
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

ROGUEINABOX:
A ROGUE ENVIRONMENT

FOR AI LEARNING
Framework development and Agents design

Relatore:
Chiar.mo Prof.
ANDREA ASPERTI

Presentata da:
GIANMARIA PEDRINI

Sessione I
Anno Accademico 2016/2017

To Nives and Sergio

Introduction

When it comes to using a computer to solve problems that where initially tar-

geted at human beings two options come to mind; an hard-coded agent and a

Machine learning agent. The main difference between these two approaches is

that the writing of an hard-coded agent requires the programmer to tell the agent

what to do in every situation, while building a machine learning agent is about

giving the program the correct ”brain” structure and telling it what is its target.

While an hard-coded agent can be easier to implement and can be able to per-

fectly solve simpler problems, the harder the problem the harder the challenge for

the programmer. He has to come up with a solution for every possible scenario

which also requires a deep understanding of the underlying problem. On the other

hand while it might be difficult to find the correct setup for a machine learning

agent, the ability to automatically learn problem solving from data or experience

is extremely valuable and might lead to better automated solutions in harder prob-

lem.

This thesis is about a particular branch of Machine learning: Reinforcement

learning, and in particular DeepQLearning. Reinforcement learning is an auto-

mated learning technique in which an agent performs actions in an environment

and for each action receives a reward (positive or negative). The agent ”brain”

(Network) then learns from these rewards and improves itself consequently. Us-

ing its learned knowledge the agent is then able to predict which action is best in

every situation (state) using its QFunction; this function is approximated by the

network and gives its name to the learning method. The Deep prefix simply means

that the network used is structured in multiple layers and is therefore deep.

i

ii INTRODUCTION

Reinforcement learning can be used to tackle different kind of problems but

one that comes to mind, where humans also often learn by trial and error, is games.

Games are interesting field of study because they are complex, offer a wide array

of challenges and require the development of different skills which often can be

transferred to real world problems.

When it comes to research and experimentation the flexibility and effective-

ness of the frameworks used is crucial. The main choice, given a problem to

tackle and an environment for it, is which machine learning framework to use.

This choice also limits the choice of programming language that will be used.

For this project Keras [1] was chosen as a machine learning framework, sup-

porting both Theano [2] and Tensorflow [3], it stands out for it simple prototyping

and ease of use. Consequently the language this project is written in is Python.

Many game environments suitable for Reinforcement learning already exists,

most notable examples are Arcade Learning Environment (ALE [4]), OpenAI

Universe [5] [6] and VizDoom [7]. Frameworks for interacting with roguelike

games also already exists, such as [8] for Desktop Dungeons and BotHack [9] for

NetHack, but none was available for the game of choice of this thesis: Rogue.

Rogue is a 1980 roguelike (genre to which it gave name) PC game in which the

player controls an adventurer (the rogue) and guides his moves into a randomly

generated dungeon. The objective is to reach the bottom of the dungeon, steal

the Amulet of Yendor and get back to the surface safely. Rogue is a very inter-

esting challenge for Reinforcement learning mainly for the randomness of each

play-through (but also for many more reasons as explained in Section 2.2) and

so it was worth building an environment for it from scratch. Rogueinabox (the

environment) was built as a general tool for AI research in Rogue, with special

focus on modularity and extensibility. Snippets of code taken from Rogueinabox

implementations are available in Appendix A.

The work presented is divided in three main sections:

Why Rogue? This section explains the projectural choices the choice of Rogue

(a command line interface [cli] game from the ’80) as the study case for this

thesis.

INTRODUCTION iii

Building an AI learning environment for Rogue This section explains the rea-

sons behind and the structure of Rogueinabox, the Reinforcement learning

environment we built to encapsulate Rogue with a Python interface.

Building and improving an agent for Rogueinabox This section shows the evo-

lution of an agent for Rogueinabox, the steps taken, failures, successes and

future objectives.

The aim of this work was to build a new environment for interacting with

Rogue and use it for experimenting and improving QLearning techniques. De-

veloping an AI Learning environment for a roguelike game is useful not only for

this thesis but also for the machine learning community as a whole; the code for

Rogueinabox will be open sourced and released to the public. The research done

trying to create a good agent can also be reused on other projects. Even if the final

performance is not entirely satisfactory an acceptable result has been reached and

lots of experience has been gained.

Contents

Introduction i

1 Theory 1
1.1 Machine Learning . 1

1.1.1 Neural Networks . 1

1.1.2 Machine Learning Categories 2

1.1.3 Reinforcement Learning 2

1.1.4 QLearning . 3

1.1.5 DeepQLearning . 5

1.2 Python and Keras . 6

1.2.1 Keras Examples . 7

2 Why Rogue? 11
2.1 What is Rogue? . 11

2.2 Rogue Features for Machine Learning 11

3 Building an AI learning environment for Rogue 17
3.1 Rogueinabox Modules . 17

3.2 Rogueinabox Interface . 19

4 Building and improving an agent for Rogueinabox 21
4.1 Setting an objective . 21

4.1.1 Milestones . 21

4.1.2 Grading agents performance 22

v

vi CONTENTS

4.2 A common ground for training 22

4.3 The evolution of the agent . 23

4.3.1 The first steps . 23

4.3.2 Reaching the door in the first room 25

4.3.3 Reaching a second room walking down a corridor 27

4.3.4 Exploring most of the first floor 28

4.3.5 Exploring as many floors as possible 29

4.4 Training on static memories . 31

4.4.1 Rog-o-matic supervised learning 32

4.5 Training time vs. Improvement 32

5 Conclusions 37
5.1 Current results . 37

5.2 Future work . 37

A Code examples 39
A.1 Rogue Interface . 39

A.2 State Representations . 40

A.3 Reward Functions . 42

A.4 Agents . 43

Bibliography 45

List of Figures

2.1 The Rogue game . 12

4.1 Atari Network Model . 24

4.2 QValues heat-map visualization 28

4.3 Tower Network Model . 30

4.4 QValue plot - 2M iterations . 34

4.5 QValue plot - 4M iterations . 35

vii

Chapter 1

Theory

1.1 Machine Learning

Machine learning is a sub-field of computer science which, as the name sug-

gests, studies algorithms that enable computers to learn from data. Once the al-

gorithm has learned and modelized the patterns of the problem it can then predict

the output of a new input using his acquired knowledge. With machine learning,

especially in recent years due to the abundance publicly available data, we can

solve problems that would otherwise be to hard to solve by hand. This is because

with machine learning you don’t have to come up with complicated strategies to

approach the problem; you only need to decide the right techniques and network

model for the program ”brain” and the algorithm will try to generalize a strategy

by itself. The ability to generalize is key in this kind of techniques and overfitting

the given data is a common mistake; the problem chosen for this work embraces

this generalization principle at his root, being a procedurally generated game.

1.1.1 Neural Networks

The core element of Machine Learning are Neural Networks [10]; a multi-

layer web of many weighted neurons. Each neuron computes a simple function

but their outputs are combined, weighted and concatenated to obtain an highly

complex artificial brain that can solve difficult problems. Different kind of neu-

1

2 1. Theory

rons and layers exists, each with its function. In this work we are particularly

interested in vision related tasks; Convolutional layers [11, 12, 13] have proven to

be an effective choice. A Neural Network might be able to solve difficult prob-

lems but the information learned and encoded inside it are not easily accessible;

it is often referred to as a ”black box”. For a closer look regarding Convolutional

Networks visualization [14] is an interesting read.

1.1.2 Machine Learning Categories

Machine Learning is usually divided into three different categories based on

the way the data is presented to the algorithm:

Supervised learning the program is given labeled data in the form of multiple

tuples (x, y) where x is the input and y is the desired output. After the train-

ing the program should be able to infer with the highest accuracy possible

what Y matches a given X (never seen before).

Unsupervised learning The program is given unlabeled data and has to deter-

mine some kind of structure or pattern in it.

Reinforcement learning The program has to perform a certain task and acts in

an environment receiving a reward (positive or negative) for his actions,

learning and collecting its data little by little from experience.

This thesis will be focused on Reinforcement learning and in particular Deep

Reinforcement learning [15] and QLearning.

1.1.3 Reinforcement Learning

In a Reinforcement learning scenario many different entities are in play at the

same time:

Agent

The Agent is the part of the program that contains the decision making al-

gorithm. It can decide which action perform on the environment given the data

1.1 Machine Learning 3

available to him and his ”brain” (the network model, which is updated regularly)

Environment

The environment is responsible for the simulation of the task to be solved and

the interaction with the agent. To every action received from the agent it responds

with (at least) the reward gained and the resulting state.

State

The way the state of the environment is returned to the agent determines what

the agent sees and how it sees it. Naturally the choice for the state representation

deeply impacts the results of the training.

Reward

The reward is the only tool to tell the agent what is its objective. To compute

the reward information from the game are used, so inherently giving rewards to

an agent gives him more information. The programmer must find a good balance

in the amount and complexity of information conveyed into the rewards and avoid

cheating. A good reward should lead the agent in the right direction highlighting

good transitions and not too sparse or otherwise the agent will scramble in the

dark for a long time (if not forever).

