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Abstract

In questa tesi, studiamo in dettaglio le condizioni iniziali per le per-

turbazioni cosmologiche in teorie scalari-tensoriali della gravitazione ed il

loro impatto sulle anisotropie della radiazione cosmica di fondo a microonde

(CMB). Consideriamo due semplici teorie scalari-tensoriali quali quella di

gravità indotta (IG, che può essere riformulato come teoria estesa di Jordan-

Brans-Dicke con una ridefinizione del campo scalare) e la teoria di campo

scalare con accoppiamento non minimale (NMC). Entrambe sono modelli di

energia oscura in cui l’accelerazione dell’Universo è connessa alla variazione

nel tempo della massa di Planck effettiva. Dopo aver introdotto le idee

alla base della teoria delle perturbazioni cosmologiche e delle teorie scalari-

tensoriali della gravità, studiamo in dettaglio le equazioni per le perturbazioni

alla metrica, alla materia ed al campo scalare, con attenzione particolare al

gauge sincrono, nel quale sono scritti i codici Einstein-Boltzmann per le predi-

zioni delle anisotropie della CMB. Usiamo queste equazioni per trovare, oltre

alle generalizzazioni dei noti modi di isocurvatura in relatività generale, una

nuova soluzione di isocurvatura peculiare dei modelli scalari tensoriali in cui

il campo scalare è quasi statico ed il suo potenziale è trascurabile durante

l’era relativistica dopo il disaccoppiamento dei neutrini. In questa soluzione,

le fluttuazioni del campo scalare si compensano con quelle delle componenti

relativistiche. Questa è una nuova soluzione regolare e valida nel regime di

grandi lunghezze d’onda per le due classi di teorie scalari tensoriali consid-

erate in questa tesi. Mostriamo poi la differente evoluzione delle fluttuazioni

cosmologiche per le condizioni iniziali di isocurvatura in queste due teorie
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scalari-tensoriali, rispetto al modo adiabatico standard con particolare enfasi

per il nuovo modo originale. Studiamo quindi le implicazioni cosmologiche

di differenti condizioni iniziali derivando lo spettro angolare della CMB per

le nuove soluzioni nel contesto del modello di IG, mediante una estensione

del codice pubblico Einstein-Boltzmann CLASS, realizzata appositamente

per questo modello. In particolare lo spettro di potenza della CMB è stato

calcolato separatamente per condizioni iniziali adiabatiche e di isocurvatura,

ovvero per modi totalmente non correlati, e per correlazioni arbitrarie. Esat-

tamente come per gli usuali modi di isocurvatura, anche il nuovo modo non

può essere da solo responsabile della formazione delle strutture osservate,

ma può essere una componente non trascurabile. Inoltre, sottolineamo il

suo potenziale interesse mostrando come la correlazione tra quest’ultimo e il

modo adiabatico possa portare ad una diminuzione dell’ampiezza dello spet-

tro della CMB a bassi multipoli, come le osservazioni di WMAP e Planck

sembrano indicare.

Concludiamo mostrando come precedenti studi confermino la presenza di

perturbazioni di isocurvatura in modelli inflazionari a due campi collegati

alla cosmologia che abbiamo studiato in questa tesi.
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Introduction

The current cosmic concordance model is the ΛCDM model which gives

a satisfactory explanation of the observed accelerated expansion of the Uni-

verse. This model is formulated within the the framework of Einstein General

Relativity with dark energy in the form of a cosmological constant.

However this model alone cannot solve some important results of obser-

vations as the spatial flatness and the high level of isotropy of the cosmic

microwave background (CMB). In order to solve these problems, it is usually

assumed that the Universe undergoes a period of accelerated expansion in

the early stage of its evolution, called inflation. In the simplest model of

inflation this acceleration is driven by a scalar field, called inflaton, slowly

rolling toward the minimum of its potential. The quantum fluctuations of

the inflaton produced during inflation seed the inhomogeneities in the mat-

ter density that then may grow by gravitational instability and eventually

form the large structures observed today. Such a simple model can produce

an adiabatic spectrum of quantum fluctuations, which is in great agreement

with the observations.

However, inflation models with many scalar fields can produce isocur-

vature fluctuations in addition to the adiabatic ones. The imprints on the

CMB angular power spectrum of these fluctuations are very different from

the adiabatic ones and they show how isocurvatures alone cannot explain the

structure formation. However, a detection of the presence of isocuvature per-

turbations could be crucial in order to discriminate between different models

of inflation. In fact, instead of considering only adiabatic or isocurvature
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2 Introduction

fluctuations, we can study a mixture of the two and how they correlate,

together with and the effects of the correlations.

This thesis is devoted to study these issues in the framework of scalar-

tensor theories. These theories offer an alternative to the ΛCDM model in

order to explain the nature of the dark energy. The gravitational sector is

changed adding a scalar field non-minimally coupled to the Ricci scalar which

leads the acceleration of the Universe that we observe today through a non-

zero potential. We consider in this thesis the simplest scalar-tensor model,

called Induced Gravity, in which the coupling to the Ricci scalar is in the

form F (ϕ) = γϕ2, but our results are not specific of this model and can be

extended to more general models.

The work is structured as follows:

1. In chapter 1 we briefly review some of the basic concepts of the cosmic

concordance model and inflation. We then discuss the model of a time-

varying dark energy called quintessence.

2. In chapter 2 we review the relativistic theory of cosmological perturba-

tions and CMB anisotropies which we will use in the following chapters

in order to find the solutions of the perturbed equations for IG which

we will use as initial conditions for the cosmological perturbations.

3. In chapter 3 we give a detailed review on isocurvature perturbations in

Einstein GR in order to compare the well known results in the litera-

ture, with our results in the framework of the IG theory. In particular

we examine how correlated adiabatic and isocurvature perturbations

in quintessence model can solve the issue of the lack of power in the

low multipoles region in the CMB angular power spectrum. Finally,

we show how isocurvature perturbations are produced in multi-field

inflation models.

4. In chapter 4 we present the scalar-tensor model of IG and show how it

can explain the acceleration of the Universe. We give the background
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evolution of the scalar field and the perturbed equations in the syn-

chronous gauge.

5. In chapter 5 we discuss our results. We first give the initial conditions

for the cosmological perturbations in IG and see how the scalar field

leads to a new original and regular isocurvature mode. We then com-

pute the CMB angular power spectrum and show how the correlation

between the new mode, or the generalization of the well known CDM

isocurvature to IG, and the adiabatic mode lead to an interesting ex-

planation of the lack of power in the low multipoles of the CMB angular

power spectrum. In the last section, we show how a simple model of

double inflation with two scalar field can produce isocurvature pertur-

bations.

6. In the Appendix we give the generalization of these initial conditions

to the Non-Minimally Coupled model where the coupling is F (ϕ) =

N2
pl+ξϕ

2 and the relative differences between the CMB power spectrum

computed in chapter 5 and the original ones of the ΛCDM model.

Throughout this work, we consider natural units in which ~ = c = kB = 1

and we assume the metric signature (−, +, +, +). When we consider tensors,

we use Greek letters for space-time indices (µ = 0, . . . , 3), whereas we use

Latin letters for spatial indices (i = 1, . . . , 3).





Chapter 1

The Standard Big-Bang

Cosmological Model

The aim of modern cosmology is to understand the origin and the evo-

lution of our Universe. The formulation of the theory of general relativity

at the begining of the last century, in 1916, enabled scientists to come up

with a testable and mathematically rigorous theory of gravitation which led

to a mathematical description of the Universe. In fact just a few years later

Friedmann [1], in 1922, and independently Lemaitre [2], in 1927, derived the

solution for the GR equations assuming isotropy and homogeneity, finding

the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric which describes

the spacetime structure of the Universe; remarkably, nowadays we are still

using their results. In 1930 Hubble [3] discovered that galaxies are receeding

from us with a velocity proportional to the distance from the observer. That

was the first evidence that the Universe is expanding. Much later, in 1998,

it was understood that the Universe expansion is accelerating, thanks to the

observations of distant type Ia supernovae [4]. What causes this accelerated

expansion is still unknown and one possbility is that the acceleration is driven

by an additional component of the Universe called dark energy.

Since the pioneering works of Friedmann and Lemaitre a huge effort has

been done in the field of cosmology. What is called the standard Big-Bang

5



6 1. The Standard Big-Bang Cosmological Model

model is based on three assumptions:

• the laws of GR in describing the expansion of the Universe;

• the cosmological principle, i.e. the Universe is homogeneous and isotropic;

• the content of the Universe is modelled as a perfect fluid.

The standard Big-Bang cosmological model successfully explains the expan-

sion of the Universe, the abundance of light elements from the primordial

nucleosynthesis and the thermal nature of the relic blackbody radiation per-

meating the Universe, the cosmic microwave background (CMB), though it

does not explain by itself the Universe acceleration, data on galaxy rotation

suggesting the existence of a kind of matter that interacts only via gravita-

tional attraction, for this reason it is usually called dark matter. The model

which considers the existence of cold dark matter and dark energy in the form

of a cosmological constant driving the acceleration of the Universe is called

ΛCDM model and it is today the cosmic concordance model. However, in

order to resolve some problems that we will see in this chapter, this model

needs to be supplemented with an early stage of acceleratad expansion, called

inflation.

1.1 General Relativity

Since its dawn, general relativity has became the best theory to describe

gravitational interactions. The idea behind general relativity is very simple:

the total matter∗ content of the Universe determines its geometry and, vicev-

ersa, the geometry determines the dynamic of the matter. In this framework,

in contrast with the Newtonian concept of gravity as an external force acting

on particles, we think of them moving freely in the curved spacetime.

An event is just a point of the 4-dimensional spacetime manifold and,

once chosen a coordinate system, it can be described by its coordinates xµ =

∗By matter, here, we mean any possible energy source in the Universe.
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(x0, x1x2, x3) = (t, x, y, z). In this framework all the information of interest

are encoded in the 2-rank symmetric tensor gµν(x) called the metric tensor,

that can be used to define distances and lengths of vectors on the manifold.

If we consider two events xµ and xµ+dxµ, with dxµ being infinitesimal, then

the spacetime interval

ds2 = gµν(x)dxµdxν (1.1)

gives the squared distance between the two events.

As already mentioned, the effect of gravity are all described by the metric

and test particles in general relativity move freely. In a flat spacetime a test

particle, without forces acting on it, moves on a straight line, namely on the

geodesics of the flat spacetime. Geodesics are the trajectories extremizing

the particle’s action using the variational principle; what we have to do is

then just vary the action of the particle in curved spacetime and find the

paths that make this variation vanish. This lead to the geodesic equations

[5] for the path xµ(λ)

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0, (1.2)

where we have introduced the Christoffel symbols:

Γσµν =
1

2
gσρ

(
∂gνρ
∂xµ

+
∂gµρ
∂xν

− ∂gµν
∂xρ

)
(1.3)

and λ is a monotonically increasing parameter to describe the particle’s path.

We can put this equation in an useful form introducing the energy-momentum

vector:

P µ = (E, ~P ), (1.4)

the advantage of this choice is that we can implicitly define the parameter λ

as

P µ =
dxµ

dλ
(1.5)

and the geodesic equation (1.2) then becomes

dP µ

dλ
+ ΓµρσP

µP ν = 0. (1.6)
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The relationship between the metric and the matter content of the Universe

is described by the Einstein field equations

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν . (1.7)

This set of equations relate the total energy-momentum tensor describing the

constituents of the Universe, on the right hand side, to the geometry of the

Universe on the left hand side; the latter is encoded in the Ricci tensor and

in its contraction, the Ricci scalar. They can conveniently be expressed in

terms of the Christoffel symbols as

Rµν ≡ Rα
µαν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ

β
µα. (1.8)

An important consequence of the form of Rµν is that the Einstein tensor Gµν

satisfies a set of equations called contracted Bianchi identities

∇νG
µν = 0, (1.9)

where the covariant derivative has been introduced. Applying Eq.(1.9) to

the Einstein equations (1.7) leads to the conservation law of the total energy-

momentum tensor

∇νT
µν = 0. (1.10)

1.1.1 The Principle of Minimal Gravitational Coupling

and the Einstein Lagrangian

We shall now describe in details the principle of minimal gravitational

coupling [6] or, sometimes, comma to semicolon rule [7]. The importance of

this principle relies on its simplicity: if we know how a system is described

in special relativity with equations written in tensorial form, all we have to

do is just make the replacements

ηµν → gµν (1.11)

∂µ → ∇µ (1.12)
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and the equations obtained characterize the same system with the presence

of a gravitational field. Therefore, if matter in Minkowski space has an action

S =

∫
d4xLmatter, (1.13)

then, in curved spacetime, it just becomes:

S =

∫
d4x
√−g [

R

16πG
+ Lmatter], (1.14)

in which the first term on the right hand side is the Einstein gravity la-

grangian and matter is minimally coupled to gravity, that is the coupling

to gravity is all containend in the invariant volume element d4x
√−g, where

g = det[gµν ]. As we will see the situation is completely different in scalar-

tensor theories of gravitation, in which the matter has different couplings to

gravity which will lead to a different form of the field equations.

1.2 The Friedmann-Robertson-Walker Met-

ric

In principle, in order to determine the metric of the Universe, we must

solve Eq.(1.7). However if we assume particular symmetries of the system

they can strongly constrain the form of the metric and we can get much

information without referring to the general Einstein equation.

1.2.1 Maximally Symmetric Spaces

A metric is said to be form-invariant if its functional form does not change

after a transformation x→ x̃, that is

g̃µν(x) = gµν(x) for all x. (1.15)

Any transformation x → x̃ that satisfies this equation is called an isometry

and, if we restrict to the special case of an infinitesimal one

x′µ = xµ + εξµ with ε� 1, (1.16)
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we get the Killing equation

ξµ;ν + ξν;µ = 0. (1.17)

Any 4-vector satisfying Eq.(1.17) is called a Killing vector of the metric

gµν(x). AnN -dimensional space can have at mostN(N+1)/2 Killing vectors.

In particular if it has exactly N(N + 1)/2 of them it said to be a maximally

symmetric space. A maximally symmetric space in 3 or more dimensions has

the important feature that its Ricci tensor is constant. It is then useful to

introduce the curvature constant K as:

R = −N(N − 1)K, (1.18)

because in this way the space is uniquely determined by K and by the number

of positive or negative eigenvalues of the metric [5]. It remains just to give

two more definitions that are essential to derive the metric of the Universe:

the defintion of isotropy and homogeneity.

A space is said to be homogeneus if there exist infinitesimal isometries

that carry any given point X into any other point near it and it is said to

be isotropic about a given point X if there exist infinitesimal isometries that

leave X fixed. It can be proved that an isotropic space about every point is

homogeneus and also maximally symmetric.

1.2.2 The Metric of the Universe

The cosmological principle mentioned at the beginning of this chapter

assumes isotropy and homogeneity for our Universe. This assumption means

that the Universe is spatially isotropic and homogeneus, so it can be described

as a spacetime in which the hypersurfaces of constant time are maximally

symmetric. The Universe can be described as a 4-dimensional spacetime

with a maximally symmetric 3-dimensional subspace, then its metric can be

written with the general form [5, 8, 9, 10]:

ds2 = −dt2 + a2(t)γijdx
idxj (1.19)
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where the spatial metric γij given by

γij = δij + k
xixj

1− k(xkxk)
, (1.20)

and k = −1, 0,+1 for an hyperbolic, flat or spherical Universe respectively.

Hereafter we will consider only the case k = 0 to simplify the calculation,

but this restriction is also justified by the present day measurements of CMB

[11] that are compatible with a nearly flat geomtery.

The metric (1.19) is the famous Friedmann-lemaitre-Robertson-Walker

(FLRW) metric and we write it in spherical coordinates:

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2). (1.21)

This metric has a rescaling symmetry that can be used to put the scale factor

a(t) in units such that it is equal to unity today, i.e. a(t0) ≡ a0 = 1. The

differential dr is the infinitesimal comoving distance, but to get the physical

one we must multiply it to the scale factor a(t), that describes the expansion

of the Universe.

We can write the FLRW metric in one more way introducing the confor-

mal time dτ = dt/a(t) so that (1.21) becomes

ds2 = a2(t)(−dτ 2 + dr2 + r2dΩ2). (1.22)

1.2.3 Energy-Momentum Tensor

The fact that the Universe can be described by a 4-dimensional space-

time whose metric is form-invariant under spatial isometries helps us to find

the form of its energy-momentum tensor T µν (that is required to be form-

invariant too for the cosmological principle).Since these isometries are purely

spatial, they transform T 00 as a 3-scalar, T 0i as a 3-vector and T ij as a 3-

tensor. Isotropy and homogeneity imply that T 0i has to vanish and T ij has

to be proportional to the 3-metric gij. These results mean that the form of

T µν has to be necessarily the same as a perfect fluid, in order to satisfy the

cosmological principle:

T µν = Pgµν + (ρ+ P )UµUν , (1.23)
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where Uµ = dxµ/
√
−ds2 is the 4-velocity vector, P is the total pressure and

ρ the total density of the fluid.

1.3 Redshift and Hubble Law

The wavelength of light emitted from an object receeding from us is

stretched out so that we observe a larger wavelength that the one emitted.

This effect is quantified by the redshift z defined as

1 + z ≡ λobs

λemit

=
a(t0)

a(t)
. (1.24)

For nearby sources, we can expand a(t) in power series around t0 to get

a(t) = a(t0)[1 + (t− t0)H0 + . . . ], (1.25)

where we have introduced the Hubble constant

H0 ≡
(
ȧ(t)

a(t)

)

t=t0

= 100h km s−1Mpc−1, (1.26)

where the up to date value of h from Planck is h = 0.67±0.01 [11]. For close

objects t0 − t is just the physical distance d and then the redshift increases

linearly with distance z ' H0d.

The Hubble constant was historically first introduced by Hubble [3] to

explain the redshift of the spectrum of galaxies with the famous Hubble law

vgal = Hd (1.27)

that was actually the observational proof that the Universe is expanding.

Contrary to the far ones, nearby galaxies show a blueshift instead of a red-

shift, because their motion is dominated by their peculiar velocit with respect

to the comoving grid which is determined by local graviy.

1.4 Distances in the Universe

In a FLRW Universe the concept of distances can take different mean-

ings and one has to be careful in defining distances. For example one can
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redefine the radial coordinate dχ ≡ dr/
√

1− kr2. In order to investigate the

propagation of light we note that photons follow null geodesics for which

ds2 = 0. (1.28)

For radial trajectory θ, ϕ = 0 are geodesic, using the metric (1.22) we find

that radial null geodesics are entirely determined by the condition

dτ 2 − dr2 = 0, (1.29)

hence they are described by

χ(τ) = ±τ + const (1.30)

that is, straight lines at ±45◦ in the τ − χ plane. We can now define the

comoving distance χ(t) as:

χ(t) =

t0∫

t

dt

a(t)
=

r∫

0

dr′ =

z∫

0

dz′

H(z′)
, (1.31)

where in the second equality we considered a flat Universe with k = 0.

However this distance is not observable. To get the physical distance one

must just multiply for the scale factor

dphys(t) = a(t)χ(t). (1.32)

Other important distances are the luminosity distance dL and the angular

diameter distance dA. The first one relates the observed flux F of a source

with luminosity L at comoving distance χ and redshift z

F =
L

4πχ2(1 + z)
≡ L

4πd2
L

(1.33)

so we have

dL = χ(1 + z) (1.34)

Instead, the angular diameter distance measures the distance between us and

the object when light was emitted and it is measured knowing the object

physical size D and its angular size δθ as

dA =
D

δθ
. (1.35)
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We eventually find that

dA =
χ

1 + z
(1.36)

and then we get the relation between angular diameter and luminosity dis-

tance

dA =
dL

(1 + z)2
(1.37)

1.4.1 Horizons in the FLRW Metric

If the Universe has a finite age, then light travels only a finite distance

in that time and then we can receive information at a given moment only by

a finite volume of the whole Universe. We call this volume’s boundary the

particle horizon and according to (1.30) its comoving size is given by†

χph(τ) = τ − τi =

τ∫

τi

dτ =

ln a∫

ln ai

(aH)−1d ln a (1.38)

that can easily be converted into a physical size as usual.‡

In literature usually the particle horizon is used interchangeably for the

Hubble radius H−1. This is because when the dominating component of the

Universe satisfies the strong energy condition ρ+3P > 0 they are of the same

magnitude. Nevertheless there are situations, as is the case of inflation, in

which the two are different, so it is important to keep in mind their different

meaning: the particle horizon is the maximum distance a photon can travel

since the Big-Bang, instead the Hubble radius is the distance over which

photon can travel in Hubble timeH−1§. In fact we can see from the expression

(1.38) of the particle horizon that it is related to the comoving Hubble radius

(aH)−1, that thus affects the causal spacetime structure.

†Here τi means the initial Big-Bang singularity (see the next subsection).
‡To be meticulous the total information we can receive is encoded in the optical horizon

defined with the substitution τi → τrec, in fact before recombination the Universe was

opaque to radiation and therefore no electromagnetic messenger information can come

before that time. However particle and optical horizon are numerically quite equals.
§Note that c = 1 in our conventions: the Hubble radius and Hubble time have the same

expression.
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Figure 1.1: 2-dimensional spacetime diagram of constant θ, ϕ illustrating the

concept of horizon. Dotted lines are worldlines of comoving objects. Figure

taken from [10].

For completeness there is also another kind of horizon, but we will never

run into it in the future. It is called the event horizon and it is the complement

of the particle horizon

χe(τ) =

τf∫

τ

dτ = τf − τ (1.39)

in which τf is the final moment of life of the Universe, if it expands forever

then τf = +∞. The meaning of χe is that an observer will never receive in

the future signals sent at a given moment τ from points with χ > χe as can

be seen in Fig.1.1.

1.5 Friedmann Equations

Once we have specified the form of the FLRW metric, we just need to

determine the scale factor. This can be done by solving Einstein equations.

Using the FLRW metric (1.19) and assuming the energy-momentum tensor
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as in Eq.(1.23), the 0− 0 and the i− i components of the Einstein equations

(1.7) lead to the Friedmann equations

H2 =
8πG

3
ρ− k

a2
(1.40)

Ḣ = −4πG(ρ+ P ) +
k

a2
(1.41)

that, combined together, give an equation for the second derivative of the

scale factor

ä = −4πG

3
a(ρ+ 3P ). (1.42)

We see from (1.42) that for a fluid with a pressure p ≡ wρ that satisfies

the strong energy condition w > −1
3
, we have ä < 0 which means that the

Universe is decelerating. Since ordinary matter pressure is always positive

and then we need something else to explain the recent acceleration of our

Universe. Because of Universe expansion we have H > 0, so the scale factor is

a concave function of time, therefore there will exist a time in which a(t) = 0.

This is the known Big-Bang singularity [12]. At that time the particle horizon

vanishes and pressure and density are predicted to be infinite by classical

physics.

It is useful to define the density parameter Ωi for each component as

Ωi ≡
ρi
ρcrit

=
8πG

H2
ρi (1.43)

where ρcrit is the density value corresponding to a flat Universe, as can be

seen substituting ρ = ρcrit in the first of Eqs.(1.40). If the sum of the density

parameters of each component Ωtot =
∑

i Ωi is >, < or = 1 we respectively

have a closed, open or flat Universe.

In the following we will often use τ instead of the cosmic time t so we

rewrite here the Friedmann equation (1.40) in conformal time

H2 =
8πG

3
a2ρ− k (1.44)

H′ = −4πG

3
a2(ρ+ 3P ) (1.45)
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where we have introduced the Hubble parameter in conformal time

H ≡ a′

a
, (1.46)

where a prime ′ denotes the derivative with respect to the conformal time.

To close the system of equations describing the Universe and its content

we have the conservation equations for the energy-momentum tensor (1.10);

if weconsider the 0-component of Eqs.(1.10), we find the continuity equation

in conformal time:

ρ′ = −3H(ρ+ P ). (1.47)

This equation can also be derived in a naive way from the first law of ther-

modynamics

dE = −pdV (1.48)

just noting that E = ρV and V ∝ a3 in an expanding Universe.

If the different components of the Universe follow an hydrodynamic equa-

tion of state¶ with wi independent on time

Pi = wiρi (1.49)

then Eq.(1.47) can be integrated to obtain the evolution of density with

respect to the scale factor

ρi(t) = ρ0i

(
a(t)

a0

)−3(1+wi)

. (1.50)

Looking at this expression for ρ we see that ρm ∝ a−3 whereas ρr ∝ a−4

therefore going back in time, as a decreases, radiation becomes dominant

over matter. We can define the epoch at whichtheir densities were equal,

that is called equivalence, which happened at zeq ≈ 4× 103.

¶We have that w = 0 for matter, w = 1/3 for radiation and w = −1 for the cosmological

constant.
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1.5.1 Hot Big-Bang model and success of its predic-

tions

We have just seen that in the standard Big-Bang model we can identify

three epochs: a radiation dominated epoch at early stages, a matter dom-

inated after equivalence at z ≈ 4 · 103 and a very recent epoch in which a

dark energy component has began to dominate the Universe since z ≈ 0.3.

The radiation era itself can be divided into different stages

• Quark era T > TQH ' 200 − 300 MeV: at very high temperatures

the matter in the Universe exists in the form of quark-gluon plasma.

At T = TQH the Universe undergoes a phase transitions and pairs of

quarks and antiquarks join togheter to form hadrons, including pions

and nucleons.

• Hadron era TQH > T > Tπ ' 130 MeV: pion-pion interactions are very

important and the perfect fluid approximation cannot be applied until

pions and antipions annihilate at T = Tπ.

• Lepton era Tπ > T > Te ' 0.5 MeV: leptons dominate Universe until

positrons and electrons annihilate at T = Te. Is in this era that the

nucleosynthesis occurs.

• Plasma era Te > T > Teq ' 1 eV: the content of the Universe is now

photons, matter (protons, electrons and helium nuclei) and neutrinos,

which have already decoupled from the background fluid of tightly cou-

pled photons and baryons since the Lepton era.

After matter-radiation equivalence the baryons-photons fluid is still tightly

coupled because of Thompson scattering between photons and electrons and

can be considered as a single fluid in statistical equilibrium. As T decreases

in the so called recombination after which the ionization fraction is very small

electrons start to recombine in nuclei. Then Thompson scattering becomes

more inefficient as the Universe expand and we have the decoupling of the
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photons from the fluid. However, decoupling and recombination are not in-

stantaneous processes, but are characterized by a small, but finite duration.

