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Abstract. Fractal dimension (FD) has been considered as a potential
biomarker for retina-based disease detection. However, conflicting find-
ings can be found in the reported literature regarding the association of
the biomarker with diseases. This motivates us to examine the stability
of the FD on different (1) vessel segmentations obtained from human
observers, (2) automatic segmentation methods, (3) threshold values,
and (4) region-of-interests. Our experiments show that the correspond-
ing relative errors with respect to reference ones, computed per patient,
are generally higher than the relative standard deviation of the reference
values themselves (among all patients). The conclusion of this paper is
that we cannot fully rely on the studied FD values, and thus do not
recommend their use in quantitative clinical applications.
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1 Introduction

The retinal fundus image is a direct acquisition of the human retina through
the cornea and lens. It provides a noninvasive observation of the human vascu-
lar network at high resolution, as well as retinal landmarks like the optic disk
and the fovea. Therefore, increasing attention has been drawn to retinal image
analysis for detecting diseases like diabetic retinopathy, hypertension and other
cardiovascular abnormalities [4].

Recent research has been focused on the study of the complexity of retinal
vasculature by the analysis of fractal dimension (FD) [1,3,4,7,13]. FD has been
considered as a potential biomarker for several diseases. However, some studies
reported in [3,7] found that control groups have lower FD than diabetes groups,
while in [1,4,13] they reported it is the other way around. This conflict motivated
us to investigate the measurements more in detail.

There have been a few works in the literature studying the stability of FD.
Wainwright et al. [12] studied the robustness of FD in terms of the changing of
brightness, focus, contrast, image format and reported that FD is highly sensitive
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to these factors. MacGillivray et al. [8] reported the segmentation threshold value
significantly affects the FD. Mendonca et al. [9] found that the FD is highly
dependent on both vessel segmentations and FD calculation methods.

In this paper, we examine the stability of three classic fractal dimension mea-
surements that have been mostly used in previous studies. We compare the FDs
calculated on binary vessel images, which were annotated by different human
observers and generated by various automatic vessel segmentation methods. We
also study the changing of threshold values for obtaining the vessel segmenta-
tions, and the effect of different regions of interest (ROI) for FD calculation.

The paper is organized as follows: in section 2, we introduce the classic fractal
dimension methods that are widely used in clinical studies and three state-of-the-
art vessel segmentation methods. In section 3, we show the comparison results
for different cases, and finally the conclusion is presented in section 4.

2 Methodology

In this paper, we are mainly interested in three methods that are widely used in
the literature: the box dimension (DB), information dimension (DI) and corre-
lation dimension(DC).

2.1 Fractal dimension measurements

Box Dimension is the most simple and popular method for estimating the FD
of fractal objects. It is the direct implementation of the Hausdorff dimension in
mathematics [5], in which the dimension is defined as the real number DH , such
that the number N(r) of balls with radius r that is needed to cover an object
grows with (1/r)DH as r→ 0. In other words, DH is calculated via:

DH = lim
r→0

logN(r)

log 1/r
. (1)

In the image domain, squared boxes, instead of balls, with different side-
length δ are used to cover the whole domain, and then the number of boxes
N(δ) that overlap with the structure are counted. We plot the Log(1/δ) against
logN(δ) and the limit of Eq. (1) can be estimated by the slope of the regression
line that fits to these logarithmic points.

Information Dimension was inspired from entropy theory, and is the mea-
sure of the uncertainty of a random event. It is defined as:

DI = lim
δ→0

∑N
i=1 pi log pi
log 1/δ

, (2)

where N is the number of boxes with size δ overlapped with the object, the
numerator

∑N
i=1 pi log pi is the first order Shannon entropy, pi=ni/M is the

probability for finding a part of the object in the ith box, M is the total mass
of it and ni is the part of object in the box. The limit of Eq. (2) can also be
estimated as the slope of the regression line of the logarithmic points.
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Correlation Dimension estimates the FD via the relationship between two
pixels inside a region. A correlation integral is defined via the Heaviside step
function for counting the pair of points in a region with size rk, and it can be
approximately expressed in terms of the probability density:

Ck =
1

N2

N∑

i=1
j=1
i6=j

Θ(rk − ‖xi − xj‖) ≈
Nk∑

j=1

p2
jk , (3)

where Θ(x) is the Heaviside step function, xi is the ith pixel belonging to an
object, pjk = njk/M is the probability density of the object with mass M in the
j th box with size rk. The correlation dimension DC is defined via the power-law
relationship between Ck and rk as DC = limrk→0

log Ck
log rk

.

