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A low-computational-cost strategy to localize points in
the slow manifold proximity for isothermal chemical

kinetics

Alessandro Ceccato∗, Paolo Nicolini†, Diego Frezzato ‡

Abstract

Dimensionality reduction for the modeling of reacting chemical systems can repre-
sent a fundamental achievement both for a clear understanding of the complex mech-
anisms under study, and also for the practical calculation of quantities of interest. To
tackle the problem, different approaches have been proposed in the literature. Among
them, particular attention has been devoted to the exploitation of the so-called slow
manifolds (SMs). These are lower-dimensional hypersurfaces where the slow part of
the evolution takes place. In this study we present a low-computational-cost algorithm
(based on a previously developed theoretical framework) for the localization of candi-
date points in the proximity of the SM. A parallel implementation (called DRIMAK)
of such an approach has been developed and the source code is made freely available.
We tested the performance of the code on two model schemes for hydrogen combus-
tion, being able to localize points that fall very close to the perceived SM with limited
computational effort. The method can provide starting points for other more accurate
but computationally demanding strategies; this can be a great help especially when no
information about the SM is available a priori and very many species are involved in
the reaction mechanism.
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Introduction

When dealing with mechanisms involving complex reaction schemes or parallel elementary

reactions, simplification of the chemical kinetics description is often needed. Even in the

simplest case of a constant-volume and well-stirred isothermal medium, such that the mass-

action law is applicable to express the progression rate of the elementary reactions1, the

number of dynamical variables to account for (i.e., the volumetric concentrations of the

species involved) can be so large that the numerical integration of the evolution equations

becomes a hard task (especially in the case of stiff kinetics) and, crucially, the physical

understanding of the whole process is obscured. In this work we make a step forward the

identification of the so-called slow manifolds (SMs in the followinga) which are basically

hypersurfaces, of lower dimension than that of the full concentration space, where the slow

part of the system’s evolution takes place. Given a global reactive process, the identification

of points on its SM (if present), and their interpolation, would allow one to subsequently

attain a reduced description of the kinetics, focusing only on the slow phase. Based on our

previous theoretical works, here we provide a strategy, along with the first implementation

in an open source C++ software package and related tests, to produce good candidate

points to the SM proximity with very low computational cost. Other existing strategies for

the SM construction (see below) could be integrated with our method in order to make a

post-production screening of the solutions and to perform further refinement steps. Such a

combination of strategies may be particularly useful when the dimensionality of the SM and

its approximate localization in the full concentration space are unknown.

For a constant-temperature and well-stirred medium, the mean-field approach based on

the so-called “mass action law” provides the mathematical description of the macroscopic

chemical kinetics for a set of N species involved in M elementary reactive processes (which

can be either the steps of the mechanism of a single complex reaction, or competing ele-

mentary reactions)1. The mathematical format consists of an autonomous set of N poly-

nomial ordinary differential equations (ODEs) for the volumetric concentrations taken as

aWe like to indicate that the abbreviation SIM for “slow invariant manifold” is frequently used in the

specialistic literature. We prefer to use SM in continuation of our previous works on this subject.
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dynamical variables. In the following, the column vector x collects the concentrations xj for

j = 1, · · · , N . The ODE system is

ẋ = F(x) (1)

where F(x) is the state-dependent “velocity field” whose components will be made explicit

in the next section.

As stated above, when N becomes large, as may happen for reaction mechanisms in-

volving radical species or in the context of biochemical networks, the need for simplification

of such a description by “reducing” the dimensionality of the problem becomes urgent. A

large number of strategies has been devised to achieve such a goal. The matter is quite

broad and a good starting point for an interested reader may be the review made by Okino

and Mavrovouniotis2 and references therein. Of particular relevance are the sensitivity anal-

ysis,3,4 the lumping procedures,5,6 the application of the quasi-stationary-state and quasi-

equilibrium approximations,7,8 and the exploitation of the existence of the so-called slow

manifolds, which is the subject of this work.

As anticipated, a SM can be seen as the hypersurface, of lower dimensionality than

that of the whole concentration space, towards which the trajectories x(t) of the reactive

system approach in going to the stationary points. Actually, there could be a “cascade” of

manifolds of ever-reducing dimensions;9 we stress that the SM considered here is the ultimate

manifold which is approached before reaching the equilibrium manifold (EM) formed by the

stationary points. The “bundling” of the trajectories on the SM is a known trait which can

be exploited to formulate a reduced description of the kinetics. In fact, it usually happens

that the late and slowest part of the evolution takes place in the neighborhood of a SM. Thus,

if one neglects the initial and fast (with respect to the subsequent dynamics) transients, the

original system of ODEs projected on the SM would suffice to describe the slow part. In

this respect, the localization of the SM, or at least of good candidate points in its proximity

(and possibly their interpolation with suitable parametric hypersurfaces), would provide the

ingredients to build a simplified kinetics description of reduced dimensionality.

Several conceptually heterogeneous strategies have been devised to construct the SMs in

the context of chemical kinetics. An interested reader may find a comprehensive presentation

in the introductions of Refs.10–13 (see also our outline in Ref.14 and references therein). In

3



short, the leading idea is that close to the SM the system’s evolution is slower in comparison

to points far from it.

Unfortunately, such a timescale separation between fast and slow components of the

evolution is unequivocally defined only for linear kinetic schemes (i.e., with only elementary

reactions of the first order) for which the evolution law takes the form ẋ = −Kx, with

K being some fixed kinetic matrix. In this case, the timescale separation (if present) is

manifest in a gap between the real parts of the non-null eigenvalues of K: if an eigenvalue is

well separated by the larger ones in such a sense, the SM is the hyperplane identified by the

eigenvector corresponding to such an eigenvalue and by the eigenvector(s) corresponding to

the null eigenvalue(s)14.

For non-linear kinetic schemes, the fast-slow separation becomes local and, to some ex-

tent, subjectively quantified. In such a general context, the SM is formally identified within

the framework of Fenichel’s geometric singular perturbation (GSP) theory which deals with

normally hyperbolic manifolds (not necessarily attracting15) in systems of ODEs with fast-

slow timescale separation; see for example Ref.16 and the concise review in Ref.15. Although

we focus here on the case of mass-action based chemical kinetics, we wish to remark that the

GSP theory and the numerical tools mentioned below are rather general and can be applied

to the dimensional reduction of various kinds of dynamical systems for which the velocity

field F(x) is even non-polynomial. Briefly, let ε be a small dimensionless parameter which

quantifies the timescale separation (increasing as ε → 0). It is supposed that ε “naturally”

emerges from a rescaling of the ODEs. By denoting with M0 the central manifold corre-

sponding to infinite timescale separation, Fenichel’s theorems assert that there exists a family

of manifolds Mε for the given ε 6= 0, all exponentially close to each other as ε→ 0, and lo-

cally invariant under the dynamics (i.e., they are “persistent” in the sense of “self-preserved”

by the dynamics). Note the non-uniqueness of the solution due to the possible multiplicity

of Mε. The crucial point is that while M0 can be obtained by solving algebraic equations,

the hard task is to go beyond the mere statement of existence and construct in practice a

manifoldMε to be taken (locally) as the SM. To our knowledge, the computational singular

perturbation (CSP) method of Lam and Goussis8,17 represents the most faithful numerical

implementation of the GSP concepts and, in principle, is able to produce such a SM under
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the sole assumption that a timescale separation between fast and slow processes does ex-

ist. The CSP tool works with a matrix format of the ODEs and, in practice, one only has

to choose two initial sets of linearly independent vectors which likely span the “slow” and