The model so far introduced has achieved three successful predictions:

• the prediction of light-element abundances during nucleosynthesis agree

with observations [13];

• it accounts naturally for the expansion of the Universe;

• it explain the presence of the CMB as a relic of the hot thermal phase.

1.6 Problems of the Standard Big-Bang Model

and Inflation

Despite the success in explaining nucleosynthesis and the presence of the

CMB, the standard Big-Bang model does not explain why we do observe no

magnetic monopoles in the universe, why the initial conditions on the curva-

ture of the Universe have to be fine tuned and why the CMB is so isotropic

on large scales. We refer to these problems as the monopole problem, the

flatness problem and the horizon problem. We sketch them in the following:

• the monopole problem is related to the phase transitions in the early

stage of the life of the Universe. In fact Great Unified Theories that try

to explain the fundamental physics governing the behaviour of particles

at such high energies, predict the production of topological defects like

magnetic monopoles, cosmic strings or domain walls. The predicted

density of these defects at present days is much higher than that of the

matter [8], but no magnetic monopoles has yet been seen.

• The flatness problem can be formulated in term of the density param-

eter Ω. The Friedmann equation (1.40) becomes:

Ω(t)− 1 =
k

(aH)2
= −Ωk (1.51)
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Figure 1.2: Representation of the horizon problem in the standard Big-Bang

model. Figure taken from [10].

thus, to obtain a curvature k compatible with observations, the initial

density parameter has to be very close to 1 [8]:

Ωi − 1 = (Ω0 − 1)
(H0a0)2

(Hiai)2
= (Ω0 − 1)

(
ȧ0

ȧi

)2

≤ 10−56. (1.52)

We infer from this equation that the Universe has to be very close to

being initially flat, leading to a fine tuning problem.

• The finiteness of the conformal time elapsed between the initial Big-

Bang singula regions we observe in the sky were never in causal contact.

As can be seen from Fig.1.6, if two different CMB photon were emitted

close to ti and were separated by a sufficient comoving distance their

past light cones do not overlap. Therefore, eventhough we observe an

almost isotropic temperature in the sky, a straightforward calculation

(see for example [14]) can show that the angle subtended by the co-

moving horizon at recombination is θhor = 1.16◦, so regions separated

by an angle θ > 2θhor should not have come in causal contact.
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The horizon problem comes from the fact that the Hubble radius for a

Universe dominated by a fluid with P = wρ is given by

(aH)−1 = H−1
0 a

1
2

(1+3w) (1.53)

and then for ordinary matter satisfying the strong energy condition

it grows with the expansion of the Universe, therefore the integral in

Eq.(1.38) is dominated by the upper limits.

The solution to the horizon problem, and to all the other problems related

to it, is then at hand: if we postulate a period of decreasing Hubble radius

in the early Universe then Eq.(1.38) is dominated by the lower limit and the

particle horizon becomes much larger than the Hubble one. This solution

is called inflation. In this case also large scales λ become smaller than the

comoving particle horizon and they could have been in causal contact in the

past. It is worth noting that if the Hubble radius decreases then the initial

singularity is pushed to negative conformal times τi → −∞.

1.6.1 Single-field inflation

How can we obtain inflation? From Eq.(1.53) we see that this can be

achieved simply by considering a fluid with negative pressure. We now con-

sider a toy model satisfying this condition in which inflation is driven by an

homogeneous scalar field φ(t), the inflaton. Its only time dependence comes

from the cosmological principle.

The action of such a scalar field in a curved spacetime is

S =

∫
d4x
√−g

[
−1

2
gµν∂µφ∂µφ− V (φ)

]
. (1.54)

The energy-momentum tensor can be derived from Noether’s theorem [15]:

T φµν = ∂µφ∂νφ− gµν
(

1

2
gρσ∂ρφ∂σφ− V (φ)

)
(1.55)
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Figure 1.3: Representation of the horizon problem solution. Figure taken

from [10].

and can be recasted in the form of a perfect fluid defining the scalar field

density and pressure as

ρφ =
1

2
φ̇2 + V (φ) (1.56)

Pφ =
1

2
φ̇2 − V (φ). (1.57)

We then have that a field configuration in which the potential energy domi-

nates over the kinetic one, leads to the violation of the strong energy condi-

tion, i.e. Pφ < −1
3
ρφ, and then, to inflation.

Substituting ρφ and Pφ in Eqs.(1.40) gives the Friedmann equations

H2 =
1

3M2
pl

[
1

2
φ̇2 + V (φ)

]
(1.58)

Ḣ = −1

2

φ̇2

M2
pl

, (1.59)

while the Euler-Lagrange equations of motion lead to the Klein-Gordon equa-
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tion

φ̈+ 3Hφ̇+
∂V

∂φ
= 0. (1.60)

The Klein-Gordon equation can be equally derived from the conservation

of T µνφ and it is the equation describing a unit mass particle moving in a

potential V (φ) with a frictional force 3Hφ̇.

It can be shown that the condition of a decreasing Hubble radius, in

order to obtain inflation, is equal to the condition that the so called Hubble

slow-roll parameters

ε ≡ − Ḣ

H2
(1.61)

η ≡ ε̇

Hε
(1.62)

δ ≡ − φ̈

Hφ̇
(1.63)

are small, that is ε, |δ| � 1, that implies |η| � 1. As already said, inflation

occurs when the kinetic energy is small with respect to the total energy

density ρφ and this is why the parameter δ, measuring the acceleration of

the scalar field, has to be small; this situation is called slow-roll inflation

and corresponds to the inflaton slowly rolling toward the minimum of the

potential. The condition ε � 1 and δ � 1 then legitimate us to neglect

the kinetic energy and the acceleration of φ. Therefore we can rewrite the

Friedmann and Klein-Gordon equations respectively as

H2 ≈ V

M2
pl

(1.64)

and

3Hφ̇ ≈ −V,φ . (1.65)

In this slow-roll approximation the Hubble slow-roll parameters ε and η be-

come

ε ≈ εV ≡
M2

pl

2

(
V,φ
V

)2

(1.66)

|η| ≈ |ηV | ≡M2
pl

V,φφ
V

, (1.67)
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where εV and ηV are called potential slow-roll parameter and slow-roll in-

flation occurs for εV , ηV � 1. These parameters are useful to determine if

inflation can occur just considering the shape of the potential.

The existence of Universe as we observe it today implies that inflation

needs to end. So the important questions are how much inflation do we need

to explain the observed largest CMB scales? How does inflation end? These

question are related to the shape of the potential. In particular we define the

number of e-folds as

N ≡
aE∫

aI

d ln a =

tE∫

tI

dtH, (1.68)

where tI and tE are the starting time and exit time from inflation, defined

as ε(tE) = 1. The observed scales in CMB can be explained, in the simplest

slow roll models, if inflation last more than 50 − 60 e-folds, but in more

complicated models this may vary.

But these features are not the only advantage of considering a period

of inflation in the early stage of the Universe. In fact, although inflation

was proposed to solve the Big-Bang problems, it also predict an adiabatic

spectrum of small fluctuations on top of the homogeneus background. These

small fluctuations can be explained as the quantum vacuum fluctuations of

the inflaton field: their comoving scale get stretched during inflation and they

cross the horizon and get freezed-out. When they cross the horizon they loose

their quantum nature and they can be treated as a classical stochastic field.

Eventually they re-enter the horizon after inflation and they become seeds

for the large-scale structure we see today, like galaxies and clusters. These

primordial fluctuations have been imprinted in the CMB anisotropies (see

next Chapter): small temperature fluctuations of the order δT/T ∼ 10−5

around CMB average temperature T0 = 2.72548± 0.00057K [16].

When inflation comes to an end there is a period called reheating in which

the inflaton may start varying rapidly enough to produce the entropy of the

Universe and then the field, or the entropy, may produce the baryons leaving

the energy density ρφ small or zero.
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1.7 ΛCDM Model

Observations show that the density parameters Ωi of the different con-

stituents of the Universe sum up to Ωtot = 1 with

Ωr ' 9.4× 10−5, Ωm ' Ωc + Ωb ' 0.32, |Ωk| . 0.01, ΩΛ = 0.68.

We have split the matter density parameter into two contributions: Ωb = 0.05

from the ordinary matter (baryons and, of course, leptons, although the latter

masses are negligibly compared to baryons) and Ωc = 0.27 from the cold dark

matter (CDM). We do not know the particle nature of dark matter; there

are candidates such as WIMPs and axions [17], but a direct detection is still

missing. There is also the possibility that little amount of dark matter is in

the form of hot relativistic dark matter (HDM). |Ωk| ≤ 0.01 means that the

curvature today is quite negligible and so it does in the past as it scales as

a−2. The presence of a small relativistic energy density Ωr = 9.4 × 10−5 is

due to the CMB and the neutrinos background.

But the interesting thing is that today the budget of the Universe is

dominated by a dark component called dark energy ΩΛ = 0.68 with an

equation of state wΛ ≈ −1 that resembles that of a cosmological costant.

This leads to the acceleration of the Universe we mentioned before.

The standard concordance model with the addition to a cosmological

constant Λ, CDM and a period of inflation in the early stage of the life of

Universe is called then ΛCDM model.

1.8 Dark Energy and the Accelerated Uni-

verse

The way to achieve accelerated expansion in the Universe, as we have

seen before, is to have a negative pressure.
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1.8.1 Cosmological Constant

Historically the first case of a negative pressure component was that of the

cosmological constant Λ‖ introduced by Einstein himself [18] in the Einstein

equations (1.7), in order to satisfy the condition of a static Universw, that

was a common model at the epoch

Gµν = 8πGTµν + Λgµν . (1.69)

This model, and the idea of a cosmological constant, were then later aban-

doned after Hubble discovery.

Nowadays we know that dark energy dominates the energy of the Uni-

verse, but we do not know its nature. A possibility, first proposed by Lemaitre

[19, 20] and Eddington [21], is that the dark energy comes from the vacuum

energy density of quantum physics. The idea was reconsidered widely by

the community later on with the paper of Zel’dovich [22]. In laboratories, in

fact, one computes energy differencies and the ground state energy of vacuum

does not matter. However it enters in its own right in the Einstein equation.

Despite the naturalness of this interpretation the value suggested by dimen-

sional analysis is much larger than the one observed in the Universe. Those

problems demand a search for a more fundamental understanding. The cos-

mological constant problem is sometimes considered as the most important

problem in theoretical physics.

1.8.2 Quintessence

Another important point is that, although observations of an accelerated

expansion are consistent with the existence of a constant vacuum energy,

they cannot prove that this energy is really constant, therefore it is possible

that the pressure-density ratio wDE = PDE/ρDE could be time-dependent.

A model that achieve such a scenario is called quintessence [23, 24, 25, 9,

26] and it assumes that the acceleration is driven by a scalar field, Q, as in

‖Λ has the dimension of length−2
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the model of inflation. There is, however, a big difference between the two

models: while in inflation the inflaton evolution is set up to leave a zero ρφ,

ending thus inflation, this obviously cannot be applied to dark energy, but

one can imagine that the late time evolution of ρQ is slow. In particular if

the evolution of ρQ is slower than ρm, it comes a time when ρQ comes to

dominate and the Universe appears then to have a cosmological constant.

The scalar field theory is exactly the same we have seen in Sect.1.6.1 at

page 21 making the substitution φ → Q. In particular, if the field is slowly

rolling, we have the negative pressure leading the acceleration, as for inflation

in the early Universe.

To avoid fine tuning problems we need that the behaviour of the field is

independent from the initial conditions; this can be obtained with a potential

with attractor properties. The simplest example of a potential with these

features is [23, 27, 28, 29]

V (Q) = M4+αQ−α (1.70)

where M is a constant with mass dimensions and α > 0. For the moment

we do not add a constant to (1.70) for it does not enter in the Klein-Gordon

equation, but there is no special reason for excluding it. During radiation era

we assume that ρQ � ρr, in order to avoid different helium abundance with

respect to that observed, and then H = 1/2t. The Klein-Gordon equation

(1.60) then becomes

Q̈+
2

(1 + w)t
Q̇− αM4+αQ−α−1 = 0, (1.71)

where we left w generic for later convenience. A solution of this equation

during the radiation era (w = 1/3) is

Q =

(
α(2 + α)2M4+αt2

6 + α

) 1
2+α

(1.72)

and therefore since ρQ ∝ t−2α/(2+α) and ρr ∝ t−2 at very early times the

former was smaller compared to the latter.
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Perturbing Eq.(1.71) with a small perturbation δQ we have

δQ̈+
3

2t
δQ̇+

(6 + α)(1 + α)

(2 + α)2t2
δQ = 0, (1.73)

with two independent solution

δQ ∝ tγ, with γ = −1

4
±
√

1

16
− (6 + α)(1 + α)

(2 + α)2
. (1.74)

Then, since both these solutions decay as t increase, while Q given by

Eq.(1.72) increases, Eq.(1.72) is said to be a tracker solution or attractor,

in the sense that any other solution that comes close to it will approach it.

The situation is exactly the same in the matter domination as can be

seen from Eq.(1.71) with w = 0. Since both matter and radiation densities

decrease with time as, respectively, t−2 and t−8/3, of course faster than ρQ,

they eventually will fall below ρQ.

Checking ρm and ρQ at the time tc when this occurs we find

tc ≈M−(4+α)/2G−(2+α)/4 (1.75)

and thus

Q(tc) ≈ G−1/2 = m2
pl, (1.76)

where m2
pl = 1/G is the Planck mass∗∗. After tc the Klein-Gordon equation

becomes

Q̈+
√

24πGρQQ̇− αM4+αQ−α−1 = 0. (1.77)

We can now guess that the inertial term Q̈ will become negligible with respect

to the other to apply the slow-roll approximation and reduce the equation of

motion to √
24πGρQQ̇ = αM4+αQ−α−1 (1.78)

with solution

Q = M

(
α(2 + α/2)t√

24πG

) 1
2+α/2

(1.79)

∗∗The reduced Planck mass is, in our conventions, M2
pl = 1/(8πG).
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and using this expression we can check our initial guess and find that the

slow-roll approximation is actually justified. Numerical calculations show

also that Eq.(1.79) is indeed the tracker solution as t → ∞. We have that

with this solution

ln a ∝ t
2

2+α/2 (1.80)

that is the same dependence from the scale factor as that of a cosmo-

logical constant α = 0, but otherwise less rapid. We stress that, since

ρQ ∝ t−α/(2+α/2), the derivation of Eq.(1.77) is indeed justified because the

densities of all of the possible contents of the Universe have a faster rate of

decrease.

As a final point we return on the issue of a possible additive constant in the

expression (1.70) and we note that to agree with observations it is necessary

arbitrarily to exclude it. Furthermore we need to adjust the constant M to

give tc ≈ t0 ≈ 1/H0 since we know that dark energy started very recently to

dominate; this gives

M4+α ≈ G−1−α/2H2
0 . (1.81)

We will return on quintessence in the next chapters.





Chapter 2

Cosmological Perturbations

Theory and CMB Anisotropies

We have summarized in the previous chapter the main assumptions of

a FLRW cosmology based on the cosmological principle and then we trated

the Universe as perfectly homogeneus and isotropic. However, we observe

in the sky gravitational bound structures as galaxies, galaxy clusters and

superclusters. These structures are generated by the gravitational instability

of the primordial fluctuations generated during the inflation. By simply

comparing the pressure force with gravity we can derive the Jeans length λJ .

If, at a given instant, there is a spherical inhomogeneity of radius λ and mass

M , in a background fluid of density ρ, it will grow if the self-gravitational

force per unit mass, Fg ' GM/λ2 exceeds the opposing force per unit mass

arising from pressure FP = P/(ρλ), that is when

λ > λJ ≡ c2
s(Gρ)−1/2, (2.1)

viceversa the inhomogeneity propagates in the Universe as an oscillating

wave. The concept of the Jeans length was developed in a Newtonian per-

turbation theory, that is an adequate description of what happens inside the

Hubble radius. However, when the scale of the perturbation exceeds the Hub-

ble radius such a Newtonian analysis fails and we have to consider General

Relativity.

31
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The perturbations treatment in general relativity has a gauge freedom:

therefore it is important to take care to distinguish which are real pertur-

bations and which are simply fictious perturbations induced by a change of

coordinates.

A few words about conventions. We will follow in this chapter the con-

ventions of [30]. In particular, the perturbations are considered at linear

order and we treat density perturbations as a random Gaussian field so their

Fourier modes are decoupled. Our notation for the Fourier transform is:

A(x, τ) =

∫
dk

(2π)3
A(k, τ) eik·x. (2.2)

With these conventions, the power spectrum of the function A is then defined

as

〈A(k)A(k′)〉 = (2π)3P(k)δ(3)(k − k′), (2.3)

where δ(3)(k − k′) is the Dirac delta distribution function.

Throughout almost all of this chapter we will consider the flat FLRW

metric (1.22) in conformal time.

2.1 Perturbations to the Metric

The idea is to consider small perturbations δgµν around the FLRW metric

ḡµν , so that we can write the perturbed metric as

ds2 = a2(τ)[−(1 + 2A)dτ 2 + 2Bidx
idτ + (δij + hij)dx

idxj]. (2.4)

From now on, we will raise and lower spatial indices just with the Kronecker

delta δij. The metric perturbations can be usefully divided into scalar, vector

and tensor on the basis of their transformation properties under the group

of 3-rotations and 3-translations. For instance δg00 is a scalar perturbation,

whereas δg0i can be composed as

Bi = ∂iB + B̂i, (2.5)
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where B̂i is the vector traceless (∂iB̂
i = 0) part of Bi and B its scalar

one. The situation is pretty different for δgij because it has also a tensorial

component and moreover its scalar part can be further decomposed in a

traceless part and another proportional to δij as follows

hij = 2Cδij + 2∂〈i∂j〉E + 2∂(iÊj) + 2Êij, (2.6)

where we denote quantities with a hat as divergenceless and the first two

terms on the right hand side are the scalar part of hij, the third is the vector

one and the fourth the tensor part; the latter is not just divergenceless, but

also tracefree. Furthermore

∂〈i∂j〉E ≡
(
∂i∂j +

1

3
∇2

)
E, (2.7)

∂(iÊj) ≡
1

2
(∂iÊj + ∂jÊi). (2.8)

We then have 10 degrees of freedom, 4 of which are scalar perturbations.

A useful theorem called decomposition theorem [31] states that each type

of perturbations evolves independently. Scalar perturbations are induced by

energy density inhomogeneities. They exhibit gravitational instability and

may lead to the formation of structure in the universe. Vector pertubations

are related to the rotational motion of the fluid and decay very quickly.

Tensor perturbations are a peculiar feature of general relativity and they

describe gravitational waves.

For the rest of this and the next chapters we will consider only scalar

perturbations since the effects of vector and tensor perturbations are sub-

leading.

2.1.1 Gauge Transformations

Let us consider the infinitesimal coordinate transformation

xµ → x̃µ = xµ + dµ(xν) (2.9)
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where

d0 =α(xν), (2.10)

di =∂iβ(xν) + εi(xν); (2.11)

∂iβ is longitudinal, i.e. irrotational (εijk∂
j∂kβ = 0), and εi is transverse, i.e.

divergenceless. We call this coordinate transformation a gauge transforma-

tion.

Under the transformation (2.9) the metric transforms as

g̃αβ(x̃ρ) =
∂xγ

∂x̃α
∂xδ

∂x̃β
gγδ(x

ρ). (2.12)

Considering the translation parameter dµ at the same order of the metric

perturbations, we can linearize Eq.(2.12) and write g̃αβ as

g̃αβ(x̃ρ) = ḡαβ(x̃ρ) + δg̃αβ (2.13)

to find the important relation between the new and the old metric induced

by the gauge transformation

δgαβ → δg̃αβ = δgαβ − ḡαβ,γdγ − ḡβδdδ,α−ḡαδdδ,β , (2.14)

in which the right and the left hand side are to be considered at same point

x̃ρ.

With the transformations (2.14) we find how the scalar degrees of freedom

of the metric tranform:

A→ A− α′ −Hα (2.15)

B → B + α− β′ (2.16)

C → C −HT − 1
3
∇2β (2.17)

E → E − β. (2.18)

Note that under the same transformationa 4-scalar q(xρ) = q̄(xρ) + δq trans-

forms as:

δq → δq̃ = δq − q̄,α dα. (2.19)
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On way to avoid the gauge problems is to define gauge invariant variables

that do not change under the gauge transformation (2.9). The simplest gauge

invariant quantities are the Bardeen variables [32]

ΨB ≡ A+H(B − E ′) + (B − E ′)′, (2.20)

ΦB ≡ −C −H(B − E ′) + 1
3
∇2E. (2.21)

An infinite number of gauge invariant variables can be constructed as a linear

combination of ΨB and ΦB. With these definitions it is easy to see whether a

perturbation is physical or just fictious, since ΨB and ΦB are gauge invariant,

if they vanish in a coordinate system, then they must vanish everywhere. So

if both ΨB and ΦB are zero the metric perturbations are fictious and can be

removed with just a gauge transformation.

2.1.2 Gauge Fixing

Usually there are two ways to deal with the gauge freedom. The first one

is to work with gauge invariant variables, the second is instead to use the

gauge freedom to fix a particular coordinate system, tipically with properties

useful to the treatment, that is, to fix the gauge by imposing two conditions

on the scalar degrees of freedom of the metric. Once we have found a quantity

in a particular gauge we can always make a gauge transformation to find its

form and value in another gauge.

Among the several possible choices of gauge we will use the following [33]:

• Newtonian (or longitudinal) gauge. It is defined by the conditions

Bl = El = 0 (2.22)

and we rename the two metric perturbations A and C respectively as

Ψ and Φ. The metric then becomes

ds2 = a2(τ)[−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdx
idxj]. (2.23)

This choice is fixed uniquely, in fact any transformation with β 6= 0

destroys the condition on El and so any α 6= 0 breaks the condition
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Bl = 0. The function Ψ plays the role of the gravitational poten-

tial in the weak field limit of the Einstein equations and thus has a

useful physical meanings. The reason for we denote this way the two

scalar perturbations is straightforward if we note that they are equal

to Bardeen potentials (2.20) in modulus:

Ψ = ΨB and Φ = −ΦB. (2.24)

• Synchronous gauge. It is defined by

As = Bs = 0, (2.25)

the metric becomes

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj]. (2.26)

To get the connection with Ref.[30] we define 2C ≡ h/3 and 2E ≡ µ.

Moreover it is useful to write hij as a Fourier integral

hij(x, τ) =

∫
dk

(2π)3
eik·x

[
k̂ik̂jh(k, τ)+

(
k̂ik̂j−

1

3
δij

)
6η(k, τ)

]
, k = k̂k.

(2.27)

Then the gauge is specified by the two functions h and µ in real space

and by h and η in Fourier space. The disadvantage of such a gauge

is that it is not fixed uniquely, since the choice of the initial hypersur-

face and its coordinate assignments are arbitrary. We expect that this

fact will manifest itself in fictious gauge modes in the solutions to the

Einstein equations. Usually this gauge freedom is fixed by setting the

CDM velocity to zero θc = 0, i.e. to consider the frame in wich CDM

is at rest. The synchronous gauge is particular useful because of the

numerical stability of the Einstein-Boltzmann codes in this gauge.

Other possible gauge choiches are the so called spatially flat and comoving

gauge, that are useful in calculations in inflationary problems.
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2.2 Einstein Equations at Linear Level

We now write the linearized Einstein equations in Fourier space. For it,

note that all we have to do is just to make the replacement ∂i → iki.

If we split the Einstein and the energy-momentum tensors into a back-

ground and a perturbed part, then the perturbed Einsten equations are:

δGµ
ν = 8πGδT µν . (2.28)

Note that neither the right nor the left hand side is gauge invariant. One can

find the gauge invariant quantities for δGµ
ν and δT µν to write the perturbed

Einstein equations in a gauge invariant manner, but we carry on with this

notation since we eventually want to switch from one gauge to another.

First of all we need to derive the perturbations to the energy-momentum

tensor (1.23) of a perfect fluid. If we write the density and pressure per-

turbations as δρ and δP and the coordinate velocities (which is considered

a perturbations at the same order of δρ and δP ) as vi ≡ dxi/dτ , then the

perturbed energy-momentum tensor becomes

T 0
0 = −(ρ̄+ δρ), (2.29)

T 0
i = (ρ̄+ P̄ )vi = −T i0, (2.30)

T ij = (P̄ + δP )δij + Σi
j, (2.31)

where Σi
j ≡ T ij − δijT kk /3 is the anisotropic shear perturbation to T ij and it is

manifestly traceless. It is also useful to define the new variables θ and σ as

θ ≡ ikjvj, (2.32)

(ρ̄+ P̄ )σ ≡ −(k̂ik̂j −
1

3
δij)Σ

i
j (2.33)

δ ≡ δρ/ρ. (2.34)

For later convenience it might be useful to find the relations between the

quantities in the synchronous and in the Newtonian gauge under the gauge
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transformation (2.9). They are given by [30]

δ(S) = δ(N) − αρ̄
′

ρ̄
, (2.35)

θ(S) = θ(N) − αk2, (2.36)

δP (S) = δP (N) − αP̄ ′, (2.37)

σ(S) = σ(N), (2.38)

where, as usual, both the right and the left hand side are considered at the

same space-time coordinate values. Moreover, the gravitational potentials in

the Newtonian gauge are related to the synchronous metric perturbations as:

Ψ =
1

2k2
[h′′ + 6η′′ +H(h′ + 6η′)] , (2.39)

Φ = η − 1

2k2
H(h′ + 6η′). (2.40)

With the perturbed energy-momentum tensor (2.29) we can finally write

the Einstein equation [30, 34, 35] in the synchronous gauge

k2η − 1

2
Hh′ = −8πGa2

∑

i

δρ
(S)
i

2
, (2.41)

k2η′ = 8πGa2
∑

i

(ρ̄i + P̄i)
θ

(S)
i

2
, (2.42)

h′′ + 2Hh′ − 2k2η = −24πGa2
∑

i

δP
(S)
i , (2.43)

(h+ 6η)′′ + 2H(h+ 6η)′ − 2k2η = −24πGa2
∑

i

(ρ̄i + P̄i)σ
(S)
i , (2.44)

while in the Newtonian gauge they take the form

k2Φ + 3H(Φ′ +HΨ) = −8πGa2
∑

i

δρ
(N)
i

2
,(2.45)

k2(Φ′ +HΨ) = 8πGa2
∑

i

(ρ̄i + P̄i)
θ

(N)
i

2
,(2.46)

Φ′′ +H(Ψ + 2Φ)′ +

(
2
a′′

a
−H2

)
+
k2

3
(Φ−Ψ) = 4πGa2

∑

i

δP
(N)
i ,(2.47)

k2(Φ−Ψ) = 12πGa2
∑

i

(ρ̄i + P̄i)σ
(N)
i ,(2.48)
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where the index i runs over all the species contributing to the content of the

Universe.

