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ABSTRACT

Raman spectroscopy is employed by NASA, and many others, to detect trace
amounts of substances. Unfortunately, the Raman signal is generally too weak to detect
when very small, but non-trivial, amounts of molecules are present. One way around this
weak signal is to use surface enhanced Raman spectroscopy (SERS).

When used as substrates for SERS, metallic nanorods grown using physical vapor
deposition (PVD) provide a large enhancement factor to the Raman signal, as much as 102,
However, Silver (Ag) nanorods that give high enhancement suffer from rapid degradation
as a function of time and exposure to harsh environment. Exposure to harsh environments
is an enormous issue for NASA; considering all environments experienced during space
missions will be drastically different from Earth regarding atmosphere pressure,
atmosphere composition, and environmental temperature. Au and Ag nanorods suffer from
a thermochemical kinetic phenomenon where the surface atoms diffuse and cause the
nanostructures to coalesce towards bulk structure. When in bulk, SERS enhancement is
lost and the substrate becomes useless.

A stable structure for SERS detection is designed through engineering the barriers
to surface diffusion. Aluminum (Al) nanorods are forced to undergo surface diffusion
through thermal annealing and form rough mounds with a stable terminating oxide layer.
When Ag is deposited on top of this Al structure, it becomes kinetically bound and changes
to physical structure become impeded. Using this paradigm, samples are grown with varied
lengths of Ag and are then characterized using scanning electron microscopy (SEM) and

Ultraviolet-Visible spectroscopy. The performance of the samples are then tested using
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SERS experiments for the detection of trace amounts of rhodamine 6G, a ‘gold standard’
analyte. Characterization shows the effectiveness of the Raman substrates remains stable
up to 500°C.

Transitioning to basic scientific investigation, next is to strive to isolate the
individual impacts of chemical and physical changes to the Ag nanostructure and how they
affect the Raman signal. Substrates are compared over the course of a month long
experiment to determine the effects of vacuum storage and addressing the effects of
chemical adsorbance. Additionally, this was attempted by comparing the signal
degradation of Ag nanorods to that of Au, which is known to be chemically inert, allowing
for the separation of chemical and physical effects. Although Ag and Au have similar
melting points, Ag physically coarsened significantly more. FTIR also showed significant
chemical contamination of the Ag, but not Au. A hypothesis is proposed for future
investigations into the chemical changes and how they are coupled with and promote the
physical changes in nanostructures.

Overall, the novel SERS substrate engineered here may enable the detection of trace
amounts of molecules in harsh environments and over long timescales. Conditions such
as those found on space missions, where substrates will experience months or years of

travel, high vacuum environments, and environments of extreme temperatures.



INTRODUCTION

The National Aeronautics and Space Administration (NASA) has been sending
rovers to Mars to explore the surface and to look for signs of water and life. One of their
top goals is to search the cosmos for concrete signs of life. Among the proposed methods
is to have rovers perform surface enhanced Raman spectroscopy (SERS) on the planet
surfaces, looking for organic molecules that signal the presence current or past life or the
existence of the building blocks of life. However, this is currently impossible due to the
degradation over time that traditional SERS substrates experience.

The overarching goal of this research has been to develop new technology for space
missions, with the ultimate deliverable of providing NASA with guidance to develop a
degradation resistant surface enhanced Raman spectroscopy substrate. The research
performed in this thesis was sponsored by a grant from the National Aeronautics & Space
Administration through the University of Central Florida's NASA FLORIDA SPACE
GRANT CONSORTIUM and Space Florida, for the development of a SERS substrate that
could be used during space missions, where they could experience high vacuum
environments and extreme temperatures.

For this thesis, two approaches have been devised to use SERS in space or on
remote celestial bodies: 1) produce substrates on site; 2) send manufactured substrates from
Earth with the mission. Manufacturing substrates on site becomes a massive logistical
problem, as it involves a massive amount of energy to produce the substrates through
vaporization techniques. Energy is an important and heavily managed resource off of

Earth. Unfortunately, the necessary energy is too great and the alternative is to manufacture
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substrates on earth and send them, with the rest of the equipment, on the months to multiple
yearlong travel. SERS substrates commonly used in literature do not fare well over long
periods of time, or when they experience a temperature higher than ambient on Earth,
approximated at 35°C. Additionally, the novel research in this thesis show that
conventional SERS substrates also degrade under vacuum.

In this novel research, the first attempts to develop a degradation resistant SERS
substrate utilized Aluminum (Al) nanorods. These substrates had a thin oxide layer on the
surface that resisted the physical degradation mechanisms, but could not withstand extreme
temperatures. They also proved to not be ideal SERS substrates as the Raman signal was
drowned out by fluorescence. Annealing these substrates at 500°C for 24 hours led to
extreme surface restructuring and the formation of a rough island film, which were named
‘nanoseeds’; these are then utilized to engineer a surface structure to decrease surface
mobility of additional metal deposited on top. The designed substrate consisted of the
annealed Al seeds with additional Ag deposited on top. The intention was that the Al seeds
prevent the coarsening of the Ag back into bulk by decreasing diffusion of the Ag through
creating a rough path and increased surface area. The samples were then heated to 500°C
to force the structures to a lower, more stable, energy state. As designed, the Ag remained
as discreet nanoparticles and remained SERS active. After demonstrating that the
structures could withstand elevated temperatures, the next problems to address were
maintaining enhancement over extended periods of time and under vacuum using a custom,
in-house built vacuum storage system. Both of these were addressed with a month long

experiment comparing the storage of the substrates in air and under vacuum. Both methods
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showed promising results, but still exhibit some decay in the Raman signal over the course
of the month, although, the new engineered substrate faired 50% better than those in the
literature.

A second portion of the work focused on gaining a new scientific understanding of
the degradation of SERS substrates which employ nanomaterials. The final set of
experiments was an attempt to determine if the loss in signal over the course of the previous
experiments was a result of a chemical degradation or a physical one. This final experiment
involved a month-long study comparing Ag nanorods and Au nanorods, which should be
chemically inert, that were stored in air. The experiments showed that the Au nanorods
remained chemically pure and undergo no observable physical changes while the Ag rods
undergo both. As a result of this, a new hypothesis was formed, suggesting that the
chemical and physical changes are coupled for Ag.

This thesis documents the research, experiments, and conclusions of the
aforementioned studies. Chapters 1 through 3 begin with a brief introduction into the
technique of Raman spectroscopy and explains the physics behind the Raman signal, which
originates from the vibrations of the molecule under investigation and light scattering.
Next, the physics behind the surface enhancement phenomena is explained. Finally, the
physical review lands on the definition of electromagnetic enhancement and provides an
in depth look at its cause, the physical phenomena known as surface plasmon resonance.

The Chapters 4 and 5, which bridges from background to the novel research
presented by this thesis. The second section covers the substrates traditionally used in

SERS and their major shortcomings, specifically the physical degradation observed in
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literature. Additionally, some of the alternative methods devised in the literature to
overcome the physical degradation issues are reviewed. Section two then leads into the
classical fabrication of SERS substrates with physical vapor deposition, how nanorods are
grown through glancing angle deposition, and the characterization techniques used to
analyze the substrates produced in the presented research.

Finally, Chapter 6 presents the novel research of this study. In Chapter 6, a new
degradation resistant SERS substrates and the respective characterization is presented.
This engineered substrate began with the use of annealed Al nanorods as a base to promote
morphological stability and enforce degradation resistance. Next, varied amounts of SERS
active Ag are deposited and characterized. Testing was then performed, measuring their
resilience to surface diffusion by annealing the entire sample in air. Next, the structure’s
performance was put to the test through a month-long experiment of storing substrates
under vacuum and in ambient to determine effectiveness of vacuum storage and the effects
of chemical adsorption on the Raman signal. Moving onto the second, and more scientific
experiment, Ag and Au nanorods were fabricated and had their physical and chemical
stability characterized and performance as SERS substrates measured over the course of

28 days.



CHAPTER 1: RAMAN SPECTROSCOPY

Raman spectroscopy is a useful, nondestructive characterization technique that
measures the scattering of light of a monochromatic laser after interactions with an analyte
molecule. The scattered light is what makes up the Raman signal produced through Raman
spectroscopy. A majority of the variations in Raman spectroscopy follow the same method
of measuring a monochromatic light scattering off the analyte.

