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Summary: Drivers aim to maintain their vehicle within a number of individual 
situated safety margins. Safety margin violations are characterized by rapid strong 
corrective steering. Steering entropy was introduced to quantify drivers’ efforts to 
maintain their lateral safety margins. In the original steering entropy, several 
computational assumptions were made. The objective is to scrutinize and 
motivate these choices and exemplify the effects of deviations from these choices 
with data from a driver distraction study. The new optimized algorithm is shown 
to yield significances where a number of classical metrics fail to find any 
significance. Its sensitivity is attributed to the fact that a number of observed 
changes in steering behavior all manifest in a widened steering prediction error 
distribution which the algorithm picks up sensitively with its log-based weighting 
of prediction error outliers and its use of a prediction filter that is maximally 
sensitive to the spectral characteristics of the baseline data.   

 
INTRODUCTION 
 
Degradations in drivers’ ability to maintain safe operation of their vehicles manifests in changes 
in perception or control. These differences can be quantified most sensitively using drivers’ 
control actions. Interpretation in terms of safety and performance requires sensing of the 
consequences of drivers’ actions. It is important to recognize that: (i) a given safety or 
performance level can be achieved with a number of different behaviors, and (ii) drivers adapt 
their safety and performance criteria to cope with the total task demands. Lane keeping can be 
characterized as the process of maintaining time to line crossing within a self-imposed situated 
tolerance range. In response to changing task demands, drivers exhibit: (i) a change in the power 
spectral density of their steering control actions, and/or (ii) a change in tolerance margins. In 
general, as task demands increase, drivers exhibit an increase in steering power at certain 
frequencies and an increased number of safety margin violations. Steering entropy (SE) was 
developed to specifically quantify the increase in high frequency steering corrections that result 
after periods of diverted or reduced attention (i.e., in response to a perceived vehicle drift outside 
the acceptable tolerance margins that mounted during these periods of degraded information 
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pickup about the lateral vehicle state). Focus is directed to increasing the sensitivity of the SE 
metric to be able to better assess changes in steering behavior in response to changes task load.   
 
EXPERIMENTAL DATA 
 
Steering data from a driver distraction study that took place in the UMN VESTR driving 
simulator was used (Rakauskas et al., 2005). In the section of data used in this study, subjects 
followed a lead vehicle for 120 s whose speed fluctuated roughly sinusoidally with a high (i.e., 
CF Seg. 2) cyclically switching frequency between 0.06 and 0.12Hz and an amplitude between 
55 and 75 mph (see dotted lines in Figure 1). Twelve of the 48 subjects either performed no task 
(baseline), a hands-free cell phone conversation (audio task condition), or a set of common in-
vehicle tasks (visual task condition). Steering profiles for all conditions for subject 17 are shown 
in Figure 1.   
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Figure 1. Raw steering angle time series of subject 17 for baseline (top), cell phone 
task (middle), and in-vehicle tasks (bottom). Deviations from median vehicle speed 
[m/s] are shown as dotted lines.   

 
SPECTRAL STEERING ANALYSIS  
 
Steering data in Figure 1 shows several changes to in-vehicle tasks: (i) the cell phone task shows 
a higher frequency response (see discussion of power spectra in Figure 2 for alternative coping 
strategies/effects), (ii) the cell phone task shows fewer strong steering correction (possibly due to 
enhanced vigilance or relaxed safety margins), (iii) the visual tasks shows more strong steering 
actions (corrections), and (iv) the visual task also shows higher frequency steering actions.   
 