2.2 Automatic vessel segmentations

The fractal dimensions are calculated on a vessel binary map, which has pixel
intensity 1 at the vessels and 0 at the background. In this work, we investigated
three vessel segmentation methods which are briefly described in the following
sections. The vessel probability map generated by each method is shown in Fig.1.

Frangi’s vesselness is a multi-scale vessel enhancement method proposed by
Frangi et al. [6], which uses the second order derivative to enhance elongated
structures in the image. An important property for an elongated structure is
a large change of gradient in one direction, but little gradient change in the
direction perpendicular to the former. The vessels can then be enhanced by

a normal probability distribution function: exp(−R
2
A

2α )(1 − exp(− S2

2β2 )), where

RA = λ2/λ1, S = λ1 + λ2, and where λ1 and λ2 are the eigenvalues of the 2D
Gaussian Hessian. RA is an anisotropy (elongated) term, S is a structure term.

Soares’s segmentation is a supervised method for vessel enhancement pro-
posed by Soares et al. [10]. It firstly extracts 5 features including the pixel inten-
sity (the green channel) and 4 Gabor filter responses from the images. Afterward
a supervised Gaussian Mixture Model (GMM) classification method is used to
classify the pixels into vessel or background using the obtained features. The
output is a probability map indicating the likelihood for a pixel being a vessel.

Zhang’s method is based on describing the image as a function on an extended
space of positions and orientations [14]. In their method, the image is lifted to
the 3D space of positions and orientations via a wavelet-type transform. In the
3D domain, vessels are disentangled at crossings due to their difference in ori-
entation. In the new space, Gaussian derivatives are used (exploiting a rotating
coordinate system) in order to enhance blood vessels. The method results in
crossing preserving enhancement of blood vessels.

Stability Analysis of Fractal Dimension in Retinal Vasculature 3



(a) (b) (c) (d)

Fig. 1. (a): An original image from the DRIVE database [11]. (b)-(d): The vessel
probability maps generated by the method of Frangi, Soares and Zhang, respectively.

2.3 Region of Interest (ROI)

In this work, the fractal dimensions were calculated in three different circular
regions of interest centered at the fovea centralis with radii of 4, 5 and 6 times the
optic disk radius (ODr), respectively. The average diameter of human optic disk
is 1.83 mm and the distance from the fovea centralis to the optic disk centralis
is 4.93 mm. Therefore, the fovea-to-OD distance is around 5 ODr. Thus the
circular ROI with 4 ODr cover the retina but excludes the optic disk, the 5 ODr

ROI covers half of the optic disk and the 6 ODr ROI covers the full optic disk.

3 Experimental Result

In this section, we examine the stability of the three fractal methods in terms
of the choice of manual annotations, segmentation methods, the threshold and
the ROI. The 20 images, from test 1 (T1) to test 20 (T20), of the DRIVE
database [11] are used in this work, which were manually annotated by two
ophthalmologists. The average optic disk radius of the images is 45 pixels, so the
circular ROIs centered at the fovea centralis have radii 180 (ROI 1), 225 (ROI 2)
and 270 (ROI 3) pixels. The DB , DI and DC are calculated on the skeletonized
vessel segmentations, hence only the center lines of the vascular tree are used.
The optic disk region is removed by a mask. To study the variation of FDs,
we use the relative error (RE) with respect to the binary images annotated by
observer 1 as the reference, and the Pearson Correlation coefficient (p-value).
The RE is obtained using |(Dx −Dr)| /Dr, where Dx is the resulted FD and Dr

is the reference FD. In order to show the significance of these REs, the obtained
values are compared with the relative standard deviations (RSD) of all subjects,
which are 2.3%, 2.1% and 2.0% for DB , DI and DC , respectively.