“fast” subspaces. By means of a two-step procedure, the route makes a refinement of the

initial guess and subsequent iterations of the procedure yield improved approximations of

the fast and slow subspaces.17 The CSP approximation of the SM is then given by the points

in the concentration space where the velocity field has null projection on the fast subspace

generated after a chosen number of iterations. However, the implementation of the CSP

tool may be not trivial: the procedure fails if the initial guess is incorrect, and the require-

ment of a criterion to stop the iterations introduces a degree of subjectivity. Among other

popular methods for the SM construction, still based on the assumption of timescale sepa-

ration but less close to the GSP concepts and built more on empiric grounds, we mention

the basic quasi-stationary-state and quasi-equilibrium approximations18, the construction

of intrinsic low dimensional manifolds (ILDMs)19 and of attracting low dimensional mani-

folds (ALDMs)11, and the category of “trajectory methods”11–13,20. Other approaches rely

on different assumptions where the timescale separation is not explicitly considered. In

particular, we mention the iterative evolution of functional maps7,18, the method of “het-

eroclinic connections”21, and several optimization approaches based on concepts borrowed

from nonequilibrium thermodynamics22–25. None of these strategies provide the SM in the

sense of Fenichel’s theory, but only approximations whose accuracy has to be evaluated case

by case.

In this work we shall present a new strategy to produce candidate points to the SM

proximity, along with its implementation in the first release of the C++ software DRIMAK

(Dimensional Reduction of Isothermal Mass-Action Kinetics) developed by us.26 The ap-

proach exploits and combines the outcomes of our recent theoretical investigations concern-

ing the achievement of canonical (i.e., universal) mathematical formats of the evolution law

for mass-action based kinetics, and of their application to the localization of the SMs14,27,28.

As demonstrated in Ref.14, a proper change of dynamic variables leads to a universal system

of ODEs in an extended space of N ×M mutually constrained variables. The study of the

mathematical properties of such a new format allowed us to formulate a purely geometrical
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and objective definition of SM14. Unfortunately, the algorithmic implementation of such a

definition poses a series of problems which can be hard to tackle. In Ref.28 we have shown

how a second universal format of the ODEs, that we have termed “hyperspherical repre-

sentation” of the reactive system, allows one to devise an approximate but computationally

efficient route to individuate points expected to be close to the SM. In that framework, it

was discovered that the “grooves” in the multidimensional landscapes of a peculiar pair of

functions (see the Z(x) and Z1(x) in the following) allows one to detect the slowness of the

system’s progression and the persistence of such slowness. Recognizing that these traits are

typical of the SM neighborhood, it was indicated that suitably designed minimization routes,

followed by a screening of the produced solutions, may be used to localize points on the SM

proximity. This is the idea developed in the present work.

As will be shown, the strength of the present methodology lies in its intrinsic low compu-

tational cost, in spite of the fact that the search for candidate points can even be made inside

very large hyper-rectangular regions of the concentration space and without any knowledge

a priori about dimensionality and location of the SM, nor of the equilibrium manifold. We

must stress the important aspect that the strategy proposed here is not intended to replace

other techniques developed for localizing the SM; rather it can be better seen as a tool to

produce good starting points for a subsequent refinement procedure and/or to restrict the

domain for the SM construction by means of other techniques.

The remainder of the article is organized as follows. In the next section we summarize the

theoretical background to introduce the key-functions Zn(x) with n ≥ 0, which are adopted

as guiding potentials; then we describe the multi-step minimization route which exploits

such potentials in order to localize candidate points. In the ’Algorithmic implementation’

section we illustrate the implementation of the ideas in the software DRIMAK, along with

the characterization of the crucial computational steps in terms of scaling of the execution

time as the number of species and reactions increases. Some technicalities are provided in

the Supporting Information and in the documentation which accompanies the software. In

the ’Examples’ section we provide examples for two relevant cases: 1) a benchmark model

of hydrogen combustion involving 6 species and 12 elementary reactions29 also studied in

Refs.24,25 and by us in Ref.14, and 2) a more complex mechanism of hydrogen combustion
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involving 8 species and 42 elementary reactions30. The ’Conclusions’ section provides a

summary of the work presented herein, as well as perspectives for improvements of the

strategy.

Theoretical background

Slow Manifolds from canonical formats of the ODEs

We shall focus on a general reactive process occurring in an isothermal and well-stirred

medium with a fixed volume. The application of the mass-action law to express the rate of

the elementary processes yields the j-th component of the velocity field, expressed as:

Fj(x) =
M∑
m=1

(
ν

(m)
Pj
− ν(m)

Rj

)
rm(x) , rm(x) = km

N∏
i

x
ν
(m)
Ri
i (2)

where km is the kinetic constant of the m-th elementary reaction with rate rm(x), and ν
(m)
Rj

and ν
(m)
Pj

are the stoichiometric coefficients of species j as reactant and product respectively

(the coefficients are null if the species does not appear in the elementary reaction).

The system of ODEs ẋj = Fj(x) specifies the evolution of x(t) from an initial condition

x(0). Accordingly, any function of the actual system’s state, say f(x), evolves under the

dynamics according to f(t) ≡ f(x(t)). In what follows, time derivatives of suitable point-

dependent functions will play an important role in our dimensional reduction approach. Let

us introduce the notation used throughout the paper. We shall denote with f (n)(x) the

point-dependent function such that

dnf(x(t))

dtn
≡ f (n)(x(t)) (3)

Explicitly, the function f (n)(x) represents the n-th time derivative of the property f , due to

the dynamics, for the system in the state x. Mathematically, f (n)(x) = (F(x) · ∂/∂x)nf(x)

where the exponent n means that the operator F(x) · ∂/∂x is applied n times.b

bTo see this, for the sake of notation let us introduce the operator Ô(x) = F(x)·∂/∂x =
∑N

i=1 Fi(x)∂/∂xi.

The first-order time derivative of f(t) ≡ f(x(t)) is df(t)/dt ≡ f (1)(x(t)) =
∑N

i=1 [Fi(x)∂f(x)/∂xi]|x=x(t) =

[Ô(x)f(x)]
∣∣∣
x=x(t)

where it has been used dxi/dt = Fi(x). Note that f (1)(x), that is the first time derivative
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Let us consider the following (N ×M)2 quantities whose physical dimension is inverse-

of-time:

Vjm,j′m′(x) = Mjm,j′m′hj′m′(x) (4)

where

hjm(x) = x−1
j rm(x) (5)

and M is the connectivity matrix with dimensionless elements

Mjm,j′m′ =
(
ν

(m′)
Pj′
− ν(m′)

Rj′

)(
δj,j′ − ν(m)

Rj′

)
(6)

where δ denotes the Kronecker Delta function. Some algebraic steps27 show that the terms

Vjm,j′m′(t) ≡ Vjm,j′m′(x(t)) form a closed set of new dynamic variables whose evolution along

a system’s trajectory is governed by the following system of ODEs:

V̇jm,j′m′ = −Vjm,j′m′
∑
j′′,m′′

Vj′m′,j′′m′′ (7)

The quadratic form of Eq. (7) is universal; that is, it is parameter-free and it underlies any

kinetic scheme regardless of the number of species and elementary reactions.c All system-

dependent features (i.e., number of species and elementary reactions, stoichiometry, values

of the kinetic constants) are borne on the dimension of such a set of new dynamical variables

and on their mutual interrelations.

