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Abstracting Nash Equilibria of Supermodular Games

Francesco Ranzato

Abstract Supermodular games are a well known class of noncooperative games which find
significant applications in a variety of models, especially in operations research and eco-
nomic applications. Supermodular games always have Nash equilibria which are character-
ized as fixed points of multivalued functions on complete lattices. Abstract interpretation
is here applied to set up an approximation framework for Nash equilibria of supermodular
games. This is achieved by extending the theory of abstract interpretation in order to cope
with approximations of multivalued functions and by providing some methods for abstract-
ing supermodular games, thus obtaining approximate Nash equilibria which are shown to be
correct within the abstract interpretation framework.

1 Introduction

Supermodular Games. Modern game theory is increasingly applied as a model of conflict
and cooperation in a variety of fields ranging from economics to biology and computer sci-
ence. Games may have so-called strategic complementarities, which encode, roughly speak-
ing, a complementarity relationship between own actions and rivals’ actions, i.e., best re-
sponses of any game player is increasing in actions of the opponents. Games with strategic
complementarities occur in a large array of models, especially in operations research and
economic applications of noncooperative game theory—a significant sample of them is de-
scribed by Topkis’ book [24]. For example, strategic complementarities arise in economic
game models where the players are competitive firms that must each decide how many
goods to produce and an increase in the production of one firm increases the marginal rev-
enues of the others, because this gives the other firms an incentive to produce more too.
Pionereed by Topkis [23] in 1978, this class of games is formalized by so-called supermod-
ular games, where the payoff functions of each player have the lattice-theoretical properties
of supermodularity and increasing differences. In a supermodular game, the strategy space
of every player is partially ordered and is assumed to be a complete lattice, while the utility
in playing a higher strategy increases when the opponents also play higher strategies. The
well-known Nash equilibrium models the notion of solution of noncooperative games: each
player is making the best strategy possible, taking into account the decisions of the rivals,
and no player can benefit by modifying her/his strategy while the other players keep theirs
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2 Francesco Ranzato

unchanged. It turns out that so-called pure strategy Nash equilibria of supermodular games
form a complete lattice w.r.t. the ordering relation of the strategy space, thus exhibiting the
least and greatest Nash equilibria. Furthermore, since the best response correspondence of
a supermodular game turns out to satisfy a monotonicity condition, its least and greatest
equilibria can be characterized and calculated (under assumptions of finiteness) as least and
greatest fixed points by Knaster-Tarski fixed point theorem, which provides the theoretical
basis for the so-called Robinson-Topkis algorithm [24].

Battle of the sexes [26] is a popular and simple example of two-player (non)supermodu-
lar game. Assume that a couple, Alice and Bob, argues over what do on the weekend. Alice
would prefer to go to the opera O, Bob would rather go to the football match F , both would
prefer to go to the same place rather than different ones, in particular than the disliked ones.
Where should they go? The following matrix with double-entry cells provides a game model
for this problem.

Alice

Bob
O F

O 3, 2 1, 1
F 0, 0 2, 3

Alice chooses a row (either O or F ) while Bob chooses a column (either O or F ). In each
double-entry cell, the first and second natural numbers represent, respectively, Alice’s and
Bob’s utilities, i.e., preferences, where greater numbers mean higher preferences. Hence,
uA(O,O) = 3 = uB(F, F ) is the greatest utility for both Alice and Bob, for two different
strategies ((O,O) for Alice and (F, F ) for Bob), while uA(F,O) = 0 = uB(F,O) is the
least utility for both Alice and Bob. This game has two pure strategy Nash equilibria: one
(O,O) where both go to the opera and another (F, F ) where both go to the football game.
If the ordering between O and F is either O < F or F < O for both Alice and Bob then this
game turns out to be supermodular. If O < F then (O,O) and (F, F ) are, respectively, the
least and greatest equilibria, while their roles are exchanged when F < O. Instead, if F < O

for Alice and O < F for Bob then, as intuitively expected, this game is not supermodular:
the two equilibria (O,O) and (F, F ) are uncomparable so that least and greatest equilibria
do not exist.

Motivation. Since the breakthrough on the PPAD-completeness of finding mixed Nash
equilibria [8], the question of approximating Nash equilibria emerged as a key problem
in algorithmic game theory [9,14]. In this context, approximate equilibrium refers to ε-
approximation, with ε > 0, meaning that, for each player, all the strategies have a payoff
which is at most ε more (or less) than the precise payoff of the given strategy. On the other
hand, the notion of (correct or sound) approximation is central in static program analy-
sis [17]. In particular, the abstract interpretation approach to static analysis [3,4] relies on
an order-theoretical model of the notion of approximation. Here, program properties are
modelled by a (collecting) domain endowed with a partial order ≤ which plays the role of
logical relation where x ≤ y means that the property x is logically stronger than y. Also, the
fundamental principle of abstract interpretation is to provide an approximate interpretation
of a program for a given abstraction of the properties of its concrete semantics. This leads
to the key notion of abstract domain, defined as an ordered collection of abstract program
properties which can be inferred by static analysis, where approximation is modeled by the
ordering relation. Furthermore, program semantics are typically defined using fixed points
and a basic result of abstract interpretation tells us that correctness of approximations is
preserved from functions to their least/greatest fixed points.
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Goal. The similarities between supermodular games and program semantics should be clear,
since they both rely on order-theoretical models and on computing extremal fixed points of
suitable functions on lattices. However, while static analysis of program semantics based on
order-theoretical approximations is a well-established area since forty years, to the best of
our knowledge, no attempt has been made to apply standard techniques used in static pro-
gram analysis for defining a corresponding notion of approximation in supermodular games.
The overall goal of this paper is to investigate whether and how abstract interpretation can
be used to define and calculate approximate Nash equilibria of supermodular games, where
the key notion of approximation will be modeled by a partial ordering relation similarly to
what happens in static program analysis. This appears to be the first contribution to make
use of an order-theoretical notion of approximation for equilibria of supermodular games,
in particular by resorting to the abstract interpretation framework.

Contributions. Static program analysis by abstract interpretation essentially relies on: (1) ab-
stract domains A which encode approximate program properties; (2) abstract functions f ]

which must correctly approximate on A the behavior of some concrete operations f ; (3) re-
sults of correctness for the abstract interpreter using A and f ], such as the correctness of
extremal fixed points of abstract functions, e.g., the abstract least fixed point lfp(f ]) cor-
rectly approximates the concrete one lfp(f); (4) widening/narrowing operators tailored for
the abstract domains A to ensure and/or accelerate the convergence in iterative fixed point
computations of abstract functions. We contribute to set up a general framework for design-
ing abstract interpretations of supermodular games which encompasses the above points (1)-
(3), while widening/narrowing operators are not taken into account since their definition is
closely related to some specific abstract domain. Our main contributions can be summarized
as follows.

– Abstract interpretation is typically used for approximating single-valued functions on
complete lattices. For N -players supermodular games, best responses B are modeled
by multivalued functions of type B : S1 × · · · × SN → ℘(S1 × · · · × SN ). A game
strategy s ∈ S1 × · · · × SN is called a fixed point of B when x ∈ B(x), and these
fixed points turn out to characterize the Nash equilibria of this game. As a preliminary
step, in Section 3, we first show how abstractions of strategy spaces can be composed
in order to define an abstraction of the product S1 × · · · × SN , and, on the other hand,
an abstraction of the product S1 × · · · × SN can be decomposed into abstract domains
of the individual Si’s. Next, in Section 4, we provide a short and direct constructive
proof ensuring the existence of fixed points for multivalued functions and we show how
abstract interpretation can be generalized to cope with multivalued functions.

– We investigate how to define an “abstract interpreter” of supermodular games. The first
approach is described in Section 5 and consists in defining a supermodular game on
an abstract strategy space. Given a supermodular game Γ with strategy spaces Si and
utility functions ui : S1 × · · · × SN → R, this means that we assume a family of
abstractions Ai, one for each induvidual Si, that gives rise to a product abstract strategy
space A = A1 × · · · × AN , and a suitable abstract restriction of the utility functions
uAi : A1×· · ·×AN → R. This defines what we call an abstract game ΓA, which, under
some conditions, has abstract equilibria which correctly approximate the equilibria of
the original game Γ. The fixed point computations in the abstract domain A for the
abstract game ΓA will typically be more efficient than those in S1 × · · · × SN for Γ.
This abstraction technique provides a generalization of an algorithm by Echenique [10]
for finding all the Nash equilibria in a finite game with strategic complementarities.
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– In Section 6 we put forward a second notion of abstract game where the strategy spaces
are subject to a kind of partial approximation, meaning that, for any utility function ui
for the player i, we consider approximations of the strategy spaces of the “other players”,
i.e., correct approximations of the maps ui(si, ·) : S1×· · ·Si−1×Si+1×· · ·×SN → R,
for any given strategy si ∈ Si. This abstraction technique gives rise to games having an
abstract best response correspondence. This approach is inspired and somehow gener-
alizes the implicit methodology of approximate computation of equilibria considered in
Carl and Heikkilä’s book [2, Chapter 8].

– Our results are illustrated on a number of examples of supermodular games. In partic-
ular, a couple of examples of so-called Bertrand oligopoly models are taken from Carl
and Heikkilä’s book [2].

This is an expanded and revised version of the SAS article [20] including all the proofs.

2 Background on Games

2.1 Order-Theoretical Notions

Given a function f : X → Y and a subset S ∈ ℘(X) then f(S), {f(s) ∈ Y | s ∈ S}, while
its powerset lifting fs : ℘(X)→ ℘(Y ) is defined by fs,λS. f(S). A multivalued function,
also called correspondence in game theory terminology, is any mapping f : X → ℘(X).
An element x ∈ X is called a fixed point of a multivalued function f : X → ℘(X) when
x ∈ f(x), while Fix(f), {x ∈ X | x ∈ f(x)} denotes the corresponding set of fixed points.

Let 〈C,≤,∧,∨,⊥,>〉 be a complete lattice, with partial order ≤, glb ∧, lub ∨, bottom
element ⊥ and top element >, compactly denoted by 〈C,≤〉. Given a function f : C → C,
with a slight abuse of notation, Fix(f), {x ∈ C | x = f(x)} denotes its set of fixed points
of f , while lfp(f) and gfp(f) denote, respectively, the least and greatest fixed points of
f , when they exist (let us recall that least and greatest fixed points always exist for mono-
tone functions). Let O denote the class of all ordinal numbers. If f : C → C then for
any ordinal α ∈ O, the α-power fα : C → C is defined by transfinite induction as
usual: for any x ∈ C, (1) if α = 0 then f0(x),x; (2) if α = β + 1 is a successor or-
dinal then fβ+1(x), f(fβ(x)); (3) if α = ∨{β ∈ O | β < α} is a limit ordinal then
fα(x),

∨
β<α f

β(x). If f, g : X → C then f v g denotes the standard pointwise ordering
relation between functions, that is, f v g if for any x ∈ X, f(x) ≤ g(x).

