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Abstract

In the thesis I have studied a new method to measure the Hadronic Leading-Order (HLO)
contribution to the muon anomalous magnetic moment aµ.

In the first part I have described the Standard Model approach to evaluate the muon
anomaly. From the perturbative expansion we know that there are many contributions
to the muon aµ: QED contribution, electroweak contribution and hadronic contribution.
While the QED and the electroweak contributions to the anomaly can be calculated
with increasing precision with the perturbative method, the hadronic contributions at
this energy scale cannot, hence experiments are required to estimate its value.

The HLO contribution to the muon anomalous magnetic moment is a vacuum po-
larization process. It is known since long time that it can be calculated by means of
the dispersive approach using e− + e+ → hadrons s-channel, time-like, annihilation
data. I have studied the dispersive method, based on the optical theorem and dispersion
relations, in all the details.

Subsequently I have discussed why this method could hardly further improve the
theoretical uncertainty. Dominant contributions to the dispersive integral are due to
the well-known hadronic resonant contributions, with

√
s < 2 GeV. Moreover with the

additional complication that one has to evaluate all the contributions, due to different
hadronic final states, that must be taken from many different experiments.

In the second part of the thesis I studied an innovative proposal to measure the HLO
contribution to aµ. The novel method is based on the idea of using the elastic scattering
of high energetic muons on at rest electrons µ+ e− (rest)→ µ+ e−. The strength of the
idea is to rely on t-channel scattering data, with four-momentum transfer t = q 2 < 0 in
space-like region to measure the HLO to aµ. In this case the differential elastic cross-
section allows to measure the running of α(t) with very high precision and to determine
the hadronic shift ∆αhad(t) subtracting all the contributions due to QED and electroweak
processes to the relevant perturbative order. Through ∆αhad(t) the HLO contribution
to aµ can be calculated integrating a smooth function, of the transferred momentum,
exploiting just a single scattering process.

I have performed a preliminary study of the fitting procedure to extract ∆αhad(t) from
the cross-section. At this stage I used a sample of data obtained using the Leading-Order
approximation of the scattering cross-section. I have studied the systematics effects
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affecting the fit as a function of the interpolating function models. According to the
present estimates this new approach, which represents an independent complementary
technique to evaluate the HLO corrections to aµ, will reach a precision competitive with
the precision of the present results, of the level or even better than 0.6%, in just two
years of data taking.
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Notations and Conventions

Tensor
The conventions used in the thesis follow Jackson (1975), Bjorken and Drell (1964)
conventions. The metric tensor is:

gµν = g µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


with Greek indices running over 0,1,2,3. Roman indices denote only the three spatial
components. Repeated indices are summed in all cases. Four-vectors are denoted by
light italic type, three-vectors are denoted by boldface type.

Relativity
The following notation denotes a space-time point:

xµ =
(
x 0,x

)
, xµ = gµν x

ν =
(
x 0,−x

)
the displacement of xµ is “naturally raised”, while the derivative operator

∂µ
∂

∂xµ
=

(
∂

∂x 0
, ∇
)

is “naturally lowered”.
For a massive particle:

p 2 = pµ p
µ = E 2 − |p| 2 = m 2

Quantum Mechanics
The energy and momentum operators acting on a wave function as:

E = i
∂

∂x 0
, p = −i∇

in compact notation
pµ = i∂ µ

The Pauli spin matrices are three Hermitean 2× 2 matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
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which satisfy
σiσ j = δ ij + iε ijkσ k

where ε 123 = ε 123 = 1 so that

{σ i, σ j} = 2δ ij, [σ i, σ j] = 2iε ijkσ k

Dirac matrices
The Dirac matrices in the Weyl, or spinorial, or even chiral representation are

γ 0 =

(
0 1
1 0

)
γ i =

(
0 σi
−σi 0

)
they satisfy the following Clifford algebra

{γ µ; γ ν} = 2g µν1

while the commutator is defined as

σ µν ≡ i

4
[γ µ; γ ν ]

The Dirac’s matrices satisfy the following Hermitian property

γ µ† = γ 0γ µγ 0

so that
β = γ 0 =

(
0 1
1 0

)
α i =

(
−σ i 0

0 σ i

)
Finally

γ 5 = γ 5 =

(
−1 0
0 1

)
(1)

We always use the Weyl representation of Dirac’s matrices, unless it is specified.
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Chapter 1

The Standard Model prediction of the
muon g-2 anomaly

The Standard Model (SM) prediction of the muon anomalous magnetic moment has oc-
cupied many physicists for over 70 years: from the P. Dirac’s prediction (1928) and J.
Schwinger’s calculation (1948) of QED one-loop correction, until the last accurate calcu-
lation of higher-order QED corrections of S. Laporta (2017). Nowadays, the discussion
about its theoretical value is still open.

1.1 The magnetic moment of the elementary particles.
Classical electrodynamics predicts that a rotating electrically charged body creates a
magnetic dipole moment. According to Quantum Mechanics, due to its spin (the particle
intrinsic angular momentum), it follows that each charged particle has a magnetic dipole
moment.

Let’s consider for instance the case of the electron, whose mass is me and its charge
is set to −e, moving with velocity of magnitude v in a circular Bohr orbit of radius r.
The charge circulating in a loop (the electron’s orbit) is equivalent to a current:

i = − e
T

= − ev

2πr
(1.1)

where T is the orbital period of the electron. Relying on classical electromagnetism,
it can be shown that such a current loop produces a magnetic dipole moment. For a
given current of intensity i, circulating in a loop of area A, the magnitude of the orbital
magnetic dipole moment µl is

µl = iA (1.2)
Since the electron has a negative charge its magnetic dipole moment µl is anti-parallel
to its orbital angular momentum L, whose magnitude is given by:

L = m evr (1.3)
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Evaluating i from equation (1.1) and A for a circular Bohr orbit from (1.2), we obtain:

µ l = iA = −evr
2

(1.4)

dividing by angular momentum (1.3), it yields:

µ l
L

= − e

2m e

(1.5)

Therefore, the ratio of the electron magnetic moment and electron angular momentum
is a combination of universal constants. It is usual to write this ratio as

µ l
L

= −g l µB
}

(1.6)

where µB is called Bohr magneton, its value, in the International System of unit, is:

µB = e}/(2m e) = 9.27400949 (80)× 10−24J · T−1 (1.7)

where the coefficient g l, called orbital g-factor (or more correctly Landé g-factor), is
equal to:

g l = 1 (1.8)

Rewriting the equation (1.6) in vector notation we get:

µ l = −g e µB
}

L = − g l e

2m e

L (1.9)

It is possible to show that the previous formula is completely independent of the details
of the orbit.

In Quantum Mechanics the angular momentum has a discrete spectrum of eigen-
values, i.e. it takes the values L =

√
l(l + 1)}, so that the electron magnetic moment

is:
µ l = −g l µB

}
L = −g l µB

√
l(l + 1) (1.10)

with projection:
µ l z = −g l µB

}
L z = −g l µBm l (1.11)

the crucial result, we get with the last formula, is the discretely quantized values of µ l z ,
with m l

m l = −l,−l + 1, ..., 0, ...,+l − 1,+l

Thus, according to eq. (1.11) the number of possible values of µ l z is equal to 2l + 1.
Experiments, by Stern and Gerlach experiment (1922), and the Philyps and Taylor
experiment (1927), proved that eq. (1.11) holds, with the number of possible projections
m l equal to two. This result implies that electron has an intrinsic magnetic moment µ s,
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related to its intrinsic spin angular momentum S. Similarly to the previous case of the
orbital angular momentum L, for the spin we have

S =
√
s(s+ 1)} (1.12)

S z = m s} (1.13)

The relation between the spin magnetic dipole moment and the spin angular momentum
is then the same as the relation for the orbital case:

µ s = −g s µB
}

S (1.14)

µ s z = −g s µBm s (1.15)

where the quantity g s is called spin g-factor.
It is an experimental fact that µ s z can assume just two values, which are equal in

magnitude but opposite in sign [1]. In the assumption that the possible values of m s are
in range from −s to +s it is possible to conclude that:

m s = −1/2,+1/2 (1.16)

and that s has a single value
s = 1/2 (1.17)

In the two experiments it was possible to determine that g sm s = ±1 [2]. Since we have
already established that m s = −1/2,+1/2, it implies

g s = 2 (1.18)

The theoretical explanation of the last result was given by Dirac. It follows directly from
the relativistic wave equation for the 1/2 spin electrons. In order to prove this statement,
we will make use of Dirac matrices in the Dirac representation:

γ 0
D =

(
−i 0
0 i

)
βD =

(
1 0
0 −1

)
α i
D =

(
0 σ i

σ i 0

)
(1.19)

Let’s consider first the Dirac equation in the Hamiltonian form:

i}∂ tψ(t,x) = HDψ(t,x) (1.20)

where HD is the Dirac’s Hamiltonian:

HD = cp ·αD +m ec
2βD (1.21)

We are interested in studying the interaction of the electron with the external electro-
magnetic field:

Aµ(t,x) = (φ(t,x), A(t,x)) (1.22)

11



The interaction of the electron with the electromagnetic field can be described by means
of the minimal coupling

HD → HD − eφ p→ p− e

c
A ≡ π (1.23)

in this way, eq. (1.21) reads

HD = cπ ·αD +m ec
2βD + eφ (1.24)

Now, replacing the Hamiltonian of eq. (1.20) with eq. (1.24), we obtain

i}∂ tϕ(t,x) =
(
cπ ·αD +m ec

2βD + eφ
)
ψ(t,x) (1.25)

taking into account that we are working in the non-relativistic limit, we can rewrite the
wave function as

ψ(t,x) = e−i/}m ec 2t

(
ϕ(t,x)
χ(t,x)

)
(1.26)

namely, factoring the temporal part, which presence is due to the energy connected to
the electron mass, and splitting the Dirac spinor into two components spinors ϕ and χ.
Replacing the spinor of eq. (1.25) with eq. (1.26), it is easy to obtain

i}∂ tϕ = cσ · π + eφϕ (1.27a)
m ec

2χ+ i∂ tχ = cσ · πϕ−m ec
2χ+ eφχ (1.27b)

on the left side of eq. (1.27b) it is possible to ignore the term with temporal dependence,
on the right side the term with the electrical potential. We can apply these simplifications
because both terms are negligible compared to the massive term. In other words, we can
neglect the terms that are small when c→∞.

Solving eq. (1.27b)
χ =

σ · π
2m ec

ϕ (1.28)

and substituting in eq. (1.27a), we get

i}∂ tϕ =

(
(σ · π)2

2m e

+ eφ

)
ϕ (1.29)
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Making use of the algebra of the Pauli matrices

(σ · π)2 = π iπ jσ iσ j

= π 2 + iε ijkπ iπ jσ k

= π 2 + iε ijk
1

2

[
π i, π j

]
σ k

= π 2 + iε ijk
i}e
2c

(
∂ iA j − ∂ jA i

)
σ k

= π 2 − }e
2c
ε ijkεijlB lσ k

= π 2 − }e
2c

2δ klB lσ k

= π 2 − }e
c
B kσ k

(1.30)

and, furthermore, defining the spin operator as S = 1
2
}σ, we obtain

(σ · π)2 = π 2 − 2e

c
S ·B (1.31)

Now, the eq. (1.29) reads

i}∂ tϕ =

(
π 2

2m e

− e

m ec
S ·B + eφ

)
ϕ (1.32)

usually known as Pauli equation.
By comparing the second term on the right side of Pauli equation with eq. (1.14),

we finally obtain the expected result:

g s = 2 (1.33)

However, after a long experimental effort it was finally possible to prove that the
measured value of g s disagree with the Dirac’s predicted one.

As a matter of fact, the experimental value of electron g s, with remarkable precision
is currently established to be [3]:

g exps = (20023193043618.2± 5.2)× 10−13 (1.34)

The experimental value is slightly larger than the Dirac’s predicted value, at the level
of 0.1%. This small correction is known as the anomalous magnetic dipole moment
of the electron. According to Quantum Electrodynamics (QED) the anomaly arises
from the electron interactions with the virtual photons, that are off-shell quanta of the
electromagnetic field.
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It is common practice to express the anomalous magnetic moment of electron as:

a e =
µe
µB
− 1 =

g s − 2

2
(1.35)

or in the almost widespread form as electron g−2, which is correctly named dimensionless
anomalous magnetic moment.

Nowadays, the electron g − 2 is still not a failure of theory. On the contrary, it
represents the strongest demonstration of the predicting power of the Standard Model.
The theoretical and the experimental value of electron anomalous magnetic moment
agree up to the twelfth significant digit.

Of course the electrons were not the only particles known before the development of
Standard Model theoretical structure. For instance physicists had discovered nucleons
(protons and neutrons), even if for some time they may have thought these were elemen-
tary particles. Instead nucleons have an anomalous magnetic moments that cannot be
explained assuming a point like structure, as it is for the electron. The explanation of
protons and neutrons anomalous magnetic moment came in fact much recently with the
introduction of the quarks theory by Gell-Mann, because of the magnetic moment of the
nucleons can be modeled as a sum of the magnetic moments of the constituent quarks.

