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Abstract We derive a Maximum Principle for optimal control problems with

constraints given by the coupling of a system of ordinary differential equations

and a partial differential equation of Vlasov-type with smooth interaction ker-

nel. Such problems arise naturally as Gamma-limits of optimal control prob-
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lems constrained by ordinary differential equations, modeling, for instance,

external interventions on crowd dynamics by means of leaders.

We obtain these first-order optimality conditions in the form of Hamil-

tonian flows in the Wasserstein space of probability measures with forward-

backward boundary conditions with respect to the first and second marginals,

respectively. In particular, we recover the equations and their solutions by

means of a constructive procedure, which can be seen as the mean-field limit

of the Pontryagin Maximum Principle applied to the optimal control problem

for the discretized density, under a suitable scaling of the adjoint variables.

Keywords: Sparse optimal control, mean-field limit, Γ -limit, optimal con-

trol with ODE-PDE constraints, subdifferential calculus, Hamiltonian flows.

AMS Classification: 49J20

1 Introduction

The study of large crowds of interacting agents has received a growing atten-

tion in the mathematical literature of the last decade, with countless appli-

cations in biology, ecology, social sciences, and economics. Starting from the

seminal papers [1–4], emphasis has been put on self-organization, i.e., the for-

mation of macroscopic patterns from the superimposition of simple, reiterated

binary interaction rules. Several examples show that spontaneous convergence

to pattern formation is not always guaranteed, e.g., for highly dispersed initial

configurations in consensus problems [5–8]; hence, the issue of controlling and
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stabilizing these systems arises naturally. Two major subclasses of controls of

multiagent systems have received substantial attention in the literature: de-

centralized controls and centralized ones. With controls of the first kind, the

problem is recast into a game-theoretic framework, where agents optimize their

individual cost and solutions correspond to Nash equilibria. With those of the

second kind, an external policy-maker controlling the dynamics is introduced.

When dealing with large populations, in both cases one faces the well-

known problem of the curse of dimensionality, term first coined by Bellman

precisely in the context of dynamic optimization: the complexity of numerical

computations of the solutions of the above problems blows up as the size of the

population increases. A possible way out is the so-called mean-field approach,

where the individual influence of the entire population on the dynamics of a

single agent is replaced by an averaged one: this results in a unique mean-field

equation and allows one the computation of solutions, cutting loose from the

dimensionality.

In the game-theoretic setting, the mean-field approach has led to the devel-

opment of mean-field games [9,10], which model populations, whose agents are

competing freely with the others towards the maximization of their individual

payoff, as for instance in the financial market. The landmark feature of such

systems is their capability to autonomously stabilize without external inter-

vention. However, in reality, societies exhibit either convergence to undesired

patterns or tendencies toward instability, that only an external government

can successfully dominate. The need of such interventions, together with the
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limited amount of resources that governments have at their disposal, makes

the design of stabilization strategies targeting the least number of agents (nick-

named sparse) a key issue, which has been extensively studied in the context

of dynamics given by systems of ODEs; see [11–15].

Nevertheless, the concept of sparse control has to be handled with care,

when trying to generalize it at the level of a mean-field dynamics. Indeed,

the indistinguishability of agents is a fundamental property of the mean-field

setting, and it is in sharp contrast with controls acting sparsely on specific

agents. Figuratively, trying to stabilize a huge crowds with these controls is

like steering a river by means of toothpicks! A first solution to this ambigu-

ity was given in [16, 17], where the control is defined as a locally Lipschitz

feedback control with respect to the state variables, and sparsity refers to its

property of having a small support. Such concept was successfully used in [18]

to implement sparse stabilizers for a consensus problem. This interpretation of

sparsity appears also in the framework of the control of more classical PDEs;

see [19–22]. An alternative solution for a proper definition of sparse mean-field

control was proposed in [23], where the control is sparsely applied on a finite

number of individuals immersed in the mean-field dynamics of the rest of the

population, resulting in a system, where the controlled ODEs are coupled with

a control-free mean-field PDE (but indirectly controlled via the coupling). This

kind of control was considered in [24] to model the efficient evacuation of a

large crowd of pedestrians with the help of very few informed agents.
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First-order optimality conditions, among which the Pontryagin Maximum

Principle is the most popular, are necessary conditions to be fulfilled by the

optimal controls and they often result in a system of nonlinear equations,

which can, in the case of Pontryagin one, be solved numerically in a rela-

tively simple way. Hence, they constitute very often the most viable method

towards the numerical computation of (mean-field) optimal controls. In the

context of mean-field games and optimal control problems with PDE con-

straints, first-order optimality conditions have received enormous attention;

see for instance [25–28], and they served as a tool for the numerical com-

putation of mean-field controls, see, e.g., [29] and references therein for an

extensive discussion on corresponding numerical methods. To the best of our

knowledge, no corresponding results have appeared so far in the literature for

coupled ODE-PDE systems of the kind considered in [23].

This paper is devoted to the proof of a Pontryagin Maximum Principle to

characterize optima of such control problems. We first remark that we are not

interested in all possible optima, but mainly on those which arise as limits of

optimal strategies of the original discrete problems. We call this subclass of

the set of optima mean-field optimal controls (see Definition 1.2). We remark

that the interest in this class of consistent controls complies with the wish

of using the continuous models (independent of the number N of agents) as

approximations of the finite-dimensional ones, to circumvent the curse of di-

mensionality, possibly determined by a large number N of agents. Differently

from [17, 23] here we do not wish just to derive the existence of mean-field
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controls as natural limits of the finite dimensional optimal controls, but we

want additionally to enforce that such a consistency passes naturally also at

the level of the first order optimality conditions. This reinforced compatibil-

ity provides a tool for the consistent numerical computation of (mean-field)

optimal controls.

We summarize our result, borrowing a leaf from the diagram in [27], as

follows:

Discretized

Optimal Control Problem

m ODEs + N ODEs

Continuous

Optimal Control Problem

m ODEs + PDE

Pontryagin

Maximum Principle

2m ODEs + 2N ODEs

Extended Pontryagin

Maximum Principle

2m ODEs + PDE

N → +∞

optimality conditions

N → +∞

optimality conditions

We shall provide a set of hypotheses for which the dashed line from the upper-

right to the bottom-right box is valid, hence closing the consistency diagram.

Our strategy shall be the following: we apply the Pontryagin Maximum Prin-

ciple (see e.g. [30, Theorem 23.11]) to the finite-dimensional optimal control

problems (the solid line from the upper-left to the bottom-left box), and we

pass to the mean-field limit the system of equations obtained with this pro-

cedure (the solid line from the bottom-left to the bottom-right box). The

derived limit equation for the state and the (rescaled) adjoint variables are

obtained in the form of Hamiltonian flows in the Wasserstein space of proba-
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bility measures, in the sense of [31]. The result will be a first-order condition

valid for all mean-field optimal controls. The existence of such controls is also

proved (see Corollary 2.2), generalizing the results obtained in [23]. Let us

stress again that the extended Pontryagin Maximum Principle constitutes the

set of equations for an efficient numerical solution of the mean-field optimal

control, which can eventually serve as a surrogate control for approximately

solving the finite dimensional optimal control with N agents for N very large.

While in the present paper we focus on the derivation and the consistency of

the extended Pontryagin Maximum Principle, we postpone to follow up work

its efficient numerical solution, as an adaptation of the approaches recently

explored in [29].

More formally, we are interested in deriving optimality conditions for

the solutions of the following optimal control problem subject to coupled ODE-

PDE constraints.

Problem 1.1 For T > 0 fixed, find u∗ ∈ L1([0, T ];U) minimizing the

cost functional

F (u) =

∫ T

0

[L(y(t), µ(t)) + γ(u(t))] dt, (1)

where (y, µ) solve
ẏk(t) = (K ? µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m,

∂tµ(t) = −∇x · [(K ? µ(t) + g(y(t)))µ(t)] ,

(2)

for the given initial datum (y(0), µ(0)) = (y0, µ0) ∈ Rdm × Pc(Rd).
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Here, K : Rd → Rd is an interaction potential, whose role and prop-

erties will be discussed in details in Remarks 1.2 and 1.3. Let us already

stress here that this kernel will not represent necessarily physical interaction

forces (which could show singular behaviors), rather “social” interactions in

multi-agent systems, which we can take the liberty of assuming smooth. This

smoothness assumption is admittedly a technical and modeling compromise to

allow us to consistently derive the extended Pontryagin Maximum Principle,

otherwise not justifiable rigorously anymore. Additionally the cost functional

γ above is assumed to be strictly convex, the finite dimensional set of controls

U is convex and compact, Bk are constant matrices, and Pc(Rd) is the set of

probability measures on Rd with compact support.

Notice that Problem 1.1 generalizes the control problems introduced and

studied in [23]. The existence of mean-field optimal controls for Problem 1.1

can be indeed obtained along the same lines, and will be shortly discussed in

Section 2.

We shall prove the following main result.

Theorem 1.1 Fix an initial datum (y0, µ0) ∈ Rdm×Pc(Rd) and assume that

Hypotheses (H) in Section 1.1 below hold. Then there exists a mean-field opti-

mal control for Problem 1.1. Furthermore, if u∗ is a mean-field optimal control

for Problem 1.1 and (y∗, µ∗) is the corresponding trajectory, then (u∗, y∗, µ∗)

satisfies the following extended Pontryagin Maximum Principle:



Mean-Field Pontryagin Maximum Principle 9

There exists (q∗(·), ν∗(·)) ∈ Lip([0, T ];Rdm × P1(R2d)) such that

– there exists RT > 0, depending only on y0, supp(µ0),m,K, g, fk, Bk,U ,

and T , such that supp(ν∗(·)) ⊆ B(0, RT ) and it satisfies π1#ν
∗(t) =

µ∗(t) for all t ∈ [0, T ];

– it holds 

ẏ∗k = ∇qkHc(y∗, q∗, ν∗, u∗),

q̇∗k = −∇ykHc(y∗, q∗, ν∗, u∗),

∂tν
∗= −∇(x,r) · ((J∇νHc(y∗, q∗, ν∗, u∗))ν∗) ,

u∗ = arg maxu∈U Hc(y∗, q∗, ν∗, u)

(3)

where J ∈ R2d×2d is the symplectic matrix

J =

 0 Id

−Id 0

 ,

the Hamiltonian Hc : R2dm × Pc(R2d)× RD → R is defined as

Hc(y, q, ν, u) =


H(y, q, ν, u) if supp(ν) ⊆ cl(B(0, RT )) ,

+∞ elsewhere;

and H : R2dm × Pc(R2d)× RD → R is defined as

H(y, q, ν, u) =
1

2

∫
R4d

(r − r′) ·K(x− x′) dν(x, r) dν(x′, r′)

+

∫
R2d

r · g(y)(x)dν(x, r) +

m∑
k=1

∫
R2d

qk ·K(yk − x) dν(x, r)

+

m∑
k=1

qk · (fk(y) +Bku)− L(y, π1#ν)− γ(u).

