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ABSTRACT 

Raman spectroscopy is employed by NASA, and many others, to detect trace 

amounts of substances.  Unfortunately, the Raman signal is generally too weak to detect 

when very small, but non-trivial, amounts of molecules are present.  One way around this 

weak signal is to use surface enhanced Raman spectroscopy (SERS). 

When used as substrates for SERS, metallic nanorods grown using physical vapor 

deposition (PVD) provide a large enhancement factor to the Raman signal, as much as 1012.  

However, Silver (Ag) nanorods that give high enhancement suffer from rapid degradation 

as a function of time and exposure to harsh environment.  Exposure to harsh environments 

is an enormous issue for NASA; considering all environments experienced during space 

missions will be drastically different from Earth regarding atmosphere pressure, 

atmosphere composition, and environmental temperature.  Au and Ag nanorods suffer from 

a thermochemical kinetic phenomenon where the surface atoms diffuse and cause the 

nanostructures to coalesce towards bulk structure.  When in bulk, SERS enhancement is 

lost and the substrate becomes useless.   

A stable structure for SERS detection is designed through engineering the barriers 

to surface diffusion.  Aluminum (Al) nanorods are forced to undergo surface diffusion 

through thermal annealing and form rough mounds with a stable terminating oxide layer. 

When Ag is deposited on top of this Al structure, it becomes kinetically bound and changes 

to physical structure become impeded.  Using this paradigm, samples are grown with varied 

lengths of Ag and are then characterized using scanning electron microscopy (SEM) and 

Ultraviolet-Visible spectroscopy. The performance of the samples are then tested using 
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SERS experiments for the detection of trace amounts of rhodamine 6G, a ‘gold standard’ 

analyte. Characterization shows the effectiveness of the Raman substrates remains stable 

up to 500°C.  

 Transitioning to basic scientific investigation, next is to strive to isolate the 

individual impacts of chemical and physical changes to the Ag nanostructure and how they 

affect the Raman signal.  Substrates are compared over the course of a month long 

experiment to determine the effects of vacuum storage and addressing the effects of 

chemical adsorbance.  Additionally, this was attempted by comparing the signal 

degradation of Ag nanorods to that of Au, which is known to be chemically inert, allowing 

for the separation of chemical and physical effects.  Although Ag and Au have similar 

melting points, Ag physically coarsened significantly more.  FTIR also showed significant 

chemical contamination of the Ag, but not Au.  A hypothesis is proposed for future 

investigations into the chemical changes and how they are coupled with and promote the 

physical changes in nanostructures. 

Overall, the novel SERS substrate engineered here may enable the detection of trace 

amounts of molecules in harsh environments and over long timescales.  Conditions such 

as those found on space missions, where substrates will experience months or years of 

travel, high vacuum environments, and environments of extreme temperatures. 
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INTRODUCTION 

 The National Aeronautics and Space Administration (NASA) has been sending 

rovers to Mars to explore the surface and to look for signs of water and life.  One of their 

top goals is to search the cosmos for concrete signs of life.  Among the proposed methods 

is to have rovers perform surface enhanced Raman spectroscopy (SERS) on the planet 

surfaces, looking for organic molecules that signal the presence current or past life or the 

existence of the building blocks of life.  However, this is currently impossible due to the 

degradation over time that traditional SERS substrates experience. 

The overarching goal of this research has been to develop new technology for space 

missions, with the ultimate deliverable of providing NASA with guidance to develop a 

degradation resistant surface enhanced Raman spectroscopy substrate.  The research 

performed in this thesis was sponsored by a grant from the National Aeronautics & Space 

Administration through the University of Central Florida's NASA FLORIDA SPACE 

GRANT CONSORTIUM and Space Florida, for the development of a SERS substrate that 

could be used during space missions, where they could experience high vacuum 

environments and extreme temperatures. 

For this thesis, two approaches have been devised to use SERS in space or on 

remote celestial bodies: 1) produce substrates on site; 2) send manufactured substrates from 

Earth with the mission.  Manufacturing substrates on site becomes a massive logistical 

problem, as it involves a massive amount of energy to produce the substrates through 

vaporization techniques.  Energy is an important and heavily managed resource off of 

Earth.  Unfortunately, the necessary energy is too great and the alternative is to manufacture 
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substrates on earth and send them, with the rest of the equipment, on the months to multiple 

yearlong travel.  SERS substrates commonly used in literature do not fare well over long 

periods of time, or when they experience a temperature higher than ambient on Earth, 

approximated at 35°C.  Additionally, the novel research in this thesis show that 

conventional SERS substrates also degrade under vacuum. 

In this novel research, the first attempts to develop a degradation resistant SERS 

substrate utilized Aluminum (Al) nanorods.  These substrates had a thin oxide layer on the 

surface that resisted the physical degradation mechanisms, but could not withstand extreme 

temperatures.  They also proved to not be ideal SERS substrates as the Raman signal was 

drowned out by fluorescence.  Annealing these substrates at 500°C for 24 hours led to 

extreme surface restructuring and the formation of a rough island film, which were named 

‘nanoseeds’; these are then utilized to engineer a surface structure to decrease surface 

mobility of additional metal deposited on top.  The designed substrate consisted of the 

annealed Al seeds with additional Ag deposited on top.  The intention was that the Al seeds 

prevent the coarsening of the Ag back into bulk by decreasing diffusion of the Ag through 

creating a rough path and increased surface area.  The samples were then heated to 500°C 

to force the structures to a lower, more stable, energy state.  As designed, the Ag remained 

as discreet nanoparticles and remained SERS active.  After demonstrating that the 

structures could withstand elevated temperatures, the next problems to address were 

maintaining enhancement over extended periods of time and under vacuum using a custom, 

in-house built vacuum storage system.  Both of these were addressed with a month long 

experiment comparing the storage of the substrates in air and under vacuum.  Both methods 
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showed promising results, but still exhibit some decay in the Raman signal over the course 

of the month, although, the new engineered substrate faired 50% better than those in the 

literature. 

A second portion of the work focused on gaining a new scientific understanding of 

the degradation of SERS substrates which employ nanomaterials.  The final set of 

experiments was an attempt to determine if the loss in signal over the course of the previous 

experiments was a result of a chemical degradation or a physical one.  This final experiment 

involved a month-long study comparing Ag nanorods and Au nanorods, which should be 

chemically inert, that were stored in air.  The experiments showed that the Au nanorods 

remained chemically pure and undergo no observable physical changes while the Ag rods 

undergo both.  As a result of this, a new hypothesis was formed, suggesting that the 

chemical and physical changes are coupled for Ag. 

This thesis documents the research, experiments, and conclusions of the 

aforementioned studies.  Chapters 1 through 3 begin with a brief introduction into the 

technique of Raman spectroscopy and explains the physics behind the Raman signal, which 

originates from the vibrations of the molecule under investigation and light scattering.  

Next, the physics behind the surface enhancement phenomena is explained.  Finally, the 

physical review lands on the definition of electromagnetic enhancement and provides an 

in depth look at its cause, the physical phenomena known as surface plasmon resonance. 

 The Chapters 4 and 5, which bridges from background to the novel research 

presented by this thesis.  The second section covers the substrates traditionally used in 

SERS and their major shortcomings, specifically the physical degradation observed in 
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literature.  Additionally, some of the alternative methods devised in the literature to 

overcome the physical degradation issues are reviewed.  Section two then leads into the 

classical fabrication of SERS substrates with physical vapor deposition, how nanorods are 

grown through glancing angle deposition, and the characterization techniques used to 

analyze the substrates produced in the presented research. 

 Finally, Chapter 6 presents the novel research of this study.  In Chapter 6, a new 

degradation resistant SERS substrates and the respective characterization is presented.  

This engineered substrate began with the use of annealed Al nanorods as a base to promote 

morphological stability and enforce degradation resistance.  Next, varied amounts of SERS 

active Ag are deposited and characterized.  Testing was then performed, measuring their 

resilience to surface diffusion by annealing the entire sample in air.  Next, the structure’s 

performance was put to the test through a month-long experiment of storing substrates 

under vacuum and in ambient to determine effectiveness of vacuum storage and the effects 

of chemical adsorption on the Raman signal.  Moving onto the second, and more scientific 

experiment, Ag and Au nanorods were fabricated and had their physical and chemical 

stability characterized and performance as SERS substrates measured over the course of 

28 days. 
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CHAPTER 1: RAMAN SPECTROSCOPY 

Raman spectroscopy is a useful, nondestructive characterization technique that 

measures the scattering of light of a monochromatic laser after interactions with an analyte 

molecule.  The scattered light is what makes up the Raman signal produced through Raman 

spectroscopy.  A majority of the variations in Raman spectroscopy follow the same method 

of measuring a monochromatic light scattering off the analyte. 

There are numerous methods/variations of Raman Spectroscopy: Raman 

Spectroscopy (RS), Surface Enhanced Raman Spectroscopy (SERS), Surface Enhanced 

Resonant Raman Spectroscopy (SERRS), Tip Enhanced Raman Spectroscopy (TERS) [1], 

BiAnalyte Raman Spectroscopy (BiASERS) [2], Single Molecule (SMSERS) [3], and 

many others.  In most cases, these are just variations to the method of gathering data, or to 

the analyte being observed.  Conventional Raman spectroscopy has been used in chemistry, 

physics, and engineering for many decades.  More recently, more development has gone 

into SERS, where the molecule being observed is on a surface that is able to enhance the 

scattering effect through various phenomena called Surface Enhancements (SE) [4].  All 

types of all Raman spectroscopy are performed using a monochromatic light source, an 

analyte molecule, the substrate the molecule is on, and a photodetector. [4] 

The wavelength and power of the light source are chosen depending on the 

molecule being observed and the desired effects. [4, 5]  Typical wavelengths are in the 

visible spectrum, with the most recent literature using wavelength of 532nm [6].  Less 

commonly used wavelengths reach into the ultraviolet for various applications such as 

ultraviolet resonant molecules or substrates [7-12].  If the wavelength is tuned correctly the 
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molecule can resonate with the light’s frequency, this effect is utilized is resonant Raman 

spectroscopy methods [4]. As for the power, a stronger source will lead to a stronger signal, 

but it can cause the destruction of the analyte or even degradation of the enhancing surface 

[4, 5]. Typically the power measured at the substrate with a laser power meter and is 

measured at the microwatt to milliwatt range. 

The most important part of Raman spectroscopy is the analyte being observed, 

considering the purpose of performing Raman spectroscopy is to observe a molecule.  

Every molecule will exhibit its own unique Raman signal as the Raman scattering is related 

to the molecules’ shape and chemical bonds; this relationship will be discussed in depth in 

a later section.  Nearly every molecule can be observed and identified through Raman 

spectroscopy.  There are a few exceptions, where the Raman signal is overpowered by 

fluorescence, the signal is too weak to read, measure effectively, or the analyte is too 

unstable to withstand the environment or irradiation necessary to measure it.  Another 

important exception is molecule with an inversion center symmetry. Most of the vibrational 

modes will be both Raman and infrared active.  However, modes involving inversion center 

will exhibit Raman activity or infrared activity, not both. [4-6, 13-16]. 

The second most important aspect of Raman spectroscopy is the surface the analyte 

molecule is on and its surrounding medium, since the interactions between the incident 

light, surface, and molecule is the source on the signal enhancement [4-6]. 
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Typical Raman Spectroscopy Setup 

Figure 1 shows a typical Raman spectroscopy setup.  If we follow the photons used 

in Raman spectroscopy, we start at a light source emitting photons of a single wavelength.  