Let us recall the following relations on the powerset ℘(C): for any X,Y ∈ ℘(C),

(Smyth) X �S Y
4⇐⇒ ∀y ∈ Y.∃x ∈ X. x ≤ y

(Hoare) X �H Y
4⇐⇒ ∀x ∈ X.∃y ∈ Y. x ≤ y

(Egli-Milner) X �EM Y
4⇐⇒ X �S Y & X �H Y

(Veinott) X �V Y
4⇐⇒ ∀x ∈ X.∀y ∈ Y. x ∧ y ∈ X & x ∨ y ∈ Y

Smyth �S , Hoare �H and Egli-Milner �EM relations are reflexive and transitive (i.e., pre-
orders) and are typically used in powerdomain constructions [18,21]. The Veinott relation
�V is transitive and antisymmetric and is used for supermodular games [23,25], where is
also called strong set relation. A multivalued function f : C → ℘(C′) is S-monotone if
for any x, y ∈ C, x ≤ y implies f(x) �S f(y). H-, EM - and V -monotonicity are defined
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analogously. We also use the following notations:

℘∧(C), {X ∈ ℘(C) | ∧X ∈ X}
℘∨(C), {X ∈ ℘(C) | ∨X ∈ X}
℘�(C),℘∧(C) ∩ ℘∨(C)

SL(C), {X ∈ ℘(C) | X 6= ∅, X subcomplete sublattice of C}

whereX ⊆ C is a subcomplete sublattice ofC when for any Y ⊆ X, we have that ∧Y,∨Y ∈
X. Let us observe that:

if X,Y ∈ ℘∧(C) then X �S Y ⇔ ∧X ≤ ∧Y ;
if X,Y ∈ ℘∨(C) then X �H Y ⇔ ∨X ≤ ∨Y ;
if X,Y ∈ ℘�(C) then X �EM Y ⇔ ∧X ≤ ∧Y & ∨X ≤ ∨Y .

Supermodularity. Given a family (Si)
N
i=1 of N > 0 sets, an element s ∈ ×Ni=1Si of their

product and i ∈ [1, N ] then we use the following notations:

S−i,S1 × · · · × Si−1 × Si+1 × · · ·SN , s−i, (s1, . . . , si−1, si+1, . . . , sN ) ∈ S−i.

Let 〈RN ,≤〉 denote the product poset of real numbers, where for s, t ∈ RN , s ≤ t iff for
any i ∈ [1, N ], si ≤ ti, while s + t, (si + ti)

N
i=1 (and s − t is analogously defined). If

f : X × Y → Z is any function defined on a product domain then, for any given x ∈ X, the
notation f(x, ·) : Y → Z denotes the function y 7→ f(x, y); analogously for f(·, y) : X →
Z.

Supermodular games rely on (quasi)supermodular functions (we refer to the books [2,
24] for in-depth studies). Given a complete lattice C, a function u : C → RN is supermod-
ular if for any c1, c2 ∈ C,

u(c1 ∨ c2) + u(c1 ∧ c2) ≥ u(c1) + u(c2)

while u is quasisupermodular if for any c1, c2 ∈ C,

u(c1 ∧ c2) ≤ u(c1) ⇒ u(c2) ≤ u(c1 ∨ c2)
u(c1 ∧ c2) < u(c1) ⇒ u(c2) < u(c1 ∨ c2).

Let us remark that supermodularity implies quasisupermodularity (the converse is not true).

Example 2.1 Let us consider the battle of the sexes game described in Section 1. Let CA =
{F,O} = CB be the strategy spaces for Alice and Bob. If CA is ordered by F < O while
CB is ordered by O < F then CA × CB turns out to be the lattice depicted by the following
Hasse diagram L1, where, to help the reader, we also report (in blue) the output values of
the function uA:

(F,O)
uA7−→ 0

(O,O)3
uA←−[ (F, F )

uA7−→ 2

(O,F )1
uA←−[

In this case, uA, uB : CA×CB → R are both non-quasisupermodular. For example, we have
that: uA((O,O)∧ (F, F )) = uA(F,O) = 0 ≤ 3 = uA(O,O) whereas uA(F, F ) = 2 6≤ 1 =
uA(O,F ) = uA((O,O) ∨ (F, F )). As a consequence, we also have that uA and uB are not
supermodular.
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On the other hand, if CA and CB are both ordered in the same way, let us say by F < O,
then CA × CB is the following lattice L2:

(F, F )

(F,O) (O,F )

(O,O)

and uA and uB turn out to be supermodular. In fact, the only interesting case to check is for
the pairs (F,O) and (O,F ) which are uncomparable in the lattice CA × CB:

uA((F,O) ∨ (O,F )) + uA((F,O) ∧ (O,F )) = uA(O,O) + uA(F, F ) = 3 + 2 ≥
0 + 1 = uA(F,O) + uA(O,F )

so that uA is supermodular and therefore quasisupermodular. ut

In general, the definitions of supermodular and quasisupermodular function do not re-
quire a complete lattice C which is defined as a product of some component complete
lattices. If, instead, C is a product lattice C1 × C2 then these notions are related to the
so-called increasing differences and single crossing properties of functions. A function
u : C1 × C2 → RN has increasing differences when

(x, y) ≤ (x′, y′) ⇒ u(x′, y)− u(x, y) ≤ u(x′, y′)− u(x, y′)

or, equivalently, for any (x, y) ≤ (x′, y′), the functions u(x′, ·)−u(x, ·) and u(·, y′)−u(·, y)
are monotone. The intuition is that this definition models a situation of “complementarity” of
the input values for the components C1 and C2 of u: the incremental gain of the output value
of u(x, y) in choosing for the first component a higher x′ rather than x is greater when the
second component is higher, and analogously for the second component since the increasing
differences condition can be equivalent stated as u(x, y′)− u(x, y) ≤ u(x′, y′)− u(x′, y).

Moreover, a function u : C1 ×C2 → RN has the single crossing property when for any
(x, y) ≤ (x′, y′),

u(x, y) ≤ u(x′, y) ⇒ u(x, y′) ≤ u(x′, y′)
u(x, y) < u(x′, y) ⇒ u(x, y′) < u(x′, y′).

Notice that if u has increasing differences then u has the single crossing property, while the
converse does not hold. The intuition behind the single crossing property has its origins in
a continuous function u : R × R → R: here, the single crossing property for u means that,
given any pair of values x ≤ x′, the difference function d(y),u(x, y)− u(x′, y) : R → R
crosses the horizontal axis at most once and from below, that is, if there exists some ȳ such
that d(ȳ) = 0 (i.e., d crosses the horizontal axis) then for any y′ ≥ ȳ, we have that d(ȳ) ≥ 0
(i.e., d never crosses the horizontal axis again).

Example 2.2 Let us consider again Example 2.1. In the case L1, the function uA does not
have increasing differences and the single crossing property. In fact, for (F,O) ≤ (O,F ),
where (F,O) and (O,F ) are the least and greatest pairs in L1, we have that:

uA(O,O)− uA(F,O) = 3− 0 6≤ 1− 2 = uA(O,F )− uA(F, F )

uA(F,O) = 0 ≤ 3 = uA(O,O) 6⇒ uA(F, F ) = 2 ≤ 1 = uA(O,F )
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Similarly for uB. Instead, when considering the case L2, uA has increasing differences and
the single crossing property. Here let us consider (F, F ) ≤ (O,O), where (F, F ) and (O,O)
are the least and greatest pairs in L2, so that:

uA(O,F )− uA(F, F ) = 1− 2 ≤ 3− 0 = uA(O,O)− uA(F,O)

uA(F, F ) = 2 ≤ 1 = uA(O,F ) ⇒ uA(F,O) = 0 ≤ 3 = uA(O,O)

and similarly for uB. ut

Supermodularity on product complete lattices and increasing differences are related as
follows (see [24, Theorems 2.6.1 and 2.6.2]): a function u : C1×C2 → RN is supermodular
if and only if u has increasing differences and, for any ci ∈ Ci, u(c1, ·) : C2 → RN and
u(·, c2) : C1 → RN are supermodular. Analogously for quasisupermodularity and single
crossing property: a function u : C1 × C2 → RN is quasisupermodular if and only if u has
the single crossing property and, given any c1 ∈ C1 and c2 ∈ C2, u(c1, ·) : C2 → RN and
u(·, c2) : C1 → RN are quasisupermodular.

2.2 Noncooperative Games

Let us recall some basic notions on noncooperative games, which can be found, e.g., in the
books [2,24].

A noncooperative game Γ = 〈Si, ui〉ni=1 for players i = 1, ..., n (with n ≥ 2) consists
of a family of feasible strategy spaces 〈Si,≤i,∧i,∨i〉ni=1 which are assumed to be complete
lattices and of a family of utility (or payoff) functions ui : ×ni=1Si → RNi , with Ni ≥ 1.
Hence, the product strategy space S, ×ni=1 Si is a complete lattice for the componentwise
partial order≤, where ∧ and ∨ denote its glb and lub. The i-th best response correspondence
Bi : S−i → ℘(Si), with i ∈ [1, n], is defined as

Bi(s−i), argmax(ui(·, s−i)) = {xi ∈ Si | ∀si ∈ Si. ui(si, s−i) ≤ ui(xi, s−i)}.

The intuition is that Bi(s−i) provides the set of strategies for the player i which produce
the greatest utility for i while taking other players’ strategies as given by s−i. On the other
hand, the best response correspondence B : S → ℘(S) on the whole strategy space S is
defined by the product

B(s), ×ni=1 Bi(s−i).

A strategy s ∈ S is a pure Nash equilibrium for Γ when s is a fixed point of the best response
correspondence B, i.e., s ∈ B(s). Therefore, this means that in a pure Nash equilibrium s

there is no feasible way for any player to strictly improve its utility if the strategies of all the
other players remain unchanged. We denote by Eq(Γ) ∈ ℘(S) the set of Nash equilibria for
Γ, so that Eq(Γ) = Fix(B).

A noncooperative game Γ = 〈Si, ui〉ni=1 is supermodular when:

(1) for any i, for any s−i ∈ S−i, ui(·, s−i) : Si → RNi is supermodular;
(2) for any i, ui(·, ·) : Si × S−i → RNi has increasing differences.

Also, Γ is quasisupermodular (or, with strategic complementarities) when:

(1) for any i, for any s−i ∈ S−i, ui(·, s−i) : Si → RNi is quasisupermodular;
(2) for any i, ui(·, ·) : Si × S−i → RNi has the single crossing property.
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In both these cases, it turns out (cf. [24, Theorems 2.8.1 and 2.8.6]) that any i-th best re-
sponse correspondence Bi : S−i → ℘(Si) is EM -monotone, as well as the best response
correspondence B : S → ℘(S).

