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Abstract 

The transportation of oil and gas and their products through the pipelines is a safe and economically 

efficient way, when compared with other methods of transportation, such as tankers, railroad, 

trucks, etc. Although pipelines are usually well-designed, during construction and later in service, 

pipelines are subjected to a variety of risks. Eventually, some sections may experience corrosion 

which can affect the integrity of pipeline, which poses a risk in high-pressure operations.  

Specifically, in pipelines with long history of operation, the size and location of the corrosion 

defects need to be determined so that pressure levels can be kept at safe levels, or alternatively, a 

decision to repair or replace the pipe section can be made. To make this decision, there are several 

assessment techniques available to engineers, such as ASME B31G, MB31G, DNV-RP, software 

code called RSTRENG. These assessment techniques help engineers predict the remaining 

strength of the wall in a pipe section with a corrosion defect.  The corrosion assessment codes in 

the United States, Canada and Europe are based on ASME-B31G criterion for the evaluation of 

corrosion defects, established based on full-scale burst experiments on pipes containing 

longitudinal machined grooves, initially conducted in 1960s. Because actual corrosion defects 

have more complex geometries than machined grooves, an in-depth study to validate the 

effectiveness of these techniques is necessary.  This study is motivated by this need.   

The current study was conducted in several stages, starting with the deformation behavior 

of pipe steels.  In Phase 1, true-stress-true plastic strain data from the literature for X42 and X60 

steel specimens were used to evaluate how well four commonly used constitutive equations, 

namely, those developed by Hollomon, Swift, Ludwik and Voce, fit the experimental data.  Results 

showed that all equations provided acceptable fits.  For simplicity, the Hollomon equation was 

selected to be used in the rest of the study. 
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In Phase 2, a preliminary finite element modeling (FEM) study was conducted to compare 

two failure criteria, stress-based or strain-based, performed better.  By using data from the 

literature for X42 and X60 pipe steels, experimental burst pressure data were compared with 

predicted burst pressure data, estimated based on the two failure criteria.  Based on this preliminary 

analysis, the stress-based criterion was chosen for further FEM studies.   

In Phase 3, failure data from real corrosion pits in X52 pipe steels with detailed profiles 

were used to develop a FEM scheme, which included a simplified representation of the defect.  

Comparison of actual and predicted burst pressures indicated a good fit, with a coefficient of 

determination (R2) level of 0.959.   

In Phase 4, burst pressure levels were estimated for real corrosion pits for the experiments 

from the same study as in Phase 3, but only with corrosion pit depths and length and without 

corrosion widths.  Widths were estimated from the data used in Phase 3, by using an empirical 

equation as a function of pit length.  There was significant error between experimental and 

predicted burst pressure.  Errors in Phases 3 and 4 were compared statistically.  Results showed 

that there is a statistically significant difference in the error when the width of the corrosion pit is 

unknown.  This finding is significant because none of the assessment techniques in the literature 

takes width into consideration.  Subsequently, a parametric study was performed on three defect 

geometries from the same study in Phase 3. The pit depths and lengths were held constant but 

widths were changed systematically.  In all cases, the effect of the pit width on burst pressure was 

confirmed. 

In Phase 5, the three assessment techniques, ASME B31G, MB31-G and DNV-RP were 

evaluated by using experimental test results for X52 pipe. Synthetic data for deeper pits were 

developed by FEM and used along with experimental data in this phase.  Two types of the error 
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were distinguished to classify defects. Type I errors (α) and Type II errors (β) were defined using 

Level 0 evaluation method. Results showed that although ASME B31G is the most conservative 

technique, it is more reliable for short defects than MB31G and DNV-RP.  The least conservative 

technique was DNV-RP but it yielded β error, i.e., the method predicted a safe operating pressure 

and pipe section would fail.  Therefore, DNV-RP is not recommended for assessment of steel 

pipes, specifically for X52 pipes. 
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Abstract 

The transportation of oil and gas and their products through pipelines is safe and economically 

efficient, when compared with other methods of transportation, such as tankers, railroad, trucks, 

etc. Although pipelines are usually well-designed, during construction and later in service, 

pipelines are subjected to a variety of risks. Eventually, some sections may experience corrosion 

that can affect the integrity of the pipeline, and which poses a risk in high-pressure operations.  

Specifically, in pipelines with long history of operation, the size and location of the corrosion 

defects need to be determined so that pressure levels can be kept at safe levels, or alternatively, a 

decision to repair or replace the pipe section can be made. To make this decision, there are several 

assessment techniques available to engineers, such as ASME B31G, MB31G, DNV-RP and 

software code called RSTRENG. These assessment techniques help engineers predict the 

remaining strength of the wall in a pipe section with a corrosion defect.  The corrosion assessment 

codes in the United States, Canada and Europe are based on ASME-B31G criterion for the 

evaluation of corrosion defects, established based on full-scale burst experiments on pipes 

containing longitudinal machined grooves, initially conducted in 1960s. Because actual corrosion 

defects have more complex geometries than machined grooves, an in-depth study to validate the 

effectiveness of these techniques is necessary.  This study is motivated by this need.   

The current study was conducted in several stages, starting with the deformation behavior 

of pipe steels.  In Phase 1, true stress-true plastic strain data from the literature for X42 and X60 

steel specimens were used to evaluate how well four commonly used constitutive equation.  
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In Phase 2, preliminary finite element modeling (FEM) study was conducted on data from 

literature for X42 and X60 pipe steels to identify the best criterion to use to predict failure. Based 

on this preliminary analysis, the stress-based criterion was chosen for further FEM studies.   

In Phase 3, failure data from real corrosion pits in X52 pipe steels with detailed profiles 

were used to develop a FEM model where comparison of actual and predicted burst pressures 

indicated a good fit.    

In Phase 4, burst pressure levels were estimated for real corrosion pits for the experiments 

from the same study as in Phase 3, but only with corrosion pit depths and length and without 

corrosion widths.  Widths were estimated from the data used in Phase 3, by using an empirical 

equation as a function of pit length.  There was significant error between experimental and 

predicted burst pressure.  Errors in Phases 3 and 4 were compared statistically.  Results showed 

that there is a statistically significant difference in the error when the width of the corrosion pit is 

unknown.  This finding is significant because none of the assessment techniques in the literature 

takes width into consideration.  Subsequently, a parametric study was performed on three defect 

geometries from the same study in Phase 3. In all cases, the effect of the pit width on burst pressure 

was confirmed. 

In Phase 5, the assessment techniques were evaluated by using experimental test results for 

X52 pipe. Synthetic data for deeper pits were developed by FEM and used along with experimental 

data in this phase. Type I errors (α) and Type II errors (β) were defined using Level 0 evaluation 

method. Results showed that although ASME B31G is the most conservative technique, it is more 

reliable for short defects than MB31G and DNV-RP.  The least conservative technique was DNV-

RP but it yielded β error.  Hence, it is recommended that DNV-RP not be used to assess safety of 

pipelines based on corrosion pit size data. 
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1. Introduction 

Pipeline systems are divided in three major categories based on the type of fluid transported: oil 

pipelines (both crude and refined petroleum), natural gas pipelines and others (water, chemical, 

slurry, etc.) [1]. When compared with other methods of transportation, such as tankers, railroad, 

trucks, etc., it has been stated that the transportation of oil, gas and their products through pipelines 

is still safe and economically efficient [2]. According to the Pipeline and Hazardous Materials 

Safety Administration of the United States Department of Transportation, the breakdown of the 

pipeline networks based on the fluid transported in 2015 is as follows: 

• 2,527,165 miles of the natural gas pipeline network, (300,258 miles of transmission line, 

2,209,228 miles of distribution line, 17,679 miles of gathering line) 

• 208,658 miles of oil pipeline network, of which 204,413 miles are for transmission lines  

The natural gas and crude oil pipeline networks in the contiguous United States and the state of 

Alaska in 2015 are shown in Figure 1-1 and Figure 1-2 respectively.  

Although most pipes are made from steel, some oil pipelines and distribution lines can be 

also made from plastic materials. Pipe diameters vary from 4 to 48 inches (102-1219 mm) for oil 

pipelines and 2 to 60 inches (51-1524 mm) for gas pipelines, where small diameters are used for 

gathering and distribution lines. 
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Figure 1-1. Crude oil and petroleum products pipeline systems [3].  

 

 

 Figure 1-2. Natural Gas pipeline systems [3].  
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2. Pipeline engineering and design 

Several standards, issued jointly by the American National Standards Institute (ANSI) and 

American Society of Mechanical Engineers (ASME), are used to design pipelines in the United 

States.  The standards are:  

- ANSI/ASME Standard B31.1, Power Piping [4] 

- ANSI/ASME Standard B31.3, Chemical Plant and Petroleum Refinery Piping [5], which 

is applied to main onshore and offshore facilities worldwide.  

- ANSI/ASME Standard B31.4, Liquid Transportation Systems for Hydrocarbons, Liquid 

Petroleum Gas, Anhydrous Ammonia, and Alcohols [6].  

- ANSI/ASME Standard B31.8, Gas Transmission and Distribution Piping Systems [7].  

The first step in the design of a new pipeline is projecting the route based on the original and 

destination points, so that topography of the pipeline route can be determined. Subsequent major 

steps in piping design require input parameters, such as [8]:  

- Volumetric flow rate of the fluid carried by pipe 

- Fluid type, temperature and quality 

- Maximum operating pressure for the pipeline 

- Minimum pressure required at the destination points 

- Ambient temperature 

Transmission pipelines are manufactured from the material conforming to the API 5LX 

standard, which consist of corrosion resistant alloys (for sour gas service), denoted as API 

5LX-42, API 5LX-46, API 5LX-52, API 5LX-60, API 5LX-65, API 5LX-70, API 5LX-80 and 

API 5LX-100 [9]. The numbers following the dash represent the specified minimum yield 
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strength of the materials in ksi.  X80 and X100 are new materials with high yield strength, 

where the ratio of yield to tensile strength can reached 0.979. A list of some of the materials 

with mechanical and chemical properties can be found in Table 2-1.  

Table 2-1. API-5LX pipe materials  

Grade 
Chemical Composition (%) σY(SM) σTS,(SM) 

σY(SM)

σTS(SM)

 ε 

C Si Mn P S V Nb Ti MPa MPa max % 
X42* 0.22 0.45 1.3 0.025 0.015 0.05 0.05 0.04 290 420 0.93 23 
X46* 0.22 0.45 1.3 0.025 0.015 0.05 0.05 0.04 320 435 0.93 22 
X52 0.16 0.45 1.65 0.02 0.01 0.07 0.05 0.04 358.5 455 0.93 21 
X60 0.16 0.45 1.65 0.02 0.01 0.08 0.05 0.04 413.7 517 0.93 19 
X65 0.16 0.45 1.65 0.020 0.01 0.09 0.05 0.06 447.9 530 0.93 18 
X70 0.17 0.45 1.75 0.02 0.01 0.10 0.05 0.06 482.3 565 0.93 17 

X80** 0.03 0.21 1.76 0.016 0.004 0.09 0.02 555 625 0.93 20 
X100 0.06 0.24 2 0.01 0.003  0.1 690 760 0.97 23.6 

*Chemical composition is showed in maximum amount for each component 
**Chemical composition is taken from Ref. [10] 
 

Fluid Flow in Pipes  

As liquids and gases are transported through the pipeline, the energy loss due to the friction 

between the fluid transported and the surface of the pipe will lead to a pressure drop, the magnitude 

of which is dependent on volumetric flow rate (Q), pipe diameter (D), the total length of the 

pipeline section (LT), physical properties of the fluid and the pipe material. Because transmission 

pipelines are usually operated at high pressures, the flow can be considered as turbulent [8]. 