There are numerous methods/variations of Raman Spectroscopy: Raman
Spectroscopy (RS), Surface Enhanced Raman Spectroscopy (SERS), Surface Enhanced
Resonant Raman Spectroscopy (SERRS), Tip Enhanced Raman Spectroscopy (TERS) [1],
BiAnalyte Raman Spectroscopy (BiASERS) [2], Single Molecule (SMSERS) [3], and
many others. In most cases, these are just variations to the method of gathering data, or to
the analyte being observed. Conventional Raman spectroscopy has been used in chemistry,
physics, and engineering for many decades. More recently, more development has gone
into SERS, where the molecule being observed is on a surface that is able to enhance the
scattering effect through various phenomena called Surface Enhancements (SE) [4]. All
types of all Raman spectroscopy are performed using a monochromatic light source, an
analyte molecule, the substrate the molecule is on, and a photodetector. [4]

The wavelength and power of the light source are chosen depending on the
molecule being observed and the desired effects. [4, 5] Typical wavelengths are in the
visible spectrum, with the most recent literature using wavelength of 532nm [6]. Less
commonly used wavelengths reach into the ultraviolet for various applications such as

ultraviolet resonant molecules or substrates [7-12]. If the wavelength is tuned correctly the
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molecule can resonate with the light’s frequency, this effect is utilized is resonant Raman
spectroscopy methods [4]. As for the power, a stronger source will lead to a stronger signal,
but it can cause the destruction of the analyte or even degradation of the enhancing surface
[4, 5]. Typically the power measured at the substrate with a laser power meter and is
measured at the microwatt to milliwatt range.

The most important part of Raman spectroscopy is the analyte being observed,
considering the purpose of performing Raman spectroscopy is to observe a molecule.
Every molecule will exhibit its own unique Raman signal as the Raman scattering is related
to the molecules’ shape and chemical bonds; this relationship will be discussed in depth in
a later section. Nearly every molecule can be observed and identified through Raman
spectroscopy. There are a few exceptions, where the Raman signal is overpowered by
fluorescence, the signal is too weak to read, measure effectively, or the analyte is too
unstable to withstand the environment or irradiation necessary to measure it. Another
important exception is molecule with an inversion center symmetry. Most of the vibrational
modes will be both Raman and infrared active. However, modes involving inversion center
will exhibit Raman activity or infrared activity, not both. [4-6, 13-16].

The second most important aspect of Raman spectroscopy is the surface the analyte
molecule is on and its surrounding medium, since the interactions between the incident

light, surface, and molecule is the source on the signal enhancement [4-6].



Typical Raman Spectroscopy Setup

Figure 1 shows a typical Raman spectroscopy setup. If we follow the photons used
in Raman spectroscopy, we start at a light source emitting photons of a single wavelength.
In the literature, most labs use a solid state laser (532nm) as they are relatively inexpensive
and readily available. The photons from the laser interact with the molecule and substrate’s
surface, leading to events called “scattering”. The incident photons can either remain at
the same energy level that they started at, or gain/lose some energy [4, 5, 7, 8]. If a photon
changes its energy level, its wavelength and associated “color” change as well. A majority
of the photons are unchanged (90-99%), this leads to a typically weak signal from the
scattered photons [5]. Possible scattering events are Raleigh (elastic), scattering where the
photons leave with no net change in energy or Stokes/Anti-Stokes (inelastic) scattering [5].
The Raman spectrometer then filters out the Raleigh scattered light and spreads the Stokes
scattered photons with a diffraction grating. Then a charged coupled device (CCD)
measures the number of photons at each of the scattered wavelengths [5]. The signal
produced by the spectrometer is measured in arbitrary units as counts per wavenumber;
this is proportional to the number of photons that have been shifted to different wavelengths

(4, 5].
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Figure 1: Raman Spectroscopy Photon Path [9]

Applications

Raman spectroscopy has plentiful applications, including chemical detection,
biomolecule sensing [7, 9, 13-15, 20-22], single molecule detection [2,14,16, 18, 23-28],
monitoring of chemical reactions [10], detection of chemicals in water and soil [11], tumor

detection [12], and many more.



Comparison to FTIR/Fluorescence Spectroscopy

There are spectroscopy techniques other than Raman spectroscopy. Some of the
commonly used techniques are Fourier Transform Infrared (FTIR) and fluorescence
spectroscopy [4, 5]. While similar to each other, there are some key differences between
them [4, 5]. Where Raman uses a molecules polarizability and molecular vibrations to
measure the wavelength shift in scattered light, FTIR uses changes in dipole moment and
measures the wavelengths absorbed by the molecule [4, 5]. One of the downsides to FTIR
that Raman can accomplish is distinguishing between single, double, and triple bonds
between atoms [4, 5]. On the other hand, Raman signals can be lost due to fluorescence
and FTIR is not affected by fluorescence [4, 5].

Another technique is fluorescence spectroscopy. Fluorescence and Raman look
almost the same when comparing the physics behind their respective phenomena [4, 5].
Both involve the interaction of a molecule and an incident photon, then a change in energy
of the photon [4, 5]. The difference between them is what happens to the photon. In
Raman, the photon imparts some of its energy into the molecule and leaves at a different
energy level [4, 5]. In fluorescence the photon is absorbed into the molecule and re-emitted

as a different energy level as the molecule relaxes back to ground state [4, 5].
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Vibrational Modes

The observed peaks in the Raman signal are dependent on the analyte molecule [4,
5, 6]. When the monochromatic laser shines onto a molecule, it causes vibrational modes
in the bonds between the atoms [1, 4]. The number of possible vibration modes is
proportional to the number of atoms in the molecule (N), the number can be found using
3N-6. These modes are the molecular bonds/structures stretching, twisting, or bending
towards and away from each other [1,4]. There can be hundreds of modes in a large
molecule and each mode requires a specific amount of energy to be imparted into each
bond [4]. The energy to cause these vibrations is taken from the incident photons, causing
the inelastic scattering observed during Raman spectroscopy [4]. As each vibrational mode
requires a specific amount of energy and the incident light is monochromatic, the scattered
wavelengths of light and their intensities (Raman peaks) can be associated to a specific
vibrational mode(s) [4].

Assigning a molecule’s Raman peaks to vibrational modes can be a very involved
process, becoming increasingly arduous as the molecule becomes larger and more complex
[1]. The method to calculate assignments is to use high-level density functional theory
(DFT) calculations and back them up with experimental values using IR and Raman
Spectroscopy [1, 4]. In short, DFT is a mathematical model used to simulate the electronic
structure of atoms and molecules. The entire process of assigning vibrational modes and
Raman peaks is very complex and it is necessary to use computational programs to perform
the quantum chemical calculations for large, complex molecules [1,4]. One journal article,

[1], walks through the steps they took to calculate vibrational assignments for the
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commonly used Raman analyte, Rhodamine 6G. Rhodamine 6G has the empirical name of
{xanthylium,9-[2-(ethoxycarbonyl)phenyl]-3,6-bis-(ethylamino)-2,7-dimethyl-,chloride},
but is commonly referred to as R6g or Rhé6g [1]. This molecule is commonly used to test
the effectiveness of SERS substrates as it has been extensively studied in literature, readily
available, and inexpensive.

The initial step is to calculate the molecular structure of the molecule, specifically
the bond lengths and angles found in the molecule to gain an understanding of the
molecules structure in 3-dimensions [1]. These calculations are performed by the DFT
program [4]. The program uses a rough estimate for the atomic locations, in Angstroms,
as an input [4]. It then goes through a “geometry optimization” algorithm. The program
finds the lowest energy states for the atoms based on their location and outputs the
optimized locations for the atoms, this is a tedious iterative process [4]. If the geometry is
not optimized correctly the vibrational calculations can result in a negative frequency [4].

Second, all possible modes of vibration the molecule can exhibit are calculated
numerically, this includes bonds stretching, folding, twisting, and bending in all possible
combinations, the rings breathing, beating, stretching, and twisting [1]. The various
vibrational modes of the rings are differences in the timing and direction of the different
atoms in the ring. For example, all of the atoms can be vibrating towards the center and
away at the same time (beating), or the atoms can be moving in the opposite direction from
the neighboring atoms (breathing). Generally, the number of possible vibrational modes
is 3N-6 where N is the number of atoms in the molecule. R6G has 65 atoms and 189

possible vibrational modes. Some of the vibrational modes have similar vibrational



12
frequencies and will contribute to the same Raman peak, while others are often ignored
due to having frequencies too far from the range being observed [1].

The next step is to calculate the energy required for each individual vibrational
mode and compare to observed IR and Raman Spectra. Some of the vibrational modes can
only be observed in IR or Raman, not both [1]. Some of the modes cannot be observed at
all, even though values for IR and Raman appear in calculations, this would be because
some of the vibrational modes do not provide enough of a discernable signal are drowned
out by the background noise of the experiment or by fluorescence [1]. Calculated values
for various vibrational modes of R6G that were provided by Watanabe can be found in
Appendix A.