It was found that the key quantities in the localization of the SM are the following

point-dependent “rates”:

zjm(x) =
∑
j′m′

Vjm,j′m′(x) (8)

under the flow, is the so-called Lie derivative. The second-order derivative is then d2f(t)/dt2 ≡ f (2)(x(t)) =

df (1)(x(t))/dt = [Ô(x)f (1)(x)]
∣∣∣
x=x(t)

= [Ô(x)(Ô(x)f(x))]
∣∣∣
x=x(t)

≡ [Ô(x)2f(x)]
∣∣∣
x=x(t)

. By iterating,

dnf(t)/dtn ≡ f (n)(x(t)) = [Ô(x)nf(x)]
∣∣∣
x=x(t)

.

cAlthough it was derived by us in Ref.27, the kind of transformation from x to the set of hjm(x) in Eq.

5 was already known for decades and was even re-discovered independently by several authors with minor

variations. For example, it should be mentioned that is was applied by Brenig and Goriely in the context

of general transformations amongst equivalence classes of representation for continuous-time systems31, by

Fairén and Hernández-Bermejo32,33 and by Gouzé34.
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As shown in the Supporting Information of Ref.27, these N×M rates are mutually linked by

a number of linear interrelations so that only N of them are independent (the same number

of interrelations, but of non-linear type, links the hjm functions defined in Eq. 5). What

emerged from the combined formal-heuristic inspection illustrated in Ref.14, is that the SM

can be defined by operating with the point-dependent time derivatives of n-th order, z
(n)
jm (x),

as outlined below.

For the sake of brevity, let us introduce the cumulative index Q to label the species-step

pair from now on:

Q = (j,m) , Q = 1, 2, · · · , Qs , Qs = N ×M (9)

In Ref.14 we formulated the conjecture that a trajectory x(t) enters an “Attractiveness

Region” (AR) of the concentration space, within which the high-order time-derivatives

z
(n)
Q (x(t)) tend to become multiples of one another and monotonically decay to zero to-

wards the equilibrium. The SM is then defined as the hyper-surface formed by the points

xSM within the AR such that z
(n)
Q (xSM) = 0 for all Q as n → ∞. On the EM, one has the

stronger and exact condition z
(n≥1)
Q (xEM) = 0. This provides a geometric definition of SM

as a global object in the concentration space. The implementation of this definition allowed

us to detect SMs in a series of simple case models14. However, the practical application

to produce points xSM poses two kinds of problem: 1) there is actually no way to know

in advance the dimensionality and the boundaries of the AR within which the search has

to be performed; 2) this definition of SM requires the computation of derivatives z
(n)
Q (x) of

very high order. While the quadratic structure of the ODEs in Eq. 7 offers the possibility

to easily compute high-order derivatives via recursive formulae (see the Appendix A), the

problem of circumscribing the AR still remains the crucial one.

It should be noted that several model reduction criteria based on time derivatives have

been proposed in the past. However, those methods employ the (x-dependent) time deriva-

tives of the concentration vector x, while here we deal with derivatives of the rate functions

zQ(x); the connection between the two sets of derivatives is not trivial. In fact, by combining

Eqs. 4 - 8 it can be verified that zjm(x) =
∑

j′ wjm,j′(x)x
(1)
j′ (x) with the point-dependent

factors wjm,j′(x) = (δj,j′ − ν(m)
Rj′

)x−1
j′ . By taking successive time derivatives of both members,
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it can be seen the n-th time derivative of a rate zQ(x) is related, in a quite intricate way, to

the components of x, x(1), x(2), ..., x(n+1). In Appendix C we give only a brief and qualitative

outline of the main approaches aimed at localizing the SM by employing time derivatives of

the state vector x. Formal connections between our approach and these other strategies are

still to be established on formal grounds.

Proximity to the Slow Manifold

In Ref.28 we have made some progress in localizing points which likely fall in the neighborhood

of the SM, rather than search for the true xSM points according to our definition of SM given

in Ref.14. The initial step was to turn to a new representation of the state of the reactive

system in another (N×M)2 abstract space. We have termed such a representation as “hyper-

spherical”, since the actual state is specified by a positive-valued “radial” coordinate with

physical dimension of inverse-of-time, and by a set of dimensionless “angular” coordinates.

The analysis of the dynamics for these new state variables (which are clearly mutually

interrelated) led us to individuate tentative mathematical formulations to express the con-

ditions of “slowness” and “persistence of the slowness” when a trajectory is close to the SM.

Namely, argumentation in Ref.28 led us to indicate that the following scalar functions might

serve as “guiding potentials” to drive the search for candidate points in the proximity of the

SM:

Zn(x) =

√
Q−1
s

∑
Q

z
(n)
Q (x)2 (10)

The division by Qs, which is immaterial in practice, is introduced only to interpret the

Zn(x) functions as the root-mean-square averages of the z
(n)
Q (x) derivatives. If a number

N irr of species are irreversibly produced (i.e., they do not appear as reactants in any of the

elementary steps), then the SM hypersurface is orthogonal to the concentration subspace

of the reactant species. In this situation, it is convenient to exploit such a dimensional

reduction a priori and operate with the “reduced” guiding potentials Zn(x) computed by

restricting the summation in Eq. 10 to the subset of (N −N irr)×M values Q = (j,m) with

j referring to reactant species. Clearly, the zjm components involved are functions only of

the concentrations of these species.
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In particular, the lowest-order functions, i.e., Z(x) ≡ Z0(x) and Z1(x), prove to be

sufficient to localize the proximity of the SM. As we have shown in Ref.28 for a model case (the

Lindemann-Hinshelwood scheme1), the landscapes of these functions display characteristic

“grooves” within which the condition of slowness (grooves of Z(x)) and of its persistence

(grooves of Z1(x)) are expected to be met. A two-step minimization route along chosen

paths (see below) was proposed to detect points for which both conditions are likely fulfilled.

Starting from some randomly drawn point x0, a first minimization of Z(x) leads to a point x1

into the “slowness region”, while a subsequent minimization of Z1(x) starting from x1 leads

to a point x2 (supposed to be close to x1) eventually taken as a candidate point to the SM

proximity. The procedure can be then continued to higher orders of derivatives, that is, by

considering the functions Zn(x) and performing an (n+ 1)-step minimization. Continuation

to higher derivatives, however, was found to yield (at least in a series of preliminary tests)

little improvement at the price of increasing computational time.d

To perform the multi-step minimization, we opt for paths in which the concentration of

a species is fixed and the minimization of the functions is performed with respect to the

other components of the set x. The motivation of such a choice relies on the fact that,

without any constraint, the minimization process would probably produce only points xEM

on the EM, since Zn(xEM) = 0 for any order n. However, if the dimension of the EM is

smaller than N − 2, then the (N − 1)-dimensional hyperplanes (i.e., the search sections at

fixed concentration of one of the species) have a very low chance to intersect the EM, even

if a portion of it falls within the domain of inspection. This is the situation which is likely

encountered in the cases of interest where the SM, and hence also the EM, have a dimension

much lower than N . If the “active space” is reduced to a number Ñ < N of concentrations

dInterestingly, there seems to be some connection (albeit qualitative at this stage) between our two-step

minimization route and the SM construction via the variational trajectory-based method with objective

function Φ(x) = ||x(2)||2 (see the Appendix C for notation and details). As indicated by Lebiedz and

coworkers in Ref.20, the choice of such basic objective function in the early implementations of the strategy

was motivated by the fact that low values of Φ(x) likely catch, as a whole, the slowness of the dynamics on

the SM and the attractiveness of the SM. Notably, both approaches are based on constrained minimization

routes, work with time derivatives of the velocity field at most of second order, and employ objective functions

which are supposed to catch the same features of the evolution on the SM.

