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Summary: Strong fatigue during sustained operations is difficult to quantify because of 
its complex nature and large inter-individual differences. The most evident and 
unambiguous sign is the occurrence of microsleep (MS) events. We aimed at detecting 
MS utilizing computational intelligence methods. Our analysis was based on biosignal 
and video recordings of 10 healthy young adults who completed 14 sessions over two 
nights in our real-car driving simulation lab. Visual scoring by trained raters led to 2,290 
examples of MS. Only evident events accompanied by prolonged eyelid closures, roving 
eye movements, head noddings, major driving incidents, and drift-out-of-lane accidents 
were regarded as MS. All other cases with signs of fatigue were regarded as dubious. The 
same amount of counterexamples (Non-MS) where continued driving was still possible 
were picked out from the recordings. Non-MS and MS examples covered only 15% of 
the whole time. Support-Vector Machines were utilized as classifiers and were adapted to 
these two classes of examples. If such classifiers were applied consecutively, then 100% 
of time is covered. Validation analysis demonstrated that the classifier gained high 
selectivity and high specificity. Based on this complete coverage, the percentage of MS 
in a predefined time span can be calculated. This measure was highly correlated to 
deteriorations in driving performance and to subjective self-ratings of sleepiness. We 
conclude that reliable detection of MS is possible despite large intra- and inter-individual 
differences in behaviour and in biosignal characteristics. Therefore, the percentage of 
detected MS gives an objective measure of strong driver fatigue. 
 

INTRODUCTION  
 
In their review on transport safety and sleepiness Philip and Åkerstedt (2006)stated that “one 
major obstacle to prevention of sleepiness behind the wheel is the lack of instruments for 
measuring absolute levels of sleepiness in field situations. Without such instruments enforcement 
of alertness will be extremely difficult and interventions may have to be restricted to public 
information campaigns, the results of which are unclear”. Currently there are more than twenty 
different instruments on the market which are based on a variety of different functional 
principles and which support different levels of interactions between the system and the driver. 
On a low level of interaction the estimated fatigue is displayed to the driver in order to give him 
a feedback and to support his own decision making. The resolution of such instruments 
(alertometer) should be at least as capable of discerning two or three gradations of fatigue. For 
higher levels of interaction where countermeasures, like audible or visual warnings are presented 
to the driver, much more accurate estimations of fatigue are required. If the false alarm rate 
would be too high, such systems would never be acceptable to the general public.  Conversely, 
missing errors are also not acceptable especially during high-risk conditions where strong 
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fatigue-related errors could lead to significant life threatening consequences. Therefore, 
sensitivity, specificity, as well as temporal resolution must be high especially during strong 
fatigue and around MS events. 
 
MS events are clearly observable behavioral states which appear as short intrusions of sleep into 
wakefulness under demands of sustained attention. Many authors have reported blink duration or 
related measures like PERCLOS as appropriate parameters of MS events. But,a recent contri-
bution(Schleicher et al.,2008)reported onlarge inter-individual differences in oculomotoric 
parameters in a data set of 82 subjects. In addition to correlation analysis these authors investi-
gated in detail blink duration immediately before and after MS whichwere defined as overlong 
eye blinks. The mean duration of overlong eye blinks (MS) is not substantially longer (269 ms) 
than of blinks immediately before MS (204 ms) and after MS (189 ms). These blink durations 
seems to be much shorter than the reported 700ms of (Summala et al.,1998). (Ingre et al.,2006) 
also reported large inter-individual variability of blink duration in a driving simulation study of 
10 subjects after working on a night shift. In conclusion, only gradual changes and large inter-
individual differences appear in this important parameter which is heavily used in fatigue 
monitoring instruments. Similar findings are also reported of other variables, e.g. delay of lid 
reopening, blink interval, and standardized lid closure speed (Schleicher et al.,2008). 
 
