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USING MICROWORLDS TO DESIGN INTELLIGENT INTERFACES  
THAT MINIMIZE DRIVER DISTRACTION 

 
Barry H. Kantowitz 

University of Michigan Transportation Research Institute 
Ann Arbor MI  USA  48109-2150 

 
ABSTRACT 

 
While recent developments in telematics have produced great interest in driver 
distraction, this is hardly a new topic. An early UMTRI report (Treat, 1980) 
defined internal distraction as a diversion of attention from the driving task that is 
compelled by an activity or event inside the vehicle.  Based on data collected in 
Monroe County Indiana, Treat (1980) concluded that internal distraction was a 
factor in 9% of in-depth reports and 6% of on-site investigations. In the period of 
data collection (1972-1975) conversation with a passenger and increasing use of 
entertainment tape decks were the major sources of distraction.  Now a host of 
modern infotronic devices offers even greater opportunities for internal distraction 
(Kantowitz, 2000). 
 
Intelligent driver-vehicle interfaces present a wonderful opportunity to 
successfully manage this increased in-vehicle workload.  This smart interface 
would be adaptive, making dynamic allocation of function decisions in real time. 
Designing such an intelligent interface presents many problems.  In particular, 
since new infotronic devices are being developed and deployed rapidly, it seems 
difficult to evaluate all these new designs.   This chapter focuses upon using 
microworlds to swiftly assess effects of in-vehicle infotronics upon driver 
distraction. 
 
Microworlds vary along several dimensions such as realism, tractability and 
engagement (Ehret, Gray, & Kirschbaum, 2000).  The traditional driving 
simulator is only one example of a relevant microworld.  By considering a wider 
range of microworlds, we can gain insight into how to best utilize driving 
simulators.  Issues of validity are also illuminated when considered from a 
microworld perspective. If appropriate intelligent interfaces are designed, 
telematics should never increase driver distraction. 

 
INTRODUCTION 
 
Driver distraction, although hardly a new topic, has been much in the public mind recently due to 
increasing popularity of in-vehicle cell phones and telematics.  This is a great opportunity to 
demonstrate that ergonomic solutions are far more meritorious than legislative solutions.  Many 
localities are considering legislation to control the use of cell phones in moving vehicles.  
Unfortunately, the modal legislation being considered would ban hand-held phones but not 
hands-free phones.  Since the conversation is a much more important determinant of driver 
distraction than the dialing (Goodman, Tijerina, Bents, & Wierwille, 1999), such legislation, 
although perhaps increasing safety immediately because of the great number of hand-held 
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phones currently used by drivers, would not solve the problem and might make it worse in the 
long run by encouraging the false belief that using hands-free phones is without risk.  I recently 
testified before the Michigan House Transportation Committee which is considering a bill to 
increase the penalty for drivers who are using a cell phone when an accident occurs.  This is a 
controversial bill and some legislators are reluctant to impose restrictions that would be more 
stringent, such as banning phones entirely, without the benefit of on-road accident data regarding 
driver distraction.  Since Michigan has only this year added cell phones to the accident reporting 
form used by state police, it will be several years before sufficient data are accumulated to allow 
a judgment about the severity of the problem.  
 
Research on driver distraction is hardly new.  An earlier UMTRI report (Treat, 1980) defined 
internal distraction as a diversion of attention from the driving task that is compelled by an 
activity or event inside the vehicle.  This report was based upon data collected from 13,568 
police-reported accidents that occurred in Monroe County Indiana from 1972-1977.  It 
distinguished internal distraction, defined above, from inattention, defined as a noncompelled 
diversion of attention from the driving task.  The study used a tri-level approach to accident 
investigation. Baseline data were obtained for all 13,568 accidents. This was followed by on-site 
investigation of 2,258 cases. A subset of 420 cases were investigated in depth by a 
multidisciplinary team.  Internal distractions were causal factors in 9% of in-depth reports and 
6% of on-site investigations.  This compares with inattention as a causal factor in 15% of in-
depth reports and 14% of on-site investigations. In those days there were no cell phones inside 
vehicles and the two main causes of internal distractions were conversations with a passenger 
and use of tape decks.  Today we have a host of modern telematic devices that offer even greater 
opportunities for internal distraction (Kantowitz, 2000).  
 