1.2 Muon anomalous magnetic moment
The eventual recognition of the muon as a "heavy electron" brought up the question if
it could have been considered a point-like particle. The muon, as the electron, has an
anomalous magnetic moment, known as muon (g − 2), or aµ.

In this thesis, we get the following value for the muon anomalous magnetic moment:

aSMµ = (11659175.7± 5.7)× 10−10 [0.5 ppm] (1.36)

according to the most accurate theoretical results of QED and electroweak contribu-
tions and to lasts F. Jegerlehner results of the hadronic leading-order and higher-order
corrections [48].

The theoretical value of muon g − 2 is obtained, according to quantum field theory,
computing each Feynman diagram, which is the perturbative correction to the tree-level
diagram, shown in figure 1.1, and cutting off the perturbative series at desired order.

To obtain this value is necessary to distinguish the three different contributions that
are involved in the perturbative series: QED contribution, electroweak contribution and
hadronic contribution. Thus we can write

aSMµ = aQEDµ + aEWµ + ahadµ (1.37)
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Figure 1.1: Muon tree-level diagram.

1.2.1 The QED contribution to aµ

The QED contribution to the anomalous magnetic moment of the muon is defined as
the contribution arising from the subset of SM diagrams containing only leptons (e, µ,
τ) and photons (γ).The QED contribution to aµ can be evaluated, as a dimensionless
quantity, by the perturbative expansion in α/π [4]

aQEDµ =
∞∑
n=1

(α
π

)n
Cn

=
(α
π

)
C1 +

(α
π

) 2

C2 +
(α
π

) 3

C3 +
(α
π

) 4

C4 +
(α
π

) 5

C5 + ...

(1.38)

where Cn is finite, thanks to the renormalizability of QED, and it can be computed
order-by-order. It can be split in

Cn = A
(2n)
1 + A

(2n)
2 (mµ/m e) + A

(2n)
2 (mµ/m τ ) + A

(2n)
3 (mµ/m e,mµ/m τ ) (1.39)

where m e, mµ, m τ are the masses of the electron, muon and tau, respectively. The
term A1 is mass independent because it arises from diagrams containing only photons
and muons. Due to this mass independence, A1 turns out to be an universal term: it is
the same for all the anomalous magnetic moment of the three leptons. On the contrary,
A2 and A3 are mass dependent, because they are generated by graphs containing also
electrons and taus.

C1: the one-loop contribution

Only one diagram, shown in figure 1.2, carries one-loop. The result of this diagram was
calculated by Schwinger, and it was the first great theoretical achievement of QED. The
outcome of the computation is graven on Schwinger’s tomb.

Applying Feynman rules on figure 1.2 for an incoming muon of four-momentum p ν ,
a photon of four-momentum k ν , an outgoing muon of four-momentum q ν and a virtual
photon of four-momentum l ν , we have:

ū(q)Γµ(p, q)u(p) =

∫
d 4l

(2π)4
ū(q) (−ieγ ρ) S(p+l) γ µ S(q+l) (−ieγ σ)D ρσ(l)u(p) (1.40)
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Figure 1.2: One-loop QED correction diagram.

where the four-momentum conservation brings to p + k = q. The photon propagator
D ρσ(l) and the muon propagator S(p+ l) are as usual:

D ρσ(l) =
−ig ρσ
l2 + iε

S(p+ l) =
i( 6 l + /p+mµ)

(l + p)2 −m2
µ + iε

The calculation procedure we will use is quite different from the standard derivation
of the Schwinger’s result, but it is more general. Indeed for solving this integral the
Pauli-Villars regularization is enough [5], but we prefer to proceed making use of the
dimensional regularization [6].

Setting ε = 2− ω, it is possible to write:

Γµ(p, q) +
e2µ 2ε

i(2π) 2ω

∫
d 2ωl

[
γ ρ(6 l + /p+mµ)γ µ( 6 l + /q +mµ)γ ρ

][
(l + p)2 −m2

µ + iε
] [

(l + q)2 −m2
µ + iε

]
(l2 + iε)

≡ e2µ 2ε

i(2π) 2ω

∫
d 2ωl

N(l, p, q)

D(l, p, q)

(1.41)

with the arbitrary mass scale µ, introduced with a suitable exponent, in such a manner
to deal with a dimensionless of the integral. The symbol + means that spin states
ū(q)

(
...
)
u(p), the Dirac equation and the mass-shell condition are tacitly understood.

Feynman’s parametric rule must be used to simplify the denominator [7]:

1

AB n
=

∫ 1

0

dx

∫ 1

0

dy δ(1− x− y)
ny n−1

[xA+ yB]n+1 (1.42)
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in the particular case of eq. (1.41), Feynman’s rule reads:

1

ABC
=

1

C

∫ 1

0

dx

∫ 1

0

dy δ(1− x− y) [xA+ yB]−2

=
1

C

∫ 1

0

dx [xA+ (1− x)B]−2

=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(1− y − z) 2y [xyA+ (1− x)yB + zC]−3

=

∫ 1

0

dx

∫ 1

0

dy 2y [xyA+ (1− x)yB + (1− y)C]−3

(1.43)

It is also useful to apply the following change of variable

x ≡ v(1− u)−1 y ≡ 1− u∣∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∣ =
1

1− u
(1.44)

with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1− u. Under this change, eq. (1.43) reads:

1

ABC
=

∫ 1

0

du

∫ 1−u

0

dv
2

[vA+ (1− u− v)B + uC]3
(1.45)

It follows that the denominator D(l, p, q) of eq. (1.41) becomes:

1

D(l, p, q)
=

∫ 1

0

du

∫ 1−u

0

dv
2

D3(l, p, q, u, v)

=

∫ 1

0

du

∫ 1−u

0

dv

× 2[
v
[
(l + q)2 −m2

µ + iε
]

+ (1− u− v)(l2 + iε) + u
[
(l + p)2 −m2

µ + iε
]] 3

=

∫ 1

0

du

∫ 1−u

0

dv
2[

l2 + 2l(qv + pu)−m2
µ(v + u) + vq2 + up2 + iε

] 3
(1.46)

To further simplify D(l, p, q, u, v) we have to operate the translation:

l→ l − up− vq (1.47)

which reduces the denominator of eq. (1.46) to:

D(l, p, q, u, v) = l2 −m2
µ(u+ v) + up2(1− u) + vq2(1− v)− 2uvpq + iε (1.48)
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Now we must apply the same translation into the numerator:

N(l, p, q)→ N(l, p, q, u, v)

making clear

N(l, p, q, u, v) =
[
γ ρ(6 l − u/p− v/q + /p+mµ)γ µ(6 l − u/p− v/q + /q +mµ)γ ρ

]
=γ ρ

[
6 l + /p(1− u)− v/q

]
γ µ
[
6 l + /q(1− v)− u/p

]
γ ρ

+mµ

{
γ ρ
[
/p(1− u)− v/q

]
γ µγ ρ + γ ργ µ

[
/q(1− v)− u/p

]
γ ρ
}

+m 2
µγ

ργ µγ ρ + irrelevant

where irrelevant stands for terms linear in l µ, that vanish owing to symmetric integration.
Since the denominator of eq. (1.48) depends only on the magnitude of l µ, one obtain:∫

d 2ω

(2π) 2ω

l µ

D 3(l, p, q, u, v)
= 0 (1.49)

Collecting together all these results, we have:

Γµ(p, q) + Γµ
div(p, q) + Γµ

fin(p, q) (1.50)

where

Γµ
div(p, q) +

2e2µ 2ε

i(2π) 2ω

∫ 1

0

du

∫ 1−u

0

dv γ ργ αγ µγ βγ ρ

×
∫
d 2ωl

lαlβ[
l2 −m 2

µ(u+ v) + up 2(1− u) + vq2(1− v)− 2uvp · q + iε
] 3

Γµ
fin(p, q) +

2e 2

i(2π) 2

∫ 1

0

du

∫ 1−u

0

dv γ ρ
[
(1− u)/p− v/q +mµ

]
γ µ
[
(1− v)/q − u/p+mµ

]
γ ρ

×
∫
d 4l

1[
l2 −m 2

µ(u+ v) + up 2(1− u) + vq2(1− v)− 2uvp · q + iε
] 3

(1.51)

Only Γµ
div(p, q) contains the divergent part of the Feynman integral, on the contrary

Γµ
fin(p, q) represents a convergent integral, therefore we can set, for it, ω = 2.
Making use of basic one-loop Feynman integrals (eqq. A.2 and A.3) to solve the

integration in the l variable, we get:

Γµ
div(p, q) +

α

8π
(4πµ 2−ω)Γ(2− ω)

×
∫ 1

0

∫ 1−u

0

γ ργ αγ µγαγ ρ[
(u+ v)m2

µ + 2uvp · q − u(1− u)p2 − v(1− v)q2
] 2−ω

Γµ
fin(p, q) +

(−α)

4π

∫ 1

0

du

∫ 1−u

0

dv
γ ρ
[
(1− u)/p− v/q +mµ

]
γ µ
[
(1− v)/q − u/p+mµ

]
γ ρ

u(1− u)p2 + v(1− v)q2 − (u+ v)m 2
µ − 2uvp · q

(1.52)

18



To recast the numerator of the former fraction in a simple form, the following iden-
tities in a space with 2ω-dimension are useful:

γ µγµ = 2ω1 2ω (1.53a)
γ µγ νγµ = (2− 2ω)γ ν (1.53b)

γ µγ νγ ργµ = 4g νρ1 2ω − (4− 2ω)γ νγρ (1.53c)
γ µγ νγ ργ σγµ = (4− 2ω)γ νγ ργ σ − 2γ σγ ργ ν (1.53d)

Using eqq. (1.53a)-(1.53a), we can write:

Γµ
div(p, q) +Γ(2− ω)γ µ

α

2π
(1− ω)2(4πµ2) 2−ω

×
∫ 1

0

du

∫ 1−u

0

dv
[
m2

µ(u+ v) + 2uvp · q − u(1− u)p2 − v(1− v)q2
]ω−2

+

(
1

ε
−C + ...

)
γ µ

α

2π
(ε− 1)2

×
∫ 1

0

du

∫ 1−u

0

dv

[
m2

µ(u+ v) + 2uvp · q − u(1− u)p2 − v(1− v)q2

4πµ2

]−ε
+γ µ

α

4π

(
1

ε
−C − 2

)
− 2γ µ

α

4π

∫ 1

0

∫ 1−u

0

dv ln

(
m2

µ(u+ v) + 2uvp · q − u(1− u)p2 − v(1− v)q2

4πµ2

)
(1.54)

the result is obtained up to evanescent terms for 2− ω = ε→ 0. Therefore, we find:

Γµ
div(p, q) + γ µ

[
α

4π

1

ε
+ finite part

]
(1.55)

Now it is necessary to evaluate the above ultraviolet divergent term on the particle
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mass-shell p2 = q2 = m2
µ with k = q − p and k2 = 0. We find:

Γµ
div +γ

µ α

4π

(
1

ε
−C − 2

)
− 2γ µ

α

4π

∫ 1

0

∫ 1−u

0

dv ln

(
m2

µ(u+ v) + 2uvp(p+ k)− u(1− u)p2 − v(1− v)q2

4πµ2

)
+γ µ

α

4π

(
1

ε
−C − 2

)
− 2γ µ

α

4π

∫ 1

0

∫ 1−u

0

dv ln

(
m2

µ(u+ v) + 2uvm2
µ − u(1− u)m2

µ − v(1− v)m2
µ

4πµ2

)
+γ µ

α

4π

{
1

ε
−C − 2 + 2

∫ 1

0

∫ 1−u

0

dv ln
4πµ2

m2
µ

− 2 ln (u+ v)

}
(1.56)

in which the following relation has been used:

p+ k = q → (q − p)2 = k2 → q2 + p2 − 2pq = 0 → pq = m2
µ

Continuing in the computation, solving the integrals:

Γµ
div + γ µ

α

4π

{
1

ε
−C − 2 + 2

∫ 1

0

du

[
(1− u) ln

(
4πµ2

m 2
µ

)
+ 2 (1− u+ u lnu)

]}
+ γ µ

α

4π

{
1

ε
−C − 1 + ln

(
4πµ2

m2
µ

)} (1.57)

thus the divergence has been removed and the integral has been calculated.
Now we have to solve the finite integral of eq. (1.51). To this purpose turns out to

be useful to rewrite the numerator of Γµ
fin making again use of relations (1.53a)-(1.53d),

but in a space with ω = 2. In this process also the Gordon identities (B.4a, B.4b) will
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be useful:

N µ
fin(p, q) =γ ρ

[
(1− u)/p− v/q +mµ

]
γ µ
[
(1− v)/q − u/p+mµ

]
γ ρ

= [(1− u)pα − vqα] [(1− v)qβ − upβ] γ ργ αγ µγ βγ ρ +m2
µγ

ργ µγ ρ

+m [(1− v)qα − upα] γ ργ µγ αγ ρ +m [(1− u)pα − vqα] γ ργ αγ µγ ρ

=− 2
[
(1− u)/p− v/q

]
γ µ
[
(1− v)/q − u/p

]
− 2m2

µγ
µ

+ 4m(1− 2v)q µ + 4m(1− 2u)pµ

+− 2(1− u)(1− v)
[
m2

µγ
µ + /k

2
γ µ + 4imσ µα(q − p)α

]
− 2(1 + uv)m2

µγ
µ

+ 2mµv(1− v)(4iσ µαqα +mµγ
µ) + 2mµu(1− u)(−4iσ µαpα +mµγ

µ)