(4)
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– the following conditions for system (3) hold at time 0: y∗(0) = y0 and

ν∗(0)(E × Rd) = µ0(E) for every Borel set E ⊆ Rd,

– the following conditions for system (3) hold at time T : q∗(T ) = 0 and

ν∗(T )(Rd × E) = δ0(E) for every Borel set E ⊆ Rd, where δ0 is the

Dirac measure centered in 0.

As already mentioned, the formulation given above shows that the dynam-

ics of (y∗, q∗, ν∗) is essentially an Hamiltonian flow in the Wasserstein space of

probability measures with respect to state and adjoint variables with Hamilto-

nian H, in the sense of [31]. The definition of Hc is introduced to simplify some

technical details and does not alter the result. This fact is remarkably consis-

tent with the dynamics (2), since both are flows in a Wasserstein space. This

formulation of the optimality conditions making use of the formalism of sub-

differential calculus in Wasserstein spaces of probability measures constitutes

one of the novelties of the work.

Remark 1.1 For every (y, q, ν) with supp(ν) ⊆ cl(B(0, RT )), (4) immediately

implies that

u ∈ arg max
u∈U

Hc(y, q, ν, u) ⇐⇒ u ∈ arg max
u∈U

(
m∑
k=1

qk ·Bku− γ(u)

)
.

Then, the strict convexity of γ and the convexity and the compactness of U

imply that u is uniquely determined by (y, q, ν). This is the reason why we

write the equality symbol in u∗ = arg maxu∈U Hc(y∗, q∗, ν∗, u) in place of an

inclusion.
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We point out the difference between the usual gradient in R2d with respect

to the state variables x and the adjoint variables r, denoted by ∇(x,r), and the

Wasserstein gradient ∇ν of Hc. In order to do that, we introduce the functions

` ∈ C2(Rdm × Rd × Rd;R) and ω ∈ C2(Rd;Rd), related to the functional L in

(1) via

L(y, µ) =

∫
Rd
`
(
y, x,

∫
ωµ
)
dµ(x),

where
∫
ωµ := ωµ(Rd). Denoting with ∇ξ` and ∇ς` the partial derivatives of

the function `(η, ξ, ς), and with Dω(x) the Jacobian of the function ω evaluated

at x we will show in Section 3 that, whenever ν has supported contained in

B(0, RT ), ∇νHc can be computed explicitly as follows:

– For l = 1, . . . , d, it holds

∇νHc(y, q, ν, u)(x, r) · el =

∫
R2d

(r − r′) · (DK(x− x′)el) dν(x′, r′)

+ r · (Dxg(y)(x)el)−
m∑
k=1

qk · (DK(yk − x)el)

−∇ξ`(y, x,
∫
ωµ) · el

−
(∫

Rd
∇ς`(y, x′,

∫
ωµ) dµ(x′)

)
· (Dω(x)el).

(5)

These are the components of ∇νHc(y, q, ν, u)(x, r) in the xl coordinates.

– For l = d+ 1, . . . , 2d it holds

∇νHc(y, q, ν, u)(x, r) · el =

∫
R2d

K(x− x′) · el−d dν(x′, r′) + g(y)(x) · el−d.(6)

These are the components of ∇νHc(y, q, ν, u)(x, r) in the rl−d coordinates.
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Notice that ∇νH(y, q, ν, u) actually does not depend on u, as a consequence of

the fact that the control does not act directly on the PDE component of (2).

The main tool we use to prove Theorem 1.1 is the Pontryagin Maximum

Principle (henceforth, simply addressed as PMP) for optimal control problems

with ODE constraint. We shall apply it to the following finite-dimensional

problems, whose constraints converge to the coupled ODE-PDE system of

Problem 1.1, as we will show in Section 2. For this reason, we call Theorem

1.1 the extended PMP.

Problem 1.2 For T > 0 fixed, find u∗ ∈ L1([0, T ];U) minimizing the

cost functional

FN (u) =

∫ T

0

[L(y(t), µN (t)) + γ(u(t))] dt, (7)

where (y, µN ) solve
ẏk = 1

N

∑N
j=1K(yk − xj) + fk(y) +Bku, k = 1, . . . ,m

ẋi = 1
N

∑N
j=1K(xi − xj) + g(y)(xi), i = 1, . . . , N,

(8)

for the given initial datum (y(0), x(0)) = (y0, x0) ∈ Rdm × RdN , where

µN (t)(x) =
1

N

N∑
i=1

δ(x− xi(t)),

is the empirical measure centered on the trajectory x(·) =

(x1(·), . . . , xN (·)).
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The extended PMP will be derived after reformulating the finite-dimensional

PMP applied to Problem 1.2 in terms of the empirical measure in the product

space of state variables xi and adjoint variables pi, defined as

νN (x, r) =
1

N

N∑
i=1

δ(x− xi, r −Npi).

Notice that rescaling the adjoint variables pi by the number N of agents is

needed in order to observe a nontrivial dynamics in the limit; indeed, within

this scaling, the right-hand side of the finite-dimensional PMP is brought back

to the form considered, for instance, in [32], with a different Hamiltonian.

The structure of the paper is the following. In Section 1.1 we recall the basic

notations and introduce the main Hypotheses (H). In Section 2, we study the

controlled dynamics subject to a coupled ODE-PDE constraint of the form

(2), establishing existence and uniqueness results for solutions. In Section 3,

we recall basic facts about subdifferential calculus in Wasserstein spaces, and

we explicitly compute ∇νHc. In Section 4 we study the finite-dimensional

Problem 1.2, and apply the PMP to it. In Section 5, we prove the extended

PMP, i.e., Theorem 1.1.

1.1 Notation and Hypotheses (H)

We start this section by recalling the notation used throughout the paper.

The constants d,D are two positive integers (the dimension of the space

of the agents and of the control, respectively), T > 0 (the end time of the
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optimization procedure), and U is a convex compact subset of RD (set in which

controls take values).

Elements of Rn are always represented as row vectors. Functionals have

the following expressions: K : Rd → Rd, each fk satisfies fk : Rdm → Rd, and

for every y ∈ Rdm and µ ∈ P1(Rd), g(y) : Rd → Rd and L(y, µ) : Rd → R.

The matrices Bk are constant d×D matrices.

The space P(Rn) is the set of probability measures, which take values on

Rn, while the space1 Pp(Rn) is the subset of P(Rn) whose elements have finite

p-th moment, i.e., ∫
Rn
‖x‖pdµ(x) < +∞.

We denote by Pc(Rn) the subset of P1(Rn) which consists of all probabil-

ity measures with compact support. Notice that, if (µn)n∈N is a sequence in

Pc(Rn) and it exists R > 0 such that supp(µn) ⊆ B(0, R) for all n ∈ N, then

(µn)n∈N is compact in Pp(Rn) for all p ≥ 1.

For any µ ∈ P(Rn) and any Borel function r : Rn1 → Rn2 , we denote by

r#µ ∈ P(Rn2) the push-forward of µ through r, defined by

r#µ(B) := µ(r−1(B)) for every Borel set B of Rn2 .

In particular, if one considers the projection operators π1 and π2 defined on the

product space Rn1×Rn2 , for every ρ ∈ P(Rn1×Rn2) we call first (resp., second)

marginal of ρ the probability measure π1#ρ (resp., π2#ρ). Given µ ∈ P(Rn1)

and ν ∈ P(Rn2), we denote with Π(µ, ν) the subset of all probability measures

in P(Rn1 × Rn2) with first marginal µ and second marginal ν.

1 We follow the notation of [33].
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On the set Pp(Rn) we shall consider the following distance, called the

Wasserstein or Monge-Kantorovich-Rubinstein distance,

Wp
p (µ, ν) = inf

{∫
R2n

‖x− y‖pdρ(x, y) : ρ ∈ Π(µ, ν)

}
. (9)

If p = 1 we have the following equivalent expression for the Wasserstein dis-

tance:

W1(µ, ν) = sup

{∫
Rn
ϕ(x)d(µ− ν)(x) : ϕ ∈ Lip(Rn), Lip(ϕ) ≤ 1

}
.

We denote by Πo(µ, ν) the set of optimal plans for which the minimum is

attained, i.e.,

ρ ∈ Πo(µ, ν) ⇐⇒ ρ ∈ Π(µ, ν) and

∫
R2n

‖x− y‖pdρ(x, y) =Wp
p (µ, ν).

It is well-known that Πo(µ, ν) is non-empty for every (µ, ν) ∈ Pp(Rn)×Pp(Rn)

(see [34]), hence the infimum in (9) is actually a minimum. The following

definition is motivated by Definition 10.3.1 and Remark 10.3.3 in [33].

Definition 1.1 Let ψ : P2(R2d) →] −∞,+∞] be a proper and lower semi-

continuous functional, and let ν0 ∈ D(ψ). We say that w ∈ L2
ν0(R2d) belongs

to the (Fréchet) subdifferential of ψ at ν0, in symbols w ∈ ∂ψ(ν0) if and only

if for any ν1 ∈ P2(R2d) it holds

ψ(ν1)− ψ(ν0) ≥ inf
ρ∈Πo(ν0,ν1)

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) + o(W2(ν1, ν0)).

It can be seen [31] that, whenever ∂ψ(ν0) is nonempty, it has an element with

minimal L2
ν0(R2d)-norm, which we call the Wasserstein gradient ∇νψ(ν0) of

ψ at ν0.
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For any µ ∈ P1(Rd) and K : Rd → Rd, the notation K ? µ stands for the

convolution of K and µ, i.e.,

(K ? µ)(x) =

∫
Rd
K(x− x′)dµ(x′);

this quantity is well-defined whenever K is continuous and sublinear, i.e., there

exists C such that ‖K(ξ)‖ ≤ C(1 + ‖ξ‖) for all ξ ∈ Rd. Furthermore we shall

deal also with the convolution (∇(x′,r′)〈r′,K(x′)〉) ? ν in R2d, whose explicit

expression is

(
(∇(x′,r′)〈r′,K(x′)〉) ? ν

)
(x, r) =

∫
R2d

(
∇(x′,r′)〈r − r′,K(x− x′)〉

)
dν(x′, r′).

Notice that, under the hypotheses we are going to make, this convolution is not

always well-defined for ν ∈ P1(R2d). It is nonetheless well-defined for measures

ν ∈ Pc(R2d), that is to say for all the cases that will appear in the sequel.

We shall denote with Mb(Rn1 ;Rn2) the space of bounded Radon vector

measures from Rn1 to Rn2 , and with ‖ · ‖Mb(Rn1 ;Rn2 ) the total variation norm

on it. If ω ∈ C(Rd;Rd) is sublinear and µ ∈ P1(Rd), the Radon measure

ωµ ∈Mb(Rd;Rd) is defined as

ωµ(E) :=

∫
E

ω(x)dµ(x), for every E ⊂ Rd bounded.