Therefore, further design equations and parameters need to be defined accordingly.  In classical 

fluid mechanics, the pressure drop (expressed as feet in liquid head) can be evaluated using the 

Darcy-Weisbach equation [11]: 

∆P=
8𝜌𝑓𝐿𝑇

𝜋2𝐷3
𝑄2 Equation 2-1 

where  

http://www.api5lx.com/api5lx-grades/api-5l-x52.php
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Q =
𝜋𝐷2

4
. 𝑣 Equation 2-2 

  

The characteristics of the flow is determined by the dimensionless Reynold’s number, Re:  

Re=
v Dρ

μ
 Equation 2-3 

 

For turbulent flow, i.e. Re>4000, f can be estimated by the Colebrook equation [12] : 

1

√𝑓
= − 2log (

𝑒

3.7𝐷
+

2.51

𝑅𝑒√𝑓
) Equation 2-4 

 

To maintain a desired volumetric flow rate through the pipeline, the applied pressure should exceed 

the pressure drop, ΔP. However, applied pressure should not exceed the level that will lead to a 

fracture in the pipe, i.e., pipeline failure.  To determine the optimum level, stresses developed in 

the pipelines, especially around stress concentrators such as corrosion pits need to be evaluated.  

These stresses will be discussed in detail in later sections.  

Calculation of the wall thickness using ANSI/ASME B31.8 code 

If the diameter of the pipe is calculated and the material type is known, the minimum required wall 

thickness can be calculated by using ANSI/ASME B31.8 code:  

t=
𝑃. 𝐷

2. 𝐹. 𝐸. 𝑇. 𝜎𝑌(𝑆𝑀)
 Equation 2-5 

The design factor, F, is used to indicate the location class of the area where the pipe will be installed 

and operated, which ranges from 1(rural) to 4 (tightly populated) [13]. The F, E and T factors can 

be found in Tables 841.1.6-1, 841.1.7.-1 and 841.1.8-1, respectively, in the ANSI/ASME B31.8 

Standard [7].  
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Construction and maintenance of pipelines 

Construction 

The basic construction steps can be found in literature related to pipeline installation [14], [15]. 

Before the construction of a pipeline begins, crew surveys the area to locate hydrologic features 

and equipment needed for construction. Utilities are marked to prevent any damage during the 

installation. Clearing any vegetation and grading is completed and a trenching machine excavates 

the trench needed to the design elevation of the pipe. In some rocky areas, blasting may be required 

to excavate the trench. Pipe sections, usually manufactured in 80 ft, 40 ft and 20 ft (as determined 

by design engineer), are bent, if needed, and welded into the long continuous sections. Each 

welding joint is verified with radiographic or ultrasonic technology. A protective coating is applied 

as soon as the welding process is finished. The welding joints and coating are electronically 

inspected to detect the presence of any external damage and are repaired (if needed) before 

lowering the pipe into the trench. Long pipeline sections are lowered into trench and placed on 

sandbags to prevent the damage to pipe coating. The coating is rechecked and the ends of the 

section are welded to form the line [7]. A layer of the rock-free dirt is used to cover all around the 

pipe for coat protection. A hydrostatic pressure test is conducted to check the overall integrity of 

the pipeline. Usually, that pressure is 1.5 times greater than MAOP [16] which is maintained for 

several hours. After trench is backfilled, the clean-up and restoration starts and continues until the 

area is restored and revegetated. The warning marks are placed to indicate the presence of 

underground pipeline. A picture from the site work can be found in Figure 2-1.  
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Figure 2-1. Pipeline construction: lowering the pipeline in a trench [17].  

 

Operation and maintenance of pipelines 

The main goal for pipeline company owners and operators is to transport maximum amount of oil 

(or gas) while preventing pipeline failures.  In order to maintain the pressure and the flow of the 

fluid, conducted through the pipe, several pumping and compression stations are installed along 

its route.  

Once pipelines are in service, they are continuously monitored for their integrity.  One 

element of that program is pipeline in-line inspection, typically conducted by using a device that 

is widely known as “Smart Pipeline Intelligent Gadgets (PIGs)”. The PIGs use the magnetic flux 

leakage technique, a non-destructive method, which allows for safe inspection of the pipeline from 

the inside for the presence of external, internal defects and corrosion. The inspection device is 

loaded through a hatch of the end of the pipe. Inside fluid pressure pushes the device through the 

pipe to gather data. During the PIG’s journey, it creates continues magnetic circuits within the pipe 
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wall. When any defect is detected by the device, it changes the flux pattern and the data are stored 

for evaluation once the inspection is completed. The intervals for pigging is determined by an 

integrity management decision for each specific pipeline, which is based on a flow assurance 

analysis of the line and the Code of Federal Regulations, established by 49. CFR. §195.583 [18]. 

(see Table 2-2) 

Table 2-2.Inspection frequency according the Code of Federal Regulations [18] 

If the pipeline is  
located: Then the frequency of inspection is: 

Onshore At least once every 3 calendar years, but with intervals not 
exceeding 39 months. 

Offshore At least once each calendar year, but with intervals not exceeding 
15 months. 

 

Also, PIGs can be used to apply internal pipe coating (epoxy) and for cleaning purposes 

from debris and wax in operating pipelines.  

 

Figure 2-2. The Smart PIG [19]. 
 

 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjegtSxsMDTAhVG5CYKHcjTDd8QjRwIBw&url=http://www.enduropls.com/products/inspection.html&psig=AFQjCNFqzQwJXB9OteSwMfzV7kjZ3aV3Ew&ust=1493236168394619
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Pipeline failures 

Even when a pipeline has been properly designed and constructed, they may still be subjected to 

environmental abuse, coating disbandment, external damage, soil movements and third-party 

damage. Pipeline failures occur due to a combination of environment, stresses and material 

properties. Products released due to a pipeline failure can result in loss of property and 

environmental damage as well as injuries and fatalities. Released hazardous liquids may impact 

wildlife or pollute drinking water reserves. Moreover, pipeline failure can be the cause of 

interruption in supplies of natural gas and oil, which may lead to substantial economic loss [20]. 

According to US DoT Pipeline and Hazardous Materials Safety Administration (PHMSA), the 

economic and human loss due to significant pipeline incidents over a 20-year period (1996-2015) 

are $7 billion; 324 fatalities along with 1, 333 injuries, respectively [21].  

Conservation of Clean Air and Water in Europe (CONCAWE) [22] categorizes the failure 

types that can occur in oil and gas pipelines into five groups:  

1. Mechanical:  this type of failure results from a material defect or construction fault. It is a 

localized1 damage of pipelines which leads to either immediate or future pipeline failure. 

Immediate failure typically occurs by striking with mechanical equipment (e.g. backhoe) 

and produces a leak at the time of damage. This type of damage occurs in three broad 

categories: dents, gouges, and combined dent/gouge defects [23].  

2. Operational: this kind of failure is a result of operational errors, break down or 

insufficiency of safeguarding systems (e.g. mechanical pressure relief system) or from 

operator inaccuracy/error.  

                                                 
1 Localized means that the damage is limited to a part of the pipe’s cross section and extends along a portion of the 
pipe’s axis. 
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3. Corrosion: unprotected pipelines, whether buried in the ground, exposed to the 

atmosphere, or submerged in water, are prone to corrosion. 

4. Natural hazard: this type of failure results from flooding, lightning strikes, shifting land, 

etc.  

5. Third party: this type of failure results from accidental or intentional actions by a third 

party.  

In Figure 2-3, the distribution of failures and their occurrence rates are presented. Note that failure 

due to corrosion represents 30% of all failures.  

 

 
Figure 2-3 Different failure mechanisms (data from Ref. [22]) 

 

Stresses on Pipelines 

When a pipeline or pressure vessel is pressurized, a two or three-dimensional stress state is 

developed within the pipe walls. For open-ended pipelines in service, radial and tangential (hoop) 

stress components will be present, while for closed-ended pressure vessels used in burst 
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experiments, a third component called longitudinal (axial) stress will also be present  [24]. These 

are schematically shown in Figure 2-4.  

 

 

Figure 2-4 Stresses in pipe due to internal pressure 

 The hoop stress, H, is found by: 

σH=
Piri

2-Po𝑟o
2

𝑟o
2-𝑟i

2 +
ri

2ro
2(Pi-Po)

r2(ro
2-ri

2)
 Equation 2-6 

Radial stress, R, is found by: 

σR=
Piri

2-Poro
2

ro
2-ri

2 -
ri

2r𝑜
2(Pi-Po)

r2(ro
2-ri

2)
 Equation 2-7 

Longitudinal stress, L is found by: 
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σL=
Piri

2-Po𝑟𝑜
2

𝑟o
2-𝑟i

2  Equation 2-8 

When the ratio D/t > 20, the pipe is considered thin-walled, and the stress distribution through the 

wall thickness can be assumed to be uniform. Consequently, the stress equations can be simplified 

as:  

𝜎𝐻 =
𝑃𝑖𝑟

𝑡
 Equation 2-9 

𝜎𝑅 = 0   Equation 2-10 

𝜎𝐿 =
𝑃𝑖𝑟

2𝑡
 Equation 2-11 

The overall effective von-Mises stress can then be found by [24].   

σVM=√
1

2
[(σH-σR)2+(σR-σL)2+(σL-σH)2] Equation 2-12 

By examining Equation 2-6 through Equation 2-11, it can be seen that the hoop stress is the largest 

stress component. Therefore, when a pressurized pipe fails, failure results in a longitudinal tear. 

The hoop stress is the main design and operating stress of pipelines; pipe material is selected based 

on desired internal pressure and hence the hoop stress. When pipelines are in use, internal pressure 

is adjusted based on the calculated hoop stress, such that:  

( )

0.4 0.8h

Y SM




      for D ≥ 400mm 

( )

0.72 0.8h

Y SM




      for D < 400mm 
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Corrosion defects in transmission pipelines 

Some sections of high-pressure pipelines, especially with a long history of operation, may 

experience corrosion which can jeopardize the integrity of the pipeline. Corrosion defects can 

occur on either the external or internal surface of the pipelines (Figure 2-5).   External corrosion 

can be the result of fabrication faults, coating or cathodic protection problems, residual stress, 

cyclic loading, temperature or local environment (soil chemistry).  However, the most frequent 

root cause corrosion damage is coating failure. Corrosion on the internal surface of the pipeline 

occurs due to contaminants in the products such as small sand particles, amino acids, etc.   