Adaptive biosignal processing and modern pattern recognition techniques have been shown to be 
effective methods for detecting MS(Golz et al., 2007 a). Such non-parametric methodology is 
capable of handling the large inter-individual differences found in this kind of physiological data. 
The main concern of this contribution is as follows. Up to now, our MS detector has been based 
on biosignals fromwellobservableMS events and of the same amount of well observablecounter-
examples, i.e. periods of Non-MS, where the driver is still able to drive. But there are many 
periods where such well observablevisual scoring of driver’s state is simply not possible. It is 
during these times where it would be of interest to know how well the MS detector is 
performing. This paper aims at the processing of consecutively segmented biosignals. The 
detector output is expected to be high during MS and MS-like states of the driver and to be low 
at all other states. This way, it is possible to estimate a percentage of MS which provides a new 
measure of strong fatigue.  
 
EXPERIMENTS 
 
10 healthy young adults completed 7 overnight driving sessions (1 - 8 a.m.) in our real car 
driving simulation lab. Sessions started at the top of every hour, had duration of 40 min, and 
were preceded and followed by vigilance tests and responding to sleepiness questionnaires. 
Reports of vigilance tests will be given elsewhere. Time since sleep was at least 16 hours, 
checked by wrist actometry. Subjects have been prepared beforehand by simulator training. 
 
Several biosignals were recorded: EEG (F1, F2, C3, Cz, C4, O1, O2, A1, A2, com.av.ref.), EOG 
(vertical, horizontal), ECG, EMG (m. submentalis). In addition, three video recordings (driver’s 
head & pose, driver’s eyes, driving scene) were stored. Also several variables of the car, like e.g. 
time series of steering angle and lateral position of the vehicle, were sampled. The standard 
deviation of the latter is abbreviated in this paper as sdlat. 
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Subjectively experienced sleepiness was rated every 4 min during driving following suggestions 
of (Åkerstedt et al., 2006). Subject’s response was given orally using the Karolinska Sleepiness 
Scale (KSS) (Åkerstedt, 1990). 
Further experimental details have been published elsewhere (Golz et al., 2007 a, b). 
 
ANALYSIS 
 
A. Scoring of MSE   
 
A first judgment of ongoing MS was done immediately during the experiments by two operators 
who watched the video streams. Typical signs of MS are prolonged eyelid closures, roving eye 
movements, head noddings, major driving incidents and drift-out-of-lane accidents. Several other 
signs were observed, but it has been decided not to solely rely on them. Some examples are 
bursts of alpha and theta activity in the EEG, spontaneous pupil contractions and stare gaze. In 
all, we have found 2,290 MS events (per subject: mean number 229 ± 67, range 138 - 363). 
 
For the detection of MS events on a second by second basis a careful determination of the point 
in time where MS is starting will be needed. Therefore, all recorded video material and 
biosignals underwent off-line scoring made by independent and trained raters. They refined 
results of online scoring into evident MS and Non-MS (Fig. 1, red and blue dots). Later, a third 
visual scoring wasperformed by another trained rater. He labeled all periods (every 30 seconds) 
by different scores of the drivers state (Fig. 1, green dots). This is needed as a sample set for 
validation of consecutive classification (see below). 
 
 
 
 
 
 
 
 
Figure 1.An example of the outcome of visual scoring during a time span of approx. 15 min. MS (red 
dots, upper row), NonMS (blue dots, middle row) and time points of additional scores (green dots, 
lower row) are visual ratings of experts. The outcome of automatic MS classification is indicated by 
grey bars. Marked events are examples of conformities (1, 2) and nonconformities (3, 4) between 
subjective and objective detection, i. e. scoring and classification, respectively 
 