The most familiar telematic device is the car radio. The Michigan legislators, after my prepared 
testimony, asked me several questions comparing radios to cell phones: e.g., we don’t legislate 
any constraints on radios so why should we treat cell phones differently?  But even the familiar 
radio is no longer your father’s radio with one control for tuning and one control for volume.  
Figure 1 shows the percentage of car radios with less than eleven buttons over the last decade. 
While not the results of a random scientific survey, it clearly reveals that radios have become 
more complex, and hence more likely sources of internal distraction.  For the five most recent  

 
Figure 1 (AAA Foundation for Traffic Safety) 

 
model years, more than half of installed car radios have eleven or more controls. Some of this 
complexity is good human factors, as when volume and seek controls are located on the steering 
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wheel, but most of this complexity has increased the driver’s workload.  So my answer to the 
legislators was that it depends upon the kind of radio. 
 
Contemporary estimates of driver distraction are higher than those of the older tri-level study.  A 
common lower bound for this is 26% based upon sampled crashes from the 1995 National 
Automotive Sampling System-Crashworthiness Data System that were attributed to driver 
inattention (Goodman et al, 1999).  It is very difficult to determine to what degree specific 
devices or activities within the vehicle contribute to inattention and distraction; for example, 
food and beverages may be as important as cell phones (Hancock & Scallen, 1999). Case control 
studies that provide objective data are badly needed (Smiley, 1999). Yet it seems obvious that as 
cell phones and other telematic devices proliferate, increasing exposure to internal distraction 
will decrease driving safety.  I do not believe it is prudent to wait until sufficient objective 
sources of data are available to start devising ways to mitigate driver distraction. 
 
Two attorneys, highly familiar with human factors, have offered three risk reduction techniques 
intended to reduce driver distraction (Peters & Peters, 2001).  First, telematic devices could have 
warning labels and messages. I doubt that this will be a solution to the problem. Second, is a 
binary integrated system with certain telematic devices being disabled while the vehicle is in 
motion. The notion of system integration is quite appealing, although this chapter will advocate a 
more continuous scheme for controlling in-vehicle devices using an intelligent interface.  Third, 
is marketing and dealer restraint whereby risk reduction becomes a higher priority for the sales 
channel.  This method of reducing risk is beyond the scope of the present chapter. 
 
This chapter aims at exploring intelligent driver interfaces that minimize distraction from 
telematic devices. First, I define and explain my conception of an intelligent interface; these 
interfaces have the potential to minimize driver distraction. Then I distinguish between analytic 
and empirical approaches to evaluating an intelligent driver interface.  My emphasis is upon 
empirical methods, especially those that utilize laboratory techniques.  Discussion is focused 
upon microworlds, including driving simulators, that allow considerable laboratory control of 
experimental variables but still provide a reasonable approximation of the complexity of the real 
world.  How might microworlds be used to evaluate driver interfaces?  Since people drive 
vehicles on concrete highways, and not just in our constructed microworlds, what caveats and 
limitations need be taken into account before making practical recommendations to minimize 
driver distraction?  
 
Defining Intelligent interfaces 
 
Over a decade ago, I presented some thoughts about interfacing human and machine intelligence 
(Kantowitz, 1989). At that time I was judicious enough to deal only with qualitative aspects of 
intelligence:   
 
Human intelligence is easy to define so long as one is prudent enough to refrain from attempts at 
measuring intelligence and is content to define intelligence through the behavior it produces. I 
define intelligent behavior as purposive behavior that attempts to reach a goal.  For me this 
definition implies a closed-loop setting where feedback is used to modify behavior until the goal 
is attained (p. 50). 
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I then utilized this same definition for machine intelligence, making reference to Turing’s test 
(Turing, 1950). This famous test calls for an observer to distinguish between a human and a 
machine.  If the observer cannot do so, one must conclude that the machine is at least as 
intelligent as the human. Turing was able to anticipate potential objections to his test, including 
the objection that the intelligence resided in the programmer of the machine rather than the 
machine itself.  Of course, if programmers always knew how their programs would behave it 
would never be necessary to debug programs.  Many years ago, as a graduate student in 
computer science, I was required to write a SNOBOL program that played GO.  My simple 
program was consistently able to beat me.  (This, of course, is better explained by my 
inexperience as a GO player rather than attributed to any outstanding capabilities as a SNOBOL 
programmer.)  Thus my GO program was more intelligent than I because it better achieved the 
goal of defeating its opponent. 
 