1.1.4 QLearning

QLearning is a Reinforcement learning technique in which a QFunction Q(a,

s) is learned performing actions on the environment. The QFunction is a function

that takes an action and a state as input and outputs the expected utility of perform-

ing that action. The QFunction is arbitrarily initialized and then, while the agent

acts on the environment, it’s updated (after each action) until convergence (within

a certain ε of tolerance). The update is done with QValue Iteration, a method sim-

ilar to Value iteration [16, 17] using a version of the Bellman equation, the update

4 1. Theory

formula is shown below. More information on this method, QLearning and Rein-

forcement Learning in general can be found in the awesome AI lessons taught at

Berkeley University and available online here [17].

Q(st ,at)← Q(st ,at)︸ ︷︷ ︸
old value

+ αt︸︷︷︸
learning rate

·

learned value︷ ︸︸ ︷

rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1,a)︸ ︷︷ ︸
estimate of optimal future value

−Q(st ,at)︸ ︷︷ ︸
old value

Learning rate A parameter that determines how important is the new informa-

tion compared to what is already known. Usually decreases during the

course of the updates.

Discount factor A parameter that determines how important are future rewards,

defining if the agent will be more short sighted or far sighted.

The following is the standard QLearning algorithm:
1 i n i t i a l i z e a c t i o n−v a l u e f u n c t i o n Q(s , a) o u t p u t s randomly

2 # t h e QFunct ion can a l s o be a l i n e a r c o m b i n a t i o n o f f e a t u r e f u n c t i o n s

3 o b s e r v e i n i t i a l s t a t e s

4 r e p e a t

5 s e l e c t an a c t i o n a

6 wi th p r o b a b i l i t y ε s e l e c t a random a c t i o n

7 o t h e r w i s e s e l e c t a = argmina′ ,Q(s,a′)

8 c a r r y o u t a c t i o n a

9 o b s e r v e reward r and new s t a t e s ’

10 i f s ’ i s t e r m i n a l s t a t e t h e t = r

11 o t h e r w i s e t = r+ γ ·maxa′ Q(s′,a′)

12 s e t $Q (s , a) = t $

13 s = s ’

14 u n t i l t e r m i n a t e d

Exploration vs. Exploitation

How should the action to perform each iteration be chosen? If we always chose

the action that has the maximum expected value (i.e. the maximum predicted

QValue) for the given state we follow a Greedy strategy. Greedy strategy are

often not the best strategies because they blindly follow the first (seemingly) good

path they are presented. A Greedy strategy prefers Exploitation to Exploration.

A common solution to this problem is using an ε-greedy strategy, in which the

1.1 Machine Learning 5

algorithm chooses a random action with probability ε , otherwise takes the greedy

option. The ε is then slowly decreased during the updates, this way Exploration is

prioritized at the beginning (when the QFunction is less accurate) and Exploitation

is prioritized in later stages.

1.1.5 DeepQLearning

The QLearning algorithm seen in the last section is great, but is only viable

if the state space is small. In a 2015 paper [18] DeepMind demonstrated the

effectiveness of using a Deep Neural Network as a substitution for the QFunction,

solving the state space size problem. In DeepMind work the network takes game

screens as inputs and outputs an array of QValues (expected utility), one for each

possible action.

The algorithm proposed in the paper is the standard QLearning one adapted

to use a QNetwork and with improvements made to the parameters and settings

used.

1 i n i t i a l i z e r e p l a y memory D

2 i n i t i a l i z e a c t i o n−v a l u e ne twork Q wi th random w e i g h t s

3 i n i t i a l i z e t a r g e t a c t i o n−v a l u e ne twork Q’ wi th t h e w e i g h t s o f Q

4 o b s e r v e i n i t i a l s t a t e s

5 r e p e a t

6 s e l e c t an a c t i o n a

7 wi th p r o b a b i l i t y ε s e l e c t a random a c t i o n

8 o t h e r w i s e s e l e c t a = argmina′ ,Q(s,a′)

9 c a r r y o u t a c t i o n a

10 o b s e r v e reward r and new s t a t e s ’

11 s t o r e e x p e r i e n c e <s , a , r , s ’> i n r e p l a y memory D

12

13 sample random mini−b a t c h o f t r a n s i t i o n s <ss , aa , r r , s s ’> from r e p l a y memory D

14 c a l c u l a t e t a r g e t f o r each mini−b a t c h t r a n s i t i o n

15 i f s s ’ i s t e r m i n a l s t a t e t h e t t = r r

16 o t h e r w i s e tt = rr+ γ ·maxaa′ Q′(ss′,aa′)

17 t r a i n t h e Q ne twork u s i n g (tt−Q(ss,aa))2 as l o s s

18 Every C s t e p s r e s e t Q’ = Q

19

20 s = s ’

21 u n t i l t e r m i n a t e d

DeepMind opted to use a simple quadratic loss function.

6 1. Theory

[r+ γ ·maxa′Q(s′,a′)−Q(s,a)]2

Other than replacing the QFunction with a Neural Network two main improve-

ments were introduced to the QLearning algorithm: Experience Replay and Target

QNetwork.

Experience Replay With experience replay the agent is trained on batches of

episodes, that are picked randomly from a big pool of the agent past expe-

riences. Each time the agent interact with the environment the transition is

saved in a tuple such as (old state, action, reward, new state, is terminal).

This method of training improves performance by reducing the correlation

between states in the same batches because those states come from very dif-

ferent and far moments from the life of the agent. It is also a more general

way of training, decoupling the agent interaction with the environment and

its training. Training on a pool of past experience has similarities with su-

pervised learning, also the pool can be easily switched from one created by

the agent to one created by humans expert in the task.

Target QNetwork To reduce fluctuation in the QValues approximation and im-

prove convergence time DeepMind algorithm uses two QNetworks during

the training. One is the working Network that is updated each step and one

is the target Network, against which the working network is updated. The

target Network is then adjusted to the working network values after a set

number of steps.

This algorithm is the starting point of this thesis and even if many things were

changed in the learning process its core remains untouched.

1.2 Python and Keras

The implementation language of choice for this project is Python. There are

two main reasons for this choice:

• Simplicity and clarity of writing and reading Python code

1.2 Python and Keras 7

• Large library support for machine learning and data science in general

Large library support also means many possible choices; we decided to use

Keras as our machine learning library. Keras [1] is a high-level neural networks

API that provides an easier and cleaner interface to both Theano [2] and Tensor-

flow [3], two famous machine learning libraries also written in Python. Keras

main feature is simple and fast implementation, a key feature to research project

that must be able to try many different approaches.

We chose to use Theano as a backend for Keras, this was mainly done because

our network structures and hardware setup (training with a GPU) happened to

work faster with Theano. Switching to Tensorflow, if needed, is easy with Keras

and can be faster if the user would like to train the model using the CPU.

1.2.1 Keras Examples

In this section we show some example of neural networks implementation in

Keras, for further information refer to the official Keras documentation [19]

Sequential models

Building a model in Keras is extremely easy, here is an example with the

simplest kind of model, the Sequential model. In this example we will build a

model like the one used in the DeepMind Atari paper [18]

First initialize a model:

1 from k e r a s . models import S e q u e n t i a l

2 model = S e q u e n t i a l ()

then add consecutive layers with .add():

1 from k e r a s . l a y e r s import Conv2D , Dense

2

3 model . add (Conv2D (3 2 , (8 , 8) , a c t i v a t i o n =” r e l u ” ,

4 \ d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (4 , 4) ,

5 \ k e r n e l i n i t i a l i z e r =” random normal ” , padd ing = ’ same ’ ,

6 \ i n p u t s h a p e =(s t a c k e d f r a m e s , rows , columns)))

7 model . add (Conv2D (6 4 , (4 , 4) , a c t i v a t i o n =” r e l u ” ,

8 \ d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (2 , 2) ,

9 \ k e r n e l i n i t i a l i z e r =” random normal ” , padd ing = ’ same ’))

8 1. Theory

10 model . add (Conv2D (6 4 , (3 , 3) , a c t i v a t i o n =” r e l u ” ,

11 \ d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (1 , 1) ,

12 \ k e r n e l i n i t i a l i z e r =” random normal ” , padd ing = ’ same ’))

13 model . add (F l a t t e n ())

14 model . add (Dense (5 1 2 , a c t i v a t i o n =” r e l u ” ,

15 \ k e r n e l i n i t i a l i z e r =” random normal ”))

16 model . add (Dense (ac t i o ns nu m , k e r n e l i n i t i a l i z e r =” random normal ”))

Then choose an optimizer and compile the model with .compile():
1 from k e r a s . o p t i m i z e r s import RMSprop

2 rmsprop = RMSprop (l r =0 .00 025)

3 model . compi le (l o s s = ’ mse ’ , o p t i m i z e r = rmsprop)

Functional models

If there is need for a model with a more complex structure Keras offers a

functional API that allows to build models with an arbitrary graph structure. The

following code is the implementation for a triple tower model that was used in

later phases of the agent design. The idea is the same as the Sequential model, but

this time we add layers by calling the relative function with the previous layer as

the input.