3.1 Comparison between two human observers

We compared the FD values that were calculated on the ground truth images
annotated by two experts within the ROI 3. Here we used the FDs of observer 1 as
reference as this is also considered as ground truth in [11]. The result is shown in
the 1st row of Table 1. The main difference between the two manual annotations
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(a) (b)

(c) (d)

Fig. 2. (a): The DB of the two observers for all patients. (b): The average DB of three
vessel segmentations. (c): The DB of a single image varied with the threshold. (d): The
variation in DB of 20 patients when using different thresholds.

is in the presence of the tiny vessels. We found out that miss-detecting the tiny
vessels does effect the fractal dimension, with maximal difference 7.11%, 6.70%
and 6.23%, and average difference 1.97%, 1.88% and 1.77% on DB , DI and DC ,
which are noticeable compared to obtained RSDs.

It means that even if the FDs are calculated on vessel maps annotated by
human observers, the methods cannot produce stable values for diagnosis, which
makes it less informative. In addition, Fig.2(a) plots the DB of 20 images of the
two observers. The curves illustrate that the variations of FD for two observers
in some subjects are too large which might cause a wrong discrimination among
subjects for clinical applications. For example, we see the DB of T18 is higher
than T20 for observer 1 while it is opposite for the other observer.

3.2 Comparison among three vessel segmentations

We investigate the variation of fractal dimension when using automatic vessel
segmentation methods instead of human annotations. The methods by Frangi [11],
Soares [10] and Zhang [14] were used as described previously. Each method pro-
duces a vessel probability map from the raw fundus image from which we obtain
a binary map by setting an optimal threshold. For measuring the errors, we used
the FDs of observer 1 as reference.

The 2nd to 4th rows of Table 1 show the REs made when using the binary
image created by the segmentation methods instead of a human observer. Ac-
cordingly, the maximum error of the three FDs for the three segmentations are
9.4%, 8.9% and 7.4%, respectively. The average errors are 4.28%, 2.94% and
3.85% which are significant compared to RSD values. These values suggest that
using an automatic segmentation would make a large error in fractal calculation.
In addition, the very high p-values imply the weak association between the au-
tomatic methods and the manual. The variation among different segmentation
methods is also large according to curve shown in Fig.2(b), which shows the

Stability Analysis of Fractal Dimension in Retinal Vasculature 5



Table 1. The comparison of FD between different methods and factors.

Method Box dimension Information dimension Correlation dimension

∗Max †MRE ‡PCC Max MRE PCC Max MRE PCC

Observer 2 7.1% 2.0% 0.0585 6.7% 1.9% 0.0851 6.2% 1.8% 0.0974

Frangi 9.3% 4.3% 0.8035 9.4% 4.3% 0.8802 9.4% 4.3% 0.6990

Soares 8.7% 2.9% 0.4926 8.7% 3.0% 0.7339 8.9% 3.0% 0.8657

Zhang 7.4% 3.9% 0.4950 7.4% 3.8% 0.8506 7.3% 3.8% 0.6910

Threshold (t=0.1) 30.5% 20.8% 0.4060 29.4% 20.2% 0.6810 28.4% 20.2% 0.9733

Threshold (t=0.2) 10.0% 4.8% 0.4103 9.6% 4.7% 0.5704 9.1% 4.6% 0.8610

Threshold (t=0.3) 18.5% 12.7% 0.4410 16.2% 11.7% 0.5675 15.0% 10.8% 0.8510

ROI 1 3.8% 2.4% <0.001 3.6% 1.6% <0.001 3.5% 1.2% <0.001

ROI 2 3.5% 1.2% <0.001 1.0% 0.4% <0.001 1.0% 0.3% <0.001

∗Max: Maximum Relative Error with respect to Observer 1.
† MRE: Mean of Relative Error with respect to with respect to Observer 1.
‡ PCC: Pearson Correlation Coefficient (p-value) with respect to Observer 1.

mean and standard deviation of DB among the 3 methods. This suggests that
the fractal measurement is very sensitive to the choice of segmentation methods.