 

                                   (a)                                                                    (b) 

Figure 2-5. Examples of pipes with (a) external [25] and (b) internal corrosion [26]. 

Defect measurement and interaction 

Each method of assessing locally damaged areas is based on the assumptions of a simplified 

profile. The dimensions of the corrosion defect is defined by its maximum length and depth in the 

axial and longitudinal directions (Figure 2-6).  The width of the corrosion pit is not taken into 

account. 
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Figure 2-6 Dimensions of corrosion defect profile [27].  
 

Corrosion defects may occur as a cluster of multiple corrosion pits. An example is provided in 

Figure 2-7.  Note that the contour plot shows multiple pits with various depths. 

 

Figure 2-7 Contour plot of a corroded area in a pipe that fractured, showing multiple pits [28]. 
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Defects in close proximity to each other usually act more like a single but larger defect.  If these 

defects are not treated together in pressure calculations, the pipeline can fail at a lower pressure 

than predicted. Corrosion pits are considered interacting if the circumferential or/and longitudinal 

distance between flaws is equal to or less than three times of the pipe thickness.  BS 7910 [27] has 

additional interacting rules for thinned areas:  

- The axial distance between flaws is equal or less than the defect length or width of the 

smallest flaw;  

- The circumferential distance between flaws is equal or less than the length or width of the 

smallest flaw.  

 

Figure 2-8 Interaction between flaws [27].  
 

In such cases interacting defects should be evaluated as a single flaw with:  

-  L=L1+L2+SL 

- w=w1+w2+SC 

The depth will be equal to the deepest point of corrosion defect or cluster of pits.  
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The Effect of Corrosion Pits on Stresses Generated in Pipes 

Corrosion pits act as stress concentrators [29] and contribute to premature failure of pipelines.  An 

example of a failed pipe is presented in Figure 2-9.  Note that the fracture, once initiated, 

propagated longitudinally at first, and subsequently deviated from its path due to the opening of 

the pipe along the crack. 

To understand the effect of pits, a review of fracture mechanics principles is necessary. 

Such a review is provided in Ref. [30] for through-wall defects and is summarized below. 

 

 

Figure 2-9. A pipe that failed due to surface defects [31]  
 

 In pressurized cylinders made of moderately tough to tough materials, the hoop stress is 

found by: 
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𝜎𝐻 =
𝐾𝑐

𝑀√𝜋𝛾
𝐿
2

 Equation 2-13 

 

where γ is a correction factor to account for the plastic zone surrounding the defect upon loading 

that incorporates the model by Dugdale [32] for yielding in steels, and can be found as: 

γ = (
πMσh

2σ̅
)

2

ln [sec (
πMσh

2σ̅
)]

2

 
Equation 2-14 

 

The correction factor, γ, incorporates M which is a factor introduced by Folia to account for 

bulging around a crack tip in a pressurized cylindrical vessel [33], and is commonly referred to as 

Folia’s factor: 

M=√1+0.8 (
L

√Dt
)

2

 Equation 2-15 

The flow stress of the material is an empirical number originally suggested by Hahn et al. [34] to 

represent the entire stress-strain curve and work hardening behavior with a single value, and is 

found as: 

σ̅=ξσY + σi Equation 2-16 

 

The parameters ξ and σi are empirical constants.  In the original formulation, ξ and σi were taken 

as 1.1 and 0, respectively.  

For extremely tough materials, i.e., those metals that can absorb large amounts of energy 

by plastic deformation prior to fracture,  

Kc

σy

2

L
=7 Equation 2-17 
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The change in hoop stress as a function of crack length for X52 grade steel along with data by 

Duffy et al. [35] for machined pits is provided in Figure 2-10 [30]. 

  

Figure 2-10 Hoop stress as a function of crack length for X52 grade pipe steel [30] 
 

Figure 2-10 shows close agreement between predicted and measured hoop stress values for 

machined pits in X52 steel.  This approach, commonly referred to as NG-18, has several 

weaknesses: 

• The formulation has been deemed “complex and difficult to use” [36]. That is one of the 

reasons why easier assessment techniques have been developed and used in the pipeline 

industry.  These assessment techniques are reviewed in the next section. 

• Data were obtained by machined pits and not from actual corrosion pits. 

L 

Kc

σy

2

L
=7 
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• The flow stress approach proposed by Hahn et al. attempts to represent the entire stress-

strain curve of the material with a single value, the flow stress. 

• The correction for plastic zone extension in ductile materials is valid if the “correcting 

function predicts the plastic behavior” [30] i.e., work hardening in plastic deformation. 

The last point implies that an accurate expression of the work hardening characteristics is 

important.  Therefore, a review of constitutive equations in the literature that express the true 

stress-true strain relationships in metals is necessary. 

Constitutive Equations for σ-ε Relationships 

The true stress-true strain relationship in metals can be expressed by several constitutive equations.  

The most commonly used equations are those developed by Hollomon [37], Voce [38], Ludwik 

[39] and Swift [40], and are provided below: 

Hollomon Equation:    

Hn
pHK   Equation 2-18 

 
Voce Equation: 

pVK
0 e)( 

   Equation 2-19 

    
Ludwik Equation: 

Ln

pLL K    Equation 2-20 

    
Swift Equation: 

Sn
SpS )(K   Equation 2-21 
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Note that the Voce, Ludwik and Swift equations have three parameters while the Hollomon 

equation has two that need to be estimated.   The Voce equation was found to provide most accurate 

results for aluminum alloys [41] - [42], where all four equations provided very similar fits to a cast 

Mg alloy [43].  Choudhary et al. [44] found that the Voce equation provided a better fit than the 

Hollomon, Ludwik and Swift equations to 316 austenitic stainless steel, tested at room and 

elevated temperatures.  Mok et al. [45] conducted tensile tests on several grades of pipe steel and 

used only the Hollomon equation in their analyses. Therefore, it is not clear which constitutive 

equation should be used for pipe steels. 

Review of the previous FEM studies:  

Several analyses and experiments have been done to determine the remaining strength of the pipe 

sections with external flow [25], [45], [46]. In these studies, the remaining thickness of the pipe 

after corrosion was modeled using a four elements through the remaining ligaments. For some 

studies, Finite Element Analysis (FEA) was performed as if the pipe had an open end, while in 

reality the actual pipe section was acting as a pressure vessel. Most of those studies have been 

conducted by using data obtained from machined grooves, which have much simpler geometries 

than actual corrosion pits. Additionally, all available assessment techniques and research reported 

in the literature have disregarded any possible effect of the corrosion pit width. Similarly, corrosion 

pit width has not been investigated in FEM studies.  

    

Failure Criteria 

In FEM studies, a criterion is needed to define when fracture takes place.  In the literature, several 

criteria are used for predicting failure due to plastic collapse in steel pipes.  The two most widely 
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used are (i) stress-based, and (ii) strain-based failure.  The accuracy of results is affected by the 

initial selection of this criterion. 

Stress-based failure criterion has been used by several researchers [47], [48], [49] to 

define the failure stress.  Although fracture in the steel is known [31] to take place when stress 

reaches the ultimate tensile strength, ST, some researchers modified this criterion to obtain better 

agreement between experimental and predicted results.  For instance, Chiodo et al.  [50] chose a 

stress level corresponding to 90% of ultimate tensile strength as failure stress. However, in most 

studies, the true stress at the ultimate tensile strength was taken as the failure criterion [47].  

A number of strain-based failure criteria have been used in the literature in FEM studies, 

including the void growth model developed by Rice and Tracey [51], the model developed by 

Gurson [52], the continuum damage model proposed by Lemaitre [53], and the stress-modified 

critical strain (SMCS) model developed by Hancock and Mackenzie [54]. Among these models 

SMCS is easier to implement in FEM studies because of the lower number of parameters 

required.  

Oh et al. [55], [56] have recently applied the SCMS model to X52 grade steel. Stress 

triaxiality, Ts, is found by; 

e
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   Equation 2-23 

 

The value of stress triaxiality for round bars is roughly equal to 1/3 [57].  Similarly, 
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      2
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   Equation 2-24 

True fracture strain, as proposed by Rice and Tracey [51] can be found as; 

𝜀𝑓 = 𝐴𝑓𝑒 (−
3

2

𝜎𝑚

𝜎𝑒
) Equation 2-25 

where Af is an empirical constant, determined experimentally.  If the true fracture strain in tensile 

testing, 𝜀𝑓
∗, is known, then:  
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3exp

e
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f

f  
Equation 2-26 

 

Many researchers have used a stress-based failure criterion in their studies, with accurate results 

regardless of the pipe wall thickness. Recently, a stress-modified strain criterion (SMSC) has been 

reported to yield accurate results for thicker and low-level pipe grade (X42) [46], but less accurate 

results for mid-level X60 material.  
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3. A Review of Assessment Techniques 

Over the past forty years, parameters that affect the remaining strength of the corroded pipe section 

have been investigated, and several assessment techniques have been developed. The parameters 

are [25]:  

- Internal pressure 

- Pipe design parameters (pipe outer diameter, pipe wall thickness) 

- Defect parameters (depth and length of the defect) 

- Material properties (yield strength and ultimate tensile strength) 

In studies performed on pipe sections with different corrosion profiles (either machined or natural) 

the effect of the width of the corrosion has been assumed to be negligible [50].  Therefore, the 

parameter for corrosion width effect has not been included in any assessment method, for 

determining the remaining stress of pipes containing surface flaws.  

It was recognized in early studies performed on pipe sections with defects that some 

amount of metal loss can be tolerated without removing the pipe from service [58]. Therefore, 

many studies have been performed to develop evaluations methods to be used by operators to 

assess whether the condition of the pipe section is safe under operating conditions so that a decision 

to repair or replace the pipe can be made in a timely manner. All assessment techniques are based 

on the NG-18 Ln-sec equation (Equation 3-1) for failure of the part-wall flaw, with the differences 

in approximation of the Folia’s factor, the corrosion defect profile and flow stress. 

Cv
12
A Eπ

8cσ̅
= ln sec (

πMσH

2σ̅
) 

 
Equation 3-1 
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Assessment techniques are used to predicting the remaining strength of a pipe section 

whose walls have been thinned by corrosion.  This allows the pipeline operator to determine safe 

pressure levels for pipe sections affected by corrosion and make a decision if pipe repair or 

replacement is necessary.  Three of the most widely used techniques are discussed below. 

ASME B31G 

The corrosion assessment codes in the United States, Canada and Europe are based on ASME 

B31G criterion for the evaluation of part-wall defects. These codes were established on full-scale 

burst experiments conducted by Keifner and Vieth on pipes containing longitudinal machined 

grooves [59].  