Let us also recall [1, Section X.12] that the interval topology of a complete lattice
〈C,≤〉 (actually, the interval topology can be defined for a mere poset) is defined by tak-
ing the closed intervals [a, b], {x ∈ C | a ≤ x ≤ b} as a subbasis of the closed sets
and that a complete lattice is always compact for its interval topology. Also, a function
f : C → RN is called order upper semicontinuous if f is upper semicontinuous (ac-
cording to the standard definition) for the interval topology of C. It turns out (cf. [24,
Lemma 4.2.2]) that if each ui(·, s−i) : Si → RNi is order upper semicontinuous then, for
each s ∈ S, Bi(s−i) ∈ SL(Si), i.e., Bi(s−i) is a nonempty subcomplete sublattice of Si, so
that B(s) ∈ SL(S) also holds. In particular, we have that ∧iBi(s−i),∨iBi(s−i) ∈ Bi(s−i)
as well as ∧B(s),∨B(s) ∈ B(s), namely, Bi(s−i) ∈ ℘�(Si) and B(s) ∈ ℘�(S). With
this hypothesis, it also turns out [27, Theorem 2] that the set of Nash equilibria gives rise
to a complete lattice 〈Eq(Γ),≤〉—although, in general, it is not a subcomplete sublattice
of S—and therefore Γ admits the least and greatest Nash equilibria, which are denoted,
respectively, by leq(Γ) and geq(Γ). It should be remarked that the hypothesis of order up-
per semicontinuity for ui(·, s−i) trivially holds for any finite-strategy game, namely for
those games where each strategy space Si is finite. In the following, we will consider
(quasi)supermodular games which satisfy this hypothesis of order upper semicontinuity.

If, given any si ∈ Si, the function ui(si, ·) : S−i → RNi is monotone then it turns
out [2, Propositions 8.23 and 8.51] that geq(Γ) majorizes all equilibria, i.e., for all i and
s ∈ Eq(Γ), ui(geq(Γ)) ≥ ui(s), while leq(Γ) minimizes all equilibria.

Example 2.3 Let us consider again the battle of the sexes supermodulargame Γ described
in Section 1 and in Example 2.1, where CA and CB are both ordered by F < O. We have
that Alice and Bob best response correspondences, respectively, BA : CB → ℘(CA) and
BB : CA → ℘(CB), are as follows:

BA(F ) = {F} = BB(F ) BA(O) = {O} = BB(O),

so that the whole best response correspondence B : CA × CB → ℘(CA × CB) is defined as
follows:

B(F, F ) = {(F, F )} B(F,O) = {(O,F )} B(O,F ) = {(F,O)} B(O,O) = {(O,O)}

Thus, the fixed points of Γ, i.e. its Nash equilibria, are (F, F ) and (O,O), so that leq(Γ) =
(F, F ) and geq(Γ) = (O,O). ut

Computing Game Equilibria. Consider a (quasi)supermodular game Γ = 〈Si, ui〉ni=1 and
let us define the functions B∧, B∨ : S → S as follows:

B∧(s) , ∧B(s) B∨(s) , ∨B(s).

As recalled above, it turns out that B∧(s), B∨(s) ∈ B(s). When the image of the strat-
egy space S for B∧ turns out to be finite, the standard algorithm [24, Algorithm 4.3.2] for
computing the least Nash equilibrium leq(Γ) consists in applying the constructive Knaster-
Tarski fixed point theorem to the function B∧ so that leq(Γ) =

∨
k≥0B

k
∧(⊥S). Dually, we

have that geq(Γ) =
∧
k≥0B

k
∨(>S). In particular, this procedure can be always used for

finite games. The application of a standard chaotic iteration strategy in this fixed point com-
putation [11] yields the Robinson-Topkis (RT) algorithm [24, Algorithm 4.3.1] in Figure 1,
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〈s1, ..., sn〉 := 〈⊥1, ...,⊥n〉; // 〈s1, ..., sn〉 := 〈>1, ...,>n〉;
do

{
〈t1, ..., tn〉 := 〈s1, ..., sn〉;
s1 := ∧1B1(s−1); // s1 := ∨1B1(s−1);
· · ·
sn := ∧nBn(s−n); // sn := ∨nBn(s−n);}

while ¬(〈s1, ..., sn〉 = 〈t1, ..., tn〉)

Fig. 1 Robinson-Topkis (RT) algorithm.

also called round-robin optimization, which is presented in its version for least fixed points,
while the statements in comments provide the version for calculating greatest fixed points.

Let us provide a running example of supermodular finite game.

Example 2.4 Consider a two players finite game Γ represented in so-called normal form by
the following double-entry payoff matrix M :

1 2 3 4 5 6
6 -1, -3 -1, -1 2, 4 5, 6 6, 5 6, 5
5 0, 0 0, 2 3, 4 6, 6 7, 5 6, 5
4 3, 1 3, 3 3, 5 5, 6 5, 5 4, 4
3 2, 2 2, 4 2, 6 4, 5 4, 4 3, 2
2 6, 4 6, 6 6, 7 6, 4 5, 2 4, -1
1 6, 4 5, 6 5, 6 4, 2 3, 0 2, -3

The strategy spaces S1 and S2 are both the finite chain of integers C = 〈{1, 2, 3, 4, 5, 6},≤〉
and u1(x, y), u2(x, y) : S1 × S2 → R are, respectively, the first and second entry in the
payoff matrix element determined by row x and column y, that is, if M(x, y) = (a1, a2)
then ui(x, y) = ai. For example, u1(2, 6) = 4 and u2(2, 6) = −1. It turns out that both u1
and u2 have increasing differences, so that, since S1 and S2 are finite (chains), Γ is a finite
supermodular game. The two best response correspondences B1, B2 : C → SL(C) are as
follows:

B1(1) = {1, 2}, B1(2) = B1(3) = {2}, B1(4) = {2, 5}, B1(5) = {5}, B1(6) = {5, 6};

B2(1) = {2, 3}, B2(2) = B2(3) = {3}, B2(4) = B2(5) = B2(6) = {4}.

Thus, Eq(Γ) = {(2, 3), (5, 4)}, since this is the set Fix(B) of fixed points of the best re-
sponse correspondence B = B1 × B2: indeed, (2, 3) ∈ B(2, 3) = {(2, 3)} and (5, 4) ∈
B(5, 4) = {(2, 4), (5, 4)}. We also notice that u1(·, s2), u2(s1, ·) : C → R are neither
monotone nor antimonotone. The fixed point computations of the least and greatest equilib-
ria through the RT algorithm in Figure 1 proceed as follows:

(⊥1,⊥2) = (1, 1) 7→
(
∧B1(1), 1

)
= (1, 1)

7→
(
1,∧B2(1)

)
= (1, 2)

7→
(
∧B1(2), 2

)
= (2, 2)

7→
(
2,∧B2(2)

)
= (2, 3)

7→
(
∧B1(3), 3

)
= (2, 3)
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(>1,>2) = (6, 6) 7→
(
∨B1(6), 6

)
= (6, 6)

7→
(
6,∨B2(6)

)
= (6, 4)

7→
(
∨B1(4), 4

)
= (5, 4)

7→
(
5,∨B2(5)

)
= (5, 4)

so that leq(Γ) = (2, 3) and geq(Γ) = (5, 4). ut

3 Abstractions on Product Domains

3.1 Background on Abstract Interpretation

Static program analysis relies on correct (a.k.a. sound) and computable semantic approxi-
mations. A program P is modeled by some semantics SemJP K and a static analysis of P
is designed as an approximate semantics Sem]JP K which must be correct w.r.t. SemJP K.
This may be called global correctness of static analysis. Any (finite) program P is a suit-
able composition of a number of constituent expressions and subprograms ci, e.g., Boolean
and arithmetic expressions and assignments, and this is reflected on its global semantics
SemJP K which is commonly defined by some combination of the semantics SemJciK of
its components. Thus, global correctness of a static analysis of P relies on a local correct-
ness for its components ci. This global vs. local picture of static analysis correctness is very
common, independently from the kind of programs (imperative, functional, reactive, etc.),
of static analysis techniques (abstract interpretation, model checking, logical deductive sys-
tems, type systems, etc.), of program properties under analysis (safety, liveness, numerical
properties, pointer aliasing, type safety, etc.). A basic general proof principle in static anal-
ysis is that global correctness is derived from local correctness. In particular this applies
to static program analyses that are designed using some form of abstract interpretation [3,
4]. Let us consider a simplified but recurrent scenario, where SemJP K is defined as least
(or greatest) fixed point lfp(f) of a monotone function f on some domain C of program
properties, which is endowed with a partial order that encodes the relative precision of prop-
erties. In abstract interpretation, a static analysis is then specified as an abstract fixed point
computation which must be correct for lfp(f). This is defined through an ordered abstract
domain A of properties and an abstract semantic function f ] : A → A on A that give rise
to a fixed point-based static analysis lfp(f ]) (whose decidability and/or practical scalabil-
ity is usually ensured by chain conditions on A, widenings/narrowings operators, interpo-
lations, etc.). Correctness relies on encoding approximation through a concretization map
γ : A → C and/or an abstraction map α : C → A: the approximation of some value c ∈ C
through an abstract property a ∈ A is encoded as c ≤C γ(a) or — equivalently, when α/γ
form a Galois connection — α(c) ≤A a. In this scenario, global correctness translates to
lfp(f) ≤ γ(lfp(f ])), local correctness means f ◦ γ v γ ◦ f ], and the well-known “fixed
point approximation lemma” [3,4] tells us that local correctness implies global correctness.

In standard abstract interpretation, concrete and abstract domains (also called abstrac-
tions), 〈C,≤C〉 and 〈A,≤A〉, are assumed to be complete lattices which are related by ab-
straction and concretization maps α : C → A and γ : A→ C that give rise to a Galois con-
nection (GC for short) (α,C,A, γ), i.e., for all a ∈ A and c ∈ C, α(c) ≤A a⇔ c ≤C γ(a).
Recall that a GC is a Galois insertion (GI for short) when α◦γ = id. A GC is called (finitely)
disjunctive when γ preserves all (finite) lubs (also called γ is (finitely) disjunctive). We use
Abs(C) to denote all the possible abstractions of C, where A ∈ Abs(C) means that A is
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an abstract domain of C specified by some GC/GI. Let us recall that a map ρ : C → C

is a (upper) closure operator when: (i) ρ is monotone: x ≤ y ⇒ ρ(x) ≤ ρ(y); (ii) ρ is
increasing: x ≤ ρ(x); (iii) ρ is idempotent: ρ(ρ(x)) = ρ(x). We denote by uco(〈C,≤〉) the
set of all closure operators on the complete lattice 〈C,≤C〉. Throughout the paper, we will
make use of some well known properties of a GC (α,C,A, γ) and of closure operators:

(1) α preserves arbitrary lubs;
(2) γ preserves arbitrary glbs;
(3) γ ◦ α : C → C is a closure operator
(4) if ρ : C → C is a closure operator then (ρ,C, ρ(C), id) is a GI;
(5) (α,C,A, γ) is a GC iff γ(A) is the image of a closure operator on C;
(6) S ⊆ C is the image of a closure ρS ∈ uco(C) iff S is a Moore family (also called

Moore-closed or meet-closed), i.e., closed under meets of arbitrary subsets, empty set
included; in this case, ρS(c) = ∧C{x ∈ S | c ≤ x} (this is also called the closure
operator induced by S);

(7) a GC (α,C,A, γ) is (finitely) disjunctive iff γ(A) is a Moore family and closed under
joins of (finite) subsets.