Define the two input layers, one is derived from the other by removing a chan-

nel.
1 from k e r a s . l a y e r s import Conv2D , MaxPooling2D , Dense , I n p u t , Lambda

2 # i n i t i a l i z e t h e s t a r t i n g w e i g h t s a t random

3 i n i t i a l i z e r = i n i t i a l i z e r s . random normal (s t d d e v = 0 . 0 2)

4

5 i n p u t i m g = I n p u t (shape = (5 , 22 , 8 0))

6 i n p u t 2 = Lambda (lambda x : x [: , 1 : , : , :] ,

7 \ o u t p u t s h a p e =lambda x : (None , 4 , 22 , 8 0)) (i n p u t i m g) # no map c h a n n e l

Define the three towers, each tower is sequential and each layer is passed as

an argument to the next one.
1 # Loca l V i s i o n Tower

2 t o w e r 1 = Conv2D (6 4 , (3 , 3) , d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (1 , 1) ,

3 \ k e r n e l i n i t i a l i z e r = i n i t i a l i z e r , padd ing =” same ”) (i n p u t i m g)

4 t o w e r 1 = Conv2D (3 2 , (3 , 3) , d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (1 , 1) ,

5 \ k e r n e l i n i t i a l i z e r = i n i t i a l i z e r , padd ing =” same ”) (t o w e r 1)

6 t o w e r 1 = MaxPooling2D (p o o l s i z e =(22 , 8 0) ,

7 \ d a t a f o r m a t =” c h a n n e l s f i r s t ”) (t o w e r 1)

8

1.2 Python and Keras 9

9

10 # Globa l v i s i o n tower 1

11 t o w e r 2 = MaxPooling2D (p o o l s i z e = (2 , 2) ,

12 \ d a t a f o r m a t =” c h a n n e l s f i r s t ”) (i n p u t 2)

13 t o w e r 2 = Conv2D (3 2 , (3 , 3) , d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (1 , 1) ,

14 \ k e r n e l i n i t i a l i z e r = i n i t i a l i z e r ,

15 \ padd ing =” same ” , a c t i v a t i o n = ’ r e l u ’) (t o w e r 2)

16 t o w e r 2 = Conv2D (3 2 , (3 , 3) , d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (1 , 1) ,

17 \ k e r n e l i n i t i a l i z e r = i n i t i a l i z e r ,

18 \ padd ing =” same ” , a c t i v a t i o n = ’ r e l u ’) (t o w e r 2)

19 t o w e r 2 = MaxPooling2D (p o o l s i z e =(11 , 4 0) ,

20 \ d a t a f o r m a t =” c h a n n e l s f i r s t ”) (t o w e r 2)

21

22 # Globa l v i s i o n tower 2

23 t o w e r 3 = MaxPooling2D (p o o l s i z e = (3 , 6) ,

24 \ d a t a f o r m a t =” c h a n n e l s f i r s t ” , padd ing = ’ same ’) (i n p u t 2)

25 t o w e r 3 = Conv2D (3 2 , (3 , 3) , d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (1 , 1) ,

26 \ k e r n e l i n i t i a l i z e r = i n i t i a l i z e r ,

27 \ padd ing =” same ” , a c t i v a t i o n = ’ r e l u ’) (t o w e r 3)

28 t o w e r 3 = Conv2D (3 2 , (3 , 3) , d a t a f o r m a t =” c h a n n e l s f i r s t ” , s t r i d e s = (1 , 1) ,

29 \ k e r n e l i n i t i a l i z e r = i n i t i a l i z e r ,

30 \ padd ing =” same ” , a c t i v a t i o n = ’ r e l u ’) (t o w e r 3)

31 t o w e r 3 = MaxPooling2D (p o o l s i z e = (8 , 1 4) ,

32 \ d a t a f o r m a t =” c h a n n e l s f i r s t ” , padd ing = ’ same ’) (t o w e r 3)

Now merge the output of the towers into a single layer and finalize the model

1 m e r g e d l a y e r s = c o n c a t e n a t e ([tower 1 , tower 2 , t o w e r 3] , a x i s =1)

2

3 f l a t l a y e r = F l a t t e n () (m e r g e d l a y e r s)

4

5 p r e d i c t i o n s = Dense (5 , k e r n e l i n i t i a l i z e r = i n i t i a l i z e r) (f l a t l a y e r)

6 model = Model (i n p u t s = i n p u t i m g , o u t p u t s = p r e d i c t i o n s)

7

8 rmsprop = RMSprop (l r =0 .00 025)

9 model . compi le (l o s s = ’ mse ’ , o p t i m i z e r = rmsprop)

Chapter 2

Why Rogue?

2.1 What is Rogue?

Rogue is a 1980 dungeon exploration game and the father of the roguelike

genre (from which the name). In Rogue the player controls a rogue with the

objective to reach the bottom of the dungeon, steal the Amulet of Yendor and get

back to the surface safely. The game uses simple ASCII graphics to represent the

dungeon and features a vast array of monster and items (scrolls, ring, weapons,

armors etc..) but its main feature it the random level generation. Every time a new

game is started the dungeon is different and the names of the items are switched

around; Rogue is the first game to introduce this as a core mechanic and so is

considered a milestone in game history. Many other games have been inspired

from it, creating a specific genre; notable example are the classic ”Net hack” and

”Angbad” or the more recent ”Spelunky” and ”The Binding of Isaac”.

2.2 Rogue Features for Machine Learning

In this section we highlight some of the main features of Rogue that makes it

an interesting test bench for machine learning and, especially, deep learning.

• POMPD nature Rogue is a Partially Observable Markov Decision Pro-

cess (POMPD), since each level of the dungeon is initially unknown, and

11

12 2. Why Rogue?

Figure 2.1: A screenshot taken from Rogue

is progressively discovered as the rogue advance in the dungeon. Solving

partially observable mazes is a notoriously difficult and challenging task

(see [20] for an introduction). They are often solved with the help of a suit-

able (built-in) searching strategy, as in [21], that is particularly satisfying

from a machine learning perspective. A Neural Network based Reinforce-

ment learning technique to learn memory-based policies for deep memory

POMDPs (Recurrent Policy Gradients) have been investigated in [22]. The

prospected scenarios are similar to those of Rogue: partial knowledge of the

model and deep memory requirements, but they considered much simpler

test cases.

• No level-replay In many video games, when the player get killed, the game

restarts at same level, with the same obstacles. Learning in these situa-

tions is not particularly hard, but the acquired knowledge is of no use in

subsequent levels, and learning must be started anew. As observed in [23],

standard CNN-based networks - comprising Deep QNetworks (DQN) - can

2.2 Rogue Features for Machine Learning 13

be easily trained to solve a given level, but they do not generalize to new

tasks.

Rogue has been one of the earlier examples of procedural generated levels,

which was one of the main novelty when the game was introduced: every

time a game starts or the player dies, a new level gets generated, every time

different from the previous ones. Procedural generated content is partially

random, maintaining some constrictions (each level will almost always have

nine rooms, for example, but the form, the exact position and the connec-

tions between them will vary). This means that extensive, level-specific

learning techniques could not be deployed, because the player would even-

tually die, and the dungeon would change. As a consequence, learning must

be done at a much higher level of abstraction, requiring the ability to react

to a generic dungeon, taking sensible actions. Even with a lot of training

data, covering all possible configurations, and a rich enough policy repre-

sentation, learning to map each task to its optimal policy in a reactive way

looks extremely difficult. Likely, we need a mechanism that learns to plan,

similarly to the value-iteration network (VIN) in [23].

• ASCII graphics Rogue is meant to be played in a terminal, therefore ren-

ders all its graphics with ASCII characters using the ncurses library. This

means two things; the simulation is very fast (in comparison to a more mod-

ern and complex graphic game) and the information presented on the screen

is already coded and differentiated, which makes it easier to parse and rein-

terpret it.

• Memory In many situations, the rogue need a persistent memory of pre-

vious game states and of previous choices in order to perform the correct

move. A very simple example is when searching for secret passages in a

section of the wall or at the end of a corridor. In this cases, the hidden

passage my appear after an arbitrary number (usually between 1 and 10)

of pressing of the search button (s) and you need to recall the number of

attempts already done. You also need memory in mazes, since you need

14 2. Why Rogue?

(at least) to remember the direction you came from to avoid looping (but

a more general recollection of past rogue positions would likely improve

the behavior and robustness of the agent). Since the discovery of Long-

Short Term Memory models (LSTM) [24, 25], the use of memory in neural

networks is increasingly popular, providing one of the most active and fas-

cinating frontiers of the current research (see e.g. the recent introduction of

Gated Recurrent Units - GRU [26]). LSTM have been already used for in

[27] for Atari games, to replace the sequence of states of [18], and are also

exploited in [28]. Rogue could provide another interesting test bench for

these techniques.

• Attention Another hot topic in Machine Learning is attention, that is the

ability, so typical of human cognition, to focus on a specific part of a scene

of particular interest, ignoring others of lesser relevance, to build a sequen-

tial interpretation and understanding of the whole scene we are looking at.

Clearly, in a game like Rogue, the environment immediately surrounding

the rogue is the main focus of attention, and the agent moving the rogue

must have a precise knowledge of it, without however loosing the whole

picture of the map. Many techniques have been recently introduced for

addressing attention, comprising e.g. the recent technique of spatial trans-

formers [29], that looks promising due to the highly geometrical structure

of rooms and corridors. We are also currently investigating a different tech-

nique, inspired by convolutionalization [30], and essentially based on ag-

gressive use of max-pooling mediated by an image-pyramid vision of the

map.

• Complex and diversified behaviors Dungeon-like games offer an inter-

esting combination of diversified behaviors: moving around, fighting mon-

sters, descending/escaping the dungeon, acquiring loot, exploit the equip-

ment in the inventory. Merging together these activities and their learning is

a complex problem. At present, the agent behavior is traditionally divided

into two phases, one involving exploring the map, collecting items, finding

2.2 Rogue Features for Machine Learning 15

enemies, and another one for fighting [31, 32, 28]. Each phase is covered by

a specialized network, trained in a specific way. Combining together neural

models optimized on different tasks is still an open issue in neural systems.