B. Pre-Processing  
 
Empirical investigations showed that segmentation is very sensitive to classification accuracy 
(Golz et al., 2007 a). Segment length should range between 4 and 12 seconds. Here we used 6 s 
and 0.1 s as step size of consecutive segmentation. This resulted in approximately 24,000 
segments per driving session and 168,000 per night. Artifacts turned out to play a minor role 
when computational intelligence algorithms are applied for classification. Unpublished 
investigations utilizing Independent Component Analysis (ICA) to eliminate eye blink artifacts 
from EEG resulted in no significant improvements of MS detection compared to the case of no 
artifact elimination. 
 

 
time of day 
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C. Feature Extraction  
 
Several methods for extraction of signal features in time, spectral and wavelet domain as well as 
in state space were performed. It turned out that spectral power densities estimated by the 
modified periodogram method are most useful for MS classification (Golz et al., 2007 a). 
Logarithmic scaling and summation in narrow spectral bands (width 1 Hz, range 0.5 to 23 Hz) 
are necessary to minimize classification errors. The Delay-Vector Variance, which is a state 
space method, is useful as a complement, but is not highly important (Golz et al., 2007 a). 
Therefore, we only utilized band-averaged log power densities. 
 
D. Classifier Setup  
 
Support-Vector Machines incorporating radial basis functions as kernel were most optimal in 
terms of minimizing empirical errors of classification. But this has only been found correct if the 
hyperparameter and the regularization parameterwere optimized carefully. It must be emphasized 
that this preparation of a classifier was based solely on a set of clear examples of MS and Non-
MS. They cover about 15 % of the whole time only. In contrast, the consecutive recall of the 
classifier covers 100 % of the whole time of driving. 
 
RESULTS 
 
A. Classificator performance  
 
Conflict-free cases (true positives, true negatives), where SVM output is MS or Non-MS and 
rater’s opinion is the same (Fig. 1: marked events 1 and 2, respectively), occurred most often. 
Conflicts arise when SVM output is Non-MS and rater judges MS (false negatives; marked event 
3), or SVM output is MS and rater judges Non-MS (false positives; marked event 4). 
This result is quantified by ROC analysis (Fig. 2, red).  Lowest classification error rate (conflicts 
in test set) is 2.3 % in the mean. True positives and true negatives were found in 97.7 % of all 
events. Errors increased when data of the validation set were applied (Fig. 2, green). For a given 
specificity, sensitivity is lower. But note that this data set is unbalanced. That’s why an 
optimistic bias due to prior probability has to be taken into account. 
 
For comparison, results of other authors (Davidson et al., 2007) are presented (Fig. 2, blue). 
Their MS investigations were performed during a continuous tracking task and resulted in lower 
sensitivity, lower specificity, as well as in higher variance. This decrease in accuracy could be 
due to other methods of feature extraction and classification, but should mostly account to their 
definition of MS. These authors defined MS by large tracking errors which are due to 
performance decrements. But MS is only one cause for lowered performance among other 
psychophysiologic factors, such as lack of concentration, or aversions against the monotonous 
task. We believe that visual scoring of only evident examples of MS is more reliable because 
behavioral signs of strong central fatigue are complex and differ largely between subjects. 
Therefore, it is important to observe visually the temporal development of the many behavioral 
signs as well as to check the driving scene video for large performance decrements. 
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Figure 2.Receiver Operating Characteristic (ROC) of one subject. ROC1 was based on evident MS and Non-
MS data, whereas ROC2 was based on visual scores given every 30 s. 95 % confidence intervals are marked 
(light red, light green). ROC3 represents results of (Davidson et al., 2007). Minimal test errors (ETEST) are 
indicated (open circles). The table contains number of examples, sensitivity, specificity and area under ROC 
 
B. Consecutive Classification 
 
So far, we have shown that processing EEG and EOG and utilizing computational intelligence 
methods is successful in regard to classification of MS and Non-MS. But as mentioned above, 
this is true for clearly scored events. They cover only 15 % of the total length of driving.  
For consecutive classification we utilized the optimized SVM classifier (Fig. 2, ROC1) in recall 
mode, which means that no further adaptation (training) was done. As described (Sect. III B) 
signals were segmented consecutively. Afterwards features were extracted and fed as input 
variables to the SVM classifier. This led to a binary output variable indicating MS or Non-MS at 
a sampling rate of 10 s-1. From this variable MS percentage was calculated, which is the number 
of MS output samples to the total number of samples in a pre-defined interval (4 min). 
All three independent variables: MS percentage, KSS, Sdlat,clearly confirm time-on-task and 
time-since-sleep effects(Fig. 3), because they all increase within and between driving sessions. 
 