+ 4m(1− 2u)(mµγ
µ − 2iσ µαpα) + 4m(1− 2v)(mµγ

µ + 2iσ µαqα)

+2m2
µ

[
2(1− u− v)− (u+ v)2

]
γ µ − 2/k

2
(1− u)(1− v)γ µ

+ 8imµσ
µα
{

[u− v(u+ v)] qα − [v − u(u+ v)] pα
}

(1.58)

The basic result of the previous computation is to split Γµ
fin(p, q) into two contributions,

one proportional to γ µ and the other one proportional to σ µα, namely:

Γµ
fin(p, q) + γ µF1(k

2) + iσ µα
kα
mµ

F2(k
2) ≡ Γµ

1 + Γµ
2 (1.59)

where F1(k
2) and F2(k

2) are called form factors. In the limit of k 2 → 0, we have
F1(0) = 1 and F2(0) = 0, thus eq. (1.59) retraces the Dirac’s result. Since the form
factors contain the complete information about the interaction between the muon and
the photon, they should, in particular, contain the muon electric and magnetic couplings.
It is possible to prove that F1(k

2) appears in the relations that describe the behavior
of muon in an external electric field. On the contrary, the description of the magnetic
moment interaction U(x), in the Born approximation, between a muon and an external
magnetic field involves both form factors:

U(x) = µ ·B(x) (1.60)

where [7]
µ = − e

m
[F1(0) + F2(0)]S (1.61)

comparing with the standard form

µ = −gµµB
}

S (1.62)

which is nothing but eq. (1.14) rearranged for the muon case. For the Landé g-factor
we find:

gµ = 2 [F1(0) + F2(0)] = 2 + 2F2(0) (1.63)
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Therefore, the form factor F2(k
2) is equal to the anomalous magnetic moment of the

muon. For this reason, to evaluate the one-loop QED contribution to anomalous magnetic
moment, we have to consider the only terms of eq (1.58) proportional to σ µα, which turns
out to be both ultraviolet and infrared finite:

Γµ
2(k2) +

−8imµα

4π

∫ 1

0

du

∫ 1−u

0

dv
[u− v(u+ v)]σ µαqα − [v − u(u+ v)]σ µαpα

u(1− u)p2 + v(1− v)q2 − (u+ v)m 2
µ − 2uvp · q

(1.64)
computing this integral for on-shell particles:

Γµ
2(0) +

2imµα

π

∫ 1

0

du

∫ 1−u

0

dv
[u− v(u+ v)]σ µαqα − [v − u(u+ v)]σ µαpα

(u+ v)2m2
µ

+
2iα

πmµ

(
σ µαqα

∫ 1

0

du

∫ 1−u

0

dv
u− v(u+ v)

(u+ v)2
− σ µαpα

∫ 1

0

du

∫ 1−u

0

dv
v − u(u+ v)

(u+ v)2

)

+
2iα

πmµ

(
σ µαqα

4
− σ µαpα

4

)
+

iα

2πmµ

σ µαkα

(1.65)
Comparing the previous equation with eq. (1.59), we finally obtain the famous Schwinger’s
result:

F2(0) =
α

2π
≈ (1.1614097324± 3)× 10−3 (1.66)

Hence the mass independent correction is A (2)
1 = 1/2 while the mass dependent correc-

tions are A (2)
2 (mµ/m l) = A

(2)
3 (mµ/m e,mµ/m τ ) = 0, with m l equal to m e or m τ . It

follows that one-loop contribution is

C1 =
1

2
(1.67)

We will not report the calculations for all the other QED contributions, but only the
results.

C2: The two-loop contribution

We will discuss now on the two-loop QED correction to the muon anomalous magnetic
moment. The coefficient C 2 is equal to:

C2 = A
(4)
1 + A

(4)
2 (mµ/m e) + A

(4)
2 (mµ/m τ ) + A

(4)
3 (mµ/m e,mµ/m τ ) (1.68)

At fourth order (e 4), there are seven diagrams contributing to A (4)
1 . In addition, at this

order in the perturbative expansion the anomalous magnetic moment becomes dependent
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Figure 1.3: Two-loop QED correction diagrams. The mirror reflections of the third and
fourth diagrams are not shown.

on the masses of all charged particles through the vacuum polarization diagrams. Just
one diagram contributes to A (4)

2 (mµ/m e) and one to A (4)
2 (mµ/m τ ). There are not two-

loop diagrams containing both virtual electrons and taus, thus A (4)
3 (mµ/m e,mµ/m τ ) =

0. The coefficient A (4)
1 is:

[44] A
(4)
1 =

197

144
+
π2

12
+

3

4
ζ(3)− π2

2
ln 2 = −0.328478965579... (1.69)

where ζ(s) is the Riemann zeta function of arguments s.
It is convenient to sketch of the calculation of two-loop diagrams with the vacuum

polarization subgraph, from which we obtain A (4)
2 (mµ/m l), with l = e, τ , because this

procedure will be useful afterwards. We have to apply Feynman rules to the last diagram
of figure 1.3, but preliminary it is necessary to replace the leading-order propagator of
the inner photon, with the following one [8]

Dµν(k) =
−igµν
k 2

+
(−i)gµρ
k 2

[
−i
(
k 2g µν − k µk ν

)
Π(k 2)

] (−i)gσν
k 2

+ ...

=
−igµν
k 2

+
igµρ
k 4

(
k 2δ µν − k ρk ν

)
Π(k 2) + ...

=
−igµν
k 2

(
1− Π(k 2)

)
− ik µk ν

k 4
+ ...

(1.70)

which takes into account the photon self-energy tensor, consistent with the electromag-
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netic gauge invariance. Thus, first-order correction to the photon propagator is

Dµν(k) =
−igµν
k 2

(
1− Π(k 2)

)
=

O(α)

−igµν
k 2

(
1−

[
Π(k 2)− Π(0)

]) (1.71)

Making use of the Taylor expansion, the eq. (1.71) suggests that the electric charge can
be replaced by an energy–momentum scale dependent running charge

e 2 → e 2(k 2) =
e 2

1 + [Π(k 2)− Π(0)]
(1.72)

which in terms of the fine-structure-constant α = e2/4π reads

α→ α eff (k
2) =

α 0

1 + [Π(k 2)− Π(0)]
=

α 0

1−∆α(k 2)
(1.73)

where α 0 = α is the fine-structure-constant in the Thomson limit.
Coming back to photon first-order correction (1.71), one can notice that the first

addend accounts for a term corresponding to the one-loop correction, hence the two-loop
correction is

Γµ(p, q) +
ie 2

(2π)4

∫
d 4l γ ρ( 6 l + /p+mµ)γ µ(6 l + /q +mµ)γ ρ

× Π(l 2)− Π(0)[
(l + p)2 −m2

µ + iε
] [

(l + q)2 −m2
µ + iε

]
(l 2 + iε)

(1.74)

Because of the analyticity (deriving from causality) the photon self-energy function sat-
isfies the subtracted dispersion relation below:

Π(l 2)− Π(0) =
l 2

π

∫ ∞

s 0

ds
ImΠ(s+ iε)

s(s− l 2 + iε)
(1.75)

where s 0 refers to the lowest invariant squared mass of the fermion e and τ that can be
produced in a decay of the virtual off-shell photons with invariant mass l 2. This means
that s 0 is equal to 4m 2

e or 4m 2
τ .

Due to the perturbative nature of the QED, we know that [9]

ImΠ(s+ iε) =
α

3

√
1− 4m 2

l

s+ iε

(
1 +

2m 2
l

s+ iε

)
(1.76)

where m l is the mass of the lepton circulating on the loop. Putting together eqq. (1.74),
(1.75) and (1.76) and integrating them, it possible to show that the mass-dependent
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coefficient A (4)
2 (mµ/m l, first exactly calculated in 1966 by H. Elend [10] [11], is

A
(4)
2 (1/x) =− 25

36
− lnx

3
+ x2(4 + 3 lnx) + x4

[
π2

3
− 2 lnx ln

(
1

x
− x
)
− Li 2

(
x2
)]

+
x

2

(
1− 5x2

) [π2

2
− lnx ln

(
1− x
1 + x

)
− Li 2(x) + Li 2(−x)

]
(1.77)

where x = m l/mµ and m l = m e or m l = m τ and Li2(z) = −
∫ z

0
dt ln (1− t)/t is the

so called dilogarithm function. The previous formula can be used both for the case of
the electron loop, 0 < x < 1, and for the tau loop, x > 1. For x = 1 (muon loop)
eq. (1.77) gives a non-null contribution, already part of A (4)

1 . Evaluating the value
of eq. (1.77) with x = mµ/m e = 206.7682843 (52), mµ = 105.6583692 (94)MeV and
m τ = 1776.99 (29)MeV [12], one gets:

[13] A
(4)
2 (mµ/m e) = 1.0942583120 (83) (1.78)

[13] A
(4)
2 (mµ/m τ ) = 0.000078079 (15) (1.79)

The magnitude of two-loop diagram with the τ lepton, as calculated in eq (1.79), provides
a relative contribution to aQEDµ of 10−11.

Adding up the values of eqq. (1.69), (1.78) and (1.79), we obtain:

C2 = A
(4)
1 + A

(4)
2 (mµ/m e) + A

(4)
2 (mµ/m τ ) = 0.765857425 (17) (1.80)

The error on δC2 = 1.7× 10−8 leads an uncertainty on aQEDµ equal to 0.94× 10−13.

C3: the three-loop contribution

There are more than one hundred diagrams involved in the three-loop contribution to
muon g − 2. Their analytic computation was finally performed only in the nineties.
The mass independent coefficient A (6)

1 arises from 72 diagrams. The calculation started
around the 1970 [14] and was then completed only in 1996 by E. Remiddi and collabo-
rators [15], [16]. The result for A (6)

1 reads:

A
(6)
1 =

28259

5184
+

1710

810
π 2 − 298

9
π2 ln 2 +

139

18
ζ(3) +

100

3

[
Li 4

(
1

2

)
+

1

24
ln 4 2− π2 ln 2 2

24

]
− 239

2160
π 4 +

83

72
π 4 − 215

24
ζ(5)

=1.1812414566...

(1.81)

The calculation of the coefficients A (6)
2 (mµ/m l) was done by E. Remiddi and S. La-
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e

Figure 1.4: Examples of three-loop QED contribution to aµ.

porta in 1993 [17]. These contributions can be split into two parts: the first, called
A

(6)
2 (mµ/m l, vp), containing e or τ vacuum polarization loops, arises from 36 diagrams;

the other one called A (6)
2 (mµ/m l, lbl), receives contributions from 12 light-by-light (lbl)

scattering diagrams with electron or tau loops. Traditionally, only lbl scattering di-
agrams with electron, muon and tau loops are included in the QED part of the muon
magnetic anomaly. The light-by-light scattering diagrams mediated by the electron loops
turn out to be particularly important: they represent the dominant part of light-by-light
scattering contribution to aµ. The results are:

[13] A
(6)
2 (mµ/m e, vp, lbl) = 22.86838004 (23) (1.82)

[13] A
(6)
2 (mµ/m τ , vp, lbl) = 0.00036070 (13) (1.83)

At the sixth-order (α 6) also diagrams with both electron and tau loop are involved. The
analytic calculation, available since 1999, but improved in recent years, yields:

[13] A
(6)
3 (mµ/m e, mµ/m τ ) = 0.00052776 (11) (1.84)

Combining the three-loop results all together, we obtain the complete three-loop QED
coefficient:

C3 = A
(6)
1 + A

(6)
2 (mµ/m e, vp, lbl) + A

(6)
2 (mµ/m τ , vp, lbl) + A

(6)
3 (mµ/m e, mµ/m τ )

= 24.05050996 (29)

(1.85)

The error δC3 = 29× 10−8, due to the experimental uncertainty of lepton masses, must
be obtained taking into account the correlation of the addends. It represents an error
contribution, to the uncertainty of aQEDµ , equals to 0.38 × 10−14. δC3 is the lighter
contribution to the uncertainty of the QED part of muon anomaly.

C4: the four-loop contribution

The knowledge of four-loop correction is crucial in the comparison between the SM
prediction and the experimental value of anomalous magnetic moment, because of its
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magnitude is six-times larger then the present experimental uncertainty of aµ. More
than one thousand diagrams are involved in the evaluation of four-loop contribution.
In contrast to the case of the lower orders calculation, the four-loop computations are
fully numerical. The eight-order (e8) correction has been obtained by T. Kinoshita and
collaborators [18].

There are 891 four-loop diagrams contributing to A (8)
1 . According to S. Laporta, who

had evaluated A (8)
1 up to 1100 precision digits, we have [20]:

[13] A
(8)
1 = −1.9122457649... (1.86)

The value of A (8)
2 (mµ/m e) depends on the calculation of other 469 diagrams and the

result is:
[13] A

(8)
2 (mµ/m e) = 132.6852 (60) (1.87)

The term A
(8)
2 (mµ/m τ ) represents a small contribution, of order of O (10−13) to aQEDµ .