In the B31G criterion assumes that failure is controlled by the hoop stress, which is the 

maximum principal stress. Because stress is inversely proportional to the cross-section of metal 

loss area, B31G, with given maximum defect parameters, assumes that the complex shape of the 

corrosion profile can be estimated by a parabola.  Then, the hoop stress level at failure can be 

estimated with B31G criterion as [58]:  

σH=σ̅ [
1-

2
3 (

d
t )

1-
2
3 (

d
tM)

] Equation 3-2 

𝜎 = 1.1𝜎𝑚(𝑌𝑆) Equation 3-3 

𝐴 =
2

3

𝑑

𝑡
 Equation 3-4 

𝑀 = √1 + 0.8(𝐿
𝐷𝑡⁄ )

2
 Equation 3-5 

For long corrosion grooves, when ( L

√Dt
)

2

> 20, the hoop stress is found by:  
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σH=σ̅ (1-
d

t
) Equation 3-6 

The failure (burst) pressure (Pf) can be found by:  

Pf=
2t

D
σH Equation 3-7 

The B31G is the most widely-used assessment technique among the pipe operators because of its 

simplicity. However, this approach is very conservative, because of the corrosion defect 

approximation. This can lead to unnecessary pipe repairs and removals, while pipe could still be 

safely operated.  

ASME MB31G 

To reduce the conservatism in the B31G criterion, several modifications have been introduced in 

the corrosion profile representation, Folia’s factor and flow stress and a modified B31G (MB31G) 

criterion has been accepted [58].  

σH=σ̅ [
1-0.85 (

d
t )

1-0.85 (
d

tM)
] Equation 3-8 

σ̅=σY+68.9  Equation 3-9 

𝐴 = 0.85
𝑑

𝑡
  Equation 3-10 

M=√1+0.6275 (
L

√Dt
)

2

− 0.003375 (
L

√Dt
)

4

 Equation 3-11 
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 For (
L

√Dt
)

2

>50,               M=3.3+0.032 (
L

√Dt
)

2

 Equation 3-12 

𝑃𝑓 =
2𝑡

𝐷
𝜎𝐻 =

2𝑡

𝐷
𝜎 [

1 − 0.85 (
𝑑
𝑡 )

1 − 0.85 (
𝑑

𝑡𝑀)
]     Equation 3-13 

RSTRENG 

RSTRENG is the computer based software for prediction of Pf for pipelines containing external 

corrosion defects. The estimation of parameters is same as MB31G, with exception of the area of 

metal loss. RSTRENG uses as an effective area method, where area is calculated at every 

increment of the longitudinal length of the defect.  Figure 3-1 shows corrosion profiles and the 

approximated corrosion shape used in the assessment tools B31G and RSTRENG. 

Actual corrosion defect 

 

B31G corrosion profile 

 

RSTRENG corrosion profile 

 

Figure 3-1 Corrosion profiles [25] 
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The conservatism level of various assessment criteria presented above as a function of complexity 

can be found in Figure 3-2.  

 

Figure 3-2 Complexity versus conservatism in assessment techniques for pipeline integrity  
 

DNV-RP 

The stress capacity equation for the DNV-RP method also has some minor changes in 𝜎, M and in 

rectangular corrosion profile representation.  

σH=σ̅ [
1- (

d
t )

1- (
d

tM)
] Equation 3-14 

σ̅=σTS Equation 3-15 
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𝐴 =
𝑑

𝑡
 Equation 3-16 

M=√1+0.31 (
L

√Dt
)

2

 Equation 3-17 

The burst pressure is calculated differently than in other assessment techniques, and can be found 

by:  

Pf=1.05
2t

(D-t)
σH=1.05

2t

(D-t)
σ̅ [

1- (
d
t )

1- (
d

tM)
] Equation 3-18 

Table 3-1Error! Reference source not found. presents the chronology of assessment techniques 

along with the important technical differences.  Note that the NG-18 was issued first, and served 

as a base for the modern, simplified assessment techniques.   

Table 3-1. Chronology of standard assessment techniques 

 

Fracture 
Mechanics Metal loss evaluation 

NG-18 Ln-Sec 
equation 

ASME 
B31G ASME MB31G RSTRENG DNV-RP 

Year issued  1973 1984 1989 1990 1999 
Charpy impact 

energy 
included? 

Yes No No No No 

Folia’s factor Exact Simplified Exact Exact Simplified 
Flow stress σ̅=σY+68.9 MPa σ̅=1.1σY σ̅=σY+68.9 MPa σ̅=σY+68.9 MPa σ̅=σTS 

Pit area A=
π
4

dL A=2/3 (
d

t
) A=0.85 (

d

t
) Exact profile A= (

d

t
) 

Fracture Ductile and 
brittle 

Ductile 
initiation 

Ductile 
initiation 

Ductile 
initiation 

Ductile 
initiation 

 

Calculation of the burst capacity of a corroded pipe section with the assessment techniques listed, 

is multistep process requiring input parameters such as a material’s properties, pipe design and 

defect dimensions. After calculating the output pressure, the remaining strength of the pipe must 
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be compared to the minimum specified material parameter (e.g. specified minimum yield strength), 

so the operator can decide whether the pipe should be replaced or repaired. To make the evaluation 

easier, curves for each assessment method and pipe material type have been developed that allows 

the operator to quickly see if the defect length and depth threaten pipeline integrity.  Figure 3-3 

shows one such curve for the B31G, MB31G and DNV-RP assessment techniques, when X52 pipe 

operates at hoop level pressure equal to 100%m(YS).   The operator uses the defect length and depth 

to locate a point on the graph.  If the point is on or below the curve shown, the defect is “acceptable” 

(pipe can be operated at MOP). If the point is above the curve, the defect is “rejectable” and the 

pipe cannot operate at MOP and should be repaired or replaced. The equations for the curves can 

be found in Level 0 evaluation section below (Equation 3-19 - Equation 3-21).  

 

 

L/√Dt 

Figure 3-3 The normalized defect length function of normalized defect depth at 100%m(YS). 
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Evaluation methods 

When the corroded area is evaluated, operators may choose a Level 0 through Level 3 analysis. 

The selection of the evaluation method is based on the type of available data. For all levels the 

specified minimum materials properties should be used unless actuals values are known with 

adequate confidence.  

Level 0 evaluation 

This evaluation level involves the use of the type of charts shown in Figure 3.3.  These reference 

tables make it possible to determine maximum allowable defect length with depth with appropriate 

pipe sizes.  This level of evaluation has been approved in the earlier edition of ASME B31G and 

can be found in Ref. [58].  In the charts used in level 0 evaluation  were calculated from equations 

presented in Level 1, where the predicted level of σH =72% σm,(YS) to obtain 1.39 factor of safety.  

The criterion of acceptable combinations of the defect sizes can be written as: 

        B31G 
1 −

2
3

𝑑
𝑡

1 −
2
3

𝑑
𝑡𝑀

=
𝜎𝑚(𝑌𝑆)

1.1𝜎𝑚(𝑌𝑆)
= 0.91 Equation 3-19 

       MB31G 
1 − 0.85

𝑑
𝑡

1 − 0.85
𝑑

𝑡𝑀

=
𝜎𝑚(𝑌𝑆)

𝜎𝑚(𝑌𝑆) + 68.9𝑀𝑃𝑎
 Equation 3-20 

  DNV-RP-F101 
1 −

𝑑
𝑡

1 −
𝑑

𝑡𝑀

=
𝜎𝑚(𝑌𝑆)

𝜎𝑚(𝑇𝑆)
  Equation 3-21 

In Table 3-2, presents a table for Level 0 evaluation from ASME B31G [58] for outer pipe 

diameters ranging between 762 mm, and 914 mm. 

Table 3-2. Acceptable defect dimensions in accordance with pipe design parameters [58]. 
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As an example, in Table 3-3 presents a case study with all pipe design and defect parameters along 

with burst pressure experiment information:  
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Table 3-3 Burst pressure experiment data 

D 
(mm) 

t 
(mm) 

d 
(mm) L (mm) w 

(mm) 
σY 

(MPa) 
STS 

(MPa) 
Pf-exp. 
(MPa) 

H 
(MPa) 

%m(YS) 

762.00 9.53 3.71 139.70 149 414.10 534.04 12.68 507.20 141.47 
 

From Table 3-2, the maximum acceptable defect length for the case from Table 3-3, is 

approximately equal to 94 mm, when the hoop stress is 72% m(YS). But the pipe section affected 

by corrosion, could withstand 141.47%m(YS), when length of the defect is 139.7 mm.  

Level 1 evaluation  

This level relies on simple calculations with the single measurement of the maximum defect 

dimensions. The equations for a residual stress estimation of the corroded area, used in assessment 

techniques, are presented in Equation 3-2 through Equation 3-17 from sections above.  

Level 2 evaluation 

Level 2 combines more details than previous levels, for a more accurate estimation of residual 

strength. This method relies on several detailed measurements of the corroded profile throughout 

the metal loss area. As the method includes repetitive computations, computer based software 

could be used. One of the well-known software packages for the effective area evaluation is  

RSTRENG.  

Level 3 evaluation 

This level of evaluation involves a detailed analysis, such as FEA of the metal loss area. The 

analysis should be performed as accurately as possible, considering all factors, loadings and 

boundary conditions, along with the material’s stress- strain properties.  
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Nonlinear FEA of corrosion defect in pipelines and pressure vessels 

The regions affected by corrosion can be assessed using an elastic-plastic nonlinear finite element 

analysis. The steps used in almost all studies [27], [46], [60], for plastic collapse prediction are as 

follows:  

1. Modeling – create FEM with information available for pipe geometry and defect 

dimensions;  

2. Material properties – stress-strain properties of the material should be introduced with 

adequate accuracy, along with other properties;  

3. Mesh design – the finite element mesh should be designed as fine as possible at the areas 

of interest, so the mesh would not have significant effect on stress results;  

4. Reproduce test conditions with applied structure constraint and loads;  

5. Perform a non-linear analysis;  

6. Based on chosen failure criterion examine the local variation of the stress or strain states.  
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4. Research Questions and Plan  

Based on the discussion provided above, the following research questions were developed: 

• Which constitutive model should be used for pipeline steels? 

• In FEM studies, which failure criterion provides better results? 

• Do analytical models in literature, such as ASME B31G, MB31G and DNV-RP-F101, provide 

reliable results? 

• Does the width of the corrosion affect the burst capacity of the pipe section?  

• Do common techniques of using machined grooves, in lieu of real corrosion defects, give 

reliable results? 

