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THE DIMENSIONS OF DRIVER PERFORMANCE  
DURING SECONDARY MANUAL TASKS 

 
Richard A. Young 
 Linda S. Angell 

General Motors Engineering 
Warren, Michigan USA 48090-9055  

E-mail: richard.a.young@gm.com, linda.s.angell@gm.com 
 

Summary: This analysis identified the underlying dimensions of driver 
performance using data obtained from drivers engaged in secondary manual 
tasks. Randomly chosen subjects balanced for age and gender used one of five 
advanced navigation and communication systems while driving on a closed 
roadway. Fifteen driver performance variables were averaged and 
standardized across subjects for 79 tasks. There were high correlations 
between all variables. Principal Component Analysis (PCA) found that the 
vector of loadings defining the first principal component (PC1) was positive 
for all 15 variables, accounting for 61 percent of the total variation across all 
tasks. It is interpreted as overall driver demand. PC2 loaded with one sign on 
event detection and response variables, but opposing sign on visual-manual 
workload variables. It identified tasks making drivers more inattentive to 
outside events than expected, given a task’s visual-manual workload, and 
accounted for 17 percent of total variation. It is interpreted as low-workload-
but-high-inattentiveness. PC3 had loadings of opposing sign for peripheral vs. 
central event variables (5 percent of total variation). It is interpreted as 
peripheral insensitivity. The first three components together accounted for 83 
percent of total variation, which is deemed substantial. Thus most of the 
information available through the 15 original variables can be summarized by 
only three PC variables. Because the vectors of loadings defining the 
components are orthogonal to each other as defined by PCA, no single 
variable by itself can capture all the important variations in driver 
performance during secondary manual tasks. A multivariate design and 
analysis is required. 
 

INTRODUCTION  
 
In today’s vehicles, drivers manage multiple tasks, including primary driving tasks such as 
steering, accelerating, braking, speed and lane choice, navigation, and hazard monitoring—and 
secondary tasks that they may want or need to perform in the vehicle while en route to a 
destination. To minimize driver distraction, it is necessary to have a means of determining which 
secondary tasks have the potential to interfere with primary driving tasks. Such knowledge is 
also required to develop design and driver performance standards for secondary tasks. To 
accomplish these goals, it is important to know what key dimensions of driver performance need 
to be measured in order to provide a complete and valid assessment of effects on primary driving 
performance. Numerous measures of driver performance have been explored in the literature on 
driving behavior, and intercorrelations among measures have been described. However, few, if 
any, previous studies have attempted to examine the structure within these correlations as a 
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means of identifying a set of underlying dimensions that may capture most of the variance in 
driver performance data. This was the purpose of the study described here. Primary and 
secondary task performances were measured and the data were analyzed using Principal 
Components Analysis (PCA). 
 
To examine how the additional multitasking from secondary tasks may affect primary driving 
performance, it was deemed important to use an on-road test scenario that included those 
elements of primary driving that impose a workload or demand on key resources (e.g., 
perceptual, attentional and response resources). For this study, consideration was given to the 
primary driving tasks that a driver manages in “real-world” driving: controlling the vehicle’s 
movement, path and speed; maintaining awareness of the road and traffic situation; detecting and 
responding to roadway events; operating and monitoring vehicle systems; and making decisions 
about maneuvers. Additional primary tasks of navigating to a destination, maneuvering in traffic 
and communicating with road-users (horn, turn signals) are also normal behaviors in “real-
world” driving, and were initially considered for inclusion in the test scenario. However, the on-
road testing done here was performed on a two-lane roadway closed to other traffic, and as such, 
could not incorporate these additional primary tasks.  
 
The test scenario used in this study was that of driving a segment of a roadway built according to 
interstate highway standards (with curves, hills and bridges in it, but no intersections).1  Subjects 
were asked to maintain lane position, and control speed at 40 ± 5 mph.  
 
In addition, we wanted to represent the processes associated with detecting and responding to 
roadway objects and events during driving. The peripheral detection task consists of a light 
presented at random times in the peripheral view of the driver.2,3 We extended this method to 
illuminate a small, red light in the forward as well as side view (in an attempt to emulate, for 
example, having to respond to unexpected braking by a vehicle in traffic in the forward or side 
lanes). It was hypothesized that the inclusion of both lights would permit a more controlled 
examination of so-called cognitive tunneling effects under high driver workload.2 We termed this 
task the Visual Events Detection Task to distinguish it from earlier versions.2,3 Drivers responded 
to a light with a tap of the brake pedal,4 which was intended to make the response modality as 
natural as possible and to provide consistency with stimulus-response mappings that are 
routinely used in driving for responding to events on or near the roadway.  
 
