading in the last years, has a specific SDK that also contains an

integrated Web application framework called webapp. It include particular

features and tools that simplify and accelerate the application development.

36 2. Cloud Platforms

Moreover it enforces a set of coherent practices to help non-expert program-

mers to realize well-coded applications. This does not means that developers

can not decide to adopt other frameworks to develop their applications.

After the development and testing phase has ended, each application can be

deployed on AppEngine. Depending on whether the developer prefers to use

the web interface or the command-line tool, there are different deployment

procedures. Both ways are fast and easy. When the upload process on the

Google Cloud ends, the application is immediately ready to use. AppEngine

execute all the necessary operations through automatic processes, and the

developer can directly use his application or manage it using the administra-

tive console.

Among the possible operations, the developer can manage the application

costs. For this purpose, the developer must know his application and the

Google Cost Policy. In general, he can set a maximum daily budget that is

composed by billable quotas, fixed quotas, and per-minute quotas. Develop-

ers can specify the values for each quotas but they can also divide the values

for each resource to obtain a higher granularity. If a resource reaches the

limit specified by the user, this will not be available to the application until

the quota is replenished.

2.3 Microsoft Windows Azure

The Microsoft cloud offer is represented by Microsoft Windows Azure. It

is a platform to develop and release applications in the cloud. As the two

competitive services offered by Amazon and Google, it is a scalable runtime

environment, particularly suitable for web applications but also for other

types of software.

The physical infrastructure is spread in Microsoft datacenters all over the

world. It is very convenient thanks to the basic facilities like compute, storage

and networking services and the high-level facilities like for example access

control or supply of business intelligence to the developers.

2.3 Microsoft Windows Azure 37

The main advantage is that all applications developed through Microsoft

technology can be directly deployed in the cloud using Azure. So every

application built on the Microsoft technology can be easily expanded through

the scalability feature using the Azure platform.

The Azure world can be accessed and managed through the Windows Azure

Management Portal. But developers who want to become familiar with the

environment and to develop and test the applications, can simulate the Azure

system on their own machines.

The Azure architecture includes a foundation layer that implements the

structure and as mentioned above a set of developer services, from basic to

high-level possibilities, that can be used to easily create complex applica-

tions by combining already implemented features. These useful facilities are

collected in a middleware called AppFabric.

AppFabric has been described as “a comprehensive middleware for devel-

oping, deploying, and managing applications on the cloud or for integrat-

ing existing applications with cloud services”[1]. It offers an infrastructure

that provides all the most useful cloud characteristics such as elasticity, high

availability, sandboxing and multitenancy, and others. As mentioned above,

AppFabric contains a set of services that simplify many of the common tasks

in a distributed application. Examples are the access control through set of

rules, or Azure Cache, a caching system to quickly access stored data.

2.3.1 Compute Services

Compute services are provided through three different options. Each of

them has specific characteristics for a particular compute task type. The elas-

ticity process is managed by Azure operating system. If there is a workload

peak, Azure allocates new instances of the option selected and it distributes

the incoming requests through a load balancer. The options are: App Ser-

vice, Cloud Services and Virtual Machines and all information about them

38 2. Cloud Platforms

can be found in the Microsoft Official Documentation [10].

• The Microsoft official documentation describes the App Service as “a

fully managed compute platform that is optimized for hosting websites

and web applications”. Developers can request the use of shared or

dedicated virtual machines depending on their needs and their avail-

able budget. In both cases the isolation from other customers is always

guaranteed. Different programming languages can be used to write the

application code such as ASP.NET, the Microsoft solution for web pro-

gramming, but also other possibilities such as Node.js, Java, PHP, or

Python. An interesting feature could be the possibility to use Pow-

erSheel or other scripting languages. The App Service solution has

some benefits in addition to the normal advantages of this type of ser-

vices connected with the Microsoft world. For example, a Visual Studio

integration is available to use the powerful Microsoft development envi-

ronment to realize the applications, and direct connections to Microsoft

SaaS platforms like Office 365 are possible.

• The Microsoft official documentation describes the Cloud Service as

a PaaS solution “designed to support applications that are scalable,

reliable, and cheap to operate”. It is more free respect to AppService,

so developers have more control over the software stack and they can

install their own software. Clearly more control means less ease of use.

It is important to remember that Cloud Service is a PaaS solution and

not a IaaS solution with all the related consequences. This means that

users do not request the virtual machines directly, but they create a

configuration file that describes the necessary resources and the general

application architecture and the platform will execute all the necessary

operations to obtain the correct basic infrastructure. Users can obtain

different infrastructure depending on their needs, simply changing the

configuration file. The offer of Cloud Service is divided in two roles:

– the Web Role that “automatically deploys and hosts your app

2.3 Microsoft Windows Azure 39

through IIS” and is therefore particularly suitable for Web appli-

cations,

– the Worker Role that “does not use IIS and runs your app stan-

dalone” and can be used for general compute services that do not

use HTTP protocol to communicate through the Internet.

Simple applications are usually based on a single roles’instances but in

complex applications both roles’instances can exist and work together.

The applications created through this service are accessible through a

single public IP address. The load balancer divides in a second moment

the incoming requests between the virtual machines that are executing

the target application. They are created depending on the workload,

guaranteeing the elasticity feature in a way that always avoids a single

point of hardware failure. Cloud service is fault tolerant, it handles

physical server failure but also VMs and applications problems and

it automatically executes all the necessary operations to resolve the

situation.

• Virtual Machines is the Microsoft IaaS offering. It gives the possi-

bility to create and completely control virtual machines. As all IaaS

solutions, this service is useful to exploit the flexibility of virtualization

without investing on physical hardware and on its maintenance. Users

can decide on all the aspects of their machines, such as the location,

the size, the operating system and others characteristics. Microsoft of-

fers three different methods to create and manage virtual machines: a

browser-based portal, a command-line tools with support for scripting,

or directly using the APIs. It is important to remember that Virtual

Machines, similarly to other IaaS solutions, is a low-level service, so

users have complete control of VMs but this implies that they must

manage the software stack through configuring, patching, installing

and updating operations on all the software components.

40 2. Cloud Platforms

2.3.2 Storage Solutions

All the computing services need storage services to maintain the data.

Each instance of all computing possibilities has a local storage for temporary

data useful for the current execution. But for durable and redundant storage,

developers must use different services depending on their needs.

• The most general option is the usage of BLOBs. BLOBs or Binary

Large Objects are adapted to store large text or binary files. Users can

insert metadata to describe and recognize the information stored in the

binary form. The possibility to create snapshot for backup purposes is

very useful and convenient.

• For semistructured data Microsoft offers the possibility to create flexible

tables without strict structures. The information are stored like rows

in the table. Each row is a set of variable attributes and it is identified

by a key that is the unique index for the table. This service is designed

to manage large dataset and to give high-performance also for queries

with huge result sets.

• A completely relational database based on the SQL server technology

is available through SQL Azure. It has been adapted to work on the

cloud providing scalable, highly available, and fault-tolerant features.

• The last service called Queue Storage allows application communica-

tions through permanent queues that maintain the content also between

different applications executions. This feature ensures the developers

against lost or unprocessed messages. Applications can write messages

in the queue or read them through a FIFO (first-in, first-out) policy.

The data stored through all these services can be accessed simultaneously

by different users from everywhere and they are geo-replicated to avoid data

loss connected with major disasters.

2.4 Other Possibilities 41

2.3.3 Azure Peculiarity

AppFabric and the compute and storage services are the main components

of the Azure platform. To conclude, a peculiarity of the Azure platform is

the possibility to install it without differences on third-party data centers to

recreate the Microsoft environment on a private infrastructure.

2.4 Other Possibilities

There is a long list of other cloud possibilities for any kind of need. For

example:

Apache CloudStack “is open source software designed to deploy and man-

age large networks of virtual machines, as a highly available, highly

scalable Infrastructure as a Service (IaaS) cloud computing platform.

CloudStack is used by a number of service providers to offer public

cloud services, and by many companies to provide private versions”[11]

OpenStack “is a cloud operating system that controls large pools of com-

pute, storage, and networking resources throughout a datacenter, all

managed through a dashboard that gives administrators control while

empowering their users to provision resources through a web interface.”[12]

Aneka “is a platform and a framework for developing distributed applica-

tions on the Cloud. The infrastructure can be a public cloud available

to anyone through the Internet, or a private cloud constituted by a set

of nodes with restricted access.”[13]

SalesForce.com is a Software-as-a-Service solution based on the Force.com

platform for customer relationship management (CMR)

42 2. Cloud Platforms

Chapter 3

University Social Network

This chapter will briefly describe the design, the implementation and the

deployment of a website developed during this project. In particular, we cre-

ated a Social Network, taking inspiration from a University of Pennsylvania

final laboratory project.