These research questions will be answered below in five phases. In Phase 1, constitutive equations 

will be compared by using data from the literature for two pipeline grade steels.  In Phase 2, a 

preliminary FEM study will be conducted by using experimental data from the literature to 

compare two failure criteria.  By using the results in Phases 1 and 2, an FEM study will be 

conducted in Phase 3 to replicate experimental data from real corrosion cases with all dimensions 

known.  The results developed in Phase 3 will be extended to replicating experimental data with 

real corrosion but missing dimensions in Phase 4.  In addition, the effect of the corrosion pit width 

will be investigated by a FEM study. In Phase 5, the assessment methods will be evaluated by 

using real and synthetic corrosion data. 
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5.  Phase 1: Evaluation of the Constitutive Equations for Work 

Hardening  

Constitutive Equations 

True stress-true plastic strain data in the plastic regions of X42 [46] and X60 [45] specimens were 

used to assess the fits of the four constitutive equations.  To determine the best fits, the Newton-

Raphson method was used to minimize the root mean square error, RMSE; 

 
an

ŷy
RMSE )i()iexp(

n
1i






  Equation 5-1 

 

where a is the number of parameters to be fitted and n is the number of data points.  The coefficient 

of determination, R2, was also found for each fit;  

tot

e2

SS
SS1R   Equation 5-2 

𝑆𝑆𝐸 = ∑(𝑃𝑖𝑓−𝑒𝑥𝑝 − 𝑃𝑖𝑓−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2

𝑛

𝑖=1

 Equation 5-3 

𝑆𝑆𝐸 = ∑(𝑃𝑓−𝑒𝑥𝑝 − 𝑃𝑓−𝑒𝑥𝑝
̅̅ ̅̅ ̅̅ ̅̅ )

2
𝑛

𝑖=1

 Equation 5-4 

𝑃𝑓−𝑒𝑥𝑝
̅̅ ̅̅ ̅̅ ̅̅ =

1

𝑛
∑(𝑃𝑓−𝑒𝑥𝑝)

𝑖

𝑛

𝑖=1

 Equation 5-5 

 

The values of the estimated parameters for the four constitutive equations, as well as RMSE and 

R2 for each fit to X42 and X60 data are presented in Table 5-1. The R2 values in each case exceed 

0.97, indicating that all constitutive equations can be used to characterize the true stress–true strain 

relationships 



38 
  

The fits provided by each constitutive equation to the X42 and X60 data are provided in 

Figure 5-1. In Figure 5-1 a, the Voce equation provides a better fit, as indicated by higher R2 in 

Table 5-1. However, the Hollomon equation follows the initial part of the curve more closely until 

the true stress corresponding to the ultimate tensile strength.  For X60, the constitutive equations 

with three parameters provide almost the same fit in Figure 5-1 b and therefore their R2 values are 

essentially identical.  The Hollomon equation still provides a very respectable fit.  Based on this 

analysis, all four-constitutive equation can be used to represent true stress-true strain curves. The 

Hollomon equation, with two parameters, was chosen for its simplicity. 

 

Table 5-1. Estimated parameters for the constitutive equations for X42 and X60 with calculated 

RMSE and R2 of each fit. 

  X42 X60 

Equations Parameters Estimate RMSE 
(MPa) R2 Estimate RMSE 

(MPa) R2 

Hollomon 
KH (MPa) 644.0 

11.85 0.974 
1107.6 

34.82 0.972 
nH 0.118 0.229 

Voce 

σ∞ (MPa) 622.4 

8.98 0.986 

1801.7 

13.68 0.996 σ0 (MPa) 387.5 587.4 

KV 5.33 0.64 

Swift 

KS (MPa) 644.2 

12.77 0.971 

1007.0 

12.83 0.997 εS 0.005 0.339 

nS 0.121 0.509 

Ludwik 

σL (MPa) 133.5 

13.11 0.969 

533.6 

12.73 0.997 nL 0.156 0.698 

KL (MPa) 511.4 632.6 
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(a) 

 

(b) 

Figure 5-1. The fits of constitutive equations to experimental data for (a) X42, and (b) X60. 
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6. Phase 2: Evaluation of Failure Criteria 

Three failure criteria have been found in the literature, indicating pipes will burst when: 

1. True stress reaches 90% of true ultimate tensile strength, i.e., σTS,  

2. True stress reaches σTS 

3. True strain reaches stress modified critical strain, εf. 

The first one was proposed by Chiodo et al. [61] without any theoretical basis and therefore was 

not investigated further in this study.  Criteria 2 and 3 were evaluated by using data from the 

literature. 

The burst pressure data reported in the literature for low and mid-grade pipe steels, namely 

X42 and X60, were used for comparing FEA results with experimental data.  Burst experiments 

with API X42 pipe were conducted by Alang et al. [46]  with various longitudinal machined defects 

to simulate corrosion damage. The rectangular defect shapes on the pipe surface were machined 

using a Computer Numerical Control (CNC) machining center. Detailed dimensions of the pipes 

with artificial (machined) defects are given in Table 6-1 with corresponding failure pressure 

values. The nominal outer diameter of the pipe was 60 mm and the pipe section length was kept 

constant at 600 mm.  

Table 6-1. Burst test data for X42 [46] 

Test ID Material D (mm) t (mm) d (mm) L (mm) y(MPa) Pb(MPa) 
EX1 X42 60.00 5.80 4.10 49.70 284.70 54.00 
EX2 X42 60.00 5.60 3.50 49.80 284.70 61.00 
EX3 X42 60.00 5.55 4.00 69.70 284.70 46.00 
EX4 X42 60.00 5.62 4.50 50.00 284.70 44.00 

*Test ID’s are consistent with those used in Ref. [46] 

Burst tests were conducted by Mok et al. [62] for 20 vessels with different orientation defects in 

X60 grade pipes. The nominal outside diameter was 508 mm and wall thickness was 6.4 mm. 
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Similarly, single and multiple defects with various sizes and orientations were machined on the 

pipes.  Only five pipes with a single longitudinal defect (rectangular shape) were included for 

analysis in the present study.  The details are presented in Table 6-2.  

Table 6-2. Burst test data for X60 [62] 

Test ID Material D (mm) t (mm) d (mm) L (mm) Y(MPa) Pb(MPa) 
10 X60 508.00 6.40 2.56 381.00 540.00 11.25 
11 X60 508.00 6.40 2.56 1016.00 540.00 11.55 
12 X60 508.00 6.40 3.46 900.00 540.00 8.00 
13 X60 508.00 6.40 3.20 1000.00 540.00 8.40 
14 X60 508.00 6.40 2.18 900.00 540.00 11.80 

*Test ID’s are consistent with those used in Ref. [62] 

For criterion 2, the reported values of 464.4 MPa [46] and 672.5 MPa [62] were used for X42 and 

X60, respectively. Based on the true stress-strain data presented in Figure 5-1, the value of  𝜀𝑓
∗ for 

X42 and X60 is 1.05 and 0.8, respectively.  Consequently, Af is calculated by using Equation 2-25 

as 1.732 and 1.319 for X60 and X42, respectively.  

To predict burst pressure of pipes with defects geometries outlined in Table 6-1 and Table 

6-2, finite element analyses were conducted to calculate local stresses and strains. In FEA, the 

evolution of stress and strain can be displayed over the loading history, allowing the stress 

triaxiality and equivalent strain to be calculated by using Equation 2-22 through Equation 2-24. 

Subsequently, the true fracture strain can be estimated from Equation 2-25. Failure pressure is then 

determined as the pressure that causes the equivalent strain to reach the fracture strain.  Similarly, 

failure pressure that causes the local stress to reach σTS can be determined. 

A commercial Finite Element software, Siemens NX [63], was used to simulate stress and 

strain generation while internal pressure was increased in the pipe containing an external surface 

flaw.  The model was meshed with hexahedral elements. As failure of the pipe in experimental 

works was noticed in remaining ligament of thinned wall, the FE mesh was applied sufficiently 
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small around the defect area. To ensure that the mesh is sufficiently fine, a preliminary mesh 

convergence study was performed until the stress variation between runs fell below 5%. The 

quarter of the pipe with sufficiently fine mesh is shown in Figure 6-1. 

 
Figure 6-1. Quarter of the pipe model with applied mesh on it 

 

The symmetry conditions were applied on symmetry planes of the quarter model (X=0, Y=0). It is 

sufficient to fix (Z=0) the nodes far away from the defect-interest area to eliminate rigid body 

motion.  Failure pressure analysis was studied for internal pressure loading only. For each pipe 

model, the internal pressure load was applied normal to pipe inner surface and monotonically 

increasing throughout the analysis. Except of atmospheric pressure, external loadings were not 

considered.  
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FEA results 

For case studies EX1 through EX4 pipe section length (L) was kept 600mm for all case 

experiments. The stress distribution along the quarter pipe section is shown in Figure 6-2. After 

certain distance along the pipe axis, the stresses can be assumed to be significantly lower than the 

critical stress.  Therefore, the pipe section investigated in FEA can be reduced while maintaining 

reliable results.  

 

Figure 6-2. Stress distribution along the pipe axes.  
 

Pipe section length was reduced to two times of the outer diameter, as suggested by an expert from 

industry [64].  Hence with an outer diameter of 60 mm, the pipe section modeled was 120 mm 

long. The comparison of the failure pressure results between two pipe section lengths is presented 

in Table 6-3, which shows identical results for lengths of 600 and 120 mm pipe lengths.  
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Consequently, subsequent FE analyses were performed on pipe section length equal to two times 

the outer diameter. 

Table 6-3. FEA results for full and reduced pipe section length. 

Case No. Pf-experimental, MPa Pf,l=600mm, MPa Pf,l=120mm, MPa 
EX2 61.00 61.95 61.95 

 

The results of the FEA for X42 and X60 data for the failure criterion based on stress are 

presented in Figure 6-3, with experimental and predicted burst pressures.  Note that the coefficient 

of determination, R2, is 0.79 and 0.90 for X42 and X60 data, respectively.  Therefore, the criterion 

that failure takes place when the local stress reaches σTS is reliable and can be used in other FEA 

studies.  In comparison, the burst pressure results obtained for both datasets by using the stress-

modified critical strain criterion are presented in Figure 6-4.  Although the R2 for X42 is 0.80 and 

therefore respectable, there is a significant lack of fit for X60, resulting in R2 < 0.  Based on these 

results, the failure criterion based on stress performs better in FEA.  Hence, this criterion was used 

in Phases 3-5. 
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(a) 

 

(b) 

Figure 6-3. Experimental vs. predicted failure pressure using FEA for (a) X42 and (b) X60 by 

using the stress failure criterion. 

R2=0.79 

R2=0.90 
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(a) 

 

(b) 

Figure 6-4. Experimental versus predicted failure pressure using FEA for (a) X42 and (b) X60 by 

using the stress-modified critical strain criterion. 

R2=0.80 

R2<0 
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7. Phase 3 – FEA of Real Corrosion Data 

Data used for the research 

In almost all investigations on the effect of surface defects on fracture properties of steel pipes, 

artificial (machined) defects have been used [25], [45]- [46], [60], [65]- [66]. These studies have 

provided valuable insights for FEA techniques that are used in the current study. However, design 

engineers need data based on real corrosion damage on the performance of pipes.  