Additionally, the spectral response observed is affected by the resonance conditions
of the experiment, and even molecule/surface interactions [1]. An example of the
resonance condition effects can be seen in Figure 2. Large changes in specific Raman
bands or even the appearance of new bands can occur when incident irradiation causes the
electrons to become excited and transition between different electron states [1]. This is
heavily dependent on the matching of the incident wavelength and the frequency of

resonance.
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Figure 2: Raman spectra of R6G with different resonance scenarios. a) off resonance at
1064nm, b) resonance Raman scattering at 488nm, c) surface-enhanced resonance Raman
scattering at 488nm on colloidal Ag. Various vibrational modes are depicted (vx) [1].
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Light Scattering

When a photon interacts with a molecule or surface, it can either be transmitted,
reflected/scattered, or absorbed [4, 5]. The scattering/reflection can involve the gain or
loss of energy, or the conservation of energy within the photon, depending on the elasticity
of the interaction [4, 5]. Figure 3 shows a visualization of the change of energy level during
scattering. While most of the incident photons are elastically scattered, or just reflected
without any change in energy, it is the in-elastically scattered photons that are important to
Raman spectroscopy [4, 5]. The Raman signal is comprised of the number of photons that
have been scattered to different wavelengths by interactions with the molecule and
substrate [4, 5]. What causes the change in wavelength is a change in energy of the incident
photon [4, 5].

Just like in conventional dynamics, there is the conservation of energy and
conservation of momentum. During inelastic collisions between objects, energy and
momentum are transferred between the objects. The same happens when photons interact
with the SERS substrate and analyte molecules [4, 5]. Some of the energy of the incident
photon is transferred to the molecule, causing an excitement in the electrons of the
molecule, which in turn cause various vibrational modes to occur [4, 5].

The electron excitement is equivalent to the energy change in the incident photon
[4, 5]. The specific amount of energy exchanged depends on the specific vibrational mode
the photon induces [4, 5, 1]. This leads to the formation of virtual energy states in the
electrons, where they have more energy than their ground state, but not enough to raise to

higher orbital. This extra energy is what causes the vibration of the molecule to occur [4,
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5]. The virtual energy state forces the atomic bonds to slightly stretch and relax repeatedly
while being bombarded with the incident radiation [4, 5].

When scattering happens under resonant conditions, the molecule is in an
electromagnetic field enhanced by the surface plasmon resonance (SPR) phenomena. SPR
is the oscillation of free electrons of the surface and induces a stronger electromagnetic
field at the substrate’s surface. When under resonant conditions, the molecule’s electrons
can transition to higher energy states. The resonant conditions allow for more scattering
and more intense vibrational modes to form, leading to a much stronger, or enhanced,

Raman signal [4, 5].
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Figure 3: Energy Levels of Raman Scattering. Changes in electron energy level for
interactions with Infrared (IR), Rayleigh (R), Stokes (S), and Anti-Stokes (A) scattering.
Differences between Normal Raman, Raman with Resonance effects, and Fluorescence

are pictured [4]
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This entire process is complex to begin with, but becomes even more complex when

the interactions between the scattered light and the enhancing surface are considered [4, 5].
Figure 4 is a simplified depiction of these interactions. Some of the photons are absorbed
by the surface and induce a localized surface plasmon resonance, which in turn increases
the amount of scattering that occurs by increasing the molecule’s apparent Raman cross
section [4, 5]. This entire process becomes even more complex as the scattered photons
can then interact with the SERS surface and be absorbed, or reflected off of the surface and

interact with the molecule again [4, 5].

Figure 4: Not to scale representation of the interactions between the incident light,
scattered light, and a surface (purple)/molecule (Dark red circle). Large green arrows are
the incident and Rayleigh (Elastic) scattered light. Small green arrows are incident light
absorbed by the molecule/surface. Small red arrows are the Stokes and Anti-Stokes
(Inelastic) scattered light, some of the light is absorbed by the surface or emitted away
from the detector.
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CHAPTER 2: SURFACE ENHANCEMENT

Raman spectroscopy can attribute its versatility and strong signals to a group of
phenomena called surface enhancement (SE) [2, 4-6, 23, 31-34]. SERS is aptly named for
the increase in magnitude of the Raman signal that originates from the molecules
interactions with the surface it rests on. This enhancement effect can be observed when
the substrate is a rough surface with nano and/or micro scale features [4, 13, 14]. The cause
of this enhancement effect has been heavily disputed since its discovery and was initially
attributed to more molecules resting on the increased surface area of the rough surface [4,
6]. This postulation was thrown out and replaced with the observation of increased photon
scattering cross section of the molecules [4, 6]. With this change came a proposal for single
molecule detection [3,4]. The enhancement phenomena is still not fully understood, and
theoretical maximum enhancement factors are said to be anywhere from 10* to 10'* from
the combination of molecule resonance, surface resonance, and molecule/surface
interactions. [4, 5] There is also the idea of a chemical enhancement originating from direct
interactions between the molecule and the surface [4].

Almost all of the literature concurs that the enhancement effect is predominantly
from electromagnetic effects, with only a small portion believing that a chemical effect is
also present. This electromagnetic enhancement arises from a combination of interactions
from the exciting, or incident, electromagnetic field and the re-emitted, or Raman field [2,
4].

The enhancement effects are complex and rely on a large number of variables: the

wavelength, polarization, and incident angle of the excitation laser, the material, geometry,
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orientation, and surround medium of the substrate, the different Raman vibrational modes
of the analyte molecule, and the adsorption efficiency, concentration, distance from the
surface, and the orientation of the analyte molecule [2, 4, 5, 31, 33, 36]..

The Various Methods of Reporting Enhancement Factors
There seems to be a significant amount of controversy and lack of standardization
in the SERS field, from acronyms and names for phenomena and techniques, to how to
report the findings, as seen in many of the references[2, 5, 7-15, 20-30, 33, 37-49]. One
important example is the method of determining and reporting enhancement factors. There
are many reported means of determining the enhancement factor of Raman substrates, but
there are two main methods, both of which have multiple ways to calculate the
measurements [4]. The two methods of measuring the enhancement factor of a substrate
is to average the enhancement over the entire substrate or as a ‘“single molecule”
enhancement factor (SMEF) taken at a single point on the surface [4]. Some of the methods
of reporting enhancement factor in literature are:
e An analytical EF (AEF), comparing the intensity of the Raman signal on
the SERS substrate to the intensity of the signal in the surround medium
without the SERS substrate [4].
e  The SERS Substrate EF (SSEF), which compares the SERS intensity per
average number of molecules adsorbed on the surface to the Raman
intensity per the average number of molecules in the scattering volume [4].
e Orientation-averaged SMEF (OASMEF), which is an averaged multiple

single molecule measurements at all possible molecule orientations [4].
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e Polarization-Averaged SSEF (PASSEF), taking an average enhancement
over different incident polarizations [4].
e The standardized SMEF (StdSMEF), which requires the analyte molecule
to have an isotropic Raman tensor and to exhibit no chemical enhancement
[4].

Even with so many methods of finding a substrate’s enhancement factor, it still
heavily depends on numerous variables, such as the number of molecules adsorbed, the
orientation of the molecules, and the location of the molecule on the nanostructure [2, 4].
This makes it difficult to exactly replicate the experimental conditions and thus difficult to
compare different substrates by their enhancement factor.

To summarize, enhancement factors for experiments cannot be compared unless
substrates can be manufactured to have exact geometry, molecules can be adsorbed in the
same known orientation, all other parameters can be kept similar between non-SERS, and
SERS experiments, and non-SERS measurements are performed correctly. One method to
get around this and to compare effectiveness of substrates is to compare their signal-to-
noise ratio, a comparison between the magnitude of Raman peaks and the background
noise. This looks at how strong the measured signal is compared to the background noise,
allowing different substrates to be compared without involving the complex enhancement

factor [2, 4].
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Electromagnetic Enhancement
The most important aspect of surface enhanced Raman spectroscopy is the
electromagnetic enhancement effect [31]. In Raman spectroscopy, the analyte molecule
sits on the enhancing surface and both are irradiated with an incident electromagnetic field,
usually visible light [31]. When a molecule is excited by an electromagnetic field of a
specific frequency, the field induces a dipole in the molecule that oscillates at the same
frequency of the field, this is visualized in Figure 5 a [31]. This oscillation will radiate
power proportional to the incident power, an example is seen in Figure 5 b [31]. What
happens during the surface enhancement phenomena is modification to the electromagnetic
field (local field enhancement), modification to the radiative properties of the dipole

molecule (radiation enhancement), and the possibility of modification to the polarizability
of the molecule (chemical enhancement) [31].
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Figure 5: Electromagnetic Enhancement. a. The incident electromagnetic field induced a
dipole in the molecule through the oscillation of the free electrons. b. depiction of the
ratio between local induced electromagnetic field and the incident field. Stronger
induced field is close to the surface. [5]

Local Field Enhancement
In literature, the most discussed enhancement effect is the local field enhancement

(Mroc(w)) [4, 5]. This effect is caused by the surface plasmon resonance of the substrate’s
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surface and can alter the electromagnetic field at the surfaced by orders of magnitudes
when compared to the incident field [4, 5]. The difference between the local and incident

fields is mainly determined by the frequency of the surface plasmon resonance [4, 5].
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The local enhancement effect can also be enhanced even further by the gap effect, where
the local field of two close surfaces interact and compound on each other [4, 5]. This leads

to what are known as “hot-spots,” or areas of significant field enhancements on a SERS

substrate [4, 5].