The main purpose of this Social Network was to collect data for the MapRe-

duce elaborations and to show the results obtained. Clearly, the little time

between the deployment of the website and the development of our MapRe-

duce jobs meant that the amount of data collected was too small to execute

“big-data analysis”. So as I will explain in the next chapter we realized one

job on the SocialNetwork dataset but we also searched an external bigger

dataset.

We chose to develop a SocialNetwork also because it is one of the most fa-

mous SaaS application type. As a consequence, in our project we worked

with all cloud delivery models: IaaS to deploy the SocialNetwork, PaaS to

develop the MapReduce jobs and SaaS that is the SocialNetwork itself.

The design, the implementation and the deployment required about three

months of work, from February to April 2017.

43

44 3. University Social Network

3.1 Interface

The interface and the offered features were not a main part of this thesis

project and for this reason they will not be explained in details. We devel-

oped a basic interface with the main useful SocialNetwork functionalities.

As all website development, we used HTML, Javascript and CSS. In par-

ticular, we adopted Bootstrap and Jquery to semplify our work. External

libraries were used to include some convenient and already implemented fea-

tures. For example, we used:

• a library that offers an implementation of MD5 function for client-side

encryption of the user’s password, so to offer a more secure service

• and a library to manage the star rating of posts.

The back-end code has been developed in PHP using a library to com-

municate with the database.

The first webpage is a simple log-in page that allows users to access with

an existing account or register a new one. Besides the usual pieces of in-

formation, the registration form requires the user to specify their University

course. This is then used to automatically subscribe users to their course

page. After the login, the user reaches the homepage showed in Figure 3.1.

The homepage offers a classic SocialNetwork interface. The main section

of the homepage displays a form to create new posts, with the possibility to

upload one or more photos or files, and a list of the most recent posts. Each

post shows: the author, the data, the text content, the first image included,

five empty stars that can be used to give a score to the post, a button to

open the comments’section with the possibility to write a new one and two

buttons to show the images and files uploaded, respectively. If the user is

the author of the post, he can also remove the post using the “X” botton on

the top-right corner.

The section on the left of the page contains the user’s photo, name and a list

of buttons to navigate inside the SocialNetwork. These can be used to visit:

3.1 Interface 45

Figure 3.1: SocialUNIBO homepage

• the users’profile;

• the list of friend;

• an interface to search people, groups or pages, with the possibility to

begin to follow them;

• a message page to read and write messages;

• an interface that shows the groups the user is following, and that gives

the possibility to create new ones;

• an interface that shows the pages the user is following, and that gives

the possibility to create new ones;

• a page with the account information;

• and the “Advice” page that is the most interesting for our project

because it shows the MapReduce job results, as showed in Figure 3.2.

46 3. University Social Network

Figure 3.2: Advice Page

3.2 First Attempt using AWS

Initially, we tried to develop our system using Amazon Web Services. We

spent some time investigating some interesting possibilities offered by this

provider.

Amazon gives new users some free credits but also requires a credit card

during the registration. As a consequence, if the user uses more than the

available credits, their credit card is directly charged for any additional ser-

vices, so students must always pay attention to the credit they have and not

to consume more then their available budget.

We followed the indications from University of Pennsylvania’s first labora-

tory class to create an Amazon Web Services account and to modify the

settings in order to obtain the necessary environment to develop our project.

For example, we had to create an access key to log in in our machines through

SSH protocol.

3.2.1 EC2

With our account, we requested an EC2 instance to host our website.

As mentioned in the Platforms chapter of this dissertation, EC2 is the first

3.2 First Attempt using AWS 47

and the most famous IaaS solution. So an EC2 instance is a virtual machine

completely under user’s control. I selected one of the available operating

systems and installed the necessary packages.

Each EC2 instance has an IP address used to access the webpages hosted but

also by developers to connect with their machines through SSH. We used the

following command to access to the machine and to copy the updated code

on it.

sudo ssh -i ~/.ec2/login.pem ec2-user@<IP address>

sudo scp -r -i ~/.ec2/login.pem ./* ec2-user@<PublicDNS>

We switch off the machine after each work session so not to consume our

credits.

At this point we have the correct environment to begin the application de-

velopment.

3.2.2 DataBase

A fundamental component of our application is the database. We used

our database course project to design a first version of a relational database

to manage SocialNetwork information.

Analyzing the Amazon services in the database field, we decided to use Dy-

namoDB. “Amazon DynamoDB is a fully managed NoSQL database service

that provides fast and predictable performance with seamless scalability. Dy-

namoDB lets you offload the administrative burdens of operating and scaling

a distributed database, so that you don’t have to worry about hardware pro-

visioning, setup and configuration, replication, software patching, or cluster

scaling ”[14]. So we had to rethink and edit the initial database design, to

pass from a relational version to a NoSQL solution, but the first project was

still useful as a starting point.

Using the extensive documentation offered by Amazon official website and

examples found on the Web, we created a first version of our database and

48 3. University Social Network

all the necessary queries.

An example of the code necessary to create a new table is the following:

var AWS = require("aws-sdk");

var user = {

TableName : "User",

KeySchema: [

{ AttributeName: "mail", KeyType: "HASH" } //Partition key

],

AttributeDefinitions: [

{ AttributeName: "mail", AttributeType: "S" }

],

ProvisionedThroughput: {

ReadCapacityUnits: 5,

WriteCapacityUnits: 5

}

};

var dynamodb = new AWS.DynamoDB();

dynamodb.createTable(user, function(err, data) { ... });

3.2.3 Amazon Elastic MapReduce

Once we had obtained a first very basic Social Network version, we de-

cided to continue the development and at the same time began experiment-

ing with data elaboration, in particular MapReduce, through the dedicated

Amazon cloud services. In particular we selected Amazon Elastic MapRe-

duce (EMR). “Amazon EMR is a managed cluster platform that simplifies

running big data frameworks, such as Apache Hadoop and Apache Spark,

on AWS to process and analyze vast amounts of data ”[15]. The excellent

documentation offered by Amazon official website helped us to create our

first example.

We tried to follow the first University of Pennsylvania laboratory task. This

3.3 Application Development using our University Machines 49

requires to analyze the Wikipedia / DBpedia data set. This was our first

MapReduce job and we debugged and tested it directly on the cloud, there-

fore spending our Amazon free credits. Testing directly in the cloud version

rather than in the local version was unwise, as in this way we consumed all

our credit to execute very basic tests.

3.2.4 The end of the Amazon Experience

At this point we were forced to abandon Amazon services because we had

no credits left, and we therefore searched for other possible free solutions.

In our short experience with Amazon services we noticed that they are very

well documented. Together with the availability of many examples, this helps

beginner developers to quickly get started with the offered services.

3.3 Application Development using our Uni-

versity Machines

While we were looking for a new solution, I asked technicians at our

university for a virtual machine in our university servers that could simulate a

IaaS cloud solution to continue the social network development. We obtained

the virtual machine and I installed all the necessary packages as Apache

HTTP Server, exactly as I would have done in a real IaaS solution. Although

the interface we had already developed using HTML, CSS and JavaScript was

compatible with the new infrastructure, the database had to be completely

re-developed, as it was entirely based on Amazon services. This is an example

of the “cloud vendor lock-in” problem, often cited among the main downsides

of cloud computing at the present stage.

3.3.1 Cassandra

Eventually, we decided to use Apache Cassandra, a free and open-source

distributed NoSQL database, designed to work with large amounts of data

50 3. University Social Network

across many commodity servers, while providing good performances and

flexible solutions. In particular, the official website describes it as: “The

Apache Cassandra database is the right choice when you need scalability

and high availability without compromising performance. Linear scalability

and proven fault-tolerance on commodity hardware or cloud infrastructure

make it the perfect platform for mission-critical data”[16].

The Cassandra installation process and the library installation to manage

the database through PHP was not easy, also because the documentation of

the last version was incomplete.

We adopted the DataStax PHP Driver for Apache Cassandra, “a modern,

feature-rich and highly tunable PHP client library for Apache Cassandra

2.1+ using exclusively Cassandra’s binary protocol and Cassandra Query

Language v3”[17].

We had to adapt the database structure for the Cassandra characteristics

and query limitations and as a consequence we ended up re-writing all the

commands to generate the database and all the queries.

3.3.2 Test Phase

At the end of April 2017 we had a first official version deployed in our

Universty datacenter, and asked friends and colleagues to test it, so that bugs

could be identified and addressed.

3.4 Google Solution

While we continued the development using the virtual machine provided

by our university, we found two potential alternatives. The first involved

going back to use public cloud services, in particular Google platform, and

the second consisted in obtaining access to a cluster of machines that would

simulate a private cloud. We opted for the first solution, as it would give us

the chance to experiment with another public platform and to use its specific

services to execute the data elaboration section explained in the next chap-

3.4 Google Solution 51

ter.