Chapter 3

Building an AI learning
environment for Rogue

Rogueinabox is an environment for Rogue, a layer between the game and an

agent which can interact with Rogue using a Python interface. This is accom-

plished by running Rogue in a virtual terminal, redirecting its output and input

streams. Other environments or frameworks that enable interaction with rogue-

like games already exists, such as [8] for Desktop Dungeons and BotHack [9] for

NetHack, but no project was available for Rogue. Rogueinabox was implemented

from scratch; this chapter will describe its design principles, implementation and

interface.

3.1 Rogueinabox Modules

In this section we explain in detail the different modules we implemented for

Rogueinabox. Since we wanted to create an environment for studying and test-

ing deep learning and Reinforcement learning when designing Rogueinabox we

aimed for high modularity and configurability. Those are very important features

because in research, and especially in these fields there are many unknown vari-

ables and being able to tune them individually, precisely and with ease is a priority.

For this reason each module is easily configurable to suit the user needs, who can

17

18 3. Building an AI learning environment for Rogue

add his own methods to the already existing library.

• State representation This module manages the state representation that

will be fed to the agent. The shape and amount of information the user

might want to give the agent might vary wildly depending on the objective

that has to be achieved. For example we might want to hide some informa-

tion (such as the inventory or the status bar) and focus on solving a simpler

problem like moving and fighting. We might also want to vary the shape

and the channels of the states, using multiple channels or cropped views.

• Reward functions This module manages the reward function that will give

a score to every agent transition. The choice of the reward function defines

which objective we are pursuing and in which way, so obviously the ability

to change it accordingly with our aims is crucial. The reward module has

access to all the raw information that are presented on the screen (before the

state conversion) so its easy to manipulate it and extract whatever data or

variation in data we find useful. Obviously the programmer has to keep in

mind that the reward given to the agent encodes part of the information used

to generate it. He must try to avoid giving the agent too much or unwanted

information, therefore cheating.

• Network models This module manages the structure of the neural network

that will form the mind of the agent. The model defines how the agent

”thinks” and what he sees and focuses on given a particular state. We used

Keras [1] as our deep learning framework of choice because of his simple

and researcher friendly structure. Furthermore model construction is ab-

stracted by a model manager, so the user can also use whatever framework

he likes to build the model and just encapsulate it in an object with a Keras

like model interface.

• Experience memory This module manages the agent memory of his past

state transitions, which includes actions taken and rewards received. Expe-

rience replay has proven to be an extremely valuable tool in Reinforcement

3.2 Rogueinabox Interface 19

learning [18]; using this technique is possible to reduce correlation between

state transitions. Collecting past experiences also allows to train a different

model on an already saved history (provided that the state representation is

the same) in a time efficient manner. We also provide tools to filter which

transition ends up stored into memory, allowing the creation of a more bal-

anced history that better fits the target needs.

• Agents This module manages the different implementations of the agent.

We provide 3 base agents; an user controlled one, a random agent, and a

Qlearner agent that is capable of training and running the model using a

deep QLearning strategy as shown in [18]. As with any other module the

user can write his own agent that uses the tools provided by Rogueinabox

and implements a learning algorithm of choice.

• Logging This module manages the logging of the agent actions. Logs can

be printed to various streams (std-out, file...) and filtered by verbosity levels.

This module also provides a way to trace the execution time of section of

code; its most notably use is monitoring the speed and performance of the

model updates during training.

• UI This module manages the user interface for Rogueinabox. Since the

screen updates require time it is recommended to train with UI turned off

and just parse the logfile to retrieve information about the current state of a

training. Nevertheless sometimes it might be useful to watch what the agent

is doing to hunt down bugs or just to see the result of a training in action.

We provide two different implementation of the UI, one is a TKInter GUI

(for desktop uses) and one is a Curses UI (for remote headless server uses).

3.2 Rogueinabox Interface

Rogueinabox offers a Python interface to interact with Rogue, which can be

used to write different kind of agents. Here is a brief description of it.

This methods allow the programmer to fetch information about Rogue

20 3. Building an AI learning environment for Rogue

• get actions() Return a list of the actions currently enabled

• get legal actions() Return a sub-list of the enabled actions including only

legal ones (i.e. actions that will make game time pass)

• print screen() Prints the current screen

• get screen() Return the current screen as a list of strings.

• get screen string() Return the current screen as a single string with

n at EOL

• game over() Check if we Rogue is at the game-over screen (tombstone)

• is map view(screen) Return True if the current screen is the dungeon map,

False otherwise

• is running() Check if the rogue process exited

• compute state() Return a numpy array representation of the current state

• compute reward(old screen, new screen) Return the reward for a state

transition

This methods allow the programmer to interact with Rogue

• send command(command) Send a command to Rogue

• quit the game() Send the keystroke needed to quit the game

• reset() Kill and restart the rogue process

Snippets of code taken from Rogueinabox implementations are available in

Appendix A.

Chapter 4

Building and improving an agent for
Rogueinabox

Hard-coded agents for roguelike games similar to Rogue are already available;

examples are Borg [33] for Angband and BotHack [9] for NetHack. This chapter

will explain the steps taken for building and training a QLearning agent for Rogue

in the Rogueinabox environment.

4.1 Setting an objective

Rogue is a very challenging game, even for a human; we did not expect to

train an agent that is fully capable of beating the game, at least not in the early

stages. We set for the agent different milestones with ever increasing difficulty

and tried to tackle them one step at a time. As said before Rogue is a kind of

game that supports this approach, offering different and gradually harder tasks to

accomplish.

4.1.1 Milestones

The milestone for this project were:

• Reaching the door in the first room

21

22 4. Building and improving an agent for Rogueinabox

• Reaching a second room walking down a corridor

• Exploring most of the first floor

• Exploring as many floors as possible

These objectives focus only on moving around and map interpretation skills;

enemies, items, inventory and other Rogue features were intentionally left out.

An interesting continuation to this thesis might be extending the agent behavior

making him able to solve more difficult tasks considering also the features we

didn’t use.

4.1.2 Grading agents performance

Rogue doesn’t have a proper score system; the end game screen says gold

gathered is the score but this number doesn’t always reflect how much the player

has advanced into the dungeon (especially in our case, since we straight up ignore

gold existence for our objectives). Another way of grading the different agents

could be by number of tiles explored, rooms explored or floors descended; still

all these approaches don’t take in consideration the behavior of the agent. Does

he get stuck often or is it killed by monsters? Does he loop around and dies from

hunger? Is it good or bad if he stays on the same floor raking up experience

instead of diving deep in the dungeon? All these problems make rating the agent

behavior (mostly to evaluate changes in code) really difficult, especially when

two different version of the agent are failing, which one is worst? In conclusion

while comparing two agents that work well one could arbitrary decide a scoring

method and stick to it, when comparing failing agents (which often was the case

during our research) we often had to resort to a subjective evaluation, based on

observations of the agent behavior.

4.2 A common ground for training

Since a lot of tries had to be performed we tried our best to keep the training

settings and parameters as constant as possible, exception made for the ones we

4.3 The evolution of the agent 23

were experimenting with.

For the tries described below we:

• Used the same QLearning strategy (same algorithm and same agent)

• Had ε anneal from 1 to 0.1 over the course of the training (usually 2M

iterations)

• Used the following parameters: learning rate = 0.00025, γ = 0.99, batch-size

= 32

• Started training with a minimum of 50K transitions already in history, with

a maximum history size of 200K

• Checked the progress at constant intervals, usually 1M e 2M for the nor-

mal training sessions and 5 30 and 80 loops for the static history training

sessions

4.3 The evolution of the agent

4.3.1 The first steps

The most known bibliography example that studied QLearning applied to

games is the paper ”Human level control through deep Reinforcement learning”

[18] published in 2015 by DeepMind. The application of DeepMind research

on Atari games to roguelikes, is mostly an unexplored field; the only example

currently available is relative to the game Spelunky [34]. Applications to other

genres are also rare but exists, most notably [28] applies DQL tecniques to the

first person shooter (FPS) game Doom. As a starting point we decided to try to

apply DeepMind work to Rogue, also considering as inspiration the other research

cited, mostly for state representation and reward function design. This was easily

done implementing in Rogueinabox not only the same QLearning algorithm used

for the Atari agent but also the network model and learning parameters.

24 4. Building and improving an agent for Rogueinabox

DeepMind model takes as input an image of the screen and outputs the ex-

pected utility of every available action. This model is a sequential model, there

are several convolutional layers followed by fully connected ones and the output

of each level is the input of the following one. The convolutional layers encode

the feature of the screen images while the dense layers combine the features to

obtain a (hopefully) good prediction of the QValues. A Keras implementation of

this model can be seen in Section 1.2.1

Figure 4.1: The Atari network model

Even if the model was taken mostly ”as is” (exception made for shape differ-

ences) other elements had to be adapted.

4.3 The evolution of the agent 25

Adapting the method to Rogue

In DeepMind works [18] the game score is taken as a reward; this is possible

because scoring points in Atari games is fairly common so its easier for the agent

to experience good transitions. In Rogue, as discussed before, the objective is

not really quantifiable by a number and even considering the score (gold count)

as a reward, score increases are very sparse and not at all easy to encounter for a

training agent. To solve this problem we had to design a custom reward function,

described more in detail below.