11



of independent species (because of the enforcement of linear constraints and/or neglection a

priori of the species only produced, see the next section), the considerations made above still

hold regarding the search in the Ñ -dimensional subspace. Finally, once several minimizations

for different (fixed) values of the species concentrations have been performed, the solutions

are then merged.

In the Supporting Information of Ref.28 we have shown that an early implementation of

the basic two-step strategy (i.e., the use of only Z and Z1) is effective in localizing the SM

neighborhood for two model cases, namely the Lindemann-Hinshelwood scheme and a highly

non-linear scheme with elementary steps up to the fourth order. However, a number of issues

made clear that several improvements were required: 1) to assure the quick localization of the

candidate points within a given multidimensional box in the concentration space, possibly

under enforcement of linear constraints among the concentrations, 2) to remove “spurious

solutions”,e and 3) to establish a ranking for the likelihood that, according to the chosen

approach, the remaining points are believed to be close to the SM. The constraints mentioned

above may be the intrinsic stoichiometric ones (i.e., those related to mass-conservation along

the trajectories) or even arbitrary constraints which fix linear combinations of the species

concentrations to given values (see the ’Examples’ section). These constraints allow one to

focus on sections of the full concentration space in order to simplify the visualization and the

presentation of the outcomes. The technical solutions that we propose to face the issue 1)

are presented in the ’Algorithmic implementation’ section, along with the description of how

they are implemented in the software DRIMAK. Concerning the a posteriori check on the

candidate points (issues 2) and 3) above) we opt to employ a screening based on the ILDM

approach mentioned in the Introduction19 and implemented as described in Appendix B.

Such an analysis is performed by means of an independent program which reads the output

from DRIMAK and yields the filtered results. A DRIMAK user may choose to employ a

different motivated strategy to assess, case by case, the quality of the raw outcome and make

a sensible selection of the points produced.

eAs shown in Ref.28, the strategy leads also to the localization of points far from the perceived SM. This

trait seems to be almost unavoidable depending on the features of the specific kinetic scheme.
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Algorithmic implementation

Computational strategy as employed in DRIMAK C++ code

The central idea depicted in the ’Proximity to the Slow Manifold’ subsection is implemented

in the C++ software DRIMAK, the pseudo-code of which is given in the box ’Algorithm 1’.

The algorithm employs the arrays of species concentrations specified hereafter. First, let x

be the array made of the complete set of concentrations of the N species. The user is allowed

to specify a number N con ≥ 0 of linear constraints among the species concentrations. In this

case, DRIMAK also requires the specification of an equal number of “dependent” species

(this automatically fixes the number N ind = N − N con of “independent” species). The

concentration array x is then split into the two subsets xdep and xind corresponding to the

dependent and independent species respectively. If N con > 0, the full set x is retrieved from

the independent concentrations xind by employing the procedure described in the Supporting

Information. Finally, it might be the case that, among the N ind species, a fraction N irr of

them does not enter as reactants in any elementary step.f The concentration array x̃ ⊆ xind,

made of Ñ = N ind−N irr elements and obtained by removing the N irr species concentrations

from xind, constitutes the active space of the minimization procedure.

The user is also asked to input the borders (xind
min and xind

max) of the N ind-dimensional region

to be inspected for the SM search. The N -dimensional region I indicated in ’Algorithm 1’

is then defined by xind
min < xind < xind

max for the independent species, along with xdep > 0 for

the dependent ones.

The total number of requested points is equally distributed among the Ñ species whose

concentrations span the active space of the search. For each one of these species, one at

a time, the concentration is kept fixed while doing the multi-minimization of the functions

Zn(x(xind)) with respect to the concentrations of the remaining Ñ − 1 species inside the

fAlthough not explicitly reported in ’Algorithm 1’, at the beginning of the algorithm, a check is made

to ascertain whether some species are irreversibly produced. As mentioned in the section ’Proximity to the

Slow Manifold’, in this case the computation of the Zn≤nmax(x) functions is made only with the “reduced

set” of (N −N irr)×M components zjm where the label jm refers to the pair made of reactant species and

elementary step. In addition, these zjm components are functions only of the concentrations of the reactant

species.
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Algorithm 1 DRIMAK pseudo-code

Require: From input file: reaction mechanism (number N and list of species, number M

and stoichiometry of the elementary steps, values of the kinetic constants); possible

Ndep linear constraints and their specification; list of the dependent species; boundaries

of the inspected N ind-dimensional subregion of I. Prompt input: maximum number

TOT POINTS of points to be produced; initial seed for random number generation;

maximum order nmax ≥ 1 for the Zn(x) functions; initial trust region radius (ρbeg) and

final trust region radius (ρend) for the minimization procedures.

Ensure:

1: for k = 1 to Ñ do

2: for pts = 1 to TOT POINTS/Ñ do

3: Draw a point xind
0 at random in the N ind-dimensional subdomain of I

4: for n = 0 to nmax do

5: Find x̃min = arg minx̃⊆xind{Zn(x(xind))} starting from the initial point xind
n and

under the constraint that the k-th component of x̃ remains fixed

6: Fill xind
n+1 with the x̃min values (the remaining N irr entries are taken from xind

n )

7: Retrieve the full point x = x(xind
n+1)

8: If (x /∈ I) goto 3

9: end for

10: Store the candidate point x

11: end for

12: end for

13: return Produced points
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user-defined hyper-rectangle embedded in the region I. In the current implementation, the

initial point xind
0 is drawn at random from the uniform distribution on the logarithm of the

concentrations; such a selection is made by employing the standard C++ function rand()

to generate random numbers (one per coordinate) from the uniform distribution between 0

and 1, and then performing a rescaling according to the dimensions of the hyper-rectangle.

The minimization of the functions Zn(x) is performed by means of a FORTRAN77 routine

written by Michael J. D. Powell35. Such a routine, called LINCOA (“LINearly Constrained

Optimization Algorithm”) belongs to the category of the so-called trust region methods36,37.

It allows one to efficiently find a local minimum of a function without explicit computation

of its derivatives. The routine requires the initial and the final values of the trust region

radius, ρbeg and ρend ≤ ρbeg respectively (from the name of the parameters in the LINCOA

code). The search for a minimum terminates when the trust region radius, which can not

increase during the iterations, reaches the lower bound ρend. While ρbeg should be chosen to

be of the order of one tenth of the greatest expected change of variables at the beginning, a

trial value of ρend should be the required accuracy for the localization of the minimum point

in the concentration space. However, there is no direct connection between ρend and the

actual accuracy of the produced point of minimum. Remarkably, LINCOA also allows one

to enforce a number of linear constraints among the independent variables. We exploited

such a feature in order to confine the minimization outcomes within the user-specified domain

(for more details see the software documentation). After each call to LINCOA, a check is

made to ensure that the concentrations of the dependent species are non-negative. The usage

of LINCOA within DRIMAK requires that the dimensionality of the active space is greater

than two, i.e., the reaction mechanism needs to have at least three independent species that

enter some elementary step as reactants.

Finally, given the need to work with concentrations that span several orders of magnitude,

we decided to perform the minimization by using the base-ten logarithm of the concentrations

(in place of their actual values) as independent variables. Preliminary calculations revealed

that such a choice does not significantly affect the overall computation time, while it seems

to improve the accuracy of the results for the example schemes studied.