It remains to derive the conservation equation for the perturbed energy-

momentum tensor at first order. Previous Eq.(1.10) is just valid for a single

uncoupled fluid (which may be the total fluid), but they change once we take

into account the interactions among fluids. We will analize them in the next

section.

2.3 Boltzmann Equations for Matter and Ra-

diation

The systematic way to deal with the interactions between the different

components of the Universe is to write down and solve the Boltzmann equa-

tions for each species. In fact all the matter perturbations are coupled to

gravity and so the metric interacts with each species that in turn interact

among theirself by scattering processes.

We work in the phase space described by three positions xi and their

conjugate momenta Pi. Since we are considering perturbations to the metric,

different conventions can be found in the literature so, as usual, we follow

[30]. In particular we will consider in the following the Boltzmann equations

in the synchronous gauge: this approach is not manifestly covariant, so when

we do the calculations we need to switch from the gauge-dependent variables

to the gauge-invariant ones.

The conjugate momentum is just the spatial part of the energy-momentum

4-vector (1.4) with lower indices. i.e. Pi. In synchronous gauge it is just

Pi = a(δij +
1

2
hij)p

j, (2.49)

where pj = δjipi is the proper momentum measured by an observer at

fixed spatial coordinates. The phase space infinitesimal volume is dV =

dx1dx2dx3dP1dP2dP3 and, from Eq.(2.49), we see that its zeroth-order is

proportional to a3. For later convenience, since at the zeroth-order pi scales
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as a−1 for the background geodesic equation (1.6), it is useful to define [36]

the quantity qj = apj and its magnitude q and direction nj as qj = qnj,

with nini = 1. We can also define ε = (q2 + a2m2)1/2 = a(p2 +m2)1/2, where

(p2+m2)1/2 is the proper energy measured by a comoving observer and we can

relate it to the zeroth component of the energy-momentum 4-vector P0 = −ε.
Having set up all this conventions we can now derive the Boltzmann

equations for all the species we are interested in. The simplest form of the

Boltzmann equation can be written as

dfj
dτ

= C[fj], (2.50)

where fj is the phase space distribution for the j-th species ∗ that gives the

number of particles in dV

f(xi, Pj, τ)dV = dN (2.51)

while C[fi] is the collision term describing all the scattering effects. We drop

the subscript i for the moment. The zeroth-order phase space distribution is

just the Fermi-Dirac (for fermions, − sign) or the Bose-Einstein (for bosons,

+ sign) distribution function and depends just on ε (or q)

f0 = f0(ε) = gs
[
eε/aT ± 1

]−1
(2.52)

where the factor gs is the number of spin degrees of freedom.

We express then the perturbed phase-space distribution as an expansion

around its zeroth-order

f(xi, Pj, τ) = f0(q)(1 + Υ(xi, q, nj, τ)), (2.53)

so that we can express in terms of the perturbation Υ the components of the

energy-momentum tensor written in its general form

Tµν =

∫ √−gdP1dP2dP3
PµPν
P 0

f(xi, Pj, τ), (2.54)

∗j = ν, γ, b, c where respectively they stand for neutrinos, photons, baryons and cold

dark matter.
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we find that

T 0
0 = −

∫
q2dqdΩ

√
q2 +m2a2

a4
f0(1 + Υ), (2.55)

T 0
i = −

∫
q3dqdΩ

nif0Υ

a4
, (2.56)

T ij = −
∫
q4dqdΩ

ninj

a4
√
q2 +m2a2

f0(1 + Υ), (2.57)

where dΩ is the solid angle associated with ni.

Now we can turn the total derivative with respect to τ in Eq.(2.50) into

partial derivatives

df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni
dτ

∂f

∂ni
(2.58)

and use the geodesic equation (1.6) to find the appropriate expression for

dq/dτ . Then the unintegrated Boltzmann equation in Fourier space in the

synchronous gauge becomes

∂Υ

∂τ
+ i

q

ε
(k · n̂)Υ +

d ln f0

d ln q

(
η′ − h′ + 6η′

2
µ2

)
=

1

f0

C[f ], (2.59)

where µ ≡ k̂ · n̂. Now it only remains to consider separately each different

component, specify for each the appropriate collision factor and integrate the

Boltzmann equation (2.59).

2.3.1 Neutrinos

We only consider massless neutrinos for which ε = q. Their energy den-

sity, pressure and anistropic stress are given by Eq.(2.55). The procedure

is to integrate out the q-dependence from Eq.(2.59), taking its moments,

and to expand the angular dependence of the perturbation Υ in Legendre

polynomials Pl(µ) :

Fν(k, n̂, τ) ≡
∫
q3dq f0Υ∫
q3dq f0

≡
∞∑

l=0

(−i)l(2l + 1)Fνl(k, τ)Pl(µ). (2.60)
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We note that

δν = 1
4π

∫
dΩP0(µ)Fν = Fν0, (2.61)

θν = 3i
16π

∫
dΩP1(µ)Fν = 3

4
kFν1, (2.62)

σν = − 1
8π

∫
dΩP0(µ)Fν = 1

2
Fν2, (2.63)

so that, to find the equations respectively for the neutrino density, velocity

and stress, we just have to multiply the unintegrated Boltzmann equation

(2.59) without collision terms, since they are weakly interacting with other

particles, for the Legendre polynomials and then integrate over dq. We then

find a infinite hierarcy of equations and the usual way to deal with them is to

truncate this hierarcy at some lmax. For neutrinos the multiple Fνl becomes

negligible for l ≥ 3 so it is safe to truncate the hierarcy to l = 3; we then

obtain the equations

δ′ν = −4

3
θν −

2

3
h′, (2.64)

θ′ν = k2

(
1

4
δν − σν

)
, (2.65)

2σ′ν =
8

15
θν −

3

5
kFν3 +

4

15
(h′ + 6η′), (2.66)

F ′νl =
k

2l + 1
[lFν(l−1) − (l + 1)Fν(l+1)], l ≥ 3. (2.67)

2.3.2 Photons

The evolution of the photon distribution can be treated similarly as the

one of massless neutrinos. The main difference is that we cannot neglect

the collision term. In fact photons before recombination are tightly coupled

to baryons because of Thomson scattering; also after recombination, during

the freestreaming, there remains a residual energy and momentum transfer

with the matter. In both cases we need to consider the contribution of the

Thomson scattering to the collision term.

Photons are polarized in a plane orthogonal to their propagation direction

n̂ due to scattering of electron density perturbation with wavevector k. We
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denote by Fγ(k, n̂, τ), defined as in Eq.(2.60), the total intensity, i.e. the sum

of the phase space densities in the two polarization states for k and n̂, and

by Gγ their difference, i.e. the Stokes parameter. Their explicit expressions

can be found in Ref.[30, 37].

The Boltzmann equations take the form [30, 34]:

δ′γ = −4

3
θγ −

2

3
h′, (2.68)

θ′γ = k2

(
1

4
δγ − σγ

)
+ aneσT (θb − θγ), (2.69)

σ′γ =
4

15
θγ −

3k

10
Fγ3 +

2

15
(h′ + 6η′)− ane

20
σT (18σγ −Gγ0 −Gγ2),(2.70)

F ′γl =
k

2l + 1
[lFγ(l−1) − (l + 1)Fγ(l+1)]− aneσTFγl, l ≥ 3, (2.71)

where we denote by ne the proper mean density of the electrons and by

σT = 0.6652 × 10−24cm−2 the Thomson cross section and we truncated the

hierarcy at l = 2 neglecting multipoles for l ≤ 3.

2.3.3 Cold Dark Matter

The simplest case is that of cold dark matter, that can be treated as a

pressureless perfect fluid since it interacts with other particles only through

gravity. As stated before CDM can be used to define the synchronous coor-

dinates setting θc = σc = w = w′ = 0. Therefore we have only the equation:

δ′c = −1

2
h′, (2.72)

that could have been derived also from perturbing the continuity equation

(1.47) with P = 0.

2.3.4 Baryons

Before recombination, baryons are tightly coupled to photons and this

causes an energy-momentum transer represented by the term aneσT (θb− θγ)
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of Eq.(2.69). The Boltzmann equations for baryons then become [30, 34]:

δ′b = −θb −
1

2
h′, (2.73)

θ′b = −Hθb + c2
sk

2δb −
4ργ0

3ρb0
aneσT (θb − θγ). (2.74)

Tight-Coupling Approximation

At early times the Hubble time tH ≈ aτ is big compared to the character-

istic baryon-photons interaction time scale tbγ ≈ 1/(neσT ). Subtracting the

Eqs.(2.69) and (2.74) for θγ and θb and regarding Hθb + 1
3
k2δγ as a forcing

term, in the limit σT →∞, we obtain that θγ = θb. We therefore set θγ = θb

at early times and we obtain its evolution equation combining Eqs.(2.69) and

(2.74) so that the scattering terms cancel [38]:
(

4

3
Ωγ + Ωb

)
θ′γ = −ΩbHθγ +

1

3
Ωγk

2δγ. (2.75)

For the reasons mentioned above, we will neglect the scattering terms also

in the equations for the photons and baryons density contrasts and we will

then use the following equations:

δ′b = −θγ −
1

2
h′, (2.76)

δ′γ = −4

3
θγ −

2

3
h′. (2.77)

2.4 CMB Anisotropies

As the Universe expanded it cooled down and the atoms started to re-

combine leading to the decoupling of radiation and matter. In this picture,

at the time the primordial plasma recombined at redshift zrec ≈ 1100, the

mean free path for Thomson scattering grew to the horizon size and photons

started to propagate freely. These photons represent the cosmic microwave

background (CMB). A small fraction of photons underwent further scatter-

ing once the universe reionized, due to the ionizing radiation from the first

stars, which will leave an imprint in CMB polarization.
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The CMB has an almost perfect blackbody thermal spectrum, with a

temperature TCMB = 2.72548 ± 0.00057 K isotropic in all directions in the

sky [39, 16]. However, on top of this blackbody distribution we observe small

temperature variations, called anisotropies, of the order δT/T ≡ Θ ∼ 10−5.

The reason CMB is so important is that the CMB anisotropies are the

imprints of primordial fluctuations generated by inflation.

We can divide the anisotropies in the CMB in primary anisotropies, that

were originated at the time of decoupling, and secondary anisotropies, [40]

generated during the photons journey from the last scattering surface to

today.

Primary anisotropies are the result of different effects depending on the

scale of interest. At large angular scales the dominant effect is the Sachs-

Wolfe effect [41], that consists in an energy drop of the CMB photons climbing

out of the gravitational potential wells or an energy gain for which roll down

potential hills due to dark matter perturbations. This causes a fractional

variation of the temperature to Θ = 2
3
Φ and, since on large scales 2Φ = −δ

in the case of adiabatic perturbations, hot spots in the CMB correspond to

underdense regions, whereas overdense regions correspond to cold spots.

At intermediate scales we observe the acoustic oscillations due to the den-

sity and velocity fluctuations of the photon-baryons coupled fluid. The fluid

oscillates on all scales within the horizon. For adiabatic perturbations (we

will introduce the distinction between adiabatic and isocurvature perturba-

tions in the next section), these oscillations behave like cosine oscillations

and, since the CMB is quadratic in the perturbations, we find peaks in the

angular power spectrum corresponding to the scales that were in the extrema

of their oscillations at the time of recombination. We refer to this as to the

baryon acoustic oscillations: their imprint in the matter power spectrum [42]

is an important probe for the cosmological paradigm and it is complementary

to the CMB.

At small scales we have a damping effect, the Silk damping, due to the

fact that the baryons-photons perfect fluid is just an approximation valid
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only if the scattering rate of photons off electrons is infinite. This condition

is not met, because in reality photons travel a finite distance in between

scatters. After a Hubble time a photon, with a mean free path λmfp, has

moved a distance of order λD. Any perturbation on scales smaller than λD

is expected to be washed out.

Secondary anisotropies, instead, may provide information on structure

formation and they consist of an ensemble of different effects:

• Gravitational lensing: we observe photons coming from a slightly dif-

ferent directions from the original since they are deflected by the grav-

itational potentials due to the large-scale distribution of matter.

• Sunayev-Zel’dovich effect: passing through the cluster of galaxies, pho-

tons may interact with free electrons of the hot inter-cluster medium

by Inverse Compton scattering generating a spectral distortion.

• Integrated Sachs-Wolfe effect (ISW): the gravitational potential varies

in time, so the photons passing in that potential suffer a shift in the

energy. This effect can be divided into Early ISW, often considered as

part of the primary anisotropies, that happens right after decoupling

when radiation density still has non-negligible effect, and Late ISW

due to the late time effect of dark energy on the potential. The latter

is crucial in order to investigate the nature of dark energy with future

large scale sctructure (LSS) data.

.

2.4.1 Angular Power Spectrum

The basic observables of the CMB are its temperature and polarization

as a function of the direction on the sky n̂ expressed in the two coordinates

(θ, ϕ). We can expand the anisotropy Θ(θ, φ) ≡ δT (θ,φ)
T

of the CMB in terms
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of its multipole moments [43]:

Θ(θ, φ) =
∞∑

l=1

l∑

m=−l
almYlm(θφ), (2.78)

where Ylm are the spherical harmonic functions [44] and the index l is related

to the angular scale, θ ∼ 2π
l

for large multipoles. If the distribution of δT is

Gaussian, the multipole moments alm are fully characterized by their angular

power spectrum:

〈a∗l′m′alm〉 = δll′δmm′Cl, (2.79)

where the average is performed over an ensemble of different angular power

realizations. In practice, a real observer is limited to one Universe and so the

spectra are computed averaging over the different 2l+ 1 independent modes:

Cl =
1

2l + 1

m=l∑

m=−l
|alm|2. (2.80)

The fundamental limitation to how accurately the CMB angular power spec-

trum can be known is set by the cosmic variance, i.e. the fact that there are

only 2l + 1 independent modes for each l. The error on each Cl is then:

∆Cl =

√
2

2l + 1
Cl. (2.81)

In Figure 2.1 is shown the angular power spectrum multiplied by Dl ≡ l(l +

1)/(2π) and the best-fit obtained by Planck 2015 [11]. On large angular scales

the shape is given by the Sachs-Wolfe effect that leads to a plateau for small l

in the plane l(l+1)Cl/(2π) vs l and this is one of the reasons why the angular

power spectra are often plotted in bandpowers Dl. The dominance of dark

energy at recent times enhances the spectrum through the late ISW effects

on very small multipoles (l < 10). Going toward smaller scales we observe

the characteristic peaks of the acoustic oscillations. The first peak, located

at l ≈ 220, corresponds to the angular scale of the horizon at recombination

(θ ∼ 1◦) and it can give us an estimation for the total density parameter.

After that, we observe a sequence of acoustic peaks that is damped when the
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Figure 2.1: Temperature anisotropies power spectrum and best fit measured

by Planck. Here the quantity Dl = l(l+ 1)Cl has been plotted. Figure taken

from [11].

Silk damping starts acting for l > 1000 leading to a suppression of the tail

on small angular scales.

2.4.2 CMB Anisotropies in Polarization

CMB anisotropies are also polarized [31, 45, 46]. In fact the Thomson

scattering on an anisotropic photon distribution before decoupling induces

a polarization. We expect the polarization anisotropies to be much weaker

than the ones in the temperature field. In fact they are about 10% of the

total temperature fluctuations for small angular scales and just 1% for large

angular scales. Contrary to the usual treatment in terms of the Stoke pa-

rameters Q and U (V = 0 for the CMB), for the CMB analysis are used

combinations of the Stokes parameters which are invariant under the rota-

tion of the observation frame. In fact, the polarization field is decomposed in

the E and the B modes. The formers are scalar functions describing the even

parity part of the polarization, they correlate with temperature fluctuations,

which are also even, whereas the B modes describe its odd part and they do

not correlate with Θ. The E modes are related to the density perturbations
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Figure 2.2: Temperature and E-mode polarization cross-correlation power

spectrum measured by Planck and best-fit. The quantity DTEl = l(l+ 1)CTE
l

has been plotted. Figure taken from [11].

while the B modes are a unique signature of primordial gravitational waves

generated during inflation or exotic models with vector modes. Expanding

the E and the B modes in spherical harmonics it is possible to define the Cls

for these quantities as:

CEE
l ≡ 〈E∗lmElm〉, (2.82)

CTE
l ≡ 〈T ∗lmElm〉, (2.83)

CBB
l ≡ 〈B∗lmBlm〉. (2.84)

In Fig.2.2 and 2.3 we show the EE and TE spectrum and best fit from

temperature data noly measured by Planck in 2015 [11]. It can be seen that

the peaks in the EE spectrum are π out of phase with respect to those for

temperature, since polarization results from scattering, so its effect is maxi-

mum when the fluid velocity is maximal. Like temperature anisotropies, also

polarization is affected by gravitational lensing which lenses E modes into B

modes generating a peculiar B mode signal on small angular scales, which

represents one of the main noise source in primordial B modes detection.
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Figure 2.3: E-mode polarization power spectrum measured by Planck and

best-fit. Figure taken from [11].

2.5 Initial Conditions for Cosmological Per-

turbations

To compute the CMB angular spectrum we need to define the initial

conditions for the perturbations, that is a sort of ’Cauchy problem’ for the set

of coupled differential equations used to compute the Cls. To this purpose

we recall that a given mode is said to be inside the Hubble horizon if its

physical frequency is larger than the Hubble horizon, i.e. kτ > 1, since for

a universe filled with radiation a ∼ τ and H ∼ 1
τ
, viceversa it is said to be

a super-horizon mode when kτ < 1. The mode is crossing the horizon for

kτ ≈ 1.

It is costumary to define the initial conditions for cosmological perturba-

tions deep in the radiation era after neutrino decoupling. When we set the

initial conditions we find the large scale solutions for the perturbations in the

Einstein-Boltzmann system, because only modes with wavelength larger than

the horizon at that time will be relevant for the CMB anisotropies observed

today.
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2.5.1 Adiabatic and Isocurvature Perturbations

It is important for the purposes of this Section to distinguish between

adiabatic and isocurvature initial conditions. We consider, for instance, a

matter and radiation plasma before the equivalence: the entropy per matter

particle is given by Γ = T 3/nm, where nm is the number density of matter

particles. Then, if we define the entropy perturbation S as S = δΓ/Γ, it is

given by:

S = 3
δT

T
− δm =

3

4
δr − δm, (2.85)

since ρr ∝ T 4. We thus obtain the following condition for having a vanishing

entropy perturbation:

δγ ' δν '
4

3
δc '

4

3
δb. (2.86)

A more general and manifestly gauge invariant way, that we will use in the

following chapters, to define the entropy perturbation is given by:

S = H

(
δP

ṗ
− δρ

ρ̇

)
. (2.87)

For two barotropic fluids with constant wi = Pi/ρi the relative entropy per-

turbation is given by [47]:

Sij =
δi

1 + wi
− δj

1 + wj
. (2.88)

Perturbations that satisfy Eq.(2.86) are said to be adiabatic perturbations or

curvature perturbations. In fact, they are associated, through the Einstein

equations, to a perturbation to the local geometry of the Universe since

there is a global perturbation of the matter content. They are also called

isentropic perturbations since the relative entropy perturbations (2.88) vanish

for density perturbations satisfying Eq.(2.86). But it is possible to perturb

the matter components without perturbing the geometry: this is the case of

isocurvature perturbations, that give a non-vanishing entropy perturbations.

Adiabatic and isocurvature perturbations have very different imprints on

the CMB power spectrum. As we mentioned before, an adiabatic initial con-

dition generates a cosine oscillatory mode in the photons-baryons fluid with a
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first peak located around l ' 220. An isocurvature mode, instead, generates

a sine oscillatory mode with a first acoustic peak located around l ' 330.

This leads to the conclusion that isocurvature modes cannot dominate over

the adiabatic one. This has also been confirmed by the Planck mission [11]

and is enforced by the predictions of the nearly Gaussian adiabatic spec-

trum predicted by the simplest models of inflation [48]. However, this does

not exclude the presence of a subdominant isocurvature perturbation, pos-

sibly correlated with the adiabatic one. Finally, we note that we refer to

an isocurvature mode with the meaning that this mode was an isocurvature

mode deep in the radiation era, indeed this primordial isocurvature mode can

have an adiabatic component at late time (today), because the decomposition

between isocurvature and adiabatic is not time invariant.

For all of this reasons, in addition to the adiabatic mode (in the syn-

chronous gauge) [30]:

h = Ck2τ 2, (2.89)

η = 2C − C 5 + 4Rν

6(15 + 4Rν)
k2τ 2, (2.90)

δc = δb =
3

4
δγ =

3

4
δν = −C

2
k2τ 2, (2.91)

θc = 0, (2.92)

θb = θγ ≡ θγb = −C
18
k4τ 3, (2.93)

θν = −C
18

23 + 4Rν

15 + 4Rν

k4τ 3, (2.94)

σν =
4C

3(12 +Rν)
k2τ 2, (2.95)

(2.96)

where C is an overall normalization constant and Rν is the neutrinos fraction

ρν0/(ρν0 + ργ0), we have also four isocurvature modes to take into account

for the initial conditions [38]. They are the baryon isocurvature mode, the

CDM isocurvature mode, the neutrino density isocurvature mode and the

neutrino velocity isocurvature mode.The neutrino velocity mode is divergent

in the Newtonian gauge, so we will use the synchronous gauge in which all
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the modes are finite.

2.5.2 The Curvature Perturbation

When isocurvature modes and more than one species are present the

relation c2
i = wi between the speed of sound and the equation of state ceases

to be valid. It is then useful to connect the total pressure perturbation to

the density fluctiation as:

δP = c2
sδρ+ δPnad, (2.97)

where

c2
s =

(
δP

δρ

)

Γ

(2.98)

is the adiabatic speed of sound, while

δPnad =

(
δP

δΓ

)

ρ

δΓ (2.99)

is the non-adiabatic contribution to the total pressure. Of course, for the

adiabatic mode δPnad vanishes.

The importance of the non-adiabatic pressure relies in its keyrole in the

evolution equation for the quantity R, called comoving curvature perturba-

tion, defined as [49]:

R = Φ +H θ

k2
(2.100)

in the Newtonian gauge. Using the background and the perturbed Einstein

equation, we obtain another useful expression for R [50]:

R = Φ +
H

H2 −H′ (Φ
′ +HΦ) = Φ +

2H
a2(ρ+ P )

(Φ′ +HΦ). (2.101)

Finally, combining the perturbed Einstein equations (2.45), we can find the

useful equation

Φ′′+H[Ψ′+(2+3c2
s)Φ

′]+[H2(1+2c2
s)+2H′]Ψ+k2c2

sΨ−
1

3
(Ψ−Φ) = 4πGa2δPnad.

(2.102)
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Taking the derivative of Eq.(2.100) with respect to the conformal time and

using Eq.(2.102), we then find the evolution of the comoving curvature per-

turbation:

R′ = H
P + ρ

δPnad + k2 H
4πGa2(ρ+ P )

[(
c2
s −

1

3

)
Ψ +

1

3
Φ

]
. (2.103)

We thus see that for adiabatic perturbations and large scale, so that we can

neglect terms proportional to k, the comoving curvature perturbation re-

mains constant outside the horizon. This is the reason for which adiabatic

perturbations are often called curvature perturbations, indeed adiabatic per-

turbations can be characterized by the comoving curvature perturbation R.

Since the entropy perturbation is related to the non-adiabatic pressure by

S = HδPnad/Ṗ , if isocurvature are present we must consider the effects of a

non-vanishing δPnad and the situation is completely different [51].



Chapter 3

Isocurvature Perturbations in

General Relativity

The simplest models of inflation predict an approximately scale invariant

spectrum of adiabatic and Gaussian fluctuations [48]. As mentioned in the

last chapter, the curvature perturbatin remains constant on super horizon

scale and therefore allow cosmologists to probe directly the physics of in-

flation from current CMB and large scale structure observations. However,

as we will see in this chapter, multi-field inflationary models [52], in which

inflation is driven by many scalar fields, predict that there might also be

isocurvature perturbations together with the adiabatic one. In what follows,

we start with an overview of the dynamics of these isocurvature modes in gen-

eral relativity considering their imprints on the CMB power spectra. Then

we consider a possible statistical correlation between adiabatic and isocurva-

ture modes and introduce the formalism to deal with it. We next we analize

how dark energy in the form of a quintessence field may lead to isocurvature

modes. Finally we give a brief review of the generation of isocurvature modes

during inflation.

55
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3.1 Isocurvature Initial Conditions

In addition to the adiabatic mode (2.89), solving the coupled set of Ein-

stein and Boltzmann equations deep in the radiation era before recombina-

tion, but well after neutrino decoupling, for a Universe filled with baryons,

neutrinos, photons and CDM particles, should give other possible solutions

that can be used as initial conditions for the CMB. A review of these modes

has been carried out by Bucher et al. in Ref.[38], where they found that

four new regular isocurvature modes arise. In fact, each fluid component is

described by its density and velocity, so adding a fluid means adding two

differential equations to the set and thus two more solutions can be found,

one of which is a gauge mode. Since we are not interested in distinguishing

neutrino flavours (we are only interested in how the perturbations in the

neutrino fluid affect cosmological observations of the density and CMB to-

day) we have four different fluid components and thus in principle we have

more than just the five, 1 adiabatic plus 4 isocurvature, modes mentioned.