Regarding the state representation we had to face a different problem, con-

verting the ASCII screen to a simplified image. We decided to divide different

points of interest into the different channels of the image. This approach resulted

in an increased dimensionality of the states, so we choose to avoid stacking more

frame into each state. This is a reasonable modification since in Rogue there is no

velocity, each frame is static and can be considered on his own.

Unfortunately this approach didn’t succeed and the agent wasn’t even capa-

ble of moving around and usually would get stuck against the first wall it found.

Trying the DeepMind approach was necessary but the problem, despite having

similarities (deep QLearning applied to games), is different at his core because

in Atari games the level elements were always in the same position on the screen

while in Rogue each level has a different room configuration. While keeping game

frames as the Network input, the Network structure and other settings had to be

adapted.

The adaptation happened slowly, with each step increasingly enhancing the

agent performance. Here we will see in more detail the settings that made accom-

plishing each milestone possible.

4.3.2 Reaching the door in the first room

Reward function

The reward function determines the objective we want to achieve. To reward

exploration a positive reward was given when one or more new map pixels became

26 4. Building and improving an agent for Rogueinabox

visible. This can be easily calculated looking at the differences between the old

and the new state.

To be more precise the rewards for this step were:

• +1 for discovering a new tile

• -1 for standing still

• -0.1 as a living reward

• 0 for a game over

Since for this step we only wanted to reach a door Rogueinabox would reset

(faking a game over) after the first positive reward, that corresponds to the first

time the agent discovers a tile (i.e. walks on a door)

The negative rewards are a way to teach the agent to keep moving around and

avoid getting stuck on walls, since we notices the agent was really prone to do

that.

State representation

Rogue represents its dungeons using only ASCII characters, this view is com-

pact but we decided to simplify it and divide it in channels. Each channel is an

80x22 array of integers and represent a different feature of the Rogue screen. The

channel used in this step are as follows:

• Map channel Represents the currently visible map, 255 if the position is

passable, 0 if impassable

• Player position channel Represents the player position, 255 only on the

player position, 0 everywhere else

• Doors positions channel Represents the doors positions, 255 only on the

doors positions, 0 everywhere else

4.3 The evolution of the agent 27

Network model

As said before, the sequential model used for Atari games wasn’t good enough

for Rogue so we opted for different model structure that uses 3 Towers, merging

their output afterwards. Each tower has a different role;

• Local vision Tower Takes all the channels as input and after a convolu-

tional step outputs the maximum value for each feature. The maximum

value should be relative to a location close to the player position, and we

confirmed empirically that this holds true.

• Global vision Towers The second and third tower takes as input only the

player and doors channels and after the convolutional step an array of max-

imum values is returned for each feature. This towers should represent a

more global vision since the MaxPool step is more loose and return mul-

tiple values relative to different parts of the screen. Also the absence of

the map layer focuses the attention on the correlation between the player

position and the points of interest (in this case the doors).

Experience memory

For this milestone the history for experience replay was collected using a sim-

ple FIFO queue, so each step done by the agent ended up inside the history.

4.3.3 Reaching a second room walking down a corridor

Reward function, State representation, Network model

For this second milestone the reward function, the state representation and the

Network model remained unchanged, the improvements were due to a different

handling of the history used during Experience replay.

Experience memory

The history queue of past transitions used in the first step for experience replay

was full of many useless or replicated states. Moreover the ratio of negative reward

28 4. Building and improving an agent for Rogueinabox

Figure 4.2: A visualization of the agent choices

transition to positive reward ones was very high, this is because especially in the

early stages of training when the exploration is totally random, discovering a new

part of the map is hard. Usually the useless and replicated states are negative ones,

often the ones in which the agent is stuck on a wall, so this two problem can be

solved with a single solution. Instead of a FIFO queue we filtered the value that

were being inserted into the history taking all positive values but only a percentage

of the negative ones.

This new approach to history building greatly increased the agent perfor-

mance, allowing it to achieve the second milestone.

4.3.4 Exploring most of the first floor

The main problem we needed to solve to achieve this milestone was the agent

getting stuck on doors and walls. This problem was solved with a combination

of improvement which consist mainly of giving the agent a short term memory

allowing him to change behavior when getting stuck. Another important achieve-

ment of this milestone is the ability of the agent to come back to a previously

visited room if it encounters a dead end.

4.3 The evolution of the agent 29

State representation

A new channel was added to the state ”image”; a channel that encodes the past

movements of the agent. At first this layer was an heat-map of past positions, a

spot was marked with a higher number (hotter) the more it was walked over by

the agent. This approach showed some improvement, but memory representation

that provided even better results was found. The added channel is a Snake-like

representation of the past positions of the agent; those positions are recorded by

Rogueinabox and the corresponding spots are colored with higher numbers the

closer the spot is to the rogue.

Reward function

With the Snake-like memory channel the agent had a vision of where it came

from, but moving around wasn’t incentivised enough by the reward function and

the agent kept getting stuck. A new reward, which varies between 1 and 1/n

(where n is the length of the agent memory), was added. This reward is computed

by first taking the Manhattan distance between the current agent position and its

position n moves in the past and then multiplying this value for 1/n.

Network model

For this milestone in each of the model towers was added one more convo-

lutional layer. This was done with the intention of improving the complexity the

agent was able to manage, to counterbalance the increase of the state complexity.

4.3.5 Exploring as many floors as possible

We were able to improve the performance of the agent aiming at the com-

pletion of this milestone, but the best runs were only able to reach level 4 of the

dungeon and with sub-par consistency. Even so, now the agent almost never get

stuck against a wall and instead loops around in different rooms. It is also impor-

tant to consider that the agent is ignoring the presence of monster in the dungeon,

monsters which become more dangerous with every level of the dungeon.

30 4. Building and improving an agent for Rogueinabox

Figure 4.3: The latest iteration of the network model

Reward function

A simple change in the reward function that ended up impacting greatly the

performance of the agent is increasing the reward for descending the stairs. As the

agent learns to explore more and more, if the difference between exploring few

more tiles and descending is small the agent might decide to ignore the stairs (and

then never find them again).

State representation

The stair position for each floor was added to a separate channel of the state.

In some early tries the stair position was represented in the same channels with

the stairs and while it was functional, the number of false positive (doors being

treated as stairs) was too high to justify the saving in space.

4.4 Training on static memories 31

4.4 Training on static memories

Training a DQL agent can take some time, even a day or two. During research

having to wait that much time for a result only to find out that the changes were

not effective can be frustrating and slow down the research by a lot. Some of this

time is take by the actual training and there is no shortcoming for it, but a huge

chunk of it is taken by the environment simulation.

If saved the transition history created by the agent can be reused over and over

for testing different models without simulating the actions again, saving a lot of

time. Obviously the same history can be reused for a new training only if the

reward function and state representation remain the same, so when those change

a new history must be created.

This method of training was used multiple times during the research presented

in this thesis achieving faster and better result in the short run, while degenerating

after a while due to overfitting (as explained in the next section).

The following is the code that was used.

Build the model we want to use and load the history from disk:

1 model = b u i l d m o d e l ()

2

3 p r i n t (” l o a d i n g h i s t o r y . . . ”)

4 h = p i c k l e . l o a d (open (’ h i s t o r y . p k l ’ , ’ rb ’))

5 p r i n t (” h i s t o r y l o a d e d ! ”)

Define how each iteration must be set up. The method is the same used for

creating a QLearning Experience Replay mini-batch but this time the size of the

batch is the size of the entire history:

1 def s e t u p e p o c h () :

2 i n p u t s = np . z e r o s ((l e n (h) , 5 , 22 , 8 0))

3 t a r g e t s = np . z e r o s ((l e n (h) , 5))

4

5 f o r i in range (l e n (h)) :

6 o l d s t a t e = h [i] [0]

7 a c t i o n i n d e x = h [i] [1]

8 r eward = h [i] [2]

9 n e w s t a t e = h [i] [3]

10 t e r m i n a l = h [i] [4]

11

12 i n p u t s [i] = o l d s t a t e

32 4. Building and improving an agent for Rogueinabox

13 t a r g e t s [i] = model . p r e d i c t (o l d s t a t e)

14

15 i f t e r m i n a l :

16 t a r g e t s [i , a c t i o n i n d e x] = reward

17 e l s e :

18 Q n e w s t a t e = model . p r e d i c t (n e w s t a t e)

19 t a r g e t s [i , a c t i o n i n d e x] = reward + 0 . 9 9 ∗ np . max (Q n e w s t a t e)

20 re turn (i n p u t s , t a r g e t s)

Setup a batch and train on it for a certain number of epochs, in each loop the

batch is updated with the better predict function that we just trained:

1 i t e r a t i o n = 0

2 whi le True :

3 i t e r a t i o n += 1

4 p r i n t (i t e r a t i o n)

5 i n p u t s , t a r g e t s = s e t u p e p o c h ()

6 model . f i t (i n p u t s , t a r g e t s , epochs = 10 , b a t c h s i z e =32)

7 model . s a v e w e i g h t s (” w e i g h t s . h5 ” , o v e r w r i t e =True)

4.4.1 Rog-o-matic supervised learning

As seen in the last section an agent can be trained using a pre-built history.

This pre-built history doesn’t have to be built by the Reinforcement learning agent,

it can also come from other sources such as human expert players or hard-coded

agents.