The likelihood of the produced points being close to the SM may eventually be evaluated

15



by resorting to the ILDM strategy as described in Appendix B. This allows one to rank the

points and, possibly, to exclude the highly “unreliable” ones.

The execution of DRIMAK requires a user-provided input file; for a detailed description of

such a file and some examples see the software documentation. In brief, the input file contains

the chemical mechanism to be inspected (encoded in a specific format), the numerical values

of the kinetic constants and, possibly, a number of linear constraints to be applied to the

concentrations of the species in order to explore sections of the full concentration space;

it suffices that the concentrations of at least three species (not irreversibly formed) remain

unconstrained.

DRIMAK is an embarrassingly parallel code which implements the MPI paradigm. If

the number of processes chosen by the user is greater than one, then the number of points

to be found is equally distributed among the fixed processes. It is worth to pointing out

that the multi-step minimization route may repeatedly fail in localizing points. This may

happen when the specific section of the concentration space does not intersect the SM inside

the selected domain I, or even if no portion of the SM falls in such a domain. In these

situations, giving priority to end the computation after a maximum number of iterations,

the total number of points produced could be lower than the requested number. In the worst

case, in which no points are detected, DRIMAK throws an instance claiming there are no

candidate points to the SM proximity and stops its execution.

Performance scaling versus N and M in the computation of Z(x)

and Z1(x)

Much of the computational time is spent on evaluating the functions Zn(x) during the

multi-step minimizations.g For the basic case nmax = 1, we have faced the problem of

gWe should stress that the exploitation of the sparsity of the connectivity matrix M is crucial to the

reduction of the computational times of the functions z
(n)
Q required in calculations of Zn (see Appendix

A). We have also tested the effectiveness of GPU (Graphic Processor Units) programming to speed up the

matrix-vector operations. Preliminary checks have shown that a negligible gain is obtained; however, it

will be worthwhile to continue the inspection of GPU programming, especially to develop kernels for the

evaluation of the hQ functions which requires the computation of powers of the species concentrations.
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establishing how the times required to compute Z(x) and Z1(x), for a tested point x, scale

with the dimension of the system under inspection, that is with N (number of species) and

M (number of elementary steps), but regardless of the peculiarity of the kinetic scheme.

For this purpose, we opted to generate randomly an ensemble of kinetic schemes, with N

ranging from 2 to 50 and M from N to 3N . Each scheme is created by drawing at random, for

each elementary step m, its molecularity Mm = 1, 2, 3. For each step, reactant species and

related stoichiometric coefficients are also generated randomly according to
∑

j ν
(m)
Rj

=Mm.

Then, the product species and the related coefficients are also drawn at random under

the constraint
∑

j ν
(m)
Pj

= Mm. The last constraint is imposed in order to preserve mass-

conservation globally, that is, to confer some realism to the randomly generated scheme.

After generation of the elementary reactions, a check is made to exclude possible “identities”

and replicated reactions (in this case, new reactions are generated and the check is repeated).

In addition, a final check is made to assure that all the generated schemes are distinct, that

is, made by steps which are not mere permutations. For each scheme, the values of the

kinetic constants and the species concentrations were generated at random in the intervals

from 10−4 to 104 and from 10−6 to 1 respectively (units of measure are immaterial in this

context). Finally, for each pair (N,M), 50 different kinetic schemes have been created. The

computational times needed for calculating Z and Z1 were stored, along with their averages

made upon the 50 schemes. The code was compiled with no optimization flags (the ”-O0” flag

was used under Linux environment) in order to have an optimization-independent output.

These tests (as well as the other calculations to produce the results presented in this paper)

were performed on a workstation whose characteristics are specified in the footnotei.

First of all, the spread of computational times over the ensemble of 50 schemes per each

(N,M) pair, was found to reach at most 30% of the average time; thus, being interested

only in the scaling of the order of magnitude of the computational time, we shall focus on

the average values. The results are presented in Figure 1. The average times for computing

Z and Z1 are shown with blue marks. It turned out that the following function

τα(N,M) = α1 + α2N + α3M + α4N
2 + α5M

2 + α6NM (11)

can fit adequately the average computational times of Z and Z1. In both cases, the array α
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was obtained by minimizing the objective function

Ψ(α) =

√√√√∑
N,M

(
τα(N,M)− τ(N,M)

τ(N,M)

)2

(12)

where τ(N,M) is the average time actually required for the pair (N,M). The interpolating

surfaces are shown in light-grey and the best sets of parameters are given in the figure

caption. In the figure we also report the average computational times for the models of

hydrogen combustion, as illustrated in the next section. These values are in good agreement

with Eq. 11. This is particularly significant for the extended hydrogen combustion model

(Scheme B in the following) which falls outside the explored range species/steps used to

derive the parametric expression in Eq. 11. This means that such an equation may be used

to make predictions about the computational time needed for the calculation of Z and Z1

on different schemes.

Furthermore, by repeating the same tests on different computers operating with dif-

ferent processors (but of the same typology of the reference one indicated in footnote

i) and clock frequencies, we noted that the offset α1 depends on the specific machine,

while the coefficients from α2 to α6 roughly scale with the inverse of the clock frequency.

Thus, by taking into account the fact that the clock frequency here was 1.80 GHz, from

Eq. 11 one could estimate the computational time of Z(x) and Z1(x) as τ(N,M) '

τ0 + [τα×1.80/f (N,M) − τα×1.80/f (N0,M0))] where τ0 stands for the computational time re-

quired for a single low-dimension test mechanism with N0 species and M0 elementary steps,

and f is the clock frequency in GHz of the specific computer (the machine-dependent offset

cancels).

Examples

In this section we present the results of the application of DRIMAK on two kinetic models of

hydrogen combustion. The assumptions of a well-stirred medium and isothermal conditions

are clearly unrealistic. However, our purpose is only to test the effectiveness of DRIMAK

regardless of the realism of the specific example. The first model, Scheme A in the following,

is a basic scheme with 6 species and 12 elementary reactions29; such a scheme is often taken

18



as a benchmark in studies regarding the simplification of chemical kinetics. The second

model, Scheme B, is a much more elaborate mechanism30 which features 8 species and 21

reversible elementary steps, two pairs of which are actually the same reactions with different

rate constants.

As detailed below, some constraints are applied to confine the reacting systems (both

the trajectories and the candidate points produced by DRIMAK) over sections of the full

6-dimensional or 8-dimensional concentration spaces.

Basic scheme of hydrogen combustion

The basic scheme of hydrogen combustion is reported below:

H2 � 2H

O2 � 2O

H2O � H + OH

H2 + O � H + OH

O2 + H � O + OH

H2 + O � H2O

k1 = 2, k−1 = 216

k2 = 1, k−2 = 337.5

k3 = 1, k−3 = 1400

k4 = 1000, k−4 = 10800

k5 = 1000, k−5 = 33750

k6 = 100, k−6 = 0.7714

(Scheme A)

It is implicit that the time variable and the volumetric concentrations are expressed in

some units of measure, here immaterial, which should be fixed by comparing the progression

rate of such a fictional reactive system with experimental observations (see for example

Ref.29).