We shall denote by
∫
ωµ := ωµ(Rd).

In what follows, we shall consider the space X := Rdm ×P1(Rd), together

with the following distance

‖(y, µ)− (y′, µ′)‖X := ‖y − y′‖+W1(µ, µ′), (10)

where ‖y − y′‖ :=
∑m
k=1 ‖yk − y′k‖`2(Rd).
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Henceforth, we assume that the following regularity properties hold.

Hypotheses (H)

(K) The function K ∈ C2(Rd;Rd) is odd and sublinear, i.e., there exists

CK > 0 such that for all x ∈ Rd it holds

‖K(x)‖ < CK(1 + ‖x‖).

(L) The function L : Rdm × P1(Rd)→ R is

L(y, µ) =

∫
Rd
`
(
y, x,

∫
ωµ
)
dµ(x),

with ` ∈ C2(Rdm × Rd × Rd;R) and ω ∈ C2(Rd;Rd).

(G) The function g ∈ C2(Rdm; C2(Rd;Rd)) satisfies for all x ∈ Rd and all

y ∈ Rdm

g(y)(x) · x ≤ G1‖x‖2 +G2 max
l=1,...,m

‖yl‖2 +G3,

where the constants G1, G2 and G3 are independent on x and y.

(F) For each k = 1, . . . ,m, the function fk ∈ C2(Rdm;Rd) satisfies for all

y ∈ Rdm

fk(y) · yk ≤ F1 max
l=1,...,m

‖yl‖2 + F2,

where the constants F1 and F2 are independent on y and k.

(U) The set U ⊆ RD is compact and convex.

(γ) The function γ : U → R is strictly convex.
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The following remark discusses some examples in literature falling into the

above framework.

Remark 1.2 The set of hypotheses (H) allows to consider interaction kernels

K appearing in several well-established multiagent dynamical models. In par-

ticular the interaction kernel appearing in the Cucker-Smale model [6] which

is given by

K(x) :=

 0

−φ(‖x‖)v

 ,

for x = (x, v)T ∈ R6 and φ(λ) = κ
(σ2+λ2)β

, for some fixed parameters κ, σ > 0

and β ≥ 0, satisfies the hypothesis (K).

The above kernel is a possible choice for the model considered in [23] in

combination with the leader-follower interactions given by

fk(y) :=

 wk

1
m

∑m
j=1 φ(‖yk − yj‖)(wj − wk)



g(y)(x) :=

 v

1
m

∑m
j=1 φ(‖x− yj‖)(wj − v)

 ,

where y = (y1, w1, . . . , ym, wm) describes the population of leaders. It can be

seen that such fk and g satisfy the hypotheses (F) and (G), respectively.

Another example comes from considering a mollified version of the Hegsel-

mann-Krause [35] interaction kernel, i.e., φ(x) = (χ[0,R] ? ρε)(x) for some

confidence radius R > 0 and choosing

K(x) := −φ(‖x‖)x for x ∈ R.
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Coming back to a second-order system with space-velocity variables, hy-

pothesis (G) remains satisfied also by adding to g(y)(x) the self-propulsion/fri-

ction term

S(x) := (α− β‖v‖2)v.

where α and β are nonnegative parameters. This term, introduced in [36],

balances the self-propulsion of individuals given by αv and the Rayleigh-type

friction −β‖v‖2v, prescribing the speed of each agent ‖v‖ to approach the

asymptotic value
√
α/β (if other effects are ignored), which can be seen as a

characteristic limit speed for the dynamics. S is commonly encountered in the

modeling of bacteria and groups of animals, see for instance [7, 37].

Regarding the cost functional, various examples can be considered depend-

ing on the behavior one wants to induce on the population of followers. For

instance, a standard problem in the study of the Cucker-Smale model is to find

conditions to ensure flocking, i.e., alignment of the whole crowd towards the

same velocity. A possible choice, fully complying with our set of hypotheses is

the minimization of the variance2 of the crowd, by choosing

L1(y, µ) :=

∫
R6

(
2

m

m∑
k=1

‖wk‖2 + 2‖v‖2
)
dµ(x, v)−

∥∥∥∥∥ 1

m

m∑
k=1

wk +

∫
v dµ(x, v)

∥∥∥∥∥
2

=

∫
R6

(
2

m

m∑
k=1

‖wk‖2 + 2‖v‖2−

−

(
1

m

m∑
k=1

wk +

∫
v′ dµ(x′, v′)

)
·

(
1

m

m∑
k=1

wk + v

))
dµ(x, v),

2 For simplicity of computation, we consider minimization of 4 times the variance.
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that is of the form L =
∫
R6 `(y,x,

∫
ωµ) dµ(x) by choosing ω(x) = v and

`(y,x, ς) :=
2

m

m∑
k=1

‖wk‖2 + 2‖v‖2 −

(
1

m

m∑
k=1

wk + ς

)
·

(
1

m

m∑
k=1

wk + v

)
.

For the control constraints, we assume U := [−1, 1]3m and we choose to penal-

ize the L2-norm of the control, hence γ(u) := ‖u‖2. Other forms for the cost

L can be of interest. For example, one may want to drive the crowd to a given

fixed velocity v̄, and correspondingly minimize

L2(y, µ) :=

∫
R6

(
1

2m

m∑
k=1

‖wk − v̄‖2 +
1

2
‖v − v̄‖2

)
dµ(x, v),

that is again of the form
∫
R6 `(y,x,

∫
ωµ) dµ(x), with ` not depending on

its third variable, this time. Lastly, we mention the following cost functional

considered in [38] in connection with the control of the Hegselmann-Krause

model: for any fixed x̄ ∈ R, consider

L3(y, µ) :=
1

2
‖y1(T )− x̄‖2 +

1

2

∫ T

0

∫
R2

‖x− z‖2dµ(t, x)dµ(t, z)dt

+
1

2

∫ T

0

∫
R
‖x− y1(t)‖2dµ(t, x)dt+

1

2

∫ T

0

‖u(t)‖2dt.

Remark 1.3 In all the mentioned examples, the interaction potential K is

smooth. In such a context, both a mean-field theory relating the particle model

and its continuum limit and suitable quantitative estimates for convergence are

well-established since the paper [39]. In the present paper, similar estimates,

adapted to our situation, will be obtained in Lemmata 2.3 and 4.2. While such

estimates basically only require Lipschitz continuity of the potential K, we are

however forced to require a C2-regularity for a twofold reason. First of all, at

least continuous differentiability of K (and, as a consequence, of the finite
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dimensional Hamiltonian HN defined in (29) ) is needed to give a meaning

to the PMP (28) in the sense of Peano’s existence Theorem. Requirements

of boundedness and continuity of the gradient are needed in the general con-

text of existence theory for Hamiltonian flows, although some very technical

weakening of the hypotheses can be allowed (see [31, Assumptions (H1’) and

(H2’)]). Furthermore, an important requirement to be met is the so-called λ-

convexity, or semiconvexity of the Hamiltonian in the sense of Definition A.1.

In the theory of Hamiltonian flows, this is a key assumption, since it guaran-

tees that the Hamiltonian stays constant along trajectories (see [31, Theorem

5.2]). In our paper, the semiconvexity assumption allows for the computation

of the Wasserstein gradient of the functional Hc in Theorem 3.1, along the

lines of the general theory in [33, Chapter 10]. Due to the complicated form

of Hc in (4), it is not possible to enforce this requirement, unless additional

smoothness of the involved terms is considered. This motivates our choice of

dealing with a C2 interaction kernel K.

It is clear from the above discussion that the case of a singular interaction

kernel, which arises for important problems in mathematical physics, when

dealing for instance with Newton- or Coulomb-type interactions, cannot fall

into the scope of this paper. On the other hand even a complete existence

theory for these kind of problems has not been achieved so far (see [40, Chapter

1.4] for a general discussion), although relevant results in this framework have

appeared in recent years starting from the seminal papers [41,42].
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Remark 1.4 We briefly compare Hypotheses (H) with those of [25,26]. In [25],

which deals with an SDE-constrained optimal control problem, C1,1 function-

als with respect to state variables and the control are considered. Therefore

our hypotheses are just slightly more restrictive. On the other hand, we do not

require differentiability of the running cost. The authors of [26] deal, instead,

with a mean-field game type optimality conditions to model evacuation sce-

narios. They derive a first-order condition under the hypotheses of continuous

differentiability of the functionals with respect to the state variables together

with convexity and positivity assumptions. Furthermore, they deal specifically

with an L2 control cost, while we allow ours to be strictly convex.

We now give the rigorous definition of mean-field optimal control.

Definition 1.2 Let (y0, µ0) ∈ Rdm×Pc(Rd) be given. An optimal control u∗

for Problem 1.1 with initial datum (y0, µ0) is a mean-field optimal control if

there exists a sequence (u∗N )N∈N ⊂ L1([0, T ];U) and a sequence (µ0
N )N∈N ∈

Pc(Rd) such that

(i) for every N ∈ N, µ0
N (·) := 1

N

∑N
i=1(· − x0i,N ) is a sequence of empirical

measures for some x0i,N ∈ supp(µ0) + B(0, 1) such that µ0
N ⇀ µ0 weakly∗

in the sense of measures;

(ii) for every N ∈ N, u∗N is a solution of Problem 1.2 with initial datum

(y0, µ0
N );

(iii) there exists a subsequence of (u∗N )N∈N converging weakly in L1([0, T ];U)

to u∗.
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Remark 1.5 As mentioned before, the above definition is motivated by our

interest in optimizers that are close to optimal controls for the original finite-

dimensional problems. Notice also that, since the measures µ0
N have all com-

pact support contained in supp(µ0)+cl(B(0, 1)), they form a compact sequence

in Pp(Rn) for all p ≥ 1, and therefore, due to weak∗ convergence to µ0, we

also have that limN→∞Wp(µ
0
N , µ

0) = 0.

2 The Coupled ODE-PDE Dynamics

In this section, we first recall results for PDE equations of transport type with

nonlocal interaction velocities, like the one appearing in the second equation of

(2). We then study the coupled ODE-PDE dynamics (2) and we state existence

and uniqueness results of solutions, together with continuous dependence on

the initial data (y0, µ0) and on the control u. The proofs follow closely in the

footsteps of similar results in [23,31,43,44], to which we will refer anytime no

substantial modifications of the argument is needed.

We start by defining the meaning of solution for the equation

∂tµ(t) = −∇x · (v(t, x, µ(t))µ(t)), (11)

where v : [0, T ] × Rn × P1(Rn) → Rn is a given vector field and n ∈ N is the

dimension of the underlying Euclidean space.

Definition 2.1 We say that a map µ : [0, T ] → P1(Rn) is a solution of (11)

if the following holds:
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(i) µ has uniformly compact support, i.e., there exists R > 0 such that it holds

supp(µ(·)) ∈ B(0, R);

(ii) µ is continuous with respect to the Wasserstein distance W1;

(iii) µ satisfies (11) in the weak sense, i.e. (see [33, Equation (8.1.4)]),

d

dt

∫
Rn
φ(x) dµ(t)(x) =

∫
Rn
∇φ(x) · v(t, x, µ(t)) dµ(t)(x),

for every φ ∈ C∞c (Rn;R).