Also, if α : C → A preserves arbitrary lubs then we can obtain a GC (α,C,A, α+)
by considering its so-called right-adjoint α+ ,λa. ∨C {c ∈ C | α(c) ≤A a}. Dually, if
γ : C → A preserves arbitrary glbs then (γ−, C,A, γ) is a GC where γ−,λc. ∧A {a ∈
A | c ≤C γ(a)} is the left-adjoint of γ.

Example 3.1 Let us consider a concrete domain 〈C,≤〉which is a finite chain. Then, it turns
out that (α,C,A, γ) is a GC iff, by point (5) above, γ(A) is the image of a closure operator on
C iff, by point (6) above, γ(A) is any subset of C which contains the top element>C . As an
example, for the game Γ in Example 2.4, where Si is the chain of integers {1, 2, 3, 4, 5, 6},
we have that A1 = {3, 5, 6} and A2 = {2, 6} are two abstractions of C. ut

Example 3.2 Let us consider the ceil function on real numbers d·e : R → R, that is, dxe is
the smallest integer not less than x. Let us observe that d·e is a closure operator on 〈R,≤〉
because: (1) x ≤ y ⇒ dxe ≤ dye; (2) x ≤ dxe; (3) ddxee = dxe. Therefore, the ceil
function allows us to view integer numbers Z = dRe as an abstraction of real numbers.
The ceil function can be generalized to any finite fractional part of real numbers: given
any integer number N ≥ 0, clN : R → R is defined as follows: clN (x) = d10Nxe

10N . For
N = 0, clN (x) = dxe, while for N > 0, clN (x) is the smallest rational number with at
most N fractional digits not less than x. For example, if x ∈ R and 1 < x ≤ 1.01 then
cl2(x) = 1.01. Clearly, it turns out that clN is a closure operator which permits to cast
rational numbers with at most N fractional digits as an abstraction of real numbers. ut

In the following, we show how abstractions of different concrete domains Ci can be
composed in order to define an abstract domain of the product domain ×iCi, and, on the
other hand, an abstraction of a product ×iCi can be decomposed into abstract domains of
the component domains Ci.

3.2 Product Composition of Abstractions

As shown by Cousot and Cousot [7, Section 4.4], given a family of GCs (αi, Ci, Ai, γi)
n
i=1,

one can easily define a componentwise GC (α,×ni=1Ci,×
n
i=1Ai, γ), where ×ni=1Ci and
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×ni=1Ai are both complete lattices w.r.t. the componentwise partial order and for any c ∈
×ni=1Ci and a ∈ ×ni=1Ai,

α(c), (αi(ci))
n
i=1 γ(a), (γi(ai))

n
i=1.

For any i ∈ [1, n], we also use the function γ−i : A−i → C−i to denote γ−i(a−i), γ(a)−i =
(γj(aj))j 6=i.

Lemma 3.3 (α,×ni=1Ci,×
n
i=1Ai, γ) is a GC. Moreover, if each (αi, Ci, Ai, γi) is a (finitely)

disjunctive GC then (α,×ni=1Ci,×
n
i=1Ai, γ) is a (finitely) disjunctive GC.

Proof Easy, since, for any c ∈ ×ni=1Ci and a ∈ ×ni=1Ai, we have that α(c) ≤ a ⇔
∀i. αi(ci) ≤i ai⇔∀i. ci ≤i γi(ai)⇔ c ≤ γ(a). Moreover, ifX ⊆ ×ni=1Ai and γ preserves
arbitrary (finite when X is finite) lubs then γ(∨X) = γ((∨iXi)ni=1) = (γi(∨iXi))ni=1 =
(∨iγi(Xi))ni=1 = (∨iγ(X)i)

n
i=1 = ∨γ(X). ut

Let us observe that (α,×ni=1Ci,×
n
i=1Ai, γ) is a so-called nonrelational abstraction since

the product abstraction ×ni=1Ai does not take into account any relationship between the
different concrete domains Ci.

3.3 Decomposition of Product Abstractions

Let us show that any GC (α,×ni=1Ci, A, γ) for the concrete product domain×ni=1Ci induces
a family of corresponding abstractions (αi, Ci, Ai, γi) of the component concrete domains
Ci as follows:

– Ai, {ci ∈ Ci | ∃a∈A.γ(a)i=ci} ⊆ Ci, endowed with the partial order ≤i of Ci
– for any ci ∈ Ci, αi(ci), γ(α(ci,⊥−i))i
– for any xi ∈ Ai, γi(xi),xi

where for any ci ∈ Ci, (ci,⊥−i) is used to denote (⊥1, ...,⊥i−1, ci,⊥i+1, ...,⊥n) ∈
×ni=1Ci.

Lemma 3.4 For any i ∈ [1, n], (αi, Ci, Ai, γi) is a GC. Moreover, this GC is (finitely)
disjunctive when (α,×ni=1Ci, A, γ) is (finitely) disjunctive.

Proof Let us show that Ai ⊆ Ci is a Moore family. If X ⊆ Ai then for any x ∈ X there
exists some ax ∈ A such that γ(ax)i = x. Then, let a, ∧A {ax ∈ A | x ∈ X} ∈ A.
Since γ preserves arbitrary meets, we have that γ(a) = ∧C{γ(ax) ∈ C | x ∈ X}, so
that γ(a)i = ∧Ci

X, that is, ∧Ci
X ∈ Ai. Hence, since Ai is meet-closed, we have that

the identical function γi = id : Ai → Ci preserves arbitrary meets and therefore is a
concretization map. Let us check that αi is the left adjoint of γi, i.e., for any ci ∈ Ci,
αi(ci) = γ(α(ci,⊥−i))i = ∧Ci

{xi ∈ Ai | ci ≤i xi}. On the one hand, since (ci,⊥−i) ≤
γ(α(ci,⊥−i)), we have that ci ≤i γ(α(ci,⊥−i))i, so that since γ(α(ci,⊥−i))i ∈ Ai, we
conclude that∧Ci

{xi ∈ Ai | ci ≤i xi} ≤i γ(α(ci,⊥−i))i. On the other hand, if xi ∈ Ai and
ci ≤i xi then xi = γ(a)i for some a ∈ A, so that we have that (ci,⊥−i) ≤ γ(a), therefore
γ(α(ci,⊥−i)) ≤ γ(α(γ(a))) = γ(a), and, in turn, γ(α(ci,⊥−i))i ≤i γ(a)i = xi, which
implies that γ(α(ci,⊥−i))i ≤i ∧Ci

{xi ∈ Ai | ci ≤i xi}. Finally, let us observe that if γ
is (finitely) disjunctive and X ⊆ Ai, so that for any x ∈ X there exists some ax ∈ A such
that γ(ax)i = x, then γ(∨A{ax ∈ A | x ∈ X}) = ∨{γ(ax) ∈ ×ni=1Ci | x ∈ X}, so that
γ(∨A{ax ∈ A | x ∈ X})i = ∨iγ(ax)i = ∨iX, namely, ∨iX ∈ Ai, meaning that γi = id is
(finitely) disjunctive. ut
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Let us recall that two GCs (α′, C,A′, γ′) and (α′′, C,A′′, γ′′) are isomorphic when
γ′ ◦α′ = γ′′ ◦α′′. We define a GC (α,×ni=1Ci, A, γ) as nonrelational when it is isomorphic
to the product composition, according to Lemma 3.3, of its component GCs as obtained by
Lemma 3.4. Otherwise, (α,×ni=1Ci, A, γ) is called relational. Of course, according to this
definition, the product composition by Lemma 3.3 of abstract domains is trivially nonrela-
tional. It is worth remarking that if A is relational then A cannot be obtained as a product of
abstractions of C. As a consequence, the property of being relational for an abstraction A
prevents the definition of a standard noncooperative game over the strategy space A since A
cannot be obtained as a product domain.

Example 3.5 Let us consider the game Γ in Example 2.4 whose finite strategy space is
C × C, where C = {1, 2, 3, 4, 5, 6} is a chain. Consider the subset A ⊆ C × C as depicted
by the following diagram where the ordering is induced from C × C:

(2, 2)

(3, 4)

(4, 4) (3, 5)

(4, 5)

(6, 6)

Since A is meet- and join-closed and includes the greatest element (6, 6) of C×C, we have
that A is a disjunctive abstraction of C × C, where α : C × C → A is the closure operator
induced by A (cf. point (6) in Section 3.1) and γ : A → C × C is the identity. Observe
that A is relational since its decomposition by Lemma 3.4 provides A1 = {2, 3, 4, 6} and
A2 = {2, 4, 5, 6}, and the product composition A1 × A2 by Lemma 3.3 yields a more
expressive abstraction than A, for example (2, 4) ∈ (A1 × A2) r A. On the other hand,
for the abstractions A1 = {3, 5, 6} and A2 = {2, 6} of Example 3.1, the product domain
A1 ×A2 defined according to Lemma 3.3 is a nonrelational abstraction of C × C. ut

4 Approximation of Multivalued Functions

Let f : C → C be some concrete monotone function, A ∈ Abs(C) be an abstraction spec-
ified by a GC (α,C,A, γ) and f ] : A→ A be a corresponding monotone abstract function
which is a correct (also called sound) approximation of f , that is, f ◦ γ v γ ◦ f ] holds.
Let us recall that fixed point correctness for f ] holds, i.e., lfp(f) ≤C γ(lfp(f ])) and
gfp(f) ≤C γ(gfp(f ])). Also, let us recall that fA,α ◦ f ◦ γ : A→ A is the best cor-
rect approximation of f on A, because it turns out that any abstract function f ] is a correct
approximation of f iff fA v f ] holds. In the following, we show how to lift these standard
notions in order to approximate least/greatest fixpoints of multivalued functions.

4.1 Constructive Results for Fixed Points of Multivalued Functions

Let f : C → ℘(C) be a multivalued function and f∧, f∨ : C → C be the functions defined
as:

f∧(c), ∧f(c) f∨(c), ∨f(c).



14 Francesco Ranzato

The following constructive result ensuring the existence of least fixed points for a multival-
ued function is given by Straccia et al. in [22, Propositions 3.10 and 3.24]. We provide here
a shorter and more direct constructive proof than in [22] which is based on the constructive
version of Tarski’s fixed point theorem given by Cousot and Cousot [5, Theorem 5.1].

Lemma 4.1 If f : C → ℘∧(C) is S-monotone then f has the least fixed point lfp(f).
Moreover, lfp(f) =

∨
α∈O f

α
∧ (⊥).