If one admits that both human and machine system components can exhibit intelligence, the 
obvious question is how to link them to optimize overall system performance.  This question 
usually is answered in human factors by referring to principles about allocation of function 
between people and machine (Kantowitz & Sorkin, 1987).  In the traditional binary interface, an 
operator can manually decide whether to allocate some task to the machine or to perform it 
manually. Thus, if operator workload becomes too high more tasks can be assigned to the 
machine.  But even this does not guarantee a sufficient decrease in operator workload since the 
operator must then keep track of the states of various sub-systems which itself increases operator 
workload.   
 
How might one improve on the traditional binary interface?  If we think of intelligent control of 
a system as a continuum, an optimal interface could assume any state along this continuum, 
without creating any overhead cost associated with either the state itself or the path used to 
reach the state.  The ends of the continuum would be complete system control by either human or 
machine intelligence. While a binary interface can move along this continuum, although not 
always in a smooth graded manner, it creates overhead as it changes allocation of function.  This 
overhead depends upon the number of machine sub-systems engaged and often also upon the 
order in which the operator addresses these sub-systems. 
 
An optimal interface would degrade gracefully as workload increased. It would transfer tasks to 
the sub-system, human or machine, that would perform the best given their spare capacity and 
capability.  For example, a task that could be performed with 90% efficiency for an unloaded 
human operator might be transferred to the machine, which only offered 72% efficiency when 
the human became overloaded enough so that his predicted performance dropped below 72%. If 
workload become excessive for both human and machine components, e.g., total system 
performance would be unsatisfactory, an optimal interface would shed load by deferring and 
even eliminating task components. Thus, an optimal interface would be adaptive.  It would not 
have a fixed hierarchical list of tasks to be shed but instead would make these decision 
dynamically based upon real-time assessment and evaluation of sub-system resources. 
 
Thus, an optimal interface must itself be intelligent. It must monitor operator performance and 
make allocation of function decisions for the operator.  This represents a design philosophy that 
it much more acceptable in Europe than in the United States.  For example, in Europe there is on-
going research about controlling vehicle speed automatically by having controllers built into 
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every new engine.  The machine would prevent the operator from speeding. It is hard to image 
such a system becoming popular in the United States even though it would greatly improve road 
safety. But I believe we have already exceeded the human driver’s ability to safely control a 
vehicle while using all manner of telematic devices.  For example, by 2002 electronic and 
electrical applications will account for 44 pounds of the 58 pounds of copper wiring in the 
average car. Much of this increase comes from telematics and entertainment. Intelligent 
interfaces must be devised. 
 
An intelligent interface cannot be adaptive in an optimal manner without some knowledge, and 
perhaps even some preview, of the local environment. Monitoring the driver’s workload is one 
important component of the local environment.  There are many techniques for measuring 
workload (see Kantowitz & Campbell, 1996) but I have always liked using information theory 
(Kantowitz, 1985) and believe that one especially promising methodology that is practical in a 
moving vehicle is based upon the steering entropy  (Boer, 2000).  Unlike secondary-task and 
most physiological measures, steering entropy is unobtrusive.  It is sensitive to demands of non-
driving in-vehicle tasks. It can be related to models of attention, information processing, and 
closed-loop control.  I hope more investigators incorporate this measure of performance into 
their research efforts.  
 
Another kind of local knowledge relates to the driving environment outside the vehicle.  For 
example, vehicles equipped with advanced cruise control already contain sensors that monitor 
distance and rate of closure to other vehicles.  An intelligent interface could use this information 
to filter sources of in-vehicle information that are of lower priority. Similarly, existing road 
databases used with navigation systems could be extended to contain road accident data. An 
intelligent interface could use this information to limit in-vehicle distractions when approaching 
and traversing high-accident areas.  
 
An intelligent interface capable of making dynamic allocation of function decisions for the driver 
must be designed carefully to prevent mode problems that have occurred in aircraft.  Pilots have 
gotten confused about what the automation is doing due to insufficient feedback.  Drivers must 
have a sound mental model that is consonant with the capabilities of vehicle automation.  For 
example, it would be unsafe if drivers believed that a new adaptive cruise control totally 
removed the need for human monitoring of the vehicle because it would bring the vehicle to a 
safe stop should the preceding vehicle suddenly brake to a halt.  While current adaptive cruise 
controls can slow the vehicle, they are not designed as safety devices that take the driver out of 
the loop.  Any vehicle with more than a single intelligent controller, e.g., human and machine 
intelligence, must always have provision for strong annunciation of which intelligence is 
currently in control. 
 