The set of in-vehicle tasks results in an increase in steering power at all frequencies and is 
therefore easily differentiated from baseline driving by a number of steering performance 
assessment metrics; Figure 3 shows that steering variance increases and that bandwidth decreases 
for nearly all subjects. In contrast, the cell phone task does not yield significant effects with these 
metrics. However, as shown in Figure 7, the optimized SE algorithm does yield a significant 
effect for the cell phone task. The reason for this is that SE does not focus only on magnitude 
like steering variance nor only on frequency like bandwidth; it focuses essentially on the 
derivative (i.e., the prediction errors that result from a high-pass filtering of the steering data). 
Note that the derivative of a sinusoidal signal ( )ftA π2sin  is ( )ftfA ππ 2cos2 , whose power 
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increases with amplitude as well as frequency. This is important because drivers adapt or cope 
differently to in-vehicle tasks (particularly the cell phone task in this study). As Fig. 2 shows, 
three types of shifts in the power spectral density are observed in drivers’ steering profile during 
the cell phone task (thick dotted lines); some subjects show primarily an increase at the low 
frequencies (e.g., subject 15), some primarily an increase in high frequencies (e.g., subject 17), 
and some subjects show an overall increase in power at all frequencies similar to what is 
observed in response to the visual tasks (e.g. subject 22). Because of these various coping 
strategies, magnitude-only or frequency-only metrics recognize too few subjects as having 
different steering profiles to yield overall significance. SE does not suffer the same fate (Figure 5 
shows that the occurrence rate of high prediction errors increases for all three subjects in Figure 
2). This shows that SE is a promising candidate to mine for differences, but that further spectral 
analyses should be conducted to assess the type of spectral change since these are associated 
with different types of coping strategies (e.g., vigilance increase, safety margin adaptation, stress, 
etc.).   
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Figure 2. Power spectral densities of the three task conditions for three 
representative subjects. The thin dotted line is the raw baseline power spectral 
density. The three thicker lines are 10th order Burg approximations for the three 
driving conditions; -3dB bandwidths (i.e. where power drops below 70.7% of the 
zero-frequency power) are indicated by diamonds.   
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Figure 3. Comparison between baseline (abscissa) and task condition (ordinate) on 
steering variance (left) and bandwidth (right). The significance values for the cell 
phone (audio) and visual tasks (visual) are shown in the panel titles. Each diamond 
or asterix reflects one subject.  
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The original SE method attributed its sensitivity primarily to high frequency corrective 
maneuvers. These corrective steering actions do indeed account for a small increase in the high 
frequency power (as observed in all subjects), however, the steering maneuver following these 
initial jerky corrective responses is of lower frequency and much longer duration. Thus, an 
increase in low frequency power is also expected. This is one of the reasons why the optimized 
SE algorithm yields superior sensitivity using a lower re-sampling frequency and a prediction 
filter with less low frequency attenuation than the original one, thereby increasing sensitivity to 
low frequency changes while maintaining sensitivity to high frequency changes in steering 
power.   
 
The original SE algorithm was based on a Taylor expansion to generate prediction errors (PEs) 
from a steering profile sampled down to 7Hz. In Boer (2000), an alternative method was 
proposed that uses a PE generating “filter” derived from an AR-model of the reference baseline 
steering data. The advantage is that it is optimally tuned to the frequencies present in the baseline 
steering data, which depends on a number of factors such as driver skill, road curvature, speed, 
lateral disturbances, vehicle dynamics, etc. (Figure 2 demonstrates that subjects adopt different 
spectral signatures in their steering behavior). Because of the optimally frequency tuned AR-
model, an SE method based on AR-models is also optimally sensitive to deviations from this 
baseline steering spectrum. The comparison between original Taylor expansion and AR-model 
shown in Figure 7 confirms that the AR-model approach yields higher significances, and in some 
cases yields significance where a Taylor-based expansion does not. Naturally this needs to be 
interpreted from the perspective that if a highly sensitive tool is needed to yield significance, the 
effect is probably small. However, in driving, it is very important to employ the most sensitive 
metrics available because a small change in driving behavior (e.g., reaction time) can have very 
large consequences when converted to annual fatalities.   
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Figure 4.  PE filters (left), the power spectral density of PEs (middle), and the PE 
distribution (right) for case-subject 17. The right two panels are based on the AR-
model with a re-sampling frequency of 4Hz and an alpha of 0.2 (see below for 
details).   