T. Kinoshita quotes:

[13] A
(8)
2 (mµ/m τ ) = 0.04234 (12) (1.88)

Finally, there are 102 diagrams containing both e and τ loops. The value of value
A

(8)
3 is:

[13] A
(8)
3 (mµ/m e, mµ/m τ ) = 0.06272 (4) (1.89)

Adding up all these corrections in order to obtain the complete four-loop contribution
to aQEDµ , we get:

C4 = A
(8)
1 + A

(8)
2 (mµ/m e) + A

(8)
2 (mµ/m τ ) + A

(8)
3 (mµ/m e, mµ/m τ )

= 130.8780 (60)
(1.90)

The error δC4 adds up a small contribution, 1.8 × 10−13 to the theoretical uncertainty
of aQEDµ . However, it represents the heavier contribution to the uncertainty of the QED
part of muon anomaly.

C5: five-loop contribution

The complete calculation of tenth-order (e 10) QED contribution to the muon g − 2 is
known thanks to a monumental work of T. Kinoshita and his collaborators: they have
numerically evaluated all the sets of gauge-invariant diagrams that contribute to C 5.
The results of five-loop calculations are the following [13]:

A
(8)
1 = 9.168 (571)

A
(8)
2 (mµ/m e) = 742.18 (87)

A
(8)
2 (mµ/m τ ) = −0.068 (5)

A
(8)
3 (mµ/m e, mµ/m τ ) = 2.011 (10)

27



Adding up all the terms, we obtain the complete five-loop correction to muon anomalous
magnetic moment:

C 5 = 753.29 (1.04) (1.92)

The uncertainty is attributed entirely to the statistical fluctuation in the Monte-Carlo
integration of Feynman amplitudes. This result is 20 times more precise than the previous
estimate, obtained with the previous leading-logarithmic approximation technique by
Kinoshita himself [19]. The error δC5 adds up a contribution of 0.7 × 10−13 to the
uncertainty of aQEDµ .

The complete QED contribution to aµ

We are now able to estimate the quantum electrodynamics contribution to the muon
anomalous magnetic moment. Using the latest Particle Data Group recommended value
for the fine-structure-constant

α−1 = 137.035999139 (31) [0.23 ppb] (1.93)

we obtain the following value:

aQEDµ = 116584718869 (9)(19)(7)(31)× 10−14 (1.94)

where the uncertainties are due to the lepton mass ratios, the eighth-order term, the
tenth-order term, and the value of α in (1.93), respectively. When combined in quadra-
ture, these uncertainties yield δaQEDµ = 37 × 10−14. Therefore the finale QED result
is

aQEDµ = (116584718869± 37)× 10−14 (1.95)

1.2.2 The electroweak contribution to aµ

The electroweak contribution (EW) to the anomalous magnetic moment of the muon is
suppressed by the factor (mµ/MW )2 with respect to the QED effects [4]. It represents
the smallest contribution to muon anomalous magnetic moment.

Is necessary to note that aEWµ also contains the hadronic corrections arising from the
two-loop electroweak correction.

One-loop contribution

The one-loop EW contribution result to aµ was published in 1972 by several authors [?].
Its analytic expression, obtained by computing Feynman diagrams as those in figure 1.5,
reads

aEWµ (one loop) =
5Gµm

2
µ

24
√

2π2

[
1 +

1

5

(
1− 4 sin 2 θW

) 2
+ O

(
m2

µ

M2
Z,W,H

)]
(1.96)

28



Z
0

W W W

Figure 1.5: Examples of one-loop electroweak contribution to aµ.

where Gµ = 1.16639 (1) × 10−5 GeV−2, MZ , MW and MH are the masses of the Z,
W and Higgs bosons, and θW is the mixing angle. The magnitude of one-loop EW
contribution to aµ is

[21] aEWµ (one loop) = 194.8× 10−11 (1.97)

The contribution of the Higgs diagram alone, given the Higgs mass MH = 125.09 ±
0.21± 0.11 GeV [22], is smaller than 3× 10−14 and can be safely neglected.

Two-loop contribution

Naively, one might expect that the two-loop electroweak contribution to be negligible,
since of the relative strength O (α/π) with respect to the one-loop EW contribution.
However, that is not the case. Kukhto [23] had shown that some two-loop electroweak
contributions can be quite substantial because of the presence of terms enhanced by a
factor of ln (MZ,W/m l), where m l is a fermion mass scale much smaller than MZ,W .
Therefore the two-loop EW contribution must be included in the theoretical estimation
of aEWµ , in order to obtain a value of the muon anomalous magnetic moment comparable
with the experiments. The complete set of all the two-loop diagrams is quite large, it
includes the total of 1678 diagrams. However, the diagrams with two or more scalar
couplings to the muon line are suppressed by an extra factor of m 2

µ/M
2
W and can be

discarded.
The aEWµ (two loop) can be divided into fermionic and bosonic part: the former in-

cludes all two-loop EW corrections containing only fermion loops, while all the other
contributions have been included into the latter. Taking into account also the contribu-
tion of hadronic γ-Z mixing diagrams, which are suppressed by a factor (1− 4 sin 2 θW )
both for quarks and leptons, the two-loop EW contribution is:

[24] aEWµ (two loop) = −41.2 (2.0)× 10−11 (1.98)

the contribution of hadronic γ-Z mixing diagrams to the two-loop EW correction is
0.4× 10−11.
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The complete EW contribution to aµ

Adding up the above one-loop and two-loop electroweak corrections leads to the total
reduction value of EW contribution to muon g − 2

aEWµ = 153.6 (1)× 10−11 (1.99)

where the error is due to the hadronic loop uncertainties, indeed, we remark that
aEWµ (two loop) holds the hadronic effects in EW contribution.

1.2.3 The Hadronic contribution to aµ

Let’s analyze the hadronic contribution to muon g − 2. By definition, only hadronic
subgraphs arising from QED diagrams are involved in ahadµ , since hadronic effects in EW
contribution have been already included in aEWµ .

Leading-order hadronic contribution to aµ

Hadrons

Figure 1.6: Leading hadronic contribution to aµ.

The hadronic vacuum polarization of the one-loop QED diagram, figure 1.6, is the
largest hadronic effect contributing to the muon anomalous magnetic moment. It has to
be determined with high precision to match the existing experimental result. We begin
the discussion by providing an estimate of the hadronic vacuum polarization contribution
to aHLOµ .

A hadronic virtual state with invariant mass Mhad changes the muon magnetic
anomaly by [25]:

aHLOµ ∼
(α
π

) 2 m 2
µ

M 2
had

(1.100)

Assuming Mhad ∼ 1GeV , as a typical scale for hadron masses, we get

aHLOµ ∼ 6000× 10−11 (1.101)
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The hadronic leading contribution to aµ therefore is a small fraction of the total SM
prediction for the muon g−2 anomaly, but is very large when compared with the current
experimental uncertainty δa expµ = 63×10−11 [26]. Indeed, δa expµ is less than 1% of aHLOµ ,
justifying our interest for precisely estimating this contribution.

The evaluation of the diagram, figure 1.6, involves long-distance Quantum Chromo-
dynamics (QCD) interactions, for which perturbative theory does not work. However, as
it is well known, one can rely on the dispersion representation of the photon propagator
and the optical theorem, which relate the hadronic vacuum polarization contribution
to aµ with the measured e+e− annihilation cross-section into hadrons. In principle,
this technique allows to account for the effects of strong interactions exactly. Such an
approach strongly relies on the experimental results, requiring many high-precision mea-
surements of the e+e− → hadrons cross-sections. This dispersive approach was proposed
by Bouchiat and Michel [27]. In the following we will retrace the calculation in order to
obtain their formula.

For the inner photon propagator, we use the approximation obtained in eq. (1.71) by
replacing the QED polarization function with the unknown QCD polarization function,
which again satisfy the subtracted dispersion relation (1.75):

Dµν(k) =
−igµν
k 2

→ −igµν
k 2

(
1−

[
Πhad(k

2)− Πhad(0)
])

(1.102)

Applying now the Feynman rules to figure 1.6, we get

ū(q)Γµ
had(q, p)u(p) =

∫
d 4l

(2π) 4
ū(q) (−ieγ σ)S(l + k)γ µS(l) (−ieγ ρ) u(p)D ρσ (1.103)

Taking into account only the correction to the photon-muon vertex due to the second
addend of equation (1.102)), we have:

Γµ
had(p, q) +

ie 2

(2π)4

∫
d 4l γ ρ(6 l + /p+mµ)γ µ(6 l + /q +mµ)γ ρ

× Πhad(l
2)− Πhad(0)[

(l + p)2 −m2
µ + iε

] [
(l + q)2 −m2

µ + iε
]

(l 2 + iε)

(1.104)

which corresponds to the eq. (1.74) rearranged to represent the QCD case. Using the
subtracted dispersion relation we obtain

Γµ
had(p, q) +

ie 2

(2π)4

∫
d 4l

γ ρ( 6 l + /p+mµ)γ µ(6 l + /q +mµ)γ ρ[
(l + p)2 −m2

µ + iε
] [

(l + q)2 −m2
µ + iε

]
(l 2 + iε)

× l 2

π

∫ ∞

0

ds
ImΠhad(s+ iε)

s(s− l 2 + iε)

(1.105)
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exchanging the integration order is crucial in order to solve the integral

Γµ
had(p, q) +

ie 2

(2π)4

∫ ∞

0

ds

sπ
ImΠhad(s+ iε)

×
∫
d 4l

γ ρ(6 l + /p+mµ)γ µ(6 l + /q +mµ)γ ρ[
(l + p)2 −m2

µ + iε
] [

(l + q)2 −m2
µ + iε

]
(s− l 2 + iε)

(1.106)

The inner integral is similar to that one we have previously used to calculate the
Schwinger result: the denominator is different, since of photon four-momentum is rescaled
with the s variable, that can be somehow interpreted as a photon mass. We already know
the prescription needed to solve this integral: apply the formula (A.1) in order to simplify
the denominator, perform then a shift and as last step rewrite the numerator in the the
form γ µ ·A+ iσ µνk ν ·B where A and B are the coefficients. Again, we are interested in
the value of the coefficient B, because of its direct connection to the muon anomalous
magnetic moment. This recipe brings us to

Γµ
had +

α

π 2

iσ µν

mµ

k ν

∫ ∞

0

ds

s
ImΠhad(s+ iε)

×
∫
dx dy dz δ(x+ y + z − 1)

m 2
µ(1− z)z

m 2
µ(1− z) 2 − k 2xy + sz

(1.107)

Taking into account that the outer photon is real, i.e. k 2 = 0, we get

Γµ
had +

α

π 2

iσ µν

mµ

k ν

∫ ∞
0

ds

s
ImΠhad(s+ iε)

∫
dx dy dz δ(x+ y + z − 1)

m 2
µ(1− z)z

m 2
µ(1− z) 2 + sz

=
α

π 2

iσ µν

mµ

k ν

∫ ∞
0

ds

s
ImΠhad(s+ iε)

∫ 1

0

dz
m 2

µ(1− z)z

m 2
µ(1− z) 2 + sz

∫ 1−z

0

dy

=
α

π 2

iσ µν

mµ

k ν

∫ ∞

0

ds

s
ImΠhad(s+ iε)

∫ 1

0

dz
(1− z) 2z

(1− z) 2 + sz
m 2
µ

(1.108)

The value of the previous equation can be easily checked in the limit s = 0, since
we expect it must be equal to the Schwinger result. Applying the change of variable
x ≡ 1− z, eq. (1.108) yields

Γµ
2 +

α

π 2

iσ µν

mµ

k ν

∫ ∞
0

ds

s
ImΠhad(s+ iε)

∫ 1

0

dx
x 2(1− x)

x 2 + (1− x) s
m 2
µ

≡ α

π 2

iσ µν

mµ

k ν

∫ ∞
0

ds

s
ImΠhad(s+ iε)K(s)

(1.109)
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The kernel function K(s) is

K(s) =

∫ 1

0

dx
x 2(1− x)

x 2 +
(
s/m 2

µ

)
(1− x)

(1.110)

Therefore we can write the Bouchiat and Michel formula:

aHLOµ =
α

π 2

∫ ∞
0

ds

s
K(s) ImΠhad(s+ iε) (1.111)

Using the optical theorem for e+e− → hadrons scattering process [7]

σ e+e−→had(s) =
4πα

s
ImΠhad(s) (1.112)

we are able to relate the hadronic leading order contribution to muon g − 2 with the
cross-section of the e+e− annihilation into hadrons

aHLOµ =
1

4π 3

∫ ∞
4m 2

π

dsK(s)σ e+e−→had(s) =
α 2

3π 2

∫ ∞
4m 2

π

ds

s
K(s)R(s) (1.113)

The integration domain runs from the lower energy-state available to the annihilation
process, namely a finale state with a couple of pion, to infinity. The function R(s)
is the ratio of σ e+e−→had(s) and the high-energy limit of the Born cross-section for µ-
pair production, therefore R(s) = σ e+e−→had(s)/(4πα

2/3s). The kernel function K(s)
decreases monotonically with increasing s, and for large s it behaves as m 2

µ/3s to a
good approximation. For this reason the low-energy region of the dispersive integral is
enhanced by∼ s−2. About 91% of the total contribution to aHLOµ is due to center-of-mass
energies

√
s below 1.8 GeV and 73% of aHLOµ is covered by the two-pion final state, which

is dominated by the ρ(770) resonance [4] [46]. The e+e− annihilation cross-sections at
low-energy have been measured by many experiments at Novosibirsk (OLYA, TOF, ND,
CMD, CMD-2, SND) and Orsay (M3N, DM1, DM2), while at higher energies the total
cross-section ratio R(s) has been measured inclusively by the experiments γγ2, MARK
I, DELCO, DASP, PLUTO, LENA, MD-1, CELLO, JADE, MARK-J, CLEO, Mac and
BES. Perturbative QCD can be used to evaluate higher loop momenta contributions,
thus at some energy-scale is possible to switch from experimental data to theoretical
calculation.