We opened a project through a partnership between our University and In-

jenia that gave us many free credits for Google Cloud Services. The social

network code did not require any change, because in the second version it

was based on a IaaS solution that is very flexible. This meant that we could

continue the development on our university machine and not consume cloud

credits.

Only when the development was completed, I moved it into the cloud, re-

creating the same environment.

3.4.1 Machines Characteristics

I requested a cheap machine configuration with 80GB of blank disk, de-

ployed in the us-west1-a zone that had the best prices. As operating system

I requested Ubuntu 16.04 LTS, because it is the same that our university

technicians installed on our machine.

Clearly, I also requested that the HTTP traffic was allowed.

The request form is showed in Figure 3.3

Figure 3.3: Compute Engine instance creation form

52 3. University Social Network

3.4.2 Packages Installation

When the virtual machine was created, I installed the necessary packages.

I began with apache2 and php7.0 :

sudo apt-get install apache2 apache2-doc

sudo apt-get install php7.0 libapache2-mod-php7.0

to continue with Cassandra and the relative library.

At first the installation of Cassandra and the relative library gave some prob-

lems, but after different attempts I found the correct commands and the

necessary file setting modifications. I stored them on a file so that I could

easily re-create the correct environment to deploy our Social Network in any

other virtual or real server.

echo "deb http://www.apache.org/dist/cassandra/debian 310x main"

| sudo tee -a /etc/apt/sources.list.d/cassandra.sources.list

curl https://www.apache.org/dist/cassandra/KEYS | sudo apt-key add -

sudo apt-get update

sudo apt-key adv --keyserver pool.sks-keyservers.net

--recv-key A278B781FE4B2BDA

sudo apt-get update

sudo apt-get install cassandra

sudo service cassandra start

sudo apt-get install g++ make cmake libuv-dev libssl-dev

libgmp-dev openssl libpcre3-dev git php7.0-dev

git clone https://github.com/datastax/php-driver.git

cd php-driver

git submodule update --init

cd ext

sudo ./install.sh

sudo su

3.5 Conclusion 53

echo -e "; DataStax PHP Driver\nextension=cassandra.so" >>

‘php --ini | grep "Loaded Configuration" |

sed -e "s|.*:\s*||"‘

sudo nano /etc/php/7.0/apache2/php.ini

Add in dynamic extension:

extension=/usr/lib/php/20151012/cassandra.so

git clone https://github.com/datastax/php-driver.git

git reset --hard f50c93da3ea73ad8fcf8b181d0313d437e559256

cd php-driver/ext

sudo ./install.sh

sudo reboot

sudo service cassandra restart

3.5 Conclusion

We tested the final version deployed on Google infrastructure, integrating

it with the data elaboration results, and it worked properly. After a few test

days we decided to delete the Google instance not to consume credits.

We tried to design and implement the Social Network with the idea of a real

deployment in the future, taking into consideration that in that case it would

have to work with larger amount of data, and would therefore need to scale

easily depending on the needs. To this aim, we adopted solutions such as

Cassandra, a powerful distributed database system, even though it was not

necessary to manage the small number of test accounts we were dealing with.

We applied this philosophy in every stage of our project.

54 3. University Social Network

Chapter 4

Data Elaboration

We live in the data-age so information is hugely important. For this rea-

son, it is essential to have devices that can store as many data as possible

and infrastructure that can quickly process them. It is very difficult to mea-

sure the exact amount of data stored today in electronic devices, but various

studies foresee that in 2020 this value will reach 44 zettabytes that is 44 *

1021 bytes [18]. To understand this amount, think that it is equivalent to ∼5

TB (i.e. 5 * 1012 bytes) per person. Some scientific infrastructure like the

Large Hadron Collider (LHC) at CERN produces, stores and manages about

30 petabytes (i.e. 1015 bytes) of data per year [19].

One of the main problems of data storage and analysis is the storage de-

vices access speed. Parallelization and distributed storage systems have been

adopted to increase this value. These techniques solve the access speed prob-

lem but they create new situations that must be handled. For example the

usage of many pieces of hardware introduce the hardware failure problem.

This risk is usually addressed through replication techniques that create var-

ious copies of the data on different storage devices to avoid data loss. The

Hadoop Distributed Filesystem (HDFS) is an example of storage system that

implements these ideas.

The distributed storage means that during data elaborations, it could be

necessary to combine data from different disks and this is usually not easy.

55

56 4. Data Elaboration

Different programming models, such as MapReduce, have been developed to

automatically address this type of issues.

4.1 MapReduce

In the last years a new functional programming paradigm called MapRe-

duce, developed by Google employees in 2004, has become widely used in

the data elaboration field. This paradigm is particularly suitable for data-

intensive batch applications that execute non-complex analysis on large data

sets. It is not suitable for interactive analysis because its jobs could require

minutes or more, for this reason it is mainly recommended for offline elabo-

rations.

MapReduce was conceived for analyzing and processing a large amount of

data in computer clusters taking advantage of parallelization in order to

complete huge elaborations in a reasonable amount of time. In this way,

it reduces the complexity of distributed systems management and coordina-

tion. For example, it relieves the developers from the burden of managing

the parallelization, fault-tolerance, data distribution and load balancing.

One of the biggest advantage of MapReduce is that its applications can easily

scale depending on the dataset size or on the cluster size to optimize perfor-

mances.

As a consequence of the parallelization, this programming model is suitable

for applications where the input can be easily partitioned into smaller blocks

of similar dimensions that can be analyzed individually in parallel. The ap-

plications that entail this possibility are characterized by an input called

arbitrarily divisible input. So it is important to highlights that MapReduce

can not always be used in all situations or for all types of data elaboration.

Sometimes the developers can adapt their data and their functions to take

advantage of MapReduce, but in some circumstances this is impossible.

4.1 MapReduce 57

4.1.1 MapReduce Data Flow

MapReduce has two fundamental basic functions called Map and Reduce.

They are written by users and executed in various copies on a cluster of

machines in succession. Other library operations are also necessary during

the elaborations. The MapReduce Data Flow can be summarized as follows:

• The input data are automatically partitioned and distributed between

the Map invocations that execute the map function in parallel on each

split. A Map invocation extracts useful information from each logical

record contained in the corresponding input split using the user-defined

map function and it creates a set of intermediate tuples (key/value

pairs).

• Once all Map tasks are completed, the library merges all the tuples with

the same intermediate key, producing an array for each key. These ar-

rays are divided between the Reduce invocations through a partitioning

function. For example “hash(key) mod N ” where N is the number of

the Reduce instances requested by the user.

• A Reduce invocation elaborates in an iterative way the assigned arrays,

that is in other words a key with a list of values, to create the desired

output always in a key-value form. The user-defined reduce function is

called for each array. Typically each Reduce invocation returns either

one value or no values for each key. Each Reduce instance store its

output on different file. So the result of a MapReduce job consists of

multiple files. Users can choose to merge these files or to use them as

inputs for another MapReduce job.

The master is a special node in the cluster that manages the job and

assigns to others nodes, called workers, the tasks they must execute. It

controls the state of each node to identify idle workers and assign them a

map or a reduce task. It must also inform the instances about the location

of input and intermediate files.

58 4. Data Elaboration

4.1.2 MapReduce Features

MapReduce is a fault tolerant programming model. The primary mecha-

nism to manage these situations is the re-execution. This is possible thanks

to the MapReduce model based on two separate functions. In particular

the fault tolerant system is controlled by the master node that monitors all

nodes in the cluster. It uses pings to periodically check that all nodes work

correctly or to individuate possible failures.

The master node manages all Map and Reduce tasks through their states.

The possible values are idle, in-progress, or completed. If a machine does not

respond to a control ping and its task was in progress, the master detects a

possible failure and it resets the task to idle. Also if the task is completed

but the result was stored on the local disk, it resets that to idle. Thanks to

these changes the task will be rescheduled as soon as an instance is available.

The run-time environment, in addition to the handling of machine failures,

automatically manages other aspects of parallel and distributed infrastruc-

ture. This allows programmers who are not expert in this field, to easily

take advantage of data elaboration using large computer clusters. Examples

of tasks automatically managed are: partitioning the input data, scheduling

the job across the available machines and allowing communications between

the machines in the cluster.

4.1.3 Examples

The most basic and elementary example of MapReduce is the problem of

counting the number of occurrences of each word in multiple documents. A

possible pseudo-code to resolve this problem can be taken from the official

paper [20]:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

4.1 MapReduce 59

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

A similar elaboration, but probably more useful in real life, is the problem

of calculating the URLs access frequency analyzing the logs of a server. This

can be easily achieved using the MapReduce programming model.