Radiation Enhancement
An additional effect seen in surface enhancement is radiation enhancement (Mgad),

also known as modified spontaneous emission [4]. Spontaneous emission is when an
excited electron relaxes to a lower energy state and releases the energy difference as a
photon [4]. This extra energy comes from the oscillations in the dipole molecule [4]. As
the molecule oscillates at a set amplitude depending on the incident wavelength, any
additional energy adsorbed by the molecule is instantly reemitted [4]. In most real cases,
the emitted radiation will interact with a surface and will be absorbed by the surface (non-
radiative emission) or reflected [4]. Reflected emissions increase the amount of signal
detected. However, if the molecule is within a few nanometers of the surface, the strong
local electromagnetic field at the surface will modify the amount of energy the molecule
experiences [4]. This can cause changes in the radiated power an excited dipole reemits in

certain directions. The radiated power can either be enhanced or quenched, when
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compared to power that would be radiated if the molecule was in free space instead of

resting on an enhancing surface [4]:

Strangely, the radiation enhancement is not an effect on the emitted radiation, but is
actually an effect on the emission process itself [4]. Some problems arise depending on
the orientation/polarization of the dipole compared to the enhancing surface [4]. Since the
radiative emission from the dipole is not isotropic in all directions, it is possible that the
dipole does not radiate towards the Raman detector or it radiates towards the surface [4].
Depending on the surface material, the emitted radiation could be absorbed by the surface
instead of ideally being reflected [4]. Therefore, if the dipole does not emit towards the
detector, or the surface absorbs the radiation, it can appear that the electromagnetic field is

quenched instead of enhanced [4].

Chemical Enhancement

The idea of a chemical enhancement comes from the possibility of the analyte
molecule to chemically interact with the metallic surface forming something called a
charge transfer [2, 4]. There are a few types of chemical enhancement situations: Type I
is where there is no covalent bond between the molecule and surface, but the presence of
the metal alters the electron distribution which in turn changes the polarizability of the
molecule [2, 4]. Type Il is a covalent bond (complex) or an electrolytic ionic bond between
the molecule and surface which leads to significant changes to the molecules polarizability

since the bond with the metal allows for new electron states to form [2, 4]. Finally, Type
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IIT is a theory similar to type II where the energy difference between any two of the
molecules highest occupied electron state (HOMO), lowest unoccupied electron state
(LUMO), or the metal surfaces Fermi level is matched by the energy of the incident photon
[2, 4].

Chemical enhancement is not thought to significantly contribute to the Raman
enhancement [4]. Additionally, when chemical enhancement is observed the enhancement
factor is usually on a scale of 10! [4]. When the compared to electromagnetic enhancement,
which has been reported to be higher than 10'°, the chemical enhancement is insignificant

to the overall enhancement [4].



24

CHAPTER 3: SURFACE PLASMON RESONANCE

Surface plasmons are thought to be the cause of many surface enhancement effects,
however there is little literature exploring the surface plasmon phenomena in detail [2, 4].
Surface plasmons are usually described only as ‘the oscillations of conduction band
electrons’, and without much more detail [2, 4] as seen in the following references:
[12,15,17,29,31-36,40,50-55].

The available literature also uses a wide variety of terms to describe surface
plasmons, making it difficult to accurately assess the current research on what is
known/theorized about surface plasmons and their electromagnetic enhancement effects
[2,4]. Infact, referring to surface plasmons when talking about SERS is technically wrong.
One must reference the type of surface plasmon formed at the enhancing surface. There
are a number of different types of plasmons (Propagating, localized, radiating, non-
radiating, bound, virtual, or evanescent) [4]; the type observed/formed depends on the
incident conditions (incident angle of light, light wavelength, real and imaginary dielectric
functions of the surface and surrounding medium, surface geometry) [4]. However, in the
case of the nanostructures utilized in SERS, the surface plasmons formed are going to be

localized due to the noncontiguous surface structure.

Surface Plasmons
The term surface plasmon arrives when looking at a metallic surface [36]. The free,

conduction band electron ‘cloud’ at a metallic surface is considered a plasma and can
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oscillate if excited [36].. To get a metallic surface’s electrons to oscillate, they need to
form as something called a plasmon-polaritron, this is when the plasmon is coupled to an
incident photon [36]. The surface material must exhibit resonance with the incident light
in order for a photon to couple with a plasmon [36]. The surface resonance happens when
the real part of the diclectric function (€') at the incident wavelength is approximately
negative two times the dielectric constant of the surrounding medium [36]. This scenario
allows the incident energy to be effectively stored in the surface material without
dissipating rapidly, as the real part can be considered a materials ability to store incident
energy and the imaginary part is the ability to dissipate the energy [36]. The intensity, or
quality factor, of the resonance is dictated by the imaginary part of the surface’s dielectric
function [36].

Useful properties for plasmons are a real dielectric function value between -20 and
-1 and a small imaginary dielectric function value or a quality factor greater than two. The
higher the quality factor the better the material [36]. Figure 6 shows the real and imaginary

parts of Au and Ag dielectric functions.
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Figure 6: Real (left) and imaginary (right) parts of Ag and Ag dielectric functions [4]
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Shape effects

In most real world cases of surface plasmons on a metallic surface there will not be
a uniformity on the surface [4, 14, 15, 16]. With nano-sized features the surface plasmon
propagation is disrupted and the electromagnetic modes can only exist at specific
wavelengths as opposed to an existence at a continuous range of wavelengths on a perfect
surface [4]. Additionally, when looking at the surfaces of nano-scale particles, their
geometries affect the formation of plasmon resonance(s) [4, 14, 15, 16]. It is a good idea
to start looking at a fully symmetric sphere; the diameter of the sphere affects the
wavelength for surface plasmon resonance to form [4, 14, 15, 16]. The larger the radius,
the more red shifted the wavelength becomes when comparing to a smaller sphere,
additionally the absorption peak seen for the sphere broadens [4, 14, 15, 16]. This happens
to a point where the sphere becomes useless as a SERS sensor as it absorbs most of the
scattered radiation [4, 14, 15, 16]. Non symmetrical shapes become more complex as each
different axis has a specific resonant wavelength [4, 14, 15, 16]. An easy way to visualize
and approximate the resonance of relatively simple shapes such as ellipsoids and
cylindrical shapes is to imagine they are a stretched sphere [41]. As a sphere is stretched
along a single axis, its length along that axis is increased and thus resonance for that axis
is red-shifted [41]. One way to think about how the resonance shifts for an axis during the
stretching is: ‘pointy ends’ (prolate) lead to a red-shift and ‘flat ends’ (oblate) lead to blue-
shift [41]. Figure 7 shows how the prolate or oblate features affect the resonance

wavelength. Another effect is that the electromagnetic enhancement drastically increases
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as an object becomes more prolated, meaning as the shape becomes sharper, the stronger

the resonance can be [41].
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Figure 7: Surface Plasmon Resonance of Nanorods. The formation of transverse and
longitudinal resonances require different wavelengths. The prolated longitudinal axis
wavelength is red-shifted when compared to the oblated transverse axis [17].

Gap effect

Not only do the size and shape of the metallic particle affect its resonance and
electromagnetic enhancement, so does the presence of additional particles [55]. Figure 8
demonstrates the stronger electromagnetic field formed from the close proximity of
multiple particles. When two metallic surfaces are close to each other, their
electromagnetic enhancement fields interact with each other and form a hybridized
enhancement field and new local plasmon resonance [55]. These new plasmon
resonances are referred to as coupled-LSP and form from the coupling of the resonance
of the individual particles [55]. This hybridization is analogous to the hybridization of
atomic orbitals during covalent bonding [55]. The coupling of resonances leads to a red-
shift of the wavelength with the amount shifted depends on how strongly the two fields
interact with each other [55]. A very important variable in the coupling is the distance

between the particles [55]. Since their individual EM fields are stronger closer to the
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surface, it makes sense that the closer the particles are the stronger the interaction will be

[55].
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Figure 8: Depiction of the gap effect. As additional particles come into close proximity
of each other, the localized electromagnetic field becomes stronger than a single particle
[18].