To the author’s knowledge, only very limited data are available in the literature for real corrosion 

and characterization of corrosion damage in the form of pit contours.  One of the rare studies with 

such data is described in PRCI report No: L51689  [28]. The database contains 124 test results, for 

real corrosion as well as machined defects. The first 86 test correspond to those presented in Ref. 

[67], In Ref. [67] some differences exist from those presented in L51689. Specifically,  

• Some differences in actual yield strength  

• Some wall thickness values may differ as much as 3%   

• Some of the values of SMYS are given wrong in [67] 

• Major failure pressure difference in case 51 

Based on these differences, the data listed in Ref. [28] were used in the current study. A short 

introduction to the data and experimental tests is given below:  

Cases 1-25 

Experiments were conducted on corroded pipe specimens by Texas Eastern Transmission 

Corporation. Experimental cases 9 through 25 were conducted repeatedly on one specimen with 

successive leak repairs. The defects dimensions are given in terms of longitudinal profile. 

However, for these cases the contour maps were never developed.   
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Cases 26-31  

These experimental cases were conducted on six separate pressure vessel specimens, fabricated 

from line pipes removed from service due to the presence of corrosion defects. Contours maps 

were provided for these cases and are presented in Appendix C from PRCI Report [28]. 

Case 32-92 
 
The test specimens were made from corroded line pipe samples contributed by various pipeline 

operators. Cases 32 through 42 were conducted with PRCI funding. All specimens contained 

external corrosion defects except case 83, which contains internal corrosion. Failure pressures for 

the cases 48-51, 79-81, 83-86, were recorded, while pipe sections were in service.  Defect contour 

maps are available for some cases and can be found in Appendix C from PRCI Report [28].  

Finite element analysis 

For FEA, eight cases for pipe X52 were selected from the data described above. For the cases 27-

31, 51, 80 and 81, the contour maps were provided, and were used in determining the average 

defect width of corrosion pits. For the cases 27 - 31, 68-78 and 88 the tensile strength of the pipe 

materials was not recorded. So, from the cases 1-5, 51, 80, 81, 92, where full material properties 

were given for X52, a linear relationship between σY and ST was found, as presented in Figure 7-1.  

This linear relationship can be written as: 

 

STS(MPa)=0.697σY+246.24  Equation 7-1 
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Figure 7-1 The plot describing the linear relationship between σY and STS 

 

As discussed above, constitutive equation by Hollomon [37] was used to represent the σ-ε curve 

in FEA.  By definition, necking begins when the Considere criterion is met, at which the maximum 

engineering stress, i.e., ultimate tensile strength is achieved.  By definition, the Considere criterion 

is met when the work hardening rate is equal to true stress.  Hence, 

σTS=
𝑑𝜎

𝑑𝜀
=

𝑑(𝐾𝜀𝑛)

𝑑𝜀
 

Equation 7-2 

𝐾𝜀𝑇𝑆
𝑛 =n𝐾𝜀𝑇𝑆

𝑛−1 Equation 7-3 

 

Therefore, 

𝜀𝑇𝑆 = 𝑛 Equation 7-4 

 

R2=0.90 
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and 

σTS=𝐾𝑛𝑛 Equation 7-5 

Then, ultimate tensile strength can be written as: 

σTS=
Knn

en
 

Equation 7-6 

 

and yield strength as: 

σY=K (0.002+
σY

E
)

n

 Equation 7-7 

Hence, K and n parameters were calculated from given Y and STS.  The experimental data to be 

replicated in FEA are provided in Table 7-1.  

Table 7-1 Full-scale experiment cases for numerical and FEA 

Case D 
(mm) 

t 
(mm) 

d 
(mm) 

L 
(mm) w (mm) σY 

(MPa) 
STS 

(MPa) 
K 

(MPa) 
n Pf-exp 

(MPa) 
27 762.00 9.53 3.71 139.70 149 414.10 534.04* 761.83 0.11 12.68 
28 762.00 9.53 2.92 114.30 87.5 418.90 537.43* 764.22 0.11 13.06 
29 762.00 9.53 5.84 101.60 79 446.50 556.94* 777.78 0.10 12.23 
30 762.00 9.53 5.31 40.60 30.5 476.80 578.35* 792.31 0.09 14.75 
31 762.00 9.53 5.31 50.80 50 449.20 558.85 779.09 0.10 13.78 
51 508.00 7.75 5.33 266.70 152.4 379.60 520.90 768.15 0.13 8.06 
80 762.00 9.27 5.82 406.40 203 403.80 520.20 797.96 0.10 6.80 
81 762.00 9.53 6.22 685.80 295 473.80 579.40 764.81 0.11 6.84 

* Estimated with  Equation 7-1. 

Model generation 

The experiments on the pipe section were conducted in laboratories, except of case 51, 80, 81 

which were failed while pipe was in service. Consequently, two different types of the FEM were 

analyzed:  

1. End-capped pipe sections 

2. Open end pipe sections 
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Because the pressure vessel end cap dimensions were not provided in the original report, so the 

following assumptions were made:  

- Hemispherical cap end was used  

- Cap was of the same material as the pipe section, i.e., X52 

- The dimensions were those demonstrated in Figure 7-2.  

 

Figure 7-2 Dimensions assumed for hemispherical end. 
 

As before, the commercial Finite Element Software Siemens NX [63] was used to simulate the 

failure pressure of the line pipe containing external surface flaws. The pipe section length was 

taken as twice the outer diameter of the pipe section being analyzed, as demonstrated previously. 

For time efficiency, the quarter of the pipe was modeled as shown in Figure 7-3 for both end-

capped and open-end pipes. The real corrosion defect profile was simplified to an elliptical shape, 
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where the maximum defect dimensions (axial length, depth and circumferential width) were 

retained.  

 

a) End-capped pipe section 

Defect area 

 

 

b) Open-end pipe section 

Figure 7-3 The sketch of quarter closed pipe used for FEM. 

 

Material properties 

The Finite Element software requires the stress- true strain curve of the material for more accurate 

analysis and results. For that reason, the Hollomon fit, with calculated K and n parameters for each 

data, was used.  All analyses were undertaken using E = 207 GPa and υ =0.3 [46], [50], which are 

common values for steels. 
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FE Mesh 

The quarter of the pipe was meshed with the second order eight noded hexahedral elements. As 

reported previously, the FE mesh was applied sufficiently fine around the defect area. In the 

literature, different numbers of elements are recommended through the remaining ligament of the 

pipe wall. For example, BS 7910 Annex G [27] suggested at least four elements through the 

remaining thickness, while Cronin [68], [69] stated that two elements will suffice. At first, FEA 

was conducted with four elements through the remaining ligament. During the analysis, it was 

observed that stresses differed significantly from one element to another. Hence a mesh 

convergence study was necessary. In this study, however, this step was bypassed by selecting the 

number of elements such that the ratio between the elemental nodal Von-Mises and elemental 

Von-Mises stresses was approximately 1, leading to reliable results. The criteria of choosing the 

element number was based on the d/t ratio:  

- For    0≤
d

t
<0.5 , fifteen elements 

- For 0.5≤
d

t
≤1 ,  ten elements 

Loads 

Failure pressure analysis was studied for internal pressure loading only. For each pipe model, the 

internal pressure load was applied normal to pipe inner surface while monotonically increasing 

throughout the analysis. Except the atmosphere pressure, other external loadings were not 

considered.  
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Boundary conditions 

The symmetry boundary conditions were applied on symmetry planes, constraining the translation 

degrees of freedom. Along with symmetry, the edge far away from the defect was constrained to 

eliminate the rigid body motion.  

Failure Criterion 

Stress based failure criterion, which was found earlier in this study to be reliable and effective, 

was used to predict the burst pressure of the pipe. Because of the software does not show the 

necking, failure was assumed to occur when the von-Mises stresses in the defect area reached the 

reference stress.  

Finite Element Analysis 

Finite element models were developed for the cases with actual corrosion width measured from 

surface plots. The cases are: 27-31, 51, 80 and 81. The mesh and the stress results for the Case 27 

are presented in Figure 7-4. In Figure 7-4.c, it can be noticed that elemental von Mises stresses 

change their color gradually, providing further evidence that results can be expected to be accurate 

with the given mesh. Throughout iterations, elemental von Mises stresses were measured. At the 

point where the stresses reached σTS, the internal pressure was recorded as a failure (burst) pressure 

(Figure 7-5). For all other cases, the results are provided in Appendix 2. 
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a) Quarter of the pipe with applied mesh on it 

 
b) Area of the defect 

 
c) The stress distribution in the defect area 

 
Figure 7-4 Case 27, pipe section model used for FEA. 
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Figure 7-5 Variation of the von Mises stresses with applied load.  
 

The predicted values of Pf and corresponding value of %errors are presented in Table 7-2. Note 

that the highest error is 15.64% with a majority of errors under ±5%.  The R2 for the fit is 0.959. 

Table 7-2 FEM results for the cases with actual width. 

Case Pf-exp. (MPa) Pf-FEM (MPa) %𝑒𝑟𝑟𝑜𝑟 =
𝑃𝑓−𝑒𝑥𝑝. − 𝑃𝑓−𝐹𝐸𝑀

𝑃𝑓−𝑒𝑥𝑝
∙ 100 

27 12.68 12.00 -5.35 
28 13.06 13.46 3.09 
29 12.23 11.67 -4.58 
30 14.75 14.28 -3.15 
31 13.78 13.85 0.51 
51 8.06 6.80 -15.64 
80 6.80 6.31 -7.21 
81 6.84 6.62 -3.15 
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The experimental versus predicted burst pressure values are presented in Figure 7-6. Note that 

there is a strong agreement between the FEM results and experimental data, as indicated by the 

high R2 value. 