Now, we can formally define the concept of solution of the controlled ODE-

PDE system (2), which applies, mutatis mutandis, to system (3) as well.

Definition 2.2 Let u ∈ L1([0, T ];U) and (y0, µ0) ∈ X , with µ0 of bounded

support, be given. We say that a map (y, µ) : [0, T ] → X is a solution of the

system (2) with control u if

(i) (y(0), µ(0)) = (y0, µ0);

(ii) the solution is continuous in time with respect to the metric (10) in X ;

(iii) the y coordinates define a Carathéodory solution of the following controlled

ODE problem

ẏk(t) = (K ? µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m,

for all t ∈ [0, T ];

(iv) µ is a solution of (11), where v : [0, T ] × Rd × P1(Rd) → Rd is the time-

varying vector field defined as follows

v(t, x, µ(t))(x) := (K ? µ(t) + g(y(t)))(x).
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We now derive the existence of solutions of (2) as limits for N →∞ of the

system of ODE (8). We first prove that solutions of (8) coincide with specific

solutions of (2). We then prove the limit result with the help of Lemmas 2.1

and 2.2.

Proposition 2.1 Let N be fixed, and the control u ∈ L1([0, T ];U) be given.

Let (y, xN ) : [0, T ]→ X be the corresponding solution of (8), with

xN (t) = (x1,N (t), . . . , xN,N (t)).

Then, the couple (y, µN ) : [0, T ] → Rdm+dN , with µN (t) being the empirical

measure

µN (t)(x) :=
1

N

N∑
i=1

(x− xi,N (t)),

is a solution of (2) with control u.

Proof It can be easily proved by rewriting (2) with µN and arguing exactly as

in [17, Lemma 4.3].

Lemma 2.1 Let K : Rd → Rd satisfy (K) and µ ∈ P1(Rd). Then it holds

K ∗ µ ∈ Liploc(Rd). Furthermore, for all y ∈ Rd it holds

‖(K ? µ)(y)‖ ≤ CK
(

1 + ‖y‖+

∫
Rd
‖x‖dµ(x)

)
.

Proof See, for instance, [17, Lemma 6.4].

Lemma 2.2 Let K : Rd → Rd satisfy (K) and let µ1 : [0, T ] → Pc(Rd) and

µ2 : [0, T ]→ P1(Rd) be two continuous maps with respect to W1 satisfying

supp(µ1(t)) ∪ supp(µ2(t)) ⊆ B(0, R),
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for every t ∈ [0, T ], for some R > 0. Then for every ρ > 0 there exists constant

Lρ,R such that

‖K ? µ1(t)−K ? µ2(t)‖L∞(B(0,ρ)) ≤ Lρ,RW1(µ1(t), µ2(t))

for every t ∈ [0, T ].

Proof A proof of this result may be found, for instance, in [17, Lemma 6.7].

Proposition 2.2 Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and µ0
N be as in Definition 1.2–

(i). Let (uN )N∈N ⊆ L1([0, T ];U) be a sequence of controls such that uN ⇀ u,

for some u ∈ L1([0, T ];U).

Then, the sequence of solutions (yN , µN ) ∈ Lip([0, T ];X ) of (8) with initial

data (y0, µ0
N ) and control uN converges to a solution (y, µ) ∈ Lip([0, T ];X ) of

(2) with initial data (y0, µ0) and control u. Moreover, there exists a constant

ρT > 0, depending only on y0, supp(µ0),K, g, fk, Bk,U , and T , such that for

every N ∈ N, for every k = 1, . . . ,m and for every t ∈ [0, T ] it holds

‖yk,N (t)‖, ‖yk(t)‖ ≤ ρT and supp(µN (t)), supp(µ(t)) ⊆ B(0, ρT ).

Proof We start by fixing N > 0 and estimating the growth of the function

‖yk,N (t)‖2 + ‖xi,N (t)‖2 for k = 1, . . . ,m and i = 1, . . . N . Denote by

Σ = {(l, j) : l = 1, . . . ,m and j = 1, . . . N}.

From Hypotheses (H), Lemma 2.1 and the compactness of U , it holds

1

2

d

dt

(
‖yk,N‖2 + ‖xi,N‖2

)
= ẏk,N · yk,N + ẋi,N · xi,N

= ((K ? µN )(yk,N ) + fk(y) +Bku) · yk,N + ((K ? µN )(xi) + g(y)(xi,N )) · xi,N
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≤ ‖(K ? µN )(yk,N )‖ ‖yk,N‖+ fk(yN ) · yk,N + ‖Bku‖‖yk,N‖

+ ‖(K ? µN )(xi,N )‖‖xi,N‖+ g(yN )(xi,N ) · xi,N

≤ CK

1 + ‖yk,N‖+
1

N

N∑
j=1

‖xj,N‖

 ‖yk,N‖+ F1 max
l=1,...m

‖yl,N‖2 + F2

+M1‖yk,N‖+ CK

1 + ‖xi,N‖+
1

N

N∑
j=1

‖xj,N‖

 ‖xi,N‖+G1‖xi,N‖2

+G2 max
l=1,...m

‖yl,N‖2 +G3

≤ C1 max
(`,j)∈Σ

{
‖y`,N‖2 + ‖xj,N‖2

}
+ C2,

with C1 = 4CK + F1 +G2 +M1 and C2 = CK + F2 +G3 +M1. If we denote

with b(k,i)(t) = ‖yk,N (t)‖2 + ‖xi,N (t)‖2 and with a(t) = max(l,j)∈Σ{b(l,j)(t)},

then the Lipschitz continuity of a implies that a is a.e. differentiable, while by

Stampacchia’s Lemma (see for instance [45, Chapter 2, Lemma A.4]) for a.e.

t ∈ [0, T ] there exists a (l, j) ∈ Σ such that

ȧ(t) =
d

dt

(
‖yl,N (t)‖2 + ‖xj,N (t)‖2

)
≤ 2C1a(t) + 2C2.

Hence, Gronwall’s Lemma and Definition 1.2–(i) imply that

a(t) ≤ (a(0) + 2C2t)e
2C1t ≤ (C0 + 2C2t)e

2C1t, (12)

for some uniform constant C0 only depending on y0 and supp(µ0). It then

follows that the trajectories (yN (·), µN (·)) are bounded uniformly in N in a

ball B(0, ρT ) ⊂ Rd, for

ρT :=
√
C0 + 2C2Te

C1T ,
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that is positive and does not depend on t or on N . This in turn implies that

the trajectories (yN (·), µN (·)) are uniformly Lipschitz continuous in N , as can

be easily verified by computing ‖ẏk,N‖ and ‖ẋi,N‖ and noticing that all the

functions involved are bounded by Hypotheses (H) and the fact that we are

inside B(0, ρT ). Therefore

‖ẏk,N (t)‖ ≤ ρ′T , ‖ẋi,N (t)‖ ≤ ρ′T , (13)

where the constant ρ′T does not depend on t or on N .

By an application of the Ascoli-Arzelà theorem for functions on [0, T ] and

values in the complete metric space X , there exists a subsequence, again de-

noted by (yN (·), µN (·)) converging uniformly to a limit (y(·), µ(·)), whose tra-

jectories are also contained in B(0, ρT ). Due to the equi-Lipschitz continuity of

(yN (·), µN (·)) and the continuity of the Wasserstein distance, we thus obtain

for some LT > 0

‖(y(t2), µ(t2))− (y(t1), µ(t2))‖X (14)

= lim
N→+∞

‖(yN (t2), µN (t2))− (yN (t1), µN (t1))‖X ≤ LT |t2 − t1|,

for all t1, t2 ∈ [0, T ]. Hence, the limit trajectory (y∗(·), µ∗(·)) belongs as well

to Lip([0, T ];X ).

The same proof as in [23, Theorem 3.3] shows now that (y(·), µ(·)) is a

solution of (2).

Corollary 2.1 Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and u ∈ L1([0, T ];U). Then,

there exists a solution of (2) with control u and initial datum (y0, µ0).
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Proof Follows from Proposition 2.2 by taking any sequence of empirical mea-

sures µ0
N as in Definition 1.2–(i), and the constant sequence uN ≡ u for all

N ∈ N. ut

We now prove the continuous dependence on the initial data, that also

gives uniqueness of the solution for (2).

Proposition 2.3 Let the Hypotheses (H) hold. Let u ∈ L1([0, T ],U) be given,

and take two solutions (y1, µ1) and (y2, µ2) of (2) with control u and with

initial data (y0,1, µ0,1), (y0,2, µ0,2) ∈ X , respectively, where µ0,1 and µ0,2 have

both compact support. Then there exists a constant CT > 0 such that for all

t ∈ [0, T ] it holds

‖(y1(t), µ1(t))− (y2(t), µ2(t))‖X ≤ CT ‖(y0,1, µ0,1)− (y0,2, µ0,2)‖X .

Proof We start by noticing that, by the definition of a solution, we infer

the existence of a ρT > 0 for which y1(·), y2(·) ∈ B(0, ρT ) ⊂ Rdm and

supp(µ1(·)), supp(µ2(·)) ⊆ B(0, ρT ) ⊂ Rd.

As a preliminary estimate, by hypothesis (K), Lemma 2.1 and Lemma 2.2

with the choice ρ = R̂ = ρT , we infer the existence of a constant LKρT > 0 such

that

‖(K ∗ µ1)(x)− (K ∗ µ2)(y)‖ ≤ LKρT (W1(µ1, µ2) + ‖x− y‖) . (15)

holds for every x, y ∈ Rd. Furthermore, if for the sake of brevity we denote by

G := sup
ξ∈B(0,ρT )⊂Rd,ς∈B(0,ρT )⊂Rdm

‖Dyg(ς)(ξ)‖ and F := max
1≤k≤m

LipB(0,ρT )(fk).
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then the C2-regularity of g and fk for every k = 1, . . . ,m imply for every

y1, y2 ∈ B(0, ρT )

‖g(y1)− g(y2)‖L∞(B(0,ρT )) ≤ G‖y1 − y2‖ and ‖fk(y1)− fk(y2)‖ ≤ F‖y1 − y2‖.

(16)

We shall show the continuous dependence estimate by chaining the stability

of the ODE

ẏk(t) = (K ? µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m, (17)

with the one of the PDE

∂tµ(t) = −∇x · [(K ? µ(t) + g(y(t)))µ(t)] , (18)

first addressing the dependence of (17). By integration we have

‖y1k(t)− y2k(t)‖ ≤ ‖y0,1k − y
0,2
k ‖

+

∫ t

0

(
‖(K ? µ1(s))(y1k(s))− (K ? µ2(s))(y2k(s))‖+ ‖fk(y1(s))− fk(y2(s))‖

)
ds.