For this thesis we also build an agent, called StalkerAgent, that uses a modified

version of Rogueinabox Instead of Rogue inside the virtual terminal is run Rog-

o-matic [35] an hard-coded agent that has been probed able to win at Rogue.

Even if this tool wasn’t used for the purposes of this thesis the agent is pro-

vided with Rogueinabox and could easily be used in later works to improve the

behavior of a Reinforcement learning agent.

4.5 Training time vs. Improvement

It could seem obvious that increased training time would in turn bring in-

creased agent performance but it is not always the case.

4.5 Training time vs. Improvement 33

Two different learning techniques were used, one that learned while building

an history and one that learned on a pre-built history.

In both approaches the agent behavior keeps improving for a while and after

that, if training continues, the agent starts unlearning what it has learned. This

inversion happens after a different amount of iteration (and time) which depends

on both the training settings and the method used (since the static history methods

is faster and iterates on much larger batch sizes).

The reason for this strange behavior is probably due to two factors:

• The constant increase in predicted QValue

• Overfitting

As we can see in the figures below, relative to two different training that dy-

namically build the history, the predicted QValues have the tendency to increase

over time. This could seem normal, since a performance increase should be re-

flected in better prediction, but this increase seem to continue indefinitely. This

could be due to the fact that the Qleaning algorithm always picks the max of the

prediction for choosing his actions and overtime if the choice is not balanced it

might lead to worst predictions. In Rogue some moves might be statistically bet-

ter than others due to map generation biases and the rectangular screen size. This

phenomenon has been studied before and is explained in [36]; in the paper the

proposed solution is to use another QNetwork to predict the value (and the cor-

responding action) to chose after each prediction, instead of simply picking the

maximum.

The agent trains for a long time on an history of state transition; the map in

Rogue is randomized for each life and floor but is essentially generated by the

same hidden game rules and this might cause overfitting. The phenomenon is

probably negligible when the history is build dynamically, since old transitions

are rotated out and new are added each step, but it might be really impactful when

training on a pre-built history.

In conclusion, these observations prove that pouring more training time into a

model will not result in a linear increase in performance and could instead worsen

34 4. Building and improving an agent for Rogueinabox

Figure 4.4: The variation of the average predicted QValue over time during train-

ing - Tower model - 2M iterations

it. After a while changes in the model or training settings are needed to further

improve behavior.

4.5 Training time vs. Improvement 35

Figure 4.5: The variation of the average predicted QValue over time during train-

ing - Tower model - 4M iterations

Chapter 5

Conclusions

5.1 Current results

This thesis had two main objectives:

• Build a Reinforcement learning environment for Rogue

• Build and improve a QLearning agent for Rogue

Both this tasks were completed successfully. Rogueinabox was created and

improved alongside with the agent construction; it features not only the main

interface for interacting with rogue but also a library of modules which can be

either reused or taken as inspiration for newer ones.

As for the agent, a set of milestone was set and achieved, even if the perfor-

mance is not always consistent. Working on improving the agent shed light on the

importance of certain training decisions, such as state and recent memory repre-

sentation and experience history build-up and reuse. The success in building an

agent also serve as a proof of the working state of Rogueinabox and his fitness for

Reinforcement learning research.

5.2 Future work

Even if the results were good there is still much work to do in the future.

37

38 5. Conclusions

Rogueinabox could be improved with more feature and modules. Also since

the source code for Rogue and Rogomatic is available, modifications to it could

help Rogueinabox. For example certain feature of Rogue could be temporary dis-

abled or modified to help the agent focus more on particular aspects (e.g. disabling

monster spawns or changing items/monster spawn rate)

The agent exploration could be improved by increasing consistency; right now

the agent is able to explore new area of the dungeon and descend deeper into it

but often gets stuck in loops between two rooms, unable to find the stairs, and

dies of starvation. The agent might also be extended to perform new tasks, such

as fighting monsters or retrieving equipment, both as isolated objectives or in

conjunction with what it already knows.

The training speed could also be improved; faster training speed means faster

research and faster advances. We showed how training on a pre-built history can

speed up learning (but with increased risk of overfitting), in the future the learning

algorithm could also be improved using asynchronous methods and CPU training

(instead of GPU), as shown here [37].

Appendix A

Code examples

In this section will be presented some snippets taken from the current Roguein-

abox implementation.

A.1 Rogue Interface

Here is the main function of Rogueinabox, the one responsible of sending

commands to the game and updating the internal state afterwards. The keypresses

and the corresponding game responses are read/written through a pipe that com-

municates with the game process, running in a virtual terminal. A delay is added

between each action to give Rogue the time to process each keypress. Once the

game update is received the internal variables are updated and the reward and state

are calculated based on the the chosen functions. In the meantime other janito-

rial tasks need be made, such as refreshing Rogue screen to avoid glitches and

dismissing game messages to avoid duplicate states.

1 send command (command) :

2 ””” send a command t o Rogue”””

3 o l d s c r e e n = s c r e e n [:]

4 # send t h e command t h r o u g h t h e p i p e

5 p i p e . w r i t e (command . encode ())

6 # send t h e r e f r e s h s c r e e n command t o a v o i d g r a p h i c g l i t c h e s

7 i f command in g e t a c t i o n s () :

8 p i p e . w r i t e (’\x12 ’ . encode ())

9 # w a i t f o r t h e s c r e e n t o upd a t e

39

40 5. Conclusions

10 t ime . s l e e p (0 . 0 1)

11 # read t h e upda ted s c r e e n

12 u p d a t e s c r e e n ()

13 # i g n o r e messages

14 i f n e e d t o d i s m i s s () :

15 # w i l l d i s m i s s a l l upcoming messages ,

16 # because d i s m i s s m e s s a g e () c a l l s send command () aga in

17 d i s m i s s m e s s a g e ()

18 n e w s c r e e n = s c r e e n [:]

19 # keep i n t e r n a l v a r i a b l e s upda ted

20 u p d a t e s t a i r p o s (o l d s c r e e n , n e w s c r e e n)

21 u p d a t e p l a y e r p o s ()

22 u p d a t e p a s t p o s i t i o n s (o l d s c r e e n , n e w s c r e e n)

23 r eward = compute reward (o l d s c r e e n , n e w s c r e e n)

24 n e w s t a t e = c o m p u t e s t a t e ()

25 t e r m i n a l = game over ()

26 # i f a d i f f e r e n t c o n d i t i o n o t h e r than game over i s reached

27 # s e t t e r m i n a l a c c o r d i n g l y

28 i f r e w a r d g e n e r a t o r . o b j e c t i v e a c h i e v e d or s t a t e g e n e r a t o r . n e e d r e s e t :

29 t e r m i n a l = True

30 # r e t u r n t r a n s i t i o n i n f o

31 re turn reward , n e w s t a t e , t e r m i n a l

A.2 State Representations

This is an example of a state function, a function that determines what and

how the agent sees using internal Rogueinabox information. This particular state

function returns a state made of 5 layers, each one representing different informa-

tion about the current state. These layers are stored in a numpy array for better

manipulation; the size of the array is 5x22x80 and each layer is represented as a

22x80 (Rogue map size) image. Each image (or channel of a 5 channel image)

has white pixel on the coordinates where a particular is present and black pixels

elsewhere.
1 c o m p u t e s t a t e () :

2 ””” r e t u r n a 3 x22x80 numpy a r r a y f i l l e d w i t h a numer ic s t a t e ”””

3 # t h e most common case , t h e s c r e e n i s a v iew o f t h e dungeon

4 i f roguebox . i s m a p v i e w (roguebox . s c r e e n) :

5 p l a y e r p o s = roguebox . p l a y e r p o s

6 s t a i r p o s = roguebox . s t a i r p o s

7 p a s s a b l e p o s = []

8 d o o r s = []

A.2 State Representations 41

9 # d e c l a r e t h e s t a t e

10 s t a t e = np . z e r o s ([5 , 22 , 8 0])

11 # f i n d t h e c o o r d i n a t e s t h a t are p a s s a b l e and t h e p o s i t i o n

12 # o f doors

13 f o r i , j in i t e r t o o l s . p r o d u c t (range (1 , 2 3) , range (8 0)) :

14 p i x e l = roguebox . s c r e e n [i] [j]

15 i f p i x e l not in ’ |− ’ :

16 p a s s a b l e p o s . append ((i , j))

17 i f p i x e l == ’+ ’ :

18 d o o r s . append ((i , j))

19

20 # s t a r t f i l l i n g t h e s t a t e a r r a y

21

22 # l a y e r 0 : t h e map

23 # 0 i f p a s s a b l e , 1 i f i m p a s s a b l e

24 f o r i , j in p a s s a b l e p o s :

25 s t a t e [0] [i − 1] [j] = 255

26

27 # l a y e r 1 : t h e p l a y e r p o s i t i o n

28 # 1 o n l y on p l a y e r p o s i t i o n

29 i f p l a y e r p o s :

30 # t h e p l a y e r pos has t o be a d j u s t e d because u n p r o c e s s e d s c r e e n

31 # has two more l i n e s , one t o p and one bo t tom

32 s t a t e [1] [p l a y e r p o s [0] − 1] [p l a y e r p o s [1]] = 255

33

34 # l a y e r 2 : t h e doors p o s i t i o n s

35 # 1 o n l y on doors p o s i t i o n s

36 f o r i , j in d o o r s :