In the literature, most labs use a solid state laser (532nm) as they are relatively inexpensive 

and readily available.  The photons from the laser interact with the molecule and substrate’s 

surface, leading to events called “scattering”.  The incident photons can either remain at 

the same energy level that they started at, or gain/lose some energy [4, 5, 7, 8].  If a photon 

changes its energy level, its wavelength and associated “color” change as well.  A majority 

of the photons are unchanged (90-99%), this leads to a typically weak signal from the 

scattered photons [5]. Possible scattering events are Raleigh (elastic), scattering where the 

photons leave with no net change in energy or Stokes/Anti-Stokes (inelastic) scattering [5].  

The Raman spectrometer then filters out the Raleigh scattered light and spreads the Stokes 

scattered photons with a diffraction grating.  Then a charged coupled device (CCD) 

measures the number of photons at each of the scattered wavelengths [5].  The signal 

produced by the spectrometer is measured in arbitrary units as counts per wavenumber; 

this is proportional to the number of photons that have been shifted to different wavelengths 

[4, 5].  
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Figure 1: Raman Spectroscopy Photon Path [9] 

Applications 

Raman spectroscopy has plentiful applications, including chemical detection, 

biomolecule sensing [7, 9, 13-15, 20-22], single molecule detection [2,14,16, 18, 23-28], 

monitoring of chemical reactions [10], detection of chemicals in water and soil [11], tumor 

detection [12], and many more. 
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Comparison to FTIR/Fluorescence Spectroscopy 

 There are spectroscopy techniques other than Raman spectroscopy.  Some of the 

commonly used techniques are Fourier Transform Infrared (FTIR) and fluorescence 

spectroscopy [4, 5].  While similar to each other, there are some key differences between 

them [4, 5].  Where Raman uses a molecules polarizability and molecular vibrations to 

measure the wavelength shift in scattered light, FTIR uses changes in dipole moment and 

measures the wavelengths absorbed by the molecule [4, 5].  One of the downsides to FTIR 

that Raman can accomplish is distinguishing between single, double, and triple bonds 

between atoms [4, 5].  On the other hand, Raman signals can be lost due to fluorescence 

and FTIR is not affected by fluorescence [4, 5]. 

 Another technique is fluorescence spectroscopy.  Fluorescence and Raman look 

almost the same when comparing the physics behind their respective phenomena [4, 5].  

Both involve the interaction of a molecule and an incident photon, then a change in energy 

of the photon [4, 5].  The difference between them is what happens to the photon.  In 

Raman, the photon imparts some of its energy into the molecule and leaves at a different 

energy level [4, 5].  In fluorescence the photon is absorbed into the molecule and re-emitted 

as a different energy level as the molecule relaxes back to ground state [4, 5]. 
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Vibrational Modes 

The observed peaks in the Raman signal are dependent on the analyte molecule [4, 

5, 6].  When the monochromatic laser shines onto a molecule, it causes vibrational modes 

in the bonds between the atoms [1, 4].  The number of possible vibration modes is 

proportional to the number of atoms in the molecule (N), the number can be found using 

3N-6.  These modes are the molecular bonds/structures stretching, twisting, or bending 

towards and away from each other [1,4].  There can be hundreds of modes in a large 

molecule and each mode requires a specific amount of energy to be imparted into each 

bond [4].  The energy to cause these vibrations is taken from the incident photons, causing 

the inelastic scattering observed during Raman spectroscopy [4]. As each vibrational mode 

requires a specific amount of energy and the incident light is monochromatic, the scattered 

wavelengths of light and their intensities (Raman peaks) can be associated to a specific 

vibrational mode(s) [4]. 

Assigning a molecule’s Raman peaks to vibrational modes can be a very involved 

process, becoming increasingly arduous as the molecule becomes larger and more complex 

[1].  The method to calculate assignments is to use high-level density functional theory 

(DFT) calculations and back them up with experimental values using IR and Raman 

Spectroscopy [1, 4].  In short, DFT is a mathematical model used to simulate the electronic 

structure of atoms and molecules.  The entire process of assigning vibrational modes and 

Raman peaks is very complex and it is necessary to use computational programs to perform 

the quantum chemical calculations for large, complex molecules [1, 4].  One journal article, 

[1], walks through the steps they took to calculate vibrational assignments for the 
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commonly used Raman analyte, Rhodamine 6G. Rhodamine 6G has the empirical name of 

{xanthylium,9-[2-(ethoxycarbonyl)phenyl]-3,6-bis-(ethylamino)-2,7-dimethyl-,chloride}, 

but is commonly referred to as R6g or Rh6g [1].  This molecule is commonly used to test 

the effectiveness of SERS substrates as it has been extensively studied in literature, readily 

available, and inexpensive. 

The initial step is to calculate the molecular structure of the molecule, specifically 

the bond lengths and angles found in the molecule to gain an understanding of the 

molecules structure in 3-dimensions [1].  These calculations are performed by the DFT 

program [4].  The program uses a rough estimate for the atomic locations, in Angstroms, 

as an input [4].  It then goes through a “geometry optimization” algorithm. The program 

finds the lowest energy states for the atoms based on their location and outputs the 

optimized locations for the atoms, this is a tedious iterative process [4].  If the geometry is 

not optimized correctly the vibrational calculations can result in a negative frequency [4]. 

Second, all possible modes of vibration the molecule can exhibit are calculated 

numerically, this includes bonds stretching, folding, twisting, and bending in all possible 

combinations, the rings breathing, beating, stretching, and twisting [1].  The various 

vibrational modes of the rings are differences in the timing and direction of the different 

atoms in the ring.  For example, all of the atoms can be vibrating towards the center and 

away at the same time (beating), or the atoms can be moving in the opposite direction from 

the neighboring atoms (breathing).  Generally, the number of possible vibrational modes 

is 3N-6 where N is the number of atoms in the molecule.  R6G has 65 atoms and 189 

possible vibrational modes.  Some of the vibrational modes have similar vibrational 
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frequencies and will contribute to the same Raman peak, while others are often ignored 

due to having frequencies too far from the range being observed [1]. 

The next step is to calculate the energy required for each individual vibrational 

mode and compare to observed IR and Raman Spectra.  Some of the vibrational modes can 

only be observed in IR or Raman, not both [1].  Some of the modes cannot be observed at 

all, even though values for IR and Raman appear in calculations, this would be because 

some of the vibrational modes do not provide enough of a discernable signal are drowned 

out by the background noise of the experiment or by fluorescence [1]. Calculated values 

for various vibrational modes of R6G that were provided by Watanabe can be found in 

Appendix A. 

Additionally, the spectral response observed is affected by the resonance conditions 

of the experiment, and even molecule/surface interactions [1].  An example of the 

resonance condition effects can be seen in Figure 2.  Large changes in specific Raman 

bands or even the appearance of new bands can occur when incident irradiation causes the 

electrons to become excited and transition between different electron states [1].  This is 

heavily dependent on the matching of the incident wavelength and the frequency of 

resonance. 
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Figure 2: Raman spectra of R6G with different resonance scenarios. a) off resonance at 
1064nm, b) resonance Raman scattering at 488nm, c) surface-enhanced resonance Raman 

scattering at 488nm on colloidal Ag.  Various vibrational modes are depicted (νx) [1]. 
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Light Scattering 

 When a photon interacts with a molecule or surface, it can either be transmitted, 

reflected/scattered, or absorbed [4, 5].  The scattering/reflection can involve the gain or 

loss of energy, or the conservation of energy within the photon, depending on the elasticity 

of the interaction [4, 5].  Figure 3 shows a visualization of the change of energy level during 

scattering.  While most of the incident photons are elastically scattered, or just reflected 

without any change in energy, it is the in-elastically scattered photons that are important to 

Raman spectroscopy [4, 5].  The Raman signal is comprised of the number of photons that 

have been scattered to different wavelengths by interactions with the molecule and 

substrate [4, 5].  What causes the change in wavelength is a change in energy of the incident 

photon [4, 5]. 

Just like in conventional dynamics, there is the conservation of energy and 

conservation of momentum.  During inelastic collisions between objects, energy and 

momentum are transferred between the objects.  The same happens when photons interact 

with the SERS substrate and analyte molecules [4, 5].  Some of the energy of the incident 

photon is transferred to the molecule, causing an excitement in the electrons of the 

molecule, which in turn cause various vibrational modes to occur [4, 5]. 

The electron excitement is equivalent to the energy change in the incident photon 

[4, 5].  The specific amount of energy exchanged depends on the specific vibrational mode 

the photon induces [4, 5, 1].  This leads to the formation of virtual energy states in the 

electrons, where they have more energy than their ground state, but not enough to raise to 

higher orbital.  This extra energy is what causes the vibration of the molecule to occur [4, 
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5].  The virtual energy state forces the atomic bonds to slightly stretch and relax repeatedly 

while being bombarded with the incident radiation [4, 5]. 

When scattering happens under resonant conditions, the molecule is in an 

electromagnetic field enhanced by the surface plasmon resonance (SPR) phenomena.  SPR 

is the oscillation of free electrons of the surface and induces a stronger electromagnetic 

field at the substrate’s surface.  When under resonant conditions, the molecule’s electrons 

can transition to higher energy states.  The resonant conditions allow for more scattering 

and more intense vibrational modes to form, leading to a much stronger, or enhanced, 

Raman signal [4, 5]. 

  
Figure 3: Energy Levels of Raman Scattering. Changes in electron energy level for 

interactions with Infrared (IR), Rayleigh (R), Stokes (S), and Anti-Stokes (A) scattering.  
Differences between Normal Raman, Raman with Resonance effects, and Fluorescence 

are pictured [4] 
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This entire process is complex to begin with, but becomes even more complex when 

the interactions between the scattered light and the enhancing surface are considered [4, 5].  

Figure 4 is a simplified depiction of these interactions.  Some of the photons are absorbed 

by the surface and induce a localized surface plasmon resonance, which in turn increases 

the amount of scattering that occurs by increasing the molecule’s apparent Raman cross 

section [4, 5].  This entire process becomes even more complex as the scattered photons 

can then interact with the SERS surface and be absorbed, or reflected off of the surface and 

interact with the molecule again [4, 5]. 

  

Figure 4: Not to scale representation of the interactions between the incident light, 
scattered light, and a surface (purple)/molecule (Dark red circle).  Large green arrows are 
the incident and Rayleigh (Elastic) scattered light. Small green arrows are incident light 

absorbed by the molecule/surface.  Small red arrows are the Stokes and Anti-Stokes 
(Inelastic) scattered light, some of the light is absorbed by the surface or emitted away 

from the detector. 
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CHAPTER 2: SURFACE ENHANCEMENT 

Raman spectroscopy can attribute its versatility and strong signals to a group of 

phenomena called surface enhancement (SE) [2, 4-6, 23, 31-34].  SERS is aptly named for 

the increase in magnitude of the Raman signal that originates from the molecules 

interactions with the surface it rests on.  This enhancement effect can be observed when 

the substrate is a rough surface with nano and/or micro scale features [4, 13, 14].  The cause 

of this enhancement effect has been heavily disputed since its discovery and was initially 

attributed to more molecules resting on the increased surface area of the rough surface [4, 

6].  This postulation was thrown out and replaced with the observation of increased photon 

scattering cross section of the molecules [4, 6].  With this change came a proposal for single 

molecule detection [3,4].  The enhancement phenomena is still not fully understood, and 

theoretical maximum enhancement factors are said to be anywhere from 104 to 1014 from 

the combination of molecule resonance, surface resonance, and molecule/surface 

interactions. [4, 5]  There is also the idea of a chemical enhancement originating from direct 

interactions between the molecule and the surface [4]. 