More recent developments have improved my qualitative meandering on intelligent interfaces by 
suggesting quantitative techniques to measure machine intelligence (Park, Kim & Lim, 2001) 
and interface complexity (Kang & Seong, 2001).   For example, Park et al  (2001) defined a 
control intelligence quotient by summing task intelligence costs across a task allocation matrix.  
They then perform a similar calculation for human intelligence based upon tasks allocated to the 
operator.  The machine intelligence quotient is simply the control intelligence quotient minus the 
human intelligence quotient. As task allocation changes, it is easy to recalculate the effects upon 
both intelligent quotients.  There is even a numerical example that illustrates these calculations. 
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My problem in fully understanding these concepts lies in measuring the task intelligence cost 
defined as a vector across tasks.  The authors offer no advice on how to establish these numbers, 
other than suggesting one of six approved methods of measuring mental workload: parameters 
from behavioral signals, dual-task methods, information measures, eye scanning movements, 
subjective measurement, and physiological variables. I doubt that if any researcher was heroic 
enough to apply all six of these methods for the same interface, that they would all agree.  Even 
more fundamental, the psychometric scale properties of these methods differ greatly.  Although I 
am strongly in favor of computational models (Kantowitz, 2001), these models must be 
populated with measured quantities.  Matrix multiplication of arbitrary numbers, or even 
numbers with unknown psychometric properties, can create only the illusion of precision. There 
is no psychological reality in the naked equation.  While Park et al (2001) have provided an 
interesting discussion of how interface redesign through task allocation changes complexity and 
system intelligence, it is hard for me to accept that the numbers produced have even interval 
scale properties without knowing how the basic entries are measured.  The outputs of even the 
most clever models cannot be better than the quality of the data entered into these models.  
 
DESIGNING AND EVALUATING INTELLIGENT INTERFACES 
 
Designing an intelligent interface presents many challenges.  In particular, since new telematic 
devices are being developed and deployed rapidly, it seems difficult to anticipate all these new 
designs.  One of the main challenges to the auto industry is to speed up its model cycle time to 
better match the rapid pace of the electronics industry that is creating new telematic devices.  
How can an engineer design an intelligent interface to accommodate devices that do not yet 
exist? 
 
There are both analytic and empirical answers to this question. One analytic solution, using 
higher levels of abstraction to design based upon functions rather than upon specific devices, has 
already been articulated by Lee and Kantowitz (2001).  It uses groups of functions and network 
analysis of information flows to integrate in-vehicle devices. Well before any physical device 
specifications are finalized, the design engineer knows what functions need be performed.  This 
permits an evaluation of functions early in the design cycle.  But even this useful analytic design 
tool does not remove the need for evaluating physical devices before they are deployed.  This 
chapter focuses upon empirical evaluation and rapid prototyping by using microworlds to 
evaluate new telematic devices and their driver interfaces. 
 
Microworlds and Driving Research 
 
Human factors researchers must navigate a narrow course that weaves between the Scylla of lack 
of control in field studies and the Charybdis of sterile well-controlled laboratory studies that are 
difficult to generalize.  As a graduate student I was trained in how to conduct conditioning 
experiments  that were exquisitely controlled using the human eyeblink response. But I was 
unable to accept the fundamental principal of human eyelid conditioning: the human is appended 
to his eyelid.  Given the extremely limited nature of this response measure compared to the 
larger repertoire of human thought and action, it was no surprise to me that human eyelid data 
exhibited much the same form and functional relations as found in rabbit eyelid studies.  When a 
human is strapped into a chair, shown simple geometric forms on a screen, and has puffs of 
nitrogen directed onto his cornea, there is little opportunity for expressing a wide range of human 
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capabilities.  But this research did engender a respect for experimental control that to this day 
makes me uncomfortable with some of the compromises often seen in field research. 
 