37 s t a t e [2] [i − 1] [j] = 255

38

39 # l a y e r 3 : t h e p o s i t i o n

40 # 1 o n l y on s t a i r p o s i t i o n

41 i f s t a i r p o s :

42 s t a t e [3] [s t a i r p o s [0] − 1] [s t a i r p o s [1]] = 255

43

44 # l a y e r 4 : snake− l i k e o f p a s t p o s i t i o n s , w i t h f a d i n g

45 u n i t = 255 /10

46 p a s t p o s i t i o n s = roguebox . p a s t p o s i t i o n s

47 f o r i , pos in enumerate (p a s t p o s i t i o n s) :

48 s t a t e [4] [pos [0] −1] [pos [1]] = (i +1)∗ u n i t

49

50 e l i f roguebox . game over () :

51 # t h e s c r e e n i s t h e t o m b s t o n e game over s c r e e n

52 # r e t u r n an a r r a y o f 0 t o d i f f e r e n t i a t e

53 s t a t e = np . z e r o s ([5 , 22 , 8 0])

54 e l s e :

55 # t h e s c r e e n i s i n v e n t o r y , o p t i o n or a t r a n s i t i o n s c r e e n

42 5. Conclusions

56 # r e t u r n an a r r a y o f 1 t o d i f f e r e n t i a t e

57 # t h e a g e n t s s h o u l d n o t g e t t o t h i s case

58 s t a t e = np . ones ([5 , 22 , 8 0])

59 re turn s t a t e

A.3 Reward Functions

This is an example of a reward function, a function that determines what

should be the behavior of the agent. This particular reward function tries to make

the agent explore and move around, descending to the next floor as soon as possi-

ble. To achieve this much greater rewards are given to descending as opposed to

exploring, also continuous small rewards are given if the agent has been moving

away from where is was before (hence probably exploring) The following are the

rewards implemented in this function:

• +100 for discovering a new tile

• +1 for discovering a new tile

• +0.1 x d, where d is the Manhattan distance of the current position and the

position 10 moves before (up to +1)

• -1 for standing still

• -0.1 as a living reward

• -0.1 for a game over

• -1 for error states

1 compu te reward (o l d s c r e e n , n e w s c r e e n) :

2 ””” r e t u r n t h e reward t h e l a s t a c t i o n y i e l d ”””

3 def g e t p l a y e r p o s (s c r e e n) :

4 f o r i , j in i t e r t o o l s . p r o d u c t (range (1 , 2 3) , range (8 0)) :

5 p i x e l = s c r e e n [i] [j]

6 i f p i x e l == ”@” :

7 re turn (i , j)

8 def m a n h a t t a n d i s t a n c e (a , b) :

9 re turn abs (a [0] − b [0]) + abs (a [1] − b [1])

A.4 Agents 43

10 i f not roguebox . game over () and roguebox . i s m a p v i e w (o l d s c r e e n)

11 \and roguebox . i s m a p v i e w (n e w s c r e e n) :

12 # p a r s e t h e s c r e e n f o r i n f o s

13 i n f o s = g e t i n f o s (o l d s c r e e n , n e w s c r e e n)

14

15 # compute reward

16 r eward = 0

17 # reward f o r d e s c e n d i n g

18 i f i n f o s [” d u n g e o n l e v e l ”] [” o l d ”] < i n f o s [” d u n g e o n l e v e l ”] [”new”] :

19 r eward = 100

20 e l s e :

21 # p u n i s h m e n t f o r s t a n d i n g s t i l l

22 i f g e t p l a y e r p o s (o l d s c r e e n) == g e t p l a y e r p o s (n e w s c r e e n) :

23 r eward = −1

24 # reward f o r e x p l o r i n g and d i s c o v e r i n g new p a r t s o f t h e map

25 e l i f i n f o s [” e x p l o r e d t i l e s ”] [”new”] >

26 \ i n f o s [” e x p l o r e d t i l e s ”] [” o l d ”] :

27 r eward = 1

28 e l s e :

29 # l i v i n g reward

30 r eward = −0.1

31 #add movement bonus , t o i n c e n t i v i s e wander ing

32 a = roguebox . p a s t p o s i t i o n s [0]

33 b = roguebox . p a s t p o s i t i o n s [−1]

34 r eward += m a n h a t t a n d i s t a n c e (a , b) ∗ 0 . 1

35

36 e l i f roguebox . game over () :

37 # game over

38 r eward = −0.1

39 e l s e :

40 # we are i n some o t h e r view , p r o b a b l y a sub−menu l i k e

41 # i n v e n t o r y or o p t i o n s

42 # r e t u r n a dummy reward o f −1 t o a v o i d c r a s h e s

43 r eward = −1

44

45 re turn r eward

A.4 Agents

This an example of the implementations of the main methods of an agent.

This particular agent is a Qlearner agent, it interacts with Rogueinabox and tries

to learn how to reach its objectives using DeepQLearning (DQL). There are three

main functions: predict, act and observe which implement the principles of Rein-

44 5. Conclusions

forcement learning. The agent predicts which is the best action to make, performs

it acting in the environment and then learns from its experiences. These three

steps combine into the function train step, which is called every iteration.

1 p r e d i c t () :

2 ””” r e t u r n a numpy a r r a y o f l e n g t h a c t i o n s n u m a l l s e t t o 0

3 e x c e p t f o r t h e i n d e x o f t h e a c t i o n t o t a k e which i s s e t t o 1”””

4 # chose an a c t i o n $\ v a r e p s i l o n $ g re ed y

5 a c t i o n s a r r a y = np . z e r o s (p a r a m e t e r s [” a c t i o n s n u m ”])

6 # c h o o s e s an a c t i o n i n an $\ v a r e p s i l o n $−g re ed y way

7 i f random . random () <= p a r a m e t e r s [” e p s i l o n ”] :

8 a c t i o n i n d e x = random . r a n d r a n g e (p a r a m e t e r s [” a c t i o n s n u m ”])

9 e l s e :

10 q = model . p r e d i c t (s t a t e)

11 a c t i o n s = p a r a m e t e r s [” a c t i o n s ”]

12 i f p a r a m e t e r s [” o n l y l e g a l a c t i o n s ”] :

13 l e g a l a c t i o n s = roguebox . g e t l e g a l a c t i o n s ()

14 f o r a c t i o n in a c t i o n s :

15 i f a c t i o n not in l e g a l a c t i o n s :

16 q [(0 , a c t i o n s . i n d e x (a c t i o n))] = −np . i n f

17

18 a c t (a c t i o n i n d e x) :

19 a c t i o n = p a r a m e t e r s [” a c t i o n s ”] [a c t i o n i n d e x]

20 reward , n e w s t a t e , t e r m i n a l = roguebox . send command (a c t i o n)

21 o l d s t a t e = s t a t e

22 s t a t e = model manager . r e s h a p e n e w s t a t e (o l d s t a t e , n e w s t a t e)

23 re turn reward , t e r m i n a l

24

25 o b s e r v e () :

26 # sample a mini−b a t c h from p a s t e x p e r i e n c e s

27 m i n i b a t c h = h i s t o r y m a n a g e r . p i c k b a t c h (p a r a m e t e r s [” b a t c h s i z e ”])

28 i n p u t s = np . z e r o s ((p a r a m e t e r s [” b a t c h s i z e ”] ,) + s t a t e . shape [1 :])

29 t a r g e t s = np . z e r o s ((p a r a m e t e r s [” b a t c h s i z e ”] ,

30 \ p a r a m e t e r s [” a c t i o n s n u m ”]))

31

32 # Now we do t h e e x p e r i e n c e r e p l a y

33 f o r i in range (p a r a m e t e r s [” b a t c h s i z e ”]) :

34 o l d s t a t e = m i n i b a t c h [i] [0]

35 a c t i o n i n d e x = m i n i b a t c h [i] [1]

36 r eward = m i n i b a t c h [i] [2]

37 n e w s t a t e = m i n i b a t c h [i] [3]

38 t e r m i n a l = m i n i b a t c h [i] [4]

39

40 i n p u t s [i] = o l d s t a t e

41 t a r g e t s [i] = model . p r e d i c t (o l d s t a t e)

42

43 i f t e r m i n a l :

A.4 Agents 45

44 t a r g e t s [i , a c t i o n i n d e x] = reward

45 e l s e :

46 Q n e w s t a t e = t a r g e t m o d e l . p r e d i c t (n e w s t a t e)

47 t a r g e t s [i , a c t i o n i n d e x] = reward +

48 \ p a r a m e t e r s [”gamma”] ∗ np . max (Q n e w s t a t e)

49

50 l o s s = model . t r a i n o n b a t c h (i n p u t s , t a r g e t s)

51 re turn l o s s

52

53 t r a i n s t e p (i t e r a t i o n) :

54 a c t i o n i n d e x = p r e d i c t ()

55 reward , t e r m i n a l = a c t (a c t i o n i n d e x)

56 h i s t o r y m a n a g e r . u p d a t e h i s t o r y (a c t i o n i n d e x , reward , t e r m i n a l)

57 # Begin t r a i n i n g o n l y when we have enough h i s t o r y

58 i f h i s t o r y m a n a g e r . h i s t l e n () >= p a r a m e t e r s [” m i n h i s t ”] :

59 o b s e r v e ()

60 # a nn ea l $\ v a r e p s i l o n $

61 i f p a r a m e t e r s [” e p s i l o n ”] > p a r a m e t e r s [” f i n a l e p s i l o n ”] :

62 p a r a m e t e r s [” e p s i l o n ”] −= (p a r a m e t e r s [” i n i t i a l e p s i l o n ”]

63 \− p a r a m e t e r s [” f i n a l e p s i l o n ”]) / \
64 # save p r o g r e s s

65 i f i t e r a t i o n \% 100000 == 0 :

66 s a v e p r o g r e s s ()

67 # p l o t (s t a t e [0])

68 # u pd a t e t a r g e t QNetwork

69 i f i t e r a t i o n \% 10000 == 0 :

70 t a r g e t m o d e l . s e t w e i g h t s (model . g e t w e i g h t s ())

71 i f t e r m i n a l or p a r a m e t e r s [” i t e r a t i o n ”] :

72 roguebox . r e s e t ()

73 r e i n i t ()

74

75 r u n s t e p () :

76 a c t i o n i n d e x = p r e d i c t ()

77 reward , t e r m i n a l = a c t (a c t i o n i n d e x)

46 5. Conclusions

Bibliography

[1] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

[2] Theano Development Team, “Theano: A Python framework for

fast computation of mathematical expressions,” arXiv e-prints, vol.

abs/1605.02688, May 2016. [Online]. Available: http://arxiv.org/abs/1605.