Material effects

The most important variable in the formation of surface plasmons is the material
the surface is made from and the surrounding medium [34]. More specifically these
variables are: the value of the dielectric function for the surface at the wavelength being
observed, dielectric constant of the surround medium, and their difference [34]. The
importance of this difference comes from the circumstances necessary for nearly perfect
absorbance at the specified wavelength. Normally, metals are almost perfect reflectors
[34]. However, when the right wavelength of light is incident at the necessary angle at the
boundary between the metallic surface and surrounding medium of the correct dielectric
values, the energy of the incident photons will be coupled to the surface plasmons and form

surface plasmon-polaritrons and resonate [34].
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CHAPTER 4: TRADITIONAL SUBSTRATES

Since the discovery of the SERS phenomena, the most common substrates used have been
Ag or Ag colloids, which are nano-scale metallic spheres suspended in solution [4]. As
more labs researched Raman spectroscopy, other substrates were developed. Chemically
roughened surfaces, nanostructures, metals other than Ag and Ag eventually made their
way into the literature [4,33]

Traditionally, SERS substrates are made from Ag and Ag colloids because of the
near ideal optical properties of the metals and the relative ease in fabricating a colloid
solution [35]. These colloids are usually produced through a reduction reaction and
stabilized with a stabilizing agent [33]. The most common reaction used is a citrate
reduction, which provides its own stabilization agent [33]. The material used most in the
literature is Ag [33]. . Even though Ag generally has a stronger enhancement, Ag is more
stable, does not react as easily, and the binding mechanisms of Ag are more understood
than Ag [33]. These all add up to the ease of attaching binding molecules to Ag particles
making Ag a more versatile substrate for Raman spectroscopy [33].

Other planar substrates have also been used. Chemically roughened films,
evaporative deposition, lithography techniques, and many other techniques have been used
to fabricate planar or 2d Raman substrates [4]. These planar substrates remove the
complexities of three dimensions and mixing dynamics that are found with colloidal

solutions, and can be fabricated in ways to tightly control the size and shape of the surface

[4].
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Substrate Stability
This subsection will mainly consist of various papers on the broad subject of the
stability of Raman substrates and some different phenomena that lead to Raman signal and
substrate degradation. The two main types of stability are thermal and chemical stability.
Various types of thermal stability include grain growth, residual stress relaxation, phase
transitions, and diffusion processes [19] including effects from elevated temperatures,
surface diffusion, and coalescence. Whereas, chemical stability refers to oxidation and

chemical adsorption on the surface

Surface diffusion

One of the most obvious methods of degradation is the physical restructuring of a
particle as it undergoes surface diffusion [20]. Observing nanoparticles with scanning
electron microscopy (SEM), one can quantify particles change shape over the course of
days or weeks [20]. They go through a process called surface diffusion, where the surface
atoms freely move and reorder themselves in a lower energy state than they started at. In
order to fully understand the process a nanoparticle goes through during surface diffusion,
Link, et. al. irradiated Ag nanoparticles with femtosecond laser pulses [20]. The irradiation
imparts energy into the nanoparticle, less than would be required to transition the metal to
a liquid phase [20]. Link, et. al. observed that the slight increase of internal energy leads
to the surface diffusion process, starting from internal point defects that propagate to planar
defects and eventually the reordering to a lower surface energy structure as seen in Figure

9 [20].
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Figure 9: Crystal restructuring of Au nanorod. a) Point defect inside of nanorod. b) Point
defect propagates to twin/stacking faults. c) Surface diffusion reorients crystal structure
to propagate planar faults. d) Complete surface diffusion. [20]

Coalescence

In addition to surface diffusion, particles can undergo a coalescence process.
Coalescence is where the particles aggregate and bind together [21]. Sometimes multiple
particles may go through a process known as Ostwald ripening, where the smaller particles
are absorbed into larger ones [21]. Two concurrent events that would lead to coalescence
are surface diffusion which cause neighboring particles to touch and grow into each other.
Or the particles detach from their substrate and undergo Brownian motion, random moving

until they run into each other [21]. The particles touch and coalesce, driven by the desire

to reduce their combined surface to volume ratio or their free surface energy [21]. While
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the coalescence process is ideal from the thermodynamic standpoint, it requires some
additional energy to initiate the process and to sustain the process [21]. After coalescence
begins, some of the surface energy lost is used to sustain the process. However, as the
number of atoms diffusing increases, the energy released cannot maintain the coalescence
process [21]. Without a higher ambient temperature also feeding energy into the

coalescence process, the particles can be left partial coalesced, such as in Figure 10 [21]



Ostwald ripening, smaller particles are absorbed into the larger particle. Partial
coalescence is depicted in image e. [21]

33
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There becomes a relationship between the coalescence process and the shape of the
particles involved [22]. As the coalescence process is driven by the desire to minimize
surface energy, it makes sense that shapes with large surface to volume ratios or high

energy crystallographic planar surfaces restructure faster. [22]

Oxidation

Chemical instability is another key downside to nanostructures. Due to their large
surface to volume ratio, and their high amount of free surface energy, nanostructures can
be very reactive [23]. This can prove to be detrimental to applications such as SERS. For
the case of Ag, structures will oxidize up to 422K (~150°C) [23]. This temperature is
where the partial pressure of Oz at the Ag surface is close enough to the dissociation
pressure of Ag>O to allow decomposition of the Oz and Ag. [23] Following this logic,
lowering the pressure at the Ag surface would lower the temperature required for O:

dissociation. [23]

Elevated Temperature

There is a commonality between all of these degradation methods; they are all
thermo-chemical processes, meaning that the rate of which they occur is heavily related to
the temperature during the process [24]. In one experiment by Beavers, et. al., a critical
temperature for the degradation of Ag nanostructures was observed. In their experiments,
the authors fabricated two kinds of substrates. The only difference between the substrates

was a break in vacuum in-between fabrication steps [24]. To observe the effects of thermal
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degradation, the team heated the substrates for a few minutes and observed any loss in
Raman intensity [24]. Their findings show that the substrates exposed to O» in-between
fabrication steps exhibit a significant loss in signal at only 60C for 5 minutes [24]. The
substrates with no vacuum break during fabrication were able to withstand up to 100C for
30 minutes before a significant loss in Raman Signal [24]. However, as seen in Figure 11,
heating these substrates to 125°C for Sminutes has a causes significant surface diffusion
and signal loss; heating to 150°C for 5 minutes has extreme surface diffusion and a nearly
complete loss of signal [24]. This critical degradation at 150°C coincides with the
temperature of Oz dissociation from Ag. It is a possibility that the presence of Oxygen on

the surface significantly contributes to the surface degradation processes.
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Figure 11: Surface Degradation of Ag nanorods due to elevated temperature. Before (a)
and after (c) Ag nanorods are heated to 125°C for 5 minutes and their respective R6G

Raman spectra (b, d). Ag nanorods heated to 150°C for 5 minutes (e) and R6G Raman
spectrum (f) [24]

Attempts to minimize degradation

Many attempts have been made do stop the surface degradation of SERS substrates. Some
attempts include coating Ag nanorods with a thin layer of Alumina (Al,O3) [25] or
Titanium Oxide (Ti02) [26]. These materials are stable to high temperature, and should
theoretically block surface diffusion. Some have even attempted to use a purely Al

nanorods, hypothesizing that the oxide layer formed on the Al surface would provide
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stability [27]. These attempts proved successful at stopping surface diffusion and
subsequent Raman signal decay over the course of multiple months. However, as seen in

Figure 12, the Raman signal from these coatings is significantly weaker than a purely Ag

structure [25] [26].
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Figure 12: Normalized Raman intensity for the 1171 cm™ peak for Crystal Violet dye
molecule (CV). Measured over 48 days using Ag nanorods (0) and TiO2 coated Ag
nanorods (1-5) [26].
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CHAPTER 5: SUBSTRATE FABRICATION AND CHARACTERIZATION

With so many nano particle fabrication techniques, it becomes important to
consider what techniques are available in the lab. At the time of this research, the only
technique readily available to this study was thermal evaporation using a technique called

oblique angle deposition, also called Glancing Angle Deposition (GLAD).

GLAD

Glancing Angle deposition is a technique to grow nanostructures that utilizes a
geometric shadowing effect to grow a large array of discrete structures [28]. GLAD occurs
when a collimated vapor flux nucleates and grows columns on a substrate [28]. If the
incident angle between the vapor source and the substrate is oblique, then the growing
columns will form ‘shadows’ on the substrate and prevent the formation of a complete film
[28]. As the vapor continues to be deposited onto the substrate, the columns continue to
grow. The nucleation on the substrate is random, as is the growth of the columns [28].
Some columns grow significantly larger than others and some columns are shadowed
during the growth can become ‘extinct’ [28]. A depiction of the GLAD growth process is

seen in Figure 13.
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Figure 13: Glancing Angle Deposition. a) Incident vapor nucleates on substrate. b)
Colomns start forming and shadowing. ¢) Columns grow larger, shadow smaller columns.
d) Larger columns cause smaller columns to go ‘extinct’ [28]

Vapor Deposition

The vapor flux used in the GLAD process is a metallic vapor. In our lab, the vapor
is created by thermal evaporation under a vacuum. Another technique used is arc plasma
deposition, or sputtering [29, 27, 30]. Both thermal evaporation and sputtering are
techniques of Physical Vapor Deposition (PVD). PVD techniques employ a physical mean
of creating a vapor from source material, and is not limited to metallic materials [29, 27,
30]. Some important variables in vapor deposition are distance between source and
substrate, the vacuum pressure, and the deposition rate [67].