In addition to the primary driving tasks, drivers in this study were asked to perform secondary 
tasks. Secondary tasks that are sometimes undertaken by drivers on the road today include 
conversing with other passengers, eating, drinking, grooming, listening to audio entertainment, 
using portable devices, placing phone calls and many others.5 In the future, this set of secondary 
tasks might expand to potentially include such activities as access to advanced information 
sources, Internet and e-mail access, and others. For the purpose of this study, we focused on 
secondary tasks that involve the use of in-vehicle devices. The range of tasks associated with the 
selected secondary tasks was hypothesized to be suitable for determining the underlying 
dimensions of driver performance when drivers were concurrently managing a secondary task 
while driving. 
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OBJECTIVE AND SCOPE 
 
The objective of the study was to determine the underlying dimensions of driver performance 
during the conduct of secondary manual tasks inside a moving vehicle. No other known study to 
date has done an explicit multivariate analysis of driver performance data while performing 
secondary tasks. The scope of the study was restricted to tasks that could be performed using the 
eyes and hands (visual-manual). This interface method is the most common in vehicles today, 
and so it was deemed important to study it first, compared to voice, haptic or other methods. We 
also restricted the scope to only one secondary task at a time, because we felt it necessary to 
understand the effect of single secondary tasks first, before studying them in combination. 
 
METHODS 
 
Subjects 
 
Subjects were licensed drivers, not previously familiar with, nor technically knowledgeable 
about, the systems under investigation. This restriction ensured that variation in prior experience 
would not bias the results. All subjects were recruited via newspaper advertisement from the 
greater Blacksburg/Roanoke area of Virginia, and screened by telephone survey. Equal numbers 
of subjects were assigned to two age groups: 18-34 and 45-65 years. Gender also was a 
controlled variable, with an equal number of males and females assigned to each experimental 
condition, within each age group. A total of 81 paid subjects participated in the on-road study.  
 
Vehicles and Vehicle Systems 
 
Of five vehicles delivered to the experimental site, four were sedans, and the other a sport-utility 
vehicle. One manufacturer made four of the vehicles, and another the fifth. Different in-vehicle 
information systems had been installed in four of the vehicles. One vehicle did not have an 
information system but had a prototype radio interface. Three of the systems were experimental 
prototypes for demonstration purposes, not scheduled for production then or now. The system 
without the information function is now in production, and the fifth was a commercial system. 
 
Tasks 
 
The tasks were selected to represent typical tasks that drivers would do in a vehicle with the 
functions available to them for a given system. The tasks chosen were selected from the 
categories of communication (e.g., phone dialing), entertainment (radio, CD, information), 
navigation (e.g., route destination entry), Internet tasks (e.g., get weather, sports stories), and 
address book (e.g. data entry). We also included conventional tasks that are commonly done in 
the vehicle today. Note that the task list was not identical for the five vehicles tested because the 
functions offered by the five vehicle systems were overlapping but not identical.  
 
A given driver performed each of the tasks once during the test phase.6 There were 13 to 18 task 
test trials undertaken by every driver in a given vehicle. The order of the tasks was individually 
randomized for each driver. The number of estimated steps required to complete the tasks ranged 
between two and 30 (for definition of estimated steps, see Ref. 7). The range of task difficulties 
was found in pilot work (not shown) to cover a wide range of task difficulties, from easy (e.g., 
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“set cruise control”) to quite hard (e.g., “enter 1100 Main St.” using the manual speller). Some of 
the tasks were replicated across vehicles, particularly the conventional tasks, in a mixed design.  
 
The sequence and number of task steps in all the tasks were optimized in an extensive task 
analysis before the main experiment began. The beginning state of the system for a given task 
was set the same way every time that task was performed in each system. 
 
Experimental Design  
 
The main independent variable manipulated between subjects was Vehicle System. Twelve to 18 
drivers were stratified by age (younger, older) and gender (male, female) within each of the five 
vehicle systems. The main independent variable manipulated within subjects was Tasks (13 to 18 
per vehicle system). 
 
Dependent Variables 
 
Variables collected for every task for every subject are listed in Table 1 (for details see Ref. 7). 
 

Table 1. Dependent variables in current study. 
 

# Variable Name 
1 Task Completion Time tasktime 
2 Eyes-Off-Road Time eort 
3 Number of Glances to the In-Vehicle System glances 
4 Number of Lane Deviations lanedev 
5 Subjective Workload workload 
6 Subjective Situation Unawareness8 sit_unaw 
7 Number of Speed Deviations speeddev 
8 Percent Unsuccessful Task Completion9 per_unsu 
9 Percent of Total Visual Events Missed allmiss 
10 Percent of Forward Visual Events Missed hoodmiss 
11 Percent of Side Visual Events Missed sidemiss 
12 Mean Single Glance Time to System glncedur 
13 Time to Respond to Total Visual Events evnttime 
14 Time to Respond to Side Visual Events sidetime 
15 Time to Respond to Forward Visual Events hoodtime 

 
Facilities and Apparatus 
 
Facilities. All on-road testing was conducted on the Virginia Tech Transportation Institute 
(VTTI) Smart Road. The completed portion of the Smart Road at the time of the study was a 1.7-
mile, two-lane roadway with a banked turn-around at one end and a slower speed turn-around at 
the other end.1 The road was closed to traffic other than the vehicles involved in the testing. The 
road has a center yellow line for determination of leftward lane violations as well as an uphill 
and downhill portion.   
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Vehicle Instrumentation. VTTI designed and programmed all vehicle instrumentation and data 
collection equipment (see Ref. 7 for details).   
 