A possible solution is to analyze each row of the logs with the map function

that extrapolates the URL and returns a pair with this value and the number

1 to report one access for that resource. All pairs with the same key, the URL

in this case, are merged in an array and all arrays are passed to the reduce

function instances. They only count the number of elements in each array,

which corresponds to the number of times that the URL appeared in the logs.

The value obtained for each array represents the number of times that the

resource identified by the URL used as key has been visited, i.e. the desired

result.

Another easy example that uses a maximum function instead of a sum for

the reduce task is the calculation of the higher temperatures in various city

starting from multiple files that contain a list of city names and relative

measured temperatures. The job will use a map instance for each file that

only takes each row and convert it in a key-value pair where the city name is

used as key and the recorded temperature is stored as value. All the tuples

with the same key from all files are merged together in an array. So at this

point there are various arrays, each one associated with a single city. The

reduce instances only search for the maximum values in each array and they

return the name of the city linked with the array and the value found. The

60 4. Data Elaboration

list of these pairs is the desired result.

4.2 Hadoop

Hadoop is an open-source framework that provides a reliable, scalable

platform for storage and analysis. It is hosted by the Apache Software Foun-

dation and allows to process large data sets on commodity hardware. Hadoop

is very convenient because it provides an automatic and complete environ-

ment. It allows to easily use the MapReduce model - developers must only

specify the input data and define the map and reduce functions. The map

and reduce input and output data are read or written through standard in-

put and standard output. So any language that can use these two channels

could be used to write a MapReduce application for Hadoop. To specify the

key value pairs, it is sufficient to use a tab-delimited string.

Today, Yahoo controls probably the largest Hadoop cluster in the world with

40,000 servers that implement 4,500 nodes, followed by LinkedIn and Face-

book. [21]

4.2.1 Comparison between Hadoop and other alterna-

tive systems

Hadoop is not the only implementation of a distributed system specific

for data storage and data elaboration but it has some specific characteristics.

It is possible to analyze them comparing Hadoop with other similar systems:

• Distributed Relational Database is convenient for dataset that are con-

tinually updated and where the queries require the analysis of a small

portion of data. On the contrary Hadoop is convenient for data that

are written once and read many times, and for analysis that use a big

part of the dataset. In addition, it is more flexible because it is designed

to analyze unstructured data such as plain text.

4.2 Hadoop 61

• Grid computing is another possibility. It is convenient for compute-

intensive applications and it has some problems when large amount

of data must be accessed. To address this type of situations, Hadoop

implements a feature called data locality. The system distributes the

jobs trying to assign to each node a job that uses the data stored on

that node. So usually data can be accessed locally and this allows

better performances. Moreover, grid computing programmers must

explicitly handle the data flow and the failures using low-level routines,

while Hadoop operates at higher level so the data flow and node fails

is aumatically managed.

4.2.2 Hadoop Distributed File System (HDFS)

Hadoop uses a distributed filesystem called HDFS, which stands for Hadoop

Distributed File System.

This type of file systems manage the storage capability offered through a

network of machines. HDFS is designed to work also in a heterogeneous net-

works composed by different hardware from multiple vendors. It is suitable

to store very large files and to allows streaming data access patterns.

In particular it was conceived to work with the write-once, read-many-times

pattern. The basic idea is that after a content is generated through a write

operation, it will be used in different elaborations so many read operations

will be requested.

In addition HDFS is adapted for analysis that involve a big part of the

dataset, so it is optimized for this situation. As a consequence for example

the latency in reading the first record becomes secondary.

4.2.3 Hadoop Data Flow

A Hadoop essential component is YARN (Yet Another Resource Nego-

tiator). YARN is a cluster resource management system that implements

an environment that allows the execution of any distributed program in a

62 4. Data Elaboration

Hadoop cluster.

A MapReduce job is composed by data that must be analyzed, the code that

will be used to analyze the information and the configuration of the system.

Hadoop divides the job in map and reduce tasks and they are scheduled

through YARN and run on nodes.

As mentioned above, Hadoop manages all the work flow so it divides the

input data in splits, creates a map instance for each split and so on. The

dimension of the splits is an important parameter. In fact, if splits are too

small the management time dominate the execution time, on the other hand

if splits are too big the parallelization is not totally used. Usually a good split

size coincides with the dimension of a HDFS (Hadoop File System) block be-

cause it is the largest size that can be guaranteed to be stored on a single

node and the data locality optimization could be more easily obtained.

4.3 Analysis using Google App Engine

To execute MapReduce analysis on AppEngine a good solution is the

AppEnigne MapReduce library. “It is a community-maintained, open source

library that is built on top of App Engine services, including Datastore and

Task Queues”[24].

It provides an efficient system that can scale automatically. Developers only

need to download and include the library in their applications and they can

then focus on the application logic. Commonly needed operations such as

partitioning the input data, scheduling execution across a set of machines

and handling failures are automatically managed by the library.

The library is developed for Java and Python and it provides useful tools for

developing and monitoring applications, as well.

This solution is similar in function to Hadoop but there are some differences

between the implementations. These are listed by the official library wiki.

The users, as with any other AppEngine applications, will be charged for any

resources that MapReduce programs realized through this library are going

4.3 Analysis using Google App Engine 63

to use.

4.3.1 Job Types

The library allows two types of jobs. In both cases, a job is composed

by multiple stages and it uses the library already implemented features to

efficiently and easily operate on large data sets.

The first type is the Map Job, which processes the data in parallel using only

a single map stage.

More complex is the MapReduce Job. This has three stages performed in

succession: map, shuffle and reduce. Each stage is executed only when the

previous step is completed. This second type allows developers to completely

perform a MapReduce data flow.

4.3.2 Stages

As mentioned above, there are different stages:

• The Map stage is controlled through a Mapper class offered by the

library. It is composed by an input reader that extracts one logical

record at a time from the input data and a map function specified by

the user and called on each input record. The library offers different

input readers depending on the input format but developers can build

their own if needed. The Map function is more specific to the kind

of job and it can create a final output if a Map Job is executed, or

intermediate key-value pairs for a MapReduce Job.

• The Shuffle stage groups all the mapper output pairs that have the

same key. All the merged values create an array that is associated with

the common key. It does not delete multiple copies of a same value and

it does not sort the values.

• These arrays arrive to the Reduce stage implemented by a Reducer

class. The most important component is the reduce function called

64 4. Data Elaboration

for each key. It takes the key and the relative list of values as input

and it elaborates them in an iterative way. The results of this function

are passed to an output writer that generates the final result. As for

readers, the library offers a range of possibilities for the writers as well,

but custom version can be created for specific needs.

4.3.3 Input Reader and Output Writer

”The standard data input readers are designed to read in data from spe-

cific storage, such as blobstore or datastore and then supply the data to the

mapper function. While the standard output writers write data from the

reducer function to a Google Cloud Storage location” [25]. We used various

Input Readers and Output Writers, in particular we tested:

BlobstoreLineInputReader requires only one parameter called blob keys

that specifies a file stored in the Blobstore. It reads the specified file

one line at a time and it passes the read value to the mapper function

through a tuple comprised of the byte offset in the file and the line as

a string. The format is: (byte offset, line value).

BlobstoreZipInputReader requires only one parameter called blob keys

that specify a .zip object stored in the Blobstore. The .zip object

contains multiple files, for each file the mapper function is called passing

a tuple comprising information about the file and a function that allows

the mapper to return the complete body of the file as a string.

GoogleCloudStorageOutputWriter requires, as other writers, a bucket name

and if necessary other optional parameters as content type. It could cre-

ate inconsistent outputs if the input changes during slice retries, but a

different version that ensures this property is also available, if necessary.

In what follows, I will explain in some more details the BlobStore and

the Google Cloud Storage mentioned above:

4.3 Analysis using Google App Engine 65

BlobStore

“Google App Engine includes the Blobstore service, which allows appli-

cations to serve data objects limited only by the amount of data that can

be uploaded or downloaded over a single HTTP connection”[26]. The stored

objects are called blobs and they are created indirectly, by a submitted web

form. The Blobstore API allows users and applications to access information

in a file-like stream.

Google Cloud Storage

Google Cloud Storage is one of the options for storing data in an App

Engine application. It is suitable for files and their associated metadata. The

storing is organized through buckets. “A bucket is the storage location you

read files from and write files to. You must always specify a bucket when

using the Google Cloud Storage client library”[27]. A project can access

multiple buckets.

4.3.4 Configuration Settings

An important configuration parameter to use the parallelization is the

number of shards. Shards are portions of input data that can be processed in

parallel. A mapper instance is created to elaborate each shard. So the shard

number specifies the number of mappers instantiated.