 Almost all of the literature concurs that the enhancement effect is predominantly 

from electromagnetic effects, with only a small portion believing that a chemical effect is 

also present.  This electromagnetic enhancement arises from a combination of interactions 

from the exciting, or incident, electromagnetic field and the re-emitted, or Raman field [2, 

4]. 

 The enhancement effects are complex and rely on a large number of variables: the 

wavelength, polarization, and incident angle of the excitation laser, the material, geometry, 



18 
 
orientation, and surround medium of the substrate, the different Raman vibrational modes 

of the analyte molecule, and the adsorption efficiency, concentration, distance from the 

surface, and the orientation of the analyte molecule [2, 4, 5, 31, 33, 36].. 

The Various Methods of Reporting Enhancement Factors 

 There seems to be a significant amount of controversy and lack of standardization 

in the SERS field, from acronyms and names for phenomena and techniques, to how to 

report the findings, as seen in many of the references[2, 5, 7-15, 20-30, 33, 37-49].  One 

important example is the method of determining and reporting enhancement factors.  There 

are many reported means of determining the enhancement factor of Raman substrates, but 

there are two main methods, both of which have multiple ways to calculate the 

measurements [4].  The two methods of measuring the enhancement factor of a substrate 

is to average the enhancement over the entire substrate or as a “single molecule” 

enhancement factor (SMEF) taken at a single point on the surface [4].  Some of the methods 

of reporting enhancement factor in literature are: 

• An analytical EF (AEF), comparing the intensity of the Raman signal on 

the SERS substrate to the intensity of the signal in the surround medium 

without the SERS substrate [4]. 

•   The SERS Substrate EF (SSEF), which compares the SERS intensity per 

average number of molecules adsorbed on the surface to the Raman 

intensity per the average number of molecules in the scattering volume [4]. 

•  Orientation-averaged SMEF (OASMEF), which is an averaged multiple 

single molecule measurements at all possible molecule orientations [4].  
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• Polarization-Averaged SSEF (PASSEF), taking an average enhancement 

over different incident polarizations [4]. 

• The standardized SMEF (StdSMEF), which requires the analyte molecule 

to have an isotropic Raman tensor and to exhibit no chemical enhancement 

[4]. 

Even with so many methods of finding a substrate’s enhancement factor, it still 

heavily depends on numerous variables, such as the number of molecules adsorbed, the 

orientation of the molecules, and the location of the molecule on the nanostructure [2, 4].  

This makes it difficult to exactly replicate the experimental conditions and thus difficult to 

compare different substrates by their enhancement factor. 

 To summarize, enhancement factors for experiments cannot be compared unless 

substrates can be manufactured to have exact geometry, molecules can be adsorbed in the 

same known orientation, all other parameters can be kept similar between non-SERS, and 

SERS experiments, and non-SERS measurements are performed correctly.  One method to 

get around this and to compare effectiveness of substrates is to compare their signal-to-

noise ratio, a comparison between the magnitude of Raman peaks and the background 

noise.  This looks at how strong the measured signal is compared to the background noise, 

allowing different substrates to be compared without involving the complex enhancement 

factor [2, 4]. 
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Electromagnetic Enhancement 

 The most important aspect of surface enhanced Raman spectroscopy is the 

electromagnetic enhancement effect [31].  In Raman spectroscopy, the analyte molecule 

sits on the enhancing surface and both are irradiated with an incident electromagnetic field, 

usually visible light [31].  When a molecule is excited by an electromagnetic field of a 

specific frequency, the field induces a dipole in the molecule that oscillates at the same 

frequency of the field, this is visualized in Figure 5 a [31].  This oscillation will radiate 

power proportional to the incident power, an example is seen in Figure 5 b [31].  What 

happens during the surface enhancement phenomena is modification to the electromagnetic 

field (local field enhancement), modification to the radiative properties of the dipole 

molecule (radiation enhancement), and the possibility of modification to the polarizability 

of the molecule (chemical enhancement) [31].  

  

Figure 5: Electromagnetic Enhancement.  a. The incident electromagnetic field induced a 
dipole in the molecule through the oscillation of the free electrons.  b. depiction of the 

ratio between local induced electromagnetic field and the incident field.  Stronger 
induced field is close to the surface. [5] 

 
Local Field Enhancement 

In literature, the most discussed enhancement effect is the local field enhancement 

(MLoc(𝜔)) [4, 5].  This effect is caused by the surface plasmon resonance of the substrate’s 
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surface and can alter the electromagnetic field at the surfaced by orders of magnitudes 

when compared to the incident field [4, 5].  The difference between the local and incident 

fields is mainly determined by the frequency of the surface plasmon resonance [4, 5]. 

𝑀𝐿𝑜𝑐(𝜔) =
|𝐸𝐿𝑜𝑐(𝜔)|2

|𝐸𝐼𝑛𝑐|2
 

The local enhancement effect can also be enhanced even further by the gap effect, where 

the local field of two close surfaces interact and compound on each other [4, 5].  This leads 

to what are known as “hot-spots,” or areas of significant field enhancements on a SERS 

substrate [4, 5]. 

 

Radiation Enhancement 
 An additional effect seen in surface enhancement is radiation enhancement (MRad), 

also known as modified spontaneous emission [4].  Spontaneous emission is when an 

excited electron relaxes to a lower energy state and releases the energy difference as a 

photon [4].  This extra energy comes from the oscillations in the dipole molecule [4].  As 

the molecule oscillates at a set amplitude depending on the incident wavelength, any 

additional energy adsorbed by the molecule is instantly reemitted [4].  In most real cases, 

the emitted radiation will interact with a surface and will be absorbed by the surface (non-

radiative emission) or reflected [4].  Reflected emissions increase the amount of signal 

detected.  However, if the molecule is within a few nanometers of the surface, the strong 

local electromagnetic field at the surface will modify the amount of energy the molecule 

experiences [4].  This can cause changes in the radiated power an excited dipole reemits in 

certain directions.  The radiated power can either be enhanced or quenched, when 
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compared to power that would be radiated if the molecule was in free space instead of 

resting on an enhancing surface [4]: 

𝑀𝑅𝑎𝑑 =
𝑃𝑅𝑎𝑑

𝑃0
 

Strangely, the radiation enhancement is not an effect on the emitted radiation, but is 

actually an effect on the emission process itself [4].  Some problems arise depending on 

the orientation/polarization of the dipole compared to the enhancing surface [4].  Since the 

radiative emission from the dipole is not isotropic in all directions, it is possible that the 

dipole does not radiate towards the Raman detector or it radiates towards the surface [4].  

Depending on the surface material, the emitted radiation could be absorbed by the surface 

instead of ideally being reflected [4].  Therefore, if the dipole does not emit towards the 

detector, or the surface absorbs the radiation, it can appear that the electromagnetic field is 

quenched instead of enhanced [4]. 

 

Chemical Enhancement 

 The idea of a chemical enhancement comes from the possibility of the analyte 

molecule to chemically interact with the metallic surface forming something called a 

charge transfer [2, 4].  There are a few types of chemical enhancement situations: Type I 

is where there is no covalent bond between the molecule and surface, but the presence of 

the metal alters the electron distribution which in turn changes the polarizability of the 

molecule [2, 4].  Type II is a covalent bond (complex) or an electrolytic ionic bond between 

the molecule and surface which leads to significant changes to the molecules polarizability 

since the bond with the metal allows for new electron states to form [2, 4].  Finally, Type 
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III is a theory similar to type II where the energy difference between any two of the 

molecules highest occupied electron state (HOMO), lowest unoccupied electron state 

(LUMO), or the metal surfaces Fermi level is matched by the energy of the incident photon 

[2, 4]. 

 Chemical enhancement is not thought to significantly contribute to the Raman 

enhancement [4].  Additionally, when chemical enhancement is observed the enhancement 

factor is usually on a scale of 101 [4].  When the compared to electromagnetic enhancement, 

which has been reported to be higher than 1010, the chemical enhancement is insignificant 

to the overall enhancement [4]. 
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CHAPTER 3: SURFACE PLASMON RESONANCE 

Surface plasmons are thought to be the cause of many surface enhancement effects, 

however there is little literature exploring the surface plasmon phenomena in detail [2, 4].  

Surface plasmons are usually described only as ‘the oscillations of conduction band 

electrons’, and without much more detail [2, 4] as seen in the following references: 

[12,15,17,29,31-36,40,50-55]. 

The available literature also uses a wide variety of terms to describe surface 

plasmons, making it difficult to accurately assess the current research on what is 

known/theorized about surface plasmons and their electromagnetic enhancement effects 

[2, 4].  In fact, referring to surface plasmons when talking about SERS is technically wrong.  

One must reference the type of surface plasmon formed at the enhancing surface.  There 

are a number of different types of plasmons (Propagating, localized, radiating, non-

radiating, bound, virtual, or evanescent) [4]; the type observed/formed depends on the 

incident conditions (incident angle of light, light wavelength, real and imaginary dielectric 

functions of the surface and surrounding medium, surface geometry) [4].  However, in the 

case of the nanostructures utilized in SERS, the surface plasmons formed are going to be 

localized due to the noncontiguous surface structure. 

 

Surface Plasmons 

 The term surface plasmon arrives when looking at a metallic surface [36].  The free, 

conduction band electron ‘cloud’ at a metallic surface is considered a plasma and can 
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oscillate if excited [36]..  To get a metallic surface’s electrons to oscillate, they need to 

form as something called a plasmon-polaritron, this is when the plasmon is coupled to an 

incident photon [36].  The surface material must exhibit resonance with the incident light 

in order for a photon to couple with a plasmon [36].  The surface resonance happens when 

the real part of the dielectric function (𝜖′) at the incident wavelength is approximately 

negative two times the dielectric constant of the surrounding medium [36].  This scenario 

allows the incident energy to be effectively stored in the surface material without 

dissipating rapidly, as the real part can be considered a materials ability to store incident 

energy and the imaginary part is the ability to dissipate the energy [36].  The intensity, or 

quality factor, of the resonance is dictated by the imaginary part of the surface’s dielectric 

function [36]. 

Useful properties for plasmons are a real dielectric function value between -20 and 

-1 and a small imaginary dielectric function value or a quality factor greater than two.  The 

higher the quality factor the better the material [36]. Figure 6 shows the real and imaginary 

parts of Au and Ag dielectric functions. 

 

Figure 6: Real (left) and imaginary (right) parts of Ag and Ag dielectric functions [4] 
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Shape effects 

In most real world cases of surface plasmons on a metallic surface there will not be 

a uniformity on the surface [4, 14, 15, 16].  With nano-sized features the surface plasmon 

propagation is disrupted and the electromagnetic modes can only exist at specific 

wavelengths as opposed to an existence at a continuous range of wavelengths on a perfect 

surface [4].  Additionally, when looking at the surfaces of nano-scale particles, their 

geometries affect the formation of plasmon resonance(s) [4, 14, 15, 16].  It is a good idea 

to start looking at a fully symmetric sphere; the diameter of the sphere affects the 

wavelength for surface plasmon resonance to form [4, 14, 15, 16].  The larger the radius, 

the more red shifted the wavelength becomes when comparing to a smaller sphere, 

additionally the absorption peak seen for the sphere broadens [4, 14, 15, 16].  This happens 

to a point where the sphere becomes useless as a SERS sensor as it absorbs most of the 

scattered radiation [4, 14, 15, 16].  Non symmetrical shapes become more complex as each 

different axis has a specific resonant wavelength [4, 14, 15, 16].  An easy way to visualize 

and approximate the resonance of relatively simple shapes such as ellipsoids and 

cylindrical shapes is to imagine they are a stretched sphere [41].  As a sphere is stretched 

along a single axis, its length along that axis is increased and thus resonance for that axis 

is red-shifted [41].  One way to think about how the resonance shifts for an axis during the 

stretching is: ‘pointy ends’ (prolate) lead to a red-shift and ‘flat ends’ (oblate) lead to blue-

shift [41].  Figure 7 shows how the prolate or oblate features affect the resonance 

wavelength.  Another effect is that the electromagnetic enhancement drastically increases 
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as an object becomes more prolated, meaning as the shape becomes sharper, the stronger 

the resonance can be [41]. 