Two linear constraints are applied, namely

2[H2] + 2[H2O] + [H] + [OH] = 2

2[O2] + [H2O] + [O] + [OH] = 1
(13)

By imposing these constraints one fixes the total concentrations of hydrogen atoms and of

oxygen atoms which, in addition, will remain in a stoichiometric ratio of 2:1. Correspond-

ingly, the number of independent species concentrations reduces to four. As dependent

species we chose H2O and O2. In such a 4-dimensional section of the full space, the SM
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appears to be 1-dimensional, while the EM reduces to a point at concentrations [H2]eq = 0.7,

[H]eq = 0.05, [O2]eq = 0.135, [O]eq = 0.02, [OH]eq = 0.01. Furthermore, from previous

studies14, it is also known that such a SM is embedded in a 2-dimensional surface which is

approached by the trajectories before they reach the proximity of the SM itself. This surface

can be “glimpsed” in Figure 2 by looking at the behaviour of the ensemble of trajectories.

The search for candidate points to the SM proximity is performed within the domain

5 ·10−3 < [H2] < 1, 10−3 < [H] < 9 ·10−2, 2.5 ·10−3 < [O] < 9 ·10−2, 5 ·10−4 < [OH] < 9 ·10−2,

[H2O] > 0, [O2] > 0.h The results of the calculation are shown in Figures 2 and 3 where the

produced points are displayed with blue dots. The production of 2000 candidate points by

DRIMAK requested roughly 20 seconds on our workstation.i

The main outcome is that the proximity of the perceived 1-dimensional SM is success-

fully localized by the software, but a non-negligible amount of “spurious” solutions is also

produced. It might be the case that such points belong to the 2-dimensional surface which

embeds the SM. Indeed, trajectories which start from these points are found to remain within

the thin region which encloses the majority of the spurious solutions. Further investigations

are needed to shed light on such a phenomenology.

The employment of the ILDM-based strategy as described in Appendix B finally yields

quite good results; the 1-dimensional SM is in fact caught efficiently while almost all the

unlikely solutions are removed. It is worth stressing that this step also requires low compu-

tational cost; the “filtering” of the 2000 candidate points produced by DRIMAK required

only a few seconds on our workstation. The points which passed the ILDM ranking-plus-

screening, totalling 734 points, are shown with larger red marks. With reference to the

parameters reported in Appendix B, the ranking of the solutions has been done by employ-

ing εILDM = 0.5, followed by deletion of points if η < 10. These are obviously subjective

choices and the application of different parameters would modify the outcome. Nonetheless

this example shows that, with some caution and insight case by case, it is possible to “filter”

the results in a sensible way.

hThe initial trust region radius was fixed to 10−1, while ρend was set to 10−10.
iComputations were performed on a workstation with an Intel(R) Xeon(R) CPU E5-2603 v2 @ 1.80 GHz

and 32 GB of RAM.
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Extended scheme of hydrogen combustion

The extended kinetic model of hydrogen combustion30 is reported below. In this case, volu-

metric concentrations and time variables are expressed in units mol/L and sec., respectively.

For the reference temperature, we chose 1000 K. The forward kinetic constants at this tem-

perature were obtained using data from Ref.30 while the backward constants derive from

microscopic reversibility (see the Supporting Information for details and actual values of the

kinetic constants).

1) H + O2 � O + OH

2) O + H2 � H + OH

3) H2 + OH � H2O + H

4) O + H2O � 2OH

5) H2 + N2 � 2H + N2

6) 2O + N2 � O2 + N2

7) O + H + N2 � OH + N2

8) H + OH + N2 � H2O + N2

9) H + O2 + N2 � HO2 + N2

10) HO2 + H � H2 + O2

11) HO2 + H � 2OH

12) HO2 + O � OH + O2

13) HO2 + OH � H2O + O2

14) 2HO2 � H2O2 + O2 (duplicated)

15) H2O2 + N2 � 2OH + N2

16) H2O2 + H � H2O + OH

17) H2O2 + H � H2 + HO2

18) H2O2 + O � OH + HO2

19) H2O2 + OH � H2O + HO2 (duplicated)

(Scheme B)

Two linear constraints are applied, as in Scheme A, to the total concentrations of hydro-

gen and oxygen atoms in the system:

[H] + [OH] + 2[H2] + 2[H2O] + [HO2] + 2[H2O2] = 0.09 mol/L

[O] + [OH] + 2[O2] + [H2O] + 2[HO2] + 2[H2O2] = 0.045 mol/L
(14)

Accordingly, the concentrations of 6 species constitute the independent variables; as depen-

dent variables, here we opt to take the concentrations of the species H2O2 and H2O. The

molar concentration of the buffer species N2 was set to 0.2025 mol/L. Similarly to Scheme

A, under the mass constraints, a 1-dimensional SM emerges and the EM reduces to a single

point.

The search for candidate points to the SM proximity has been conducted within the
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following domain: 10−9 < [H] < 10−2, 10−12 < [O] < 10−2, 10−9 < [OH] < 10−2, 5 · 10−8 <

[H2] < 10−2, 5 ·10−8 < [O2] < 10−2, 10−13 < [HO2] < 10−2, [H2O] > 0, [H2O2] > 0 (all values

are in mol/L).j We like to stress the remarkable extension of such a domain, whose shorter

dimension spans almost six orders of magnitude, while the larger one spans eleven orders of

magnitude.

The Figures 4 and 5 show one three-dimensional and three two-dimensional projections

of the whole concentration space. Such projections refer to the three main species involved

in the reaction, namely H2, O2 and H2O. Because of the relatively high complexity of this

scheme, we chose to present only the plots referring to these species. The total number

of candidate points produced by the software is 2000, and it took roughly 35 seconds to

complete the execution. The ILDM-based “filtering” strategy retains very few points, in

fact only 9 of the 2000points produced, but it is worth noting that they appear to be among

the ones closest to the perceived SM. The ILDM ranking/screening of the outcomes has been

done with εILDM = 0.5 (as for Scheme A), while η is just required to be greater than 1. The

latter condition is milder than that applied to remove spurious solutions for Scheme A, but

anyway consistent with the idea that the velocity vector should have the main projection

on the lower set of eigenvectors (the “slow” subset) of the local kinetic matrix, as outlined

in Appendix B. Once again, it must be stressed that such choices are (to some extent)

subjective, but nonetheless necessary in order to remove spurious solutions. At any rate,

even taking into account the “unfiltered” points, the results could be considered satisfactory

for the three important species; indeed there is an evident accumulation of points just in the

proximity of the perceived SM.

Conclusions

In this paper we have presented an algorithm developed by us for the production of candidate

points to be in the proximity of the slow manifold in the species concentration space. The

jIn this case the initial trust region was set to 10−1, while ρend was set to 10−2. Lower values assigned

to these parameters are shown to lead, for this scheme, to numerical problems causing DRIMAK to stop its

execution.
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approach is based on the theoretical framework previously derived by us and presented in

detail elsewhere14,27,28. We have implemented the method into the code DRIMAK26 written

in C++ with exploitation of the MPI paradigm.

We have tested the software on two model schemes for hydrogen combustion, obtaining

2000 candidate points and then “filtering” them by using a strategy based on the ILDM

method19. For both schemes here presented, the software was able to produce candidate

points for the SM proximity in a very effective way. By considering that the inspected regions

span several order of magnitudes in the species concentrations (and, most importantly, that

such a huge extension of the research domain in logarithmic scale does not affect significantly

the performance for the studied models), these achievements seem to be even more valuable.

This means that the software can be potentially applied to systems where the a priori

knowledge on the existence and localization of slow manifolds is limited. Furthermore,

the computational performance shown in this study (less than ten chemical species, few

tens of elementary steps, tens of seconds on a standard computer to produce thousands of

candidate points to the SM neighborhood) discloses a promising scenario for the application

of DRIMAK to more complex mechanisms.