Using multiple configuration files, it is possible to completely customize all

parameters. In our projects we modified two files to obtain the desired envi-

ronment.

• The first was app.yaml, the main fields are:

– a general section with the programming language used, python27

in our case, and the api version

– a section for the requested resources where developers can specify

the instance class and the scaling characteristics:

66 4. Data Elaboration

instance_class: B1

basic_scaling:

max_instances: 8

idle_timeout: 2m

in this case B1 is a machine with 128 MB of RAM and 600 MHz

of CPU limit.

There are three different scaling techniques: we usually used the

basic scaling where developers can specify the number of machines

and a timeout, if a machine does not receive requests within the

“idle timeout” this is shutdown. Other techniques are manual

scaling and auto scaling that are well explained on the official

documentation [28].

– a section to link URLs with the relative handlers

– a final section to specify the libraries and the files included

• The second was queue.yaml where developers can specify some settings

of the queue task. The most important parameter is the rate that

specifies how many tasks are launched each second.

All the configuration files are described in the official documentation that

reports the possible fields and the possible values for each field [29].

4.4 MapReduce Pipeline example in Python

The basic class to perform a MapReduce elaboration through Google Ap-

pEngine MapReduce Library is the MapReduce Pipeline class that is used

to “connect all the steps needed to perform a specific MapReduce job. It

specifies the mapper, reducer, data input reader, output writer and so forth

to be used to carry out the job”[30]. An example is:

class WordCountPipeline(base_handler.PipelineBase):

def run(self, filekey, blobkey):

4.4 MapReduce Pipeline example in Python 67

output = yield mapreduce_pipeline.MapreducePipeline(

"word_count",

"main.word_count_map",

"main.word_count_reduce",

"mapreduce.input_readers.BlobstoreZipInputReader",

"mapreduce.output_writers.FileOutputWriter",

mapper_params={

"input_reader": {

"blob_key": blobkey,

},

},

reducer_params={

"output_writer": {

"mime_type": "text/plain",

"output_sharding": "input",

"filesystem": "blobstore",

},

},

shards=16)

yield StoreOutput("WordCount", filekey, output)

The MapReducePipeline requires some parameters: the name of the job,

the name of map and reduce functions, the input reader and the output

writer with relative parameters and the number of shards (workers). The

shuffle function is integrated and is not explicitly invoked.

To start a MapReduce job, it is sufficient to instantiate an object of the class

defined and call the start() method.

Complete examples can be found in the official wiki. These provide a com-

plete infrastructure that manages all the MapReduce necessary operations

so they can be used as a basis for easily developing custom versions.

The wiki offers also a list of possible Input Readers and Output Writers, with

short description, that developers can use in their applications.

68 4. Data Elaboration

4.5 Our Elaboration

Installation The first step was to install and configure the Google Cloud

SDK and the necessary components to use Python and the MapReduce li-

brary.

Google Cloud SDK is “a set of tools to manage resources and applications

hosted on Google Cloud Platform ”[31]. It allows to run local service emu-

lators to simulate services for local development and tests and it allows to

easily deploy the developed applications on the cloud. The official documen-

tation provides the installation procedure, all the necessary materials and

examples to use the SDK. To ensure us that all components work correctly

we try the examples provided in the library wiki.

Development Starting from the examples code, which provides a basic

infrastructure and a handy web-based interface that allows users to upload

files in the Blobstore and to launch the analysis on them, we began to develop

our applications. In particular, for each job we changed Map and Reduce

functions and we adapted the pipeline definition to specify for example the

input reader and the output writer that we wanted use.

Dataset We developed multiple analyses using data extracted from our

database, as Social Ranking job, or using an external dataset. We searched

datasets connected with the university world but we did not find any suitable

possibilities. We found a large free film database with film information and

user reviews that give us the possibility to execute different elaborations on

the same data. It contains 27 thousand movies with 20 million ratings given

by Netflix’s users.

Testing Each job has been developed and tested locally on our notebooks.

Using the command: dev appserver.py ./app.yaml the application is usable

through a normal browser through the localhost address.

For the test phases usually we used a small portion of the dataset, the first

4.5 Our Elaboration 69

fifty raws, to execute the analysis in an acceptable time. In addition the local

execution on a small portion of data allows a easier and faster debug process.

Deployment When we obtained a correct application version we deployed

it on the cloud using the command line tool.

This requires to select a deploy zone/region. We encountered a problem

becuase we had an ”editor” role in the project created by Injenia and this

role does not allow to select the deploy zone. The Injenia team resolved

this problem making this choice automatic so particular permissions were no

longer necessary. We asked to choose the cheapest region to save our credits

and because we did not have particular performance needs. So each time the

tool automatic selected the region and we only used the following command:

gcloud app deploy ./app.yaml to deploy the application.

Testing on the Cloud On the cloud we used the entire dataset, loaded in

.zip format using the offered interface, and the jobs required various hours.

It is important to note that it was very difficult to check that the results of

big-data analyses were correct, so we used the local execution on small por-

tion of data to verify the solution correctness. Sometimes we found strange

values in the final results connected with format errors in the input files, but

the dimesion of the input data does not allow to find all particular case to

manage each of them.

The Social Ranking job dataset was already less then fifty rows so we an-

alyzed the entire dataset locally and in the cloud to ensure that we could

obtain the same results. This confirms that the adopted solution is usable

also with large dataset using the cloud capacities.

4.5.1 Social Ranking

This job analyzes the data extracted from our database and in particular

from the follower table to calculate a users rank. The main goal was to create

a list of the most popular users using an algorithm based on the PageRank

70 4. Data Elaboration

iterative algorithm.

It takes as input a file generated by a query that contains a list of user

mails pairs that represents a social network graph where vertices represent

the users and the edges represent “follow” relationships. Each input line has

the following format: <username, followedUser>.

Formula

As mentioned above, we used an iterative algorithm where each round

re-uses the values calculated in the previous round. We use the following

formula:

rk+1
i = d + (1− d)Σj∈B(i)

rkj
|N(j)|

where d is a constant parameter that we set equals to 0.15, B(i) is the

set of users that follow i, the numerator is the rank of user j in the previous

round and the denominator is the cardinality of the set of i’s followed users.

Termination Criteria

The original alghorithm terminates when the difference between tha rank

values in the current round and the rank values in the previous round for

each user is less then a particular value. But we decided to also cap the

number of iterations to a fixed number, to ensure that even in large dataset

the task does not require too much time and/or resources. In particular we

tried with values between one and ten iterations and we found five as a good

compromise.

MapReduce Tasks

In particular this job requires four different MapReduce tasks performed

in succession. The first to prepare the input, the second to calculate the rank

and it is repeated multiple times, the third to extract the useful information

and to create a unique output file and the last to sort the result and translate

4.5 Our Elaboration 71

it in the JSON format to directly insert the desired rank in the social network

interface.

The input file is read in the first task using the BlobstoreLineInputReader

because the file is stored on the Blobstore. All other tasks use the Google-

CloudStorageInputReader and GoogleCloudStorageOutputWriter to read and

write the intermediate values and the final result.

We found a problem to use the output of a task as the input of the following,

because none of the exemples provided in the library executed a chain of

MapReduce tasks. We found a solution by adapting the name format of the

output file to correctly use it in the second pipeline. In particular we realized

two classes that translate a pipeline output into the correct format for the

next one. We needed two different classes because if the first pipeline is only

a Map task, an addition parameter is required to use the generated output.

The code of these two classes can be found in the code section at the end of

this dissertation.

The four tasks are as follows:

• The first task must prepare the input for the elaboration. So as first

step using the Map function it converts each file line in a key-value

pairs removing the hoop character. The Reduce function creates an

element for each user with the correct format to apply, in the next

step, the formula presented above. In particular it outputs a string:

username:rankValue—followedUsers : where the initial rank value is 1

for all users and the followedUsers is a comma separated unique string

with the list of users that follow the selected one.

"""Input: username<separator>followedUser

Output: <username,followedUser>"""

def social_ranking_count_map(data):

(offset, line) = data

#custom separator character

separator = ","

72 4. Data Elaboration

if line != "":

#last char is "\r" so we need to remove it

yield (s.split(separator)[0],

s.split(separator)[1][:-1])

"""Output: username:rankValue|followedUsers

followedUsers are comma separated in a unique string"""

def social_ranking_count_reduce(key, values):

yield "%s:%s\n" % (key, "1|" +’,’.join(values))

• The second task is repeated multiple times; it applies the formula to

calculate the rank value of each user. The Map function and the Reduce

function are not easily understandable. The Map function calculates

the weight of the current user and yields this value to each user that

he follows. It also yields the user and the list of followed just not to

lose useful information and to pass them through different map-reduces

jobs. The reduce function receives a user as key and a list of weights as

values. These useful values are followed by the list of the followedUser

that are required in the following iteration. It uses the try command to

individuate and properly manage the weights and the strings. It sums

the weights and applies the formula using the d parameter. This func-

tion prints for each user: username:rankValue—followedUsers exactly

as in the previous task. In fact, this task is iterative so the output is

used again as the input of the following iteration.