 

 

Figure 7: Surface Plasmon Resonance of Nanorods.  The formation of transverse and 
longitudinal resonances require different wavelengths.  The prolated longitudinal axis 

wavelength is red-shifted when compared to the oblated transverse axis [17]. 
 

Gap effect 

 Not only do the size and shape of the metallic particle affect its resonance and 

electromagnetic enhancement, so does the presence of additional particles [55].  Figure 8 

demonstrates the stronger electromagnetic field formed from the close proximity of 

multiple particles.  When two metallic surfaces are close to each other, their 

electromagnetic enhancement fields interact with each other and form a hybridized 

enhancement field and new local plasmon resonance [55].  These new plasmon 

resonances are referred to as coupled-LSP and form from the coupling of the resonance 

of the individual particles [55].  This hybridization is analogous to the hybridization of 

atomic orbitals during covalent bonding [55].  The coupling of resonances leads to a red-

shift of the wavelength with the amount shifted depends on how strongly the two fields 

interact with each other [55].  A very important variable in the coupling is the distance 

between the particles [55]. Since their individual EM fields are stronger closer to the 
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surface, it makes sense that the closer the particles are the stronger the interaction will be 

[55]. 

 

Figure 8: Depiction of the gap effect.  As additional particles come into close proximity 
of each other, the localized electromagnetic field becomes stronger than a single particle 

[18]. 
 
Material effects 

 The most important variable in the formation of surface plasmons is the material 

the surface is made from and the surrounding medium [34].  More specifically these 

variables are: the value of the dielectric function for the surface at the wavelength being 

observed, dielectric constant of the surround medium, and their difference [34].  The 

importance of this difference comes from the circumstances necessary for nearly perfect 

absorbance at the specified wavelength.  Normally, metals are almost perfect reflectors 

[34].  However, when the right wavelength of light is incident at the necessary angle at the 

boundary between the metallic surface and surrounding medium of the correct dielectric 

values, the energy of the incident photons will be coupled to the surface plasmons and form 

surface plasmon-polaritrons and resonate [34]. 
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CHAPTER 4: TRADITIONAL SUBSTRATES 

Since the discovery of the SERS phenomena, the most common substrates used have been 

Ag or Ag colloids, which are nano-scale metallic spheres suspended in solution [4].  As 

more labs researched Raman spectroscopy, other substrates were developed.  Chemically 

roughened surfaces, nanostructures, metals other than Ag and Ag eventually made their 

way into the literature [4,33] 

 Traditionally, SERS substrates are made from Ag and Ag colloids because of the 

near ideal optical properties of the metals and the relative ease in fabricating a colloid 

solution [35].  These colloids are usually produced through a reduction reaction and 

stabilized with a stabilizing agent [33].  The most common reaction used is a citrate 

reduction, which provides its own stabilization agent [33].  The material used most in the 

literature is Ag [33].  .  Even though Ag generally has a stronger enhancement, Ag is more 

stable, does not react as easily, and the binding mechanisms of Ag are more understood 

than Ag [33].  These all add up to the ease of attaching binding molecules to Ag particles 

making Ag a more versatile substrate for Raman spectroscopy [33]. 

Other planar substrates have also been used.  Chemically roughened films, 

evaporative deposition, lithography techniques, and many other techniques have been used 

to fabricate planar or 2d Raman substrates [4].  These planar substrates remove the 

complexities of three dimensions and mixing dynamics that are found with colloidal 

solutions, and can be fabricated in ways to tightly control the size and shape of the surface 

[4]. 
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Substrate Stability 

This subsection will mainly consist of various papers on the broad subject of the 

stability of Raman substrates and some different phenomena that lead to Raman signal and 

substrate degradation.  The two main types of stability are thermal and chemical stability.  

Various types of thermal stability include grain growth, residual stress relaxation, phase 

transitions, and diffusion processes [19] including effects from elevated temperatures, 

surface diffusion, and coalescence. Whereas, chemical stability refers to oxidation and 

chemical adsorption on the surface 

 

Surface diffusion 

 One of the most obvious methods of degradation is the physical restructuring of a 

particle as it undergoes surface diffusion [20].  Observing nanoparticles with scanning 

electron microscopy (SEM), one can quantify particles change shape over the course of 

days or weeks [20].  They go through a process called surface diffusion, where the surface 

atoms freely move and reorder themselves in a lower energy state than they started at.  In 

order to fully understand the process a nanoparticle goes through during surface diffusion, 

Link, et. al. irradiated Ag nanoparticles with femtosecond laser pulses [20].  The irradiation 

imparts energy into the nanoparticle, less than would be required to transition the metal to 

a liquid phase [20].  Link, et. al. observed that the slight increase of internal energy leads 

to the surface diffusion process, starting from internal point defects that propagate to planar 

defects and eventually the reordering to a lower surface energy structure as seen in Figure 

9 [20]. 



31 
 

 
Figure 9: Crystal restructuring of Au nanorod.  a) Point defect inside of nanorod. b) Point 
defect propagates to twin/stacking faults. c) Surface diffusion reorients crystal structure 

to propagate planar faults.  d) Complete surface diffusion. [20] 
 

 
Coalescence 

 In addition to surface diffusion, particles can undergo a coalescence process.  

Coalescence is where the particles aggregate and bind together [21].  Sometimes multiple 

particles may go through a process known as Ostwald ripening, where the smaller particles 

are absorbed into larger ones [21].  Two concurrent events that would lead to coalescence 

are surface diffusion which cause neighboring particles to touch and grow into each other.  

Or the particles detach from their substrate and undergo Brownian motion, random moving 

until they run into each other [21].  The particles touch and coalesce, driven by the desire 

to reduce their combined surface to volume ratio or their free surface energy [21].  While 
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the coalescence process is ideal from the thermodynamic standpoint, it requires some 

additional energy to initiate the process and to sustain the process [21].  After coalescence 

begins, some of the surface energy lost is used to sustain the process.  However, as the 

number of atoms diffusing increases, the energy released cannot maintain the coalescence 

process [21].  Without a higher ambient temperature also feeding energy into the 

coalescence process, the particles can be left partial coalesced, such as in Figure 10 [21] 
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Figure 10: Yacaman, et al's TEM images depicting Au nanoparticles coalescing through 

Ostwald ripening, smaller particles are absorbed into the larger particle.  Partial 
coalescence is depicted in image e. [21] 
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 There becomes a relationship between the coalescence process and the shape of the 

particles involved [22].  As the coalescence process is driven by the desire to minimize 

surface energy, it makes sense that shapes with large surface to volume ratios or high 

energy crystallographic planar surfaces restructure faster. [22] 

 

Oxidation 

 Chemical instability is another key downside to nanostructures.  Due to their large 

surface to volume ratio, and their high amount of free surface energy, nanostructures can 

be very reactive [23].  This can prove to be detrimental to applications such as SERS.  For 

the case of Ag, structures will oxidize up to 422K (~150°C) [23].  This temperature is 

where the partial pressure of O2 at the Ag surface is close enough to the dissociation 

pressure of Ag2O to allow decomposition of the O2 and Ag. [23]  Following this logic, 

lowering the pressure at the Ag surface would lower the temperature required for O2 

dissociation. [23]   

 

Elevated Temperature 

 There is a commonality between all of these degradation methods; they are all 

thermo-chemical processes, meaning that the rate of which they occur is heavily related to 

the temperature during the process [24].  In one experiment by Beavers, et. al., a critical 

temperature for the degradation of Ag nanostructures was observed.  In their experiments, 

the authors fabricated two kinds of substrates.  The only difference between the substrates 

was a break in vacuum in-between fabrication steps [24].  To observe the effects of thermal 
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degradation, the team heated the substrates for a few minutes and observed any loss in 

Raman intensity [24].  Their findings show that the substrates exposed to O2 in-between 

fabrication steps exhibit a significant loss in signal at only 60C for 5 minutes [24].  The 

substrates with no vacuum break during fabrication were able to withstand up to 100C for 

30 minutes before a significant loss in Raman Signal [24].  However, as seen in Figure 11, 

heating these substrates to 125°C for 5minutes has a causes significant surface diffusion 

and signal loss; heating to 150°C for 5 minutes has extreme surface diffusion and a nearly 

complete loss of signal [24].  This critical degradation at 150°C coincides with the 

temperature of O2 dissociation from Ag.  It is a possibility that the presence of Oxygen on 

the surface significantly contributes to the surface degradation processes. 
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Figure 11: Surface Degradation of Ag nanorods due to elevated temperature.  Before (a) 
and after (c) Ag nanorods are heated to 125°C for 5 minutes and their respective R6G 

Raman spectra (b, d).  Ag nanorods heated to 150°C for 5 minutes (e) and R6G Raman 
spectrum (f) [24] 

 
 

Attempts to minimize degradation  

Many attempts have been made do stop the surface degradation of SERS substrates. Some 

attempts include coating Ag nanorods with a thin layer of Alumina (Al2O3) [25] or 

Titanium Oxide (TiO2) [26].  These materials are stable to high temperature, and should 

theoretically block surface diffusion.  Some have even attempted to use a purely Al 

nanorods, hypothesizing that the oxide layer formed on the Al surface would provide 
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stability [27].  These attempts proved successful at stopping surface diffusion and 

subsequent Raman signal decay over the course of multiple months.  However, as seen in 

Figure 12, the Raman signal from these coatings is significantly weaker than a purely Ag 

structure [25] [26]. 

 

 

Figure 12: Normalized Raman intensity for the 1171 cm-1 peak for Crystal Violet dye 
molecule (CV). Measured over 48 days using Ag nanorods (0) and TiO2 coated Ag 

nanorods (1-5) [26]. 
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CHAPTER 5: SUBSTRATE FABRICATION AND CHARACTERIZATION 

 With so many nano particle fabrication techniques, it becomes important to 

consider what techniques are available in the lab.  At the time of this research, the only 

technique readily available to this study was thermal evaporation using a technique called 

oblique angle deposition, also called Glancing Angle Deposition (GLAD). 

 

GLAD 

 Glancing Angle deposition is a technique to grow nanostructures that utilizes a 

geometric shadowing effect to grow a large array of discrete structures [28].  GLAD occurs 

when a collimated vapor flux nucleates and grows columns on a substrate [28].  If the 

incident angle between the vapor source and the substrate is oblique, then the growing 

columns will form ‘shadows’ on the substrate and prevent the formation of a complete film 

[28].  As the vapor continues to be deposited onto the substrate, the columns continue to 

grow.  The nucleation on the substrate is random, as is the growth of the columns [28].  