The main problem of this method is that it relies on the cross-sections data of
positron-electron annihilation from many different experiments and furthermore one has
to take into account the existence of hadronic resonances (see figure 1.7). A detailed
study of eq. (1.113) has shown that a prominent role among all datasets is played by
the precise measurement of the cross-section of e+e− → π+π− performed by the CMD-
2 collaboration at Novosibirsk, at values of

√
s between 0.61GeV and 0.96 GeV [30].
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Figure 1.7: Cross-section of e+e− → hadrons.

Particularly important are also the BABAR collaboration results for the other different
final states produced from the e+e− annihilation ([31]-[36])

Using the experimental results, several authors have evaluated the dispersive integral
of eq. (1.113). The most frequently quoted results in literature are

[48] aHLOµ = 6880.7 (41.4)× 10−11 (1.114a)

[57] aHLOµ = 6931 (34)× 10−11 (1.114b)

[50] aHLOµ = 6949 (42.7)× 10−11 (1.114c)

The results for the leading-order hadronic contribution are overlappable. The uncertainty
of Jegerlehner’s and Hagiwara’s results is around 0.6%, eq. (1.114a) and eq. (1.114c)
respectively. On the contrary, Davier’s result, obtained from more restrictive and forced
considerations, brings an error around 0.5%, eq. (1.114b)

Higher-order hadronic contribution to aµ

Finally we will discuss the higher-order (O(α 3)) hadronic contribution to aµ, named
aHHOµ , which can be written as:

aHHOµ = aHHOµ (vp) + aHHOµ (lbl) (1.115)

The first term grouped the contributions due to diagrams with vacuum polarization
insertions, as shown in figures 1.8(a) and 1.8(b); the second term is the light-by-light
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(b) vp contribution.
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(c) lbl contribution.

Hadrons

(d) included in HLO.

Figure 1.8: Examples of higher-order hadronic contribution to aµ.

contribution, represented in figure 1.8(c). Note that the diagram shown in figure 1.8(d)
has already been included in the leading-order hadronic contribution aHLOµ . The up to
date values of these contribution are:

[28] aHHOµ (vp) = −98 (1)× 10−11 (1.116a)

[48] aHHOµ (lbl) = 102 (39)× 10−11 (1.116b)

Note that aHHOµ (vp) can be obtained using the same hadronic e+e− annihilation data,
as described in the previous section. On the contrary seems that aHHOµ (lbl) cannot
be expressed in term of experimental observables, hence its evaluation relies on purely
theoretical consideration. This contribution has changed sign already three times in its
troubled life and moreover different authors calculated even non-overlapping values [45].
The above aHHOµ (lbl) has been computed by Jegerlehner.

1.3 Theoretical and experimental value of aµ
We have now all the ingredients to understand why the muon anomalous magnetic mo-
ment represents a possible indication of failure of the Standard Model. In this section we
will collect all the thoretical results, presented formerly, to determine the SM prediction
of aµ. Afterwards we will briefly explain how aµ is determined experimentally. Finally,
we will make a comparison between the theoretical and the experimental results.
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1.3.1 The theoretical value of aµ
The theoretical value of muon anomalous magnetic moment is obtained summing up the
following contributions

aSMµ = aQEDµ + aEWµ + aHLOµ + aHHOµ (vp) + aHHOµ (lbl) (1.117)

taking into account Jegerlehener results, of eqq. (1.114a) and (1.116b), we have

contribution value(10−11) error(10−11)

aQEDµ 116584718.869 0.037
aEWµ 153.6 1
aHLOµ 6880.7 41.4
aHHOµ (vp) −98 1
aHHOµ (lbl) 102 39

Summing up all SM contributions to aµ as given in the previous table, we conclude that

aSMµ = (11659175.7± 5.7)× 10−10 [0.5 ppm] (1.118)

1.3.2 The experimental value of aµ
It is now time to spend a few words about the experimental measurement used to obtain
the empirical value of aµ.

Figure 1.9: The spin precession relative to the momentum in the uniform magnetic field
in case of aµ = 0 and aµ > 0.

The basic principle of the experiment is to observe the spin precessing of polarized
muon relative to its momentum in an uniform magnetic field B. In a space region in
which there is an uniform magnetic field, muon will have a cyclotron motion, character-
ized by the cyclotron frequency ω c:

ω c = − eB

mµγ
(1.119)
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where γ is the usual Lorentz factor. At the same time, the muon spin precessing, with
angular frequency ω s, due to its anomalous magnetic moment, as shown in figure 1.9:

ω s = − eB

mµγ
− aµ

eB

mµ

(1.120)

The overall effect is a Larmor precession of the direction of the spin:

ω a = ω s − ω c = −aµ
eB

mµ

(1.121)

In order to retain the muon in the ring an electrostatic focusing system is needed. Thus
in addition to the magnetic field an electric quadrupole field in the plane normal to the
particle orbit must be applied. In the presence of this electric field E, the muon Larmor
frequency is determined by the following equation, assuming the momentum is transverse
to the magnetic field

ω a = − e

mµ

[
aµB −

(
aµ −

1

γ 2 − 1

)
B ×E

c

]
(1.122)

Fortunately, the second term of equation (1.122), proportional to B × E vanishes if
muon has the so-called "magic momentum" of 3.094 GeV (γ = 29.3). Hence, under
this condition, the cyclotron frequency solely depends on the muon anomalous magnetic
moment:

ω a = − e

mµ

aµB (1.123)

The crucial result of previous equation is that the total precession frequency depends
only on the anomalous magnetic moment aµ.

The muon g-2 experiment are based on the production of muons from the decay of
pions

π → µ+ νµ (1.124)

the polarization of muons is detected through the muon decay

µ→ e+ ν e + νµ (1.125)

To produce a muon beam, a proton beam (accumulated in a proton storage ring) im-
pinges upon a target material where pions are the most abundant secondary particles.
Those pions are collected, momentum selected, and transported through a decay chan-
nel, along which they decay to muons. Muons are then injected into a storage ring with
an extremely uniform magnetic field. The muon spin orientation can be observed by
measuring the energy and arrival time of the high-energy positron/electron from muon
decay with a calorimeter. Thanks to the parity violation of muon decay, the high-energy
positron/electron in the muon rest frame are preferentially emitted parallel to the spin
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orientation. In the laboratory frame, the positron/electron energy spectrum varies with
the spin orientation with respect to the momentum. Therefore, the spin precession
leads to the positron energy dependent event-rate modulation at the calorimeters. This
event-rate modulation is shown in figure 1.10. By fitting this event-rate modulation, the
experiments determine the frequency ω a. To obtain the anomalous magnetic moment

Figure 1.10: The modulation of the positron event-rate at the calorimeters.

from equation (1.123), the magnetic field needs to be known very precisely. The mag-
netic field in the muon storage region will be expressed in terms of the proton Larmor
frequency ω p = 2µ pB/} where µ p is the proton magnetic moment. Measuring the fre-
quencies ω a and ω p it is possible to obtain the value of the muon anomaly, with the
following relation

aµ =
2µ pmµ

e}
ω a
ω p

(1.126)

Recalling equation (1.15), in the muon case:

µµ = −gµ
2

e}
2mµ

= −(1 + aµ)
e}

2mµ

(1.127)

Combining eq. (1.126) with (1.127):

aµ = (1 + aµ)
R

λ
(1.128)

where R = ω a/ω p and λ = µµ/µ p. The quantity λ shows up since the magnetic field
is measured thanks to the proton Larmor frequency. Precision experiments on the mi-
crowave spectrum of ground state muonium (µ−e+) [37] performed at LAMPF at Los
Alamos provide the needed result

λ = 3.18334539 (10) (1.129)

38



Solving equation (1.128):

aµ =
R

λ−R
(1.130)

The most accurate measure of a expµ was obtained at E821, in Brookhaven. The experi-
mental setup was made up by a toroid–shaped structure with a diameter of 14 meters,
with the magnetic field of 1.45T . The aperture of the pipe beam was 90 mm. Under
this conditions, after each circle the muon spin axis changes by 12 arc seconds. At E821
the muon anomaly has been measured with 0.54 ppm precision. The result is [38]:

a expµ = (11659208.9± 5.4± 3.3)× 10−10 (1.131)

1.3.3 Standard Model Vs experiment

Now we are ready to understand why the anomalous magnetic moment of the muon
represents one of the most interesting possible failure of our great theoretical apparatus,
called Standard Model.

Comparing the Standard Model prediction and experimental value of muon anoma-
lous magnetic moment, obtained in eqq. (1.118) and (1.131), in unit of 10−10, we get:

a expµ = 11659208.9± 6.3
aSMµ = 11659175.7± 5.7

∆aµ = 33.2± 6.3± 5.7

we get a non-null difference ∆aµ with a significants of 3.9σ.
Recalling that the theoretical value of muon g − 2 is not unique, due to the different

results of the hadronic leading-order and higher-order contributions to muon anomaly,
the difference between the theoretical and the experimental value swings from the lower
limit of 3σ to the upper limit of 4σ. As said, our result has been obtained relying on the
last outcomes of calculation by F. Jegerlehner.
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Chapter 2

The novel approach to the leading
hadronic contribution to muon g-2

The uncertainty associated to the theoretical value of the muon anomalous magnetic
moment is due to all the uncertainties of the contributions to aµ. However, as observed,
some of them are negligible. The hadronic uncertainty instead is the main source of the
SM uncertainty being comparable to the experimental one. This is the reason why the
hadronic corrections have been kept under close scrutiny for several years.

An intense research program is ongoing aiming to improve the evaluation of the
hadronic leading-order (HLO) contribution to aµ. In this context, a group of Italian
physicists has proposed a new method to determine with high precision the value of
aHLOµ . The idea is to measure the running of the effective electromagnetic coupling in
the space-like region by measuring the elastic scattering µ+ e− → µ+ e− that is a pure
t-channel space-like process [39] [40].

The proposed method is based on eq. (1.111) evaluated exchanging the order of the
integration:

aHLOµ =
α

π 2

∫ 1

0

dx x 2(1− x)

∫ ∞
0

ds

s

ImΠhad(s+ iε)

x 2 + (1− x)s/m 2
µ

=
α

π 2

∫ 1

0

dxm 2
µx

2

∫ ∞
0

ds

s

ImΠhad(s+ iε)
x 2m 2

µ

1−x + s

(2.1)

By defining t as:

t(x) ≡
x 2m 2

µ

x− 1
< 0 (2.2)

the dimension of the t variable is that of a squared momentum. It varies in the interval
t ∈ ]−∞, 0]. Using the subtracted dispersion relation for the photon self-energy below:

Πhad [t(x)] ≡ Πhad(t+ iε)− Πhad(0 + iε) =
t

π

∫ ∞
0

ds
ImΠhad(s+ iε)

s(s− t+ iε)
(2.3)
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we obtain

aHLOµ =
α

π

∫ 1

0

dx (x− 1)Πhad [t(x)] (2.4)

The t variable is the argument of the photon self-energy function, hence can be identified
to be exactly the Mandelstam’s variable.

By inverting eq. (2.2) we get x = (1 − β)(t/2m 2
µ) with β = (1 − 4m2

µ/t)
1/2, we can

write equation (2.4) in the t variable as

aHLOµ =
α

π

∫ 0

−∞
dt

1

2m 2
µ

[
2m 2

µ

βt
− (1− β)

] [
(1− β)t

2m 2
µ

− 1

]
Πhad(t)

=
α

π

∫ 0

−∞

dt

βt

(
1− β
1 + β

) 2

Πhad(t)

(2.5)

It is a known expression, already being used in lattice QCD calculations of aHLOµ [58] [59]
The HLO contribution to aµ in terms of the real and the imaginary part of Πhad [t(x)],

which appears in eq. (2.4), can be written as [8]

aHLOµ =
α

π

∫ 1

0

dx (x− 1)
[
ReΠhad [t(x)] + iImΠhad [t(x)]

]
=
t<0

α

π

∫ 1

0

dx (x− 1)ReΠhad [t(x)]

(2.6)

Recalling eq. (1.73) for the hadronic case and using the definition (2.3), we get:

∆αhad [t(x)] = −ReΠhad [t(x)] (2.7)

The hadronic leading-order contribution to muon anomalous magnetic moment reads

aHLOµ =
α

π

∫ 1

0

dx (1− x)∆αhad [t(x)] (2.8)

The analytic expression of ∆αhad [t(x)] is unknown, cause of the non-perturbative char-
acter of the QCD at low-energy. However, it is possible to determine its expression by
measuring the running of α:

α(t) =
α(0)

1−∆α(t)
(2.9)

where α(0) is the fine-structure-constant in the Thomson limit. Moreover the expression
of the shift of α, can be written as:

∆α(t) = ∆α lep(t) + ∆αhad(t) + ∆α top(t) (2.10)

∆α lep(t), ∆αhad(t) and ∆α top(t) respectively are the contributions due to leptons loops,
light quarks loops and to the top quark loops. We separate the top quark contribution

42



from the others because at top energy-scale QCD can be calculated with perturbative
techniques. Actually, at the energy scale of interest the top quark contribution to the
running of α turns to be negligible.