Microworlds (Brehmer & Dorner, 1993) are computer-generated artificial environments that are 
complex (have a goal structure), dynamic (operate in real time) and opaque (the operator must 
make inferences about the system).  Thus, they can avoid  results of limited generality , e.g., 
some laboratory research on stimulus-response mappings is not helpful to human factors 
practitioners (Kantowitz, Triggs & Barnes, 1990),  while maintaining a satisfactory degree of 
experimental control. Microworlds have been used to study topics such as process control 
(Howie & Vicente, 1998), extended spaceflight (Sauer, 2000),  fighting forest fires (Omodei & 
Wearing, 1995), air traffic control (Bramwell, Bettin & Kantowitz, 1989),  stock market trading 
and internet shopping  (DiFonzo, Hantula & Bordia, 1998), and submarine warfare (Ehret, Gray 
& Kirschenbaum, 2000).   
 
Ehret, Gray and Kirschenbaum (2000) have identified three useful dimensions that allow 
researchers to compare microworlds and other simulated task environments: tractability, realism, 
and engagement.  Tractability relates to how the researcher can effectively use the simulated 
environment.  For example, Bramwell , Bettin and Kantowitz (1989) used Seattle firefighters as 
subjects in their air traffic control microworld because the major aim of the study was to see how 
experienced teams with leaders of a known  management style interacted.  The goal was not to 
study air traffic control per se and the microworld created was an amalgam of enroute and 
terminal control.  Two controllers (North and South) sat at different screens, which contained the 
same airport.  In order for them to successfully route traffic, they had to coordinate their efforts 
because they could not see the other controller’s screen.  A team leader, who had no screen and 
thus was dependent upon the two controllers for information about traffic flow, was responsible 
for this coordination.  This microworld exhibited tractability because it was simple enough for 
the controllers to learn quickly and easily how to command their aircraft, but still sufficiently 
complex to require teamwork and coordination.   Realism refers to matching experience in the 
real and simulated worlds.  For example, process-control microworlds should obey the same 
laws of thermodynamics as physical plants.  Engagement refers to the willing suspension of 
disbelief on the part of experimental participants.  Researchers want their subjects to act 
“naturally” and to produce the same behavior as in the real world.  Engagement is a joint 
property of people and the simulated environment and the same microworld could be engaging 
for one person and not for another. Professionals, who are highly motivated and knowledgeable, 
might accept an unrealistic simulation because they can fill in missing details. For example, 
professional airline pilots will cheerfully fly a lower-fidelity Link trainer.  Professionals might 
also reject a realistic simulation if it conflicts with their philosophical worldview.  Military pilots 
might not wish to participate in studies of side-stick controllers because they believe that such 
devices do not belong in airplanes.  I vividly recall one commercial truck driver who stormed out 
of our simulator after a crash because he had never experienced an accident in his entire career; 
did this mean he was too engaged? 
 
These three concepts, tractability, realism, and engagement give us the vocabulary to compare 
microworlds with each other and with the real world.  For example, why use microworlds to 
study driver distraction at all when that can be accomplished with greater realism and 
engagement in an actual vehicle?  Safety is often cited as a major reason for using microworlds: 
no one ever got killed in a simulator crash.  But we can safely use a real vehicle on a closed test 
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track to study driver distraction.  It is fairly easy to instruct drivers to eat pizza or to insert CDs 
into a player while driving a closed course so that lane incursions and other vehicle control 
parameters can be recorded.  One could even have plastic deer and foam-core cars unexpectedly 
pop out into the driver’s lane. Indeed, these procedures are eminently suitable if the goal is to 
educate drivers about the dangers of distraction or to inform legislators about the need for 
regulating cell phones and perhaps other telematic devices. Videos of people driving real cars 
and crashing into obstacles while distracted are far more convincing than videos of simulated 
driving.  No driving simulator has the pixel flow rate and transport lag of a real vehicle. But I 
believe that such test track work offers considerably less tractability when the goal is to improve 
the engineering design of in-vehicle interfaces.  It takes much time and effort to conduct field 
research. While there are some savings in replications of field research, e.g., the same data 
acquisition system can be utilized, the virtual world offers far greater control and complexity. 
Complicated interactions between vehicles are easily programmed.  Experimenters interested in 
control of braking systems on icy roads no longer have to wait for winter or travel to the far 
northern reaches to conduct their research.  Drivers can be trusted to drive alone without an 
accompanying experimenter poised to apply an emergency brake should the vehicle run off the 
road.  No tow trucks are required to restore such a vehicle to the roadway in the virtual world. 
Tractability is the reason for employing microworlds in driving research. 
 