Visual Events Detection Task. The instrumentation for this task consisted of two red lights 
mounted on the vehicle (intended conceptually to emulate visual roadway events such as a 
vehicle braking), together with software to control their presentation. One light was mounted on 
the hood at the centerline of the driver (not the centerline of the vehicle). A second light was 
mounted above the left outside mirror (about 42 degrees to the left of the driver’s forward line of 
sight). The side mirror light was 1.5 x 1 inches, and the hood light was 2.5 x 1 inches. One of the 
two lights randomly turned on three to six seconds after the brake pedal was pressed in response 
to a prior light event. Which light came on in that period (hood or side) was also randomly 
determined. A light remained on until the driver responded to it.10 By providing a forward light 
as well as a side light, we provided additional control for head and eye movements. When the 
driver looked at the side light, the hood light acted as a “peripheral” light, and vice versa, 
controlling for a possible head or eye bias toward the side light (because then the front light 
would be in the periphery). The comparison to the forward event also allowed for a better 
measure of any potential true periphery effects, specific to peripheral event detection and not to 
event detection in general. 
 
PROCEDURE 
 
Two training areas were designated at opposite ends of the Smart Road. When leaving either 
training area, the vehicle would first pass a pair of large standard orange traffic barrels on 
opposite sides of the road. These barrels marked the Start Gate at which drivers reached a speed 
of 40 mph, and began responding to the event lights. The vehicle then passed a small standard 
traffic cone on the right side of the road, 0.1-mile from the Start Gate. This cone marked the 
approximate point at which the experimenter told the driver “begin” the task. Drivers were 
instructed in training to say “done” whey they felt they had completed a task. A pair of barrels at 
the end of the 1.0-mile run marked the Finish Gate, where the driver decelerated into the training 
area in the turn-around. Drivers therefore had a maximum of 0.9 miles, driving at the nominal 
speed of 40 mph, to complete the task (about 81 seconds). If a driver finished sooner, he or she 
drove at will to the Finish Gate. After being trained on the next task in the training area, the 
driver then went in the opposite direction on the road for the next test trial, and so forth. 
 
All subjects were given a demo trial, then a training trial, for every task while in the training 
area. The training for each task was done immediately before the road test trial. This procedure, 
as per previous investigations with this method (not shown), typically produces a level of 
training that is likely at or near the maximum of the short-term learning curve for that particular 
task for that subject. Further details of the experimental procedure are given in Ref. 7. 
 
Preparation of Data for Analysis and Experimental Controls  
 
The measures reported below include both successful and unsuccessful task trials (but not trials 
on which a vehicle system malfunctioned because of software or hardware issues).11  
Preliminary analyses examined the statistical distributions of the data. The data in this 
experiment exhibited heterogeneity of variance for many of the variables.12 As a control, 
statistics designed for use with Poisson distributions were initially applied and compared with 
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standard statistics suitable for use with normal distributions. No significant differences in results 
were found. Therefore, findings reported here are from the more familiar normal distribution 
statistics, which were robust to the non-normality exhibited by the underlying data distributions. 
 
In preparing data for analysis, some possible limitations of the data for the Visual Events 
Detection Task were discovered. Because there was a slight grade to the roadway, there was 
some noise in the data that resulted from braking responses to control speed on the downhill 
grade. Careful processing of the data was successful in reducing this noise.4 Also, even though 
attempts were made after the preliminary experiments to block sunlight glare, it was possible that 
sunlight at certain angles behind the vehicle reflected off the lens of the hood light back into the 
subject’s eyes. Because all task orders were randomized, these limitations could not have 
affected one task more than another. Furthermore, for tasks with completion times of less than 
six seconds, sometimes by chance no light would be on during the task, producing no visual 
event response data for that trial. This fact necessarily leads to less robust measures of percent 
misses and response times than for the other variables for such tasks. In fact in a preliminary 
report on a portion of these data,7 it was thought necessary to combine data from front and side 
visual events to have a sufficient number of observations to compute the measures reliably. 
However, the more powerful methods of multivariate data analysis in this study found that the 
side vs central event detection results were quite meaningful (see Results).  
 
In the analyses, mean values for each task were computed by averaging across subjects 
performing that task. The data were initially examined for younger and older groups separated. 
In general, correlations between dependent variables were slightly higher for the younger group 
than for the older. However, all major findings reported below were the same in both groups. 
Therefore, the results reported here were calculated across the two age groups combined. The 
same held true for gender. Preliminary data analyses using Analysis of Variance techniques 
found no significant differences because of Vehicle System, so all 79 tasks were pooled into one 
data set.  
 