 
The Taylor expansion and the AR-model derived PE filters are both high-pass filters (left panel, 
Figure 4). In fact, the AR-model-derived filter is an MA-filter whose MA coefficients are simply 
the AR coefficients of the model fit of the steering data (Boer, 2000). The 3rd order AR-model of 
the steering time series { }ns  is (2nd and 4th order yield similar SE sensitivity to task conditions): 
 nnnnn pesasasas +−−−= −−− 332211  
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where the ia  coefficients are estimated with the Burg algorithm (Matlab Version 6.5, function 
“arburg”) and the PE time series { }npe  is maximally white noise. This AR-filter is converted to 
the following MA PE generating filter (Boer, 2000): 

 332211 −−− +++= nnnnn sasasaspe  

The corresponding 2nd order Taylor expansion prediction filter is (Nakayama et al., 1999): 

 321 5.025.2 −−− −+−= nnnnn sssspe  

Fig. 4 shows the filter gains, the spectral density of the output PEs, and the PE distributions. The 
dip around 0.35Hz in the left panel of Figure 4 is reflected as a peak in the solid line in the center 
panel of the corresponding baseline power spectral density for subject 17. The PE distributions 
for subjects 15, 17, and 22 (also in Figure 2) are shown in Figure 5. Again, the PE distribution 
shows an increased number of high PEs compared to baseline for both task conditions even 
though the power spectral densities in Figure 2 do not show a consistent effect for the cell phone 
task.   
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Figure 5.  PE distributions from AR-model of subjects whose power spectral 
densities are shown in Figure 2.  Adopted sampling frequency is 3Hz (i.e. the one 
deemed optimal). 

 
Prior to estimating the AR coefficients and applying the prediction filters, the steering data needs 
to be re-sampled down (see discussion of Figure 6 for choice of optimal re-sampling frequency 

sf ). Prior to re-sampling, the steering data is filtered with a 5th order low-pass Butterworth filter 
(i.e. maximally flat in pass-band) with a cutoff frequency of 3/7 sf  (just below Nyquist 
frequency). The AR-model is estimated on the first 60 s of the baseline data (reference). The 
baseline entropy is computed based on the second 60 s. This assures independence of the data 
used in the significance tests between baseline and task conditions. In this study, the AR-model-
derived PE filter was estimated for each subject’s baseline reference data separately and used 
only on that subject’s unused baseline data and its condition trials to assess the shift in PE 
distributions from baseline to condition. (This differs from using all available baseline reference 
data to estimate a common baseline prediction filter.) The baseline PE filter is used to generate 
the baseline reference PEs 
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where subscript m denotes subject m, where superscript ref
mbas  refers to the first 60 seconds of 

subject m’s baseline data, and where mbas  refers to the second 60 seconds of the baseline data.   
 
The PE filter is the main component of the SE algorithm. The rest is essentially a non-linear 
weighting of PEs by placing extra focus on extreme PEs as those are associated with the 
strongest and fastest steering corrections arguably associated with most taxing or critical 
situations. To measure the degree to which the PE distribution widens under different conditions, 
the probability density function of the baseline PEs is used. The PE distribution is approximated 
with 2(M+1)-bins as follows.  The set of lower bin bounds is 

( ) ( ) },)1(,...,,0,,...,)1(,,1210{ αααααα peMpeMpepepeMpeMe −−−−−−  and the set of upper 
bounds ( ) }1210,,)1(,...,2,,0,,...,)1(,{ epeMpeMpepepepeMMpe ααααααα −−−−− , where the 
extreme range of -10e12 and 10e12 assure that all PEs are captured, and αpe  is defined as: 

 ( ){ } ( ){ }⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+== ααα 1argarg5.0 peCDFpeCDFpe

pepe
 

which is essentially the absolute PE that is greater than a fraction ( )α21−  of all PEs. An alpha of 
0.05 corresponds to the 90 percentile used in the original SE algorithm.   
 
Next, the probability that a reference baseline PE falls in a bin is established. This is achieved by 
simply counting what fraction of reference PEs falls in a bin. This may leave some of the outer-
bins empty. To avoid extremely low probabilities and thus extremely high “entropies,” all bins 
with probabilities less than 1.0e-3 are replaced by 1.0e-3 (this is necessary to avoid that some 
PEs from non-reference baseline or condition data receive an excessively high sample entropy, 
thus assuring that the method does not become extremely sensitive to one or two outliers but 
requires a reasonable number of high PEs to substantially increase the entropy of the condition 
under investigation). Bins are indexed by ],1[ Kk ∈  where ( )12 += MK . The resulting discrete 

probability density function is denoted with ( )n
bas peP

ref
m , where ref

mbas  refers again to subject m’s 
reference baseline data that was also used to establish the bins.   
 