(19)

For the left-hand side of (19) we have that (15), (16), and the uniform bound

on y1(·) and y2(·) yield

‖y1,k(t)− y2,k(t)‖ ≤ ‖y01,k − y02,k‖+

∫ t

0

(
LKρTW1(µ1(s), µ2(s))+

+ LKρT ‖y1,k(s)− y2,k(s))‖+ F‖y1(s)− y2(s)‖
)
ds (20)

We now consider (18). Arguing as in the derivation of [23, Formula (3.14)],

together with the estimate (16), we get

W1(µ1(t), µ2(t)) ≤ eC1tW1(µ0,1, µ0,2)
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+

∫ t

0

C2e
C1s
(
LKρTW1(µ1(s), µ2(s)) +G‖y1(s)− y2(s)‖

)
ds,(21)

for some Gronwall’s constants C1, C2 > 0. We finally consider the function

ε(t) := ‖(y1(t), µ1(t))− (y2(t), µ2(t))‖X

and, combining (20) for each k = 1, . . . ,m and (21), we obtain

ε(t) ≤‖y0,1 − y0,2‖+

∫ t

0

(
mLKρTW1(µ1(s), µ2(s)) + LKρT ‖y

1(s)− y2(s))‖

+mF‖y1(s)− y2(s)‖

)
ds+ eC1tW1(µ0,1, µ0,2)

+

∫ t

0

C2e
C1s
(
LKρTW1(µ1(s), µ2(s)) +G‖y1(s)− y2(s)‖

)
ds

≤ ε(0)eC1t +

∫ t

0

(mLKρT +mF + (LKρT +G)C2e
C1s)ε(s) ds.

Gronwall’s lemma then implies

ε(t) ≤ ε(0)eC1t

(
(mLKρT +mF )t+

(LKρT +G)C2

C1
(eC1t − 1)

)
.

Since t ∈ [0, T ], the result is proved. ut

Remark 2.1 Going back to the application of the Ascoli-Arzelá Theorem in

Proposition 2.2, consider another converging subsequence of (yN , µN ). We can

prove that its limit is another solution of (8). Since the solution is unique for

Proposition 2.3, we have that all converging subsequences of (yN , µN ) have

the same limit, hence the sequence (yN , µN ) has itself limit (y, µ).

Remark 2.2 Since equicompactly supported solutions are unique, given the

initial datum, by Proposition 2.3, combined with Proposition 2.2 we infer

that the support of the unique solution can be estimated as a function of the
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data. More precisely, it is contained in a ball B(0, ρT ), where the constant is

depending only on y0, supp(µ0), K, g, fk, Bk, U , and T .

We conclude this section by stating the existence result on mean-field opti-

mal controls for Problem 1. To this end, we fix an initial datum (y0, µ0) ∈ X ,

with µ0 compactly supported, and choose a sequence µ0
N as in Definition 1.2–

(i).

Consider the functional F (u) on L1([0, T ];U) defined in (1), where the

pair (y, µ) defines the unique solution of (2) with initial datum (y0, µ0) and

control u. Similarly, consider the functional FN (u) on L1([0, T ];U) defined in

(7), where the pair (yN , µN ) defines the unique solution of (2) with initial

datum (y0, µ0
N ) and control u. As recalled in Proposition 2.2, such solution

coincides with the solution of the ODE system (8).

The existence is a consequence of the Γ -convergence of the sequence of

functionals (FN )N∈N on L1([0, T ];U) to the target functional F . For the defi-

nition of Γ -convergence, we refer the reader to [46, Definition 4.1, Proposition

8.1].

Theorem 2.1 Let the functionals (1)-(7) and dynamics (2) satisfy Hypothe-

ses (H). Consider an initial datum (y0, µ0) ∈ Rdm × P1(Rd), and a sequence

(µ0
N )N∈N, where µ0

N is as in Definition 1.2–(i). Then the sequence of function-

als (FN )N∈N on X = L1([0, T ];U) defined in (7) Γ -converges to the functional

F defined in (1).
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Proof The proof is the same as [23, Theorem 5.3], provided one uses Ioffe’s

Theorem (see, for instance, [47, Theorem 5.8]) to derive

lim inf
N→+∞

∫ T

0

γ(uN (t))dt ≥
∫ T

0

γ(u∗(t))dt,

and conclude that the Γ−lim inf condition also holds in presence of the control

cost γ. ut

With the same argument as in [23, Corollary 5.4], we get the existence of

mean-field optimal controls for Problem 1.1 as an immediate corollary.

Corollary 2.2 Let the Hypotheses (H) in Section 1.1 hold. For every initial

datum (y0, µ0) ∈ Rdm × Pc(Rd), there exists a mean-field optimal control u∗

for Problem 1.1.

Remark 2.3 Observe that the previous result does not state uniqueness of the

optimal control for the infinite dimensional problem. Indeed, in general, we

cannot ensure that all solutions of Problem 1.1 are mean-field optimal controls.

3 The Wasserstein Gradient

We anticipated in Section 1 that the dynamics of ν∗ in (3) is an Hamiltonian

flow in the Wasserstein space of probability measures, in the sense of [31].

This means that the vector field ∇νHc(ν∗) is an element with minimal norm

in the Fréchet subdifferential at the point ν∗ of the maximized Hamiltonian

Hc introduced in the statement of Theorem 1.1 (we drop for simplicity the y, q

and u dependency). The proof of this fact shall follow the strategy adopted to
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obtain analogous results in [33, Chapter 10], which however cannot be applied

verbatim to our case due to the peculiar nature of our operators. For the

ease of reading, a technical fact (namely, the proof that the functional Hc is

semiconvex along geodesics) is deferred to the Appendix 6.

In order to use those techniques, we consider our functionals defined on

P2(R2d) instead than on P1(R2d). Since we shall prove in Proposition 4.2 that,

whenever we start from a compactly supported initial datum, the dynamics

remains compactly supported uniformly in time, this assumption does not alter

our conclusions.

In what follows, we shall fix y, q ∈ Rdm and u ∈ L1([0, T ];U) and we

write, for the sake of compactness, Hc(ν) in place of Hc(y, q, ν, u). Moreover

we denote by z = (x, r) a variable in R2d.

Whenever supp(ν) ⊆ cl(B(0, RT )), Hc(ν) can be rewritten as

Hc(ν) =
1

2

∫
R4d

F(z − z′)dν(z)ν(z′) +

∫
R2d

G(z)dν(z)−
∫
R2d

ˆ̀(z,
∫
ω̂ν)dν(z) +Q,

where have we set

F(x, r) = r ·K(x), G(x, r) = r · g(y)(x) +

m∑
k=1

qk ·K(yk − x),

ˆ̀= −` ◦ (π1, Id), ω̂ = ω ◦ π1,

(22)

and Q collects all the remaining terms not depending on ν. Notice that F is

an even function.

We define the vector field ∇νL : R2d → R2d as

∇νL(z) = ∇ξ ˆ̀(z,
∫
ω̂ν) + Dω̂(z)T

(∫
R2d

∇ς ˆ̀(z′,
∫
ω̂ν)dν(z′)

)
(23)
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for every z ∈ R2d. We can thus define our candidate vector field for the Wasser-

stein gradient ∇νHc(ν0) in the case that supp(ν0) ⊆ B(0, RT ):

w := (∇F) ? ν +∇G −∇νL. (24)

Notice that, by Hypotheses (H), w is a continuous function in z, and hence it

is well-defined ν-a.e.. In view of (22), it is straightforward to see that w agrees

with the vector field defined in (5) and (6), after reintroducing the variables

(y, q, u) which do not affect the Wasserstein differentiation, and setting µ =

π1#ν.

Lemma 3.1 Let ν ∈ Pc(R2d). Then w defined by (24) belongs to Lpν(R2d) for

every p ∈ [1,+∞], and it satisfies

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) =

=

∫
R6d

(∇F(z0 − z2) +∇G(z0)−∇νL(z0)) · (z1 − z0)dρ(z0, z1)dν(z2)

(25)

for every plan ρ ∈ Π(ν, ν′) such that ν′ ∈ Pc(R2d).

Proof Since w is continuous, the fact that w is Lpν-integrable follows the fact

that ν has compact support. Equation (25) then follows by Fubini-Tonelli and

from the fact that ρ is compactly supported too by Remark A.1.

In the proof of the forthcoming Theorem 3.1, we shall use the following

well-known property.
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Proposition 3.1 ( [33], Theorem 10.3.10) Fix ψ : P2(R2d)→]−∞,+∞].

Then, for every ν0 ∈ D(ψ), the metric slope

|∂ψ|(ν0) = lim sup
ν1→ν0

(ψ(ν1)− ψ(ν0))+

W2(ν1, ν0)

satisfies |∂ψ|(ν0) ≤ ‖w‖L2
ν0

for every w ∈ ∂ψ(ν0).

Theorem 3.1 Let ν ∈ P2(R2d) be such that supp(ν) ⊆ B(0, RT ). Then it

holds ν ∈ D(|∂Hc|) if and only if w as in (24) belongs to L2
ν(R2d). In this

case, ‖w‖L2
ν

= |∂Hc|(ν), i.e., w = ∇νHc(ν).

Proof We start by assuming that ν ∈ P2(R2d) satisfies |∂Hc|(ν) < +∞ and

proving that this implies that w belongs to L2
ν(R2d) as well as the bound

‖w‖L2
ν
≤ |∂Hc|(ν). We compute the directional derivative of Hc along a direc-

tion induced by the transport map Id+ φ, where φ is a smooth function with

compact support. We use the shortcut νs,φ to indicate the measure (Id+sφ)#ν

and we notice that such that supp(νs,φ) ⊆ cl(B(0, RT )) for any sufficiently

small s > 0, since supp(ν) is well contained in B(0, RT ). Denoting by

L̂(ν) =

∫
R2d

ˆ̀(z,
∫
ω̂ν)dν(z) for every ν ∈ P(R2d),

from the chain rule and the dominated convergence it follows

lim
s→0

L̂(νs,φ)− L̂(ν)

s
=

∫
R2d

∇ˆ̀(z,
∫
ω̂ν) · η(z)dν(z), (26)

where η(z) is the vector defined by

η(z) = lim
s→0

1

s


 z + sφ(z)∫

ω̂νs,φ

−
 z∫

ω̂ν
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which, by a direct computation, is given by

η(z) :=

 φ(z)∫
R2d Dω̂(z′)φ(z′)dν(z′)


(observe that actually the last 2d components are independent of z). Inserting

η into (26) and using Fubini’s Theorem we get

lim
s→0

L̂(νs,φ)− L̂(ν)

s
=

=

∫
R2d

∇ξ ˆ̀(z,
∫
ω̂ν) · φ(z)dν(z) +

∫
R4d

∇ς ˆ̀(z,
∫
ω̂ν) · (Dω̂(z′)φ(z′)) dν(z′)dν(z)

whence exchanging z with z′ in the second integral, and recalling (23), we have

lim
s→0

L̂(νs,φ)− L̂(ν)

s
=

∫
R2d

∇νL(z) · φ(z) dν(z)

On top of this, notice that the map

s 7→ F((z0 − z1) + s(φ(z0)− φ(z1)))−F(z0 − z1)

s
+
G(z0 + sφ(z0))− G(z0)

s

as s→ 0 converges to

∇F(z0 − z1) · (φ(z0)− φ(z1)) +∇G(z0) · φ(z0).