We like to stress again the importance of a “filtering” procedure in a post-production

ranking and screening of the DRIMAK outcomes. A sound procedure not only permits

one to neglect evidently spurious solutions, but it would also provide a measure (through

the ranking of the points) of the proximity to the target slow manifold. The ILDMs-based

criterion employed here proved to be effective (although also a large number of evident

“good points” are removed) and to require a low computational cost, at least for the present

examples. On the other hand, more effective routes for the post-production selection may

be developed and a DRIMAK user even has the freedom to devise a personal strategy to

tackle the problem.

Finally, we must underline the fact that our algorithm does not compete with other

methods to construct the slow manifolds. Rather, our strategy is aimed at providing “likely

good points” from which other methods (possibly of heavier computational cost) could start

the localization of the SM. In this sense, ours and other methodologies are complementary

and their synergy could be very useful especially for high-dimensional kinetic schemes.
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Appendix A: Recursive formulae for the time derivatives z
(n)
Q

The time evolution of the terms hQ(t) = hQ(x(t)) defined in Eq. 5 is specified by27

ḣQ = −hQ
∑
Q′

MQ,Q′hQ′ (A1)

This is indeed the basic equation which yields Eq. 7 once VQ,Q′(t) = MQ,Q′hQ′(t) is consid-

ered. By deriving n times both members (using the rule of multiple derivative of a product

of functions), the following recursive relation is obtained:

h
(n+1)
Q (x) = −

∑
Q′

MQ,Q′

n∑
m=0

(
n

m

)
h

(m)
Q (x)h

(n−m)
Q′ (x) ,

(
n

m

)
=

n!

m!(n−m)!
(A2)

Such a relation allows one to get the (n + 1)-th derivatives at the specific point once all

derivatives of lower order have been determined for all Q starting from the set h
(0)
Q (x) ≡

hQ(x). Then, from Eq. 8 it follows

z
(n)
Q (x) =

∑
Q′

MQ,Q′ h
(n)
Q′ (x) (A3)

for any order n ≥ 0.

Appendix B: ILDMs construction

Let us first introduce the matrix K(x) = −J(x) where J(x) is the point-dependent Jacobian

of the velocity field F(x). In what follows, the eigenspace of K(x) will play an important

role. The eigenspace is determined through the solution of K(x)W(x) = W(x)Λ(x) with

respect to the matrix W(x), whose columns are the right-eigenvectors of K(x), and to the

diagonal matrix Λ(x) whose real or complex (but pair-conjugated) entries are the associated

eigenvalues. The m-th eigenvalue and m-th eigenvector are denoted as λm(x) and wm(x)

respectively. Finally, let the eigenvalues (and the corresponding eigenvectors) be listed ac-

cording to the ascending order of their real parts, λrm(x).

Let xc(t) be a reference trajectory, and x(t) a trajectory close to it; if mass-conservation

constraints are present, we also require that xc(t) and x(t) correspond to the same mass-

conservation constants. The displacement vector is δx(t) = x(t)− xc(t). A reference trajec-

tory is considered to lie on an ILDM if the trajectories in its neighborhood rapidly converge
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to it. Namely, for any choice of δx(0), a trajectory on an ILDM is such that, in a time

window 0 ≤ t ≤ ∆t with ∆t sufficiently small, δx(t) evolves (in the sense of rotation and

length’s variation) in the way that the point x(∆t) falls almost on the reference trajectory

and it is proximal to the point xc(∆t). Let us elaborate such a picture.

For displacements that are small enough, the evolution of δx(t) can be described by

dδx(t)/dt ' −K(xc(t))δx(t). Then consider a sufficiently small ∆t, such that for 0 ≤

t ≤ ∆t it is likely to assume that 1) K(xc(t)) ' K(xc(0)) is almost constant along the

reference trajectory, and 2) the displacement δx(t) remains small. Under the fulfillment of

conditions 1) and 2), the approximate evolution equation for δx(t) remains accurate and

its integration is explicit: δx(∆t) '
∑

m cm(0)e−λm(xc(0))∆t wm(xc(0)), where the coefficients

cm(0) are the components of the chosen initial δx(0) on the (non-orthogonal) eigenvectors.

The ILDM assumption corresponds to having δx(∆t) essentially collinear to the velocity

vector F(xc(∆t)) ' F(xc(0)), where it is assumed the smoothness of the velocity variation

along the reference trajectory. It follows that
∑

m cm(0)e−λm(xc(0))∆t wm(xc(0)) ∝ F(xc(0)).

By dropping the subscript “c” for the reference trajectory, a point x is considered to lie on an

ILDM if F(x) ' κ
∑

m cm(0)e−λm(x)∆t wm(x), with κ a proportionality factor. Now suppose

that the eigenvalues can be partitioned into two subsets, one corresponding to the “low”

eigenvalues labeled by the index ml, and one to the “high” eigenvalues labeled by the index

mh. The separation between the two sets is established by the presence of an eigenvalue

λm∗(x) (or by a group of eigenvalues with equal real part as discussed below) such that

λr1(x) ≤ · · · ≤ λrm∗−2(x) ≤ λrm∗−1(x) ≤ λrm∗(x) � λrm∗+1(x) ≤ λrm∗+2(x) ≤ · · · ≤ λrN(x)

(15)

All eigenvalues with ml ≤ m∗ form the “low” set, while the eigenvalues with mh > m∗ form

the “high” set. Such a sequence of inequalities may be converted, depending on the time-

interval ∆t, into inequalities between the exponential factors which enter the summation

given above: if ∆t is such that e−λ
r
m∗ (x)∆t � e−λ

r
m∗+1

(x)∆t, then the “high” terms in the

summation are negligible and F(x) has a relevant component only on the “low” subspace

(here it is assumed that the corresponding cml
(0) are not null).

In summary, the conditions for x belonging to an ILDM are: a) existence of a spectral
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gap in the real parts of the eigenvalues of K(x), and b) if a) is fulfilled, the components of

the velocity vector F(x) on the “high” subspace must be negligible with respect to that on

the “low” subspace.

Concerning the leading condition a), the possible gap is detected as follows. By taking

into account the fact that there may exist degeneracies on the real parts of the eigenvalues,

let us collect the degenerate eigenvalues into groups labeled by the index i = 1, 2, . . . . The

notation λ(i)(x) here below stands for the real part of the degenerate eigenvalues that belong

to the i-th group (hence λ(1) < λ(2) < . . . ). Let us now consider a triad of consecutive

groups, and the associated exponential factors pi−1 = e−λ
(i−1)(x)∆t, pi = e−λ

(i)(x)∆t and

pi+1 = e−λ
(i+1)(x)∆t. We say that a gap exists between the groups i and (i + 1) if pi+1/pi �

pi/pi−1. This is equivalent to stating that while the exponential factors associated to the

group i still have a relevant weight if compared to those of the group (i−1), the exponential

factors of the group (i+ 1) (and also all higher factors taken as a whole) are negligible with

respect to those of the i-th group. By introducing the parameter

εi(x) = 2
λ(i)(x)− λ(i−1)(x)

λ(i+1)(x)− λ(i−1)(x)
for i ≥ 2 (16)

the inequality given above can be expressed as e(εi(x)−1)[λ(i+1)(x)−λ(i−1)(x)]∆t � 1. Recognizing

that λ(i+1)(x) − λ(i−1)(x) > 0, a gap between the groups i and (i + 1) exists if εi(x) � 1.