A Route Guidance Microworld 
 
The Battelle Route Guidance Simulator (Kantowitz, Kantowitz, & Hanowski, 1995) consists of 
two linked Intel 486 computers and two video displays (Figure 2). One display shows real-time 
traffic video with rapid switching between traffic links and the other display provides a map with 
touch control selection of desired routes. The driver’s goal is to reach a destination in minimum 
time. A moving dot indicates the vehicle’s current location on the map. Using the touch screen, 
the driver can query traffic conditions on a particular link and select links for travel. The Route 
Guidance Simulator operates in real time on both screens so that a journey through the 
microworld takes exactly the same time as driving that route in real traffic. In order to increase 
engagement (and perhaps realism as well) a cash bonus, usually $15, was continually displayed 
based upon travel time.  Encountering traffic congestion severely depleted that bonus. A price 
could be charged for querying traffic links; in some experiments this price was zero. The 
accuracy of reported traffic congestion on a link was a major independent variable in these 
experiments. In selecting links, drivers were not permitted to choose a link beyond what was 
adjacent to the current link, i.e., drivers could not pre-program their entire journey.  A link could 
not be selected unless it had first been queried for traffic congestion. Drivers proceeded through 
their journey selecting links and observing real-time traffic flow until they reached their 
destination.   
 
This microworld exceeded our expectations for driver engagement. All sorts of emotional 
behaviors were observed as drivers fumed, stuck in heavy traffic –the queried reports were not 
always accurate- watching their bonuses evaporate.  High levels of engagement need not be 
associated with positive feelings about the microworld. Indeed, only one observer, a traffic 
engineer who enjoyed watching congestion, was really happy with the simulated experience; this 
was fortunate since he was responsible for monitoring the project.  Everyone else found the 
traffic delays to be irritating.  While it was possible to change the time scale, e.g., running in half 
actual time and thus being twice as efficient in collecting data, we never did this because it 
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would have distorted the realism of the microworld.  Similarly, we never found it necessary to 
increase the time scale making the simulation slower than real traffic but this might have been a 
useful technique for inducing road rage in the laboratory.  Although we did not formally try to 
evaluate the realism of this microworld, it appeared that turning off the traffic video substantially 
reduced both realism and engagement.  
 

 
Figure 2 

 
The proof of the pudding is in the eating, and tractability is best evaluated by empirical results. 
Kantowitz, Hanowski, and Kantowitz (1997) used this microworld to investigate driver 
acceptance of unreliable traffic information in familiar (Figure 3) and unfamiliar (Figure 4) 
settings.  Figure 3 is a map of Seattle.  Figure 4 is a map of New City, a fictitious environment 
that no driver could have ever experienced.  But look very closely at these two city maps.  They 
are topographically identical with the same number and arrangement of nodes and links. 
(Rotating figure 4 90 o makes this easier to see.)   Only a microworld makes it easy to obtain this 
level of control. Comparing two real cities would confound familiarity and topography. Results 
of these experiments showed that drivers would accept unreliable information up to a point and 
that familiar driving environments require more reliable in-vehicle traffic information; see 
Kantowitz et al (1997) for detailed results and discussion of these points. I believe that the Route 
Guidance Simulator is a very effective research tool, especially when its low hardware cost is 
also considered. 
 
The Route Guidance Simulator is a stand-alone part-task simulator.  It can be used to discover 
design specifications for future in-vehicle devices.  However, in order to use microworlds to 
investigate driver distraction a much larger microworld, consisting of a driving simulator and 
simulated telematic devices is required. The remainder of this chapter explores this larger virtual 
world. 
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Figure 3 

 
Figure 4

 
USING DRIVING SIMULATORS 
 
Since no driving simulator can duplicate all the perceptual cues of the real world, it is important 
that the relevant cues be present with sufficient quality and quantity to allow generalization of 
results beyond the microworld.  Successful microworlds need not require complete realism, as 
discussed previously.  Indeed, simulator researchers have known for some time that 
psychological fidelity is as important as physical fidelity (Kantowitz, 1988; Rankin, 1984).  The 
same driving simulator may be useful and valid for some applications and invalid for others. 
Thus, with each new application of a driving simulator, a new validation study should be 
conducted.  Since those who fund research are usually more interested in obtaining results, rather 
than validating them, I commend any researcher who has been able to conduct validation studies 
of their simulator. It would be interesting to perform a literature review that compared the 
number of articles about how to build simulators and what a specific simulator will be able to do 
once completed to the number of articles that validated existing simulators by comparing them to 
real vehicles and to other simulators: in a perfect world validation studies would outnumber 
simulator construction articles by an order of magnitude. 
 