Since ν has compact support, the dominated convergence theorem, the identity

(25) and since ∇F is odd, it holds

+∞ > lim
s→0

Hc((Id+ sφ)#ν)−Hc(ν)

s

=
1

2

∫
R4d

∇F(z0 − z1) · (φ(z0)− φ(z1))dν(z0)dν(z1)

+

∫
R2d

(∇G(z0)−∇νL(z0)) · φ(z0)dν(z0)

=

∫
R2d

w(z0) · φ(z0)dν(z0).
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From the last inequality, the assumption that |∂Hc|(ν) < +∞ and using the

trivial estimate

W2((Id+ sφ)#ν, ν) ≤ s‖φ‖L2
ν
,

we get

∫
R2d

w(z0) · φ(z0)dν(z0) ≤ |∂Hc|(ν)‖φ‖L2
ν
,

and hence, up to a change of sign of φ, this proves that ‖w‖L2
ν
≤ |∂Hc|(ν).

We now prove that the vector w belongs to the subdifferential of Hc; this

shall imply that w ∈ D(|∂Hc|) and that it is a minimal selection in ∂Hc(ν),

by the previous estimate and Proposition 3.1.

For proving the claim, we start by remarking that, due to Proposition 3.1,

the vector w ∈ L2
ν(R2d). Now consider a test measure ν, a plan ρ ∈ Πo(ν, ν),

and let us compute the directional derivative of Hc along the direction induced

by ρ. If we denote by νs,ρ the measure ((1 − s)π1 + sπ2)#ρ on R2d, since it

holds ν0,ρ = ν, arguing as in the previous step we have

lim
s→0

L̂(νs,ρ)− L̂(ν)

s
=

∫
R4d

∇ˆ̀(z0,
∫
ω̂ν) · ζ(z0, z1)dρ(z0, z1), (27)

where ζ(z0, z1) is the vector defined by

ζ(z0, z1) := lim
s→0

1

s


 (1− s)z0 + sz1∫

ω̂νs,ρ

−
 z0∫

ω̂ν




=

 z1 − z0∫
R4d Dω̂(z0)(z1 − z0)dρ(z0, z1)
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(again, observe that the last 2d components are independent of z0, z1). Insert-

ing ζ into (27) and using Fubini’s Theorem we get

lim
s→0

L̂(νs,ρ)− L̂(ν)

s
=

∫
R4d

∇ξ ˆ̀(z0,
∫
ω̂ν) · (z1 − z0)dρ(z0, z1)+

+

∫
R8d

∇ς ˆ̀(z0,
∫
ω̂ν) · (Dω̂(z0)(z1 − z0)) dρ(z0, z1)dρ(z0, z1).

Therefore, exchanging z0, z1 with z0, z1 in the second integral, and recalling

(23), we have

lim
s→0

L̂(νs,ρ)− L̂(ν)

s
=

∫
R4d

∇νL(z0) · (z1 − z0) dρ(z0, z1).

Moreover, for every s ∈ [0, 1], the map

s 7→ F((1− s)(z0 − z0) + s(z1 − z1))−F(z0 − z0)

s
+
G((1− s)z0 + sz1)− G(z0)

s

as s→ 0 converges to

∇F(z0 − z0) · ((z1 − z0)− (z1 − z0)) +∇G(z0) · (z1 − z0).

Hence, from Proposition A.1, the dominated convergence theorem, the identity

(25) and the fact that ∇F is odd, we get

Hc(ν)−Hc(ν) ≥ lim
s→0

Hc(((1− s)π1 + sπ2)#ρ)−Hc(ν)

s
+ o(W2(ν, ν))

=
1

2

∫
R8d

∇F(z0 − z0) · ((z1 − z0)− (z1 − z0)) dρ(z0, z1)dρ(z0, z1) +

+

∫
R4d

(∇G(z0)−∇νL(z0)) · (z1 − z0)dρ(z0, z1) + o(W2(ν, ν))

=

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) + o(W2(ν, ν)).

We have thus proven that w ∈ ∂Hc(ν).
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4 The Finite-Dimensional Problem

In this section we study the discrete Problem 1.2 and state the PMP for it.

We first recall the following existence result for the optimal control problem.

Proposition 4.1 (Theorem 23.11, [30]) Under Hypotheses (H), Problem

1.2 admits solutions.

We now introduce the adjoint variables of xi and yk, denoted by pi and qk,

respectively, and state the PMP in the following box.

Theorem 4.1 (Theorem 22.2, [30]) Let u∗N be a solution of Prob-

lem 1.2 with initial datum (y(0), x(0)) = (y0, x0), and denote with

(y∗(·), x∗(·)) : [0, T ] → Rdm+dN the corresponding trajectory. Then there

exists a Lipschitz curve (y∗(·), q∗(·), x∗(·), p∗(·)) ∈ Lip([0, T ],R2dm+2dN )

solving the system

ẏ∗k = ∇qkHN (y∗, q∗, x∗, p∗, u∗)

q̇∗k = −∇ykHN (y∗, q∗, x∗, p∗, u∗)

k = 1, . . . ,m,

ẋ∗i = ∇piHN (y∗, q∗, x∗, p∗, u∗)

ṗ∗i = −∇xiHN (y∗, q∗, x∗, p∗, u∗)

i = 1, . . . , N,

u∗N = arg max
u∈U

HN (y∗, q∗, x∗, p∗, u),

(28)

with initial datum (y(0), x(0)) = (y0, x0) and terminal datum

(q(T ), p(T )) = 0, where the Hamiltonian HN : R2dm+2dN → R is given by

HN (y, q, x, p, u) =

N∑
i=1

pi ·

 1

N

N∑
j=1

K(xi − xj) + g(y)(xi)

+

+

m∑
k=1

qk ·

 1

N

N∑
j=1

K(yk − xj) + fk(y) +Bku

− L(y, µN )− γ(u),

(29)
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with µN = 1
N

∑N
i=1 δ(x− xi).

Remark 4.1 The general statement of the PMP contains both normal and

abnormal minimizers. In our case, the simpler formulation of the PMP is given

by the fact that we have normal minimizers only. This is a consequence of the

fact that the final configuration is free, see e.g. [30, Corollary 22.3].

Remark 4.2 The uniqueness of the maximizer of HN follows from the same

motivations reported in Remark 1.1. Indeed, the form of the Hamiltonian

implies that for each u∗ ∈ U it holds

u∗ = arg max
u∈U

HN (y∗, q∗, x∗, p∗, u) when u∗ = arg max
u∈U

(
m∑
k=1

q∗k ·Bku− γ(u)

)
.

In other terms, since the control acts on the y variables only, then we have a

simpler formulation for the maximization of the Hamiltonian HN .

We now want to embed solutions of the PMP for Problem 1.2 as solutions

of the extended PMP for Problem 1.1. As a first step, we prove that pairs

control-trajectories (u∗N , (y
∗
N , q

∗
N , x

∗
N , p

∗
N )) satisfying system (28) have support

uniformly bounded in time and in N ∈ N. To this end, for every N ∈ N, we

introduce the mapping ΦN : R2dN → P1(R2d) as follows

ΦN : (x1, p1, . . . , xN , pN ) 7→ 1

N

N∑
i=1

δ(· − xi, · −Npi). (30)

Proposition 4.2 Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and µ0
N be as in Definition

1.2–(i). Let u∗N be a solution of Problem 1.2 with initial datum (y0, µ0
N ), and
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let (u∗N , (y
∗
N , q

∗
N , x

∗
N , p

∗
N )) be a pair control-trajectory satisfying the PMP for

Problem 1.2 with initial datum (y0, µ0
N ) and control u∗N given by Theorem 4.1.

Then the trajectories (y∗N (·), q∗N (·), ν∗N (·)), where ν∗N := ΦN (x∗N , p
∗
N ), are

equibounded and equi-Lipschitz continuous from [0, T ] to Y, where the space

Y := R2dm × P1(R2d) is endowed with the distance

‖(y, q, ν)− (y′, q′, ν′)‖Y := ‖y − y′‖+ ‖q − q′‖+W1(ν, ν′). (31)

Furthermore, there exists RT > 0, depending only on y0, supp(µ0),m,K, g, fk, Bk,U ,

and T , such that supp(ν∗N (·)) ⊆ B(0, RT ) for all N ∈ N. In particular, it holds

H(y∗N , q
∗
N , ν

∗
N , u

∗
N ) = Hc(y∗N , q∗N , ν∗N , u∗N ).

Proof As a first step, notice that the pair (y∗N , x
∗
N ) solves the system (8). It

then follows from (12) and (13) that there exist two constants ρT and ρ′T , not

depending on N such that, for all i = 1, . . . , N , for all k = 1, . . . ,m, and a.e.

t ∈ [0, T ] we have

‖y∗k,N (t)‖ ≤ ρT , ‖x∗i,N (t)‖ ≤ ρT (32)

‖ẏ∗k,N (t)‖ ≤ ρ′T , ‖ẋ∗i,N (t)‖ ≤ ρ′T . (33)

From (32) we get that the terms
(

1
N

∑N
j=1K(xi − xj) + g(y)(xi)

)
and(

1
N

∑N
j=1K(yk − xj) + fk(y)

)
and all their derivatives are bounded on the

trajectories of (28). It also follows that there exists a uniform constant WT

such that ∥∥∥∥∥∥ 1

N

N∑
j=1

ω(x∗j,N (t))

∥∥∥∥∥∥ ≤WT
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for all t ∈ [0, T ]. Furthermore, a direct computation yields

−∇xiL(y, µN ) =
1

N
∇ξ`

y, xi, 1

N

N∑
j=1

ω(xj)


+

1

N2
Dω(xi)

T

 N∑
k=1

∇ς`

y, xk, 1

N

N∑
j=1

ω(xj)

 (34)

while the y-derivatives remain uniformly bounded on the trajectories by reg-

ularity of ` and (33).

Since the terms Bku do not affect the second and the fourth equation in

(28), by the above discussed bounds and a simple combinatorial argument we

get the existence of a uniform constant LT such that the estimates

‖ṗ∗i,N (t)‖ ≤ LT

‖p∗i,N (t)‖+
1

N

N∑
j=1

‖p∗j,N (t)‖+
1

N

m∑
k=1

‖q∗k,N (t)‖+
1

N


(35)

and

‖q̇∗k,N (t)‖ ≤ LT

 N∑
i=1

‖p∗i,N (t)‖+ ‖q∗k,N (t)‖+

m∑
j=1

‖q∗j,N (t)‖+ 1

 (36)

hold for each i = 1, . . . , N , k = 1, . . . ,m and a.e. t ∈ [0, T ]. We now rescale

the pi’s by setting r∗i,N := Np∗i,N and consider the function

εN (t) :=

m∑
k=1

‖q∗k,N (t)‖+
1

N

N∑
i=1

‖r∗i,N (t)‖ .