The fulfillment of condition a) hence corresponds to finding the (possible) lowest group i∗

such that

εi∗(x) ≤ εILDM � 1 (17)

where the threshold value εILDM has to be, unfortunately, subjectively chosen. If such a

group is found, then the “low” set corresponds to all eigenvalues/eigenvectors of the groups

from 1 to i∗ (the “high” set is then defined by the eigenvalues/eigenvectors of the groups

starting from i∗ + 1). If none of the εi(x) fulfill the condition in Eq. 17, then the “low” set

is constituted, by default, by the eigenvalues/eigenvectors of the group 1.

Concerning the condition b), the components of F(x) on the high and low sets are given

by

Fl(h)(x) =
∑
ml(h)

[W(x)−1F(x)]ml(h)
wml(h)

(x) , F(x) = Fl(x) + Fh(x) (18)
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The fulfillment of condition b) is assessed by computing the following ratio between the

Euclidean norms:

η(x) =
||Fl(x)||
||Fh(x)||

(19)

The points which pass the check of condition a) are then ranked according to the magnitude

of η(x), which should be greater than one to be consistent with the ILDM picture: as η(x)

is larger, the likelihood of the point x belonging to the SM proximity increases.

Note that the ILDM defined above is nothing but a locally attracting low-dimensional

manifold without the specification “slow”; indeed it may even be a “fast” manifold in the

presence of “low” eigenvalues with a negative and large real part. The characteristic “slow”

is attributed by checking if the following condition holds:

slow ILDM if |λ(i∗)(x)| < |λ(i∗+1)(x)| (20)

This condition is equivalent to saying that the dominant exponential factors of the “low” set

evolve slower, regardless of the fact that they decrease or increase, than each of the terms of

the “high” set. If this condition is not fulfilled, we attribute the characteristic “fast” to the

ILDM.

Appendix C: Mention of other strategies employing time deriva-

tives to approximate the Slow Manifold

In what follows, x(n) will denote the n-th time derivative of the state vector x. Even if

not indicated for sake of notation, it should be kept in mind that the components of x(n)

depend on x. Although we shall refer to x as the concentration vector, we remark that all

the methodologies mentioned below are applicable to the construction of the SM, even for

dynamical systems different from mass-action based chemical kinetics.

We begin this brief overview by mentioning the zero-derivative principle (ZDP) of Gear

et al.38 By splitting the vector x in xr and xi, where xr stands for a subset of “relevant” (or

observable) variables adopted to parametrize the SM, the ZDP approximation at the m-th

order consists of searching for points in the concentration space where the (m + 1)-th time

derivatives of the remaining components are all null, that is x
(m+1)
i = 0. Such a criterion
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relies on the assumption that some suitable change of variables would convert the original

system of ODEs into a singular perturbation format. The ZDP at order m is then equivalent

to find the manifold where all the first (m + 1) terms of the “inner solution” (i.e., the fast-

evolving component of the singular perturbation solution) are identically null. Remarkably,

as m increases, the manifolds generated by the ZDP tend to the SM in the sense of Fenichel’s

definition (see ’Theorem 2.1’ in Ref.39)

Another approach is the flow curvature method (FCM) of Ginoux et al.40 where a slow

(N − 1)-dimensional manifold is identified by the points of null “flow curvature” of the

trajectories in the N -dimensional space. In our notation, the constitutive equation of such

a manifold results in det(C(x)) = 0, where C(x) is the N ×N matrix whose n-th column is

the vector of time derivatives x(n) (compare with the original ’Proposition 2.1’ in Ref.40 and

with the formulation in Ref.13). The iteration of the FCM by replacing the flow curvature

with its successive time derivatives yields further dimensional reductions towards the SM.

Time derivatives of x have also been employed to build functionals for the localization

of the SM via the trajectory-based variational principles of Lebiedz and coworkers.12,13,20

A functional is constructed by taking the line integral of a suitably chosen function Φ(x)

(the “objective function”) along a trial trajectory piece of fixed time duration. A subset

of relevant variables xr, as stated above, is adopted to parametrize the SM. At fixed xr,

the target is to “reconstruct” the whole components of a candidate point to the SM. To

this aim, the functional is minimized with respect to the trajectory piece, possibly enforcing

conservation constraints, under the condition that for an intermediate point on the trajectory

(which will be the produced point) the relevant variables xr take the fixed values. Among

the choices of Φ(x), the form Φ(x) = ||x(n)||2 has been recently proposed13; here, || · ||

stands for the Euclidean norm of the vector at argument. The functional of order n = 2

was employed in the early implementations of the method.12,20 In such a case, the objective

function takes the explicit form Φ(x) = ||x(2)||2 = ||J(x)F(x)||2 where J(x) is the Jacobian

matrix of the velocity field F(x). As indicated in Ref.20, the motivation underlying the choice

of such an objective function is that Φ(x) ≤ ||J(x)|| ||F(x)|| where ||J(x)|| stands for the

2-norm of the Jacobian matrix. Since low values of ||J(x)|| can be intuitively associated with

“attractiveness of the SM” and low values of ||F(x)|| can be associated with the “slowness”
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of the dynamics, the minimization of the functional should catch both these relevant features

of the SM. The direct minimization of the functions ||x(n)||, with respect to xi at fixed xr,

was also proposed by Girimaji41 as a likely strategy to obtain approximations of the SM.
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Figure 1: a) Average time for the computation of Z as function of N and M . Blue marks

are the calculated points whilst the surface is obtained by interpolating these points with

the expression of τα(N,M) in Eq. 11 (fit parameters: α1 = 4.24 · 10−7 s, α2 = 1.72 · 10−7 s,

α3 = −3.48 ·10−7 s, α4 = −1.28 ·10−8 s, α5 = 4.89 ·10−8 s, α6 = 6.98 ·10−8 s). b) The same as

in panel a), here for the computation of Z1 (fit parameters α1 = 1.02 ·10−6 s, α2 = 3.26 ·10−7

s, α3 = −7.44 · 10−7 s, α4 = −2.44 · 10−8 s, α5 = 9.79 · 10−8 s, α6 = 1.11 · 10−7 s). Large red

marks correspond to the computational times for the two models of hydrogen combustion

considered in this study.

Figure 2: Projection on the subspace of the radical species for the basic hydrogen combustion

mechanism, Scheme A. Blue dots are 2000 candidate points produced by DRIMAK and the

larger red marks are the “filtered” results according to the ILDM-based strategy. The large

green circle corresponds to the equilibrium point.

Figure 3: Two dimensional projections for the basic hydrogen combustion mechanism,

Scheme A. Blue dots are 2000 candidate points produced by DRIMAK and the larger red

marks are the “filtered” results according to the ILDM-based strategy. The large green circle

corresponds to the equilibrium point.

Figure 4: Three dimensional subspace of the three main species H2, O2 and H2O of Scheme

B. Blue dots are 2000 candidates points produced by DRIMAK and the larger red marks are

the “filtered” results according to the ILDM-based strategy. Concentrations are expressed

in mol/L.

Figure 5: Two dimensional projections for the main species of Scheme B. Blue dots are

2000 candidate points produced by DRIMAK and the larger red marks are the “filtered”

results according to the ILDM-based strategy. Concentrations are expressed in mol/L.

34



Figure 1

35



Figure 2

36



Figure 3

37



Figure 4

38



Figure 5

39