Each variable for each task was averaged across all subjects tested for that task, yielding a 79 x 
15 input data matrix. A 15 x 15 correlation matrix between the variables was then calculated 
across the 79 tasks. Principal Component Analysis (PCA) was then used to reduce the 
dimensionality of the standardized data set (i.e. each variable is normalized to a mean of zero and 
a standard deviation of one) to the major orthogonal dimensions.13 PCA has been widely used in 
many scientific fields so the mathematical details are well known and will not be presented 
here.14,15,27 Suffice it to say that the results were initially run in a common statistical package 
(Minitab), and checked by running the data in SPSS. Two outside statistical experts were 
contracted to independently check and run the same data in SAS or Minitab, and all methods 
concurred in the computations. There are occasional sign differences in the component loadings 
and scores that arise in the different packages. These have no effect on any of the results or 
conclusions reported here. The PCA methods in Ref. 15 were used for the reported analyses. 
 
RESULTS  
 
Table 2 shows the correlation coefficient matrix between all 15 dependent variables across all 
tasks. Every correlation coefficient in Table 2 is positive. A total of 101 out of 105 possible 
unique paired correlations are statistically significant at the 0.05 level or better (r ≥ 0.221, two-
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tailed, df = 77). All values in the upper left quadrant (variables one through eight) are statistically 
significant at the 10-6 level or better (r ≥ 0.522). Most r-values in the lower right quadrant 
(variables nine through 15) are likewise significant at 10-6 or better.16  
 
Using Principal Component Analysis, all the redundancy between variables in Table 2 was 
removed, and the information was simplified and represented in just a few principal components 
without loss of significant information (Fig. 1 and Table 3). 
 

Table 2. Correlation matrix between all 15 variables across all 79 tasks 
 

Note: Bolded r-values are statistically significant at p < 0.000001 (r > 0.522). See Table 1 for 
definition of variable labels. 

 
Fig. 1 (top) shows the vector of loadings defining the first principal component (PC1). It has 
positive loadings for all variables, decreasing in size for variables one through 15.17 Although 
PC1 is a weighted average of all the dependent variables, it is most highly loaded by variables 
one to eight. It accounts for 61 percent of the total variation in the standardized task data. 
 
Fig. 1 (middle) shows the vector of loadings defining the second principal component (PC2). 
PC2 is a contrast between variables one through eight (negative loadings) and variables nine 
through 15 (positive loadings). The loadings in the positive group are larger in absolute value 
than those in the negative group with the exception of variable 12 (glance duration). The 
loadings in the positive group for PC2 are also larger than the loadings on PC1 for those same 
variables nine through 15, again with the exception of glance duration. PC2 accounts for 17 
percent of the total variation in the standardized task data. This variation is completely separate 
from the variation explained by PC1, because of the guaranteed orthogonality of the components.  
 
Fig. 1 (bottom) shows the vector of loadings defining the third principal component (PC3). It had 
high positive loadings for forward event variables 10 and 15, and high negative loadings for side 
event variables 11 and 14. Loadings on all other variables for PC3 were negligible. PC3 
accounted for 5 percent of the total variation. This variation is completely separate from the 
variation in the data explained by PC1 or PC2, because of the orthogonality of the components.  
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2 eort .984 1.000 .989 .920 .917 .895 .875 .882 .564 .508 .464 .583 .369 .289 .273
3 glances .989 .989 1.000 .922 .935 .911 .885 .866 .566 .499 .462 .535 .352 .276 .247
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Fig. 1. Loadings of first three components 

 
Figure 2 is a two-dimensional plot of loadings for the first two PCs. The tight cluster of variables 
in the lower right of Figure 2 is reflected in the high correlations between variables one through 
eight in Table 2. Likewise, the loose cluster of variables in the upper left of Figure 2 is reflected 
in the high correlations between variables nine through 15 in Table 2.18 Thus, the PCs are 
accurately representing the pattern of the correlations between the variables, as expected. 
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Figure 2. Two-dimensional plot of loadings for first two principal components  
 

Table 3. Loadings of first three components 

PC1 PC2 PC3
1 tasktime 0.315711 -0.164919 0.007909
2 eort 0.313484 -0.169237 0.004130
3 glances 0.312389 -0.183500 -0.007459
4 lanedev 0.302439 -0.128792 -0.027367
5 workload 0.300917 -0.174431 -0.095792
6 sit_unaw 0.293140 -0.177664 -0.106193
7 speeddev 0.286123 -0.180773 0.086272
8 per_unsu 0.272728 -0.213594 0.068821
9 allmiss 0.250694 0.310538 0.072896