From (35) and (36) we deduce, possibly enlarging the constant LT , that

|ε̇N (t)| ≤ LT ((1 +m)εN (t) + 1) . (37)

Defining then the increasing functions ηN (t) through ηN (t) := supτ∈[0,t] εN (T−

τ), and observing that it holds ηN (0) = 0 for the boundary conditions in The-

orem 4.1, from (37) and Gronwall’s Lemma we obtain ηN (τ) ≤ LT τe
LT τ .
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With this, since εN (t) ≤ ηN (T ), and using (37), we get

εN (t) ≤ LTTeLT (1+m)T and |ε̇N (t)| ≤ LT
(
LT (1 +m)TeLT (1+m)T + 1

)
(38)

for a.e. t ∈ [0, T ]. Since by definition of ν∗N (t) and standard properties of the

Wasserstein distance W1 it holds

W1(ν∗N (t+ τ), ν∗N (t)) ≤

≤
√

2

(
1

N

N∑
i=1

‖x∗i,N (t+ τ)− x∗i,N (t)‖+
1

N

N∑
i=1

‖r∗i,N (t+ τ)− r∗i,N (t))‖

)
,

from the previous inequality, (32), (33), (37), and (38) we obtain that y∗N (t)

and q∗N (t) are equibounded, that there exist a constant, denoted by RT , such

that supp(ν∗N (t)) ⊂ B(0, RT ) for all t ∈ [0, T ] and that (y∗N , q
∗
N , ν

∗
N ) are equi-

Lipschitz continuous from [0, T ] with values in Y. ut

Proposition 4.3 Let N ∈ N and u∗N ∈ Lp([0, T ];U) be an optimal control

for Problem 1.2 with given initial datum (y0N , x
0
N ) ∈ Rdm+dN , and denote by

(y∗N (·), q∗N (·), x∗N (·), p∗N (·)) ∈ Lip([0, T ],R2dm+2dN ) the corresponding trajec-

tory of the PMP with maximized Hamiltonian HN .

Define ν∗N := ΦN (x∗1,N , p
∗
1,N , . . . , x

∗
N,N , p

∗
N,N ) with ΦN as in (30), and

assume that supp(ν∗N (·)) ⊆ B(0, RT ). Then, the control u∗N is optimal for

Problem 1.1 and (y∗N , q
∗
N , ν

∗
N , u

∗
N ) satisfies the extended Pontryagin Maximum

Principle.

Proof First observe that, by Proposition 4.2, the following identity holds

Hc(y∗N , q∗N , ν∗N , u∗N ) = H(y∗N , q
∗
N , ν

∗
N , u

∗
N ).



Mean-Field Pontryagin Maximum Principle 45

Moreover, for every t ∈ [0, T ]

u∗N (t) = arg max
u∈U

HN (y∗N (t), q∗N (t), x∗N (t), p∗N (t), u)

⇐⇒ u∗N (t) = arg max
u∈U

H(y∗N (t), q∗N (t), ν∗N (t), u),

due to the specific form of the Hamiltonian HN and H, see Remark 4.2.

Rewriting HN in terms of ν∗N (·), we have that HN (y∗N , q
∗
N , x

∗
N , p

∗
N , u

∗
N ) and

H(y∗N , q
∗
N , ν

∗
N , u

∗
N ) only differ for a term which is independent on yk and qk,

hence equations for ẏ∗k,N , q̇
∗
k,N in the PMP for Problem 1.2 and in the extended

PMP for Problem 1.1 coincide.

We further notice that for all i = 1, . . . , N , since DK is even we have

−N∇xi
1

N2

N∑
h=1

rh ·
N∑
j=1

K(xh − xj) =

= − 1

N

 N∑
j=1

DK(xi − xj)T ri −
N∑
h=1

DK(xh − xi)T rh


= − 1

N

 N∑
j=1

DK(xi − xj)T (ri − rj)


= −

∫
R2d

DK(xi − x′)T (ri − r′) dνN (x′, r′)

after setting νN = 1
N

∑N
i=1 δ(x− xi, r − ri). Observe that also the right-hand

side of (34) can be rewritten in terms of νN (through µN = π1#νN ), yielding

−N∇xiL(y, µN ) = −∇ξ`
(
y, xi,

∫
ωµN

)
−Dω(xi)

T

[∫
∇ς`

(
y, x′,

∫
ωµN

)
dµN (x′)

]
.
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With the previous equalities, by setting ν∗N := ΦN (x∗1,N , p
∗
1,N , . . . , x

∗
N,N , p

∗
N,N )

as well as r∗i,N = Np∗i,N , the identity

J(∇νHc(y∗N , q∗N , ν∗N , u∗N ))(x∗i,N , r
∗
i,N ) =

 N∇riHN (y∗N , q
∗
N , x

∗
N , p

∗
N , u

∗
N )

−N∇xiHN (y∗N , q
∗
N , x

∗
N , p

∗
N , u

∗
N )

 ,

(39)

simply follows by differentiating in (29) and comparing with (5), and (6).

Since the boundary conditions of Problem 1.2 and Problem 1.1 coincide too,

the result follows now by (39) arguing, for instance, as in [17, Lemma 4.3].

5 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We first recall that we already proved

in Corollary 2.2 that there exists a mean-field optimal control for Problem 1.1.

We now want to prove that all mean-field optimal controls are solutions of the

extended PMP.

Let u∗ be a mean-field optimal control for Problem 1.1 with initial datum

(y0, µ0). Fix µ0
N as in Definition 1.2–(i), and consider a sequence (u∗N )N∈N of

optimal controls of Problem 1.2 with initial datum (y0, µ0
N ), having a subse-

quence (which, for simplicity, we do not relabel) weakly converging to u∗ in

L1([0, T ];U). Denote with (y∗N , x
∗
N ) the trajectory of (8) corresponding to the

control u∗N and the initial datum (y0, µ0
N ) of Problem 1.2. Compute the cor-

responding pair control-trajectory (u∗N , (y
∗
N , q

∗
N , x

∗
N , p

∗
N )) satisfying the PMP

for Problem 1.2, that exists due to Theorem 4.1. Set ν∗N := ΦN (x∗N , p
∗
N ) and

r∗N := Np∗N . By Proposition 4.2, the trajectories (y∗N , q
∗
N , ν

∗
N ) are equibounded
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and equi-Lipschitz from [0, T ] to the product space Y = R2dm × P1(R2d)

endowed with the distance (31), and the empirical measures ν∗N have equi-

bounded support. Moreover, the pair (u∗N , (y
∗
N , q

∗
N , ν

∗
N )) satisfies the extended

PMP by Proposition 4.3.

By the Ascoli-Arzelà theorem, we have that there exists a subsequence,

which we denote again with (y∗N , q
∗
N , ν

∗
N ), that converges to the vector-measure

valued curve (y∗, q∗, ν∗) : [0, T ] → Rdm × P1(R2d) uniformly with respect to

t ∈ [0, T ]. Since by definition π1#ν
∗
N = µ∗N , by the convergence of µ∗N to

µ∗ proved in Proposition 2.2, we get π1#ν
∗ = µ∗. Observe that (y∗, q∗, ν∗)

is a Lipschitz function with respect to time and ν∗ has support contained in

B(0, RT ) for all t ∈ [0, T ]. Moreover, by the boundary conditions for eachN , we

have that y∗(0) = y0, π1#(ν∗(0)) = µ0 and q∗(T ) = 0, π2#(ν∗(T ))(r) = δ(r).

Fix now t ∈ [0, T ]. To shorten notation, let E : Rdm × RD → R be the

functional, strictly concave with respect to u, defined as

E(q, u) =

m∑
k=1

qk ·Bku− γ(u) .

Recall that by (28) and by Remark 4.2, u∗N (t) satisfies

u∗N (t) = arg max
u∈U

E(q∗N (t), u) ,

since the maximum is uniquely determined by strict concavity. Since U is

bounded, by definition E(·, u) is continuous uniformly with respect to u ∈ U .

The convergence of q∗N (t) to q∗(t) then implies that every accumulation point

vt ∈ U of u∗N (t) must satisfy

vt = arg max
u∈U

E(q∗(t), u) (40)
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and is therefore uniquely determined. This shows that the sequence u∗N is

pointwise converging in [0, T ] to the function v(t) := vt. Due to the bound-

edness of U , we further have that u∗N → v in L1((0, T );U). Since u∗N was

already converging to u∗ weakly in L1((0, T );U) it must be u∗(t) = v(t) for

a.e. t ∈ (0, T ), which together with (40) implies that

u∗N → u∗ strongly in L1((0, T );U) (41)

and that

u∗(t) = arg max
u∈U

E(q∗(t), u)

for a.e. t ∈ [0, T ]. Due to the explicit expression of H(y, q, ν, u) in (4), this is

equivalent to say that

H(y∗(t), q∗(t), ν∗(t), u∗(t)) = arg max
u∈U

H(y∗(t), q∗(t), ν∗(t), u)

for a.e. t ∈ [0, T ].

We finally prove that (y∗, q∗, ν∗) satisfies the Hamiltonian system (3) with

control u∗. Due to equi-Lipschitz continuity, we have that the derivatives

(ẏ∗N , q̇
∗
N ), and ∂tν

∗
N converge to (ẏ∗, q̇∗), and ∂tν

∗, respectively, weakly in

L1([0, T ];R2md) and in the sense of distributions. Observe now that by (5)

and (6) the vector field ∇νHc(y, q, ν)(·, ·), which is independent of u, depends

continuously on (y, q, ν). By the uniform convergence of (y∗N , q
∗
N , ν

∗
N ) and since

supp(ν∗N (t)) ⊂ B(0, RT ) for all t ∈ [0, T ] we get that

∇νHc(y∗N (t), q∗N (t), ν∗N (t))(x, r) ⇒ ∇νHc(y∗(t), q∗(t), ν∗(t))(x, r),
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uniformly with respect to t ∈ [0, T ] and (x, r) ∈ B(0, RT ). From this, us-

ing again the narrow convergence of ν∗N (t) to ν∗(t) and since it holds that

supp(ν∗N (t)) ⊂ B(0, RT ), we then get the uniform bound

‖ (J∇νHc(y∗N (t), q∗N (t), ν∗N (t))) ν∗N (t)‖Mb(RD,RD) ≤ CT ,

for some constant CT independent of t ∈ [0, T ], as well as the narrow conver-

gence

(J∇νHc(y∗N (t), q∗N (t), ν∗N (t))) ν∗N (t) ⇀ (J∇νHc(y∗(t), q∗(t), ν∗(t))) ν∗(t)

for all t ∈ [0, T ]. Testing with functions φ ∈ C∞c ([0, T ]×R2d;R), the two above

properties are enough to show that

∇(x,r) ·
(

(J∇νHc(y∗N (t), q∗N (t), ν∗N (t)))ν∗N (t)
)
⇀

∇(x,r) ·
(

(J∇νHc(y∗(t), q∗(t), ν∗(t)))ν∗(t)
)

in the sense of distributions, so that ν∗ solves the third equation in (3).