 

Figure 7-6. Comparison of experimental vs predicted data. 
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8. Phase 3. FEA for Corrosion Pits with Unknown Widths  

The cases with contour plots available have been investigated for any possible pit width and length 

correlation. The results are shown in Figure 8-1.  The data indicate a curvilinear relationship with 

the best fit obtained as: 

w=2.3661∙L0.7452 Equation 8-1 

 

 

Figure 8-1 w versus L plot and fitted curve 
 

The data used in this phase with missing widths are outlined in Table 8-1, including burst pressure, 

estimated ST (as in Phase 2 with  Equation 7-1) and w (estimated and Equation 8-1).  
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Table 8-1 Full-scale experiment cases for numerical and FEA 

Case D 
(mm) 

t 
(mm) 

d 
(mm) 

L 
(mm) 

w 
(mm) 

** 

σY 
(MPa) 

STS 
(MPa) 

K 
(MPa) 

n Pf-exp 
(MPa) 

1 762.00 9.53 3.71 63.50 52.17 404.4 524.3 747.99 0.11 11.182 
2 762.00 9.53 3.71 57.20 48.27 404.4 524.3 747.99 0.11 11.162 
3 762.00 9.53 3.99 108.00 77.51 404.4 524.3 747.99 0.11 11.713 
4 762.00 9.53 6.10 139.70 93.89 439.6 555.3 780.77 0.10 11.506 
5 762.00 9.53 5.31 120.70 84.20 405.1 518.8 734.15 0.11 10.507 
68 762.00 9.45 3.30 914.40 380.78 409.30 531.52* 759.44 0.11 12.71 
69 762.00 9.55 5.84 304.80 167.93 372.70 506.01* 740.99 0.12 10.44 
70 762.00 9.53 3.56 304.80 167.93 406.50 529.57* 758.04 0.11 12.51 
71 762.00 9.70 3.68 508.00 245.72 428.60 544.97* 769.02 0.11 13.11 
72 762.00 9.55 3.30 508.00 245.72 387.20 516.12* 748.34 0.12 12.30 
73 762.00 9.60 2.79 838.20 356.87 438.90 552.15* 774.07 0.10 13.20 
74 762.00 9.63 4.32 355.60 188.37 440.30 553.13* 774.76 0.10 12.23 
75 762.00 9.60 4.32 203.20 124.14 412.70 533.89* 761.14 0.11 11.85 
76 762.00 9.58 4.06 304.80 167.93 416.80 536.75* 763.18 0.11 12.33 
77 762.00 9.47 2.79 228.60 135.52 405.80 529.08* 757.69 0.11 12.68 
78 762.00 9.45 3.30 914.40 380.78 409.30 531.52* 738.97 0.11 12.71 
86 558.80 6.35 3.76 152.40 100.18 420.10 539.05* 786.95 0.11 558.80 
88 762.00 9.22 3.05 198.16 121.83 425.90 551.20* 765.62 0.12 762.00 
92 609.60 7.93 2.29 481.90 236.25 396.20 527.80* 747.99 0.11 609.60 

*: Estimated with  Equation 7-1                      **: Estimated with Equation 8-1 

Finite Element analyses 

Same model generation concepts as in Phase 2 were used to conduct the study for estimated 

corrosion width. The predicted values of Pf and corresponding value of %error can be found in 

Table 8-2. Note that a large majority of the errors exceed ±10%. The plot showing the comparison 

between the experimental and predicted data can be found in Figure 8-2. The plot clearly shows 

that the unexplained variation is much higher than, which is shown as data points are located 

further from the slope of one   
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Figure 8-2. Comparison of experimental vs predicted data 

 

Table 8-2 FEM results for the cases with estimated width. 

Case Pf-exp. (MPa) Pf-FEM (MPa) %𝑒𝑟𝑟𝑜𝑟 =
𝑃𝑓−𝑒𝑥𝑝. − 𝑃𝑓−𝐹𝐸𝑀

𝑃𝑓−𝑒𝑥𝑝
∙ 100 

1 11.18 12.90 15.36 
2 11.16 13.25 18.71 
3 11.71 12.28 4.84 
4 11.51 9.80 -14.83 
5 10.51 10.65 1.36 
68 12.71 11.40 -10.27 
69 10.44 7.72 -26.04 
70 12.51 11.00 -12.04 
71 13.11 11.17 -14.77 
72 12.30 11.03 -10.32 
73 13.20 12.72 -3.64 
74 12.23 10.16 -16.93 
76 11.85 10.41 -12.16 
77 12.33 10.30 -16.44 
78 12.68 12.15 -4.16 
86 5.71 7.35 28.83 
88 11.71 11.52 -1.65 
92 13.03 13.00 -0.22 
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Statistical analyses 

The errors for FEA data from models with estimated widths are presented in Table 8-3, along with 

that for data with actual widths.  Note that sum of square for error in data with estimated widths is 

much higher, leading to lower R2. 

Table 8-3. Analysis of error FEM results for Phases 2 and 3. 

w SSE MSE SST R2 
Known 3.03 0.43 73.93 0.959 

Estimated 40.99 2.41 49.18 0.164 
 

To compare whether the difference in error between the two datasets is significant, further 

statistical analysis was necessary.  To test the hypothesis that the error is (or alternatively, is not) 

the same in the two datasets, the F-test was used.  The hypothesis test procedure outlined in Table 

8-4 was followed.  The sample sizes for the “estimated” and “known” width datasets (n1 and n2) 

were 18 and 8, respectively.  Mean square for error, MSE is found by diving SSE by the degrees of 

freedom of the dataset, i.e., n-1. 

Table 8-4 Variance equality hypotheses test of two normal distributions 

Null Hypothesis, H0 σ1
2 = σ2

2 

Alternate Hypothesis, HA σ1
2 ≠ σ2

2 

Test Statistic 𝐹0 =
𝑀𝑆𝐸(1)

𝑀𝑆𝐸(2)
 

Rejection region 𝐹𝑜 > 𝐹𝛼

2
,𝑛1−1,𝑛2−1         or        𝐹𝑜 < 𝐹1−

𝛼

2
,𝑛1−1,𝑛2−1 

 

To test hypothesis for the variance equality, the residuals, i.e., the difference between the observed 

value and estimated data need to be tested for normality.  Residuals, e, are calculated by:  

𝑒𝑖 = 𝑦𝑖 − 𝑦�̂� = 𝑃𝑓−𝑒𝑥𝑝. − 𝑃𝑓−𝑝𝑟𝑒𝑑. Equation 8-2 
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The residuals for the two datasets are given in Table 8-5 along with results of a goodness-of-fit 

hypothesis test, using the Anderson-Darling (AD) test statistic [70]. Note that the P-values for both 

datasets exceed 0.05, the default level for α-error (Type I). Therefore, the hypotheses that residuals 

for both “known” and “estimated” width datasets are normally distributed cannot be rejected. 

Minitab Software was used to check whether residuals from both datasets are normally distributed.  

The normal probability plot for both datasets is shown in Figure 8-3, along with results of a 

goodness-of-fit hypothesis test, using the Anderson-Darling (AD) test statistic [70]. Note that the 

P-values for both datasets exceed 0.05, the default level for α-error (Type I).  Therefore, the 

hypotheses that residuals for both “known” and “estimated” width datasets are normally 

distributed cannot be rejected. 

Table 8-5 Residuals for the two datasets. 

Known Estimated 
-0.68 1.72 
0.40 2.09 
-0.56 0.57 
-0.47 -1.71 
0.07 0.14 
-1.26 -1.31 
-0.49 -2.72 
-0.22 -1.51 

 -1.94 
 -1.27 
 -0.48 
 -2.07 
 -1.44 
 -2.03 
 -0.53 
 1.65 
 -0.19 
 -0.03 

 
 

FO=
S1

2

S2
2 =5.57 
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Figure 8-3 The normal probability plot of the residuals for known and estimated corrosion 
width. 

 

The F-test can now be conducted.  Because 𝐹0.975,17,7 = 4.52, test statistic (F0=5.56) is larger than 

the critical F-value.  Therefore, the hypothesis that the mean square error of the two datasets is the 

same can be rejected.  Consequently, there is evidence that (i) knowing the actual width is 

important in FEA studies, and (ii) contrary to what is assumed in the literature, the width of 

corrosion pits may affect the burst pressure.  To investigate this further a parametric study was 

conducted. Case 86, which had the largest error (28.83%), was chosen. Five different defect widths 

were simulated to investigate the possible effect of corrosion pit width on failure pressure of a 

corroded pipe. The axial length and depth of the corrosion pit were kept constant at 152.4 mm and 

3.76 mm, respectively. The results are presented in Table 8-6 and in Figure 8-4.  
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Table 8-6. The results of the parametric study results for the Case 86. 

Case w (mm) Pf-FEM (MPa) 
86 100.18 7.35 

86-1 20 8.65 
86-2 50 8.15 
86-3 75 7.67 
86-4 150 7.28 
86-5 200 7.28 

  

It can be noticed that the width does affect the burst pressure, especially at low widths. With 

increasing pit width, failure pressure is reduced linearly until a plateau is reached. For the case 86, 

the asymptotic relationship has been found based on the Figure 8-4 below:  

if w≤wc       then,  Pf=PO-Cfc∙w 

if w>wc       then,  Pf=7.28 MPa Equation 8-3 

where wc=104.23 mm, PO=8.95 MPa, and  Cfc=0.16 MPa/mm. 

 
Figure 8-4 The effect of the defect width on failure pressure and the fitted equation (Equation 

8-3). 

To determine whether the same effect can be observed in other cases, Case 31 and Case 80 were 

chosen for FEM with various width dimensions, while pit length and depth were kept the same as 
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previously given in Table 7-1 . The results are given in Table 8-7 and Figure 8-5.  Note that the 

same behavior, i.e., linear decrease in burst pressure with pit width is observed in Case 80.  

However, such a plateau is not reached with the widths tested for Case 31. 

Table 8-7 Parametric study results for the Case 31 and 80 

Case w (mm) Pf-FEM (MPa) 
31 50 14.1 

31-1 20 14.23 
31-2 75 13.85 
31-3 100 13.55 
31-4 150 13.05 
31-5 200 12.8 
80 203 6.31 

80-1 20 7.04 
80-2 40 6.96 
80-3 75 6.6 
80-4 100 6.33 
80-5 150 6.32 

 

 

Figure 8-5 The asymptotic and linear relationships for the cases chosen in parametric study 
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For Case 31, P0=14.45 MPa and Cfc=0.0086 MPa/mm. For Case 80, PO=7.27 MPa, 

Cfc=0.01 MPa/mm.  At a wc=104.93 mm, the plateau of Pf=6.31 MPa is reached.  Analysis of 

these results for a potential relationship between wc, L and d did not yield results. 
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9. Phase 5: Determination of Type I and II errors 

A Type I (α) error occurs when the null hypothesis is rejected when it, in fact, should not have 

been.  Conversely, a Type II (β) error is committed when the null hypothesis is not rejected when 

in reality, it should be. For the pipes with corrosion defects, the null hypothesis was stated as:   

Ho: The corrosion defect is “safe”. 

This means for a pipeline operating at certain Pi and therefore H, the pipe section affected by 

corrosion will fail above that level. The test basis is presented in Table 9-1.  

Table 9-1.  Type I and II errors defined. 

  Actual situation 
Decision Defect is safe Defect is not safe 
Defect is safe No error 

Defect is not safe  No error 
 

In this study, the effectiveness of three assessment techniques, ASME B31G, MB31G and DNV-

RP at Level 0 evaluation was tested.  The data from in-service failures in X52 steel pipes due to 

real corrosion pits in the PRCI Report [28] were first used and are presented in Table 9-2. To 

reduce the conservatism embodied in Level 0 evaluation, H was assumed to be equal to m(YS). 

Corrosion defects were plotted according to their unique defect depth and length. According to the 

level of the H at the moment of failure, it was determined whether each defect was “safe” or not.  
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Table 9-2. Data used for evaluation of assessment techniques.  