10 hoodmiss 0.217295 0.223664 0.541177
11 sidemiss 0.211500 0.305251 -0.333838
12 glncedur 0.206086 0.101393 -0.079801
13 evnttime 0.192501 0.444665 -0.096737
14 sidetime 0.158071 0.390114 -0.520020
15 hoodtime 0.144768 0.392142 0.520291  

 
DISCUSSION  
 
The effect on primary driving of a total of 79 in-vehicle secondary tasks was studied with 81 
drivers. The first three principal components found by analyzing the correlation matrix between 
the 15 dependent variables accounted for 83 percent of the total variation across all 79 tasks, 
which is deemed substantial. Thus most of the information available through the 15 original 
variables can be summarized by just three Principal Component (PC) variables.  The PCs 
reflected the underlying dimensions of driver performance, at least for the variables and tasks 
measured in this study.  
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PC1 is interpreted as overall driver demand. All variables tested loaded positively on PC1, 
particularly driver workload variables (task time, eyes-off-road time, glances, lane and speed 
deviations, subjective workload, subjective situation unawareness, and unsuccessful task 
completions). Event detection and response variables loaded less strongly but in the same 
direction as the visual-manual workload variables one through eight. For example, tasks scoring 
high on PC1 have long task times, high subjective workloads, and involve many glances off the 
road, along with high miss rates and long reaction times to outside events.19 Because PC1 
encompasses both driver visual-manual workload variables as well as event detection variables, 
it is referred to as overall driver demand. It explains most of the variance in all the tasks studied.  
 
PC2 is a new driver performance dimension not previously identified in the published literature 
to our knowledge. It specifies tasks that make drivers less attentive or more insensitive to outside 
events than expected, given their visual-manual workload, and contrasts them with tasks for 
which attentiveness is greater than expected for their given visual-manual workload. For 
example, tasks with high positive scores on PC2 have few glances off the road, few lane 
deviations, low subjective workload and high subjective situation awareness, yet paradoxically 
have high miss rates and long reaction times to outside events.20, 21 We interpret PC2 as low-
workload-but-high-inattentiveness.22,23 PC2 is hypothesized to be associated with a larger class 
of driver attentional phenomena we term mind-off-road.24 PC2 is orthogonal to overall driver 
demand, as defined by PC1, and explains about one-sixth of the overall variance. 
 
PC3 is interpreted as peripheral insensitivity, in particular opposing responsiveness for side vs. 
forward events.25 It is hypothesized to be a possible narrowing of visual attention to the central 
visual field. Eye movement variables are not likely to explain the peripheral effect as observed in 
this study.26 Peripheral insensitivity identifies variance in the driver performance data that is 
unique and separate from (orthogonal to) the variance attributable to PC1 and PC2. Peripheral 
insensitivity explains about one-twentieth of the overall variance. 
 
Future work may find it possible to replace the large set of variables used here by a limited 
subset of variables. To retain the same amount of the original variation as p PCs one may only 
need (p+1) or (p+2) variables, and this option may be much easier to interpret than the PCs – see 
Section 6.2 of Ref. 27. Software has been written that implements the relevant methodology.28  
 
Future work may also find that the PCA method may reduce errors in classifying tasks as inside 
or outside control limits for acceptable driving performance. Type I errors (false positives) mean 
that a task is classified as outside control limits when it is really inside control limits, leading to 
unnecessary redesign or lockout of the task while driving. Overall Type I errors can be reduced 
because one is looking at fewer PCs than variables and hence there is less scope for such errors.29 
Type II errors (false negatives) mean that a task is classified as inside control limits when it is 
really outside control limits, allowing a task to be used while driving that should be redesigned 
or locked out. Type II errors can be reduced because the PCA method may find different types of 
outliers (tasks outside of control limits) not seen by the original variables.30 Finally, additional 
reduction of errors may be obtained by a multivariate generalization of the Student t-test called 
T2 giving an overall measure of variability across all the PCs (see Ref. 15, p. 21).  
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CONCLUSION  
 