Similarly the γ-Z weak contribution to the running of alpha, which should be included
in eq. (2.10), turns out to be negligible too.

Hence, the hadronic shift ∆αhad(t) can be calculated subtracting the purely leptonic
part ∆α lep(t) to ∆α(t). ∆α lep(t) can be calculated with the perturbative expansion
order-by-order (know up to three-loop in QED [60]).

The hadronic and the leptonic contributions to the fine-structure-constant, as a func-
tions of x are shown on left side of figure 2.1. To calculate their values we used the F.
Jegerlehner’s routine hadr5n12 [30] [49], which uses e+e− → hadrons time-like data and
perturbative QCD.
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Figure 2.1: On the left, the plot shows ∆α lep [t(x)]× 10 4 (blue) and ∆αhad [t(x)]× 10 4

(red). The plot on the right represents the integrand function of eq. (2.8).

2.1 µ-e scattering process
We have shown how by measuring the running of the fine-structure-constant ∆αhad as
a function of the transferred momentum would allow to determine aHLOµ . We have also
seen how it would be possible to get ∆αhad from measuring ∆α(t) by subtracting the
∆αlep contribution.

In order to precisely measure ∆α(t) one has to perform a dedicated experiment.
The µ-e elastic scattering differential cross-section would allow to precisely determine

∆α(t) as a function of t since the scattering process involves only space-like transferred
momenta (t-channel, t < 0). The µ-e elastic scattering is therefore much simpler than
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Figure 2.2: Bhabha and µ-e scattering processes.

the Bhabbha, if considered as possible alternative. In fact, the Bhabha is both an
annihilation and a scattering process, while the former is a pure scattering one.

The Feynman diagrams of the two processes are represented in figure 2.2.
In the following part we aim to evaluate the µ-e scattering cross-section in the Born

approximation. By applying the Feynman rules to the diagram of 2.2(c), assuming
the incoming states: electron with four-momentum p and spinor index r, and muon with
four-momentum q and spinor index s; and the outgoing states: an outgoing electron with
four-momentum p′ and spinor index r′, and an outgoing muon with four-momentum q′

and spinor index s′, for the matrix element we can write:

M r,r′,s,s′(p, p
′, q, q′) = ū r′(p′) (−ieγ µ) u r(p)Dµν ū s′(q′) (−ieγ ν) u s(q) (2.11)

Summing up over the spin indices the square modulus of the matrix element, we get:

|M(p, p′, q, q′)| 2 =
1

4

∑
r r′

∑
s s′

|M r,r′,s,s′(p, p
′, q, q′)| 2

=
1

4

∑
r r′

∑
s s′

e 4

(p′ − p) 4 gµνg ρσ (ū r′(p′)γ µu r(p)ū s′(q′)γ νu s(q))

× (ū r(p)γ ρu r′(pi)ū s(q)γ σu s′(q′))

(2.12)
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Using the completeness relation∑
r=1,2

u r(p)⊗ ū r(p) =
(
/p+m

)
(2.13)

we obtain

|M(p, p′, q, q′)| 2 =
e 4

4t 2
gµνg ρσ tr

[
(/p′ +m e) γ

µ
(
/p+m e

)
γ ρ
]
tr
[
(/q′ +mµ) γ ν

(
/q +mµ

)
γ σ
]

(2.14)
where t represents the transferred momentum.

Considering terms with an even number of the γ µ matrices (the trace of an odd
number of γ matrices is equal to zero) and making use of eqq. (C.1) and (C.3) we get:

|M(p, p′, q, q′)| 2 =
4e 4

t 2
gµνg ρσ

(
p′µp ρ + p′ ρpµ + g µρ

(
m 2

e − p′ · p
))

×
(
q′ νq σ + q′σq ν + g νσ

(
m 2

µ − q′ · q
))

=
4e 4

t 2
(
p′νpσ + p′σ + g νσ

(
m 2

e − p′ · p
)) (

q′ νq σ + q′σq ν + g νσ
(
m 2

µ − q′ · q
))

=
8e 4

t 2
[
(p′ · q′) (p · q) + (p′ · q) (p · q′)−m 2

µ (p′ · p)−m 2
e (q′ · q) + 2m 2

em
2
µ

]
(2.15)

It is useful to rewrite eq. (2.15) as a function of the Mandelstam’s variables:

s = (p+ q) 2 = m 2
e +m 2

µ + 2p · q
t = (p− p′) 2

= 2m 2
e − p · p′

u = (p− q′) 2
= m 2

e +m 2
e − 2p · q′

(2.16)

and thereby

(p · q) =
[
p 2 + q 2 − (p+ q) 2

]
/2 =

(
s−m 2

e −m 2
µ

)
/2 = (p′ · q′)

(p · q′) =
(
m 2

e +m 2
µ − u

)
/2 = (p′ · q)

(p · p′) =
(
2m 2

e − t
)
/2

(q · q′) =
(
2m 2

µ − t
)
/2

(2.17)

In such a manner the amplitude in eq. (2.15) becomes

|M(p, p′, q, q′)| 2 =
8e 4

t 2

[(
s−m 2

e −m 2
µ

) 2
4

+

(
m 2

e +m 2
µ − u

) 2
4

−m 2
µ

(
2m 2

e − t
2

)
−m 2

e

(
2m 2

µ − t
2

)
+ 2m 2

em
2
µ

] (2.18)
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Figure 2.3: µ-e scattering in the laboratory rest frame.

Using the relation between the Mandelstam’s variables:

s+ t+ u = 2
(
m 2

e +m 2
µ

)
(2.19)

we obtain the amplitude |M(p, p′, q, q′)| 2 as a function of them:

|M(s, t)| 2 =
8e 4

t 2

[(
s−m 2

e −m 2
µ

) 2
4

+

(
s+ t−m 2

e −m 2
µ

) 2
4

+
tm 2

µ

2
+
tm 2

e

2

]

=
2e 4

t 2
(
t 2 + 2st+ 2s 2 − 4sm 2

e − 4sm 2
µ + 2m 4

e + 2m 4
µ + 4m 2

em
2
µ

) (2.20)

To evaluate the differential cross-section, we have to use the Quantum Field Theory
golden rule [9]:

dσ =
1

4

[
(p · q) 2 −m 2

em
2
µ

]−1/2 |M(p, p′, q, q′)| 2

× (2π) 4 δ (p′ + q′ − p− q) dp′[
(2π) 3 2E ′e

] dq′[
(2π) 3 2E ′µ

] (2.21)

which is Lorentz invariant.
We have to choose a particular reference frame to solve eq. (2.21). Assuming the
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muon hits the electron at rest in the laboratory frame one can write:

incoming electron: p = 0 E e = m e

incomingmuon: q 6= 0 Eµ =
√

q 2 +m 2
µ

outgoing electron: p′ 6= 0 E ′e =
√

p′ 2 +m 2
e

outgoingmuon: q′ = q− p′ E ′µ = Eµ +m e − E ′e

In this reference frame the Mandelstam’s variables read

s = (p+ q) 2 = m 2
e +m 2

µ + 2Eµm e

t = (p− p′) 2
= −2m e (E ′e −m e)

u = (p− q′) 2
= m 2

e −m e (m e + 2Eµ − 2E ′e)

(2.22)

We can now integrate the golden rule in the laboratory rest frame:

dσ =
|M(s, t)| 2

16π 2flux(s)

∫
dp′dq′

δ (p′ + q′ − q) δ
(
E ′µ + E ′e − Eµ −m e

)
E ′µE

′
e

(2.23)

here flux(s) stands for the energetic term, which appears in eq. (2.21), written as a
function of the Mandelstam’s variable s:

flux = 4

[(
s−m 2

e −m 2
µ

2

) 2

−m 2
em

2
µ

] 1/2

(2.24)

Using the Dirac delta function, we are able to integrate eq. (2.23) in the variable q′

dσ =
|M(s, t)| 2

16π 2flux(s)

∫
dp′

δ
(
E ′µ + E ′e − Eµ −m e

)
E ′µE

′
e

=
|M(s, t)| 2

16π 2flux(s)

∫
d |p′| dΩ(θ e, φ)

|p′| 2 δ
(
E ′µ + E ′e − Eµ −m e

)
E ′µE

′
e

(2.25)

In order to obtain the µ-e differential cross-section as a function of t, we have to
integrate in the solid angle (dΩ), makes use the Dirac delta function, and perform a
change of variables to switch from the modulus of the scattered electron momentum to
the Mandelstam’s variable t. Since vector momentum conservation, we have:

q′ = q− p′ (2.26)

which square modulus is:

|q′| 2 = |q| 2 + |p′| 2 − 2 |q| |p′| cos θe (2.27)
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making use of mass shell-relation

E ′µ =

√
E
′ µ
µ + E

′ µ
e −m 2

e − 2 |q| |p′| cos θ e (2.28)

Thus we can computing the angular Dirac delta function:

δ
(
E ′µ + E ′e − Eµ −m e

)
dΩ(θ e, φ) =

2π δ (cos θ e − cos θ) d (cos θ e)∣∣∣∣∂(Eµ+m e−E′e−E′µ(E′e,θ e))
∂ cos θ e

∣∣∣∣
cos θ

=
2π δ (cos θ e − cos θ′e) d (cos θ e)

|p′||p′|
Eµ+m e−E′e

(2.29)

While, from the differential modulus of the scattered electron, we get:

d |p′| = dE ′e
E ′e√

E ′ 2e −m 2
e

= dE ′e
E ′e
|p′|

= dt
E ′e

2m e |p′|
(2.30)

Finally, we obtain the differential cross section in the laboratory rest farme:

dσ =
2 |M(s, t)| 2

16πflux(s)

∫
dt d (cos θ e) δ (cos θ e − cos θ)

Eµ +m e − E ′e
2m e |q|E ′µ

=
2 |M(s, t)| 2

16πflux(s)

dt

2m e |q|

(2.31)

By algebraic manipulations is possible to write the previous equation as a function of
the Mandelstam’s variables as:

dσ

dt
=

2 |M(s, t)| 2

16πflux(s)

1√
λ(s,m 2

e,m
2
µ)

(2.32)

where λ(s,m 2
e,m

2
µ) is the Källen function:

λ(s,m 2
e,m

2
µ) =

[
s 2 +m 4

e +m 4
µ − 2s(m 2

e +m 2
µ)− 2m 2

em
2
µ

]
(2.33)

The explicit form of the µ-e scattering differential cross-section is:

dσ

dt
=
πα 2

t 2

(
t 2 + 2st+ 2s 2 − 4sm 2

e − 4sm 2
µ + 2m 4

e + 2m 4
µ + 4m 2

em
2
µ

)√((
s−m 2

e−m 2
µ

2

) 2

−m 2
em

2
µ

)(
s 2 +m 4

e +m 4
µ − 2s(m 2

e +m 2
µ) + 2m 2

em
2
µ

)
(2.34)

where the dipendence from the fine-structure-constant is explicit.
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Figure 2.4: The Born approximation of the µ-e elastic cross section.

The differential cross-section is usually written as:

dσ

dt
=

C

flux(s)

|M(s, t)| 2√
λ(s,m 2

e,m
2
µ)

(2.35)

where C is the conversion factor if natural units are used and masses and momenta are
in GeV:

C = 0.389379660 mbarn×GeV 2 (2.36)

The µ-e differential cross-section in the Born approximation, computed in eq. (2.35),
is represented in figure 2.4. The function goes to zero in the limit t → −∞, while its
values grows for vanishing transferred momenta.

One may notice that eq. (2.35) is expressed in terms of the two Mandelstam’s vari-
ables s and t. Therefore the differential cross-section as a function of the transferred
momentum can be calculated for constant

√
s center of mass energy. Assuming an in-

coming muon energy of about 150 GeV, an ideal value to perform the µ-e experiments,
it is possible to span the t region within −0.142893 ≤ t < 0 GeV2. Integrating the
differential cross-section in this t range, we obtain a total value of σ = 245µb. One
can observe that greater values of the incoming muon energy would just slightly increase
the knowledge of the integrand function of eq. (2.8). The residual part of the integral,
amounting to a remaining fraction of 13% of the total interval, can be calculated with
pQCD and time-like data.

To precisely determine the running of the fine-structure-constant we have to calcu-
late the differential cross-section taking into account the radiative corrections to the
photon propagator. The first-order correction can be estimated by replacing the photon
propagator with the photon self-energy function. We have already calculated it in eqq.
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(1.71) and (1.73). Making use of eq. (1.71), considering the first-order correction, the
cross-section reads [40]:

dσ

dt
=

∣∣∣∣α(t)

α(0)

∣∣∣∣ 2 dσ 0

dt
(2.37)

where dσ 0 is the cross-section in the Born approximation that we have previously com-
puted. Inverting this equation we gain:

dσ/dt

dσ 0/dt
=

∣∣∣∣α(t)

α(0)

∣∣∣∣ 2 (2.38)

Therefore, measuring the µ-e differential elastic cross-section we can determine the run-
ning of α. Subtracting the leptonic running ∆αlep we can finally determine the purely
hadronic running ∆αhad.