"""Input: user:rank|followedUsers

Output: <username,value> username is a followed user,

value is the current user weight

Output: <username,followedUsers> useful for the next job"""

def social_ranking_map(data):

(offset, line) = data

if line != "":

4.5 Our Elaboration 73

tokens = line.split(":")

user = tokens[0]

info = tokens[1].split("|")

curRank = info[0]

followed = info[1].split(",")

#current user weight in ranking sum

count = float(curRank)/len(followed);

for f in followed:

yield(f,float(count))

yield (user, followed)

"""Input: key = user

values = [w1,w2,...wn,[followedUsers]]

Output: username:rankValue|followedUsers

rankValue is the nth rank"""

def social_ranking_reduce(key, values):

acc = 0

user = ""

for val in values:

try:

#if it is one of the weights, add it up

sumPart = float(val)

acc += sumPart

except:

#otherwise it’s our list of followedUsers

#remove initial ’[’ and final ’]’

users = val[1:-1]

#create an array [’user1’,’user2’,..]

users = users.split(’,’)

#remove initial whitespaces and quotes

users = [u.strip()[1:-1] for u in users]

74 4. Data Elaboration

#tranform array into a string

user = ’,’.join(users)

acc *= 0.15+(1-0.15)

yield "%s:%s\n" % (key, str(acc)+"|" + user)

• The third task is only a Map task. It is executed with only one shard to

generate the result on a single file. It takes as input the output of the

previous task, which has the format required to apply the formula, and

it extrapolates only the useful information: the user and the relative

rank value. The code is in Appendix A.0.2.

• The last task is again only a Map task, that takes the list of users, each

one with his rank value, and creates the sorted list. It returns this list

in a JSON format. In this way, the output can be directly used in the

Social Network to show the result. The code is in Appendix A.0.3.

4.5.2 Movie Ranking

The objective of this MapReduce job was to calculate the list of the best

films depending on the available ratings. In particular it calculates the rating

average for each film and with the obtained values it creates a sorted list with

the first n films.

As in the previous job, the results are merged in a single file and converted

in a JSON format to have the possibility to directly show the result on the

Social Network.

Input

As mentioned above the film dataset contains 27 thousand movies with

20 million ratings given by Netflix’s users. It consists of different files but we

only used:

movies.txt where an example line is:

1,Toy Story (1995),Adventure—Animation—Children—Comedy—Fantasy.

4.5 Our Elaboration 75

It is composed by three comma-separeted fields: <movieId,title,genres>,

where the genres field is a pipe-separated string with the list of all film

genres.

ratings.txt where an example line is:

1,2,3.5,1112486027.

It consists of four comma-separeted fields: <userId, movieId, rating,

timestamp>. Scores range from 0 to 5, and half scores are possible (0,

0.5, 1, etc).

MapReduce Tasks

As the Social Ranking, this job requires multiple MapReduce tasks per-

formed in succession. The first to calculate the average, the second to extract

the desired information and to create a unique output file and the last to sort

the result and translate it into the JSON format to directly insert the list of

the best films in the social network interface.

The input file is read by the first task using the BlobstoreLineInputReader.

All the other tasks use the GoogleCloudStorageInputReader and GoogleCloud-

StorageOutputWriter to read and write the intermediate values and the final

result. As already explained for the previous job, we used two custom classes

to use the output of a task as the input of the following.

Problem The first version of the job that used the BlobstoreZipInputReader

required 7 hours with an average rate of 9918 mapper calls per second. We

wanted to improve the performance of our job so we went through an ac-

curate debug phase to check whether there were problems in our code. We

noticed that although we specified in the pipeline to use 16 shards, only 2

shards are actually used during the execution, that is one for each file.

We did not find clear documentation about this issue so we were forced to

analyze the code directly. We had this possibility because the library is open-

source. We noted that the BlobstoreZipInputReader class contains code to

automatically slice the input files into the requested shards (with a maximum

76 4. Data Elaboration

of 256 shards), but we also realized that this code had something wrong or

it was never called. So the files were not sliced and only one shard for each

of them was used.

Through the source code we found other Input Reader with small descrip-

tions created through the comments. We decided to use BlobstoreLineIn-

putReader. Thanks to this change the two files were sliced correctly in the

requested number of shards. Using the same configuration files as before, so

the same cluster characteristics the job ended in less than an hour, with an

average rate of 30.000 mapper calls per second.

The three tasks used are the following:

• The first task performs a Join operation on the movieID column using

the Map function and it calculates the rate average through the Reduce

function. As a first step, it uses the Map function to return pairs where

the key is always the movieID and the values can be the title or a score.

The Reduce function use a try command to understand whether the

analyzed value is the title or a score, and in the second case it uses this

value to calculate the average.

"""Input: movieID<separator>title<separator>geners OR

userID<separator>movieID<separator>rating<separator>timestamp

Output: <movieId,rating OR title>"""

def movies_ranking_map(data):

(offset, s) = data

#custom separator character

separator = ","

if s != "":

if(s.find("\"")!= -1):

line_values = s.split(’"’)

#remove last char of id (it’s a comma)

movieID = float(line_values[0][:-1])

title = line_values[1]

4.5 Our Elaboration 77

yield (movieID, title)

else:

line_values = s.split(separator)

try:

#if the second field is a movieID,

#save the rating.

movieID = float(line_values[1])

rating = line_values[2]

yield (movieID, rating)

except:

#otherwise save the title:

movieID = float(line_values[0])

title = line_values[1]

yield (movieID, title)

"""Output: title:averageRank"""

def movies_ranking_reduce(key, values):

acc = 0

count = 0

title = ""

for v in values:

try:

#if is a number, it is used in the average

numericVal = float(v)

acc = acc + numericVal

count = count + 1

except:

#otherwise the value is the title

title = v

if(count>0):

yield "%s:%.2f\n" % (title, acc/count)

78 4. Data Elaboration

else:

yield "%s:%.2f\n" % (title, -1)

• The last two tasks are the same as explained for the Social Ranking

job.

4.5.3 Movie Genres Ranking and Movie Suggestion

To conclude our project we decided to develop more complex elaborations

on the film dataset that represents our “big data”. We developed two other

MapReduce jobs that I briefly explain in this section, the code can be found

in the code section at the end of this dissertation and a more complete

explanation can be found in Alessandro Bandini’s dissertation.

Movie Genres Ranking

This job is an extention of the Movie Ranking job that considers also the

film genres. In particular, it creates a film ranking for each genres used in

the dataset.

The algorithm is based on the Movie Ranking version but the Mapper extract

more information from the film file, in particular it uses the movieID as key -

as it did in the previous job - and the title concatenated with the genres list

as value. The two components of the value field are separeted by a custom

character “#”, used in the second pipeline to split the different pieces of

information. The Reducer calculates the average and it returns the title, the

rate average and the genres list.

This output is passed to another Pipeline where the Mapper uses each genres

(each film has usually more than one genre) as key and a pipe-separated pairs

composed by title and rate average as value. The reduce function receives

for each genre a list of pairs <title—value> and it select the films with the

best overall score.

As mentioned for the first two jobs, we used two additional Pipelines at the

4.5 Our Elaboration 79

end to sort the result and to obtain a single file output that is written in

JSON format.

Movie Suggestion

This is the most sophisticated algorithm that we developed. It is based

on “collaborative filtering”, used to perform an advanced elaboration to in-

dividuate the best film for a given user. In the real life, this is surely a more

useful task for a user compared with a general global film ranking.

Collaborative filtering is a technique to make automatic prediction and choices

about the interests of a person using preferences and taste information from

many users that “collaborate”to take the decisions.

We divided this complex job in two smaller components:

• the first component identifies the best match between two users using

the list of films voted with the same score. The idea is that the more

scores they have in common, the more similar their film tastes are. The

output is a pair for each user with his name and the name of the most

similar user.

• the second component compares the list of films voted by the two users

and record the differences between the two lists. Then it assigns to the

first user those films that appear in the second user’s list but not in his

own, i.e. the films that the second user saw but the first one has not

seen yet.

Finding a better method to match similar users and consider more than

one similar user can improve the results.

4.5.4 Performance Analysis

We can not perform too many different tests with different configurations

because we have a limited amount of credits. So we selected one job, Movie

Genres Ranking, and we executed it with different situations to analyze the

80 4. Data Elaboration

performances. In particular we observed the time required by each phase. To

save our credits we selected a cluster configuration that offers the necessary

computing powers and that was not too expensive, and we always use that

configuration in the tests. We then executed various experiments changing

the number of shards.