The entropy calculation of the binned PE distribution assigns high weight to outliers (i.e., those 
PEs that fall in low probability bins). The entropy of subject m’s second half baseline data as 
well as the cell phone (audio) and in-vehicle tasks (visual) condition are computed using: 
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where 
ref
mbas

kP  is the probability associated with subject m’s bin k, mcond
kN  is the number of task 

condition PEs from subject m that fall in bin k of subject m’s discretized reference-baseline PE 
distribution. This equation is slightly different from the original one to yield higher sensitivity; 
the old equation only uses the bins from the baseline reference but not the baseline probabilities 
as argument to the 2log  function. Note that log base 2 is used in reference to information bits.   
 

The free parameters of the new SE algorithm are now the re-sampling frequency, the alpha 
value, the number of bins, and whether a Taylor expansion or an AR-model-based prediction 
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filter is used. Their effect in terms of significances between baseline and condition per subject is 
shown in Figure 6, which shows results for the AR-model-based prediction filters. It is clear that 
a re-sampling frequency of 4Hz and an alpha of 0.2 yield a significance that is robust to changes 
in these parameter values (i.e., fall in the center of an area with similar significance values).  
Using 4-10 bins yields less significant results (i.e., the algorithm is less sensitive), but with 12 to 
32 bins the same results are obtained. The recommended number of bins is set at K=14 (i.e., 
M=6), to avoid that small data sets results in too many empty bins. The Taylor-based PE filter 
showed a slightly different pattern of sensitivities to the re-sampling frequency and alpha, but 
also gave the most sensitive and robust assessment of steering behavior changes with a re-
sampling frequency of 4Hz and an alpha of 0.2. These differences are primarily due to the fact 
that the AR-Filter method weighs low frequencies more than Taylor, which greatly attenuates the 
low frequencies (e.g., left panel Fig. 4). Given that some subjects only show an increase in low 
frequency power during the cell phone task, the Taylor method is unable to differentiate their 
steering profiles from that of their baseline condition, thus yielding a lower overall significance 
between conditions across all 12 subjects. This is also reflected in the significances that both 
methods yield for the optimal parameter setting in Fig. 7.   
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Figure 6.  Effect of re-sampling frequency and alpha for the AR-model based PE 
method with #bins equal 14 (i.e. M=6) on the log base 10 of the significance between 
baseline and cell phone (left) and between baseline and in-vehicle tasks (right). Note 
that the darkest area in the right panel has the same significance boundary (i.e.,  
0.001) as the one shade lighter (i.e., plotting code bug).   

 
The optimality of a 4Hz re-sampling frequency is attributed to the fact that the resulting 
frequency range (0-2Hz) spans drivers natural frequency range.  It is clear from Fig. 7 that a very 
low re-sampling frequency eliminates high frequency effects from the analysis (some subjects 
only show a signature effect at high frequencies during cell phone task – Subj. 17 Fig. 2).  On the 
other hand, a very high re-sampling focuses the AR-model too much on high frequencies that are 
beyond the natural operating range of the human driver, thereby yielding an overall reduction in 
sensitivity; furthermore, the power spectral densities shows very little differences at the highest 
frequencies thus yielding a PE distribution that focuses too much on the noise.   
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Figure 7.  Comparison between AR-filter (left) and Taylor (right) implementation of 
the SE method with optimal re-sampling frequency of 4Hz and an alpha of 0.2  

 
CONCLUSIONS 
 
A new steering entropy algorithm is recommended with a re-sample frequency of 4Hz, an AR-
model-based prediction filter, and an alpha value of 0.2 rather than the original algorithm, which 
operated with a parameter setting of re-sampling frequency of 7Hz, a Taylor prediction filter, and 
an alpha of 0.05. The new settings yield significances where the old settings did not because they 
are more finely adapted to be sensitive to the different manners in which spectral changes in 
steering occur in response to changing driver task demands. It is recognized that optimality is 
conditioned on the dataset at hand, but that a high degree of confidence is attributed to these 
recommendations because the spectral shape of the observed steering data is very similar to those 
observed in other simulator and real-world data sets. Future studies will be subjected to the same 
in-depth analysis touched on in this paper to further improve our ability to sensitively assess 
drivers in their attempts to cope with the variety of self- and externally imposed driving 
demands.   
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