However it is important to identify how many of these modes are physical

and not gauge modes. This can be done in the synchronous gauge, in which

the two gauge modes for scalar perturbations are easily identified. For this

reason, and for the numerical stability of this gauge, unless otherwise stated,

we will use the synchronous gauge in this section. In addition to the gauge

modes, we are also not interested in the decaying modes, i.e. in modes which

show a singular behaviour for τ → 0; indeed these modes decay with time

and become negligible, moreover for these modes the perfect fluid approxi-

mation breaks up at early times [53]. Thus, if we consider only regular modes

(regular up to gauge modes), we obtain just four isocurvature solutions for

the set of differential equations. In this way, any quadratic observable, like

the matter or the CMB power spectra, is completely determined by a 5× 5

real, symmetric power spectral matrix function of k in which off-diagonal

elements estabilish correlations between modes. We now describe in detail

these four regular isocurvature modes.
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Baryon and CDM Isocurvature Modes

Since the imprints of the baryon and the CDM isocurvature modes on

the CMB power spetrum are just related by a simple rescaling factor and

thus qualitatively similar [54], we derive only the expression for the CDM

isocurvature mode (see Ref.[38] for the baryon solution). For these solutions

all the relative entropy perturbations (2.88) vanish with the exception of

SCDM ≡ Sγc 6= 0 for the CDM mode (Sb ≡ Sγb 6= 0 for the baryon mode)

and the density perturbation of the CDM (baryons) compensate the photon

one to give an overall vanishing photon-CDM (baryon) density perturbation.

This mode is given by:

h = 4Ωc0τ − 6Ωc0τ
2, (3.1)

η = −2

3
Ωc0τ + Ωc0τ

2, (3.2)

δc = 1− 2Ωc0τ + 3Ωc0τ
2, (3.3)

δb = −2Ωc0τ + 3Ωc0τ
2, (3.4)

δγ = −8

3
Ωc0τ + 4Ωc0τ

2, (3.5)

δν = −8

3
Ωc0τ + 4Ωc0τ

2, (3.6)

θc = 0, (3.7)

θγb = −1

3
Ωc0k

2τ 2, (3.8)

θν = −1

3
Ωc0k

2τ 2, (3.9)

σν = − 2Ωc0

3(2Rν + 15)
k2τ 3, (3.10)

where Ωc0 = ρc0/4(ρν0 +ργ0) and Rν = ρν0/(ρν0 +ργ0). And using Eq.(2.39),

the gravitational potentials at leading order are:

Ψ =
(4Rν − 15)Ωc0

2(15 + 2Rν)
τ, (3.11)

Φ = −(4Rν − 15)Ωc0

6(15 + 2Rν)
τ. (3.12)

A model, called primeval isocurvature model (PBI), in which the sole

baryon isocurvature mode was considered the source of cosmological per-
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turbations was introduced by Peebles [55, 56], but its predictions were in

disagreement with the observations, being characterized by a lower small-

scale relative peculiar velocities, greater large-scale flow velocities, earlier

reionization and earlier galaxy and star formation [57]. The CDM isocur-

vature mode have been considered by Bond and Efstathiou in Ref.[58, 59]

where they assumed this isocurvature mode as the dominant over the adi-

abatic, motivated by an axion model in which quantum fluctuations in the

amplitude of the axion field during inflation may produce isocurvature fluc-

tuations. The spectrum of density fluctuations has the same power law as for

adiabatic perturbations with a scale-free spectrum P(k) ∼ k on large scales,

but compared to adiabatic scale-free fluctuations, the turnover to P(k) ∼ k−3

behaviour on small scales occurs on a larger scale for the isocurvature case

and this is the reason for which it was abandoned [38].

Neutrino Density Mode

In the neutrino density isocurvature (NDI) mode the only relative entropy

perturbation that differs from zero is the one between photons and neutrinos

Sν ≡ Sγν 6= 0 and the neutrino density perturbation compensates the photon

one. To obtain this solution (and the neutrino velocity mode), since one of

the Einstein equations is redundant, we use the a combination of the first and

the third of the Einstein equations in order to cancel out the perturbations

in the radiation sector from these equations. The equation that we use is

obtained multiplying Eq.(2.41) by a factor 2 and subtracting Eq.(2.43), in

order to obtain the following equation:

h′′ + 3Hh′ − 5k2η = −6πGa2(δρc + δρb). (3.13)
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Using this equation instead of Eq.(2.43), the neutrino density mode is given

by:

h =
Ωb0Rν

10Rγ

k2τ 3, (3.14)

η = − Rν

6(15 + 4Rν)
k2τ 2, (3.15)

δc = −Ωb0Rν

20Rγ

k2τ 3, (3.16)

δb =
Rν

8Rγ

k2τ 2, (3.17)

δγ = −Rν

Rγ

+
1

6

Rν

Rγ

k2τ 2, (3.18)

δν = 1− 1

6
k2τ 2, (3.19)

θc = 0, (3.20)

θγb = −1

4

Rν

Rγ

k2τ +
3Ωb0Rν

4R2
γ

k2τ 2, (3.21)

θν =
1

4
k2τ, (3.22)

σν =
1

2(4Rν + 15)
k2τ 2, (3.23)

where Ωb0 = ρb0/4(ρν0 + ργ0) and Rγ = ργ0/(ρν0 + ργ0). The gravitational

potentials are constant at leading order:

Ψ = − 2Rν

(15 + 4Rν)
, (3.24)

Φ =
Rν

(15 + 4Rν)
. (3.25)

As can be seen from Eqs.(3.14), one starts with the sum of the neutrino and

photon densities unperturbed and when a mode enters the horizon (kτ > 1),

the photons behave as a perfect fluid because of Thomson scattering, whereas

the neutrinos freestream creating non-uniformity in the energy density, pres-

sure and momentum and so generating the metric perturbations h and η.
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Neutrino Velocity Mode

The neutrino velocity isocurvature (NVI) mode refers to fluctuations in

the neutrino velocity relative to the average bulk velocity of the cosmic fluid

and we can arrange the photon-baryon and neutrino fluids to have equal and

opposite momentum density. This mode is given by:

h =
3

2

Ωb0Rν

Rγ

kτ 2, (3.26)

η = − 4Rν

3(5 + 4Rν)
kτ +

(
20Rν

(5 + 4Rν)(15 + 4Rν)
− Ωb0Rν

4Rγ

)
kτ 2, (3.27)

δc = −3Ωb0Rν

4Rγ

kτ 2, (3.28)

δb =
Rν

Rγ

kτ − 3Ωb0Rν(Rγ + 2)

4R2
γ

kτ 2, (3.29)

δγ =
4Rν

3Rγ

kτ − Ωb0Rν(Rγ + 2)

R2
γ

kτ 2, (3.30)

δν = −4Rν

3Rγ

kτ − Ωb0Rν

R2
γ

kτ 2, (3.31)

θc = 0, (3.32)

θγb = −Rν

Rγ

k +
3Ωb0Rν

R2
γ

kτ +
Rν3Ωb0

R2
γ

(
1− 3Ωb0

Rγ

)
kτ 2 +

Rν

6Rγ

k3τ 3,(3.33)

θν = k − (9 + 4Rν)

6(5 + 4Rν)
k3τ 2, (3.34)

σν =
4

3(5 + 4Rν)
kτ +

16Rν

(5 + 4Rν)(4Rν + 15)
kτ 2, (3.35)

Fν3 =
4

7(5 + 4Rν)
k2τ 2. (3.36)

We observe that the gravitational potentials are singular:

Ψ = − 4Rν

(15 + 4Rν)
k−1τ−1, (3.37)

Φ =
4Rν

(15 + 4Rν)
k−1τ−1, (3.38)

however this singularity must be regarded as a coordinate singularity, since

the description in the synchronous gauge is regular. The initial perturbation
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in the total momentum density vanishes, in this way the metric perturbations

are regular. If they were not perfectly matched, the latter would diverge for

τ → 0. We point out that at present a mechanism for exciting this mode is

lacking [60, 61].

Figure 3.1: CTT anisotropy shapes for the three isocurvature modes and

for the adiabatic one. All the modes have the same amplitude parameters.

Figure taken from [60].

Figure 3.2: Zoom on a narrower l range to show the positions of the acoustic

peaks in the different modes. Figure taken from [60].
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3.2 Imprints of Pure Isocurvature Perturba-

tions on the CMB

As already mentioned, the baryon and CDM isocurvature modes yield

identical angular spectra, with a slightly different amplitude, because the

deficit of one is balanced by an excess of the other. Therefore, following

[54], we define the effective cold dark matter isocurvature mode (CDI) by

SCDI ≡ SCDM + (Ωb0/Ωc0)Sb. This effective mode encodes both CDM and

baryon isocurvature fluctuations.

We show the imprints on the CMB temperature spectrum of the three

different modes together with the adiabatic mode in figure 3.1.

As can be seen they lead to different shape of the power spectrum, in

particular the acoustic peak structure for the isocurvature modes is totally

different from the adiabatic one, as can be seen from figure 3.2. Since the

adiabatic CMB power spectrum fits the data very well, the possibility of

considering isocurvature modes as the sole source of perturbations has been

ruled out [62].

3.3 Correlated Adiabatic and Isocurvature Per-

turbations

So far, we have considered adiabatic and isocurvature pertubations and

their distinct behaviour for what concerns their imprints on the CMB and

on the comoving curvature perturbation. However, as we will see in the

next section, there are situations in which isocurvature perturbations can

source adiabatic perturbations on large scales. Also, isocurvature and adia-

batic perturbations may be correlated [63, 64, 65]. We can parameterize the

transformation of the curvature (adiabatic) perturbation R and the entropy

(isocurvature) perturbation S from the time to horizon exit during inflation
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to the beginning of radiation dominated era by:

(
Rrad

Srad

)
=

(
1 TRS

0 TSS

)(
R∗
S∗

)
, (3.39)

where the subscript ∗ means that the perturbations on the right hand side

must be evaluated at horizon crossing k = H. We have assumed TSR = 0 and

TRR = 1 since physically an adiabatic perturbation cannot source isocurva-

ture perturbations on large scales [66] and for purely adiabatic perturbations

the curvature perturbation is conserved. Since large scale fluctuations are

produced during inflation, the slow evolution of light fields after horizon

crossing translates into a weak scale dependence of both the perturbations

at horizon crossing and the matrix coefficients TRS and TSS . Therefore the

scale dependence of Rrad and Srad comes from the initial scale dependence

of R∗ and S∗, which can be expressed in term of classical random Gaussian

fields, respectively âr and âs, with unit variance 〈ârâs〉 = (2π)3δrs. Thus we

can write the perturbations in the radiation era as:

Rrad = Ark
n1 âr + Ask

n3 âs, (3.40)

Srad = Bkn2 âs, (3.41)

where the initial amplitudes at horizon crossing and the matrix elements of

(3.39) have been absorbed into the amplitudes As, Ar and B.

If we consider the simplest case when n1 = n2 6= n3, the power spectra

and the cross-correlation spectrum are:

PR(k) = (A2
r + A2

s)k
2n1 ≡ A2knad−1, (3.42)

PS(k) = B2k2n2 ≡ A2f 2
isok

niso−1, (3.43)

PRS(k) = AsBk
n2+n3 ≡ A2fiso cos θ k(nad+niso)/2−1, (3.44)

where A =
√
A2
s + A2

r, fiso ≡ B/A is the relative S to R amplitude, nad ≡
2n1 + 1, niso ≡ 2n2 + 1 and we parameterize the correlation between S and

R with the angle θ given by

cos θ =
〈RrSr〉√
〈R2

r〉
√
〈S2

r 〉
=

sign(B)Ask
n3

√
A2
rk

2n1 + A2
sk

2n3
= sign(B)

As
A
. (3.45)
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We note that in the case considered cos θ is scale independent, but, in general,

it is a function of k. The two modes are said to be fully correlated if cos θ = 1

and fully anti-correlated if cos θ = −1. It is also important to point out that

with these definitions we are implicitly defining the quantities fiso, nad and

niso at some pivot scale k0.

3.3.1 Contribution to the CMB Power Spectrum

The different amount of correlation between isocurvature and adiabatic

modes can give different imprints in the CMB angular power spectrum, which

can be obtained from the radiation transfer function Θad
l (k) and Θiso

l (k) for

the pure adiabatic and isocurvature initial conditions. Apart from a possible

normalization factor, the transfer function for a generic source S(k, τ) for the

temperature anisotropy, is given by [31]:

ΘS
l (k) =

∫ τ0

0

dτ S(k, τ)jl[k(τ − τ0)], (3.46)

where jl is the spherical Bessel function. We can thus write the temperature

anisotropies as follows:

Cad
l =

∫
dk

k

(
k

k0

)nad−1

[Θad
l (k)]2, (3.47)

C iso
l =

∫
dk

k

(
k

k0

)niso−1

[Θiso
l (k)]2, (3.48)

Ccorr
l =

∫
dk

k

(
k

k0

)(nad+niso)/2−1

Θad
l (k)Θiso

l (k) (3.49)

and the total angular power spectrum becomes

Ctot
l = A2Cad

l +B2C iso
l + 2AB cos θCcorr

l , (3.50)

or simply

Ctot
l = A2[Cad

l + f 2
isoC

iso
l + 2fiso cos θCcorr

l ]. (3.51)

Another possible notation can be employed (see for example [67, 61]),

identifying α ≡ B2/(A2 + B2) and β ≡ cos θ in order to characterize the
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Cls with the isocurvature fraction α that runs from purely adiabatic α = 0

to purely isocurvature α = 1. The two parameterizations are related by

α = f 2
iso/(1 + f 2

iso) and the angular power spectrum is now given by:

Ctot
l = (A2 +B2)[(1− α)Cad

l + αC iso
l + 2β

√
α(1− α)Ccorr

l ]. (3.52)

To compute the CMB power spectrum for the partial correlation case, it is

sufficient to compute the two pure adiabatic and isocurvature spectrum Cad
l

and C iso
l and the total spectrum Ctot

l for the fully correlated case. Then one

just computes Ccorr
l using Eq.(3.50) and uses this value to compute Ctot

l for

partial correlation case. If cos θ = 0 the correlation vanishes and therefore

Ctot
l = Cad

l + C iso
l .

3.4 Isocurvature Perturbations in Quintessence

Models

It is crucial to review the main results, well known in the literature, of

the quintessence perturbations, in order to compare these with our results in

scalar tensor dark energy models.

Since its weakly coupled nature, the quintessence field is an unthermalized

component in the Universe and thus it is possible that its perturbations

are not exactly adiabatic. We parameterize the scalar quintessence field

Q with the equation of state parameter wQ and with the adiabatic sound

speed c2
Q = ṗQ/ρ̇Q. In figure 3.3 we show a typical scenario [68, 69] for

the background evolution of the scalar field. During the radiation era the

quintessence field starts out subdominat in the so called kinetic phase in

which wQ = 1, then the kinetic energy eventually decays leading to the

potential phase in which the density of the scalar field is dominated by the

potential V (Q) and wQ = −1. When ΩQ ≡ ρQ/ρtot becomes of order unity,

the scalar field undergoes a transition and it enters the tracking regime in

which it follows the equation of state of the background. As mentioned

in Sec.1.8.2, in the tracking regime the quintessence kinetic and potential
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Figure 3.3: Densities of radiation (solid line) and matter (dotted line), and

the equation of state for the scalar field (dashed line), as a function of redshift

for a model with potential V (Q) = M4ef/Q. In this plot M4 = 10−70M4
pl and

f = Mpl. Figure taken from [68].

energy have a fixed ratio and the relation Q̇2 ∝ V (Q) holds. It can be

shown that, if this condition holds, the energy density of the quintessence

field takes the simple power law form a−n, with n constant. On the other

side the density of the dominant component evolves as ρD ∝ a−m. Whether

n = m or n 6= m it depends only on the model considered. For example, the

AS model considered in [70] has n = m and thus ρQ can be a sizable fraction

of the total energy density at early epoch. In the Ratra-Peebles model [23]

n < m and ρQ decreases more slowly than ρD and thus cannot be a significant

fraction of the energy density in the early universe and it is negligible until

recent times. At late times, finally, the quintessence field starts to dominate

leading to the acceleration of the Universe we observe today.

We can measure how closely the quintessence field tracks the background

with the help of the quantity γ ≡ V,QQ V/(V,
2
Q). When the equation of state

parameter wQ is constant, the sound speed c2
Q is constant in the same way;

if this is the case, also γ is constant and it can be approximated to [68]:

γ ' 1 +
wF − wQ
2(1 + wQ)

, (3.53)
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where F = r,m stands for radiation for t� teq and for matter for t� teq.

3.4.1 Evolution of Quintessence Perturbations

To analize the fluctuations of the quintessence field we decompose it into

the sum of an unperturbed space-independent part and a perturbation as

follow:

Q(t,x) = Q̄(t) + δQ(t,x), (3.54)

where δQ follows the perturbed Klein-Gordon equation in the Newtonian

gauge [71]

¨δQ+ 3H ˙δQ+
k2

a2
δQ+ V,QQ δQ = (Ψ̇ + 3Φ̇)Q̇− 2V,Q Ψ. (3.55)

In the long wavelength limit, the equation for the density contrast of the

dominant component is [30]:

δ̇F = 3(1 + wF )Ψ̇ (3.56)

for which we have the simple solution

δF − 3(1 + wF )Φ = const. (3.57)

We can solve the homogeneus equation associated to Eq.(3.55) neglecting the

gravitational potentials and switching to the conformal time. To do this we

define δQ̃ ≡ a1/2∗ and consider the radiation dominated era in which a ∝ τ

and H = 1/τ , Eq.(3.55) becomes:

δQ̃′′ +
1

τ
δQ̃′ +

[
k2 + a2V,QQ−

1

τ 2

]
δQ̃ = 0. (3.58)

The solution of this equation in the tracking regime where V,QQ = const ≡
αH2 is:

δQ ∼ τ−1/2 ×




J|ν|(kτ)

J−|ν|(kτ),
(3.59)

∗If we had considered the matter dominated era the right substitution would have been

δQ̃ ≡ a3/4. Nevertheless the results would have been the same.
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where

ν2 =
1

4
− α. (3.60)

These solutions decay in time, unless α → 0; if this is the case, the first

solution in Eq.(3.59) is constant. If we include the gravitational potentials in

the equation and neglect anisotropic stresses, thus assuming Ψ = Φ, then we

have a constant particular solution to the inhomogeneus differential equation

Eq.(3.55):

Φ(t) = Φc, (3.61)

δQ(t) = δQc ' −2
V,Q
VQQ

Φc, (3.62)

since in the tracking regime V,Q /V,QQ is approximately constant. This solu-

tion holds for any potential V (Q) as long as the latter quantity is constant,

i.e. as long as there is tracking.

The energy densities of quintessence and of the dominant fluid can be

related to this constant solution through the 0-0 component of the Einstein

equations (2.45) neglecting the energy densities of subdominant fluids. Thus,

in the tracking regime, the following relationship among the quintessence and

dominant fluid densities and the gravitational potential (3.61) holds:

δcQ ' δcF ' −2Φc, (3.63)

thus the two fluids are indistinguishable and we expect isocurvature per-

turbations to be suppressed during the tracking regime. This means that

tracking is a gravitational mechanism that plays the role of thermal equilib-

rium and tends to reduce isocurvature perturbations between the two fluids.

Although it ceases to be time independent, the solution (3.61) is a good ap-

proximation even during the quintessence domination, in fact when tracking

ends, despite the attractor disappearing, most modes have already settled

down to the same value and then experience the same evolution.

To study the evolution of isocurvature perturbations it is important to

compute the non-adiabatic pressure (2.99). In the tracking regime, when
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radiation dominates, it is given by [68]:

δPnad '
Q̇2

ρtot

+ Ptot(wr − c2
Q)(ρrδr − 2ΦρQ) +O[(γ − 1)ρQΦ] (3.64)

and it vanishes for exact tracking (γ = 1). Indeed the entropy perturbation

between radiation and quintessence vanishes in this case, i.e. SrQ = 0. If

the tracking is not exact, since in general δPnad ∝ ρQ, it is small when

the energy contribution of quintessence is very subdominant, but it does

not vanish. However, a possibility that allows for significant isocurvature

fluctuations from quintessence, which can leave imprints on the CMB power

spectrum, is that the quintessence fields enters the tracking regime at later

times so that the fluctuations may not damp so much.

Finally, we define the following quantity to parameterize the size of the

quintessence isocurvature contribution [71]:

rQ =
δQ

MplΨrad

, (3.65)

where Ψrad is Ψ from the adiabatic mode contribution from the inflaton

fluctuations in the deep radiation dominated epoch, that is given by [72]:

Ψrad =
4

9

(
HinfVinf

2πM2
plV

′
inf

)
, (3.66)

where Vinf is the inflaton potential, Hinf is the Hubble parameter during

inflation and here a prime ′ denotes the derivative with respect to the inflaton

field.

3.4.2 Imprints of Quintessence Perturbations on the

CMB

The imprints on the CMB power spectrum of the quintessence fluctua-

tions have been studied by several authors [73, 71, 74, 75, 76]. Since the

small scales fluctuations of the quintessence fields damp when they cross the

horizon [68], they affect the CMB spectrum only on large angular scales and
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thus their effects are especially important for low multipoles. This region is

characterized by some anomalies observed by Planck and WMAP which may

benefit from particular quintessence contributions [77].

In particular in [71, 75] it has been investigated the possibility to alle-

viate the low quadrupole issue by including quintessence perturbations and

isocurvatures.

Figure 3.4: Panel (a): temperature quadrupole transfer function in the fidu-

cial adiabatic model. Panel (b) ISW and SW contribution from the isocurva-

ture fluctuation and transfer function for the correlated adiabatic and isocur-

vature mode (A& I). Dark energy equation of state wQ = −1, nonrelativistic

matter density Ωmh
2 = 0.14, baryon density Ωbh

2 = 0.024, dark energy den-

sity relative to critical ΩQ = 0.73 and optical depth to reionization τ = 0.17.

In our notations TΘ
2 = ΘT

2 . Figure taken from [75].

A modification of the ISW or SW may have an impact on the quadrupole:

as pointed out in Ref.[74] isocurvature quintessence fluctuations produced by

the model considered in the last section can lower the low multipoles behavior

of the CMB power spectrum if rQ > 0, that is for positive correlation with
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the metric perturbation Ψrad. Instead, when there is a situation of anti-

correlation where rQ <= 0 then we have an enhancement of Cls at low

multipoles. Therefore a positive correlation with the metric perturbation

Ψrad is required in order to obtain the suppression of the Cls at low multipoles.

If this is the case, as can be seen from the lower panel of figure 3.4, the

effect of the isocurvaure ISW (labelled iISW in the figure) cancels the SW

effect for the temperature quadrupole, but it leaves the shape of the transfer

function at lower scales unaffected. As a result, the correlated adiabatic

and isocurvature transfer function has the same shape of pure the adiabatic

mode (labelled A in the figure) for high k, whereas the SW effect in the

quadrupole in the pure adiabatic mode has been cancelled. This is reflected

in a suppression of the Cls at low multipoles without affecting their shape at

high multipoles.

3.5 Generation of Isocurvature Perturbations

during Inflation

Finally, we consider in this section the issue of how isocurvature pertur-

bations can be generated. Since the adiabatic perturbations are generated

during inflation, leading to a superhorizon constant curvature perturbation,

that seeds the inhomogeneities at its horizon re-entry, we examine how in-

flation can produce a spectrum of isocurvature perturbations in addition to

the adiabatic ones.

Adiabatic modes are always present, indeed there is a theorem [49] that

states that the field equations for cosmological perturbations in the Newto-

nian gauge always have two adiabatic solutions: a growing solution for which

R is constant in all eras in the limit of large wavelength and a decaying

solution for which R = 0 for large wavelength. If there are no anisotropic

stresses, we have Ψ = Φ and the adiabatic solutions for the metric pertur-

bation Φ and for the perturbation of any four-scalar s(x, t) = s̄(t) + δs(x, t)
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are given by [78, 79, 9]:

Φ = C1

(
1− H

a

∫ t

T

dt′ a(t′)

)
+ C2

H

a
, (3.67)

δs
˙̄s

=
1

a

(
C1

∫ t

T

dt′ a(t′)− C2

)
, (3.68)

where T is an arbitrary integration time and C1, C2 are the time independent

coefficients for the growing and decaying adiabatic modes, for which R = C1

and R = 0 respectively. However, this theorem does not guarantee the

existence of isocurvature perturbations, that therefore must be analized for

each different model.

In the simplest case of a single field inflation with an action (1.54), isocur-

vature modes cannot be produced. On the contrary, in multiple field inflation

models [52], where the inflation is driven by many scalar fields, say N , their N

indipendent branches of non-decaying quantum fluctuations generated dur-

ing the inflationary stage produce N−1 isocurvature solutions in addition to

the adiabatic mode [80, 81, 79]. The isocurvature perturbations so produced

can then survive up to the present only if at least one of the inflaton scalar

fields remains unthermalized and uncoupled to the usual matter during the

whole evolution of the Universe from the end of the inflationary era up to

the present time, as in the case in which quintessence partecipate to inflation

as one of the inflaton fields [82].

The general action of multiple field inflation models is given by† [9]:

S =

∫
d4x

√−g
2

[
R

8πG
− gµνγnm(φ)

∂φn
∂xµ

∂φm
∂xν

− V (φ)

]
, (3.69)

where n,m = 1, . . . , N , V (φ) is an arbitrary potential and the arbitrary real

positive-definite matrix γnm(φ) is called the field metric. For simplicity we

will consider the simplest model in which γnm = δnm (for multifield inflation

with non-canonical kinetic terms see, for example, [83, 84, 85, 9]) and the

scalar fields interact mutually only through gravity, i.e. V (φ) =
∑N

n=1 Vn(φn).

†The summation over the field indices is understood.



3.5 Generation of Isocurvature Perturbations during Inflation 73

In this simple case, the equation of motion can be derived applying the action

principle to the action (3.69) at zero order are the Einstein equations:

H2 =
8πG

3

N∑

j=1

[
˙̄φ2
j

2
+ Vj(φ̄j)

]
, (3.70)

Ḣ = −4πG
N∑

j=1

˙̄φ2
j (3.71)

and the usual Klein-Gordon equations for each of the N fields

¨̄φj + 3H ˙̄φj + V ′j (φ̄j), j = 1, . . . , N, (3.72)

where, here a prime ′ denotes a derivative with respect to the j-th scalar field

for notation convenience. We can see from Eq.(3.71) that in these models H

always decreases with time.