Some columns grow significantly larger than others and some columns are shadowed 

during the growth can become ‘extinct’ [28]. A depiction of the GLAD growth process is 

seen in Figure 13.  
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Figure 13: Glancing Angle Deposition. a) Incident vapor nucleates on substrate. b) 
Colomns start forming and shadowing. c) Columns grow larger, shadow smaller columns. 

d) Larger columns cause smaller columns to go ‘extinct’ [28] 
 

Vapor Deposition 

 The vapor flux used in the GLAD process is a metallic vapor.  In our lab, the vapor 

is created by thermal evaporation under a vacuum.  Another technique used is arc plasma 

deposition, or sputtering [29, 27, 30].  Both thermal evaporation and sputtering are 

techniques of Physical Vapor Deposition (PVD).  PVD techniques employ a physical mean 

of creating a vapor from source material, and is not limited to metallic materials [29, 27, 

30].  Some important variables in vapor deposition are distance between source and 

substrate, the vacuum pressure, and the deposition rate [67]. 

 An important concept in the deposition of materials is the mean free path of the 

vapor [29, 27, 30].  This is essentially the statistical distance a particle/molecule can travel 

before interacting with another particle/molecule [29, 27, 30].  This is governed by the 
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number of particles in a volume, which is essentially the pressure within the volume.  

Therefore, the stronger the vacuum (lower pressure), the further a molecule/particle can 

travel [29, 27, 30].  It becomes important to place substrates within the mean free path of 

the vapor to have shadowing and deposition [29, 27, 30].  In addition to the distance the 

vapor can travel, the pressure can also affect contaminations in the substrate [29, 27, 30].  

In most cases the chamber will start at atmospheric pressure and filled with air which has 

a significant amount of contaminates and Oxygen and Nitrogen molecules [29, 27, 30].  If 

the pressure is too high, there is a possibility of contaminating the structures or the 

formation of oxides or nitrides [29, 27, 30].  Another important variable is the deposition 

rate.  The formation of discrete, complete structures is reliant on the deposition rate [29, 

27, 30, 31].  When the vapor lands on the surface, the atoms still have enough thermal 

energy to allow for surface diffusion [29, 27, 30, 31].  The atoms can land on the surface 

then move around until they settle or are locked into place by the next layer of deposition 

[29, 27, 30, 31].  Therefore, it is important to have deposition rates fast enough to prevent 

the possibility of the diffusing atoms from forming a film instead of nanorods [29, 27, 30, 

31].  However, if the deposition rate is too fast, then it becomes possible for a significant 

amount of vacancies to form in the structure [29, 27, 30, 31].  Multiple vacancies in a layer 

can be detrimental to a structure that is only dozens of atoms in diameter [29, 27, 30, 31].  

A recommend rate deposition rate for Ag is 1-5Angstroms per second (A/s) and 150 A/s 

for Al [31].  The reason for such a high rate for Al is to prevent possible reactions between 

the metallic vapor and residual gas molecules in the chamber [31]. 
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In the case of sputtering, Argon (Ar), or another inert gas, is flowed into the vacuum 

chamber, ionized by a magnetron sputtering system, and drawn towards the sputtering 

target by a difference in electrical charge [29, 27, 30].  The material being deposited, called 

the target, sits at the end of the magnetron and is bombarded by the accelerated ionized gas 

molecules.  Atoms from the source target are then ejected due to the collision of the ionized 

gas and deposited onto a substrate [29, 27, 30].  Thermal evaporation is a similar concept, 

but does not involve the use of a gas, but the heating of the source material [29, 27, 30]. 

Most metals exhibit a phenomenon of having a lower evaporation temperature 

when under vacuum [29, 27, 30]. Per the Kurt J. Lesker, our main supplier, the evaporation 

temperatures for Al and Ag are listed out in Table 1 [32] 

 

Table 1: Evaporation Temperatures of Al and Ag [32] 

Pressure (Torr) Temperature (°C) 

 Aluminum Silver 

10-4 1010 1105 

10-6 821 958 

10-8 677 847 

 

The research presented in this thesis used source pellets of Al or Ag.  Materials 

were deposited by thermal evaporation under vacuum of ~10-5 torr using resistance heating 

of the material sitting in a Tungsten thermal evaporation boat or Boron Nitride crucible 

purchased through Kurt J. Lesker.  Al source material was ¼” by ¼” pellets of 99.999% 
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Al from Kurt J. Lesker.  Ag pellets used were 1/8” by 1/8” 99.999% purity from Kurt J. 

Lesker.  The deposition rate and size of particles was measuring during deposition with a 

quartz crystal micro balance that was placed near the substrates during the deposition 

process.  Deposition rate was maintained at either 5 or 10 A/s. The deposition system used 

could not supply the electrical power to deposit Al at 150 A/s, so a rate of 5 A/s was used.  

The nanorods were set at a glancing angle of about 87 degrees relative to the source 

material.  Substrates used were 1” by 1” quartz (fused silica) slides.  The vacuum chamber 

is made from stainless steel and has water cooling lines along the walls.  There is the front 

access port door and the chamber top is removable with a pneumatic lift, which allows for 

easier substrate placement in the chamber. A picture of the deposition chamber can be seen 

as Figure 14.  All ports use copper gaskets, except for the front door and lid, which use a 

rubber gasket.  The vacuum chamber is pumped to 10-2 torr using a mechanical scroll pump 

and the pressure inside is measured with a Pirani gauge.  Then a turbomolecular pump is 

used to reach a stronger vacuum level.  After about 30mins the chamber pressure reaches 

between 10-6 and 10-8 torr, a hot filament ion gauge measures this pressure. 
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Figure 14: Deposition Chamber (left) and controls (right) 

 
UV-Vis 

 UV-Vis spectroscopy for all samples was performed at UNF.  Measuring the 

absorbance of substrates from 200 to 700 nm.  Substrates were placed with the 

nanostructure facing the incident light. 
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Raman Spectroscopy 

 The first experiments had their Raman spectroscopy performed at the Nanoscale 

Research Facility at the University of Florida using a 325nm UV laser, 633nm HeNe laser, 

and solid-state laser with a wavelength of 532nm.  Later experiments were performed at 

the University of North Florida with a solid-state laser with wavelength of 532nm. 

The Raman characterization was performed by taking the Raman spectrum of the 

substrate after letting it sit in a bath of 10-6M R6G solution purchased from Sigma Aldrich.  

The substrates sat in the R6G for 30minutes, were removed, and then allowed to dry.  After 

drying, the substrates were placed in the Raman spectrophotometer and their Raman 

spectra were gathered from 240 wavenumber to 2240 wavenumber, with a total number of 

1024 measurements taken for each of the spectra.  Five spectra were taken at various 

locations on each substrate in order to get an average spectrum over the entire surface.  The 

Raman spectra are outputted as a text files containing each wavenumber that data were 

gathered for, and the number of counts for that spectrum gathered.  Each individual spectra 

acquired was a separate file; the individual files were manually condensed into a single 

excel workbook with each sample having its own sheet in the workbook. 

 To compare the spectrum from different substrates the five measurements for each 

sample were normalized from a scale of 0 to 1 using the formula: 

=
(𝐵1 − 𝑀𝐼𝑁(𝐵: 𝐵))

(𝑀𝐴𝑋(𝐵: 𝐵) − 𝑀𝐼𝑁(𝐵: 𝐵))
 

This formula was used on all 1024 data points for each spectrum gathered.  This 

normalization was used as an attempt to filter out the unaccountable variables during the 

experiments that would affect the raw measurement and provide skewed results.  The 
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normalization removes the raw counts from the equation and brings every measurement to 

a comparable range, with most of the background noise close to a value of zero and the 

strongest peak reaching a value of one.  An average of the five normalized spectra were 

taken, as was an average of the five raw counts spectra.  Then three of the strongest Raman 

peaks were chosen to be compared across samples.  These peaks were at wavenumbers 

765, 1352, and 1640. 

 A few different methods were used to compare the substrates, the number of counts 

registered at the peaks, the normalized intensity, and the normalized ‘enhancement’.  The 

number of counts is just the raw number outputted during the Raman spectroscopy at the 

specific wavenumber for the substrate.  Normalized intensity is the value from 0 to 1 the 

peak at the specific wavenumber is assigned.  And the ‘enhancement’ is a percent 

difference between the peak and the average of the background noise around the peak. 

 

SEM Imaging 

 Images were taken at UF’s NRF using the FEI Nova Nano, with the exception of a 

few of the later images which were taken in MSERF at UNF on the Tescan Mira. 

 Images were attempted to be acquired using secondary electron imaging at 25k, 

60k, and 120k magnification as reported by the SEM software, using accelerating voltages 

between 5-10kV, and short working distances. 
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CHAPTER 6: DEGRADATION RESISTANT SUBSTRATES 

 As mentioned previously, the first goal of this research was to develop a SERS 

substrate that could be ultimately be used on space missions.  This involves using the 

substrate after they are stored low vacuum for extended periods, of time and subjecting 

them to extreme temperatures and high vacuum environments. 

The design for a new substrate was based on having features to decrease surface 

mobility of a metallic nanostructure.  The substrate should be stable, inert to its 

environment, and be SERS active to provide a strong signal from trace amounts of 

molecules.  It was hypothesized that an Al or Titanium (Ti) oxide structure would meet 

these requirements.   

 

Aluminum Nanorod Substrates 

 The first step to achieving this goal was the use of Al nanorods and their relative 

stability to surface diffusion.  Some research has been performed into using Al as a SERS 

substrate.  It was hypothesized that because of Al’s rapid oxidation that the oxide layer 

formed on the surface of Al nanorods would prevent surface degradation of the substrates 

[8, 9, 11, 40, 44, 53, 57, 64, 68].  The first substrates used for the research presented in this 

thesis was an Al nanorod substrate.  In order to test the viability of Al nanorods for SERS, 

various lengths of Al nanorods were grown through GLAD thermal evaporation PVD.  

Lengths of 25, 50, 100, and 250 nm were produced and characterized with SEM, UV-Vis, 

and Raman spectroscopy.  SEM micrographs, such as the one in Figure 15, of the Al 

nanorods show domination of sharp peaks and close packed structures.  This structure 
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should theoretically provide strong Raman enhancement for molecules adsorbed onto the 

surfaces.  Uv-Vis characterization show a surface plasmon resonance in the UV spectrum, 

therefore, Raman experiments were used using a UV laser of 325nm wavelength.  

However, the Raman experimentation proved that although the oxide layer could provide 

structural stability it also severely dampens the Raman enhancement and exhibits strong 

fluorescence.  One hypothesis for the dampened enhancement is the loss of free surface 

electrons when the surface forms the oxide layer. 

  

Figure 15: SEM image of 250nm Al Nanorod substrate 

 Further, it is hypothesized that s substrates with high surface roughness and surface 

area will raise the energy barrier necessary to initiate the surface mobility and will therefore 

prevent coalescence into bulk.  Finally, it is hypothesized that annealing the structures at a 
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high temperature will force the particles into a low energy configuration and will become 

immobilized on the surface when returned to normal storage conditions. 

 

 
Artificially Accelerating Surface Diffusion 

These substrate’s ability to withstand surface diffusion and coalescence was tested 

to determine if the Al nanorods could provide some benefit to future substrates by 

providing the stable surface and increase roughness required to slow the diffusion of an 

added nanostructure layer.  In order to simulate the process of surface diffusion and 

accelerate it, the fabricated substrates were heated in air on a hotplate at 500°C for 24 hours.  