An important concept in the deposition of materials is the mean free path of the
vapor [29, 27, 30]. This is essentially the statistical distance a particle/molecule can travel

before interacting with another particle/molecule [29, 27, 30]. This is governed by the
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number of particles in a volume, which is essentially the pressure within the volume.
Therefore, the stronger the vacuum (lower pressure), the further a molecule/particle can
travel [29, 27, 30]. It becomes important to place substrates within the mean free path of
the vapor to have shadowing and deposition [29, 27, 30]. In addition to the distance the
vapor can travel, the pressure can also affect contaminations in the substrate [29, 27, 30].
In most cases the chamber will start at atmospheric pressure and filled with air which has
a significant amount of contaminates and Oxygen and Nitrogen molecules [29, 27, 30]. If
the pressure is too high, there is a possibility of contaminating the structures or the
formation of oxides or nitrides [29, 27, 30]. Another important variable is the deposition
rate. The formation of discrete, complete structures is reliant on the deposition rate [29,
27, 30, 31]. When the vapor lands on the surface, the atoms still have enough thermal
energy to allow for surface diffusion [29, 27, 30, 31]. The atoms can land on the surface
then move around until they settle or are locked into place by the next layer of deposition
[29, 27, 30, 31]. Therefore, it is important to have deposition rates fast enough to prevent
the possibility of the diffusing atoms from forming a film instead of nanorods [29, 27, 30,
31]. However, if the deposition rate is too fast, then it becomes possible for a significant
amount of vacancies to form in the structure [29, 27, 30, 31]. Multiple vacancies in a layer
can be detrimental to a structure that is only dozens of atoms in diameter [29, 27, 30, 31].
A recommend rate deposition rate for Ag is 1-5Angstroms per second (A/s) and 150 A/s
for A1[31]. The reason for such a high rate for Al is to prevent possible reactions between

the metallic vapor and residual gas molecules in the chamber [31].
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In the case of sputtering, Argon (Ar), or another inert gas, is flowed into the vacuum

chamber, ionized by a magnetron sputtering system, and drawn towards the sputtering

target by a difference in electrical charge [29, 27, 30]. The material being deposited, called

the target, sits at the end of the magnetron and is bombarded by the accelerated ionized gas

molecules. Atoms from the source target are then ejected due to the collision of the ionized

gas and deposited onto a substrate [29, 27, 30]. Thermal evaporation is a similar concept,
but does not involve the use of a gas, but the heating of the source material [29, 27, 30].

Most metals exhibit a phenomenon of having a lower evaporation temperature

when under vacuum [29, 27, 30]. Per the Kurt J. Lesker, our main supplier, the evaporation

temperatures for Al and Ag are listed out in Table 1 [32]

Table 1: Evaporation Temperatures of Al and Ag [32]

Pressure (Torr) Temperature (°C)
Aluminum Silver
10 1010 1105
10 821 958
10°® 677 847

The research presented in this thesis used source pellets of Al or Ag. Materials
were deposited by thermal evaporation under vacuum of ~107 torr using resistance heating
of the material sitting in a Tungsten thermal evaporation boat or Boron Nitride crucible

purchased through Kurt J. Lesker. Al source material was 4” by 4" pellets of 99.999%
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Al from Kurt J. Lesker. Ag pellets used were 1/8” by 1/8” 99.999% purity from Kurt J.
Lesker. The deposition rate and size of particles was measuring during deposition with a
quartz crystal micro balance that was placed near the substrates during the deposition
process. Deposition rate was maintained at either 5 or 10 A/s. The deposition system used
could not supply the electrical power to deposit Al at 150 A/s, so a rate of 5 A/s was used.
The nanorods were set at a glancing angle of about 87 degrees relative to the source
material. Substrates used were 1” by 17 quartz (fused silica) slides. The vacuum chamber
is made from stainless steel and has water cooling lines along the walls. There is the front
access port door and the chamber top is removable with a pneumatic lift, which allows for
easier substrate placement in the chamber. A picture of the deposition chamber can be seen
as Figure 14. All ports use copper gaskets, except for the front door and lid, which use a
rubber gasket. The vacuum chamber is pumped to 107 torr using a mechanical scroll pump
and the pressure inside is measured with a Pirani gauge. Then a turbomolecular pump is
used to reach a stronger vacuum level. After about 30mins the chamber pressure reaches

between 107 and 10°® torr, a hot filament ion gauge measures this pressure.
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Figure 14: Deposition Chamber (left) and controls (right)

UV-Vis
UV-Vis spectroscopy for all samples was performed at UNF. Measuring the
absorbance of substrates from 200 to 700 nm. Substrates were placed with the

nanostructure facing the incident light.
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Raman Spectroscopy

The first experiments had their Raman spectroscopy performed at the Nanoscale
Research Facility at the University of Florida using a 325nm UV laser, 633nm HeNe laser,
and solid-state laser with a wavelength of 532nm. Later experiments were performed at
the University of North Florida with a solid-state laser with wavelength of 532nm.

The Raman characterization was performed by taking the Raman spectrum of the
substrate after letting it sit in a bath of 10°M R6G solution purchased from Sigma Aldrich.
The substrates sat in the R6G for 30minutes, were removed, and then allowed to dry. After
drying, the substrates were placed in the Raman spectrophotometer and their Raman
spectra were gathered from 240 wavenumber to 2240 wavenumber, with a total number of
1024 measurements taken for each of the spectra. Five spectra were taken at various
locations on each substrate in order to get an average spectrum over the entire surface. The
Raman spectra are outputted as a text files containing each wavenumber that data were
gathered for, and the number of counts for that spectrum gathered. Each individual spectra
acquired was a separate file; the individual files were manually condensed into a single
excel workbook with each sample having its own sheet in the workbook.

To compare the spectrum from different substrates the five measurements for each
sample were normalized from a scale of 0 to 1 using the formula:

_ (B1-MIN(B:B))
~ (MAX(B:B) — MIN(B:B))

This formula was used on all 1024 data points for each spectrum gathered. This
normalization was used as an attempt to filter out the unaccountable variables during the

experiments that would affect the raw measurement and provide skewed results. The
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normalization removes the raw counts from the equation and brings every measurement to
a comparable range, with most of the background noise close to a value of zero and the
strongest peak reaching a value of one. An average of the five normalized spectra were
taken, as was an average of the five raw counts spectra. Then three of the strongest Raman
peaks were chosen to be compared across samples. These peaks were at wavenumbers
765, 1352, and 1640.

A few different methods were used to compare the substrates, the number of counts
registered at the peaks, the normalized intensity, and the normalized ‘enhancement’. The
number of counts is just the raw number outputted during the Raman spectroscopy at the
specific wavenumber for the substrate. Normalized intensity is the value from 0 to 1 the
peak at the specific wavenumber is assigned. And the ‘enhancement’ is a percent

difference between the peak and the average of the background noise around the peak.

SEM Imaging

Images were taken at UF’s NRF using the FEI Nova Nano, with the exception of a
few of the later images which were taken in MSERF at UNF on the Tescan Mira.

Images were attempted to be acquired using secondary electron imaging at 25k,
60k, and 120k magnification as reported by the SEM software, using accelerating voltages

between 5-10kV, and short working distances.
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CHAPTER 6: DEGRADATION RESISTANT SUBSTRATES

As mentioned previously, the first goal of this research was to develop a SERS
substrate that could be ultimately be used on space missions. This involves using the
substrate after they are stored low vacuum for extended periods, of time and subjecting
them to extreme temperatures and high vacuum environments.

The design for a new substrate was based on having features to decrease surface
mobility of a metallic nanostructure. The substrate should be stable, inert to its
environment, and be SERS active to provide a strong signal from trace amounts of
molecules. It was hypothesized that an Al or Titanium (Ti) oxide structure would meet

these requirements.

Aluminum Nanorod Substrates

The first step to achieving this goal was the use of Al nanorods and their relative
stability to surface diffusion. Some research has been performed into using Al as a SERS
substrate. It was hypothesized that because of Al’s rapid oxidation that the oxide layer
formed on the surface of Al nanorods would prevent surface degradation of the substrates
[8,9, 11, 40,44, 53,57, 64, 68]. The first substrates used for the research presented in this
thesis was an Al nanorod substrate. In order to test the viability of Al nanorods for SERS,
various lengths of Al nanorods were grown through GLAD thermal evaporation PVD.
Lengths of 25, 50, 100, and 250 nm were produced and characterized with SEM, UV-Vis,
and Raman spectroscopy. SEM micrographs, such as the one in Figure 15, of the Al

nanorods show domination of sharp peaks and close packed structures. This structure
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should theoretically provide strong Raman enhancement for molecules adsorbed onto the
surfaces. Uv-Vis characterization show a surface plasmon resonance in the UV spectrum,
therefore, Raman experiments were used using a UV laser of 325nm wavelength.
However, the Raman experimentation proved that although the oxide layer could provide
structural stability it also severely dampens the Raman enhancement and exhibits strong
fluorescence. One hypothesis for the dampened enhancement is the loss of free surface

electrons when the surface forms the oxide layer.