The equations for the perturbations in the Newtonian gauge are [79, 86]:

Φ̇ +HΦ = 4πG
N∑

j=1

˙̄φjδφj, (3.73)

δφ̈j + 3Hδφ̇j +

(
k2

a2
+ V ′′j

)
δφj = 4 ˙̄φjΦ̇− 2V ′jΦ, (3.74)

for j = 1, . . . , N . The theorem mentioned above ensures that the adiabatic

solution to this system of differential equations has the form of Eqs.(3.67)

and (3.68). So far no mention on inflation has been made. However, since

we are interested in finding the perturbations set up during inflation, we now

use the slow-roll approximation for the N scalar fields:

|φ̈j| � 3H|φ̇j|, φ̇2
l � 2V (φ), |Ḣ| � H2, j = 1, . . . , N, (3.75)

so that we can neglect the fields kinetic energies in Eq.(3.70) and their ac-

celerations in Eq.(3.72). In addition, since the solutions for non-decreasing

isocurvature and growing adiabatic modes depend weakly on time [78, 81],

we can neglect terms proportional to δφ̈j and Φ̇ in the perturbed equations

(3.73). With these assumptions, the general non-decaying solution of the
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perturbed equations is:

Φ = −C1
Ḣ

H2
−H d

dt

(∑
j Vjdj∑
j Vj

)
, (3.76)

δφj
˙̄φj

=
C1

H
− 2H

(∑
k Vkdk∑
k Vk

− dj
)
, j, k = 1, . . . , N, (3.77)

where only N − 1 out of the N integrations constants dj are linearly inde-

pendent. Comparing these solutions to Eqs.(3.67) and (3.68), since during

inflation Ḣ
H2 ' −

(
−1 + H

a

∫ t
T
dt′ a(t′)

)
[83], we see that the mode with the

coefficient C1 is the growing adiabatic mode, while the remaining N − 1 are

the isocurvature modes. A similair procedure may be followed to find the

decaying adiabatic and isocurvature modes [81], but we are not interested in

them.

The next step is to match the coefficients C1 and dj to the amplitudes of

quantum fluctuations of scalar fields generated during inflation. To do this,

we need to invert Eqs.(3.76) and (3.77), obtaining:

C1 = 8πG
∑

j

Vj
V ′j
δφj, (3.78)

dj =
δφj

2H ˙̄φj
− C1

2H2
+

∑
k dkVk∑
k Vk

, j, k = 1, . . . , N, (3.79)

where the use of the zero order Klein-Gordon equation has been made to find

Eq.(3.78). We can use the linear dependence of the N coefficients dj to add a

constant term to them, in order to cancel out the last two term of Eq.(3.79), in

this way both C1 and dj dependes only on the perturbed scalar fields δφj and

it becomes simple to match them to the quantum fluctuations. All the scalar

fields in the slow-roll regime behave as massless fields, i.e. |m2
eff| ≡ |V ′′j | �

H2, so the standard quantization rules for the long-wavelength perturbations

δφj give the well known results [87, 33, 8]:

δφj(k) =
Hk√
2k3

ej(k), (3.80)

where Hk is the Hubble parameter evaluated at the time tk of the first horizon

crossing k ' aH of the comoving scale k and ej(k) are a set of classical
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random Gaussian variables with 〈ej(k)〉 = 0 and 〈ej(k)e∗j′(k
′)〉 = δjj′δ(k−k′).

Substituting these results into Eqs. (3.76) and (3.77), we obtain the following

results for the integration constants C1 and dj:

C1(k) = −8πGH√
2k3

∑

j

Vj
V ′j
ej, (3.81)

dj(k) = − 3H

2
√

2k3V ′j
ej, j = 1, . . . , N. (3.82)

It is now simple to compute the power spectrum of these quantities:

PC1(k) =
32π2G2H2

k3

∑

j

V 2
j

V ′2j
, (3.83)

Pdj(k) =
9H2

8k3V ′2j
, j = 1, . . . , N. (3.84)

Since for isocurvature perturbations we do not have general expressions

like Eqs.(3.67) and (3.68), their behaviour after inflation depends strongly

on the model considered. As we mentioned previously in this chapter, the

most natural way in which they may still be present nowadays, is to assume

that one of the inflaton fields remains uncoupled from usual matter since

the end of inflation up to present and that its particles, or products of their

decay, constitute now a part of the CDM. In this case it is possible to match

the primordial isocurvature perturbations set up during inflation with the

perturbations in the radiation dominated era [79, 63].

3.5.1 Adiabatic and Entropy Fields

A formalism, which introduces no new physics, but is very useful for

working with the adiabatic and isocurvature perturbations produced in multi-

field inflation has been introduced by Gordon et al. [86]. The idea at its

basis is to split the trajectory in the space of the N fields into a component

tangent to the background classical trajectory, which represents the adiabatic

perturbations, and N − 1 components orthogonal to the trajectory, that

represent the isocurvature perturbations, as shown in figure 3.5. We explicitly
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show the example of double inflation with N = 2 inflaton fields, but it

is straightforward to extend these results to a multi-field inflation with a

generic number N of inflatons.

Figure 3.5: Illustration of the decomposition of the two-field perturbation

into an adiabatic (δσ) and an entropy field (δs). θ is the angle between δσ

and δφ. Figure taken from [86].

For double inflation driven by two scalar fields χ and φ, we perform a

rotation in the field space to define the adiabatic field σ as:

σ̇ =
φ̇√

φ̇2 + χ̇2

φ̇+
χ̇√

φ̇2 + χ̇2

χ̇ ≡ (cos θ)φ̇+ (sin θ)χ̇. (3.85)

This field represent the path length along the classical trajectory in the field

space defined by the background Klein-Gordon equations (3.72) for φ and χ,

that can be recasted in the form:

σ̈ + 3Hσ̇ + V,σ = 0, (3.86)

where V,σ = (cos θ)V,φ +(sin θ)V,χ. We define then the entropy (or isocurv-

ture) perturbation field s, as the field whose fluctuations are orthogonal to

the background classical trajectory, that is:

δs = (cos θ)δχ− (sin θ)δφ, (3.87)
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so that s = const along the classical trajectory and δσ describes adiabatic

field perturbations in the case when δs = 0. We can compute the comoving

curvature perturbation R from its general expression (2.100) in term of the

total energy-momentum tensor of the two-field lagrangian, as straightforward

calculation gives the results [86, 9]:

R = Φ +H
δσ

σ̇
(3.88)

and its time evolution can be obtained combining Eqs.(2.87) and (2.103),

giving, on large scales, the following equation

Ṙ = −3H
Ṗ

ρ̇
S. (3.89)

In the case considered, P and ρ are the total pressure and density of the

two-fields energy-momentum tensor and the entropy perturbation S is given

by [86]:

S = − V,σ
6πGσ̇2(3Hσ̇ + 2V,σ )

(
k2

a2
Φ

)
− 2V,s

3σ̇2
δs, (3.90)

where V,s = (cos θ)V,χ−(sin θ)V,φ. Therefore the evolution of the comoving

curvature perturbations can be expressed in terms of the new fields as:

Ṙ =
H

Ḣ

k2

a2
Φ +

2H

σ̇
θ̇δs, (3.91)

where θ̇ = −V,s
σ̇

. The power of this formalism is now clear: from the Eq.(3.91)

we can immediately see the connection between isocurvature generation and

the variation of the curvature perturbation. In fact, if the background solu-

tion follows a curved trajectory in the field space (see figure 3.5), isocurvature

perturbations can be significant and R can change appreciably with time.

In order to find the Klein-Gordon equations for the new fields, we define

the gauge-invariant Mukhanov-Sasaki variable for the adiabatic field [88, 89]

as:

Qσ = δσ +
σ̇

H
Φ (3.92)

and the second derivative of the potential with respect to the new fields

V,σσ = (sin2 θ)V,χχ +(sin 2θ)V,φχ +(cos2 θ)V,φφ , (3.93)

V,ss = (sin2 θ)V,φφ−(sin 2θ)V,φχ +(cos2 θ)V,χχ . (3.94)
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Using the Klein-Gordon equations (3.72) and the above definitions, we obtain

the following equations for Qσ and δs:

Q̈σ+3HQ̇σ+

[
k2

a2
+ V,σσ−θ̇2 − 8πG

a3

(
a3σ̇2

H

)]
Qσ = 2

d

dt
(θ̇δs)−2

(
V,σ
σ̇

+
Ḣ

H

)
θ̇δs,

(3.95)

δ̈s+ 3Hδ̇s+

(
k2

a2
+ V,ss +3θ̇2

)
δs =

θ̇

σ̇

k2

2πG2
Φ. (3.96)

From Eq.(3.96) we observe that the isocurvature perturbations are essen-

tially decoupled from the adiabatic field fluctuations in the large scale limits

and so they remain zero if they were initially zero. Moreover, in order to

have a production of large scale entropy perturbations from the small scale

quantum fluctuations during inflation, the entropy field must be light and its

effective mass must be small, i.e. m2
s ≡ V,ss +3θ̇2 � 3

2
H2. However, for what

concerns adiabatic perturbations, even on large scales, we can see directly

from Eq.(3.95) that the entropy fields fluctuations can source them, unless

θ̇ = 0, that is unless the trajectory in the field space is a straight line.

As we did in the last section, it would be now straightforward to match

the entropy and adiabatic perturbations to the quantum fluctuations of the

fields at horizon crossing. The main advantage of this formalism, however,

is that it makes very easy to calculate the correlations between isocurvature

and adiabatic modes as seen in section 3.3.



Chapter 4

Scalar-Tensor Theories of

Gravity

In general relativity the gravitational force is mediated by the metric,

namely a single 2-rank symmetric tensor. As we mentioned in Sec.1.1.1, in the

GR picture, all the fields are coupled to the metric through the determinant

of the metric
√−g in the so called minimal coupling scheme. Although this

is the simplest way to achieve Einstein equivalence principle, the existence

of additional fields that could contribute to the gravitational sector can be

postulated.

In 1955 Jordan [90] and, independently, in 1960 Brans and Dicke [91],

on the basis of the ideas of Eddington and Dirac of a time varying Newton

constant GN , developed a theory in which such a variation is due to the

presence of a scalar field with a direct coupling to the Ricci scalar and a

non-canonical kinetic term. The Jordan-Brans-Dicke model is the archetypl

version of a more general class of theories called Scalar-Tensor (ST) theories

of gravity in which a scalar field is non-minimally coupled to gravity. Scalar-

tensor theories, in turn, are a special case of a broader class of general scalar-

tensor theories with second-order field equations worked out by Horndeski

[92, 93, 94].

The importance of studying ST theories, however, is not only of academic

79
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interest, since these theories arise naturally as the dimensionally reduced

effective theories of higher dimensional theories, such as Kaluza-Klein and

string models. It has also been shown that scalar-tensor theories generically

contain an attractor mechanism toward general relativity during the matter

dominated era [95].

This chapter is intended to give a brief introduction to the ideas behind

ST theories and to the cosmology that therive from them, in particular we

will show how scalar tensor theories can lead to an accelerated expansion at

late times.

4.1 Scalar Tensor Models

The most generic action for scalar tensor gravity is given by [96, 97]

S =

∫
d4x
√−g [F (ϕ)R− εZ(ϕ)gµν∂µϕ∂νϕ− 2V (ϕ) + Lm] , (4.1)

where F (ϕ) and Z(ϕ)∗ are two functions of the scalar field ϕ and V (ϕ) its

potential. The paramater ε can take the values −1 and 1, but from now

on we consider ε = 1 to avoid the possibility of ghosts. It is important to

stress that the ordinary matter Lagrangian Lm is minimally coupled to grav-

ity as in standard general relativity. This is necessary to ensure that the

weak equivalence principle (WEP) applies. This principle states that any

object under the influence only of the gravitational force falls locally with

a common acceleraton, i.e. its motion follows geodesic trajectories. A more

restrictive formulation of this principle is given by the strong equivalence

principle (SEP): in a freely falling frame we recover the same special rela-

tivistic physics, independently from position or velocity. The SEP is reflected

in the constant value of the Newton constant GN in both space and time.

Although the action (4.1) well satisfies the WEP, the presence of the scalar

field influences the metric and spoils the validity of the SEP. This is indeed

∗Hereafter we will drop the dependence from the scalar field and write just F instead

of F (ϕ).
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reflected in the Newton constant dependence of the scalar field ϕ and thus,

since ϕ = ϕ(t) in cosmological settings, it varies with time [98].

Varying the action (4.1) with respect to the metric gives the generalization

of the Einstein equations [97]:

Gµν =
1

F
T̃µν , (4.2)

where

T̃µν = gµαgνβ
2√−g

δ [
√−g(Lm + Lϕ)]

δgαβ
(4.3)

is the total effective energy-momentum tensor. We note from Eq.(4.2) that

scalar-tensor theories are described by the usual Einstein equations with an

effective time-varying Newton constant GN(ϕ) = (8πF )−1, however, as we

will see in the following sections, it does not have the same physical meaning

as in general relativity.

In the case of canonical kinetic terms, Z = 1, as we will see later the

Eq.(4.2) becomes [96, 93]:

Gµν =
1

F

[
Tmµν + ∂µϕ∂νϕ−

1

2
gµν∂ρϕ∂

ρϕ− gµνV + (∇µ∇ν − gµν)F
]
. (4.4)

We can see that the terms in the square brackets on the right hand side

which contain the scalar field resemble the energy-momentum tensor of a

scalar field in general relativity, however the term (∇µ∇ν − gµν)F has no

analogus in Einstein gravity and makes the perfect fluid approximation not

valid for the energy-momentum tensor of ϕ. If we want to put the energy-

momentum tensor (4.3) into the form of a perfect fluid, we must define the

scalar field density and pressure as follows:

ρϕ =
ϕ̇2

2
+ V − 3HḞ , (4.5)

Pϕ =
ϕ̇2

2
− V + F̈ +HḞ . (4.6)

In fact, this is better understood if we derive the Friedmann equations from

the Einstein equations (4.2):

3FH2 = ρm +
1

2
ϕ̇2 − 3HḞ + V, (4.7)

−2FḢ = (ρm + Pm) + ϕ̇+ F̈ −HḞ . (4.8)



82 4. Scalar-Tensor Theories of Gravity

The variation of the action (4.1) with respect to the scalar field gives the

Klein-Gordon equation

(ϕ̈+ 3Hϕ̇) = 3F,ϕ (Ḣ + 2H2)− V,ϕ . (4.9)

The continuity equation Eq.(1.47) continues to hold for the ordinary matter

contents separately thanks to the minimal coupling to gravity and we can

still write

ρ̇i = −3H(ρi + Pi), (4.10)

where the index i runs over the different matter (and radiation) species filling

the universe.

4.1.1 Jordan-Brans-Dicke and Induced Gravity The-

ory

The simplest and most famous scalar-tensor theory is the Jordan-Brans-

Dicke theory, described by the action (4.1) with V (φ) = 0, F (φ) = φ/(16π)

and Z(φ) = ωBD/(16π) [91, 90]:

S =

∫
d4x
√−g

[
φ

16π
R− ωBD

16πφ
gµν∂µφ∂νφ+ Lm

]
. (4.11)

When the adimensional parameter of the theory tends to large values, i.e.

ωBD → ∞ this model approaches general relativity. Solar System exper-

iments can set high constraints on the value of the parameter ωBD. The

present limit on ωBD is very strong ωBD ≥ 20000 [99]. However,as we will see

cosmological observations could test scalar tensor theories on larger scales,

completely different from the solar system ones [100, 101, 102].

The equations of motions are easily obtained varying the action (4.11)

with respect to the metric and to the Jordan-Brans-Dicke scalar field φ,

giving:

Rµν −
1

2
gµνR = 8πTmµν +

ωBD

φ2

[
∂µφ∂νφ−

1

2
gµν(∂φ)2

]
+

1

φ
(∇µ∇νφ− gµν2φ) ,

(4.12)
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2φ =
φR

2ωBD

− 1

2φ
(∂φ)2, (4.13)

∇µT
µν
m = 0, (4.14)

where the last equation is the conservation law for the energy-momentum

tensor of the usual matter content.

We note that the action (4.11) contains a non-canonical term. Redefining

the coupling to the Ricci scalar and the scalar field as:

ωBD ≡
1

4γ
,

φ

8π
≡ γϕ2, (4.15)

we can cast the action (4.11) into the standard canonical form and we obtain

the action describing the Induced Gravity (IG) theory [103]

S =

∫
d4x
√−g

[
γϕ2

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ) + Lm

]
. (4.16)

General relativity is recovered in this model for γ → 0. The actual constraint

γ is γ ≤ 0.0017 [104]. The IG model is globally scale invariant [105, 106], in

fact the parameter γ is adimensional, and it was introduced to implement the

idea of Einstein gravity as arising from a dynamical symmetry breaking [107].

For a self-interacting potential λϕ4/4 (note that, again, λ is adimensional),

it was shown [108, 109, 110] that this simple IG model has an attractor to

general relativity plus a cosmological constant on breaking scale invariance

as we will see in the next section. The IG theory will be the main model of

interest of the next chapter.

The Friedmann equations for the action (4.16) in conformal time are†:

H2 = a2 (ρm + V )

3γϕ2
+

ϕ′2

6γϕ2
− 2Hϕ′

ϕ
, (4.17)

H′ = − a
2

ϕ2

(
ρm + Pm

2γ
+
ρm − 3Pm
(1 + 6γ)

)
+

a2

(1 + 6γ)ϕ

(
V,ϕ−

4V

ϕ

)
− ϕ′2

2γϕ2
+

4Hϕ′
ϕ

,

(4.18)

†Here the subscript m denotes the usual matter content of the universe. For example:

ρm = ργ + ρν + ρc + ρb.
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where the second term on the right hand side of Eq.(4.18) vanishes for V =

λϕ4/4. Moreover, the Klein-Gordon equation for the scalar field ϕ is:

ϕ′′ = −2Hϕ′ − ϕ′2

ϕ
+

a2

(1 + 6γ)

[
ρm − 3Pm

ϕ
−
(
V,ϕ−

4V

ϕ

)]
(4.19)

and, once again, the last term on the right hand side vanishes for the choice

of the potential given above.

The density and pressure of the scalar field, Eqs.(4.5) and (4.6), take the

form:

ρϕ =
ϕ′2

2a2
+ V − 6γ

Hϕϕ′
a2

, (4.20)

Pϕ =
ϕ′2

2a2
− V + 2γ

ϕϕ′′ + ϕ′2 +Hϕϕ′
a2

. (4.21)

4.1.2 Non-Minimal Coupling

Another model of scalar-tensor theory that we will investigate in the

appendix is the Non-Minimally Coupled model [111] where

F (ϕ) = N2
pl + ξϕ2. (4.22)

This model reduces to Einstein gravity when ξ = 0 and N2
pl = M2

pl =

2.44 · 1018GeV, whereas it reduces to IG for N2
pl = 0. Usually the first

term in Eq.(4.22) is taken to be dominant over the second, as required from

observations ξ ≤ 5 · 10−3(
√
GNϕ0)−1 [111].

4.1.3 Effective Newtonian Constant

As we mentioned before, the original idea that led to the first JBD model

was that of a time-varying gravitational constant. We saw in the previous

sections, that scalar tensor-theories achieve naturally such a requirement,

however the gravitational ’constant’ that we defined as GN is that only for

the tensor part of the gravitational force. The presence of the scalar field

creates an additional gravitational force on long range, scales ≤ H−1
0 [112],
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and thus, the gravitational constant measured in any phisical situations in-

cludes the contribution from the scalar field as well. We call this measurable

gravitational constant Geff.

To find its expression for the IG model, we should derive the Newtonian

limit of the field equations (4.17), (4.18) and (4.19) for the metric and scalar

field. This is usually called the weak field limit [113] and consists in ex-

panding the Einstein and Klein-Gordon equations at first order around the

flat Minkowski metric and a constant value v for the scalar field ϕ with the

dimension of a mass. The latter should be interpreted as a ’vacuum expecta-

tion value’ in quantum field theory. Thus we should expand the scalar field

and the metric as

ϕ(x, τ) = v + δϕ(x, τ), (4.23)

gµν = ηµν + hµν , (4.24)

and write Eqs.(4.17), (4.18) and (4.19) at first order in hµν and δϕ and solve

these equations for the latter variables. We do not show the calculations,

since they are rather long and they can be found in standard textbooks

(see for example [5, 96]). What interests us is that, once we have found

the solution, we can compare the 0-0 component of the metric perturbation

h00, which can be interpreted as the Newtonian gravitational potential [7],

with the 0-0 component of the weak field limit of the Schwartzschild solution

[114, 115]. The result is that the effective Geff, that regulates the attraction

between two test masses, in the IG model, is given by [110]:

Geff(ϕ) = GN(ϕ)
1 + 8γ

1 + 6γ
. (4.25)

Current experiments constrain the variation rate of the gravitational constant

ĠN/GN to be ≤ 10−11 yr−1 [116].
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4.2 Accelerated Universe from the IG The-

ory

The aim of this section is to show how a simple model of Induced Gravity

can lead to the acceleration of the Universe. However, differently from the

quintessence model, in which the minimally coupled scalar field is actually

the dark energy component, in scalar-tensor theories things are more com-

plicated. In fact, in these models, the acceleration is due to the non-trivial

interaction of the scalar field with gravity and we must be careful to find a

meaningful definition of the dark energy density and pressure [117]. Thus,

in order to compare scalar-tensor theories with Einstein gravity quintessence

models, following [97, 110], we define the dark energy density and pressure

as

ρDE =
3γϕ2

0H2

a2
− ρm, (4.26)

ρDE + PDE = −2γϕ2
0H′
a2

− (ρm + Pm) (4.27)

and the relative densities for the fluids as

Ωm =
a2ρm

3H2γϕ2
0

, (4.28)

ΩDE =
a2ρDE

3H2γϕ2
0

, (4.29)

where Ωm + ΩDE = 1. These definitions follow from the representation of

the scalar-tensor field equations (4.2) in an Einstein gravity form with the

Newtonian constant G0 ≡ GN(τ0):

Gµν = 8πG0(Tmµν + TDE
µν ). (4.30)

With these definitions, the usual conservation law for the dark energy density

applies:

ρ′DE = −3H(ρDE + PDE). (4.31)

Thus we can define the equation of state parameter wDE = PDE/ρDE exactly
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Figure 4.1: Evolution of the equation of state parameter wDE for the IG

model with V = λϕ4/4 for three different values of γ. In this plot N = ln a.

Figure taken from [110].

as we did in Sec.3.4 for the quintessence model. From Eq.(4.31), the time

evolution of the dark energy sector is given by [97]:

ρDE(z)

ρDE,0

= exp

[
3

∫ z

0

dz′
1 + w(z′)

1 + z′

]
. (4.32)

A numerical calculation for the evolution of the equation of state parameter

has been done in Ref.[110]; it is represented in Fig.4.1 for different values

of the coupling γ. We can see from Fig.4.1 that in the IG model wDE has

a behaviour similair to that of the quintessence studied in Sec.1.8.2 and

follows the dominant component: it has a value of wDE ' 1
3

during the

radiation dominated era and it tends to decrease toward zero during the

matter domination. Finally at present epoch it becomes negative wDE ' −1

and thus, as we argued, the scalar-tensor theory mimics the presence of a

dark energy component.
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4.3 The Parameterized Post-Newtonian (PPN)

Approximation

The Post-Newtonian approximation is a method to compare general rel-

ativity to generic theories in which the metric has the same physical inter-

pretation as in general relativity. This method was first developed to study

the deviations to the static and isotropic Schwartzschild solution due to the

planet gravitational fields in the solar system, in fact this method is adapted

to a system of slowly moving particles [118]. The idea is to create a con-

struction that encompasses a wide range of gravitational theories and that

contains parameters that can easily be constrained by observations, for ex-

ample by solar system experiments, in a reasonably straightforward fashion

[119]. In this way on one hand observations can constrain these parameters

independently from any theory and, on the other, the theorists can test each

theory by comparing its precitions to the derived bounds on these parame-

ters. In the limit of slow motion and weak field most metrics have the same

structure and can be expanded on top of the Minkowski flat metric ηµν in a

perturbative way. For this purpose we need to define the perturbative orders

as follows

U ∼ v2 ∼ P

µ
∼ ρ

µ
∼ O(2), (4.33)

|∂/∂t|
|∂/∂x| ∼ O(1), (4.34)

where µ is the rest-mass densit of the fluid element, v its 3-velocity and U is

the Newtonian potential. In the post-Newtonian limit for time-like particles,

the metric components are required to be known at orders [93]:

g00 ∼ O(4), (4.35)

g0i ∼ O(3), (4.36)

gij ∼ O(2). (4.37)

The procedure is the following:
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• one identifies the fields in the theory and expand them around their

background values counting the perturbation orders with the help of

Eqs. (4.33) and (4.34). The appropriate expansions for the metric and

for the hypothetical scalar field are

g00 = −1 + h
(2)
00 + h

(4)
00 +O(6), (4.38)

g0i = h
(3)
0i +O(5), (4.39)

gij = δij + h
(2)
ij +O(4), (4.40)

φ = φ0 + φ(2) + φ(4) +O(6). (4.41)

• One substitutes the above expressions into the field equations and solve

the leading order for h
(2)
00 and then for all the higher perturbations.

• One compares the results with the standard PPN test metric [119, 93]:

g00 = −1+2GU−2βG2U2−2ξG2ΦW+(2γPPN+2+α3+β1+2ξ)GΦ1+,

+ 2(1 + 3γPPN − 2β + β2 + ξ)G2Φ2 + 2(1 + β3)GΦ3 − (β1 − 2ξ)GA+

+ 2(3γPPN + 3β4 − 2ξ)GΦ4, (4.42)

g0i = −1

2
(3 + 4γPPN +α1−α2 + β1− 2ξ)GVi−

GWi

2
(1 +α2− β1 + 2ξ),

(4.43)

gij = (1 + 2γPPNGU)δij. (4.44)

The parameters denoted with the greek letters β, ξ, γPPN and α are the

PPN parameters, whereas the greek letters Φ and A, Vi and Wi denote

the post-Newtonian gravitational potentials.

For general relativity we have β = γPPN = 1, all the others parameters

being zero, whereas in the JBD theory the only that differs from general

relativity is [120]:

γPPN =
1 + ωBD

2 + ωBD

=
1 + 4γ

1 + 8γ
. (4.45)

The tightest constraint on γPPN comes from the Doppler tracking of the

Cassini spacecraft, that gives γPPN = 1− (2.1± 2.3) · 10−5 [99].
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4.4 Conformal Transformations

A conformal transformation transforms a metric gµν into another metric

g∗µν according to the rule [121]:

g∗µν = Ω2(x)gµν , (4.46)

where Ω(x) is an arbitrary function of space time coordinate x and we wrote

the transformations using its square value in order to keep the sign of ds2

unchanged. In fact, under the transformation (4.46), the line element trans-

forms as:

ds2
∗ = Ω2(x)ds2, (4.47)

and thus it changes the physical distances. However, since this is done with-

out specifying any direction, the distances change isotropically. Since the

distances we are considering are distances in space and time, this means that

changes in spatial distance and in time interval should occur at the same rate.