Overall driver demand as defined by PCA is a separate driver performance dimension from low-
workload-but-high-inattentiveness, and vice versa. Peripheral insensitivity is an additional 
dimension, separate from the first two. It follows that no single variable by itself can capture all 
the important variations in driver performance during the conduct of secondary in-vehicle 
manual tasks. A multivariate design and analysis is required.  
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1 Roadside ravines and/or hillsides on both sides of the roadway, as well as bridges and bridge abutments, 
meant that the driving experience was more challenging than on a closed-course test track or straightaway 
on which lane wander might have little practical consequence. 
2 Martens, M. H., and van Winsum, W. (2000). “Measuring distraction: The peripheral detection task.” 
Posted at http://www-nrd.nhtsa.dot.gov/departments/nrd-13/driver-distraction/Welcome.htm. 
3 Olsson, S. and Burns, P. C. (2000). “Measuring driver visual distraction with a peripheral detection 
task.” Posted at http://www-nrd.nhtsa.dot.gov/departments/nrd-13/driver-distraction/Welcome.htm.  
4 Our current experiments use a left foot switch on the floor of the vehicle to the left of the brake, like a 
headlamp dimmer switch on older vehicles, to more easily discriminate brake responses for reducing 
speed when going downhill, from light event responses. 
5 Stutts, J. C., Reinfurt, D. W., Staplin, L., and Rodgman, E. (2001). “The Role of Driver Distraction in 
Traffic Crashes,” Chapel Hill, N.C.: Univ. of North Carolina Highway Safety Research Center, prepared 
for AAA Foundation for Traffic Safety, May. 
6 A pilot study (not shown) found that three trials of the same task, with each task set being run in one 
block, randomizing task order within each block, led to smaller subject variances around the task means, 
as would be expected by basic statistics. Running more than one trial forces a trade-off given fixed 
resources in that fewer subjects and/or fewer tasks can be run. Although not done here, some efficiency 
ensues if tasks less than about 20 seconds are run three trials in a row on one drive down the 0.9 mile 
course, using what would otherwise be time required just to drive down to the next training area after the 
task is done. Conversely, one could study tasks that were many minutes long (e.g. phone conversations) 
by pausing and resuming the task to allow the driver to turn around at the ends of the roadway. 
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7 Angell, L. S., Young, R. A., Hankey, J. M. and Dingus, T. A. (2002) “An Evaluation of Alternative 
Methods for Assessing Driver Workload in the Early Development of In-Vehicle Information Systems,” 
SAE Proceedings, 2002-01-1981, Government/Industry Meeting, May 15, Washington, DC, USA. 
88 Situation awareness rather than unawareness was the original experimental variable, measured on a 
scale from 1 to 100 with 1 being low situation awareness and 100 being high. For purposes of this report, 
the measured values were subtracted from 100 for simplification of analysis and clarity of presentation. 
The final variable was thus a measure of situation unawareness rather than situation awareness. This 
change ensured that this variable was “pointing in the same direction” as the other variables as a function 
of task difficulty. Control analyses (not shown) found that this simple reversal in scale in the data analysis 
for this variable did not affect any of the results or conclusions of the study. 
9 An unsuccessful trial was defined as the subject not reaching the goal of the task that he or she was 
asked to perform. “Success” was based solely on this criterion, and not on keeping within a lane, or 
detecting visual events. Success or non-success also did not require that the subject use the exact path or 
steps to the goal on which they were trained. For example, if the task were “increase HVAC fan speed 
two notches,” and when the subject said “done” the fan speed was set at the second higher notch, that 
would be considered a success whatever actual steps were taken or however he or she got there. 
Unsuccessful task completions because of software bugs, or mechanical/electrical breakdown of a 
prototype system under test, were not counted as driver failures and are not included in the data or 
analyses reported here. 
10 In our later studies, the light is turned off after 3.5 seconds if the driver has not responded to it, and 
recorded as a “miss.” This change protects against the possibility that in a hypothetical situation where a 
driver might fail to respond to a light at all for an extremely long period (e.g., the entire 81-second test 
trial), that only a single missed light would be recorded, leading to a possible false negative for missed 
events. This change would not have materially affected the results reported here. 
11 Preliminary control analyses (not shown) found little difference in the main results from excluding or 
including trials with unsuccessful task completions in the main data. Therefore, to provide a more 
complete overview of performance, the successful and unsuccessful trials were combined into one large 
data set for the tabulation of the dependent variables. 
12 In particular, as the mean for a task became larger, the variances across subjects for that task also 
increased. Such a relationship is typical for variables based on counts, which typically have a Poisson 
rather than normal distribution. Number of glances, lane deviations, and speed deviations were explicit 
count variables in this study. Even the temporal variables often exhibited such a skewed distribution, with 
a long tail into the high end of the histograms. 
13 In PCA, the vectors of loadings are orthogonal and the PCs themselves (the PC scores of the individual 
tasks) are uncorrelated. PCA is the only transformation of the variables that has both of these properties. 
Rotation of the vectors can preserve orthogonality of the loadings, but the PC scores for the tasks then 