A recent review of driving simulator validity (Kaptein, Theeuwes, & van der Horst, 1996) 
identified two important kinds of validity: absolute and relative. A simulator with absolute 
validity produces results and effect sizes that are identical to the real world.  (Actually, this is my 
definition; Kaptein et al used the safer word “comparable” rather than identical, but I don’t like 
hedging.) Relative validity means that treatment in the simulator produce the same rank order as 
in reality.  They concluded that most simulator results produced relative validity, which is still 
worthwhile and useful. 
 
Although this is a valuable distinction, I prefer to think of simulator validity more in terms of 
regression.  How well does the simulator predict an outcome on the road?  This allows for 
outcomes that are not absolute but still are better than relative validity.  There is no need to settle 
for an ordinal scale when an interval scale might be achieved.  Regression analysis also offers a 
metric that explains how well simulators predict reality so that different users can make their 
own judgments about the sufficiency of the fit for their own design purposes. 
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If one can obtain absolute validity, it is tempting to conclude that nothing else need be done.  
McGehee, Mazzae and Baldwin (2000) conducted a heroic validation study with 120 simulator 
drivers and 192 test track drivers.  That’s a lot of drivers!  They found remarkable agreement and 
no statistical differences between simulator and test track total brake reaction time and time to 
initial steering. They were less fortunate in comparing time to throttle release but offered several 
plausible reasons to account for this statistically significant difference. Of course, since validity 
was absolute for two important measures, there was no need to offer plausible reasons for 
successful outcomes. 
 
The strong implication of this approach is that equality of means produces validity. If means are 
unequal then results are not valid and plausible reasons must be invoked. I think this logic is 
incomplete on several grounds.  First, why limit discussion to measures of central tendency? 
Distributions have been obtained and these should also be presented and compared. Furthermore, 
if reaction time measures are reported, mathematical psychology offers several techniques based 
upon distribution properties.  Second, is the statistical problem associated with acceptance of the 
null hypothesis (Kluger & Tikochinsky, 2001). Using confidence intervals does not completely 
solve this difficulty.  Instead, power analyses should be performed so that effect size can be 
determined (Cohen, 1988). I presume that McGehee et al (2000) prudently tested large numbers 
of drivers so that readers could not attribute the (desirable) lack of statistical significance to a 
weak experiment. A power analysis would confirm this presumption. If you have completed a 
powerful experiment, flaunt your results and show the power analysis.   There are several 
computer programs that can do power calculations. Third, research is better guided by theory 
(Kantowitz, 2001). How should readers interpret the findings that maximum lateral acceleration 
was 1.24 g on the simulator and 1.17 g on the test track while maximum longitudinal 
acceleration was 0.65 on the test track and 0.8 g on the simulator?  Without a model of the 
driver, it is difficult to answer the question. Fourth, the key question is not if simulator results 
equal test track results, although this is nice, but rather how well the simulator results predict the 
test track results. This is better examined with experimental designs that compare results over a 
set of parameters instead of obtaining only point estimates for a single event, such as a lane 
incursion. For example, driver speed could have been varied as a parameter. 
 
Figure 5 shows hypothetical outcomes for such a parametric experiment. On-road values are 
plotted against simulator values.  For example, one might compare curve entry speeds, for curves 
of different radius.  Each curve would be represented as a single point in Figure 5. So curve 
radius would be the parameter that allows a state space to be constructed.  If entry speed was 
identical for simulator and on-road tests, absolute validity, results in Figure 5a would be 
obtained. The squared correlation coefficient for this scatter plot would be an index of fit. But 
this is not the only favorable outcome.  One might expect that because visual information flow is 
always lower in a simulator than on the road, drivers might consistently drive faster in a 
simulator.  I would consider this also to be favorable outcome as shown in Figures 5b and 5c.  
On-road speed could still be predicted from the simulator and the correlation coefficient would 
indicate goodness of fit. Only if results of Figure 5d were obtained would I despair and conclude 
that a simulator is not a useful tool because knowing the simulator speed does not help in 
predicting the on-road speed. To recapitulate, the key to this kind of regression analysis is having 
some parameter that can be varied to sweep out the scatter plot. 
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Figure 5 