Proof By hypothesis, for any x ∈ C, f(x) ∈ ℘∧(C), so that f∧(x) ∈ f(x). If x, y ∈ C

and x ≤ y then, by hypothesis, f(x) �S f(y). Therefore, since f∧(y) ∈ f(y), there exists
some z ∈ f(x) such that z ≤ f∧(y), and, in turn, f∧(x) ≤ z ≤ f∧(y). Hence, since f∧
is a monotone function on a complete lattice, by Knaster-Tarski’s theorem, its least fixed
point lfp(f∧) ∈ C exists. Furthermore, by the constructive version of Tarski’s theorem [5,
Theorem 5.1], lfp(f∧) =

∨
α∈O f

α
∧ (⊥). We have that lfp(f∧) = f∧(lfp(f∧)) ∈ f(lfp(f∧)),

hence lfp(f∧) ∈ Fix(f). Consider any z ∈ Fix(f). We prove by transfinite induction that
for any α ∈ O, fα∧ (⊥) ≤ z. If α = 0 then f0∧ (⊥) = ⊥ ≤ z. If α = β + 1 then fα∧ (⊥) =

f∧(fβ∧ (⊥)), and, since, by inductive hypothesis, fβ∧ (⊥) ≤ z, then, by monotonicity of f∧,
f∧(fβ∧ (⊥)) ≤ f∧(z) = ∧f(z) ≤ z. If α = ∨{β ∈ O | β < α} is a limit ordinal then
fα∧ (⊥) =

∨
β<α f

β
∧ (⊥); since, by inductive hypothesis, fβ∧ (⊥) ≤ z for any β < α, we

obtain that fα∧ (⊥) ≤ z. This therefore shows that f has the least fixed point lfp(f) =
lfp(f∧). ut

By duality, as consequences of the above result, we obtain the following characteriza-
tions, where point (3) coincides with Zhou’s theorem (see [27, Theorem 1] and [22, Propo-
sition 3.15]), which is used for showing that pure Nash equilibria of a supermodular game
form a complete lattice.

Corollary 4.2
(1) If f : C → ℘∨(C) is H-monotone then f has the greatest fixed point gfp(f) =∧
α∈O f

α
∨ (>).

(2) If f : C → ℘�(C) is EM -monotone then f has the least and greatest fixed points, where
lfp(f) =

∨
α∈O f

α
∧ (⊥) and gfp(f) =

∧
α∈O f

α
∨ (>).

(3) If f : C → SL(C) is EM -monotone then 〈Fix(f),≤〉 is a complete lattice.
(4) If f, g : C → SL(C) are EM -monotone and, for any c ∈ C, f(c) �EM g(c) then
Fix(f) �EM Fix(g).

Proof Point (1) is dual to Lemma 4.1, and together imply Point (2). Point (3) is proved in
[27, Theorem 1]. Let us prove point (4). By Point (3), both Fix(f) and Fix(g) are complete
lattices for≤. Thus, Fix(f) �EM Fix(g) holds iff ∧Fix(f) = lfp(f) ≤ lfp(g) = ∧Fix(g)
and ∨Fix(f) = gfp(f) ≤ gfp(g) = ∨Fix(g). Moreover, since, for any c ∈ C, f(c) �EM

g(c), we also have that f∧(c) = ∧f(c) ≤ ∧g(c) = g∧(c), thus, as a consequence, lfp(f∧) ≤
lfp(g∧). The proof of Lemma 4.1 shows that lfp(f) = lfp(f∧) and lfp(g) = lfp(g∧), so that
we obtain lfp(f) ≤ lfp(g). The proof for gfp(f) ≤ gfp(g) is dual. ut

4.2 Concretization-based Approximations

As argued by Cousot and Cousot in [6], a minimal requirement for defining an abstract
domain consists in specifying the meaning of its abstract values through a concretization
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map. Let 〈A,≤A〉 be an abstraction of a concrete domain C specified by a monotone con-
cretization map γ : A → C. Let us observe that its powerset lifting γs : ℘(A) → ℘(C) is
S-monotone, meaning that if Y1 �S Y2 then γs(Y1) �S γs(Y2): in fact, if γ(y2) ∈ γs(Y2)
then there exists y1 ∈ Y1 such that y1 ≤A y2, so that γ(y1) ∈ γs(Y1) and γ(y1) ≤C γ(y2),
i.e., γs(Y1) �S γs(Y2). Analogously, γs is H- and EM -monotone. Then, consider a con-
crete S-monotone multivalued function f : C → ℘∧(C), whose least fixed point exists by
Lemma 4.1.

Definition 4.3 (Correct Approximation of Multivalued Functions) An abstract multival-
ued function f ] : A→ ℘(A) over A is a S-correct approximation of f when:

(1) f ] : A→ ℘∧(A) and f ] is S-monotone (fixed point condition)
(2) for any a ∈ A, f(γ(a)) �S γs(f ](a)) (soundness condition)

H- and EM -correct approximations are defined by replacing in this definition S- with, re-
spectively, H- and EM -, and ℘∧ with, respectively, ℘∨ and ℘�. ut

Let us point out that the soundness condition (2) in Definition 4.3 is close to the standard
correctness requirement used in abstract interpretation: the main technical difference is that
we deal with mere preorders 〈℘∧(C),�S〉 and 〈℘∧(A),�S〉 rather than posets. However,
this is enough for guaranteeing a correct approximation of least fixed points.

Theorem 4.4 (Correct Least Fixed Point Approximation) If f ] is a S-correct approxi-
mation of f then lfp(f) ≤C γ(lfp(f ])).

Proof Let us consider f∧ : C → C and f ]∧ : A → A. By Lemma 4.1, lfp(f) = lfp(f∧) and
lfp(f ]) = lfp(f ]∧ ). Let us check that f ]∧ is a standard correct approximation of f∧. For any
a ∈ A, γ(f ]∧ (a)) ∈ γs(f ](a)), hence, since f(γ(a)) �S γs(f ](a)), we have that there exists
some z ∈ f(γ(a)) such that z ≤ γ(f ]∧ (a)), so that f∧(γ(a)) = ∧f(γ(a)) ≤ z ≤ γ(f ]∧ (a)).
Hence, by the concretization-based fixed point transfer (see [16, Theorem 2.2.4]), it turns
out that lfp(f∧) ≤C γ(lfp(f ]∧ )), therefore showing that lfp(f) ≤ γ(lfp(f ])). ut

Analogous results hold for H- and EM -correct approximations.

Corollary 4.5
(1) If f ] is a H-correct approximation of f then gfp(f) ≤C γ(gfp(f ])).
(2) If f ] is a EM -correct approximation of f then Fix(f) �EM γs(Fix(f ])), in particular,
lfp(f) ≤C γ(lfp(f ])) and gfp(f) ≤C γ(gfp(f ])).

Proof Point (1) follows by duality from Theorem 4.4. By Theorem 4.4 and point (1), we
obtain lfp(f) ≤ γ(lfp(f ])) and gfp(f) ≤ γ(gfp(f ])). Hence, if x ∈ Fix(f) then x ≤C
gfp(f) ≤ γ(gfp(f ])) ∈ γs(Fix(f ])), so that Fix(f) �H γs(Fix(f ])). Dually, Fix(f) �S
γs(Fix(f ])), so that Fix(f) �EM γs(Fix(f ])) holds. ut

The approximation of least/greatest fixed points of multivalued functions can also be
easily given for a monotone abstraction map α : C → A. In this case, a S-monotone
map f ] : A → ℘∧(A) is called a correct approximation of a concrete S-monotone map
f : C → ℘∧(C) when, for any c ∈ C, αs(f(c)) �S f ](α(c)), where αs : ℘(C) → ℘(A).
Here, fixed point approximation states that α(lfp(f)) ≤A lfp(f ]).
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4.3 Galois Connection-based Approximations

Let us now consider the ideal case where best approximations of concrete objects in an
abstract domain A always exist, that is, A is specified by a GC (α,C,A, γ). However, recall
that here we deal with mere preorders such as�S and�H rather than standard partial orders.

Definition 4.6 (preorder-GC) Given two preorders 〈X,�X〉 and 〈Y,�Y 〉 and two func-
tions β : X → Y and δ : Y → X, (β,X, Y, δ) is a preorder-GC when:

– δ and β are monotone;
– β(x) �Y y ⇔ x �X δ(y). ut

It turns out that standard GCs induce preorder-GCs for Smyth, Hoare and Egli-Milner
preorders as follows.

Lemma 4.7 Let (α,C,A, γ) be a GC. Then,
(
αs, 〈℘∧(C),�S〉, 〈℘∧(A),�S〉, γs

)
,
(
αs,

〈℘∨(C),�H〉,〈℘∨(A),�H〉, γs
)
,
(
αs, 〈℘�(C),�EM 〉, 〈℘�(A),�EM 〉, γs

)
are all preorder-

GCs.

Proof Let us check that αs is S-monotone: if X �S Y and α(y) ∈ αs(Y ) then there
exists x ∈ X such that x ≤C y, so that, by monotonicity of α, α(x) ≤A α(y), and there-
fore αs(X) �S αs(Y ). Analogously, γs is S-monotone. Let us check that αs(X) �S
Y ⇒ X �S γs(Y ): if γ(y) ∈ γs(Y ) then there exists α(x) ∈ αs(X) such that α(x) ≤A
y, and, since (α,C,A, γ) is a GC, this implies that x ≤C γ(y), so that X �S γs(Y ).
Analogously, it turns out that X �S γs(Y ) ⇒ αs(X) �S Y . Hence, this shows that(
αs, 〈℘∧(C),�S〉,〈℘∧(A),�S〉, γs

)
is a preorder-GC. The proofs for Hoare and Egli-Milner

preorders are analogous. ut

The Galois connection-based framework allows us to define best correct approximations
of multivalued functions. If f : C → ℘(C) and (α,C,A, γ) is a GC then its best correct
approximation fA is defined as follows:

fA : A→ ℘(A) fA(a),αs(f(γ(a))).

In particular, if f : C → ℘∧(C) is S-monotone then fA : A → ℘∧(A) turns out to be S-
monotone. Analogously for Hoare and Egli-Milner preorders. Similarly to standard abstract
interpretation [4], it turns out that fA is the best possible S-correct approximation of f on
the abstract domain A, as stated by the following result.

Lemma 4.8 A S-monotone correspondence f ] : A→ ℘∧(A) is a S-correct approximation
of f iff for any a ∈ A, fA(a) �S f ](a). Also, analogous characterizations hold for H- and
EM -correct approximations.

Proof An easy consequence of Lemma 4.7, since for any a ∈ A, fA(a) = αs(f(γ(a)) �S
f ](a) iff for any a ∈ A, f(γ(a)) �S γs(f ](a)). ut

Hence, it turns out that the fixed point approximations given by Theorem 4.4 and Corol-
lary 4.5 apply to the best correct approximations fA as well.
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Completeness. In abstract interpretation, completeness [4,12] formalizes an ideal situation
where the abstract function f ] onA is capable of not losing information w.r.t. the abstraction
in A of the concrete function f , that is, the equality α(f(c)) = f ](α(c)) always holds. As
a key consequence, completeness lifts to fixed points, meaning that α(lfp(f)) = lfp(f ])
holds. Let us show that this property also holds for multivalued functions.

Given a GC (α,C,A, γ), an abstract S-monotone function f ] : A → ℘∧(A) is called a
complete approximation of a S-monotone function f : C → ℘∧(C) when for any c ∈ C,
αs(f(c)) = f ](α(c)).