become correlated, so no rotation was done here. 
14 Young, R. A. (1986). “Principal-component analysis of macaque lateral geniculate nucleus chromatic 
data,” J. Opt. Soc. Amer. A, 3, pp. 1735-1742. Posted at http://hometown.aol.com/ryoungweb, Ref. 15. 
15 Jackson, J. E. (1991). A User’s Guide to Principal Components, Wiley & Sons, pp. 4-25. 
16 Nine of the 105 possible unique paired correlations in Table 2 may have been high because of certain 
aspects of the methods. Eyes-off-road time is the product of number of eye glances and the mean glance 
duration on any individual test trial. Therefore when the task means across subjects are correlated across 
all tasks, eyes-off-road time (var. 2) would be expected to have a high correlation with glances (var. 3, r = 
0.989) and glncedur (var. 12, r = 0.583). Likewise on any given task trial, the total missed events are the 
sum of the missed hood lights and the missed side lights. Therefore, the percent allmiss (var. 9) would be 
expected to have a high correlation with the percent hoodmiss (var. 10, r = 0.775) and percent sidemiss 
(var. 11, r = 0.849). Also on any given trial, the mean response time is the average of the totals of the 
hood light response times and side light response times. Therefore, evnttime (var. 13) would be expected 
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to have a high correlation with sidetime (var. 14, r = 0.812) and hoodtime (var. 15, r = 0.734). Finally, if 
there were a missed event, the reaction time for that event was counted as 10 seconds (see Ref. 7), leading 
to increased correlations between each of the three missed event variables nine through 11 and their 
corresponding reaction time variables 13 to 15. These correlations cannot simply be left out of the 
correlation table because standard PCA statistical packages require an invertible matrix. Entire variables 
cannot be dropped out a priori because variables 1-15 have each been previously identified as important 
in evaluations of driver performance (e.g. Ref. 7). PCA considers all correlations in the correlation matrix, 
and guarantees that the resultant components are uncorrelated. Therefore it seemed plausible that the 
components would be robust to these nine artificially high correlations, so the PCA was done with the 
correlation table as shown in Table 2. Arguing in favor of the inclusive approach adopted in this paper is 
that if any of these variables had an exact linear relationship, they would have automatically been 
discovered as PCs with zero variance. That is, the original correlation matrix would not have been of “full 
rank” as a 15 x 15 matrix. This didn’t happen in the analysis, and it can be seen from the original task data 
(not shown) and the correlation matrix (Table 2) that these exact relationships do not hold. This result 
may occur because each variable mean was calculated across subjects for a given task, after averaging all 
the individual glances and glance durations for that task trial for that subject. If there had been exact 
linear relationships, then we could have dropped one variable in each such relationship from the analysis, 
but this was not necessary as it turned out. 
17 In fact, the data variables were pre-ordered in this way before submission to the PCA, for clarity of 
presentation. Such re-ordering has no effect on the actual PCs computed. 
18 Note that the same Figure 2 would result, independent of the order of the variables in the correlation 
matrix. That is, if the variables were permuted in the correlation matrix, Figure 2 would remain the same. 
As stated in Endnote 17, the order of the variables in the correlation matrix does not affect the 
components. 
19 For tasks scoring high on PC1, many glances to the system could be a putative proximal cause of low 
event performance, since if the driver looked at the system rather than the road, he or she would 
necessarily tend to miss or respond slowly to the lights. 
20 The opposite loading of glances (and eyes-off-road time) and event detection variables for PC2 
indicates that missed events in PC2, unlike PC1, cannot simply be attributed to eye glance behavior. That 
is, tasks scoring highly positive on PC2 have few glances and low eyes-off-road time, yet show many 
missed events, the opposite effect from PC1. This observation further lends support to the hypothesis that 
PC2 may be associated with attentional or cognitive effects, possibly related to mind-off-road.  
21 Could PC2 not be associated with attentional effects at all, but simply arise from a single long-duration 
eye glance during short tasks? Short tasks might have only one glance, and one light event (because 
events are given only every three to six seconds). If that single glance is an “orienting glance” to a new 
location, it might be relatively longer in duration than other glances to the same location. Hence there 
might be a higher percentage of missed events and slowly responded events for a short task simply due to 
the long glance duration off the road. Indeed, glance duration (glancedur, var. 12) loads positively (but 
weakly) on PC2 as shown in Figure 1 and Table 3 (loading = 0.101393). However, this hypothesis would 
imply a negative correlation between glance duration and task time, but Table 2 shows in fact there is a 
high positive correlation (r = 0.521, p < 0.00001). This hypothesis would also imply a negative 
correlation between task time and missed events, and task time and event response time, but again Table 2 
shows statistically significant positive correlations (r = 0.576, p < 0.000001; r = 0.393, p < 0.001). Hence 
the current data cannot rule out the hypothesis that PC2 is associated with attentional or cognitive effects 
related to “mind-off-road,” that are independent of eye movement behavior (see also Ref. 20). 
22 PC2 may be an opponent dimension because of the opposite signs of the loadings of the workload 
variables and visual event detection variables. That is, tasks scoring highly positive on PC2 have short 
task times, few glances, low perceived workload, and low situation unawareness, but high percentages of 