The only exception is that a slight decrease in MS percentage as well as in KSS arises between 
the 6th and 7th driving sessions. This could be caused by the time-of-day effect which is due to 
the habitual sleep-wake-cycle. Another effect could be a motivational one: subjects expect the 
end of experiments after the 7th session. Increasing MS percentages have two aspects: increasing 
frequency and increasing MS durations. 
 
Mean and standard deviations of the purely subjective measure KSS is strongly correlated with 
MS percentage, which is a purely objective measure. Pearson’s correlation coefficients are 
always greater than 0.95 except for the 7th session. Note that for both measures large standard 
deviations emerge which is mainly due to large inter-individual differences. Driving performance 
measured by Sdlat is also correlated with MS percentage, but not such high. Pearson’s 
correlation coefficients range between 0.8 and 0.96.  
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Figure 3.Mean and standard deviation of MS percentage (red), subjective sleepiness (green), and standard 
deviation of lateral position of the vehicle(blue). Averaging interval was 4 min. Strong correlations between 
both objective and subjective measures are indicated by Pearson’s coefficients 
 
CONCLUSIONS 
 
We have shown that optimizing a classification algorithm empirically on a data set of only 
evident examples of MS and non-MS is successful for sensor applications where a consecutive 
sequence of signal segments has to be processed. The main difficulty of consecutive detection 
was the lack of validation because a lot of examples were to be processed where it was not clear 
how to label them. Many examples seemed to be Non-MS, but some behavioral signs gave 
reason to doubt, e.g. stare gazes or slow sliding head movements. Otherwise, not every 
prolonged eye-lid closure must be MS. 
 
Two methods were proposed to validate the methodology. First, we engaged a further coworker 
to score visually at given points in time (every 30 sec) if MS or Non-MS appears. This way, a 
fully independent validation set was generated. ROC analysis (Fig. 2, ROC2) resulted in only 
slightly lower sensitivity and specificity compared to the test set of evident examples (ROC1). 
Results of a comparable study of other authors (ROC3) demonstrated that this match is not a 
matter of course. In conclusion, the MS detector based on EEG and EOG performs very well and 
is consequently validated by an independent measure (visual scoring). 
 
Second, every consecutively detected MS event was counted and the percentage of MS was 
computed. This was considered as anew, objective measure of strong central fatigue. Well 
known effects in psychophysiology, like time-on-task and time-since-sleep, were confirmed by 
this measure. Moreover, a subjective measure, the self-reported sleepiness on the standardized 
Karolinska Sleepiness Scale, correlated always strongly to this objective measure. We have also 
demonstrated that MS percentage correlated to Sdlat, which is an objective driving performance 
measure (Åkerstedt et al., 2006). 



PROCEEDINGS of the Fifth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design 

15 

Therefore, we conclude that consecutive and reliable detection of MS during periods of strong 
central fatigue is possible despite large intra- and inter-individual differences in behavior and in 
EEG and EOG characteristics (Ingre et al., 2006) (Golz et al., 2007 a). The question remains 
open if such detector application would also work during real driving. During strong fatigue and 
MS, such experiments would be too dangerous. Therefore, MS detection has to be verifiedunder 
controlled laboratory conditions. However, for applicative reasons this is valuable to develop 
driver monitoring technology. Their improvement and validation necessitates an independent 
reference standard of MS detection and strong central fatigue. 
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