%, HV rhég | mode| curr WD | det 2 1111 Ee——
“52110.0kV [25000x| SE |56 pA|4.8 mm |TLD

Figure 15: SEM image of 250nm Al Nanorod substrate

Further, it is hypothesized that s substrates with high surface roughness and surface
area will raise the energy barrier necessary to initiate the surface mobility and will therefore

prevent coalescence into bulk. Finally, it is hypothesized that annealing the structures at a
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high temperature will force the particles into a low energy configuration and will become

immobilized on the surface when returned to normal storage conditions.

Artificially Accelerating Surface Diffusion

These substrate’s ability to withstand surface diffusion and coalescence was tested
to determine if the Al nanorods could provide some benefit to future substrates by
providing the stable surface and increase roughness required to slow the diffusion of an
added nanostructure layer. In order to simulate the process of surface diffusion and
accelerate it, the fabricated substrates were heated in air on a hotplate at 500°C for 24 hours.
This was to increase the rate of surface diffusion to determine if the substrates would
coalesce into a bulk film or remain as discrete particles required for SERS activity. This
process would indicate if the substrates would still be viable for SERS measurements after
storage for long periods of time. Heating the Al nanorods lead to the formation of a rough

island film as seen in Figure 16.
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Figure 16: SEM image of 100nm Al Seed post annealing at 500°C for 24 hours

After heating the Al nanorods, the substrate visibly turned transparent. The Uv-Vis
spectra in Figure 17 corroborated the transition with their absorbance. The original Al
nanorods showed very little variation in absorbance over the entire spectrum except around
250nm where there was a slight bump indicating the presence of a localized surface
plasmon resonance in the deep up wavelengths. After heating, the substrates lost almost
all of their absorbance over the visible spectrum, with a slight bump in absorbance in the
UV wavelengths. This optical transparency, along with no crystalline peaks present in x-

ray diffraction, suggest that an amorphous Al oxide or mullite structure may have formed.
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Mullite could have resulted from through a reaction between the Al and the fused silica

substrate.
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Figure 17: Uv-Vis of Al nanorod substrates

The Raman spectroscopy for the Al after heating was purely background noise with
a large broad peak in the low-wave numbers for R6G with every measurement taken.
Originally, a UV laser with wavelength of 325nm was used to attempt to induce a surface
plasmon resonance and get some enhancement to the signal, but the difference in resonant
and incident wavelengths was too great. Additionally a red HeNe laser of 633 and green
Solid State diode laser of 532 nm were used; both of these returned no discernable signal

apart from the background noise.
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Aluminum-Silver Composite Substrates

With the failure of only Al substrates to perform as decent SERS substrates, came
the idea of utilizing the stability of Al nanorods and the enhancement of Ag. Ideally, this
would fulfil the requirements set by the initial hypothesis regarding substrate
characteristics. The idea was to coat the heated Al substrates, given the name of Al ‘seeds’,
with Ag; much like how it is common practice to coat SEM samples with a highly
conductive metal in improve the samples conduction path to prevent charging during
imaging. Ideally, this coating process would lead to discreet nanoparticles that are resistant
to coalescing into a bulk due to the increased surface area and roughness of the Al while
still providing a large enhancement for Raman spectroscopy from the Ag.

The 50nm heated Al nanorods, referred to as Al ‘seeds’, were chosen as a base for
the new substrates due to their ability to be rapidly fabricated and their adequate surface
roughness. Substrates comprising of lengths of 10, 25, 50, 100, and 200 nm of Ag
nanorods, grown on top of the 50nm Al seeds, were fabricated through GLAD thermal
evaporation. The different lengths were used to gain an understanding of how the Al seeds
affect the resonance, optical properties, surface mobility, and SERS activity of the Ag
nanorods on top.

The fabrication process for making these Al-Ag composite substrates starts with a
clean fused silica wafer, cleaned with acetone, rinsed with isopropyl alcohol, and with a
sonication bath in deionized water. Next, Al nanorods are grown at a glancing angle onto
the wafer. This is done at an approximate angle of 87 degrees, at a rate of SAngstroms per

second, and for the desired thickness. Next, the Al nanorods are heated and turned into the
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Al seeds by annealing in air at 500°C for 24 hours. The next step is to grown Ag nanorods
onto the Al seeds using GLAD thermal evaporation. Finally, to improve stability by
heating the Ag nanorod/A seeds to 500°C for a shorter time. In order to compare the
stability of the resulting morphology and SERS signals, some of the samples produced are
not heated for the final step. The substrate after each step to the fabrication process is

pictured in Figure 18.

T
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Figure 18: Optical picture showing the substrates after each fabrication step in the
production of Al-Ag composite. From left to right: Clean quartz slide, Al nanorods, Al
nano seeds (nanorods annealed in air to 500°C), Ag nanorods grown on top of Al seeds,
Ag nanorod/Al nanoseeds annealed in air to 500°C.

One observation to note is the distinct color changes. The Al nanorods appear
visually as a gray color, but become completely transparent to the eye when heated at
500°C for 24hours in air. The Ag nanorods appear as a yellow color on top of the Al seeds.
This yellow color is from the nanorods localized surface plasmon resonance absorbing light
in the blue wavelengths, this can be deduced by comparing the absorbance peak in figure
19 to the wavelength/color chart in figure 20. As the Ag nanorods are heated and begin to
change shape, the color of the substrate shifts from a yellow to orange to red to purple

depending on the final size of the particles. Figure 19 shows UV-Vis data to show

absorbance change after heating substrates.
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UV-Vis Specra for 25nm Ag/Al Substrates
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Figure 19: UV-Vis spectra for 25nm Ag nanorods on 50nm Al nanoseeds, Heated and
Non heated. Slight absorbance peak around 450nm (absorbs blue, appears yellow) before
heating shifts to a slight peak around 480nm (absorbs bluish-green, appears orange) after

heating substrate to 500°C for 15 minutes. Also seen is the appearance of a strong
absorption peak around 360nm after heating
These changes in color are an indication to the nanoparticles on the substrate are
changing size/shape. As outlined previously, as a particles size changes, the wavelengths
of plasmon resonance shifts. As the Ag particles grow larger from surface diffusion their

absorbance red-shifts and their apparent color shifts accordingly. Figure 20 shows the

apparent color for absorbed wavelengths
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- Wavelength [nm] Absorbed color Complementary color

S 650-780 red [ W blue-green
595-650 orange | I greenish blue
560-595  yellow-green B purple

o 500-560 green I I red-purple
430-500 bluish green [ T red

500 480-430  greenish biue [ P orange
435-480 blue N yellow

400 — 380-435 violet [ yellow-green

Figure 20: Diagram depicting absorbed colors and their complementary apparent color
[33]

Electron microscopy imaging of the Ag coated Al seed substrates before and after
being heated show what has happened. The Ag nanorods as fabricated on top of Al seeds,
not heated, show as a relatively normal nanorods grown by thermal evaporation except that
they appear to be closer to a rough film than long nanorods. Normally, when heating Ag
nanorods, they turn into a bulk film [73]. When grown on top of the Al seeds they form
discrete pools of Ag. It has been hypothesized that the Ag attempts to minimize free
surface energy by attempting to coalesce into bulk where particles connect to each other,
but the surface roughness provided by the Al seeds prevents the Ag from having adequate
mobility. Much like water droplets on a hydrophobic surface, pools of Ag form to reduce
surface energy. Particles that are able to touch their neighbors after thermal reshaping are
able to coalesce into larger particles through the Oswald ripening mechanism. This gives
rise to a characteristic spacing and size of Ag particles for a given deposited Ag thickness.

Figure 21 compares the structure before and after heating the Ag nanorods.
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Figure 21: 50nm Ag on 50nm Al seeds as fabricated (top)
and heated to 500°C for 15mins (bottom)
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Image processing was done to the SEM micrographs of the substrates to find a
correlation between the nanorod thickness and the size/distribution of the Ag particles after
heating. Software called Image J [74] was used to adjust the brightness and contrast of
each image and to outline the particles. After the particles were distinguished, a statistical
analysis on the images was performed and data were collected on the particle sizes and
distance between particles. The program was able to outline the particles, count the number
of particles, their average size was average distance between particles with standard
deviations and standard errors were calculated for each image. Figure 22 shows an
example of the program in use on a SEM micrograph. The particles are outlined and the
spatial position of the pixels is returned. From the pixel threshold data, averages are
numerically calculated. Figure 23 shows the relationship between the deposited nanorod
size and the average particle diameter and average distance between particles that results
after the annealing process. Additional statistical data for the particle size and distances
can be found in Appendix E.