The limit in which the function Ω(x) = const is just a scale transformation,

in this sense a conformal transformation may be view as a localized scale

transformation. When we apply the transformation (4.46), we say that we

are moving from one conformal frame to another. In doing so, the transfor-

mation on the metric lead to the following transformations for the quantities

related to it [96]:

gµν = Ω2gµν∗ , (4.48)
√−g = Ω−4

√−g∗, (4.49)

Γµνλ = Γµ∗νλ − (f,ν δ
µ
λ + f,λ δ

µ
ν − g̃µσf,σ g∗νλ), (4.50)

R = Ω2(R∗ + 62∗f − 6gµν∗ f,µ f,ν ), (4.51)

where f ≡ ln Ω. The conformal frame in which the matter Lagrangian Lm
does not contain the scalar field non-minimally coupled to gravity is called

Jordan frame. Starting from the Jordan frame of scalar-tensor action with a

generic coupling to gravity F (ϕ), we can apply a conformal transformation
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with Ω = F 1/2 and redefine the new scalar field as

ϕ∗ =

∫
dϕ

[
3

2

(
1

F

dF

dϕ

)2

+
Z

F

]1/2

, (4.52)

in order to recast the original action into a new action in which the new

scalar field is minimally coupled to the new Ricci scalar

S∗ =

∫
d4x
√
g∗

[
1

2
R∗ −

1

2
gµν∗ ∂µϕ∗∂νϕ∗ + L∗m

]
. (4.53)

In this frame, which is called the Einstein frame, the field equations has the

simpler form of the usual Einstein equations and thus it is easier to solve

them. However in this frame the matter Lagrangian is coupled to the scalar

field and thus the weak equivalence principle is violated and test matter

particles do not follow geodesic trajectories. The question of which between

these two frames is the physical one is still open [122, 123]. In the next

sections, we will consider the equations in the Jordan frame, since it is there

that we can use the Boltzmann equations in the form given in Sec.2.3.

4.5 IG Background Evolution Deep in the Ra-

diation Era

In the next chapter we will compute the initial conditions for the cos-

mological perturbations in the IG model, so it is important to study the

background evolution on top of which these perturbations will be computed.

As we noticed in Sec.2.5, the initial conditions must be computed deep in

the radiation era and after neutrino decoupling. The Hubble parameter for

general relativity is H ∼ 1/τ in that era, so we expand it in Laurent series

starting from a simple pole in τ = 0 to find its expression in the IG model.

For the same reason we expand also the scale factor a and the scalar field ϕ

in a Taylor series around τ = 0. Inserting these expansions in the Friedmann

equations (4.17) and (4.18) and in the Klein-Gordon equations (4.19), we
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find the following expressions for the background quantities:

a(τ) =

√
ρrad0

3γϕ2
i

[
τ +

ω

4
τ 2 − 5ω2γ

16
τ 3

]
, (4.54)

H(τ) = =

[
1

τ
+
ω

4
− ω2(1 + 16γ + 60γ2)

16(1 + 6γ)
τ

]
, (4.55)

ϕ(τ) = ϕi

(
1 +

3γω

2
τ − γω2(2 + 21γ + 54γ2)

8(1 + 6γ)
τ 2

)
, (4.56)

where

ω ≡ ρmat0√
3γρrad0(1 + 6γ)ϕi

, (4.57)

ρrad0 and ρmat0 are the densities of radiation and matter at the present time

and ϕi is the initial value of the scalar field.

4.6 Equations for Cosmological Perturbations

in Scalar-Tensor Models

In this section we give the expressions for the perturbed field equations in

both the Induced Gravity and the Non-Minimally Coupling models. For later

convenience, we give them in the synchronous gauge (2.26) and conformal

time, since in the next chapter we will use this gauge. However, the perturbed

equations in the Newtonian gauge are given in Appendix A.

The cosmological perturbation theory in generalized Einstein gravity the-

ory has been firstly considered in Ref.[124]. The procedure is the same that

we saw in Secs.2.2 and 3.4. Since in the Jordan frame the energy-momentum

tensor of all the species in the Universe are separately conserved, the den-

sity contrasts, the velocities and the anisotropic stresses of baryonic mat-

ter, CDM, radiation and neutrinos are the same as in general relativity and

thus we will use for them the Boltzmann equations of Sec.2.3 and the tight-

coupling approximation (2.75). For this reason we need only to find the

perturbed field equations for the metric and for the scalar field ϕ and we

thus split it into the sum of a background space-independent part and a
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perturbation

ϕ(x, τ) = ϕ̄(τ) + δϕ(x, τ). (4.58)

Although this convention, in the following equations we will use just ϕ in

place of ϕ̄ to not weigh down the notation. The equations for the Induced

Gravity model can be recasted in a simple way, similair to the Einstein

equations in general relativity if we define the total density perturbation

δρ̃, the total pressure perturbation δP̃ , the total velocity θ̃ and the total

anisotropic stress σ̃ as:

δρ̃ ≡ δρm
γϕ2

+
h′ϕ′

a2ϕ
− 2

a2

{
δϕ′

ϕ

(
H− ϕ′

2γϕ

)
+

+
δϕ

ϕ

[
a2ρm
γϕ2

+
ϕ′2

2γϕ2
+
a2

γϕ

(
V

ϕ
− V,ϕ

2

)
− 3Hϕ′

ϕ
+ k2

]}
, (4.59)

(ρ̃+ P̃ )θ̃ ≡ (ρm + Pm)θm
γϕ2

+
2k2

a2

{
δϕ

ϕ

[
ϕ′

2γϕ
(1 + 2γ)−H

]
+
δϕ′

ϕ

}
, (4.60)

δP̃ ≡ 1

(1 + 6γ)ϕ2

(
2δρm +

δPm
γ

)
− 1

3a2

{
3δϕ′

ϕ

(
2H− ϕ′

γϕ

)
+

+
δϕ

ϕ

[
6a2Pm
γϕ2

+
12a2(ρm − 3Pm)

(1 + 6γ)ϕ2
+

3ϕ′

ϕ

(
ϕ′

γϕ
− 2H

)
+ 2k2+

+
6a2

(1 + 6γ)

(
V,ϕϕ +

V,ϕ
2γϕ

(1− 4γ)− V

γϕ2
(1− 2γ)

)]
+
h′ϕ′

ϕ

}
, (4.61)

(ρ̃+ P̃ )σ̃ ≡ (ρm + Pm)σm
γϕ2

+
1

3a2

[
4k2δϕ

ϕ
+ 2(h′ + 6η′)

ϕ′

ϕ

]
. (4.62)

The perturbed Einstein equations then become:

k2η − 1

2
Hh′ = −a

2δρ̃

2
, (4.63)

k2η′ =
a2(ρ̃+ P̃ )θ̃

2
, (4.64)

h′′ + 2Hh′ − 2k2η = −3a2δP̃ , (4.65)

(h′′ + 6η′′) + 2H(h′ + 6η′)− 2k2η = −3a2(ρ̃+ P̃ )σ̃. (4.66)



94 4. Scalar-Tensor Theories of Gravity

The perturbed Klein-Gordon equation becomes:

δϕ′′ = −2δϕ′
(
H +

ϕ′

ϕ

)
− δϕ

[
k2 − ϕ′2

ϕ2
+
a2(ρm − 3Pm)

(1 + 6γ)ϕ2
+

+
a2

(1 + 6γ)

(
V,ϕϕ +

4V

ϕ2
− 4V,ϕ

ϕ

)
+
a2(δρm − 3δPm)

(1 + 6γ)ϕ
− h′ϕ′

2

]
. (4.67)



Chapter 5

Initial Conditions for

Cosmological Perturbations in

Induced Gravity

In this chapter we derive the initial conditions for cosmological pertur-

bations for the IG theory studied in Sec.4.1.1 in which F (ϕ) = γϕ2. These

extend the well known initial conditions in Einstein GR [38] seen in Sec.3.1 to

this gravity model. However, as we will show in Appendix B, these initial con-

ditions are not specific to a particular model of scalar-tensor theories; rather

they can be easily extended to the more general case of the Non-Minimally

Coupled model of Sec.4.1.2. As we will see, the well known adiabatic and

isocurvature modes still exist and are modified by the presence of the scalar

field, but they still mantain the main properties that they have in Einstein

GR and they reduce to the usual initial conditions in the limit γ → 0. How-

ever, the presence to the scalar field lead to a new isocurvature mode that

has no counterpart in general relativity, since the non-trivial coupling F (ϕ)

makes the limit γ → 0 for this mode rather peculiar.

Next, we compute the CMB angular power spectrum of these pure isocur-

vature modes with the help of a modified version of the CLASS code [125]

for the IG model [126, 127, 104] to study the differences with general relativ-

95
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ity which arise from these initial conditions. In addition to the temperature

power spectrum we give the E modes polarization and lensing power spec-

trum and the crosscorrelation between temperature and E modes.

Finally, using the formalism of Sec.3.3 we show how a correlation be-

tween the adiabatic and these IG isocurvature modes can be an alternative

to the quintessence perturbations mentioned in Sec.3.4 in lowering the CMB

temperature angular power spectrum at low multipoles l.

5.1 Adiabatic and Isocurvature Initial Con-

ditions

We give here the results for the solutions of the coupled set of the syn-

chronous gauge Einstein, Boltzmann and Klein-Gordon equations of Sec.2.3

and 4.6. Following [30, 38], we expand these equations in Laurent series for

τ → 0 and match the orders in τ to find the leading orders in kτ ∗ of the

Taylor series for the perturbations. The description of these modes is given

in the synchronous gauge and conformal time as already mentioned. How-

ever, we give for each of these modes the results for the comoving curvature

perturbation R (2.100), for the Newtonian potentials Φ and Ψ (2.39) and for

the scalar field perturbation in the Newtonian gauge:

δϕI = δϕ+
1

2k2
ϕ′(h′ + 6η′), (5.1)

where δϕ is simply the perturbation in the synchronous gauge, and the sub-

script I means that δϕI is gauge-invariant, as can be easily checked using

the metric transformations (2.14).

In the following we fix the residual gauge freedom of the synchronous

gauge to the CDM rest frame with θc = 0 and we use the tight-coupling

approximation (2.75) assuming θγ = θb.

∗From here now we will write ’leading order’ for the more complete expression ’leading

orders in kτ ’.
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As we will see all of these modes are independent on the choice of the

potential V (ϕ), provided that we consider only positive power law potentials.

This means that the following analysis does not hold for tracking models of

quintessence as Ratra-Peebles [23].

Adiabatic Mode

The adiabatic mode is given by:

δγ =− 2

3
Ck2τ 2 +

2

15
Ck2τ 3ω, (5.2)

θγ =− 1

36
Ck4τ 3 +

Cω(5(1 + 6γ)Rb −Rν + 1)

240(1−Rν)
k4τ 4, (5.3)

δb =− 1

2
Ck2τ 2 +

1

10
Ck2τ 3ω, (5.4)

δc =− 1

2
Ck2τ 2 +

1

10
Ck2τ 3ω, (5.5)

δν =− 2

3
Ck2τ 2 +

2

15
Ck2τ 3ω, (5.6)

θν =− C(4Rν + 23)

18(4Rν + 15)
k4τ 3 +

Cω (8R2
ν + 60γ(5− 4Rν) + 50Rν + 275)

120(2Rν + 15)(4Rν + 15)
k4τ 4,

(5.7)

σν =
4C

3(4Rν + 15)
k2τ 2 +

C(1 + 6γ)(4Rν − 5)ω

3(4Rν + 15)(2Rν + 15)
k2τ 3, (5.8)

F3 =
8C

21(4Rν + 15)
k3τ 3 +

5C(1 + 6γ)(4Rν − 5)ω

2(2Rν + 15)(4Rν + 15)
k3τ 4, (5.9)

h =Ck2τ 2 − 1

5
Cωk2τ 3, (5.10)

η =2C − C(4Rν + 5)

6(4Rν + 15)
k2τ 2 +

Cω(−750γ + 8Rν(75γ + 2Rν + 35) + 325)

60(2Rν + 15)(4Rν + 15)
k2τ 3,

(5.11)

δϕ =− 1

4
γCωϕik

2τ 3 +
1

40
(4 + 15γ)γCω2ϕik

2τ 4, (5.12)

where ω is given by Eq.(4.57) and the constant C is an overall normalization

constant, in analogy to that mentioned for the Einstein GR adiabatic mode

(2.89). This constant multiply each Fourier mode and encodes the primordial

power spectrum. The following results are given up to this time-independent
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constant. Since the contribution of the scalar field is very subdominant with

respect to the leading orders of the other perturbations, we expect this mode

to behave similarly to its counterpart (2.89) in general relativity.

The background evolution of the homogeneus field ϕ reveals itself in the

amplitude of the perturbations, which contains the initial value of the scalar

field ϕi. Since this value is very low, we expect the scalar field to rise only

slight differences with respect to the original adiabatic mode. The comoving

curvature perturbation, the gravitational potentials and the gauge-invariant

perturbation to the scalar field are given by:

R =− 2C +
5Cω

2(4Rν + 15)
τ, (5.13)

Ψ =
4C(2Rν + 5)

4Rν + 15
− 5Cω(−90γ + 8(9γ + 2)Rν + 15)

4(2Rν + 15)(4Rν + 15)
τ, (5.14)

Φ =
20C

4Rν + 15
+

5Cω(8(27γ + 5)Rν − 15(18γ + 1))

4(2Rν + 15)(4Rν + 15)
τ, (5.15)

δϕI =− 15γCωϕi
4Rν + 15

τ. (5.16)

We see from these equations that at leading orders they are simply the results

of [30].

Baryon Isocurvature Mode (BI)

In addition to the growing adiabatic mode, we have five isocurvature

modes. We thus start giving the four modes which may be interpreted as an

extension of the well-known isocurvature modes in Einstein general relativity

[38] and we give an expression for the new one arising in scalar-tensor theories

of dark energy.

The first one is the baryon isocurvature mode (BI):

δγ = −2Rb

3
τω+

(15γ + 2)Rb

8
τ 2ω2+

k2Rb

108
τ 3ω

(
4+

(16k2 − 9(324γ2 + 82γ + 5)ω2

5k2

)
,

(5.17)
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θγ = − 1

12
k2Rbτ

2ω +
1

96
k2Rbτ

3ω

(
(15γ + 2)ω +

6(6γ + 1)Rbω

Rγ

)

+k3τ 4
Rbω(8k2R2

γ − ω2(90(1 + 6γ)2R2
b + 225γ(6γ + 1)RbRγ + 2(324γ2 + 82γ + 5)R2

γ))

1920R2
γ

,

(5.18)

δc = −Rb

2
τω +

3

32
(15γ + 2)Rbτ

2ω2 +
Rbω

720
τ 3(16k2 − 9(324γ2 + 82γ + 5)ω2),

(5.19)

δb = 1− Rb

2
τω+

3

32
(15γ+ 2)Rbτ

2ω2 +
k2Rbω

80
τ 3

(
4− (324γ2 + 82γ + 5)ω2

k2

)
,

(5.20)

δν = −2Rb

3
τω+

1

8
(15γ+2)Rbτ

2ω2+
Rbω

60
τ 3(4k2−(324γ2+82γ+5)ω2), (5.21)

θν = − 1

12
k2Rbτ

2ω +
1

96
(15γ + 2)k2Rbτ

3ω2

+
1

240
k4Rbτ

4ω

(
60γ + 2Rν + 25

2Rν + 15
− (324γ2 + 82γ + 5)ω2

4k2

)
, (5.22)

σν = −(1 + 6γ)k2Rbτ
3ω

6(2Rν + 15)
(5.23)

F3 = −(1 + 6γ)k3Rbτ
4ω

7(2Rν + 15)
, (5.24)

h = Rbτω−
3Rbω

2

16
(15γ+2)τ 2 +

Rbω

360
τ 3(9(324γ2 +82γ+5)ω2−16k2), (5.25)

η = −Rbτω

6
+

1

32
(15γ + 2)Rbτ

2ω2 +
Rbτ

3ω(−(324γ2 + 82γ + 5)ω2)

240

+
Rbτ

3ω(2k2(−150γ + 4Rν + 5))

240(2Rν + 15)
, (5.26)
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δϕ =
3

2
γRbτωϕi−

1

8
γ(18γ+5)Rbτ

2ω2ϕi+
1

48
γRbτ

3ωϕi((27γ(9γ+4)+11)ω2−6k2)

−γRbτ
4ω2ϕi(3(γ(1296γ(23γ + 13) + 3127) + 184)ω2 − 8k2(180γ + 4Rb + 47))

7680
.

(5.27)

The leading order results for the other perturbations of interest are:

R =
1

4
Rbτω, (5.28)

Ψ = −Rbτω(−90γ + 4Rν + 15)

8(2Rν + 15)
, (5.29)

Φ =
Rbτω(−270γ + 4Rν − 15)

8(2Rν + 15)
, (5.30)

δϕI =
3

2
γRbτωϕi, (5.31)

which have essentially the same behavior of the corresponding quantities

found in [38] and reduce to them in the limit γ → 0. However differently from

the adiabatic mode, for this isocurvature mode the gravitational potentials

Φ and Ψ have an explicit dependence on the coupling parameter γ right at

the leading order, in addition to the implict dependence on it encoded in ω.

CDM Isocurvature Mode (CDI)

In general relativity the CDM isocurvature mode (CDI) is basically the

same of the BI, with the substitution Rb → Rc, with the only difference that

now the only relative entropy perturbation that differs from zero is Sγc and

thus the perturbation δc to the CDM density has a leading constant term,

while the leading term for δb goes as ∼ τ . As mentioned in chapter 3, this

leads to the same imprints on the CMB angular power spectrum and, for this

reason, usually the spectrum is computed for an effective mode given by the

sum of the BI and CDI. However, since they are two independent modes we

give here the perturbations for both the two modes. Furthermore, since the

non-minimal coupling lead to non-trivial additional terms in the perturbed

equations, it is interesting to investigate whether the extensions of these two
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modes mantain the same structure, or acquire significant differences due to

the presence of the scalar field.

The CDI mode for the IG model is given by:

δγ = −2Rb

3
τω+

(15γ + 2)Rb

8
τ 2ω2+

k2Rb

108
τ 3ω

(
4+

(16k2 − 9(324γ2 + 82γ + 5)ω2

5k2

)
,

(5.32)

θγ = − 1

12
k2Rcτ

2ω +
1

96
k2Rcτ

3ω

(
(15γ + 2)ω +

6(6γ + 1)Rbω

Rγ

)

+k3τ 4
Rcω(8k2R2

γ − ω2(90(1 + 6γ)2R2
b + 225γ(6γ + 1)RbRγ + 2(324γ2 + 82γ + 5)R2

γ))

1920R2
γ

,

(5.33)

δc = 1− Rc

2
τω+

3

32
(15γ + 2)Rcτ

2ω2 +
Rcω

720
τ 3(16k2− 9(324γ2 + 82γ + 5)ω2),

(5.34)

δb = −Rc

2
τω +

3

32
(15γ + 2)Rcτ

2ω2 +
k2Rcω

80
τ 3

(
4− (324γ2 + 82γ + 5)ω2

k2

)
,

(5.35)

δν = −2Rc

3
τω+

1

8
(15γ+2)Rcτ

2ω2+
Rcω

60
τ 3(4k2−(324γ2+82γ+5)ω2), (5.36)

θν = − 1

12
k2Rcτ

2ω +
1

96
(15γ + 2)k2Rcτ

3ω2

+
1

240
k4Rcτ

4ω

(
60γ + 2Rν + 25

2Rν + 15
− (324γ2 + 82γ + 5)ω2

4k2

)
, (5.37)

σν = −(1 + 6γ)k2Rcτ
3ω

6(2Rν + 15)
(5.38)

F3 = −(1 + 6γ)k3Rcτ
4ω

7(2Rν + 15)
, (5.39)
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h = Rcτω−
3Rcω

2

16
(15γ+2)τ 2 +

Rcω

360
τ 3(9(324γ2 +82γ+5)ω2−16k2), (5.40)

η = −Rcτω

6
+

1

32
(15γ + 2)Rcτ

2ω2 +
Rcτ

3ω(−(324γ2 + 82γ + 5)ω2)

240

+
Rcτ

3ω(2k2(−150γ + 4Rν + 5))

240(2Rν + 15)
, (5.41)

δϕ =
3

2
γRcτωϕi−

1

8
γ(18γ+5)Rcτ

2ω2ϕi+
1

48
γRcτ

3ωϕi((27γ(9γ+4)+11)ω2−6k2)

−γRcτ
4ω2ϕi(3(γ(1296γ(23γ + 13) + 3127) + 184)ω2 − 8k2(180γ + 4Rb + 47))

7680
.

(5.42)

As we can see, apart from the substitution Rb → Rc that leads to greater

amplitude for this mode, the structure of the perturbations is the same as

in the BI mode previously seen. In appendix B, we will show that this is a

more general feature shared also by Non-Minimal Coupled models.

As in the BI mode, the comoving curvature perturbation, the Newtonian

potentials and the gauge-invariant perturbation to the scalar field have the

following behaviour:

R =
1

4
Rcτω, (5.43)

Ψ = −Rcτω(−90γ + 4Rν + 15)

8(2Rν + 15)
, (5.44)

Φ =
Rcτω(−270γ + 4Rν − 15)

8(2Rν + 15)
, (5.45)

δϕI =
3

2
γRcτωϕi. (5.46)

Neutrino Density Mode (NID)

The neutrino density mode (NID) is given by:

δγ = −Rν

Rγ

+
k2Rντ

2

6Rγ

− k2RbRντ
3ω

12Rγ

(
1 + 6γ

Rγ

+
1

5

)
, (5.47)
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θγ = −k
2Rντ

4Rγ

+
3(1 + 6γ)k2RbRντ

2ω

16R2
γ

+
k3Rντ

3

8Rγ

(
k

9
− 3(1 + 6γ)Rbω

2(3(1 + 6γ)Rb −Rγ)

8kR2
γ

)
, (5.48)

δb =
k2Rντ

2

8Rγ

− k2RbRντ
3ω

16Rγ

(
1 + 6γ

Rγ

+
1

5

)
, (5.49)

δc = −k
2RbRντ

3ω

80Rγ

+ k4τ 4 Rν

72(4Rν + 15)

+ k4τ 4

(
RbRνω

2(2(1 + 6γ)Rb + (17γ + 2)Rγ)

512k2R2
γ

)
, (5.50)

δν = 1− k2τ 2

6
− k2RbRντ

3ω

60Rγ

, (5.51)

θν =
k2τ

4
, (5.52)

σν =
2(1 + 6γ)k2Rντ

3ω

3(2Rν + 15)(4Rν + 15)
+

k2τ 2

2(4Rν + 15)
, (5.53)

F3 =
(1 + 6γ)k3Rντ

4ω

7(2Rν + 15)(4Rν + 15)
+

k3τ 3

7(4Rν + 15)
, (5.54)

h =
k2RbRντ

3ω

40Rγ

+
Rν

36(4Rν + 15)
k4τ 4

−
(
RbRνω

2(2(1 + 6γ)Rb + (17γ + 2)Rγ)

256k2R2
γ

)
k4τ 4, (5.55)

η = − Rνk
2τ 2

6(4Rν + 15)
+
Rν

6
k2τ 3ω

(
5(1 + 6γ)

(2Rν + 15)(4Rν + 15)
− Rb

40Rγ

)
,(5.56)

δϕ =
γk2RbRντ

3ωϕi
32Rγ

− 3γk2RbRντ
4ω2ϕi

64Rγ

(
(1 + 4γ)

4
+

(1 + 6γ)Rb

5Rγ

)
.(5.57)
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The comoving curvature perturbation, the Newtonian potentials and the

gauge-invariant perturbation to the scalar field are given by:

R = − Rντω

4(4Rν + 15)
, (5.58)

Ψ =
Rν

4Rν + 15
+
τω(2R2

ν − 180γRν − 15Rν)

4(2Rν + 15)(4Rν + 15)
, (5.59)

Φ = − 2Rν

4Rν + 15
− τω(2R2

ν − 540γRν − 75Rν)

4(2Rν + 15)(4Rν + 15)
, (5.60)

δϕI = − 3γRντωϕi
2(4Rν + 15)

. (5.61)

Their behaviour is the same as in the usual NID in general relativity where

Φ = −2Ψ [38, 34]. It is also interesting to note that at leading order they,

as well as the comoving curvature perturbation that vanishes since it is an

isocurvature mode, are completely independent on the IG model and dif-

ferently from the previous isocurvature modes their leading order value is

exactly the same as in general relativity.

Neutrino Velocity Mode (NIV)

The last mode, which has a counterpart in general relativity, is the neu-

trino velocity mode (NID). The mode is given by:

δγ =
4Rν

3Rγ

kτ − RbRνω(12γ +Rγ + 2)

4R2
γ

kτ 2, (5.62)

θγ = −kRν

Rγ

+
3(1 + 6γ)RbRνω

4R2
γ

kτ

+
Rν(8k

2R2
γ − 9(1 + 6γ)Rbω

2(3(1 + 6γ)Rb −Rγ))

48R3
γ

kτ 2, (5.63)
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δb =
Rν

Rγ

kτ − 3RbRνω(12γ +Rγ + 2)

16R2
γ

kτ 2, (5.64)

δc = −3RbRνω

16Rγ

kτ 2, (5.65)

δν = −4

3
kτ − RbRνω

4Rγ

kτ 2, (5.66)

θν = k − (4Rν + 9)

6(4Rν + 5)
k3τ 2, (5.67)

σν =
4

3(4Rν + 5)
kτ +

4(1 + 6γ)Rνω

(4Rν + 5)(4Rν + 15)
kτ 2, (5.68)

F3 =
4

7(4Rν + 5)
k2τ 2, (5.69)

h =
3RbRνω

8Rγ

kτ 2, (5.70)

η = − 4Rν

3(4Rν + 5)
kτ − Rνω(Rb(4Rν + 5)(4Rν + 15)− 80(1 + 6γ)Rγ)

16Rγ(4Rν + 5)(4Rν + 15)
kτ 2,(5.71)

δϕ =
γRbRνωϕi

2Rγ

kτ 2 − γRbRνω
2ϕi(9(1 + 6γ)Rb + (72γ + 19)Rγ)

96R2
γ

kτ 3.(5.72)

The comoving curvature perturbation, the Newtonian potentials and the

gauge-invariant perturbation to the scalar field at leading order are:

R = − Rνω

k(4Rν + 5)
, (5.73)

Ψ =
4Rν

k(4Rν + 5)τ
, (5.74)

Φ = − 4Rν

k(4Rν + 5)τ
, (5.75)

δϕI =
6γRνωϕi
k(4Rν + 5)

. (5.76)

Note that, as in the NID mode, the Newtonian potentials Ψ and Φ, at most

at the leading order, are exactly the same as in general relativity and also in

this case have a singular behaviour in the synchronous gauge. Finally, it is

interesting to note that the gauge-invariant perturbation to the scalar field

is constant at leading order.
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Scalar Field-Radiation Isocurvature Mode (RAD)

As already mentioned, the previous isocurvature modes that we have

found solving the perturbed equations in IG are the extensions to the IG

model of the well known isocurvature modes found in Einstein GR [38].