For all k = 1, . . . ,m, taking derivatives in the explicit expression in (4)

and using the definition of Hc, we have that ∇ykHc(y, q, ν, u) is actually in-

dependent of u and is continuous with respect to the Euclidean convergence

on (y, q) and the narrow convergence on measures ν with compact support in

a fixed ball B(0, RT ). Therefore, since (y∗N , q
∗
N , ν

∗
N ) converges to (y∗, q∗, ν∗)

uniformly with respect to t ∈ [0, T ], and there is no dependence on u, for all

k = 1, . . . ,m we have that

∇ykHc(y∗N (t), q∗N (t), ν∗N (t), u∗N (t))→ ∇ykHc(y∗(t), q∗(t), ν∗(t), u∗(t))
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in Rd uniformly with respect to t ∈ [0, T ]. It then follows that q∗ solves the

second equation in (3).

A similar argument, also using the L1 convergence of u∗N to u∗ proved in

(41), shows that

∇qkHc(y∗N (t), q∗N (t), ν∗N (t), u∗N (t))→ ∇qkHc(y∗(t), q∗(t), ν∗(t), u∗(t))

in L1([0, T ];Rd) for all k = 1, . . . ,m, so that y∗ solves the first equation in (3).

This concludes the proof of Theorem 1.1.

6 Conclusions

In this article, we proved a mean-field version of the Pontryagin Maximum

Principle. We considered an optimal control problem composed of a system of

ordinary differential equations coupled with a partial differential equation of

Vlasov-type with smooth interaction kernel. We derived a first-order condition

for optimizers of such problem, that we wrote as an Hamiltonian flow in the

Wasserstein space of probability measures.
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Appendix: Semiconvexity along Geodesics of Hc

Throughout the section, K shall denote a convex, compact subset of R2d. The following

property shall be used to prove that the subdifferential of Hc is nonempty.

Definition A.1 Let ψ : P2(Rn)→]−∞,+∞] be a proper, lower semicontinuous functional.

We say that ψ is semiconvex along geodesics whenever, for every ν0, ν1 ∈ P2(Rn) and every

optimal transport plan ρ ∈ Πo(ν0, ν1) there exists C ∈ R for which for every s ∈ [0, 1] it

holds

ψ(((1− s)π1+sπ2)#ρ) ≤

≤ (1− s)ψ(ν0) + sψ(ν1) + Cs(1− s)W2
2 (ν0, ν1)).

In order to prove the semiconvexity of Hc, we shall establish the semiconvexity of the

following functionals:

Ĥ1
c(ν) =

1

2

∫
R4d
F̂(z − z′)dν(z)ν(z′) +

∫
Rd
Ĝ(z)dν(z),

Ĥ2
c(ν) =

∫
Rd

ˆ̀(z,
∫
ω̂ν)dν(z),

where F̂ , Ĝ, ˆ̀, and ω̂ are C2 functions. The desired result will then follow by noticing that

Hc(ν) = Ĥ1
c(ν)+Ĥ2

c(ν) for F̂ = F , Ĝ = G, ˆ̀= −`◦(π1, Id), ω̂ = ω◦π1 and K = cl(B(0, RT )).

The following simple property will be needed to prove semiconvexity of the above func-

tionals.

Lemma A.1 Let ν0, ν1 ∈ Pc(R2d) with support contained in K. Let ρ ∈ Π(ν0, ν1) and set

νs = ((1− s)π1 + sπ2)#ρ, (42)

for every s ∈ [0, 1]. Then, it holds

supp(νs) ⊆ K for all s ∈ [0, 1].

Proof We first notice, that for every ρ ∈ Π(ν0, ν1) it holds

supp(ρ) ⊆ K×K . (43)



52 Mattia Bongini et al.

This follows from the equality

R4d\(K×K) = (R2d × (R2d\K)) ∪ ((R2d\K)× R2d)

and from the fact that both R2d×(R2d\K)) and (R2d\K)×R2d are ρ-null sets by hypothesis.

To prove Lemma A.1, it suffices to show that for all f ∈ C(R2d) satisfying f ≡ 0 on K

it holds

∫
R2d

fdνs = 0. (44)

Indeed,

∫
R2d

fdνs =

∫
R4d

fd((1− s)π1 + sπ2)#ρ(z0, z1)

=

∫
R4d

f((1− s)z0 + sz1)dρ(z0, z1)

=

∫
K×K

f((1− s)z0 + sz1)dρ(z0, z1),

since, by (43), supp(ρ) ⊆ K × K. The convexity of K implies (1− s)z0 + sz1 ∈ K for every

s ∈ [0, 1], which, together with the assumption f ≡ 0 in K, yield (44), as desired. ut

In what follows, we shall make use of the following, well-known result.

Remark A.1 Let K be a convex, compact subset of R2d and let f ∈ C2(R2d;R). Then there

exists CK,f ∈ R depending only on K and f such that

f((1− s)x0 + sx1) ≤ (1− s)f(x0) + sf(x1) + CK,f s(1− s)‖x0 − x1‖2, (45)

for every x0, x1 ∈ R2d and s ∈ [0, 1].

We now prove the semiconvexity of Ĥ1
c .

Lemma A.2 Let ν0, ν1 ∈ Pc(R2d) and let ρ ∈ Π(ν0, ν1). Then, there exists C ∈ R inde-

pendent of ν0 and ν1 for which

Ĥ1
c(((1− s)π1 + sπ2)#ρ) ≤ (1− s)Ĥ1

c(ν0) + sĤ1
c(ν1) + Cs(1− s)W2

2 (ν0, ν1)

holds for every s ∈ [0, 1].



Mean-Field Pontryagin Maximum Principle 53

Proof We may assume supp(ν0), supp(ν1) ⊆ K for some convex and compact set K ⊂ R2d,

otherwise the inequality is trivial. Hence, from Lemma A.1, it follows supp(νs) ⊆ K for every

s ∈ [0, 1]. But then, since F̂ and Ĝ are both C2, the result follows as in [33, Proposition

9.3.2, Proposition 9.3.5]. ut

Corollary A.1 Let ω̂ ∈ C2(R2d;Rd), ν0, ν1 ∈ Pc(R2d), ρ ∈ Π(ν0, ν1) and define νs as in

(42) for s ∈ [0, 1]. If we set

ξs =

∫
R2d

ω̂dνs, (46)

then

‖ξs − (1− s)ξ0 − sξ1‖ ≤ Cs(1− s)W2
2 (ν0, ν1),

for all s ∈ [0, 1], where C is independent of ν0 and ν1.

Proof Follows from Lemma A.2 applied first to the functions F̂ ≡ 0 and Ĝ ≡ ω̂, and then

to F̂ ≡ 0 and Ĝ ≡ −ω̂. ut

The semiconvexity of Ĥ2
c will be deduced as a corollary of the following estimate.

Lemma A.3 Suppose that ˆ̀∈ C2(R2d ×Rd;R), let z0, z1 ∈ K and set zs = (1− s)z0 + sz1

for all s ∈ [0, 1]. Furthermore, let ν0, ν1 ∈ Pc(R2d), ρ ∈ Π(ν0, ν1) and define νs and ξs as

in (42) and (46) for s ∈ [0, 1]. Then, for all s ∈ [0, 1], it holds

ˆ̀(zs, ξs) ≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1) + CK,ˆ̀,ω̂s(1− s)W
2
2 (ν0, ν1)

+ CK,ˆ̀,ω̂s(1− s)‖z0 − z1‖
2,

for some constant CK,ˆ̀,ω̂ depending only on K, ˆ̀ and ω̂.

Proof Since K is compact, zs ∈ K for all s ∈ [0, 1]. Moreover, (1 − s)ξ0 + sξ1 ∈ K′ for all

s ∈ [0, 1], for some convex and compact set K′ ⊂ Rd. Notice that from (45) follows

ˆ̀(zs, (1− s)ξ0 + sξ1) ≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1)

+ CK,K′s(1− s)
(
‖z0 − z1‖2 + ‖ξ0 − ξ1‖2

)
,

(47)
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and from the definition of ξs and Jensen’s inequality, we get

‖ξ0 − ξ1‖2 ≤ LipK(ω)W2
1 (ν0, ν1) ≤ LipK(ω)W2

2 (ν0, ν1). (48)

Moreover, for every s ∈ [0, 1] it holds

‖ˆ̀(zs, ξs)− ˆ̀(zs, (1− s)ξ0 + sξ1)‖ ≤ LipK×K′‖ξs − (1− s)ξ0 − sξ1‖

≤ LipK×K′s(1− s)CW2
2 (ν0, ν1).

(49)

Hence, for every s ∈ [0, 1], using (47), (48) and (49), we get

ˆ̀(zs, ξs) = ˆ̀(zs, ξs)− ˆ̀(zs, (1− s)ξ0 + sξ1) + ˆ̀(zs, (1− s)ξ0 + sξ1)

≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1) + CK,ˆ̀,ω̂s(1− s)W
2
2 (ν0, ν1)

+ CK,ˆ̀,ω̂s(1− s)‖z0 − z1‖
2.

This concludes the proof. ut

Corollary A.2 Let ν0, ν1 ∈ Pc(R2d) and ρ ∈ Πo(ν0, ν1). Then, there exists C ∈ R inde-

pendent of ν0 and ν1 for which

Ĥ2
c(((1− s)π1 + sπ2)#ρ) ≤ (1− s)Ĥ2

c(ν0) + sĤ2
c(ν1) + Cs(1− s)W2

2 (ν0, ν1)

holds for every s ∈ [0, 1].

Proof Notice that, by Lemma A.1, Ĥ2
c (νs) can be rewritten as

Ĥ2
c(νs) =

∫
K×K

ˆ̀(zs, ξs)dρ(z0, z1),

Furthermore, since ρ ∈ Πo(ν0, ν1) it holds

∫
K×K

‖z0 − z1‖2dρ(z0, z1) =

∫
R4d
‖z0 − z1‖2dρ(z0, z1) =W2

2 (ν0, ν1),

the thesis follows from Lemma A.3. ut

Proposition A.1 The functional Hc is semiconvex along geodesics.

Proof Follows directly from Lemma A.2 and Corollary A.2, by noticing that Hc(ν) = Ĥ1
c(ν)+

Ĥ2
c(ν) for F̂ = F , Ĝ = G, ˆ̀= −` ◦ (π1, Id), ω̂ = ω ◦ π1 and K = cl(B(0, RT )). ut
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