missed events and high event response times. The term opponent as used here does not necessarily imply 
an active inhibition of visual event sensitivity by physiological processes arising from tasks with low 
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visual-manual workload or vice versa, even though there is some evidence from neurophysiological 
studies that opposite signs on component loadings may be associated with neural inhibition (see Ref. 14). 
However, the pattern of loadings on PC2 demonstrates at least a contrast between visual-manual 
workload and inattentiveness to visual events, for tasks scoring highly on PC2.  
23 The term inattentiveness is used here in a general sense to mean insensitivity or lack of responsiveness 
to outside visual events. The data here do not allow for a direct determination of the cause of the 
inattentiveness. Indeed, the data do not preclude any combination of physical, physiological, behavioral, 
or cognitive causes. For example, tasks with low visual-manual workload might have high event 
insensitivity arising from (1) high mental task demand, (2) low mental task demand giving rise to “day-
dreaming” or pre-occupation with internal thoughts; and/or (3) reduced attentional “supply” because of 
fatigue, emotional stress, or other confounding co-factors during the task. Such co-factors were common 
during OnStar embedded cell phone call tasks followed within ten minutes by a crash serious enough to 
cause airbag deployment –Young, R. A., “Association between embedded cellular phone calls and vehicle 
crashes involving airbag deployment,” Proc. of Driving Assessment 2001: The First International Driving 
Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Aspen CO, Aug. 
2001, http://ppc.uiowa.edu/driving-assessment/2001/Summaries/Downloads/download.html#speaker3.  
24 In tasks scoring positively on PC2, the driver’s subjective rating of outside road unawareness (variable 
six) loads in opposing fashion to objective measures of event inattentiveness (vars. 9-11 and 13-15). That 
is, during such tasks drivers tend to rate themselves as aware of outside events, even though they miss or 
respond slowly to them, lending further evidence that PC2 may be associated with mind-off-road. PC3 
loads negligibly with situation awareness, also suggestive of lack of conscious awareness of peripheral 
insensitivity. See Levin, D., Momen, N., Drivdahl, S., and Simons, D. (2000) “Change blindness 
blindness: The metacognitive error of overestimating change-detection ability,” Visual Cognition, 7 
(1/2/3), 397–412; Levin, D., Drivdahl, S., Momen, N. and Rock, M. (2002) "False predictions about the 
detectability of visual changes: The roles of beliefs,” Consciousness and Cognition 11, pp. 507-527.  
25 Note that the periphery insensitivity effect associated with PC3 could not be uniquely specified if only 
responses to a peripheral light probe had been measured, without a central light probe and other 
dependent variables (as in Refs. 2 and 3). In such a case, there is an obscuration (i.e., confounding) of the 
separate and distinct contributions of PC1, PC2, and PC3 to driver performance. Tasks giving rise to high 
miss rates to a single peripheral light would score on all three components, and it could not be determined 
if the effect were due to overall task demand (PC1), general inattentiveness associated with low workload 
(PC2), or true peripheral insensitivity (PC3). On the other hand, even with both peripheral and central 
lights, these data cannot rule out the possibility that PC3 may just be an “opposing” event sensitivity 
engendered by having to respond to any two lights rather than one, with the peripheral location being 
superfluous. Future work could control for this possibility by a two-light control condition in which both 
lights are placed in the central visual field (fovea and parafovea areas). If the same opposing sensitivity to 
the two lights occurred, the opponent effects in dimension three would more likely be attributable to 
having to attend and respond to any two lights, rather than a peripheral vs. central insensitivity effect. 
26 Glances, glance duration and eyes-off-road variables barely load on this component, and the central 
light controls for bias in glances or head rotation to the side (see Methods). 
27 Jolliffe, I. T. (2002). Principal Component Analysis, Springer Verlag, 2nd Ed. 
28 Cadima, J. and Jolliffe, I. T. (2001). “Variable selection and the interpretation of principal subspaces,” 
J. Agricultural, Biological and Environmental Statistics, 6, 62-79. 
29 Assume the probability that any one of the 15 original variables is in control limits is 0.95 (i.e., α = 
0.05). The probability that all of them are in control limits assuming they are all uncorrelated (which they 
are not) is (0.95)15 = 0.46, so the effective Type I error is roughly α = 0.50, not 0.05. Thus if one were 
attempting to control 15 uncorrelated variables, at least one or more of these variables would falsely 
indicate an out-of-control condition over one-half of the time. If the variables were perfectly correlated 
(which again they are not here), the Type I error would remain at 0.05. It is difficult to calculate the Type 
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I error when the variables are correlated, as they are here, but it must be between 0.05 and 0.5. However, 
because PCs are uncorrelated, the Type 1 error may be easily computed for 3 PCs: 1 - (0.95)3 = 0.14. 
Setting the limits on each individual PC at a conservative significance level of 0.05/3 = 0.017 guarantees 
the desired overall type I error of at most α = 0.05 (see Ref. 15, pages 20-21). Of course, it must be 
emphasized that this reduction in overall Type I error occurs not because PCs are somehow better than 
variables, but simply because one is looking at “fewer” PCs and hence there is less scope for such errors.  
30 That is, the PCA method can also help reduce false negatives (for example, see Ref. 15, p. 23, point C).  
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