This was to increase the rate of surface diffusion to determine if the substrates would 

coalesce into a bulk film or remain as discrete particles required for SERS activity.  This 

process would indicate if the substrates would still be viable for SERS measurements after 

storage for long periods of time. Heating the Al nanorods lead to the formation of a rough 

island film as seen in Figure 16. 
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 Figure 16: SEM image of 100nm Al Seed post annealing at 500°C for 24 hours 

 
After heating the Al nanorods, the substrate visibly turned transparent.  The Uv-Vis 

spectra in Figure 17 corroborated the transition with their absorbance.  The original Al 

nanorods showed very little variation in absorbance over the entire spectrum except around 

250nm where there was a slight bump indicating the presence of a localized surface 

plasmon resonance in the deep up wavelengths.  After heating, the substrates lost almost 

all of their absorbance over the visible spectrum, with a slight bump in absorbance in the 

UV wavelengths.  This optical transparency, along with no crystalline peaks present in x-

ray diffraction, suggest that an amorphous Al oxide or mullite structure may have formed.  
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Mullite could have resulted from through a reaction between the Al and the fused silica 

substrate. 

 

 

Figure 17: Uv-Vis of Al nanorod substrates 

 

 The Raman spectroscopy for the Al after heating was purely background noise with 

a large broad peak in the low-wave numbers for R6G with every measurement taken.  

Originally, a UV laser with wavelength of 325nm was used to attempt to induce a surface 

plasmon resonance and get some enhancement to the signal, but the difference in resonant 

and incident wavelengths was too great.  Additionally a red HeNe laser of 633 and green 

Solid State diode laser of 532 nm were used; both of these returned no discernable signal 

apart from the background noise. 
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Aluminum-Silver Composite Substrates 

 With the failure of only Al substrates to perform as decent SERS substrates, came 

the idea of utilizing the stability of Al nanorods and the enhancement of Ag.  Ideally, this 

would fulfil the requirements set by the initial hypothesis regarding substrate 

characteristics.  The idea was to coat the heated Al substrates, given the name of Al ‘seeds’, 

with Ag; much like how it is common practice to coat SEM samples with a highly 

conductive metal in improve the samples conduction path to prevent charging during 

imaging.  Ideally, this coating process would lead to discreet nanoparticles that are resistant 

to coalescing into a bulk due to the increased surface area and roughness of the Al while 

still providing a large enhancement for Raman spectroscopy from the Ag. 

The 50nm heated Al nanorods, referred to as Al ‘seeds’, were chosen as a base for 

the new substrates due to their ability to be rapidly fabricated and their adequate surface 

roughness.  Substrates comprising of lengths of 10, 25, 50, 100, and 200 nm of Ag 

nanorods, grown on top of the 50nm Al seeds, were fabricated through GLAD thermal 

evaporation.  The different lengths were used to gain an understanding of how the Al seeds 

affect the resonance, optical properties, surface mobility, and SERS activity of the Ag 

nanorods on top. 

 The fabrication process for making these Al-Ag composite substrates starts with a 

clean fused silica wafer, cleaned with acetone, rinsed with isopropyl alcohol, and with a 

sonication bath in deionized water.  Next, Al nanorods are grown at a glancing angle onto 

the wafer.  This is done at an approximate angle of 87 degrees, at a rate of 5Angstroms per 

second, and for the desired thickness.  Next, the Al nanorods are heated and turned into the 
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Al seeds by annealing in air at 500°C for 24 hours.  The next step is to grown Ag nanorods 

onto the Al seeds using GLAD thermal evaporation.  Finally, to improve stability by 

heating the Ag nanorod/A seeds to 500°C for a shorter time.  In order to compare the 

stability of the resulting morphology and SERS signals, some of the samples produced are 

not heated for the final step.  The substrate after each step to the fabrication process is 

pictured in Figure 18. 

 

Figure 18: Optical picture showing the substrates after each fabrication step in the 
production of Al-Ag composite. From left to right: Clean quartz slide, Al nanorods, Al 
nano seeds (nanorods annealed in air to 500°C), Ag nanorods grown on top of Al seeds, 

Ag nanorod/Al nanoseeds annealed in air to 500°C. 
 

One observation to note is the distinct color changes.  The Al nanorods appear 

visually as a gray color, but become completely transparent to the eye when heated at 

500°C for 24hours in air.  The Ag nanorods appear as a yellow color on top of the Al seeds.  

This yellow color is from the nanorods localized surface plasmon resonance absorbing light 

in the blue wavelengths, this can be deduced by comparing the absorbance peak in figure 

19 to the wavelength/color chart in figure 20.  As the Ag nanorods are heated and begin to 

change shape, the color of the substrate shifts from a yellow to orange to red to purple 

depending on the final size of the particles.  Figure 19 shows UV-Vis data to show 

absorbance change after heating substrates. 
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Figure 19: UV-Vis spectra for 25nm Ag nanorods on 50nm Al nanoseeds, Heated and 
Non heated.  Slight absorbance peak around 450nm (absorbs blue, appears yellow) before 
heating shifts to a slight peak around 480nm (absorbs bluish-green, appears orange) after 

heating substrate to 500°C for 15 minutes.  Also seen is the appearance of a strong 
absorption peak around 360nm after heating 

 
These changes in color are an indication to the nanoparticles on the substrate are 

changing size/shape.  As outlined previously, as a particles size changes, the wavelengths 

of plasmon resonance shifts.  As the Ag particles grow larger from surface diffusion their 

absorbance red-shifts and their apparent color shifts accordingly.  Figure 20 shows the 

apparent color for absorbed wavelengths 
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Figure 20: Diagram depicting absorbed colors and their complementary apparent color 
[33] 

 
 Electron microscopy imaging of the Ag coated Al seed substrates before and after 

being heated show what has happened.  The Ag nanorods as fabricated on top of Al seeds, 

not heated, show as a relatively normal nanorods grown by thermal evaporation except that 

they appear to be closer to a rough film than long nanorods.  Normally, when heating Ag 

nanorods, they turn into a bulk film [73].  When grown on top of the Al seeds they form 

discrete pools of Ag.  It has been hypothesized that the Ag attempts to minimize free 

surface energy by attempting to coalesce into bulk where particles connect to each other, 

but the surface roughness provided by the Al seeds prevents the Ag from having adequate 

mobility.  Much like water droplets on a hydrophobic surface, pools of Ag form to reduce 

surface energy.  Particles that are able to touch their neighbors after thermal reshaping are 

able to coalesce into larger particles through the Oswald ripening mechanism.  This gives 

rise to a characteristic spacing and size of Ag particles for a given deposited Ag thickness.  

Figure 21 compares the structure before and after heating the Ag nanorods. 
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Figure 21: 50nm Ag on 50nm Al seeds as fabricated (top)  

and heated to 500°C  for 15mins (bottom) 
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Image processing was done to the SEM micrographs of the substrates to find a 

correlation between the nanorod thickness and the size/distribution of the Ag particles after 

heating.  Software called Image J [74] was used to adjust the brightness and contrast of 

each image and to outline the particles.  After the particles were distinguished, a statistical 

analysis on the images was performed and data were collected on the particle sizes and 

distance between particles.  The program was able to outline the particles, count the number 

of particles, their average size was average distance between particles with standard 

deviations and standard errors were calculated for each image.  Figure 22 shows an 

example of the program in use on a SEM micrograph.  The particles are outlined and the 

spatial position of the pixels is returned.  From the pixel threshold data, averages are 

numerically calculated.  Figure 23 shows the relationship between the deposited nanorod 

size and the average particle diameter and average distance between particles that results 

after the annealing process.  Additional statistical data for the particle size and distances 

can be found in Appendix E. 

Some of the images of the heated substrates were unable to be analyzed.  This is 

because of substrate charging and image drift, during imaging, preventing the images from 

having a uniform contrast.  The lack of uniform contrast meant the image processing lost 

a significant number of particles or could not properly identify particle boundaries.  

Additionally, only heated substrates could be analyzed due to the nanorod images not 

having discrete boundaries between particles.  
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Figure 22: Particle analysis of 10nm Ag/50nm substrate.  Particle outlines and number 
have been overlaid on the original image 

 
Figure 23: Average particle size and distance between particles after heating.  A Near 

linear relationship between nanorod lengths before heating and the average particle size 
and average distance between particles after heating 
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The testing of the Al-Ag composite substrates involved depositing 50nm long Al 

nanorods and heating them at 500°C for 24 hours.  Then various lengths of Ag nanorods 

were deposited.  Lengths of 10, 25, 50, 100, and 200 nm were used.  The Ag was then 

either left as fabricated or heated to 500°C for 15 minutes.  This time was chosen to allow 

adequate surface diffusion and it was observed that diffusion occurs within seconds as 

noted by a visible color change in the samples.  An entire set of substrates for this 

experiment contained 10 different samples, a heated and non-heated version of each of the 

5 lengths of Ag nanorods. 

 Comparing the normalized Raman spectra of the heated composite substrates to the 

non-heated composite substrates shows little difference between them, indicating that the 

accelerated surface diffusion from heating the substrates still allows for enhancement as 

the nanostructures remain. 

 

 

Figure 24: Raman spectra for 100nm heated and non-heated Ag nanorod/Al nanoseed 
substrates 
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Vacuum Storage 

 Since there are multiple possible sources from the decay in the Raman signal over 

the course of the substrates life time, it became necessary to attempt to separate the possible 

causes.  The difference in signal seen was most likely from the change in surface structure, 

but could also be from a chemical degradation from sulfur and oxygen compounds 

bonding/adsorbing onto the surface.  The hypothesis for this experiment was that vacuum 

storage may result in surface diffusion due to the lack of pressure on the surface, but 

prevent a chemical change to the surface. 

It is widely reported in the literature that Ag quickly oxidizes in air and also reacts 

with Sulfur (S) from the atmosphere, both of these events would lead to a decrease in SERS 

effectiveness [62].  In an attempt to separate the effects due to sulfur and oxygen adsorption 

an experiment to store the Raman substrates under vacuum was designed.  A load lock 

vacuum was designed in-house to accomplish this.  The chamber is comprised of copper 

tubing, compression fittings, ball valves, needle valves, and Ball jars.  Utilizing this storage 

system, samples were created and stored under vacuum every week for a month without 

the need of breaking vacuum to add additional samples to the vacuum storage.  Overall, 

samples should be exposed to air for less than 5 minutes between fabrication and 

characterization.  The system can be seen in Figure 25 and Figure 26, with Figure 26 

showing the storage chamber sections.  The components used in the vacuum storage system 

were mainly chosen based on their inexpensiveness and availability.  The system is pumped 

to vacuum by a BMH 70 Dry TurboSystem, which is a turbo-molecular pump backed with 

a mechanical diaphragm pump.  Vacuum level is measured with an Edwards WRG-s wide 
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range gauge and digital controller.  Each section of the storage system can be isolated from 

the rest by closing the ball valve at the individual chamber or the needle valves along the 

main spine of the setup.  The initial section is pumped down via the mechanical/turbo 

system with the rest of the chambers isolated.  To add additional sections to the vacuum, 

the previously pumped sections are closed off at their respective ball valves, the turbo pump 

is stopped, the new section’s needle valve is opened to the mechanical pump and allowed 

to pump down to ~1 torr, and then the turbo pump is turned back on.  Once the new section 

is pumped to at least 10-3torr the previously pumped sections are opened to the vacuum 

again.  Before a section is added to the vacuum, it is filled with Argon gas to displace any 

oxygen in the jar in an attempt to minimize contaminating the vacuum system. 
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Figure 25: Load Lock Vacuum Storage Setup 
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Figure 26: Load Lock Vacuum Storage Containers 

 
The 100nm Ag nanorods thickness of the Al-Ag composite substrates were chosen 

to be observed during the month long vacuum storage experiment due to their initially 

strong SERS enhancement.  This length seemed the most appropriate considering the 

promising results and relative ease of imaging during the previous experiment. 