3.3 Comparison of different thresholds

We study the stability of the FD by tuning the threshold value, which is used
to convert the vessel probability map to a binary map. The comparison is based
on Zhang’s segmentation in ROI 3. The threshold value (t) ranges from 0.1
to 0.3 with step size 0.02. The proposed optimal t is 0.2, so t = 0.1 is an
overestimation as more small structures appear (including noise) and t = 0.3
is an underestimation because only the big structures are preserved. The FDs
calculated on images of observer 1 are used as reference for error calculation.

The relative errors of changing the segmentation threshold regarding to the
reference one is shown by the 5th to 7th row in Table 1. Note that only the
results of t = 0.1, 0.2 and 0.3 are shown in the table. From the table we see that
if the threshold is set properly (t = 0.2), the relative error is small. While if t
is under- or over-estimated, the relative error dramatically increases. Moreover,
Fig.2(c) shows the mean DB of 20 images for each threshold value, and the error
bar is the average deviation compared to the ground truth. Fig.2(d) plots the
mean DB of different threshold of each patient, and the error bar is the standard
deviation of different threshold. The results suggest that improper selection of
the threshold value leads to a large error for fractal dimension calculation.

3.4 Comparison of different ROIs

We calculated the FD in various circular regions around the fovea center of the
DRIVE ground truth images annotated by observer 1. As mentioned previously,

6 F. Huang et al.
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Fig. 3. (a) ROIs which are applied to the vessel map, (red, green and blue circle are
the ROIs with radii 180, 225 and 270 respectively). (b)The DB of 20 subjects varied
with the change of the ROI.

the radii of ROI is 180 (ROI 1), 225 (ROI 2) and 270 (ROI 3) pixels, and ROI 3
is used as reference for the relative error calculation (see Fig.3(a)).

The relative errors of changing the ROI are shown in 8th and 9th rows in
Table 1. When FDs are calculated in ROI 1, the maximum error, in terms of the
three fractal, is 3.75%, 3.58% and 3.52%, and the average error is 2.35%, 1.55%
and 1.20%, respectively. If we use ROI2, the relative errors were smaller, with an
average 0.43%, 0.31% and 0.29%. Fig.3(b) shows the plot of the DB calculated in
the ROI 1 (red), ROI 2(green) and ROI 3 (blue) respectively, and also the mean
and deviation of them (purple). According to Table 1 and Fig.3(b), changing the
ROIs causes a variation in fractal calculation, especially the FDs of ROI 1 are
significantly lower than the ROI 2 and ROI 3. But from another point of view,
we see that the p-values are less than 0.001, which means the FDs calculated in
different ROIs are significantly associated.

4 Discussion and Conclusion

In previous studies, fractal dimension is considered as a potential biomarker for
disease detection. We examined the reliability of three classic fractal measure-
ments for their use in clinical studies, using four experiments.

The experimental result shows that the classic FD calculated on the binary
vessel images are not reliable. The RSD of DB , DI , DC of the ground truth
images are 2.3%, 2.1% and 2.0%. The REs on measured FD values, obtained
with different settings, are generally larger than the RSD among subjects. This
makes the FD less informative and less reliable in clinical applications. Moreover,
according to the MRE and the p-values in Table 1, the use of automatic vessel
segmentations results in large errors, and the FD values are disassociated with
the ground truth. Obtaining the FD from the segmentations of a second observer
gives less error. The FD measures are least sensitive to changes in the ROI
specification. When using automatic vessel segmentation methods large errors
are made if the threshold is over- or underestimated.

In conclusion, our experiments suggest that the classic fractal dimensions
must be calculated under very strict conditions. I.e., the vessel segmentation

Stability Analysis of Fractal Dimension in Retinal Vasculature 7



method must be very carefully chosen. An optimal threshold value for creating a
binary vessel segmentation map is required. The region of interest in all images
must be equally set for the FD calculation. In future work, we plan to avoid
the high sensitivity for the choice of segmentation methods, by working directly
on vessel probability maps (e.g. as done in [2, 7]). In this case, the choice of
threshold value is avoided, which was found to create the largest error.
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