Lemma 4.9 (Complete Least Fixed Point Approximation) If f ] is a complete approxi-
mation of f then α(lfp(f)) = lfp(f ]).

Proof By Lemma 4.1, lfp(f) = lfp(f∧) and lfp(f ]) = lfp(f ]∧ ). Since f∧(c) ∈ f(c), we
have that α(f∧(c)) ∈ αs(f(c)), so that α(f∧(c)) = ∧αs(f(c)). By hypothesis, ∧αs(f(c)) =

∧f ](α(c)) = f ]∧ (α(c)), so that α◦f∧ = f ]∧ ◦α holds. Thus, by complete fixed point transfer
[4, Theorem 7.1.0.4], α(lfp(f∧)) = lfp(f ]∧ ). ut

4.4 Approximations of Best Response Correspondences

This abstract interpretation framework for multivalued functions can be then applied to
(quasi)supermodular games by approximating their best response correspondences. In par-
ticular, one can abstract both the i-th best response correspondences Bi : S−i → SL(Si)
and the overall best response B : S → SL(S).

Example 4.10 Let us consider the game Γ in Example 2.4 and the abstraction A of its strat-
egy spaceC×C defined in Example 3.5. Then, one can define the best correct approximation
BA in A of the best response function B : C × C → SL(C × C), that is, BA : A → ℘(A)
is defined as BA(a),αs(B(γ(a))) = αs(B(a)) = {α(s1, s2) ∈ A | (s1, s2) ∈ B(a)}. We
therefore have that:

BA(2, 2)=αs({(2, 3)}) = {(3, 4)}, BA(3, 4)=αs({(2, 3), (5, 3)}) = {(3, 4), (6, 6)},

BA(4, 4)=αs({(2, 4), (5, 4)}) = {(3, 4), (6, 6)}, BA(3, 5)=αs({(5, 3)}) = {(6, 6)},

BA(4, 5)=αs({((5, 4)}) = {(6, 6)}, BA(6, 6)=αs({(5, 4), (6, 4)}) = {(6, 6)}.

Hence, Fix(BA) = {(3, 4), (6, 6)}. Recall from Example 2.4 that Fix(B) = {(2, 3), (5, 4)}.
By Theorem 4.4 and Corollary 4.5, here we have that leq(Γ) = lfp(B) = (2, 3) ≤ (3, 4) =
lfp(BA) and geq(Γ) = gfp(B) = (5, 4) ≤ (6, 6) = gfp(BA). ut

5 Games with Abstract Strategy Space

Consider a game Γ = 〈Si, ui〉ni=1 and a corresponding family G = (αi, Si, Ai, γi)
n
i=1

of Galois connections for the strategy spaces Si. By Lemma 3.3, (α,×ni=1Si,×
n
i=1Ai, γ)

defines a nonrelational product abstraction of the whole strategy space ×ni=1Si.

Definition 5.1 (Game with Abstract Strategy Space) The abstraction of the game Γ in-
duced by G is defined by the game ΓG = 〈Ai, uGi 〉

n
i=1 where the i-th utility function uGi on

the abstract strategy space ×ni=1Ai is obtained by restricting ui on γ(×ni=1Ai) as follows:

uGi : ×ni=1Ai → RNi uGi (a),ui(γ(a)). ut
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We point out that this definition of abstract game is a kind of generalization of the restricted
games considered by Echenique [10, Section 2.3].

Lemma 5.2 If ui(·, s−i) is (quasi)supermodular and all the GCs in G are finitely disjunctive
then uGi (·, a−i) : Ai → RNi is (quasi)supermodular. Also, if ui(si, ·) is monotone then
uGi (ai, ·) : A−i → RNi is monotone.

Proof Let us check that uGi (·, a−i) is supermodular:

uGi (ai ∨Ai
bi, a−i) + uGi (ai ∧Ai

bi, a−i) = [by definition]

ui(γi(ai ∨Ai
bi), γ−i(a−i)) + ui(γi(ai ∧Ai

bi), γ−i(a−i)) = [γi is disjunctive]

ui(γi(ai) ∨i γi(bi), γ−i(a−i)) + ui(γi(ai) ∧i γi(bi), γ−i(a−i)) ≥ [ui is supermodular]

ui(γi(ai), γ−i(a−i)) + ui(γi(bi), γ−i(a−i)) = [by definition]

uGi (ai, a−i) + uGi (bi, a−i)

The proof of quasisupermodularity for uGi (·, a−i) is analogous. Let us check that uGi (ai, ·) is
monotone. Consider a−i ≤ b−i, so that, by monotonicity of γ−i, we have that γ−i(a−i) ≤
γ−i(b−i). Therefore, by monotonicity of ui(γi(ai), ·), it turns out that: uGi (ai, a−i) =

ui(γi(ai), γ−i(a−i)) ≤ ui(γi(ai), γ−i(b−i)) = uGi (ai, b−i). ut

Let us also observe that if ui(si, s−i) has increasing differences (the single crossing
property), X ⊆ ×ni=1Si is any subset of the strategy space and ui/X : X → RNi is the
mere restriction of ui to the subset X then ui/X still has increasing differences (the single
crossing property). Hence, in particular, this holds for uGi : ×ni=1Ai → R. As a conse-
quence of this observation and of Lemma 5.2, we obtain the following class of abstract
(quasi)supermodular games.

Corollary 5.3 Let Γ = 〈Si, ui〉ni=1 be (quasi)supermodular. If G = (αi, Si, Ai, γi)
n
i=1 is a

family of finitely disjunctive GCs then ΓG , 〈Ai, uGi 〉
n
i=1 is a (quasi)supermodular game.

Let us see an array of examples of abstract games.

Example 5.4 Consider the supermodular game Γ in Example 2.4 and the product abstrac-
tion A1 ×A2 ∈ Abs(S1 × S2), where A1 = {3, 5, 6} and A2 = {2, 6}, as defined in
Example 3.5. The abstract game Γ] of Definition 5.1 on the abstract space A1 × A2 is thus
specified by the following payoff matrix:

A1

A2

2 6
6 -1, -1 6, 5
5 0, 2 6, 5
3 2, 4 3, 2

Since both A1 and A2 are trivially disjunctive abstractions, by Corollary 5.3, it turns out
that Γ] is supermodular. The best response correspondences B]i : A−i → SL(Ai) for the
supermodular game Γ] are therefore as follows:

B]1(2) = {3}, B]1(6) = {5, 6}; B]2(3) = {2}, B]2(5) = {6}, B]2(6) = {6}.

We observe that B]2 is not a S-correct approximation of B2 because: B2(3) = {3} 6�S
{2} = B]2(3). Indeed, it turns out that Eq(Γ]) = {(3, 2), (5, 6), (6, 6)}, so that leq(Γ) =
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(2, 3) 6≤ (3, 2) = leq(Γ]). Thus, in this case, the solutions of the abstract game Γ] do not
correctly approximate the solutions of Γ.
Instead, following the approach in Section 4.4 and analogously to Example 4.10, one can
define the best correct approximation BA : A → SL(A) in A,A1 × A2 of the best re-
sponse correspondence B of Γ. Thus, BA(a1, a2) = {(α1(s1), α2(s2)) ∈ A | (s1, s2) ∈
B(a1, a2)} acts as follows:

BA(3, 2) = {(α1(2), α2(3))} = {(3, 6)},

BA(3, 6) = {(α1(5), α2(3)), (α1(6), α2(3))} = {(5, 6), (6, 6)},

BA(5, 2) = {(α1(2), α2(4))} = {(3, 6)},

BA(5, 6) = {(α1(5), α2(4)), (α1(6), α2(4))} = {(5, 6), (6, 6)},

BA(6, 2) = {(α1(2), α2(4))} = {(3, 6)},

BA(6, 6) = {(α1(5), α2(4)), (α1(6), α2(4))} = {(5, 6), (6, 6)}.

Here, we have that Fix(BA) = {(5, 6), (6, 6)}, so that leq(Γ) = lfp(B) = (2, 3) ≤
(5, 6) = lfp(BA) and geq(Γ) = gfp(B) = (5, 4) ≤ (6, 6) = gfp(BA). ut

Example 5.5 In Example 5.4, let us consider the abstraction A2 = {4, 6} ∈ Abs(S2), so
that the abstract supermodular game Γ] of Definition 5.1 is determined by the following
payoff matrix:

4 6
6 5, 6 6, 5
5 6, 6 6, 5
3 4, 5 3, 2

while the best response correspondences B]i turn out to be defined as:

B]1(4) = {5}, B]1(6) = {5, 6}; B]2(3) = {4}; B]2(5) = {4}, B]2(6) = {4}.

Thus, here we have that Eq(Γ]) = {(5, 4)}. In this case, it turns out thatB]i is a EM -correct
approximation ofBi, so that, by Corollary 4.5 (2), Eq(Γ) = Fix(B) = {(2, 3), (5, 4)} �EM

{(5, 4)} = Fix(B]) = Eq(Γ]) holds. ut

Example 5.6 In this case we consider the disjunctive abstractionsA1 = {4, 5, 6} ∈ Abs(S1)
and A2 = {3, 4, 5, 6} ∈ Abs(S2), so that we have the following abstract supermodular
game Γ] over A1 ×A2:

3 4 5 6
6 2, 4 5, 6 6, 5 6, 5
5 3, 4 6, 6 7, 5 6, 5
4 3, 5 5, 6 5, 5 4, 4

The best response functions B]i are therefore as follows:

B]1(3) = {4, 5}, B]1(4) = {5}, B]1(5) = {5}, B]1(6) = {5, 6};
B]2(4) = {4}, B]2(5) = {4}, B]2(6) = {4}.

In this case, it turns out that B]i is a EM -correct approximation of Bi, so that the abstract
best response B] : A1 × A2 → SL(A1 × A2) is a EM -correct approximation of B. Then,
by Corollary 4.5 (2), we have that Eq(Γ) = Fix(B) = {(2, 3), (5, 4)} �EM {(5, 4)} =
Fix(B]) = Eq(Γ]). ut
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Thus, for the concrete supermodular game Γ of Example 2.4, the abstract games ΓG of
Examples 5.5 and 5.6 can be viewed as correct approximations of the game Γ since

Eq(Γ) �EM γs(Eq(ΓG))

holds. This means that any Nash equilibrium of Γ is approximated by some Nash equilib-
rium of the abstract game ΓG and, conversely, any Nash equilibrium of ΓG approximates
some Nash equilibrium of the concrete game Γ. In particular, leq(Γ) ≤ γs(leq(ΓG)) and
geq(Γ) ≤ γs(geq(ΓG)). Instead, this approximation condition does not hold for the abstract
game in Example 5.4. The following results provide conditions that justify these different
behaviors.