The figure 2.5 shows the effect of the hadronic and leptonic running on the cross-
section with respect to the cross-section calculated considering just the leptonic contri-
bution. Likely the precision of the first-order correction would not be precise enough to
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Figure 2.5: Ratio of the cross-section calculated with the hadronic and the leptonic
running and the cross-section considering only leptonic one.

obtain the value of the hadronic running of alpha at the required precision level. It will
be required to calculate the second-order correction of the µ-e differential cross-section.

2.2 Measuring the µ-e elastic differential cross-section.
The design of the detector to measure the µ-e elastic differential cross-section is still
under development. There are however some established facts about the possible method
and detection technique to be adopted. In order to span most of the Mandelstam’s
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variable t interval for measuring ∆αhad(t), the experiment has to access high values of
the transferred momentum t = q2. As said, the muon energy must be of the order of 150
GeV, in this way it will be possible to achieve for the transferred momentum the value
t = −0.143 GeV 2 going beyond the paek the function represented in figure 2.1, which
corresponds to t ∼ −0.108 GeV 2. Namely, to optimally determine aHLOµ it is crucial
reaching values of t that allows to reveal the peak of the integrand function (see figure
2.1). In this respect the high-energy CERN muon beam M2 seems to be an ideal facility.
The beam line provides muons in the required energy range and with a high-intensity,
of the order of 10 7 muon/s or greater. From the other side, the electron targets have
to be made of low Z material, like for instance Beryllium or Carbon. Low Z allows to
minimise the effects on the scattered particles of the multiple scattering and the energy
loss due to ionization and radiative processes.

The whole target’s thickness has to provide the required luminosity. It can be es-
timated by requiring a statistical precision to measure the cross-section of the order of
10 ppm. The size of the data sample must be of the order of 1012 events. The angular
distribution of the elastic scattered electrons according to the leading order scattering
cross-section is shown in Figure 2.6.
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Figure 2.6: In black distribution of the electron scattering angles according to the leading
order µ − e elastic cross section (Monte Carlo limited to about 45mrad). In red the
observable distribution. In blue the observed distribution for electron energy greater
than 1 GeV.

The histogram in black represents the distribution of 108 Monte Carlo simulated
events, according to the elastic differential cross-section, while the histogram in red
represents the observable electron angular distribution. In blue the observable angles
requiring an electron energy above 1 GeV. The target, in this examples, is assumed to
be of Beryllium of a thickeness of 30 mm. One can notice that most of the events are
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produced at relatively small energy with large electron angles. The informative part of
the spectrum, where the running of α is appreciable, is below 20 mrad.

The instantaneous luminosity can be calculated as:

L = Iµ × ρ e × d = Iµ ×
NA · ρ · Z

W
× d (2.39)

where Iµ is the intensity of the muon beam, ρ e is the density of the electron scattering
centers and d is the thickness of the target. ρ e in turn can be expressed in terms of the
material density ρ, the Avogadro’s number NA, the atomic number Z and the atomic
weight W .

Assuming the intensity of the muon beam to be Iµ = 1.3 × 10 7 s−1, the luminosity
provided by Beryllium target, with ρBe = 1.85 gcm3, (Z/W )Be = 0.44, and a thickness
d = 60 cm is:

LBe = 3.9× 10 32 cm−2s−1 = 0.39 nb−1s−1 (2.40)

The required luminosity that can be collected in two years of data taking, assuming
2× 10 7 s/yr is:

LBe = 1.5× 10 7 nb−1 (2.41)

Assuming the muon electron elastic scattering cross-section, for scattered electrons
of energy greater than 1 GeV is σµ-e = 245 µb, then the expected event yield can be
estimated to be:

N = LBe × σµ-e ∼ 4× 10 12 (2.42)

To detected both the scattered electrons and muons the target overall material budget
must be segmented in thin layers, whose thickness have to be optimized in order to limit
the effects of the multiple scattering and radiative processes. To optimize the target’s
thickness one has to estimate the effect of the multiple scattering (MSC) on the observed
angular distributions. At the moment the MSC effect can be evaluated only relying on
Geant4 Monte Carlo based simulation. The plan is to use thin target of the order of the
order of 10 mm.

The differential cross-section will be measured as a function of the electron scattering
angles, by revealing event by event both the muon and the electron scattering angles with
respect to the direction of the muon beam. The expected analytics relation between the
muon and electron angle in the case of elastic scattering for colliding muons of 150 GeV
is shown in Figure 2.7. This represents the signature of signal events in the case of elastic
scattering.

The layout of the possible detector is scketched in Figure 2.8. The detector is a
modular system, consisting of several identical copies of the same module. Each detector
module will act as an independent unit. It is equipped with an optimized thin target
and with three tracking stations made of Silicon strips. Each Silicon tracking station
provides the hit coordinates in the transverse plane. The direction of the particles can
be defined tracking the trajectories along the module where the collision occurred.
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Figure 2.7: The angular correlation of the muon and electron angles in the case of elastic
scattering.

The measurement of the differential angular cross-section require a calibration curve,
which relates the observed electron angular spectra to the true electron scattering an-
gle distribution. The calibration curve can be determined with the last module of the
detector. On this purpose the last module must be equipped with a high-resolution elec-
tromagnetic calorimeter. By measuring both the electron angle and the electron energy
is it possible to determine the relation between the observed angle and the truth, since
the electron energy is in one-to-one relation with the scattering angle. Since all the de-
tector modules are supposed to be identical by construction the calibration curve is the
same for all of them.

Evaluating with the best accuracy and precision the effect of MSC is a crucial aspect
of the proposed experimental method. Unfortunately, there are not available experi-
mental MSC data to check the prediction of Geant4 about the distortion of the angular
distribution we would have in our conditions. We will need therefore to calibrate Geant4
with dedicated measurements of MSC effects, by using electron beams of energetic elec-
trons in the GeV range and Beryllium and Carbon targets of various thickness.
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Figure 2.8: The layout of the possible detector to measure the elastic differential cross-
section µ+ e−(rest)→ µ+ e−. It is a modular system, consisting of identical detectors,
each made of a thin target and three Silicon strip tracking stations. The last module is
equipped with an electromagnetic calorimeter and a muon filter.

2.3 µ-e fitting process
In this paragraph we collect the results of the study performed to determine the statistical
precision achievable fitting the ∆α(t) simulated data. We have used data generated with
the Jegerlehner’s routine hadr5n12 [30] [49]. The routine determine the ∆αhad with
uncertainty corresponding to the present precision available, obtained with the time-like
approach.

We have assumed that the cross-section will be measured as a function of the electron
scattering angle θ e. The cross-section in the electron angle variable can be determined
as in the following. Starting from eq. (2.35) and performing a change of variable we get:

dσ

dθ e
=
dσ

dt

∣∣∣∣ dtdθ e
∣∣∣∣ (2.43)

To get the relation between the variable t and the outgoing electron scattering angle we
have to determine the energy of the scattered electron E ′e = E ′e (θ e). Starting from the
squared four-momentum conservation law:

(q + p− p′) 2 = q
′ 2 (2.44)

which can be written as
m 2

e + p · q − q · p′ − p · p′ = 0 (2.45)
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Assuming the components of the four-momenta are the following

p = (m e, 0, 0, 0)

q = (Eµ, q, 0, 0)

p′ = (E ′e, p
′ cos θ e, −p′ sin θ e, 0)

q′ = (Eµ +m e − E ′e, q − p′ cos θ e, p
′ sin θ e, 0)

(2.46)

Thereby the four-momenta products are

m 2
e +m eEµ − EµE

′
e + qp′ cos θ e −m eE

′
e = 0 (2.47)

reminding that q and p′ are here the modulus of the incoming muon and outgoing electron
four-momentum, respectively. Making use of the mass-shell relation for the outgoing
electron, we have:

q
√
E ′ 2e −m 2

e cos θ e = (E ′e −m e) (Eµm e) (2.48)

simplifying and taking the square relation:

q 2 cos 2 θ e (E ′e −m e) (E ′e +m e) = (E ′e −m e)
2

(Eµm e)
2 (2.49)

solving the previous equation:

E ′e = m e
(Eµ +m e)

2 + q 2 cos 2 θ e

(Eµ +m e)
2 − q 2 cos 2 θ e

(2.50)

Finally, defining

r =

√
E 2
µ −m 2

µ

Eµ +m e

(2.51)

and using the mass-shell relation for the incoming muon, we gain:

E ′e = m e
1 + r 2 cos 2 θ e
1− r 2 cos 2 θ e

(2.52)

Thus, the relation between the transferred momentum and the electron scattering angle
is:

t = 2m 2
e − 2m eE

′
e

= 2m 2
e

(
1− 1 + r 2 cos 2 θ e

1− r 2 cos 2 θ e

)
=

4m 2
er

2 cos 2 θ e
r 2 cos 2 θ e − 1

(2.53)
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Figure 2.9: The cross-section of µ-e scattering in terms of the electron scattering angle.

At last, we obtain the µ-e scattering differential cross-section in the muon scattering
angle:

dσ

dθ e
=

8m 2
er

2 cos θ e sin θ e

(r 2 cos 2 θ e − 1) 2

dσ

dt
(2.54)

which is represented in figure 2.9.
The measuring of a differential cross-section is a counting experiment. The quantity

dσ/dθ e will be measured for different values of the electron scattering angle. Let’s assume
that the range of the possible values of the outgoing electron angle will be split into thirty
bins, which will not necessarily of constant width. It might happen that the assumed
density of the bins won’t be uniform, with higher concentration of counts in the lower
θ e angle limit.

As a first attempt we have supposed to directly measure the µ-e scattering cross-
section in the variable t with equidistant bins. Although, this is not a restrictive sup-
position, it considerably simplifies the fitting procedure. Hence, starting from thirty
value with respective error of dσ/dt, using the Jegerlehner’s routine hadr5n12, we will
calculate thirty values of the function ∆αhad(t) to be fitted.

The mathematical literature suggests that the best class of fitting curves are a Padé
approximant, or a third grade polynomial, with null known-term, both of them with

56



) 2t (GeV
0.14− 0.12− 0.1− 0.08− 0.06− 0.04− 0.02− 0

 (
t)

ha
d

α∆

5−10

4−10

3−10

 

Figure 2.10: The fitting of the thirty equidistant point of ∆αhad(t) with the Padé ap-
proximant.

three free parameteres [63]:

∆αhad(t) = At
1 +Bt

1 + Ct
(2.55a)

∆αhad(t) = Dt+ Et 2 + Ft 3 (2.55b)

The Padé approximant, in eq. (2.55a), precisely describe the trend of ∆αhad(t) over
the whole t variable interval. On the contrary, the third grade polynomial, eq. (2.55b),
approximates ∆αhad(t) only for small values of the Mandelstam’s variable, because it
comes to infinity when t→∞.

The result of the fitting procedure performed with the Padé approximant is shown in
figure 2.10. Furthermore, we tried also to perform the fit with the function that describes
the leptonic running of α, when the transferred momentum is negative [62], using two
fit parameters:

∆αhad(t) =G

(
−5

9
− 4H

3t
+

(
4H 2

3t 2
+
H

3t
− 1

6

)

× 2√
1− 4H 2/t

ln

∣∣∣∣∣1−
√

1− 4H 2/t

1 +
√

1− 4H 2/t

∣∣∣∣∣
) (2.56)

where the coefficient H represents the square of the particles masses that are involved in
the process, thus in our case it represents the square of the light quarks masses. While
the coefficient G collects many different constants: for instance the color number and
the charge of the light quarks. From here to the rest of the thesis we will refer to this
curve as the leptonic-like one.
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curve parameter value

Padé
A (−915.15± 3.94)× 10−5

B −0.680± 0.583
C −2.728± 0.744

polynomial
D (−913.83± 3.48)× 10−5

E (−17.66± 1.04)× 10−3

F (−30.16± 7.03)× 10−3

leptonic G (71.93± 1.14)× 10−4

H (524.19± 9.34)× 10−4

Table 2.1: The fitting parameters obtained by ROOT in the Padé, polynomial and so
called leptonic case.

Using the program ROOT [61] to fit the Jegerlener data we obtained the fitting
parameters showing in the table 2.1. Note that when fitting with three free parameters
as in the case of Padé and polynomial functional form the error associated to one of the
parameters is very large. To prove that the error given by ROOT to that parameter, B
in Padé case and F in the polynomial case, is well estimated, these parameters have been
varied within one standard deviation. The result is that significant deviations were not
observed, hence it may could mean that one parameter of them is redundant. On the
contrary, the third curve presents small errors, but the open question is to understand
why unexpectedly it works.

Once the fitting curves has been obtained, it is necessary to operate a change of
variable to get its analytic expression in the x variables, to then solve numerically the
integral of eq. (2.8). We remind that the transferred momentum and the variable x are
connected by eq. (2.2).