However, since in scalar-tensor theories an additional component takes part

to the Universe evolution, i.e. the scalar field ϕ, we expect that this rise a

new isocurvature mode [79, 47, 49].

Since this is entirely due to the presence of the scalar field it has no

analogous with the isocurvature modes for the standard ΛCDM model. One

might argue that this mode can be view as an extension of some quintessence

isocurvature perturbation in the limit γ → 0, since also in that case the

quintessence field could rise new isocurvature mode [47] in addition to the

standard ones from Ref.[38]. However, as we will see, this mode has not a

finite limit for γ → 0 as the previous ones, since it is strictly peculiar of

the IG and Non-Minimally Coupled theories. For this reason this mode is

peculiar of the IG theory. The perturbations are given by:

δγ = −1− 2

3
ωτ +

1

6
ω

(
3(15γ + 2)ω

4k
+
k

ω

)
kτ 2

+
ω (−2k2(3Rb(30γ +Rγ + 5)− 20Rγ)− 3(3γ(3γ(36γ + 85) + 58) + 10)Rγω

2)

360Rγ

τ 3,

(5.77)

θγ = −1

4
k2τ +

1

48
ω

(
9(1 + 6γ)kRb

Rγ

− 4k

)
kτ 2

+
ω
(
8k2R2

γ + 3ω2
(
−27(6γRb +Rb)

2 + 21Rb(6γRγ +Rγ) + 2(15γ + 2)R2
γ

))

576R2
γω

k2τ 3,

(5.78)

δb = −ω
2
τ +

1

8
ω

(
3(15γ + 2)ω

4k
+
k

ω

)
kτ 2

+
ω (2k2(3Rb(−30γ +Rν − 6) + 20Rγ)− 3(3γ(3γ(36γ + 85) + 58) + 10)Rγω

2)

480Rγ

τ 3,

(5.79)
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δc = −1

2
ωτ +

3

32
(15γ + 2)ω2τ 2

+
(k2(80− 18Rb)− 9(3γ(3γ(36γ + 85) + 58) + 10)ω2)

1440
ωτ 3, (5.80)

δν = −1− 2ω

3
τ +

ω (3(15γ + 2)ω2 + 4k2)

24ω
τ 2

+
1

360

(
k2(40− 6Rb)− 3(3γ(3γ(36γ + 85) + 58) + 10)ω2

)
ωτ 3, (5.81)

θν = −1

4
k2τ − 1

12
ωk2τ 2

+
(4k2(4Rν + 11) + 3(15γ + 2)(4Rν + 15)ω2)

288(4Rν + 15)
k2τ 3, (5.82)

σν =
1

6(4Rν + 15)
k2τ 2 − 2ω(1 + 6γ)(Rν + 5)

3(2Rν + 15)(4Rν + 15)
k2τ 3, (5.83)

F3 =
1

21(4Rν + 15)
k3τ 3 − ω(1 + 6γ)(Rν + 5)

7(2Rν + 15)(4Rν + 15)
k3τ 4, (5.84)

h = ωτ − 3

16
(15γ + 2)ω2τ 2

+
1

720

(
9(3γ(3γ(36γ + 85) + 58) + 10)ω2 + 2k2(9Rb − 40)

)
ωτ 3, (5.85)

η = −ω
6
τ +

(16k2(Rν + 5) + 3(15γ + 2)(4Rν + 15)ω2)

96(4Rν + 15)ω
ωτ 2

+
−2k2(3Rb(2Rν + 15)(4Rν + 15))

1440(2Rν + 15)(4Rν + 15)
ωτ 3

+
(−2k2 (−20 (8R2

ν + 60Rν + 75) + 3600γ(Rν + 5)))

1440(2Rν + 15)(4Rν + 15)
kτ 3+

− (3(3γ(3γ(36γ + 85) + 58) + 10)ω2)ωτ 3, (5.86)

δϕ = −ϕi
2

+
3

4
γϕiωτ +

ϕi (4k
2 − 3γ(27γ + 8)ω2)

48
τ 2

+
ϕi (9γ(3γ(180γ + 83) + 26)ω2 + 4k2(9γ(Rb − 4)− 2))

1152
ωτ 3. (5.87)
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Before giving the expressions for the comoving curvature perturbation and

for the Newtonian potentials, we analize the characteristics of the perturba-

tions. In Einstein GR when one has an isocurvature mode this corresponds

to a non vanishing relative entropy perturbations between two species. An

example will be useful: in the NID (3.14) in general relativity, the relative

entropy perturbation Sνγ = 3/4δν − 3/4δγ is different from zero. It can be

easily seen that this in turn means that the two density perturbations cancels

at leading order, that is δργ + δρν = 0. Since in the scalar tensor theories the

density perturbation of the scalar field is related in a very difficult way to

the scalar field perturbation δϕ a naive criterion to understand the physics

of isocurvature perturbations may be useful. In fact, expanding the per-

turbed equations in a Laurent series, it is easy to see that the isocurvature

perturbations lead to terms singular in the conformal time τ . These terms

have to vanish in order to find non-singular solutions for the perturbed field

equations. Returning to the NID mode, it is easy to see that the only condi-

tion in order to make these terms vanish is the cancellation between the two

radiation densities δργ + δρν = 0.

With this in mind, it can be easily seen that for this mode not to have any

singular term in the Laurent series expansion of the perturbed field equations

we must have a cancellation, i.e. an isocurvature, between the next-to-leading

term in the scalar field perturbation and the leading terms of the radiation

density constrasts δν and δγ in order to cancel the singular terms proportional

to τ−2 in the perturbed Einstein equations. For this reason, from now on, we

denote this mode with the label ’RAD’, in fact, defining the scalar field energy

density ρϕ as in Eq.(4.20), it would be easy to check that this means that

δρϕ + δργ + δρν = 0, exactly as it happens for the Einstein GR isocurvature

modes. It is also important to mention that the next-to-leading term in δϕ is

determined through the Klein-Gordon equation (4.67) only by the constant

leading term in δϕ.

As a final comment we notice that this mode is really independent from

the other previously mentioned, this can be easily seen since this is the only
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mode that allows the scalar field perturbation in the synchronous gauge to

have a constant leading order.

We now look at the comoving curvature perturbation, the Newtonian

potentials and the gauge-invariant perturbation to ϕ. These quantities are

given at leading order by:

R = − 5(Rν + 4)

4(4Rν + 15)
ωτ, (5.88)

Ψ = − (Rν + 5)

(4Rν + 15)
− 5 (−180γ + 2R2

ν − 36γRν + 17Rν + 30)

4(2Rν + 15)(4Rν + 15)
ωτ, (5.89)

Φ =
2(Rν + 5)

(4Rν + 15)
+

5 (−540γ + 2R2
ν − 108γRν + 5Rν − 30)

4(2Rν + 15)(4Rν + 15)
ωτ, (5.90)

δϕI = −ϕi
2

+
3ϕi(5γ + 2γRν)

4(4Rν + 15)
ωτ. (5.91)

It is very interesting to note that the Newtonian potentials and the comoving

curvature perturbations have the same expressions of the same quantities

for the NID mode (5.58). The same holds for the next to leading term of

the gauge-invariant quantity δϕI , however the leading order in Eq.(5.91) is

constant since δϕ has a constant term in the synchronous gauge description.

5.2 CMB Angular Power Spectra

We now present the results obtained for the CMB angular power spectrum

with an extension of the modified public CLASS code [126, 127, 104] which we

further extended to include the isocurvature modes for IG. The background

evolution is given in Sec.4.5. The set of cosmological parameters used are

given in the following table:



110
5. Initial Conditions for Cosmological Perturbations in Induced

Gravity

Quantity Units

Ωb0 0.02222

ΩCDM0 0.1197

TCMB 2.7255K

ns 0.9655

τreio 0.078

As mentioned in Sec.3.1, no known mechanisms can excite the NIV mode.

For this reason we show only the results obtained for the BI, CDI, NID and

RAD modes.

5.2.1 Temperature Power Spectra

In this section we give the results obtained for the CMB temperature

power spectrum. Since the RAD mode is peculiar to scalar-tensor theories,

we analyze its imprints separately from the other modes and start from them.

In Figs.5.1, 5.2, 5.3 and 5.4 we show the power spectra of the adiabatic, BI,

CDI and NID mode respectively for different values of γ. We remind that

Planck constraint is γ < 0.0017 at 95% CL [104]. As we can see from Fig.5.1,

where the Cls are plotted in linear scale to evidence the differences with the

ΛCDM model, the effect of the scalar field is to shift the peaks towards higher

multipoles and to slightly change their amplitudes. This effect, first noticed

in [126] is more pronounced for higher values of γ. From Figs.5.2, 5.3 and

5.4, we see that this occurs also for the isocurvature modes. We can also see

that the BI and the CDI modes give exactly the same contributes to CMB

temperature power spectrum, as we discussed in the previous section. For

these modes, in addition to the shift of the peaks, we can see in Figs.5.2

and 5.3 a significant enhancement of the power spectrum at low multipoles.

This can be stated more quantitatively if we look at the relative differences

for these modes between the original CDI and BI modes in general relativity

(see Figs.D.1, D.2 in Appendix D), from which we can see that there is a

substantial enhancement of the low multipoles region of about 20%. This
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does not happen for the NID mode in Fig.D.3.

We point out that, since these modes give very similair imprints on the

CMB to those of Ref.[38], they obviously cannot lead to the structure for-

mation as we have seen in Chapter 3.

We now show in Fig.5.5 the temperature power spectrum for the RAD

mode and we compare it to the NID and CDI modes for the usual ΛCDM

model in Fig.5.6. The shape of the angular power spectrum of this mode

is totally different from the other ones. We can see from the different plots

for γ = 5 · 10−3 and γ = 5 · 10−4 that the value of γ has a stronger impact

on the amplitude of the peaks and their position with respect to the other

modes. However, as we will see in the following sections, the main feature

of this mode is that when we consider correlation with the adiabatic mode,

it can appreciably lower the low multipoles region of the temperature power

spectrum.
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Figure 5.1: Adiabatic temperature power spectrum for three different values

of γ, compared to the original ΛCDM model.
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Figure 5.2: BI temperature power spectrum for three different values of γ,

compared to the original ΛCDM model.
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γ, compared to the original ΛCDM model.

5.2.2 EE polarization Spectra

We now show the E-mode polarization spectra for the initial conditions

given in Sec.5.1. From now on, we plot only the isocurvature initial con-
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Figure 5.6: RAD temperature power spectrum for γ = 0.00005, compared to

the NID and CDI ΛCDM model.

ditions, since an accurate analysis of the adiabatic mode has already been

done in Ref.[126]. Nevertheless, we plot also the general relativity adiabatic

mode and the adiabatic mode for a very low γ = 5 · 10−9 together with the

isocurvature modes for a useful comparison. Since the CDI and the BI mode

give the same imprints on the CMB power spectra with just different am-

plitudes, as we can see from Figs.5.2 and 5.3, from now on we give only the

results from the CDI mode. The T -E cross-correlation spectra are given in

Appendix C.

Also for the EE spectrum we can see that the CDI and NID modes

give similair imprints to their Einstein GR counterparts and, as for the TT

spectrum, the CDI mode differs from general relativity in an enhancement

of the spectrum at low multipoles as we can see from Figs. 5.7 and D.4.
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Figure 5.7: CDI EE power spectrum for three different values of γ, compared

to the original ΛCDM model.
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Figure 5.9: RAD EE spectrum for three different values of γ, compared to

the original adiabatic mode for the ΛCDM model.
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Figure 5.10: RAD temperature power spectrum for γ = 0.00005, compared

to the NID and CDI ΛCDM model.

5.2.3 Lensing Power Spectrum

Another important quantity, which is worth showing, is the lensing power

spectrum. As we mentioned in Sec.2.4, photons are deflected by the pres-
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ence of gravitational potentials. The effect of this gravitational lensing is to

smooth the acoustic peaks in temperature and to convert a fraction of the E

polarization into B polarization. This effect is important especially on small

angular scales l ≥ 1000 [128] where the lensing B-modes peaks.

If we define the gravitational potential as [31, 128]:

φ(n̂) = −2

∫ χ∗

0

dχ
χ∗ − χ
χ∗χ

Ψ(χn̂, τ0 − τ), (5.92)

where Ψ is the gravitational potential, τ0 is the present conformal time and

χ∗ is the comoving distance to the last scattering surface, we can define the

lensing power spectrum as

Cφφ
l ≡ 〈φ(n̂)∗lmφ(n̂)lm〉, (5.93)

where φ(n̂)lm are the components of φ(n̂) in an spherical harmonics expan-

sion. The reason for studying the lensing power spectrum is that it can be

used to probe the matter power spectrum integrated back to the last scat-

tering surface. Furthermore it correlates with the temperature anisotropies

since they are influenced by the ISW effect and thus it can give important

information about the dark energy domination at low redshift.

We now show the lensing power spectrum for the CDI, NID and RAD

mode.

5.3 Correlated Adiabatic and Isocurvature Modes

We now analyze the correlation between the adiabatic and isocurvature

modes with the formalism introduced in Sec.3.3. Following [74, 75] we are

interested in finding a possible mechanism which can explain the lack of power

in the low multipoles region of the CMB temperature power spectrum (see

Sec.3.4). As we mentioned in the last section and we can see from Fig.D.3,

the NID mode CMB imprints in the IG model are exactly the same as in

general relativity. For this reason we only show the correlated isocurvature

and adiabatic imprints for the RAD mode and for the effective CDI mode
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Figure 5.11: CDI φφ power spectrum for three different values of γ, compared

to the original ΛCDM model.
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Figure 5.12: NID φφ power spectrum for three different values of γ, compared

to the original ΛCDM model.

given by CDI + Rc
Rb

BI [54], since, as we have seen, these two modes give

practically the same CMB imprints. We denote the latter mode by MAT,
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Figure 5.13: RAD φφ power spectrum for three different values of γ.
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Figure 5.14: RAD temperature power spectrum for γ = 0.00005, compared

to the NID and CDI ΛCDM model.

since it is due to isocurvature perturbations in the matter sector.

We show in Figs.5.15 and 5.16 this analysis for the IG model with γ =

0.005 for different values of the allowed isocurvature fraction fiso = 0.1, 0.5, 1
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and for the three limit cases of totally correlated, totally anti-correlated and

uncorrelated (with cos θ = 1, −1, 0 respectively) isocurvature and adiabatic

mode for the RAD and MAT modes respectively. In these figures we have

plotted the isocurvature, the adiabatic and the total power spectrum with the

convention of Eq.(3.51). We also show the cross-correlation angular power

spectra Ccorr
l for the same values of fiso and cos θ in Figs.5.17 and 5.18.
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Figure 5.15: Temperature power spectrum for the RAD mode with different

values of fiso and cos θ.

As we can see from Figs.5.15 and 5.16 when isocurvature modes and

adiabatic modes are correlated† the low multipoles region of the angular

power spectrum can be significantly lowered as we discussed. However when

the allowed fraction of isocurvature modes is too high the impact on the

acoustic peaks is very strong and we thus can conclude that the allowed

isocurvature fraction must be constrained to 0.1 . fiso . 0.5 in order to lead

to the observed large scale structures in the Universe.

†Note that in Ref.[75], due to different conventions, this holds when the modes are

anti-correlated.
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Figure 5.16: Temperature power spectrum for the MAT mode with different

values of fiso and cos θ.
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Figure 5.18: Temperature power spectrum for the correlated MAT and adi-

abatic mode with different values of fiso and cos θ.

However, differently from what pointed out in Ref.[75] for the quintessence

case, for the IG model we find that also the EE is lowered too in the case

of correlation between adiabatic and isocurvature modes, while the TE cross

correlation spectrum does not change as much as the EE. This could be use-

ful in order to compare the a dynamical gravitational constant in the Einstein

GR framework with scalar tensor theories. We can see these behaviour from

Figs.5.19 and 5.20, where we plot the EE polarization and from Figs.5.21

and 5.22 where we plot the TE cross power spectrum. For a better under-

standing of the previous statement we plot the fiso = 0.5 case, for which

these features are more emphasized.

5.4 Isocurvature Generation during Inflation

The generation of isocurvature perturbations in scalar-tensor theories has

been examined by Starobinsky et al. in the context of the Jordan-Brans-

Dicke model in Ref.[129] and then in the generalized Non-Minimally coupled

model in Ref.[83]. We review here the main difference between the general
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Figure 5.19: EE power spectrum for the correlated RAD and adiabatic mode

with fiso = 0.5 and different values of cos θ.
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Figure 5.20: EE power spectrum for the correlated MAT and adiabatic mode

with fiso = 0.5 and different values of cos θ.

relativity case explored in Sec.5.4 in the case of the IG model in order to

connect the dynamics of the isocurvature modes found in the last sections,
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Figure 5.21: TE cross power spectrum for the correlated RAD and adiabatic

mode with fiso = 0.5 and different values of cos θ.
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Figure 5.22: TE cross power spectrum for the correlated MAT and adiabatic

mode with fiso = 0.5 and different values of cos θ.

with the primordial spectrum produced during inflation.

The idea is to do the calculations in the Einstein frame, where they are
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easier, and then to make a conformal transformation to the Jordan frame that

we consider the physical one in this case. Note that, however, one need to

take care in charachterizing adiabatic and isocurvature perturbations in the

different frames. In particular it has been proven that the notion of adiabacity

is not invariant under conformal transformations [130]. In fact, although

the curvature perturbation is invariant under conformal transformations for

single-field inflation models, or for model that behave like an effective single-

field inflation [131], generally this does not apply for inflation with two or

more inflaton fields [130]. It is possible that isocurvature perturbations source

the curvature perturbation in one conformal frame, even if the evolution is

adiabatic in the other frame.

We denote the metric in the Jordan frame with ĝµν and that in the Ein-

stein frame with gµν . We consider a simple model of inflation driven by two

scalar field. The action in the Einstein frame is given by:

S =

∫
d4x
√−g

[
R

2κ2
− 1

2
gµν∂µχ∂νχ−

1

2
e−Γκχgµν∂µφ∂νφ− U(χ)− e−βκχV (φ)

]
,

(5.94)

where κ2 = 8πG and β and Γ are constants. It is straightforward to see that

we can recover the action (5.94), from the action of the IG model together

with an additional inflaton field φ

S =

∫
d4x
√
−ĝ

[
R̂γϕ2

2
− 1

2
ĝµν∂µϕ∂νϕ−

1

2
ĝµν∂µφ∂νφ− U(ϕ)− V (φ)

]

(5.95)

and making the conformal transformation:

gµν = Ω2ĝµν , (5.96)

Ω2 = κ2γϕ2 ≡ exp

(
κχ

√
4γ

1 + 6γ

)
, (5.97)

with β = 2Γ = 2
√

4γ
1+6γ

.

In the limit in which all the two fields in the Einstein frame are slowly
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rolling, i.e. [129]

max{e−βκχφ̇2, χ̇2} � e−βκχV, (5.98)

|V,φ | � e−
Γκχ

2 V, (5.99)

V,φφ e
(Γ−β)κχ � H2, (5.100)

the slow roll Klein-Gordon equations for the two fields and the 0-0 Friedmann

equation in physical time are

3Hχ̇ = βκe−βκχV, (5.101)

3Hφ̇ = −e(Γ−β)κχV,φ , (5.102)

H2 =
κ2

3
e−βκχV. (5.103)

Note that these equations can be written in the following useful form:

χ̇ =
β

κ
H, (5.104)

φ̇ = −HeΓκχV,φ
κ2V

and (5.105)

− Ḣ

H2
=
β2

2
+
eΓκχ

2κ2

(
V,φ
V

)2

. (5.106)

A solution for the slow-roll equations as a function of the scale factor is given

by [132, 133]:

χ =
β

κ
ln a ≡ −β

κ
N, (5.107)

κ2

∫ φ

φf

dφ̄
V (φ̄)

V (φ̄),φ̄
=

1− e−βΓN

βΓ
, (5.108)

where φf is the value of the scalar field φ at the end of inflation where we

set af = 1. If φ varies slowly with time we can approximate V as a constant

and we have a power-law inflation, for which:

a(t) =

[
β2κ
√
V

2
√

3

]2/β2

. (5.109)
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The Newtonian guage perturbed field equations on large scales (k � aH) in

the slow-roll approximation are given by [129]:

Φ =
βκ

2
δχ− V,φ

2V
δφ, (5.110)

3Hδχ̇+ (βκ)2e−βκχV δχ− βκe−βκχV,φ δφ = 2βκe−βκχV Φ, (5.111)

3Hδφ̇+e(Γ−β)κχV,φφ δφ+(Γ−β)κV,φ e
(Γ−β)κχδχ = −2e(Γ−β)κχV,φ Φ. (5.112)

From Eq.(5.111), we can find the solution

δχ =
β

κ
Q1 = const. (5.113)

We can insert the latter solution in Eqs.(5.110) and (5.112) and use the

relation

3H
d

dt
= −e(Γ−β)κχV,φ

d

dφ
, (5.114)

to find the solution:

δφ = − V,φ
κ2V

(Q1e
Γκχ −Q2), (5.115)

Φ =
β2

2
Q1 +

1

2κ2

(
V,φ
V

)2

(Q1e
Γκχ −Q2), (5.116)

where Q2 is another integration constant.

Using Eqs.(5.104), we can easily recast this solution in the form given

in Eqs.(3.76) and (3.77) of Sec.3.5, with the difference that now we have a

non-canonical kinetic term for the field φ, so that, defining Q1 = C1 − C3

and Q2 = −C3, the right expressions are now:

δχ

χ̇
=
C1

H
− C3

H
, (5.117)

δφ

φ̇
=
C1

H
+
C3

H
(e−Γκχ − 1), (5.118)

Φ = −C1
Ḣ

H2
+ C3

[
1

2κ2
(1− eΓκχ)

(
V,φ
V

)2

− β2

2

]
, (5.119)
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where, again, the terms with the constant C1 represent the adiabatic mode,

whereas those proportional to C3 are the isocurvature ones. Exactly as we

have done in Sec.3.5 we can match these perturbations with the amplitudes

of quantum fluctuations generated during the inflationary stage. The only

subtle difference is again due to the presence of the non-canonical kinetic

term, so that we have at the end of inflation:

δχ(k) =
Hk√
2k3

εχ(k), (5.120)

δφ(k) =
Hk√
2k3

εφ(k)eΓκχk/2. (5.121)

Using these expressions, the constant C1 and C3 are given by:

C1 =

[
eΓκχH

δφ

φ̇
+ (1− eΓκχ)H

δχ

χ̇

]

tk

=
H2
k√

2k3

[
e3Γκχ/2

φ̇
εφ(k) +

1− e−Γκχ

χ̇
εχ(k)

]
,

(5.122)

C3 =

[
eΓκχH

(
δφ

φ̇
− δχ

χ̇

)]

tk

=
H2
k√

2k3

[
e3Γκχ/2

φ̇
εφ(k)− 1

χ̇
εχ(k)

]
. (5.123)

So far we have done all the calculations in the Einstein frame, but we

are interested in the quantities in the Jordan frame, so that we apply the

conformal transformation (5.96). The variables in the Jordan frame, under

the latter transformation, transform as [124]:

Φ̂ = Φ− δΩ

Ω
, (5.124)

Ψ̂ = Ψ +
δΩ

Ω
, (5.125)

â = a/Ω, (5.126)

dt̂ = dt/Ω, (5.127)

Ĥ =
ât̂
â

= Ω

(
H − Ω̇

Ω

)
, (5.128)

where the subscript t̂ denotes the derivative with respect to the physical time

in the Jordan frame and δΩ = ΓκδχΩ/2. Using these transformations we
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obtain:
δχ

χ̇
= Ω

δχ

χt̂
=
C1 − C3

âΩ

∫ t̂

dt′ Ω̂2. (5.129)

Since the scalar field ϕ varies very slowly in the post-inflationary universe as

we have seen in Sec.4.5, Ω can be regarded as a constant and thus adiabatic

and isocurvature perturbations are the same as in the Einstein frame, up to

the constant Ω.

However, we are interested in the perturbations of the field ϕ, since we are

searching for a phenomenological origin of the RAD mode. To this concern,

we note from Eq.(5.97), that the following equalities hold:

ϕ̇ =
χ̇√

1 + 6γ
exp

(
κχ

√
4γ

1 + 6γ

)
, (5.130)

δχ =
δχ√

1 + 6γ
exp

(
κχ

√
4γ

1 + 6γ

)
, (5.131)

so that we have the important relation

δχ

χ̇
=
δϕ

ϕ̇
, (5.132)

which translates, in the Einstein frame, to

δχ

χt̂
=
δϕ

ϕt̂
. (5.133)

This means that the classification into isocurvature and adiabatic perturba-

tions for the inflaton field χ is conformally invariant for this double inflation

model. However, δχ and δϕ are not equal, in fact Eqs.(5.113),(5.128) and

(5.131) imply that:

δϕ = −4ϕ
γ

1 + 6γ
(C1 − C3), (5.134)

and we thus see that isocurvature modes can be excited in this framework,

although these are very small because of the small factor γ. After inflation

the inflaton field φ is supposed to decay into the ordinary matter, while

the IG field ϕ remains uncoupled to the ordinary matter and contribute to

the gravitational sector as an unthermalized field. When a perturbation δϕ,
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which was stretched out of the Hubble radius during the inflationary stage,

re-enters the Hubble radius during the radiation and matter dominated eras,

the scalar field ϕ evolves as in Eq.(4.56) and from Eq.(5.134) we can see that

it is possible to have a constant perturbation to the scalar field ϕ at the

leading order. We thus expect that this could be a possible mechanism to

excite the new RAD mode. However, it would be interesting to examine how

the reheating era may affect these scalar field perturbations.