Theorem 5.7 (Correctness of Games with Abstract Strategy Space) Let us consider a
family G = (αi, Si, Ai, γi)

n
i=1 of finitely disjunctive GIs, S = ×ni=1Si, A = ×ni=1Ai and

let (α, S,A, γ) be the nonrelational product composition of G. Let Γ = 〈Si, ui〉ni=1 be a
(quasi)supermodular game, with best response B, and ΓG = 〈Ai, uGi 〉

n
i=1 be the corre-

sponding abstract (quasi)supermodular game, with best response BG . Assume that for any
a ∈ A, ∨

S B(γ(a)) ∨S γ(
∧
AB
G(a)) ∈ γ(A) (∗)

Then, Eq(Γ) �EM γs(Eq(ΓG)) and, in particular, leq(Γ) ≤ γs(leq(ΓG)) and geq(Γ) ≤
γs(geq(ΓG)).

Proof We have that Eq(Γ ) = Fix(B) and Eq(ΓG) = Fix(BG), where B : S → ℘�(S)
and BG : A → ℘�(A) are EM -monotone. Thus, by Corollary 4.5 (2), in order to prove
that Eq(Γ ) �EM γs(Eq(ΓG)) it is enough to prove that for any a ∈ A, B(γ(a)) �EM

γs(BG(a)). Let h,
∨
S B(γ(a)) ∈ S, so that h ∈ B(γ(a)), and k,

∧
AB
G(a) ∈ A, so

that, by Corollary 5.3, k ∈ BG(a). By condition (∗), we have that h ∨S γ(k) ∈ γ(A). Let
us consider some i ∈ [1, n]. Therefore, hi ∨i γi(ki) ∈ γi(Ai), that is, hi ∨i γi(ki) = γi(bi),
for some bi ∈ Ai. Hence, since ki ∈ BGi (a−i), we have that

ui(hi ∨i γi(ki), γ−i(a−i)) = ui(γi(bi), γ−i(a−i)) = uGi (bi, a−i) ≤

uGi (ki, a−i) = ui(γi(ki), γ−i(a−i)).

Also, since hi ∈ Bi(γ(a)−i) = Bi(γ−i(a−i)), it turns out that ui(hi∧iγi(ki), γ−i(a−i)) ≤
ui(hi, γ−i(a−i)). Furthermore, since ui is supermodular, we also have that

ui(hi ∧i γi(ki), γ−i(a−i)) + ui(hi ∨i γi(ki), γ−i(a−i)) ≥
ui(hi, γ−i(a−i)) + ui(γi(ki), γ−i(a−i)).

We therefore obtain:

ui(hi, γ−i(a−i)) + ui(γi(ki), γ−i(a−i)) ≥
ui(hi ∧i γi(ki), γ−i(a−i)) + ui(hi ∨i γi(ki), γ−i(a−i)) ≥

ui(hi, γ−i(a−i)) + ui(γi(ki), γ−i(a−i))

so that

ui(hi, γ−i(a−i)) + ui(γi(ki), γ−i(a−i)) =

ui(hi ∧i γi(ki), γ−i(a−i)) + ui(hi ∨i γi(ki), γ−i(a−i))
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and, in turn, ui(hi ∧i γi(ki), γ−i(a−i)) = ui(hi, γ−i(a−i)) and

uGi (bi, a−i) = ui(hi ∨i γi(ki), γ−i(a−i)) = ui(γi(ki), γ−i(a−i)) = uGi (ki, a−i).

Thus, hi ∧i γi(ki) ∈ Bi(γ−i(a−i)) and hi ∨i γi(ki) ∈ γi(B
G
i (a−i)). Therefore, it turns

out that h ∧ γ(k) ∈ B(γ(a)) and h ∨ γ(k) ∈ γs(BG(a)). Hence, if s ∈ B(γ(a)) then
s ≤ h ≤ h ∨ γ(k) ∈ γs(BG(a)), while if t ∈ γs(BG(a)) then t = γs(d), for some
d ∈ BG(a), so that k ≤A d and, in turn, t = γs(d) ≥ γ(k) ≥ h ∧ γ(k) ∈ B(γ(a)),
thus showing that B(γ(a)) �EM γs(BG(a)). The proof for quasisupermodular games is
analogous. ut

This result depends on the condition (∗) which allows us to obtain a generalization of
Echenique’s result [10, Lemma 4] which is the basis for designing the efficient algorithm
in [10, Section 4] that computes all the Nash equilibria in a finite game with strategic com-
plementarities. Let us call (α,C,A, γ) a principal filter Galois connection when the image
γ(A) is the principal filter at γ(⊥A), that is, γ(A) = {c ∈ C | γ(⊥A) ≤ c} holds.

Corollary 5.8 Let G = (αi, Si, Ai, γi)
n
i=1 be a family of principal filter Galois connections.

Then, Eq(Γ) �EM γs(Eq(ΓG)).

Proof Observe that the product (α,×ni=1Si,×
n
i=1Ai, γ) is a principal filter GC. Then, this

comes as a straight consequence of Theorem 5.7, since
∨
S B(γ(a)) ∨S γ(

∧
AB
G(a)) ≥

γ(
∧
AB
G(a)) ≥ γ((⊥Ai

)ni=1), so that
∨
S B(γ(a)) ∨S γ(

∧
AB
G(a)) ∈ γ(A) holds. ut

Let us consider the following finite supermodular game taken from the book [2, Exam-
ple 8.11], which is an example of so-called Bertrand oligopoly model [24].

Example 5.9 In this game ∆, players i ∈ {1, 2, 3} stand for firms which sell substitute
products pi (e.g., a can of beer), whose feasible selling prices (e.g., in euros) si range in
Si, [a, b], where the smallest price shift is 5 cents. The payoff function ui : S1×S2×S3 →
R models the profit of the firm i:

ui(s1, s2, s3), di(s1, s2, s3)(si − ci)

where di(s1, s2, s3) gives the demand of pi, i.e., how many units of pi the firm i sells in
a given time frame (e.g., one year), while ci is the unit cost of pi so that (si − ci) is the
profit per unit. Following [2, Example 8.11], let us consider the following specific payoff
functions:

u1(s1, s2, s3) = (370 + 213(s2 + s3) + 60s1 − 230s21)(s1 − 1.10)

u2(s1, s2, s3) = (360 + 233(s1 + s3) + 55s2 − 220s22)(s2 − 1.20)

u3(s1, s2, s3) = (375 + 226(s1 + s2) + 50s3 − 200s23)(s3 − 1.25)

As shown in general in [2, Corollary 8.9], it turns out that each payoff function ui has in-
creasing differences and ui(si, ·) is monotone, so that the game ∆ has the least and greatest
price equilibria leq(∆) and geq(∆), and geq(∆) (leq(∆)) provides the best (least) profits
among all equilibria. It should be noted that [2, Example 8.11] considers as payoff functions
the integer part of ui, namely bui(s1, s2, s3)c. However, we notice that this definition of pay-
off function does not have increasing differences, so that [2, Corollary 8.9], which assumes
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the hypothesis of increasing differences, cannot be correctly applied. Indeed, [2, Exam-
ple 8.11] considers Si = {x/20 | x ∈ [26, 42]Z} and with (1.3, 1.3, 1.8) ≤ (1.35, 1.3, 1.85),
we would obtain that

bu1(1.35, 1.3, 1.8)c − bu1(1.3, 1.3, 1.8)c = b173.03125c − b143.92c = 30 >

bu1(1.35, 1.3, 1.85)c − bu1(1.3, 1.3, 1.85)c = b175.69375c − b146.05c = 29

meaning that u1 does not have increasing differences. By contrast, let us consider in this
example

Si, {x/20 | x ∈ [20, 46]Z},

namely the feasible prices range from 1 to 2.3 euros with a 0.05 shift. Using the standard RT
algorithm in Figure 1 (we made a simple C++ implementation of RT to obtain the results
reported here), one obtains leq(∆) = (1.80, 1.90, 1.95) = geq(∆), namely, the game ∆
admits a unique Nash equilibrium. It turns out that the algorithm RT calculates leq(∆)
starting from the bottom (1.0, 1.0, 1.0) ∈ S1 × S2 × S3 through 12 calls to

∧
Bi(s−i),

while it may output the same equilibrium as geq(∆) beginning from the top (2.3, 2.3, 2.3)
through 9 calls to

∨
Bi(s−i).

Let us consider the following abstractions Ai ∈ Abs(Si):

A1 , {x/20 | x ∈ [35, 38]Z ∪ [42, 46]Z},

A2 , {x/20 | x ∈ [36, 46]Z},

A3 , {x/20 | x ∈ [38, 46]Z}.

Notice that A2 and A3 are principal filter abstractions, while this is not the case for A1

because A1 ( {x ∈ Si | 35/20 ≤ x}, so that Corollary 5.8 cannot be applied. We observe
that:

{
∨

1B1(a−1) ∈ S1 | a−1 ∈ A2 ×A3} = {36/20, 37/20, 38/20},
{
∨

2B2(a−2) ∈ S2 | a−2 ∈ A1 ×A3} = {38/20, 39/20, 40/20},
{
∨

3B3(a−3) ∈ S3 | a−3 ∈ A1 ×A2} = {39/20, 40/20, 41/20, 42/20}.

The condition (∗) of Theorem 5.7 is therefore satisfied, because for any a−i ∈ A−i, we
have that

∨
Bi(a−i) ∈ Ai. Hence, by Corollary 5.3, we consider the abstract supermodular

game ∆A on the abstract strategy spaces Ai. By exploiting the RT algorithm in Figure 1
for ∆A, we still obtain a unique equilibrium leq(∆A) = (1.80, 1.90, 1.95) = geq(∆A),
so that in this case no approximation of equilibria happens. Here, RT calculates leq(∆A)
starting from the bottom (1.8, 1.8, 1.9) of A1×A2×A3 through 6 calls to

∧
BAi (a−i) and

any call
∧
BAi (a−i) scans the smaller abstract strategy space Ai instead of Si. On the other

hand, (1.80, 1.90, 1.95) = geq(∆) can be also calculated from the top (2.3, 2.3, 2.3) still
with 9 calls to

∨
BAi (a−i), each scanning the reduced abstract strategy spaces Ai. ut

6 Games with Abstract Best Response

In the following, we put forward a notion of abstract game where the strategy spaces are
subject to a form of partial approximation by abstract interpretation, meaning that we con-
sider approximations of the strategy spaces of the “other players” for any utility function,
i.e., correct approximations of the functions ui(si, ·), for any given si. This approach gives
rise to games having an abstract best response correspondence. Here, we aim at providing a
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systematic abstraction framework for an implicit methodology of approximate computation
of equilibria considered in Carl and Heikkilä’s book [2] in Examples 8.58, 8.63 and 8.64.

Given a game Γ = 〈Si, ui〉ni=1, we consider a family G = (αi, Si, Ai, γi)
n
i=1 of GCs

and, by Lemma 3.3, their nonrelational product (α,×ni=1Si,×
n
i=1Ai, γ), where we denote

by ρ, γ ◦ α ∈ uco(×ni=1Si) the corresponding closure operator and, for any i ∈ [1, n],
by ρ−i ∈ uco(S−i) the closure operator corresponding to the i-th nonrelational product
(α−i,×j 6=iSj ,×j 6=iAj , γ−i). The i-th utility function ui,G is then defined as follows:

ui,G : ×ni=1Si → R ui,G(si, s−i),ui(si, ρ−i(s−i)).