Shard Number

Phases 8 16 32 64

Map Phase (min) 23 10 11 16

Shuffle Phase (min) 45 30 33 105

Reduce Phase (min) 0.58 1.11 1.58 3.38

Table 4.1: Execution time depending on the shard number

From the resulting data, it is possible to notice that the Shuffle Phase

is the longest part indipendently from the number of shard requested. The

Reduce Phase is the fastest and it requires a small part of the total time

because it elaborates only the portion of data selected through the Mapper.

In general the performances improve with the increment of the number of

shards because the application exploit more the parallelization. It is interest-

ing to note that this concept is only valid when moving from 8 to 16 shards,

but the performances start decreasing already from 32 shards, and dramat-

ically drop with 64 shards. This phenomenon is connected with the cluster

dimension. In fact our cluster uses only 8 machines, so increasing the number

of shards over a maximum limit increases the required work to manage the

infrastructure and the parallelization level is counter-productive.

The same observations can be done analyzing the average map calls per sec-

ond (Table 4.2). A Map call is executed for each logic record in the input so

more calls per second means a fast input elaboration.

A clearer picture of the required times can be obtained from the chart

showed in Figure 4.1.

During the development in one of our first attempts, we used an Input

Reader that does not slice the input and consequently it executes the job

4.5 Our Elaboration 81

8 Shards 16 Shards 32 Shards 64 Shards

14346 30483 29802 20270

Table 4.2: Average map calls per second depending on the shard number

Figure 4.1: Total computation time with a different shard number

with only 1 shard. It requires about five hours and a half instead of the

ten minutes required with 16 shards and it has an average number of map

calls per second of 9918 against 30483 of the last version. These values show

the power of parallelization even when not using huge dataset and when

employing only limited resources.

82 4. Data Elaboration

4.6 Data Elaboration Conclusion

During the development and the testing of our applications we noted some

positive and some negative aspects. The first positive aspect is that Google

offers a sufficient amount of free credits to try its services. So students - but

also normal users - have the possibility to experiment the services and to use

them for small projects without paying. In addition, for the more common

services, if a user requests less than a specific amount of resources these are

free. A second positive aspect is that the Google Cloud Environment offers

a large range of different automatic and already implemented services, very

useful to solve every type of problems.

On the other side, we encouterd some problems during the utilization of the

MapReduce library. It is certainly a very useful library, thanks in particular

to the just developed infrastructure and interface, but at the time this project

was carried out the documentation was not up-to-date and the available ex-

amples were very simple and therefore scarcely informative for our purposes.

This situation was partially solved thanks to the fact that the library is open

source. So we could analyze directly the code that was well commented, and

therefore solve our doubts.

Conclusions

To conclude this dissertation, I would like to say that I am completly sat-

isfied with the results of this project. I think that we have achieved all the

goals we had set with Professor Zavattaro before and during the realization.

We acquired theoretical knowledge of all aspects of cloud computing, from

the more general aspects to the architectural and practical solutions. We

learnt about the most common platforms, the differences between them and

the services they offer. We directly used and explored different services from

the most widely used public cloud platforms to realize a real usable appli-

cation. We have also dealt with the big data analysis theme, analyzing and

using a new programming paradigm. We realized, executed and tested mul-

tiple data elaborations through cloud computing.

I am also satisfied because I achieved the goals I had set myself not directly

linked with the theme of the project. For example this experience has allowed

me to confront myself with a long-term project, that required about one year

of work in collaboration with a collegue. It has led me to face all stages of

realizing a complex project: from the research and study of necessary ma-

terials, the design with technological, platforms and practical choices, the

implementation with all the problems that are commonly encountered dur-

ing this phase, to the testing of the final version. This general exeperience

common to all projects will certainly be a useful building block for my future

works.

In addition, during this work we committed some mistakes, chiefly due to the

lack of experience, that forced us to re-design and re-implement parts of the

83

84 Conclusions

project. These operations required a lot of additional time. This convinced

me even more of the importance of careful planning and the importance of

realizing flexible codes that can be adapted to different situations.

During the realization of this dissertation I understood once more the im-

portance of in-depth documentation and easily readable codes that make it

easier to remember after a relative long period of time what solutions had

been adopted and therefore make it easier to re-use or modify the realized

parts.

The final application probably is not yet ready for a public large-scale de-

ployment, also because at this stage it offers only basic features. Nonetheless,

it requires only some small extensions to reach the goal mentioned above. It

is also important to highlight that the Social Network actually works and

we tested it with external users for a short-period of time and we did not

find any relevant problems. We thought and designed also other features and

tests that for example use different configurations, but we could not realize

them due to a lack of time and limited available credits.

To conclude, I would like to highlight the topicality of this technology. I

personally participated in a project at CERN (the European Organization

for Nuclear Research) in June, July and August, where I discovered the cur-

rent uses and development of various cloud solutions. After working on this

university project, it was extremely interesting for me to witness how cloud

computing is actually analyzed and adopted also in technologically advanced

environments such as CERN.

Appendix A

Code

A.0.1 Pipeline Adapter Classes

class GCSMapperParams(base_handler.PipelineBase):

def run(self, GCSPath):

bucket_name = app_identity.get_default_gcs_bucket_name()

return {

"input_reader": {

"bucket_name": bucket_name,

"objects": [path.split(’/’, 2)[2] for path in GCSPath]

}

}

class GCSMapperParamsAddBucketName(base_handler.PipelineBase):

def run(self, GCSPath):

bucket_name = app_identity.get_default_gcs_bucket_name()

return {

"input_reader": {

"bucket_name": bucket_name,

"objects": [path.split(’/’, 2)[2] for path in GCSPath]

},

"output_writer": {

85

86 Code

"bucket_name": bucket_name,

"content_type": "text/plain"

}

}

A.0.2 Map Task to generate the result on a single file

"""Input: user:rank|followedUsers

Output: "username:rank" """

def social_ranking_final_map(data):

lines = data.read()

for line in split_into_sentences(lines):

if line != "":

tokens = line.split(":")

user = tokens[0]

info = tokens[1].split("|")

curRank = info[0]

yield "%s:%s\n" % (user, curRank)

A.0.3 Map Task to sort the result and return it in

JSON format

def getKey(item):

if(item!= ""):

return float(item.split(":")[1])

def sorting_map(data):

global output_records

lines = data.read()

entries = split_into_sentences(lines)

sortedEntries = sorted(entries, key=getKey,reverse = True)

yield "{\n\"suggestion\":[\n"

Code 87

count = len(sortedEntries)

if output_records > count:

output_records = count

for i in range(0,output_records-1):

yield "\"%s\",\n" % (sortedEntries[i].split(":")[0])

yield "\"%s\"\n" %

(sortedEntries[output_records-1].split(":")[0])

yield "]\n}"

A.0.4 Movie Genres Ranking

"""Input: movieID<separator>title<separator>genres OR

userID<separator>movieID<separator>rating<separator>timestamp

Output: movieId,rating OR title#genres"""

def movies_ranking_map(data):

(offset, s) = data

#custom separator character

separator = ","

if s != "":

if(s.find("\"")!= -1):

line_values = s.split(’"’)

#remove last char of id because it’s a comma

movieID = float(line_values[0][:-1])

title = line_values[1]

genres = line_values[2][1:]

yield (movieID, title+ "#"+genres)

else:

line_values = s.split(separator)

try:

#if the second field is a movieID, save the rating

movieID = float(line_values[1])

rating = line_values[2]

88 Code

yield (movieID, rating)

except:

#otherwise save the title

movieID = float(line_values[0])

title = line_values[1]

genres = line_values[2]

yield (movieID, title + "#"+genres)

"""Output: title#genres:averageRank"""

def movies_ranking_reduce(key, values):

acc = 0

count = 0

title = ""

for v in values:

try:

#if is a numeber is used to calculate the average

numericVal = float(v)

acc = acc + numericVal

count = count + 1

except:

#otherwise the value is the title

title = v

if(count>0):

yield "%s#%.2f\n" % (title, acc/count)

else:

yield "%s#%.2f\n" % (title, -1)

"""Input: title#genres#averageRank

Output: <genre,title|rank>"""

def movies_genres_map(data):

lines = data.read()

Code 89

#custom separator character

separator = "#"

for s in split_into_sentences(lines):

if s != "":

line_values = s.split(separator)

title = line_values[0]

genres = line_values[1].split("|")

rank = line_values[2]

for g in genres:

yield(g,title+"|"+rank)