Over the course of a month, multiple heated and non-heated versions of 100nm Ag 

and 50nm Al composite substrates were fabricated every week, half of the produced 

substrates were stored in sterile, plastic petri dishes in air while the rest were placed under 

vacuum storage.  At the end of the month long experiment the samples stored under vacuum 

were compared to those stored in air. 
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The hypothesis going into this experiment was that the Raman enhancement would 

decay significantly less when the samples were stored under vacuum than those stored in 

air due to the oxygen and sulfur species not being able to adsorb onto the Ag surface when 

under vacuum.  However, when testing the samples with Raman spectroscopy, those stored 

under air provided stronger signals than those from the vacuum as seen in Figure 27.  The 

Raman results also indicated that each set of samples that were produced each week had 

large sample variation due to experimental conditions and therefore not directly 

comparable.  The variability is due to the randomness of the experimental conditions such 

as overall surface geometry, exact deposition conditions, non-uniform drying rate of 

analyte solution, and non-uniform analyte coating the surface after drying.  However, the 

set of substrates created for a week were fabricated in the same deposition.  Therefore, the 

samples created in a week are directly comparable. 

 

 

Figure 27: Normalized enhancement compared to background noise at 765 Wavenumbers 
for each sample over month long experiment 
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After the unexpected results, the working hypothesis changed to the vacuum 

storage accelerated surface diffusion and reshaping due to the lack of pressure at the 

surface. This implicates that the morphological change is strongly influences the strength 

of the Raman signal.  At the end of the month, usable SEM micrographs of the substrates 

could not be taken due to issues with substrate charging and time constraints with the 

imaging session.  However, with the opening of the MSERF lab at UNF, images of the 

substrates were taken nearly after nearly 6 months of storage.  These images are not ideal, 

but still provide a great deal of information on what happens during storage.  Comparing 

the non-heated samples, it shows that the sample stored in air looks similar to the start of 

the experiment, but the vacuum non-heated underwent the most significant surface 

diffusion.  The heated samples look nearly identical to the starting image. Figure 28 shows 

a comparison between the start and after 6 months of storage for air stored, vacuum stored, 

heated, and not heated substrates. 

While not the ideal outcome, this experiment still provided ample information.  The 

surface diffusion can be understood as the Ag moving to minimize the overall surface 

energy.  The acceleration of diffusion is hypothesized to be attributed to the lack of pressure 

on the surface leading to a decrease of energy required to overcome physical barriers.  It 

became evident that the characteristic diameter and separation of the particles seen in the 

heated case is related to the thickness of Ag and roughness of the seeds they are resting on.  

Heated samples, already at a lower energy configuration, are unable to overcome diffusion 

barriers and remain immobile and retain their initial size. 
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Figure 28: 100nm Ag nanorods grown on 50nm Al nanoseeds 

Top left: 100nm not heated at the start.  Bottom left: 100nm heated at start. 
Top Middle: 100nm Air stored not heated. Bottom Middle: 100nm Air stored heated. 

Top Right: 100nm Vacuum stored not heated. Bottom Right: 100nm vacuum stored heated 
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Stability of Au vs Ag 

Having worked in the area of physical degradation resistance, the impact of 

chemical degradation was studied briefly during the last three months of work.  In an effort 

to separate the chemical and physical mechanisms, SEM microscopy, FTIR spectroscopy, 

and SERS measurements were taken on arrays of Ag and Au nanorods grown using 

physical vapor deposition. Here, the hypothesis is that Au rods may have some 

morphological change over the course of extended storage in air, but should be chemically 

inert.  The lack of the chemical component of degradation would give an insight to the 

effects of chemical degradation of Ag. 

Ag and Au nanorods, shown in Figure 29, were grown to lengths of 500 nm nominal 

at a deposition rate of 0.5 nm / s onto solvent cleaned Si <100> wafer chips using electron 

beam physical vapor deposition at Northeastern University. Samples were maintained at a 

source to substrate distance of 50 cm and at an incidence angle of 87 °. Substrate 

temperatures were not controlled but remained below 40°C.  Immediately after, samples 

were expedited to UNF, overnight, in a vacuum sealed bag. 
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Figure 29: SEM images of fresh Ag nanorods (Top left), Ag nanorods after 28 days in air 
(Top right), fresh Au nanorods (Bottom left), and Au nanorods after 28 days in air 

(Bottom right). 
 

SEM images were taken within 12 hours of growth and again 28 days after growth. 

As shown in the SEM images included in Figure 29, the morphological change is 

apparently absent in the Ag structure, however, in the Ag structure there is a significant 

loss of particles even though overall structure and diameter remaining the same for both 

cases. Some coarsening through diffusion is likely in the Ag, but is not evident in Au.  The 

lack of Au coarsening is evident through the small, sharp details of the structure persisting 

over the course of the 28 days. 
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 FTIR spectra were taken on day 1 and again on day 28, Figure 30. On day 28, new 

peaks emerged for Ag and Au that were not visible on day 1. On day 1, no peaks were 

visible throughout the spectra, as expected for clean metallic surfaces. Hydrocarbon peaks 

are visible for Ag around wavenumber 2800 and 1600. These peaks are substantially 

stronger for Ag that for Au, which has only a minute trace of these peaks. The sequestration 

of some material from the air is expected for any nanostructured material. Interestingly, the 

greater sequestration of Ag than Au may be due to greater reactivity, or the activation of 

the surface through a change of termination. The change of termination of the immediate 

surface may be understood through the peak at 520 wavenumber, seen amplified in the 

inset. This peak designates the vibrational mode of AgS and shows that there is S binding 

to the surface. The active AgS compound may then act to attract additional materials out 

of the air.  
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Figure 30: FTIR spectra of Au and Ag nanorods after 28 days storage in air.  Peaks for 
AgS and hydrocarbons can be seen at around 520 and 2800 respectivly.  Contamination is 

more pronounced on the Ag substrate. 
 
 When SERS is performed to detect aqueous 1 x 10-6 M R6G on both of the 

substrates on day 1, the Ag sample outperforms the Au sample by a factor of 20, as shown 

in Figure 31. Representative R6G peaks are shown for both Ag and Au, while Au 

demonstrates a flatter signal. This experimental set is of interest for two reasons, first, the 

use of Au rods from PVD has never before been shown in the literature for SERS. Second, 

Au is shown to have a strong enhancement, as Ag in this configuration has a tremendous 

enhancement for R6G. It is possible that the use of a wavelength closer to the resonance 

wavelength of Au would lead to stronger Raman signals. For comparison, when the same 
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concentration of R6G is used on a Corning Glass slide, there is no distinguishable Raman 

signal.  

 

 
Figure 31: Raman spectra taken on day 1 for Ag and Au substrates.  Spectrum for Au has 

been multiplied by a factor of 10 to compare to the significantly stronger signal of Ag 
 
 
 When this test is repeated weekly on samples from the same substrate with fresh 

R6G solution, the results show that Au is remarkably stable when compared to Ag, Figure 

32. To compare the relative stability of the two samples, signal to noise ratio is taken for 

wavenumber 1650 and plotted against the day this measurement was taken. While Ag 

shows a markedly negative trend over 28 days, Au remains nearly perfectly stable. Spread 

in the signal to noise from day to day can be attributed to the expected spread between 

spots on an individual substrate. 
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Figure 32: Comparison of signal to noise ratios for Au and Ag nanorods substrates stored 
in air over 28 day period 

 
 Discussing these results, two salient features arise. First, the physical degradation 

of Ag nanorods in air over the length scale of days could be due to oxidation and 

sulphurization from the ambient atmosphere causing the morphological changes. This is 

supported by the fact that Ag has clearly distinguishable AgS and hydrocarbon peaks in 

the FTIR spectra at 28 days alongside the notable loss of structure.  When compared to the 

lack of change on the Au structure alongside the lack of absorbance peaks in the Au FTIR 

spectrum, it is evident to the possibility of contaminates accelerating surface diffusion.  The 

second salient feature is the implication of the stability of Au. For shear enhancement 

factor, Ag nanorods will of course remain king. However, if someone wants to sell a 

commercial Raman spectroscopy substrate with good shelf life or study the degradation of 

the analyte over time, Au affords this ability. 
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 Since no morphological change is evident in Au, this experiment will be replicated 

in the future with heating of the Au and Ag nanorods to drive morphological changes to a 

more stable configuration as seen in previous experiments.  This will allow effects of 

chemical degradation of Au and Ag to be directly comparable. 
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CONCLUSION 

 This work reports on two areas of study: 1) the design of a degradation resistant 

SERS substrate; 2) A scientific ingestion into the mechanism of Raman signal degradation. 

The novel Ag/Al composite SERS substrate showed interesting results.  The 

unusual structure shown after heating and surface diffusion happening is the result of 

mobile Ag structures, partially immobilized by the rough surface provided by the Al seed 

underlayer.  It was hypothesized that the Al layer provided a sufficiently large energy 

barrier to prevent the entire coalescence of the Ag particles.  Particles that were close 

enough to each other coalesced into larger particles through Ostwald ripening where they 

could touch during thermal reshaping. 

 Vacuum storage of these substrates also provided interesting results, with the Ag 

structure going through more surface diffusion than the substrates stored at atmospheric 

pressure. The vacuum stored substrates had significantly more loss to their Raman signal 

than the substrates stored under air.  This suggests that surface diffusion may contribute 

more to the decay in signal than surface contamination for Ag 

 When testing Ag nanorods against Ag nanorods over the course of 28 days in air, 

the Au nanorods exhibit almost no degradation to the Raman signal while Ag nanorods 

have a significant loss in structure and Raman signal.  While neither substrate appears to 

have experience dramatic surface diffusion, Ag shows about a 20% loss of structure, and 

the FTIR spectra show the binding of sulfur and adsorption of hydrocarbons to the Ag.  

This contamination explains the decay in signal for the Ag substrate while the Au substrate 
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experienced little loss in signal and could possibly be the cause of the loss of structure in 

Ag. 