Lemma 6.1 If ui(si, s−i) has increasing differences (the single crossing property) then
ui,G(si, s−i) has increasing differences (the single crossing property). Also, if ui(si, ·) is
monotone then ui,G(si, ·) is monotone.

Proof Assume that (si, s−i) ≤ (ti, t−i). Hence, s−i ≤−i t−i, so that, by monotonicity of
ρ−i, ρ−i(s−i) ≤−i ρ−i(t−i), and, in turn, (si, ρ−i(s−i)) ≤ (ti, ρ−i(t−i)). Then:

ui,G(ti, s−i)− ui,G(si, s−i) = [by definition]

ui(ti, ρ−i(s−i))− ui(si, ρ−i(s−i)) ≤ [since ui has increasing differences]

ui(ti, ρ−i(t−i))− ui(si, ρ−i(t−i)) = [by definition]

ui,G(ti, t−i)− ui,G(si, t−i).

The single crossing property for ui,G(si, s−i) can be proved similarly. Let s−i ≤−i t−i, so
that, by monotonicity of ρ−i, ρ−i(s−i) ≤−i ρ−i(t−i). Then, by monotonicity of ui(si, ·),
we obtain: ui,G(si, s−i) = ui(si, ρ−i(s−i)) = ui(si, ρ−i(t−i)) = ui,G(si, t−i), thus prov-
ing the monotonicity of ui,G(si, ·). ut

Let us also point out that if ui(·, s−i) is (quasi)supermodular then ui,G(·, s−i) remains
(quasi)supermodular as well. Hence, if ΓG , 〈Si, ui,G〉ni=1 denotes the corresponding game
then we obtain the following consequence.

Corollary 6.2 If Γ is (quasi)supermodular then ΓG is (quasi)supermodular.

ΓG is called a game with abstract best response because the i-th best response corre-
spondence Bi,G : S−i → SL(Si) is such that

Bi,G(s−i) = {si ∈ Si | ∀xi ∈ Si.ui(xi, ρ−i(s−i)) ≤ ui(si, ρ−i(s−i))} = Bi(ρ−i(s−i))

and, in turn, BG(s) = BG(ρ(s)) = B(ρ(s)) holds, namely, BG can be viewed as the restric-
tion of B to the abstract strategy space ρ(S).

Corollary 6.3 (Correctness of Games with Abstract Best Response) Let us consider a
family G = (αi, Si, Ai, γi)

n
i=1 of GCs. Then, Eq(Γ) �EM Eq(ΓG) and, in particular,

leq(Γ) ≤ leq(ΓG) and geq(Γ) ≤ geq(ΓG).

Proof Since, by Corollary 6.2, ΓG is (quasi)supermodular, we have that Eq(Γ ) = Fix(B)
and Eq(ΓG) = Fix(BG). We have that for any s ∈ ×ni=1Si, by extensiveness of ρ, s ≤
ρ(s), so that, since B is monotone, we obtain B(s) �EM B(ρ(s)) = BG(s). Hence, by
Corollary 4.2 (4), we obtain that Fix(B) �EM Fix(BG). ut
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Example 6.4 Let us consider the two-player game Γ = 〈Si, ui〉2i=1 in [2, Example 8.53],
which is a further example of Bertrand oligopoly, where: S1 = S2 = [32 ,

5
2 ]× [32 ,

5
2 ] and the

utility functions ui : S1 × S2 → R2 are defined by

ui((si1, si2), s−i), (ui1(si1, s−i), ui2(si2, s−i)) ∈ R2

with (sgn here denotes the standard sign function):

u11(s11, s21, s22),
(
52− 21s11 + s21 + 4s22 + 8 sgn(s21s22 − 4)

)
(s11 − 1)

u12(s12, s21, s22),(
51− 21s12 − sgn(s12 − 11

5 ) + 2s21 + 3s22 + 4 sgn(s21 + s22 − 4)
)
(s12 − 11

10 )

u21(s21, s11, s12),(
50− 20s21 − sgn(s21 − 11

5 ) + 3s11 + 2s12 + 2 sgn(s11 + s12 − 4)
)
(s21 − 11

10 )

u22(s22, s11, s12),
(
49− 20s22 + 4s11 + s12 + sgn(s11s12 − 4)

)
(s22 − 1)

Since any utility function uij(sij , s−i) does not depend on si,−j (e.g., u11 and u12 do
not depend, respectively, on s12 and s11), let us observe that ui(·, s−i) : Si → R2 is
supermodular. Moreover, by [2, Propositions 8.56, 8.57], we also have that ui(s1, s2) has the
single crossing property, so that Γ is indeed quasisupermodular. Also, since Si is a compact
(for the standard topology) complete sublattice of R2, we also have that ui(·, s−i) is order
upper semicontinuous, so that, for any s ∈ S1 × S2, the best response correspondence B
satisfies B(s) ∈ SL(S1 × S2). Indeed, as observed in [2, Example 8.53], it turns out that
the utility functions uij(·, s−i) : [32 ,

5
2 ] → R have unique maximum points denoted by

fij(s−i) which are the solutions of the equations d
dsuij(s, s−i) = 0. An easy computation

then provides:

f11(s21, s22), 73
42 + 1

42s21 + 2
21s22 + 4

21 sgn(s21s22 − 4)

f12(s21, s22), 247
140 + 1

42s21 + 1
14s22 + 2

21 sgn(s21 + s22 − 4)

f21(s11, s12), 9
5 + 3

40s11 + 1
20s12 + 1

20 sgn(s11 + s12 − 4)

f22(s11, s12), 69
40 + 1

10s11 + 1
40s12 + 1

40 sgn(s11s12 − 4)

Hence, the best response B can be simplified as follows:

B(s11, s12, s21, s22) =
{(
f11(s21, s22), f12(s21, s22), f21(s11, s12), f22(s11, s12)

)}
.

As shown in [2, Example 8.53], least and greatest equilibria of Γ can be obtained by solving
a linear system of four equations with four real variables:

leq(Γ) =
(

4940854
2778745 ,

5281784
2778745 ,

5497457
2778745 ,

10699993
5557490

)
,

geq(Γ) =
(

6033654
2778745 ,

5848294
2778745 ,

5885617
2778745 ,

11224753
5557490

)
.

Carl and Heikkilä [2, Example 8.58] describe how to algorithmically derive approximate
solutions of Γ by approximating the fractional part of real numbers through the floor func-
tion, namely, the greatest rational number with N fractional digits which is not more than
a given real number. In this section we give an abstract interpretation-based methodology
for systematically designing this kind of approximate solutions which generalizes Carl and
Heikkilä’s approach in [2, Example 8.58]. Here, we use the ceil abstraction clN of real
numbers already described in Example 3.2. In detail, we consider the closure operator
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cl3 : [32 ,
5
2 ] → [32 ,

5
2 ], that is, cl3(x) is the smallest rational number with at most 3 frac-

tional digits not less than x. With a slight abuse of notation, cl3 is also used to denote the
corresponding componentwise function cl3 : [32 ,

5
2 ]2 → [32 ,

5
2 ]2, namely, cl3(si1, si2) =

(cl3(si1), cl3(si1)). Let Acl3 be the following domain

Acl3 , {
y

103 ∈ Q | y ∈ [1500, 2500]Z} = {cl3(x) | x ∈ [32 ,
5
2 ]}

and A,Acl3 × Acl3 . Then, (cl3, [
3
2 ,

5
2 ], Acl3 , id) is a GC, so that, by Lemma 3.3, G3 =

(cl3, Si, A, id)2i=1 is a pair of GCs. Let us denote by ΓG3 the corresponding game with
abstract best response as defined in Corollary 6.2, so that ui,G3(si, s−i) = ui(si, cl3(s−i)).
Thus, it turns out that the abstract best response correspondence BG3 is defined as follows:

B(s1, s2) =
{(
f11(cl3(s2)), f12(cl3(s2)), f21(cl3(s1)), f22(cl3(s1))

)}
so that BG3 can be restricted to the finite domain A×A and therefore has a finite range. This
allows us to compute the least and greatest equilibria of ΓG3 by the standard RT algorithm
in Figure 1. By relying on a simple C++ program to obtain the output of RT, we derive the
following solutions:

leq(ΓG3) =
(

10669
6000 ,

6653
3500 ,

79139
40000 ,

77017
40000

)
,

geq(ΓG3) =
(

91199
42000 ,

14733
7000 ,

42363
20000 ,

80793
40000

)
.

By Corollary 6.3, we know that these are correct approximations, i.e., leq(Γ) ≤ leq(ΓG3)
and geq(Γ) ≤ geq(ΓG3). Both fixed point calculations leq(ΓG3) and geq(ΓG3) need 16 calls
to the abstract functions fij(a−i), for some a−i ∈ A−i, which provide the unique maximum
points for uij(·, a−i). It is worth noting that, even with the precision of 3 fractional digits
of cl3, the maximum approximation for these abstract solutions turns out to be quite small:
leq(ΓG3)22 − leq(Γ)22 = 2148733

22229960000 = 0.00009665932822. ut

7 Further Work

This work investigated whether and how the abstract interpretation technique can be applied
to define and calculate approximate Nash equilibria of supermodular games, thus show-
ing how a notion of approximation of equilibria can be modeled by an ordering relation
analogously to what happens in static program analysis. To our knowledge, this is the first
contribution towards the goal of approximating solutions of supermodular games by relying
on an order-theoretic approach. We see a number of interesting avenues for further work
on this subject. First, our notion of correct approximation of multivalued functions relies
on a naive pointwise lifting of an abstract domain, as specified by a Galois connection,
to Smyth, Hoare, Egli-Milner and Veinott preorder relations on the powerset, which is the
range of best response correspondences in supermodular games. It is worth investigating
whether abstract domains can be lifted through different and more sophisticated ways to
this class of preordered powersets, in particular by taking into account that, for a particular
class of complete lattices (that is, complete Heyting and co-Heyting algebras), the Veinott
ordering gives rise to complete lattices [19]. Secondly, it could be interesting to investigate
some further conditions which can guarantee the correctness of games with abstract strategy
spaces (cf. Theorem 5.7). The goal here would be that of devising a notion of simulation be-
tween supermodular games whose strategy spaces are related by some form of abstraction,
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in order to prove that if Γ′ simulates Γ then the equilibria of Γ are approximated by the equi-
libria of Γ′. Also, while this paper set up the abstraction framework by using very simple
abstract domains, the general task of designing useful and expressive abstract domains, pos-
sibly endowed with widening operators for efficient fixed point computations, for specific
classes of supermodular games is left as an open issue. Finally, it is worth mentioning that
the technique of eliminating the so-called dominated strategies in a normal form game [13,
Chapter 4] appears to have some similarities with the abstract strategy spaces considered in
Section 5. Therefore, it could be worth investigating whether this form of game reduction
can be viewed and studied under the lens of abstract interpretation.
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