As a final comment, we stress that these results are not only specific of

this model, but can be generalized to the Non-Minimally Coupled model. In

this model, the perturbation to the scalar field produced during inflation are

[134, 83]:

δϕ = −4ϕ(C1 − C3)
ξϕ(N2

pl + ξϕ2)

N2
pl + (1 + 6ξ)ξϕ

. (5.135)

As pointed out in [134, 83] this can produce large isocurvature perturbation

in the case when ξ > 0 due to the presence of N2
pl even if ξ is small. We note

that in the limit N2
pl → 0 Eq.(5.135) reduces to Eq.(5.134) and we recover

the IG results.
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The current cosmic concordance ΛCDM model explains the accelerated

expansion of our Universe by the cosmological constant. However, it is impor-

tant to investigate other models in which the effective cosmological constant

may vary with time, in order to avoid the fine-tuning problems suffered by

the cosmological constant. One possibility is to consider quintessence, a very

light scalar field whose negative pressure drives the acceleration of the Uni-

verse. Another possibility is to consider modified gravity in which Einstein

GR is abandoned. The simplest models of modified gravity are scalar-tensor

theories in which the scalar field responsible for the acceleration of the Uni-

verse also mediates the gravitational strength.

In this work we focused on two of the simplest scalar-tensor theories in

which a scalar field ϕ is non-minimally coupled to the Ricci scalar. These

are the Induced Gravity theory (IG) in which the coupling is in the form

F (ϕ) = γϕ2 and the Non-Minimally Coupled (NMC) theory where F (ϕ) =

N2
pl + ξϕ2.

We have derived the initial conditions for the cosmological perturbations

and we found five regular independent isocurvature solutions for the per-

turbed field equations, in addition to the adiabatic solution. Among the

isocurvature solutions, four are the generalization to Induced Gravity of the

well known isocurvature modes in Einstein GR (which are the Baryon, CDM,

Neutrino Density and Neutrino Velocity isocurvature modes), whereas the

presence of the scalar field leads to a new mode, which is peculiar to this the-

ory. Although we have focused on Induced Gravity theories, we have shown
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how these results can be easily generalized to more general scalar-tensor

theories as the Non-Minimally Coupled model. We then used these initial

conditions to compute the CMB temperature, polarization and lensing power

spectra with the modified CLASS code for Induced Gravity [126, 127, 104].

We summarize our results in the following:

• In scalar-tensor dark energy models in which the scalar field is quasi-

static in the radiation era after neutrino decoupling, we have identified

a new isocurvature regular mode (RAD). In this solution, the scalar

field perturbation is constant in the synchronous gauge and the scalar

field energy density compensates with the relativistic ones.

• In addition to this new solution we found the extension of the baryon,

CDM, neutrino density and neutrino velocity isocurvature modes which

are also present in Einstein GR.

• The imprints of the new RAD isocurvature mode on the CMB power

spectra are completely new and they lead to interesting consequences,

summarized in the following, when the RAD mode is correlated with

the adiabatic one.

• The CMB angular power spectra of the latter four isocurvature modes

are similair to those already known in Einstein GR. However for the

baryon and CDM isocurvature modes the low multipoles region of the

temperature power spectrum is enhanced of about 20%, making it in-

teresting to study how a correlation with the adiabatic mode can affect

the total angular power spectrum.

• Both the effective CDM (in which the Baryon and CDM modes are

put together, since they lead to the same imprints on the CMB) and

the RAD mode can lower the low multipoles region of the temperature

power spectrum, if they are anti-correlated with the adiabatic modes.

This could be an interesting mechanism which can explain the observed

lack of power in that region of the CMB angular power spectrum. The
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plots for the temperature power spectra suggest that the allowed frac-

tion of these modes must be constrained by 0.1 . fiso . 0.5 in order to

not modify the acoustic peak structure.

• Simple models of inflation, within scalar tensor theories, where inflation

is driven by two sclar fields, one of them being the Induced Gravity

scalar field ϕ, could generate the RAD isocurvature mode.

As future perspectives, we plan to perform a Markov chain Monte Carlo

exploration as in [127, 104] in order to constrain the model with the most

recent cosmological data.

We also plan to study how the reheating era could affect the perturbation

to the scalar field which generates the RAD mode.





Riassunto in Italiano

Una alternativa ai modelli di energia oscura in Relatività Generale sono i

modelli di gravità modificata. Tra i modelli di gravità modificata una impor-

tante classe di modelli sono le teorie scalari-tensoriali, in cui un campo scalare

accoppiato non minimalmente al tensore di Ricci guida l’espansione acceler-

ata dell’Univero e causa una variazione del tempo della costante di Newton.

In particolare in questo lavoro di tesi abbiamo considerato un modello di

gravità indotta (Induced Gravity) nella quale il campo scalare ϕ possiede

un accoppiamento col tensore di Ricci nella forma F (ϕ) = γϕ2. Nonostante

ciò, i risultati ottenuti non sono specifici di questa teoria, ma possono essere

facilmente generalizzati a modelli più generali di teorie scalari-tensoriali.

Abbiamo derivato le condizioni iniziali per le perturbazioni cosmologiche

in questo modello e trovato cinque soluzioni di isocurvatura regolari ed in-

dipendenti oltre alla soluzione adiabatica. Di queste cinque, quattro sono

generalizzazioni dei modi di isocurvatura in Relatività Generale, già conosciuti

in isocurvatura, mentre il quinto è un nuovo modo caratterizzante delle teorie

scalari-tensoriali, causato dalla presenza del campo scalare. Abbiamo poi

usato queste condizioni iniziali per trovare gli spettri angolari della CMB

in temperatura, polarizzazione e lensing, usando il codice pubblico CLASS,

modificato per il modello di Induced Gravity [126].

I nostri risultati, per i quali rimandiamo al capitolo 5, possono essere

riassunti nei seguenti punti:

• Nelle teorie scalari tensoriali in cui il campo scalare è quasi statico

durante l’era della radiazione e dopo il disaccoppiamento dei neutrini,
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il campo scalare porta ad un nuovo modo di isocurvatura (RAD). Per

questo modo la perturbazione al campo scalare nel gauge sincrono è

costante all’ordine dominante in kτ e la perturbazione alla densità di

energia del campo scalare si compensa con quelle materia relativistica.

• Oltre a questa soluzione abbiao trovato le estensioni ad Induced Gravity

dei modi di isocurvatura di Barioni, CDM, Neutrino Density e Neutrino

Velocity già conosciuti in Relatività Generale.

• Gli effetti del nuovo modo di isocurvatura RAD sugli spettri di potenza

angolari della CMB sono completamente originali e possono portare ad

interessanti conseguenze nel caso in cui il modo RAD sia correlato con

il modo adiabatico, come mostrato nei punti seguenti.

• Gli spettri di potenza angolari della CMB per i quattro modi con una

controparte in Relatività Generale sono simili a quelli di quest’ultima.

Nonostante questo, i modi di isocurvatura di Barioni e CDM mostrano

un innalzamento dello spettro a bassi multipoli di circa il 20% e questo

rende interessante studiare come una correlazione con il modo adia-

batico possa modificare lo spettro di potenza angolare totale.

• Sia il modo di isocurvatura effettivo della CDM (in cui sono pesati i

modi della CDM e quello dei Barioni dato che portano agli stessi im-

print sulla CMB) che il nuovo modo RAD possono abbassare lo spettro

di potenza angolare della CMB nella zona di bassi multipoli se correlati

con il modo adiabatico. I grafici ottenuti suggeriscono che la frazione di

isocurvatura permessa sia vincolata da 0.1 . fiso . 0.5 per non mod-

ificare la zona dei picchi acustici. Questo può essere un interessante

meccanismo per spiegare il problema della ’lack of power ’ osservata

nello spettro di potenza angolare della CMB.

• Abbiamo analizzato come il modo RAD possa essere generato in un

semplice modello di doppia inflazione in cui uno dei due inflatoni è il

campo scalare di Induced Gravity ϕ.



Appendix A

Newtonian Gauge Perturbed

Equations for Scalar-Tensor

model

In this appendix we give the perturbed Einstein and Klein-Gordon equa-

tions for the Induced Gravity and Non-Minimally coupled models in Newto-

nian Gauge in conformal time.

Induced Gravity

The perturbed Einstein equations are:

3H(Φ′ +HΨ) + k2Φ + 3
ϕ′

ϕ
(Φ′ + 2HΨ)− ϕ′2

2γϕ2
Ψ =

− 1

2γϕ2

[
3ϕ′δϕ′ − 6H2γϕδϕ− 6Hγ(ϕδϕ)′ − 2γk2δϕ+ a2δρm + a2V,ϕ δϕ

]
,

(A.1)

k2(Φ′+HΨ) =
a2(ρm + Pm)θm

2γϕ2
− k2

2γϕ2

[
2γϕ(ϕ′Ψ−δϕ′)−δϕ(ϕ′(1+2γ)−2γϕH)

]
,

(A.2)
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Φ′′ +H(Ψ + 2Φ)′ +

(
2
a′′

a
−H2

)
+
k2

3
(Φ−Ψ) =

− a2δϕ

γϕ3

[
Pm − V +

ϕ′2

2a2
+

4Hγϕϕ′
a2

+
2γϕ′2

a2
+

2γϕϕ′′

a2

]
+

+
a2

2γϕ2
(δPm − V,ϕ δϕ)− Ψ

γϕ2

[
ϕ′2

2
+ 2γ(Hϕϕ′ + ϕϕ′′ + ϕ′

2
)

]
+

− ϕ′

ϕ
(Ψ′ + 2Φ′) +

1

ϕ
δϕ′′ +

δϕ′

2γϕ2
[(1 + 4γ)ϕ′ + 2γϕH]+

+
δϕ

6γϕ2
[4γk2ϕ+ 6γHϕ′ + 6γϕ′′], (A.3)

Φ−Ψ =
2δϕ

ϕ
+

3a2

2k2

(ρm + Pm)σm
γϕ2

. (A.4)

The perturbed Klein-Gordon equation is

δϕ′′ = −2δϕ′
(
H +

ϕ′

ϕ

)
− δϕ

[
k2 − ϕ′2

ϕ2
+
a2(ρm − 3Pm)

(1 + 6γ)ϕ2

]
+

+
2a2(ρm − 3Pm)

(1 + 6γ)ϕ
Ψ +

a2(δρm − 3δPm)

(1 + 6γ)ϕ
+ ϕ′(3Φ′ + Ψ′). (A.5)

The equations given above can be further simplified using the background

Klein-Gordon equation found in Chapter 4.



Appendix B

Initial Conditions for General

Non-Minimally Coupled

Models

In this appendix we give explicit expressions for the leading terms of the

isocurvature initial conditions in the Non-Minimally Coupled model consid-

ered in Sec.4.1.2. We used the background and perturbed field equations

of Ref.[135] for the computations. Setting N2
pl = 0 it is straightforward to

recover the results of Chapter 5. The adiabatic mode has already been found

in Ref.[135], thus we refer the reader to the latter reference for an explicit

expression of it.

In the following the quantity named ω, altough we keep writing it with

the same name, is different from which we used previously and is equal to

[135]:

ωNMC ≡ ω =
ρmat0

√
N2

pl + ξϕ2
i

√
3ρrad0

(
N2

pl + ξϕ2
i (1 + 6ξ)

) . (B.1)
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Baryon Isocurvature Mode

δγ =− 2Rb

3
ωτ +

Rbω
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

8
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) ωτ 2,

θγ =− 1

12
Rbk

2ωτ 2 +
Rb

2ω2
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

16Rγ

(
ξϕ2

i +N2
pl

) k2τ 3+

+
Rbω

2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

96
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) k2τ 3,

δb =1− Rb

2
ωτ +

3Rbω
2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

32
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) τ 2,

δc =− Rbω

2
τ +

3Rbω
2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

32
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) τ 2,

δν =− 2Rbω

3
τ +

Rbω
2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

8
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) τ 2,

θν =− 1

12
Rbωk

2τ 2 +
Rbω

2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

96
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) k2τ 3,

σν =−
Rbω

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

6(2Rν + 15)
(
ξϕ2

i +N2
pl

)k2τ 3,

F3 =−
Rbω

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

28(2Rν + 15)
(
ξϕ2

i +N2
pl

)k3τ 4,

h =Rbωτ −
3Rbω

2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

16
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2,

η =− Rbω

6
τ +

Rbω
2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

32
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2,

δϕ =
3

2
ξRbωϕiτ −

ξRbω
2ϕi
(
ξ(1 + 6ξ)(18ξ + 5)ϕ2

i + (5− 12ξ)N2
pl

)

8
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2 − 1

8
ξRbωϕik

2τ 3+

−
ξRbω

3ϕi
(
−2ξ2(1 + 6ξ)2(27ξ(9ξ + 4) + 11)ϕ4

i − (54ξ2 − 75ξ + 22)N4
pl

)

96
(
ξ(6ξ + 1)ϕ2

i +N2
pl

)2 τ 3+

−
ξRbω

3ϕi
(
−ξ (9ξ (−540ξ2 + 4ξ + 45) + 44)N2

plϕ
2
i

)

96
(
ξ(6ξ + 1)ϕ2

i +N2
pl

)2 τ 3.
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R =− Rbω

4
τ,

Ψ =−
Rbω

(
−90γ2ϕ2

i + 15γϕ2
i + 4N2

plRν + 15N2
pl + 4γRνϕ

2
i

)

8(2Rν + 15)
(
γϕ2

i +N2
pl

) τ,

Φ =
Rbω

(
−270γ2ϕ2

i − 15γϕ2
i + 4N2

plRν − 15N2
pl + 4γRνϕ

2
i

)

8(2Rν + 15)
(
γϕ2

i +N2
pl

) τ,

δϕI =
3

2
γRbωϕiτ.

CDM Isocurvature Mode

δγ =− 2Rc

3
ωτ +

Rcω
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

8
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) ωτ 2,

θγ =− 1

12
Rck

2ωτ 2 +
Rc

2ω2
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

16Rγ

(
ξϕ2

i +N2
pl

) k2τ 3+

+
Rcω

2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

96
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) k2τ 3,

δb =− Rc

2
ωτ +

3Rcω
2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

32
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) τ 2,

δc =1− Rcω

2
τ +

3Rcω
2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

32
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) τ 2,

δν =− 2Rcω

3
τ +

Rcω
2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

8
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) τ 2,

θν =− 1

12
Rcωk

2τ 2 +
Rcω

2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

96
(
ξ(6ξ + 1)ϕ2

i +N2
pl

) k2τ 3,

σν =−
Rcω

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

6(2Rν + 15)
(
ξϕ2

i +N2
pl

)k2τ 3,

F3 =−
Rcω

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

28(2Rν + 15)
(
ξϕ2

i +N2
pl

)k3τ 4,



142 B Riassunto in Italiano

h =Rcωτ −
3Rcω

2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

16
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2,

η =− Rcω

6
τ +

Rcω
2
(
ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + 2N2
pl

)

32
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2,

δϕ =
3

2
ξRcωϕiτ −

ξRcω
2ϕi
(
ξ(1 + 6ξ)(18ξ + 5)ϕ2

i + (5− 12ξ)N2
pl

)

8
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2 − 1

8
ξRcωϕik

2τ 3+

−
ξRcω

3ϕi
(
−2ξ2(1 + 6ξ)2(27ξ(9ξ + 4) + 11)ϕ4

i − (54ξ2 − 75ξ + 22)N4
pl

)

96
(
ξ(6ξ + 1)ϕ2

i +N2
pl

)2 τ 3+

−
ξRcω

3ϕi
(
−ξ (9ξ (−540ξ2 + 4ξ + 45) + 44)N2

plϕ
2
i

)

96
(
ξ(6ξ + 1)ϕ2

i +N2
pl

)2 τ 3.

R =− Rcω

4
τ,

Ψ =−
Rcω

(
−90γ2ϕ2

i + 15γϕ2
i + 4N2

plRν + 15N2
pl + 4γRνϕ

2
i

)

8(2Rν + 15)
(
γϕ2

i +N2
pl

) τ,

Φ =
Rcω

(
−270γ2ϕ2

i − 15γϕ2
i + 4N2

plRν − 15N2
pl + 4γRνϕ

2
i

)

8(2Rν + 15)
(
γϕ2

i +N2
pl

) τ,

δϕI =
3

2
γRcωϕiτ.
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Neutrino Density Mode

δγ = −Rν

Rγ

+
k2Rντ

2

6Rγ

,

θγ = −k
2Rντ

4Rγ

+
3(1 + 6ξ)k2RbRντ

2ω

16R2
γ

,

δb =
k2Rντ

2

8Rγ

,

δc = −k
2RbRντ

3ω

80Rγ

+ k4τ 4 Rν

72(4Rν + 15)
,

δν = 1− k2τ 2

6
,

θν =
k2τ

4
,

σν =
2(1 + 6ξ)k2Rντ

3ω

3(2Rν + 15)(4Rν + 15)
,

F3 =
(1 + 6ξ)k3Rντ

4ω

7(2Rν + 15)(4Rν + 15)
,

h =
k2RbRντ

3ω

40Rγ

,

η = − Rνk
2τ 2

6(4Rν + 15)
,

δϕ =
ξk2RbRντ

3ωϕi
32Rγ

.

R = − Rντω

4(4Rν + 15)
,

Ψ =
Rν

4Rν + 15
,

Φ = − 2Rν

4Rν + 15
,

δϕI = − 3ξRντωϕi
2(4Rν + 15)

.

It is very interesting to note that the neutrino density mode is exactly the

same as in the IG case provided the substitutions γ → ξ and ω → ωNMC.
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Neutrino Velocity Mode

δγ =
4Rν

3Rγ

kτ −
RbRνω

(
N2

pl(Rγ + 2) + ξϕ2
i (12ξ +Rγ + 2)

)

4Rγ
2
(
ξϕ2

i +N2
pl

) kτ 2,

θγ =− kRν

Rγ

+
3RbRνω

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

4Rγ
2
(
ξϕ2

i +N2
pl

) kτ

+

(
kRν

6Rγ

−
3RbRνω

2
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) (
N2

pl(3Rb −Rγ) + ξϕ2
i (3(1 + 6ξ)Rb −Rγ)

)

16kRγ
3
(
ξϕ2

i +N2
pl

)2

)
k2τ 2,

δb =
Rν

Rγ

kτ −
3RbRνω

(
N2

pl(Rγ + 2) + ξϕ2
i (12ξ +Rγ + 2)

)

16Rγ
2
(
ξϕ2

i +N2
pl

) kτ 2,

δc =− 3RbRνω

16Rγ

kτ 2,

δν =− 4

3
kτ − RbRνω

4Rγ

kτ 2,

θν =k − (4Rν + 9)

6(4Rν + 5)
k3τ 2σν =

4

3(4Rν + 5)
kτ +

4Rνω
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(4Rν + 5)(4Rν + 15)
(
ξϕ2

i +N2
pl

)kτ 2,

F3 =
4

7(4Rν + 5)
k2τ 2,

h =
3RbRνω

8Rγ

kτ 2,

η =− 4Rν

3(4Rν + 5)
kτ − RbRνω

16Rγ

τ 2+,

+
5Rνω

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(4Rν + 5)(4Rν + 15)
(
ξϕ2

i +N2
pl

)kτ 2,

δϕ =
ξRbRνωϕi

2Rγ

kτ 2 −
ξ2N2

plRbRνω
2ϕ3

i (9(1 + 6ξ)Rb + (3ξ(72ξ + 23) + 19)Rγ)

48Rγ
2
(
ξϕ2

i +N2
pl

) (
ξ(1 + 6ξ)ϕ2

i +N2
pl

) ,

−
ξRbRνω

2ϕi
(
N4

pl(9Rb + (19− 48ξ)Rγ) + ξ2(1 + 6ξ)ϕ4
i (9(6ξRb +Rb + 8ξRγ) + 19Rγ)

)

96Rγ
2
(
ξϕ2

i +N2
pl

) (
ξ(1 + 6ξ)ϕ2

i +N2
pl

) kτ 3,

R =
Rνω

k(4Rν + 5)
,

Ψ =− Φ =
4Rν

k(4Rν + 5)τ
,

δϕI =
6ξRνωϕi
k(4Rν + 5)

.
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Scalar Field-Radiation Isocurvature Mode

δγ =−
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(1 + 6ξ)
(
ξϕ2

i +N2
pl

) − 2ω

3
τ+

+
1

6
ω

(
k
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(1 + 6ξ)ω
(
ξϕ2

i +N2
pl

) −
3ω
(
(15ξ − 4)N2

pl − 2ξ(1 + 6ξ)(15ξ + 2)ϕ2
i

)

8k
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)
)
kτ 2,

θγ =−
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

4(1 + 6ξ)
(
ξϕ2

i +N2
pl

)k2τ + ω

(
3kRb

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)2

16(6ξRγ +Rγ)
(
ξϕ2

i +N2
pl

)2 −
k

12

)
kτ 2,

δb =− ω

2
τ +

ω

8

(
k
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(1 + 6ξ)ω
(
ξϕ2

i +N2
pl

) −
3ω
(
(15ξ − 4)N2

pl − 2ξ(1 + 6ξ)(15ξ + 2)ϕ2
i

)

8k
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)
)
kτ 2,

δc =− ω

2
τ −

3ω2
(
(15ξ − 4)N2

pl − 2ξ(1 + 6ξ)(15ξ + 2)ϕ2
i

)

64
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2,

δν =−
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(1 + 6ξ)
(
ξϕ2

i +N2
pl

) − 2ω

3
τ+

+
ω

6

(
k
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(1 + 6ξ)ω
(
ξϕ2

i +N2
pl

) −
3ω
(
(15ξ − 4)N2

pl − 2ξ(1 + 6ξ)(15ξ + 2)ϕ2
i

)

8k
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)
)
kτ 2,

θν =−
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

4(1 + 6ξ)
(
ξϕ2

i +N2
pl

)k2τ − ω

12
k2τ 2,

σν =

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

6(1 + 6ξ)(4Rν + 15)
(
ξϕ2

i +N2
pl

)k2τ 2,

F3 =

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

21(1 + 6ξ)(4Rν + 15)
(
ξϕ2

i +N2
pl

)k3τ 3,

h =ωτ +
3ω2

(
(15ξ − 4)N2

pl − 2ξ(1 + 6ξ)(15ξ + 2)ϕ2
i

)

32
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2,

η =− ω

6
τ + ω

(
ω
(
2ξ(1 + 6ξ)(15ξ + 2)ϕ2

i + (4− 15ξ)N2
pl

)

64k
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) +
k(Rν + 5)

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

6(1 + 6ξ)(4Rν + 15)ω
(
ξϕ2

i +N2
pl

)
)
kτ 2

δϕ =−
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

2ξ(1 + 6ξ)ϕi
+

3ω
(
ξ(1 + 6ξ)ϕ2

i −N2
pl

)

4(1 + 6ξ)ϕi
τ +

ω
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

12ξ(1 + 6ξ)ωϕi
k2τ 2+

−
ω2
(
ξ2(1 + 6ξ)2(27ξ + 8)ϕ4

i + (6ξ − 2)N4
pl − 3ξ(6ξ + 1)(19ξ − 2)N2

plϕ
2
i

)

16(1 + 6ξ)ϕi
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

) τ 2.



146 B Riassunto in Italiano

R =− ωτ

4(4Rν + 15)

(
6ξN2

pl(Rγ − 6)

(1 + 6ξ)
(
ξϕ2

i +N2
pl

) −Rγ + 4Rν + 21

)
,

Ψ =−
ω(Rν + 5)

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(1 + 6ξ)(4Rν + 15)ω
(
ξϕ2

i +N2
pl

) ,

Φ =
2ω(Rν + 5)

(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

(1 + 6ξ)(4Rν + 15)ω
(
ξϕ2

i +N2
pl

)

δϕI =−
ω
(
ξ(1 + 6ξ)ϕ2

i +N2
pl

)

2ξω(6ξϕi + ϕi)
.



Appendix C

CMB Cross Correlation Power

Spectra

In this appendix we show sequentially the T -E cross-correlation power

spectra for the CDI, NID and RAD modes. We do not show the BI con-

tribution since, apart from a different amplitude, they are the same of the

CDI mode. We note that the contribution of the RAD mode to these cross-

correlation spectra is an order of magnitude smaller than which of the CDI

and NID modes.
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Figure C.1: CDI T -E cross power spectrum for three different values of γ,

compared to the original ΛCDM model.
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Figure C.2: NID T -E cross power spectrum for three different values of γ,

compared to the original ΛCDM model.
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Figure C.3: RAD T -E cross spectrum for three different values of γ, com-

pared to the original adiabatic mode for the ΛCDM model.
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Figure C.4: RAD temperature power spectrum for γ = 0.00005, compared

to the NID and CDI ΛCDM model.
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Appendix D

CMB Angular Power Spectra

Relative Differences

In this appendix we show the relative differences between the BI, CDI and

NID modes of Sec.5.1 and their EG counterparts from Ref.[38]. We show the

TT , EE, TE and φφ power spectra sequentially. For TT , EE and φφ we

plot the quantities
Cii
l − Cii

lEG

Cii
lEG

≡ ∆Cii
l

Cii
lEG

, (D.1)

where the subscript EG denotes the original Einstein Gravity mode and i =

T,E, φ, whereas for the cross-correlation power spectra we plot the quantities

∆CiT
l√

Cii
lEGC

TT
lEG

. (D.2)

Since the BI and CDI have almost the same behaviour we show both their

relative differences only for the TT power spectrum and we plot only the

CDI mode for the other spectra.
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Figure D.1: BI relative temperature power spectrum for three different values

of γ, compared to the original ΛCDM model.
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Figure D.2: CDI relative temperature power spectrum for three different

values of γ, compared to the original ΛCDM model.
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Figure D.3: NID relative temperature power spectrum for three different

values of γ, compared to the original ΛCDM model.
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Figure D.4: CDI relative EE power spectrum for three different values of γ,

compared to the original ΛCDM model.
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Figure D.5: NID relative EE power spectrum for three different values of γ,

compared to the original ΛCDM model.
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Figure D.6: CDI relative ET power spectrum for three different values of γ,

compared to the original ΛCDM model.
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Figure D.7: NID relative ET power spectrum for three different values of γ,

compared to the original ΛCDM model.
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Figure D.8: CDI relative φφ power spectrum for three different values of γ,

compared to the original ΛCDM model.
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Figure D.9: NID relative φφ power spectrum for three different values of γ,

compared to the original ΛCDM model.
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