 
Bittner and Simsek (2000) presented such a scatter plot of curve-entry speeds and found a very 
low correlation (R 2  = .06) as shown in Figure 5d and so concluded that the simulator was not a 
valid tool for this purpose.  Their description of the experiment was terse and readers could be 
forgiven for believing that the simulated and on-road courses were identical.  However, this was 
not the case.  The simulator track contained orthogonal sets of curves with varying degrees of 
radius and deflection, an orderly environment that could be established only in a microworld.  A 
small number of curves that matched a real road in southern Washington state was sprinkled 
among these orthogonal curves.  Each curve was preceded by a tangent (straight section of road). 
The curve preceding each tangent was in no way matched to the real road.  Since in many cases 
the speed on the tangent was limited by its preceding curve, I would not expect correspondence 
in matched curve-entry speed unless speed on the tangent happened to be identical in simulator 
and road experiments.  A better way to analyze these data, therefore, would to be correct for 
speed on the tangent before comparing curve entry speeds. When this is done, results look like 
Figure 5c. The correlation is quite high using adjusted speeds.  In this experiment, the same 
drivers drove the simulator once and the real road twice.  It would be unreasonable to expect the 
simulator to correlate with the road more highly than the road correlates with itself. So the 
experimental design allowed correction for attenuation based upon repeated measurements on 
the road. This produced an extremely high correlation, R 2  >.90.   
 
Of course, the best way to design a validation study would be to have the simulator roads be an 
exact copy of the real road.  However, this requires a sponsor willing to pay for a pure validation 
study.  The study just described was a compromise aimed at examining effects of road geometry 
with just a little bit of validation on the side. Nevertheless, when analyzed correctly, it revealed 
that the simulator is an excellent tool for estimating curve entry speeds.  Although the fixed-base 
simulator did not provide lateral acceleration cues, which probably would be necessary for 
studying control of speed through a curve, these acceleration cues are not important on tangents.  
The orthogonal microworld allowed me and my colleagues at Battelle, where the study was 
conducted, to discover that curve entry speed was influenced by radius of curvature (no surprise 
here) and also by deflection angle (big surprise to highway engineers).  I doubt that this question 
could have been investigated by using existing highways.  First, it would be almost impossible to 
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locate a sufficient number of curves with appropriate combinations of radius and deflection angle 
within reasonable driving distance. Second, many other road geometry parameters would have 
confounded results so that the effects of deflection angle might not have emerged.  The 
tractability of the real world for this experiment is close to zero.  Yet the experimental outcome 
from the microworld will be of great interest to highway engineers who want to design self-
regulating highways where drivers are guided to control vehicle speed by their perceptions of the 
roadway rather than by road advisory signs.  
 
MICROWORLDS AND DRIVING DISTRACTION 
 
The preceding discussion has explained some properties of intelligent interfaces, microworlds 
and driving simulators. It is now time to assemble these pieces, although many readers have 
probably already extrapolated to these conclusions. But first a comment on the current intense 
focus of researchers and politicians on driver distraction.  The term “driver distraction” can be a 
bit prejudicial since it implies that some irrelevant sources of information should be eliminated. 
The world needs a technological solution to purge distraction and if that cannot be provided then 
perhaps a legislative solution will emerge.  I think this is putting the cart before the horse. My 
preference is to apply good engineering design to in-vehicle information systems.  I believe that 
if this is done using best ergonomic practices, then the issue of additional driver distraction 
created by telematics will be moot. Our goal should be to improve the driver interface. If this is 
accomplished then telematics will increase driving safety and distraction will be limited to social 
interactions within the vehicle, grooming, mastication and other dalliances unrelated to in-
vehicle technology.  Telematics should never be a source of driver distraction. 
 
This happy state will be achieved most rapidly by using microworlds to evaluate the design of 
intelligent interfaces that prevent driver distraction by controlling the flow of information and 
control within the vehicle.  While new analytic tools may assist in narrowing down possible 
design alternatives, final designs must be evaluated before being made available to the driving 
public. Virtual tools are the best way to accomplish this goal. It is not surprising that the first 
generation of telematic devices can distract drivers.  These new systems work by themselves 
with little or no integration. They can present conflicting and confusing information. But this can 
be cured with the same kind of large system integration already found in airplanes and process 
control plants.  I believe that using microworlds will hasten the integration of in-vehicle 
telematics. 
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