02688

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale

machine learning on heterogeneous systems,” 2015, software available from

tensorflow.org. [Online]. Available: http://tensorflow.org/

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade

learning environment: An evaluation platform for general agents,” J.

Artif. Intell. Res. (JAIR), vol. 47, pp. 253–279, 2013. [Online]. Available:

http://dx.doi.org/10.1613/jair.3912

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,

and W. Zaremba, “Openai universe,” https://github.com/openai/universe,

2016.

47

https://github.com/fchollet/keras
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://tensorflow.org/
http://dx.doi.org/10.1613/jair.3912
https://github.com/openai/universe

48 BIBLIOGRAPHY

[6] ——, “Openai gym,” 2016.

[7] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski,

“Vizdoom: A doom-based AI research platform for visual reinforcement

learning,” CoRR, vol. abs/1605.02097, 2016. [Online]. Available: http:

//arxiv.org/abs/1605.02097

[8] V. Cerny and F. Dechterenko, “Rogue-like games as a playground for ar-

tificial intelligence–evolutionary approach,” in International Conference on

Entertainment Computing. Springer, 2015, pp. 261–271.

[9] krajj7, “Bothack,” https://github.com/krajj7/BotHack, 2015.

[10] U. of Wisconsin. A basic introduction to neural networks. [Online].

Available: http://pages.cs.wisc.edu/∼bolo/shipyard/neural/local.html

[11] A. Deshpande. A beginner’s guide to understand-

ing convolutional neural networks. [Online]. Avail-

able: https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%

27s-Guide-To-Understanding-Convolutional-Neural-Networks/

[12] ——. A beginner’s guide to understanding convolutional neural networks

part 2. [Online]. Available: https://adeshpande3.github.io/A-Beginner%

27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/

[13] karpathy@cs.stanford.edu. Convolutional neural networks for vi-

sual recognition. [Online]. Available: https://cs231n.github.io/

convolutional-networks/

[14] F. Chollet. How convolutional neural networks see

the world. [Online]. Available: https://blog.keras.io/

how-convolutional-neural-networks-see-the-world.html

[15] Y. Li, “Deep reinforcement learning: An overview,” CoRR, vol.

abs/1701.07274, 2017. [Online]. Available: http://arxiv.org/abs/1701.07274

http://arxiv.org/abs/1605.02097
http://arxiv.org/abs/1605.02097
https://github.com/krajj7/BotHack
http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
http://arxiv.org/abs/1701.07274

BIBLIOGRAPHY 49

[16] L. P. Kaelbling. Value iteration. [Online]. Available: https://www.cs.cmu.

edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/node19.html

[17] N. H. Dan Klein, Pieter Abbeel. Berkeley ai course. [Online]. Available:

http://ai.berkeley.edu/lecture videos.html

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,

S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,

D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[Online]. Available: https://doi.org/10.1038/nature14236

[19] F. Chollet. Keras documentation. [Online]. Available: https://keras.io/

[20] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed.

Cambridge, MA, USA: MIT Press, 1998.

[21] M. Wiering and J. Schmidhuber, “Solving pomdps with levin search and

EIRA,” in Machine Learning, Proceedings of the Thirteenth International

Conference (ICML ’96), Bari, Italy, July 3-6, 1996, L. Saitta, Ed. Morgan

Kaufmann, 1996, pp. 534–542.

[22] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Solving deep mem-

ory pomdps with recurrent policy gradients,” in Artificial Neural Networks

- ICANN 2007, 17th International Conference, Porto, Portugal, September

9-13, 2007, Proceedings, Part I, ser. Lecture Notes in Computer Science,

J. M. de Sá, L. A. Alexandre, W. Duch, and D. P. Mandic, Eds., vol. 4668.

Springer, 2007, pp. 697–706.

[23] A. Tamar, S. Levine, and P. Abbeel, “Value iteration networks,” CoRR, vol.

abs/1602.02867, 2016. [Online]. Available: http://arxiv.org/abs/1602.02867

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:

https://doi.org/10.1162/neco.1997.9.8.1735

https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/node19.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/node19.html
http://ai.berkeley.edu/lecture_videos.html
https://doi.org/10.1038/nature14236
https://keras.io/
http://arxiv.org/abs/1602.02867
https://doi.org/10.1162/neco.1997.9.8.1735

50 BIBLIOGRAPHY

[25] F. A. Gers, J. Schmidhuber, and F. A. Cummins, “Learning to

forget: Continual prediction with LSTM,” Neural Computation, vol. 12,

no. 10, pp. 2451–2471, 2000. [Online]. Available: https://doi.org/10.1162/

089976600300015015

[26] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Gated feedback recurrent

neural networks,” in Proceedings of the 32nd International Conference

on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, ser.

JMLR Workshop and Conference Proceedings, F. R. Bach and D. M.

Blei, Eds., vol. 37. JMLR.org, 2015, pp. 2067–2075. [Online]. Available:

http://jmlr.org/proceedings/papers/v37/chung15.html

[27] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning for partially

observable mdps,” CoRR, vol. abs/1507.06527, 2015. [Online]. Available:

http://arxiv.org/abs/1507.06527

[28] G. Lample and D. S. Chaplot, “Playing FPS games with deep reinforcement

learning,” in Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence, February 4-9, 2017, San Francisco, California, USA., S. P.

Singh and S. Markovitch, Eds. AAAI Press, 2017, pp. 2140–2146. [Online].

Available: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456

[29] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu,

“Spatial transformer networks,” in Advances in Neural Information

Processing Systems 28: Annual Conference on Neural Information

Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,

Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,

and R. Garnett, Eds., 2015, pp. 2017–2025. [Online]. Available:

http://papers.nips.cc/paper/5854-spatial-transformer-networks

[30] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 39, no. 4, pp. 640–651, 2017. [Online]. Available: https:

//doi.org/10.1109/TPAMI.2016.2572683

https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
http://jmlr.org/proceedings/papers/v37/chung15.html
http://arxiv.org/abs/1507.06527
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456
http://papers.nips.cc/paper/5854-spatial-transformer-networks
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683

BIBLIOGRAPHY 51

[31] M. McPartland and M. Gallagher, “Creating a multi-purpose first

person shooter bot with reinforcement learning,” in Proceedings of

the 2008 IEEE Symposium on Computational Intelligence and Games,

CIG 2009, Perth, Australia, 15-18 December, 2008, P. Hingston

and L. Barone, Eds. IEEE, 2008, pp. 143–150. [Online]. Available:

https://doi.org/10.1109/CIG.2008.5035633

[32] B. Tastan, Y. Chang, and G. Sukthankar, “Learning to intercept

opponents in first person shooter games,” in 2012 IEEE Conference

on Computational Intelligence and Games, CIG 2012, Granada, Spain,

September 11-14, 2012. IEEE, 2012, pp. 100–107. [Online]. Available:

https://doi.org/10.1109/CIG.2012.6374144

[33] B. Harrison. Angband borg. [Online]. Available: http://www.thangorodrim.

net/borg.html

[34] A. Coggeshall. Playing spelunky with deep q learning – adam cogge-

shall. Youtube. [Online]. Available: https://www.youtube.com/watch?v=

atyscEQRaSc

[35] M. L. Mauldin, G. Jacobson, A. Appel, and L. Hamey, “Rog-o-matic: A

belligerent expert system,” in Fifth Biennial Conference of the Canadian

Society for Computational Studies of Intelligence, London Ontario, May 16,

1984., 1984.

[36] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with

double q-learning,” CoRR, vol. abs/1509.06461, 2015. [Online]. Available:

http://arxiv.org/abs/1509.06461

[37] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep

reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].

Available: http://arxiv.org/abs/1602.01783

https://doi.org/10.1109/CIG.2008.5035633
https://doi.org/10.1109/CIG.2012.6374144
http://www.thangorodrim.net/borg.html
http://www.thangorodrim.net/borg.html
https://www.youtube.com/watch?v=atyscEQRaSc
https://www.youtube.com/watch?v=atyscEQRaSc
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1602.01783

Special thanks

Andrea Asperti and Carlo De Pieri, for the incredible support and collabora-

tion which made this internship and thesis project awesome.

All my friends, without whom my days would be dull and this thesis would’ve

been completed a month earlier.