We numerically integrated the three curves in the range 0 ≤ x ≤ 0.93212, where the
upper limit corresponds to the lower limit of the t variable, which is equals to −0.142893
due to the the value of the muon beam energy set to 150 GeV. The numerical integration
has been performed by means ROOT, using the already available Gaussian method [64].
The results of the previous integration methods are in close agreement, thus we report
the only Gaussian one:

IPad =600.837× 10−10

I pol =600.671× 10−10

I lep =600.771× 10−10

The ratio between the integrations done over 0 ≤ x ≤ 0.93212 and over the full range
of the x variable, is equal to the 87.2%. Thus we have to compare the previous results
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with the that obtained with Jegerlehner’s routine, which is quite different from his last
value presentad above in eq. (1.114):

[65] I Jeg = (600.75± 4.28)× 10−10 (2.57)

The goal of this thesis is to associate a statistical uncertainty to the 87.2% of the full
integral. To achieve it, we have simulated, with a ROOT program which uses a cycle,
one million events. The fitting procedure, explained above, has been repeated for each
iteration: the program extracts from the Jegerlehner routine the thirty value of ∆αhad

and gaussian varies each one of them with standard deviation equals to error associated
to that value. Then the fitting parameters of the three curves have been calculated to
obtain the approximated analytical function of ∆αhad(t). Changing the variable, from t
to x, and integrate it over the usual range 0 ≤ x ≤ 0.93212, we have obtained, for each
iteration, the value of the 87.2% of the hadronic leading-order contribution to aµ. We
have applied this recipe for all the three curves.

Performing a statistical analysis on the one million data, we have:

IPad =(600.15± 1.24)× 10−10

I pol =(600.67± 1.21)× 10−10

I lep =(600.77± 1.14)× 10−10
(2.58)

The error associated to each integral, of about 0.2%. It is obtained by a purely statistical
consideration, although it is both statistical and systematic: the ∆αhad error given by
the Jegerlehner’s routine is already a combination between the statistical and systematics
uncertainty. We have done this calculation only to test our fitting procedure. Now, we
have to repeat the procedure but after associating the statistical error related to the µ-e
scattering process.

2.4 Computation of the ∆αhad(t) absolute error
As last step, we have calculated the the error associated to each one of the thirty values
of ∆αhad(t), still keeping the hypothesis of measuring the µ-e cross-section with respect
to the t variable. Starting from eq. (2.37) and using the error dispersion rules, we have:

δσ = 2
α 2

0

(1−∆α(t)) 3

dσ 0

dt
δ∆α(t) ∼ 2σδ∆α(t) (2.59)

Recalling eq. (2.10), we get
δσ = 2σδ∆αhad(t) (2.60)

The previous equation can be written as

∆αhad =
1

2

δσ

σ
(2.61)
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Measuring the µ-e cross-section means counting the event rate (R i) of each bin:

R i =
dN i

dt
= σ i · L (2.62)

where L is the luminosity and σ i is the cross-section of a particular bin. The index i
runs from one to thirty, in the hypothesized case. From eq. (2.62) we get that the ratio
relative error (δR i) is equal to the cross-section relative error (δσ i).

Because of the error in a counting experiment is equal to the square root of the counts,
we have:

∆αhad, i =
1

2

δσ i
σ i

=
1

2

δR i

R i

=
1

2

1√
σ i · L

(2.63)

we immediately notice that, because of the increasing monotonic behavior of the cross-
section with respect the transferred momentum, the error associated to each bin decreases
in the limit t→ 0.

In the limit of narrow bins we have:

δ∆αhad, i =
1

2

1√
dσ i
dt

∆t L

=
1

2

1√∫
bin i

dσi
dt
dt L

(2.64)

The lower limit of the transferred momentum is equal to tlow = −0.142893 Gev 2,
while the upper limit, obtained cutting the scattered electron energy at 1 Gev, is
tup = −0.00102148 Gev 2. Dividing the whole t range in thirty equidistant bins, the bin
width is ∆t = 0.00472907 Gev 2. Taking as an example the last bin with −0.00574997 <
t < −0.0010209, we obtain for cross-section σ30 = 0.206788 mb and thereby, from eq.
(2.64), with a luminosity of L = 1.5 · 107 nb−1, we obtain:

δ∆αhad, 30 = 2.83 · 10−7 (2.65)

In figure 2.11 has been represented all the δ∆αhad, i absolute error as points at the middle
of the corresponding bin, although ∆αhad(t) must be a step function.

The goal of this thesis is to associate a statistical error to the measurable hadronic
leading-order contribution, 87.2% of to the anomalous magnetic moment. Repeating the
above procedure using one million simulated measurements, with our estimated uncer-
tainties on the thirty values of ∆αhad(t), instead of those given by Jegerlehner’s routine.
With our uncertainties, we get:

IPad =(600.81± 1.67)× 10−10

I pol =(600.82± 1.67)× 10−10

I lep =(600.81± 1.67)× 10−10
(2.66)
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Figure 2.11: The ∆αhad(t) absolute error with respect to the transferred momentum.

The associated error, statistically calculated, is about 0.3%. To obtain the complete
error of the hadronic leading-order contribution, one must adding up the systematic
error, however it is not already available.
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Appendix A

Feynman Parameters

R. Feynman developed a method to simplify the integration procedure of a rational
integrand function, whose denominator can be written as a product of polynomial func-
tions.The goal of this method is to squeeze the denominators of an integrand function
into a single polynomial, making use of variables called Feynman parameters [7]

1

A 1...An

=

∫ 1

0

dx 1...dxn δ

(
1−

n∑
i=1

xi

)
(n− 1)!

[x 1A 1 + ...+ xnAn]n
(A.1)

The most general Feynman parametric formula is

1

A a1
1 ...A

an
n

=
Γ (a1 + ...+ an)

Γ (a1) ...Γ (an)
×
∫ 1

0

dx 1...

∫ 1

0

dxn δ

(
1−

n∑
i=1

xi

)
×
(
x a 1−1
1 ...x an−1n

)
(x 1A 1 + ...+ xnAn)−a1−...−an

A.1 One-loop integrals
It is useful to define ∫

p

= µ 4−2ω
∫

d 2ωp

(2π) 2ω

where µ is an arbitrary mass scale, introduced with a suitable exponent, in such a manner
to deal with a dimensionless of the integral. Moreover [9]

I (a, b) =

∫
p

1

(p 2 −∆ 2 + iε) a
[
(p− l) 2 −∆ 2 + iε

] b
Iµ (a, b) =

∫
p

pµ

(p 2 −∆ 2 + iε) a
[
(p− l) 2 −∆ 2 + iε

] b
Iµν (a, b) =

∫
p

pµp ν

(p 2 −∆ 2 + iε) a
[
(p− l) 2 −∆ 2 + iε

] b
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In the case of interest a = 3 and b = 0. In the scalar case the integral gives:

lim
ω→2

I (3, 0) =
−i

32π2

1

(−∆ 2 + iε) a
(A.2)

and in the two rank tensor case

Iµν (3, 0) =
−i

16π2
gµν

Γ (2− ω)

8

(
4πµ 2

) 2−ω 1

(−∆ 2 + iε) a
(A.3)
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Appendix B

Gordon Identities

Staring from:

γ µ/q =
1

2

({
γ µ; /q

}
+
[
γ µ; /q

])
=

1

2
q ν2g

µν +
1

2
(−4iq νσ

µν) = q µ − 2iσ µνq ν (B.1a)

/pγ
µ =

1

2

({
γ µ; /p

}
+
[
γ µ; /p

])
=

1

2
p ν2g

µν − 1

2
(−4ip νσ

µν) = pµ − 2iσ µνp ν (B.1b)

the results are due to the algera of γ-matrices in the usual four dimensions space, namely:

{γ µ; γ ν} = 2g µν1 4x4

[γ µ; γ ν ] = −4iσ µν

Therefore it is possible to write:

q µ − 2iσ µνq ν = mγ µ + γ µ
(
/q −m

)
(B.2a)

pµ + 2iσ µνq ν = mγ µ +
(
/p−m

)
γ µ (B.2b)

where as usual σ µν = i
4

[γ µ; γ ν ]. Moreover we obtain:

/qγ
µ
/p + (/k + /p)γ

µ(/q − /k)

= (/k +m)γ µ(m− /k)

= m2γ µ − /kγ µ/k −m [γ µ; /k]

= m2γ µ − kαkβγ αγ µγ β −mkα [γ µ; γ α]

= m2γ µ − kαkβ
(
γ α
{
γ µ; γ β

}
− γ αγ βγ µ

)
+ 4imσ µαkα

= m2γ µ − 2/kk µ + /k/kγ µ + 4imσ µαkα

= m2γ µ + /k
2
γ µ + 4imσ µαkα

(B.3)

where the symbol + means that we are applying spin states ū(q)
(
...
)
u(p) and the Dirac

equation is valid and also the mass-shell relations. In the very last step we used /k =

65



/q − /p + 0.
Finally, Gordon identities read:

/qγ
µ =

[
/q; γ

µ
]

+ γ µ/q + 4iσ µαqα +mγ α (B.4a)
γ µ/p =

[
γ µ; /p

]
+ /pγ

µ + −4iσ µαpα +mγ α (B.4b)
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Appendix C

Traces of Dirac matrices

Is necessary to make a distintion between a trace of an even or an odd number of Dirac
matrices.

The trace of an odd number of Dirac matrices is alway zero. On the contrary, for an
even number of them we have to calculate the result. We now computing the trace of
two and four Dirac matrices, enough for the calculations in the thesis.

1. Trace of two Dirac matrices The trick that we will use to solve the trace is
to rewriting the product of Dirac matrices as a sum of commutators and anti-
commutators. Moreover, due to the cyclic nature of the trace, we know that the
trace of any commutator is null. Thus we have:

tr
(
γ µγ ν

)
= tr

(
1

2
{γ µ; γ ν}+

1

2
[γ µ; γ ν ]

)
=

1

2
tr
(
{γ µ; γ ν}

)
+

1

2
tr
(
[γ µ; γ ν ]

)
=

1

2
tr
(
{γ µ; γ ν}

)
=

1

2
tr
(
2g µν1 4×4

)
= 4g µν

(C.1)

2. Trace of four Dirac matrices The trick to solve the trace of four Dirac is quite
different from that we used in the previous item: we have to cycling two matrices
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a times

tr
(
γ µγ νγ ργ σ

)
= tr

(
γ µγ νγ ργ σ + γ νγ µγ ργ σ − γ νγ µγ ργ σ

)
= tr

(
{γ µ; γ ν} γ ργ σ − γ νγ µγ ργ σ

)
= tr

(
2g µνγ ργ σ − γ νγ µγ ργ σ

)
= 2g µνtr

(
γ ργ σ

)
− tr

(
γ νγ µγ ργ σ + γ νγ ργ µγ σ − γ νγ ργ µγ σ

)
= 8g µνg ρσ − 2g µρtr

(
γ νγ σ

)
+ tr

(
γ νγ ργ µγ σ

)
= 8g µνg ρσ − 8g µρg νσ + tr

(
γ νγ ργ µγ σ + γ νγ ργ σγ µ − γ νγ ργ σγ µ

)
= 8g µνg ρσ − 8g µρg νσ + 8g νρg µσ − tr

(
γ νγ ργ σγ σµ)

(C.2)

using the property of cyclicity in the last term of the previous equation, we finally
obtain:

tr
(
γ µγ νγ ργ σ

)
= 4 (g µνg ρσ − g µρg νσ + g νρg µσ) (C.3)
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Conclusion

Muon anomaly represents a fascinating subject. Precise theoretical predictions compared
to the experimental results could enable researchers to reveal possible failures of the
Standard Model (SM).

The present discrepancy between SM predictions and experimental result is at the
level of ∼ 3.8σ. It is considered amongst the others an important tension of the Standard
Model. It is not however large enough to unambiguously indicate the need of new physics,
claiming for new contributions beyond the SM.

Theoretical calculations and experiments have to reach higher precisions. Plans to
improve the current precisions in the next years both theoretically and experimentally
have been proposed. From the experimental side, there are two major experiments
presently under construction, at Fermilab and JPARK, aiming to improve the precision
on the muon anomaly by a factor four. It will be highly desirable for that time to get a
SM prediction of improved precision too. It implies reaching of a greater precision on the
determination of the leading hadronic contribution to muon anomaly, the major source
of the present theoretical uncertainty.

In this thesis I have discussed a novel approach to evaluate the leading hadronic
contribution, based on the measurement of the running of the fine-structure constant
α as a function of space-like transferred momentum, to be determined by means of the
elastic scattering of high-energy muons colliding on electrons at rest. I have proved
that by using a muon beam of 150 GeV, with and intensity of the order of 10 7 muon/s,
and assuming two years of data taking, the proposed new experiment could allow to
determine the leading hadronic contribution with a statistical uncertainty of 0.3%. Pro-
vided that systematic uncertainty will be kept at the same level the precision would be
competitive with the precision achievable with the standard method, which has been
obtained with many different experiments relying on the dispersive approach exploiting
e+e− annihilation time-like data.

This new experimental method could provide an important result to improve the
Standard Model predictions.

Measurements of the muon anomaly with the planned high-precision can be used in
conjunction with future collider results, at the energy frontier, to reveal possible signs of
new physics, and constrain further possible theoretical development beyond the SM.
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