Case D (mm) t (mm) d (mm) L (mm) Pf-exp (MPa) L
√Dt

⁄  d/t %σY(SM) 

1 762 9.53 3.71 63.50 11.18 0.75 0.39 124.8 
2 762 9.53 3.71 57.20 11.16 0.67 0.39 124.6 
3 762 9.53 3.99 108.00 11.71 1.27 0.42 130.8 
4 762 9.53 6.10 139.70 11.51 1.64 0.64 128.5 
5 762 9.53 5.31 120.70 10.51 1.42 0.56 117.3 
27 762 9.53 3.71 139.70 12.68 1.64 0.39 141.5 
28 762 9.53 2.92 114.30 13.06 1.34 0.31 145.8 
29 762 9.53 5.84 101.60 12.23 1.19 0.61 136.5 
30 762 9.53 5.31 40.60 14.75 0.48 0.56 164.6 
31 762 9.53 5.31 50.80 13.78 0.60 0.56 153.8 
51 508 7.75 5.33 266.70 8.06 4.25 0.69 73.8 
68 762 9.45 3.30 914.40 12.71 10.78 0.35 143.0 
69 762 9.55 5.84 304.80 10.44 3.57 0.61 116.2 
70 762 9.53 3.56 304.80 12.51 3.58 0.37 139.6 
71 762 9.70 3.68 508.00 13.11 5.91 0.38 143.6 
72 762 9.55 3.30 508.00 12.30 5.96 0.35 137.0 
73 762 9.60 2.79 838.20 13.20 9.80 0.29 146.2 
74 762 9.63 4.32 355.60 12.23 4.15 0.45 135.1 
76 762 9.60 4.32 203.20 11.85 2.38 0.45 131.3 
77 762 9.58 4.06 304.80 12.33 3.57 0.42 136.9 
78 762 9.47 2.79 228.60 12.68 2.69 0.29 142.3 
80 762 9.27 5.82 406.40 6.80 4.84 0.63 78.0 
81 762 9.53 6.22 685.80 6.84 8.05 0.65 76.3 
86 558.8 6.35 3.76 152.40 5.71 2.56 0.59 70.1 
88 762 9.22 3.05 198.16 11.71 2.36 0.33 135.1 
92 609.6 7.925 2.29 481.9 13.03 6.93 0.29 139.9 

 

The Level 0 evaluation for pipe material X52 from in service failures reported in the PRCI Report 

[28] is presented in Figure 9-1. The area inside (to the left of) each curve is what the specific 

assessment technique designates as the “safe” region, while outside (to the right) is the “unsafe” 

region. For each assessment method, the hoop stress was calculated and subsequently plotted in 

Figure 3-3, with its normalized defect length and width. In Figure 9-1, the “unfilled green circles” 

represent an “acceptable” defect, i.e., that which caused failure above m(YS). The “cross red marks” 

represent those defects which led to failure below m(YS), representing “not acceptable” defects.  
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Note that there are only four “not acceptable” defects.  These defects are above the curves for 

ASME B31G and MB31G.  For DNV-RP, three of the defects are above the curve and one is 

below. 

 
L/√Dt 

 
Figure 9-1. Level 0 evaluation for the X52 pipe material containing external corrosion flaw. 

 

The null hypothesis stated above was tested. The number of data points with Type I and II errors 

are summarized in Table 9-3 for B31G, Table 9-4 MB31G and Table 9-5 for DNV-RP-F101. A 

Type II error was committed by DNV-RP, but not ASME B31G nor MB31G. 

Table 9-3. Type I and II errors for B31G 

  Actual situation 
Decision Defect is safe No 
Defect is safe 6  0 
Defect is not safe 16 4 
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Table 9-4. Type I and II errors for MB31G 

  Actual situation 
Decision Defect is safe Defect is not safe 
Defect is safe 9 0 
Defect is not safe 13 4 

 
Table 9-5. Type I and II errors for DNV-RP-F101 

  Actual situation 
Decision Defect is safe Defect is not safe 
Defect is safe 19 1 
Defect is not safe 3 3 

 

Parametric Study 

Because FEM for case 29 produced an accurate prediction of the burst pressure, it was chosen for 

a parametric study at Level 0. Keeping design parameters and the defect width constant, the length 

and depth were changed in order to fill the gaps around assessment curves for ASME B31G, 

MB31G and DNV-RP. The results are given in Table 9-6 and plotted in Figure 9-2. 

Table 9-6. Results of the parametric study. 

Case D (mm) t (mm) d (mm) L (mm) Pf-FEM (MPa) L
√Dt

⁄  d/t %σY(SM) 

29-1 762 9.53 4.30 340.8 10.10 4.00 0.45 112.8 
29-2 762 9.53 2.86 1020.0 11.65 11.97 0.30 130.1 
29-3 762 9.53 4.76 681.6 9.06 8.00 0.50 101.1 
29-4 762 9.53 7.14 170.0 6.63 2.00 0.75 74.0 
29-5 762 9.53 7.14 100.0 9.24 1.17 0.75 103.2 
29-6 762 9.53 7.14 110.0 8.68 1.29 0.75 96.9 
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𝐿

√𝐷𝑡
⁄  

Figure 9-2. Evaluation of assessment techniques for synthetic data.  
 

From the parametric study, it can be concluded, that for the d/t=0.5, the pipe can withstand the 

pressure even with longer defects. The DNV-RP represents more accurately for the part where, 

d/t=0.5. For the deep defect, the length can be a very critical parameter. As can be noticed, for a 

normalized defect depth of 0.75, the acceptable normalized length will be 1.17, but 1.29 can be 

critical. Further analysis is necessary for deep defects.  

 

  



72 
  

Conclusions 

Research Question 1: Which constitutive model should be used for pipeline steels? 

For X42 and X60, Hollomon, Ludwik, Voce and Swift constitutive equations have been compared 

to represent the material properties. The R2 values in each case exceed 0.97, indicating that all 

constitutive equations can be used to characterize the true stress – true strain relationships. 

Although, Voce equation provides a better fit (R2=0.986), the Hollomon constitutive equation has 

been used for material’s stress-strain curve representation because of its simplicity in FEA for X52 

pipe material for real corrosion data. 

 

Research Question 2: In FEM studies, which failure criterion provides better results? 

SMSC and stress based criterion showed respectable fits for X42, thick wall pipe. However, there 

is a significant lack of fit for X60, resulting in R2 < 0, when the SMSC criterion is used. In 

conclusion it can be said, that the stress based criterion is most reliable, independent of pipe 

material and thickness. Hence, this criterion has been used for the FEA conducted on X52 pipe 

material.  

 

Research Question 3: Does width of the corrosion affect the burst capacity of the pipe section?  

Throughout the analyses, it has been noticed that the better fit to the model resulted when the data  

for the circumferential defect extension was known as opposed to “unknown.”  Even when a 

reliable correlation (R2=0.98) has been found between L and w from the cases with available 

contour plots, in FEA with an unknown width of corrosion, a large majority of the errors exceeded 

±10%.  
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Statistical F-test, has also shown that knowing the actual width is important in FEA studies, and 

the width of corrosion pits may affect the burst pressure.  Parametric studies on width for the cases 

31, 80, 81 have also give very strong proof that width does affect the burst pressure, especially at 

low widths.  

Research Question 4: Do common techniques of using machined groove, in lieu of real corrosion 

defects, give reliable results? 

Based on the studies mentioned Research Question 3, the researchers investigating burst capacity 

with machined grooves should consider in their study the width parameter.  

Research Question 5: Do analytical models in literature, such as ASME B31G, MB31G and DNV-

RP-F101, provide reliable results? 

Three most commonly used assessment techniques have been investigated. Although, ASME 

B31G is the most conservative technique, it is more reliable for short defects than MB31G and 

DNV-RP. But after L
√Dt⁄ =1.38 and d/t=0.4, the B31G becomes much more conservative. The 

DNV-RP is the least conservative assessment criterion. However, this method produced a β 

error, i.e., the method predicted a “safe” operating pressure which would actually have resulted 

in the  pipe section failing.  Therefore, DNV-RP is not recommended for Level 0 evaluation of 

steel pipes, specifically X52 pipes.  
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Recommendations for Future Research 

- This study has been limited to X52 pipe material type. For future research, it will be necessary 

to investigate other pipe material types, and their response to fracture. 

- A more in-depth study of w/L ratio is required, for different corrosion depth, d, and pipe design 

dimensions, such as diameter, D, and wall thickness, t. 

- As previous analytical methods have been developed based on machined grooves, the width of 

defect has not been considered. Therefore, a new analytical method is necessary for real corrosion 

profiles and the width.  
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10. Appendix  

Appendix 1. Available contour maps of corrosion pits [28]. 

 

Figure 10-1. Surface map for case 27  

 
Figure 10-2. Surface map for case 28 
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Figure 10-3. Surface map for case 29 

 

 

Figure 10-4. Surface map for case 30 
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Figure 10-5. Surface map for case 31 
 

 

Figure 10-6. Surface map for case 51 
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Figure 10-7. Surface map for case 80 
 

 

Figure 10-8. Surface map for case 81 
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Appendix 2. FEA results for the Cases 28-31, 51, 80 and 81 

Case 28 

 

a) Quarter of the pipe with applied mesh on it 

 

b) Area of the defect 

 

c) The stress distribution in the defect area 

Figure 10-9. Case 28, pipe section model used for FEA. 
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Figure 10-10. Variation of the Von Mises stresses with applied load.  
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Case 29 

 

a) Quarter of the pipe with applied mesh on it 

 

b) Area of the defect  

c) The stress distribution in the defect area 
Figure 10-11. Case 29, pipe section model used for FEA. 
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Figure 10-12. Variation of the Von Mises stresses with applied load.  
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Case 30 

 

a) Quarter of the pipe with applied mesh on it 

 

b) Area of the defect  

c) The stress distribution in the defect area 
Figure 10-13 Case 30, pipe section model used for FEA. 
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Figure 10-14 Variation of the Von Mises stresses with applied load, Case 30 
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Case 31 

 

a) Quarter of the pipe with applied mesh on it 

 

b) Area of the defect 

 

c) The stress distribution in the defect 
area 

Figure 10-15 Case 31, pipe section model used for FEA 
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Figure 10-16 Variation of the Von Mises stresses with applied load, Case 31 
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Case 51 

 

a) Quarter of the pipe with applied mesh on it 

 

b) Area of the defect 
 

c) The stress distribution in the defect area 
Figure 10-17 Case 51, pipe section model used for FEA 
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Figure 10-18 Variation of the Von Mises stresses with applied load, Case 51 
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Case 80 

 

a) Quarter of the pipe with applied mesh on it 

 

b) Area of the defect 
 

c) The stress distribution in the defect area 
Figure 10-19 Case 80, pipe section model used for FEA 
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Figure 10-20 Variation of the Von Mises stresses with applied load, Case 80 
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Case 81 

 

a) Quarter of the pipe with applied mesh on it 

 

 

b) Area of the defect 

 

c) The stress distribution in the defect area 
Figure 10-21 Case 81, pipe section model used for FEA 
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Figure 10-22 Variation of the Von Mises stresses with applied load, Case 81 
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