"""Input: <genre,title|rank>

Output: genre:titles"""

def movies_genres_reduce(key, values):

global output_records

entries = {}

for val in values:

fields = val.split("|")

entries[fields[0]] = fields[1]

sortedEntries = sorted(entries.items(),

key=operator.itemgetter(1),reverse=True)

titles = ""

count = len(sortedEntries)

for i in range(0,output_records):

if i >= count:

break

else:

titles += ",\"" +

(’’.join(str(sortedEntries[i]).split(",")[:-1]))[2:-1]

+ "\""

titles = "[" + titles[1:] + "]"

90 Code

yield "\"%s\":%s\n" % (key,titles)

"""Input: genres:[filmList]

Output: the same string"""

def movies_genres_final_map(data):

lines = data.read()

for line in split_into_sentences(lines):

if line != "":

yield "%s\n" % (line)

def sorting_map(data):

lines = data.read()

yield "{\n\"movieGenresSuggestion\":{\n"

entries = split_into_sentences(lines)

count = len(entries)

for i in range(0,count-2):

yield "%s,\n" % (entries[i])

yield "%s\n" % (entries[count-2])

yield "}\n}"

A.0.5 Movie Suggestion

Find similar users

"""Input:

userID<separator>movieID<separator>rating<separator>timestamp

Output: <movieId, usrId-rate>"""

def rated_movie_map(data):

(offset, s) = data

#custom separator character

separator = ","

if s != "":

Code 91

line_values = s.split(separator)

userId = line_values[0]

movieID = line_values[1]

rating = line_values[2]

yield (movieID, userId +"-"+rating)

"""Output: movieID:[usri-.-.-usrk][usrx-.-.-.usry]"""

def rated_movie_reduce(key, values):

rateDict = {}

for v in values:

entry = v.split("-")

if(entry[1] in rateDict):

rateDict[entry[1]]=rateDict[entry[1]]+"-"+entry[0]

else:

rateDict[entry[1]] = entry[0]

result = ""

for rate in rateDict:

result = result + "[" + rateDict[rate] + "]"

yield "%s,%s\n" % (key, result)

"""Input: movieIDseparator>[u1-u2-..-][users]..[users]

Output: <usr1, usr2>"""

def affiliated_user_map(data):

text = data.read()

#custom separator character

separator = ","

for s in split_into_sentences(text):

if s != "":

values = s.split(separator)[1]

affiliated = values.split("[")

for aff in affiliated:

92 Code

#remove last char ("]")

aff = aff[:-1]

users = aff.split("-")

count = len(users)

for i in range(0,count):

for y in range(0,count):

if i != y:

yield (users[i],users[y])

"""Output: user1:user2

where user2 it’s the best match for user1"""

def affiliated_user_reduce(key, values):

affDict = {}

for v in values:

if(v in affDict):

affDict[v] = affDict[v] + 1

else:

affDict[v] = 1

max = 0

bestUser = key

for user in affDict:

if affDict[user] > max:

bestUser = user

yield "%s:%s\n" % (key, bestUser)

"""Input: title:averageRank

Output: the same string"""

def final_map(data):

lines = data.read()

for line in split_into_sentences(lines):

if line != "":

Code 93

yield "%s\n" % (line)

Movie Filter

"""Input: <userID1,idFilms> OR

userID<separator>movieID<separator>rating<separator>timestamp

Output: userWhoSuggest, U:userToSuggest OR M:movieToSuggest"""

def movies_suggestion_map(data):

(offset, s) = data

#custom separator character

separator = ","

if s != "":

values = s.split(":")

if len(values) > 1:

#we are in the <userID1,idFilms> file

usr = values[0]

films = values[1].split(",")

for f in films:

yield (usr,f)

else:

values = s.split(separator)

usr = values[0]

movieID = values[1]

yield (usr,movieID)

"""Output: usr:suggestedFilm"""

def movies_suggestion_reduce(key, values):

movies = {}

for v in values:

if(v != ""):

if(v in movies):

94 Code

movies[v] = movies[v] + 1

else:

movies[v] = 1

result = ""

for m in movies:

if movies[m] == 1:

result = result + "," + m

yield "%s:%s\n" % (key, result)

"""Input: title:averageRank

Output: the same string"""

def final_map(data):

lines = data.read()

for line in split_into_sentences(lines):

if line != "":

yield "%s\n" % (line)

Suggestions

"""Input: <userID1:userID2> OR

userID<separator>movieID<separator>rating<separator>timestamp

Output: userWhoSuggest, U:userToSuggest OR M:movieToSuggest"""

def movies_suggestion_map(data):

(offset, s) = data

#custom separator character

separator = ","

if s != "":

values = s.split(":")

if len(values) > 1:

#we are in the <userID1:userID2> file

usr1 = values[0]

Code 95

usr2 = values[1]

yield (usr2,"U:"+usr1)

else:

values = s.split(separator)

usr = values[0]

movieID = values[1]

yield (usr,"M:"+movieID)

"""Output: usr:suggestedFilm"""

def movies_suggestion_reduce(key, values):

users = []

movies = []

for v in values:

if(v != ""):

if v[0] == ’M’:

movies.append(v.split(":")[1])

else:

users.append(v.split(":")[1])

for u in users:

for m in movies:

yield "%s,%s\n" % (u, m)

"""Input: usr<separator>suggestedFilm

Output: <usr1, film>"""

def filter_suggestion_map(data):

text = data.read()

#custom separator character

separator = ","

for s in split_into_sentences(text):

if s != "":

values = s.split(separator)

96 Code

yield (values[0],values[1])

"""Output: user:filmSuggested (comma-separated)"""

def filter_suggestion_reduce(key, values):

yield "%s:%s\n" % (key, ",".join(values))

"""Input: title:averageRank

Output: the same string"""

def final_map(data):

lines = data.read()

for line in split_into_sentences(lines):

if line != "":

yield "%s\n" % (line)

Bibliography

[1] Mastering Cloud Computing Foundations and Applications Program-

ming (Rajkumar Buyya, Christian Vecchiola and S. Thamarai Selvi)

[2] Cloud Computing: Theory and Practice (Dan C. Marinescu)

[3] Hadoop: The Definitive Guide, 4th Edition Storage and Analysis at

Internet Scale (Tom White)

[4] MapReduce Design Patterns Building Effective Algorithms and Analyt-

ics for Hadoop and Other Systems (Donald Miner, Adam Shook)

[5] http://www.cis.upenn.edu/ nets212/

[6] https://aws.amazon.com/it/agreement/

[7] https://eta.lbl.gov/publications/united-states-data-center-energy

[8] https://cloudsecurityalliance.org/about/

[9] https://united-kingdom.taylorwessing.com/globaldatahub/

article dp cyber russia.html

[10] https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-

choose-me

[11] https://cloudstack.apache.org/

[12] https://www.openstack.org/software/

[13] http://www.manjrasoft.com/aneka architecture.html

97

98 BIBLIOGRAPHY

[14] http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

Introduction.html

[15] http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-

what-is-emr.html

[16] http://cassandra.apache.org/

[17] https://github.com/datastax/php-driver/

[18] http://www.northeastern.edu/levelblog/2016/05/13/how-much-data-

produced-every-day/

[19] https://home.cern/about/computing

[20] https://research.google.com/archive/mapreduce.html

[21] https://wiki.apache.org/hadoop/PoweredBy

[22] https://www.slideshare.net/chopramanish/organizations-with-largest-

hadoop-clusters

[23] https://github.com/GoogleCloudPlatform/appengine-mapreduce/wiki

[24] https://cloud.google.com/appengine/docs/standard/python/dataprocessing/

[25] https://github.com/GoogleCloudPlatform/appengine-

mapreduce/wiki/3.4-Readers-and-Writers

[26] https://cloud.google.com/appengine/docs/standard/python/blobstore/

[27] https://cloud.google.com/appengine/docs/standard/python/

googlecloudstorageclient/understanding-storage-features

[28] https://cloud.google.com/appengine/docs/standard/python/an-

overview-of-app-engine

[29] https://cloud.google.com/appengine/docs/standard/python/

configuration-files

BIBLIOGRAPHY 99

[30] https://github.com/GoogleCloudPlatform/appengine-

mapreduce/wiki/3.3–The-MapreducePipeline-Class

[31] https://cloud.google.com/sdk/docs/#more-information

Acknowledgements

I would like to express my gratitude to Professor Zavattaro for the inter-

esting possibility that he offered me, for his advices and continuous support

during the realization of this project.

I am also indebted to Alessandro Bandini, who collaborated with me on this

project and who often sacrificed even his free time to work with me on it.

Finally, my heart-felt thanks to my sister for her advices during the writing

of this dissertation and for always believing in me, and to my family and

friends in general, for their constant support and encouragement throughout

my university path away from home.