 Additional experiments to consider performing are a comparison between storage 

at atmosphere, under vacuum, and above atmospheric pressure. An experiment involving 

the entire fabrication of the substrates without breaking vacuum to study the mobility of 

the Ag nanoparticles and its effect on coalescence.  Additionally, an experiment comparing 

nanorods surface diffusion across different fabrication methods, i.e. Thermal evaporation 

vs e-beam.  Finally, performing experiments with Au nanorods grown on top of Al 

nanoseeds to utilize the restrictions on surface mobility the structure provides alongside 

the chemical stability seen in Au samples.    
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APPENDIX A: WATANABE’S CALCULATED DATA FOR R6G VIBRATIONAL 

MODES 

Table 2: Calculated and Experimental Vibrational Frequencies for R6G [1] 

 

a Vibrational frequencies scaled by a single factor of 0.9982 are given. Raman intensities are given in units of Å4 amu-1, and 
infrared intensities in units of km mol-1. b Percentage of potential energy distribution (PED%) of normal mode of vibration is 
given. X refers to the motion of the xanthene ring. A refers to the motion of the NHC2H5 groups. M refers to that of a pair of 
methyl group adjacent to the xanthene ring. P refers to that of the phenyl ring with the COOC2H5 group. PED% less than 10% 
is omitted.
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Table 3: Various calculated and experimental vibrational modes for R6G for off resonant Raman, Resonant Raman, Surface Enhanced Raman, and Tip Enhanced 

Raman Spectroscopies [1] 
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APPENDIX B: UV-VIS SPECRA 
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APPENDIX C: RAMAN DATA FOR ALUMINUM/SILVER COMPOSITE SUBSTRATES 
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APPENDIX D: SEM IMAGES FOR ALUMINUM/SILVER COMPOSITE SUBSTRATES 

Figure 33: 200nm Silver nanorods on 50nm Aluminum seeds. Heated(left) and non-heated (right) 
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Figure 34:100nm Silver nanorods on 50nm Aluminum seeds. Heated(left) and non-heated (right) 



97 
 

 
Figure 35:100nm Silver nanorods on 50nm Aluminum seeds. Heated(left) and non-heated (right) 
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Figure 36:50nm Silver nanorods on 50nm Aluminum seeds. Heated (left) and non-heated (right) 
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Figure 37: 25nm Silver nanorods on 50nm Aluminum seeds. Heated (left) and non-heated (right) 
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Figure 38: 10nm Silver nanorods on 50nm Aluminum seeds. Heated (left) and non-heated (right) 
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Figure 39: 100nm Ag nanorods on 50nm Al seeds.  After 6months storage in air. Heated (left) and not heated (right) 
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Figure 40:100nm Ag nanorods on 50nm Al seeds.  After 6months storage in vacuum. Heated (left) and not heated (right) 
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APPENDIX E: STATISTICAL DATA FOR AVERAGE PARTICLE SIZE AND DISTANCE BETWEEN PARTICLES 

Nanorod Length Average Particle size after heating (nm^2) STDev size STD Error N Max Min 

       
10 3651 3365 160 442 25110.05 11.898 

25 7269 5446 376 210 33783.46 59.488 

25 6454 5175 165 986 44165.27 169.997 

50 26492 20053 2680 56 93503.87 618.679 

50 21911 14435 439 1082 79598.16 379.491 

100 33569 33970 4757 51 166888.2 358.266 

100 38016 32797 2078 249 163503.3 33.999 

200 49838 49614 9548 27 225820.6 1958.381 

200 49909 39307 2955 177 222594.3 237.996 

       
Nanorod Length Average distance between particles after heating (nm) STDeviation STD Error N   
       

10 101.94 18.47 0.88 442   
25 150.49 29.29 2.02 210   
25 167.29 28.59 0.91 986   
50 290.54 53.32 7.12 56   
50 269.14 40.10 1.22 1082   

100 310.97 76.00 10.64 51   
100 334.78 62.77 3.98 249   
200 404.66 99.71 19.19 27   
200 385.04 61.83 4.65 177   
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APPENDIX F: RAMAN DATA FOR VACUUM STORAGE 

 Normalized Enhancement          
765 WaveNumbers                

 

 
Date HAir NHAir HVac NHVac          

9/29/2016 12.80% 24.11% 3.01% 1.02%          
10/5/2016 6.27% 16.17% 7.53% 0.82%          

10/14/2016 12.48% 29.31% 5.30% 1.34% 

 

 

10/21/2016 15.53% 27.22% 7.57% 8.28% 

11/1/2016 9.29% 22.63% 9.29% 22.63% 

          

1352 WaveNumbers         

Date HAir NHAir HVac NHVac 

9/29/2016 16.35% 36.12% 2.98% 0.53% 

10/5/2016 9.34% 28.46% 11.49% 0.24% 

10/14/2016 22.54% 43.73% 6.90% 1.18% 

10/21/2016 22.99% 49.23% 9.99% 13.15% 

11/1/2016 17.23% 40.63% 17.23% 40.63% 

          

1640 WaveNumbers         

Date HAir NHAir HVac NHVac 

9/29/2016 20.04% 49.75% 3.97% 1.02% 

10/5/2016 12.86% 39.83% 15.76% 0.46% 

10/14/2016 33.35% 64.90% 8.74% 1.56% 

10/21/2016 29.85% 78.29% 12.76% 18.49% 

11/1/2016 25.04% 55.58% 25.04% 55.58% 

0%

5%

10%

15%

20%

25%

30%

35%

9/2410/110/810/1510/2210/2911/5

765 WaveNumbers Enhancement Normalized

HAir NHAir HVac NHVac
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Normalized Intensity          
765 WaveNumbers                  
Date HAir NHAir HVac NHVac          

9/29/2016 0.933529 0.752234 0.999876 0.999336 
 

10/5/2016 0.992818 0.774358 0.99673 0.99916 

10/14/2016 0.982413 0.655446 0.99581 0.994792 

10/21/2016 0.96009 0.721883 0.952386 0.995731 

11/1/2016 0.978514 0.856981 0.978514 0.856981 

          

1352 WaveNumbers         

Date HAir NHAir HVac NHVac 

9/29/2016 0.990011 1 0.747832 0.661989 

10/5/2016 0.743548 1 0.744996 0.602181 

10/14/2016 0.935018 0.976874 0.779112 0.708103 

10/21/2016 0.966028 0.991504 0.80662 0.979563 

11/1/2016 0.809129 1 0.809129 1 

          

1640 WaveNumbers         

Date HAir NHAir HVac NHVac 

9/29/2016 0.862134 0.935354 0.554908 0.481504 

10/5/2016 0.562018 0.938372 0.55649 0.405722 

10/14/2016 0.80804 0.97705 0.601277 0.522364 

10/21/2016 0.785321 0.971437 0.623623 0.824449 

11/1/2016 0.652254 0.903643 0.652254 0.903643 

0.5

0.6

0.7

0.8

0.9

1

1.1

9/2410/110/810/1510/2210/2911/5

765 WaveNumbers Normalized Intensity

HAir NHAir HVac NHVac
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Raw Counts          

765 WaveNumbers                  
Date HAir NHAir HVac NHVac          

9/29/2016 15944.58 10856.53 24151.4 12161.55 
 

 

10/5/2016 26251.8 18166.66 25399.98 22286.88 

10/14/2016 29525.42 14948.28 28259.66 14154.36 

10/21/2016 11651.21 12786.42 17734.16 8438.126 

11/1/2016 23509.4 31829.3 23509.4 31829.3 

          

1352 WaveNumbers         

Date HAir NHAir HVac NHVac 

9/29/2016 16834.38 14210.14 18738.94 8809.394 

10/5/2016 20389.13 22803.26 19579.7 14512.34 

10/14/2016 27993.9 21825.62 22676.18 10564.74 

10/21/2016 11712.88 17249.34 15020.44 8315.51 

11/1/2016 19929.36 36577.3 19929.36 36577.3 

          

1640 WaveNumbers         

Date HAir NHAir HVac NHVac 

9/29/2016 14886.56 13410.54 14567.82 7000.622 

10/5/2016 16121.96 21422.22 15305.28 10663.04 

10/14/2016 24591.96 21941.66 18138.06 8204.046 

10/21/2016 9764.876 16996.26 11928.59 7122.664 

11/1/2016 16647.66 33386.82 16647.66 33386.82          
 

0

5000

10000

15000

20000

25000

30000

35000

9/2410/110/810/1510/2210/2911/5

765 WaveNumbers Counts

HAir NHAir HVac NHVac



107 
 

VITA 

Ryan Scherzer started his undergraduate studies at the University of North Florida in the 

fall of 2011. During his senior year, he decided to continue his education and apply to the 

mechanical engineering graduate program at UNF and started in the fall of 2015.  During 

this graduate program, he performed the research contained in this thesis and has become 

Author or co-author on multiple submitted journal articles pertaining to his research and is 

the co-inventor of two provisional patents related to 3d printing  

 


	UNF Digital Commons
	2017

	Degradation Resistant Surface Enhanced Raman Spectroscopy Substrates
	Ryan D. Scherzer
	Suggested Citation


	Title Page
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Chapter 1: Raman Spectroscopy
	Typical Raman Spectroscopy Setup
	Figure 1: Raman Spectroscopy Photon Path

	Applications
	Comparison to FTIR/Flourescence Spectroscopy
	Vibrational Modes
	Figure 2: Raman spectra of R6G with different resonance scenarios

	Light Scattering
	Figure 3: Energy Levels of Raman Scattering
	Figure 4: interactions between incident light, scattered light, and a surface molecule


	Chapter 2: Surface Enhancement
	The Various Methods of Reporting Enhancement Factors
	Electromagnetic Enhancement
	Local Field Enhancement
	Radiation Enhancement
	Chemical Enhancement

	Chapter 3: Surface Plasmon Resonance
	Surface Plasmons
	Figure 6: Real and imaginary parts of Ag and Ag dielectric functions

	Shape Effects
	Figure 7: Surface Plasmon Resonance of Nanorods

	Gap Effect
	Figure 8: Depiction of the  gap effect

	Material effects

	Chapter 4: Traditional Substrates
	Substrate Stability
	Surface Diffusion
	Figure 9: Crystal restructuring of Au nanorod

	Coalescence
	Figure 10: Yacaman, et al's TEM images depicting Au nanoparticles coalescing through Ostwald ripening

	Oxidation
	Elevated Temperature
	Figure 11: Surface Degration of Ag nanorods due to elevated temperature

	Attempts to minimize degradation
	Figure 12: Normalized Raman intensity for the 1171 cm peak for Crystal Violet dye molecule


	Chapter 5: Substrate Fabrication and Characterization
	GLAD
	Figure 13: Glancing Angle Deposition

	Vapor Deposition
	Table 1: Evaporation Temperatures of A1 and Ag
	Figure 14: Deposition Chamber

	UV-Vis
	Raman Spectroscopy
	SEM Imaging

	Chapter 6: Degradation Resistant Substrates
	Aluminum Nanorod Substrates
	Figure 15: SEM image of 250nm A1 Nanrod substrate

	Artificially Accelerating Surface Diffusion
	Figure 16: SEM image of 100nm A1 Seed post annealing at 500 C for 24 hours
	Figure 17: Uv-Vis of A1 nanorod substrates

	Aluminum-Silver Composite Substrates
	Figure 18: Optical picture showing the substrates after each fabrication step in teh production of A1-Ag composite
	Figure 19: UV-Vis spectra for 25nm Ag nanorods on 50nm A1 nanoseeds, Heated and Non heated.
	Figure 20: Diagram depicting absorbed colors and tehir complementary apparent color
	Figure 21: 50 nm Ag on 50 nm A1 seeds as fabricated and heated
	Figure 22: Particle analysis of 10nm Ag/50nm substrate.
	Figure 23: Average particle size and distance between particles after heating
	Figure 24: Raman spectra for 100nm heated and non-heated Ag nanorod/A1 nanoseed substrates

	Vacuum Storage
	Figure 25: Load Lock Vaccum Storage Setup
	Figure 26: Load Lock Vaccum Storage Containers
	Figure 27: Normalized enhancement compared to background noise at 765 Wavenumbers for each sample over month long experiment
	Figure 28: 100nm Ag nanorods grown on 50nm A1 nanoseeds 

	Stability of Au vs. Ag
	Figure 29: SEM images of fresh Ag nanorods
	Figure 30: FTIR spectra of au and Ag nanorods after 28 days storage in air.
	Figure 31: Raman spectra taken on day 1 for Ag and Au substrates
	Figure 32: Comparison of signal to noise ratios for Au and Ag nanorods substrates stored in air over 28 day period


	Conclusion
	References
	Appendix A: Watanabe's Calculated Data for R6G Vibrational Modes
	Appendix B: UV-VIS Specra
	Appendix C: Raman Data for Aluminum/Silver Composite Substrates
	Appendix D: SEM Images for Aluminum/Silver Composite Substrates
	Appendix E: Statistical Data for Average Particle Size and Distance Between Particles
	Appendix F: Raman Data for Vaccum Storage
	Vita