Some of the images of the heated substrates were unable to be analyzed. This is
because of substrate charging and image drift, during imaging, preventing the images from
having a uniform contrast. The lack of uniform contrast meant the image processing lost
a significant number of particles or could not properly identify particle boundaries.
Additionally, only heated substrates could be analyzed due to the nanorod images not

having discrete boundaries between particles.
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Figure 22: Particle analysis of 10nm Ag/50nm substrate. Particle outlines and number
have been overlaid on the original image

Average Particle Size and Distance Between Particles After

Heating

70000 500.00 __
"E 60000 E
5 2 _ ~—
= L e R? = 0.8064 400.00 =
2 so0ee g T R® =0.8947 <
< L e e 300.00 £
o 40000 @& g e o
e § % -------- '2

L 20000 | eesetttt et
§ 30000 ey e 200.00 §
o 20000 ' ........... 2

Y]

C 0000 | @ 100.00
o 10000 | e (S}
E o ® :
0 000 Z
0 50 100 150 200 250 o
Ag Nanorod Thickness Before Heating (nm) %
® Average Particle size after heating (nm”2) §
® Average distance between particles after heating (nm) <

--------- Linear (Average Particle size after heating (nm”2))
~~~~~~~~~ Linear (Average distance between particles after heating (nm))

Figure 23: Average particle size and distance between particles after heating. A Near
linear relationship between nanorod lengths before heating and the average particle size
and average distance between particles after heating



58
The testing of the AI-Ag composite substrates involved depositing 50nm long Al
nanorods and heating them at 500°C for 24 hours. Then various lengths of Ag nanorods
were deposited. Lengths of 10, 25, 50, 100, and 200 nm were used. The Ag was then
either left as fabricated or heated to 500°C for 15 minutes. This time was chosen to allow
adequate surface diffusion and it was observed that diffusion occurs within seconds as
noted by a visible color change in the samples. An entire set of substrates for this
experiment contained 10 different samples, a heated and non-heated version of each of the
5 lengths of Ag nanorods.
Comparing the normalized Raman spectra of the heated composite substrates to the
non-heated composite substrates shows little difference between them, indicating that the
accelerated surface diffusion from heating the substrates still allows for enhancement as

the nanostructures remain.

100nm Ag nanorod Substrates' Normalized Raman Spectra
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Figure 24: Raman spectra for 100nm heated and non-heated Ag nanorod/Al nanoseed
substrates
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Vacuum Storage

Since there are multiple possible sources from the decay in the Raman signal over
the course of the substrates life time, it became necessary to attempt to separate the possible
causes. The difference in signal seen was most likely from the change in surface structure,
but could also be from a chemical degradation from sulfur and oxygen compounds
bonding/adsorbing onto the surface. The hypothesis for this experiment was that vacuum
storage may result in surface diffusion due to the lack of pressure on the surface, but
prevent a chemical change to the surface.

It is widely reported in the literature that Ag quickly oxidizes in air and also reacts
with Sulfur (S) from the atmosphere, both of these events would lead to a decrease in SERS
effectiveness [62]. In an attempt to separate the effects due to sulfur and oxygen adsorption
an experiment to store the Raman substrates under vacuum was designed. A load lock
vacuum was designed in-house to accomplish this. The chamber is comprised of copper
tubing, compression fittings, ball valves, needle valves, and Ball jars. Utilizing this storage
system, samples were created and stored under vacuum every week for a month without
the need of breaking vacuum to add additional samples to the vacuum storage. Overall,
samples should be exposed to air for less than 5 minutes between fabrication and
characterization. The system can be seen in Figure 25 and Figure 26, with Figure 26
showing the storage chamber sections. The components used in the vacuum storage system
were mainly chosen based on their inexpensiveness and availability. The system is pumped
to vacuum by a BMH 70 Dry TurboSystem, which is a turbo-molecular pump backed with

a mechanical diaphragm pump. Vacuum level is measured with an Edwards WRG-s wide
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range gauge and digital controller. Each section of the storage system can be isolated from
the rest by closing the ball valve at the individual chamber or the needle valves along the
main spine of the setup. The initial section is pumped down via the mechanical/turbo
system with the rest of the chambers isolated. To add additional sections to the vacuum,
the previously pumped sections are closed off at their respective ball valves, the turbo pump
is stopped, the new section’s needle valve is opened to the mechanical pump and allowed
to pump down to ~1 torr, and then the turbo pump is turned back on. Once the new section
is pumped to at least 10~torr the previously pumped sections are opened to the vacuum
again. Before a section is added to the vacuum, it is filled with Argon gas to displace any

oxygen in the jar in an attempt to minimize contaminating the vacuum system.



S ””frr,.“,m

Figure 25: Load Lock Vacuum Storage Setup
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Figure 26: Load Lock Vacuum Storage Containers

The 100nm Ag nanorods thickness of the Al-Ag composite substrates were chosen
to be observed during the month long vacuum storage experiment due to their initially
strong SERS enhancement. This length seemed the most appropriate considering the
promising results and relative ease of imaging during the previous experiment.

Over the course of a month, multiple heated and non-heated versions of 100nm Ag
and 50nm Al composite substrates were fabricated every week, half of the produced
substrates were stored in sterile, plastic petri dishes in air while the rest were placed under
vacuum storage. At the end of the month long experiment the samples stored under vacuum

were compared to those stored in air.
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The hypothesis going into this experiment was that the Raman enhancement would

decay significantly less when the samples were stored under vacuum than those stored in
air due to the oxygen and sulfur species not being able to adsorb onto the Ag surface when
under vacuum. However, when testing the samples with Raman spectroscopy, those stored
under air provided stronger signals than those from the vacuum as seen in Figure 27. The
Raman results also indicated that each set of samples that were produced each week had
large sample variation due to experimental conditions and therefore not directly
comparable. The variability is due to the randomness of the experimental conditions such
as overall surface geometry, exact deposition conditions, non-uniform drying rate of
analyte solution, and non-uniform analyte coating the surface after drying. However, the
set of substrates created for a week were fabricated in the same deposition. Therefore, the

samples created in a week are directly comparable.
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Figure 27: Normalized enhancement compared to background noise at 765 Wavenumbers
for each sample over month long experiment
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After the unexpected results, the working hypothesis changed to the vacuum
storage accelerated surface diffusion and reshaping due to the lack of pressure at the
surface. This implicates that the morphological change is strongly influences the strength
of the Raman signal. At the end of the month, usable SEM micrographs of the substrates
could not be taken due to issues with substrate charging and time constraints with the
imaging session. However, with the opening of the MSERF lab at UNF, images of the
substrates were taken nearly after nearly 6 months of storage. These images are not ideal,
but still provide a great deal of information on what happens during storage. Comparing
the non-heated samples, it shows that the sample stored in air looks similar to the start of
the experiment, but the vacuum non-heated underwent the most significant surface
diffusion. The heated samples look nearly identical to the starting image. Figure 28 shows
a comparison between the start and after 6 months of storage for air stored, vacuum stored,
heated, and not heated substrates.

While not the ideal outcome, this experiment still provided ample information. The
surface diffusion can be understood as the Ag moving to minimize the overall surface
energy. The acceleration of diffusion is hypothesized to be attributed to the lack of pressure
on the surface leading to a decrease of energy required to overcome physical barriers. It
became evident that the characteristic diameter and separation of the particles seen in the
heated case is related to the thickness of Ag and roughness of the seeds they are resting on.
Heated samples, already at a lower energy configuration, are unable to overcome diffusion

barriers and remain immobile and retain their initial size.
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Flgure 28: 100nm Ag nanorods grown on 50nm Al nanoseeds
Top left: 100nm not heated at the start. Bottom left: 100nm heated at start.
Top Middle: 100nm Air stored not heated. Bottom Middle: 100nm Air stored heated.
Top Right: 100nm Vacuum stored not heated. Bottom Right: 100nm vacuum stored heated
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Stability of Au vs Ag

Having worked in the area of physical degradation resistance, the impact of
chemical degradation was studied briefly during the last three months of work. In an effort
to separate the chemical and physical mechanisms, SEM microscopy, FTIR spectroscopy,
and SERS measurements were taken on arrays of Ag and Au nanorods grown using
physical vapor deposition. Here, the hypothesis is that Au rods may have some
morphological change over the course of extended storage in air, but should be chemically
inert. The lack of the chemical component of degradation would give an insight to the
effects of chemical degradation of Ag.

Ag and Au nanorods, shown in Figure 29, were grown to lengths of 500 nm nominal
at a deposition rate of 0.5 nm / s onto solvent cleaned Si <100> wafer chips using electron
beam physical vapor deposition at Northeastern University. Samples were maintained at a
source to substrate distance of 50 cm and at an incidence angle of 87 °. Substrate
temperatures were not controlled but remained below 40°C. Immediately after, samples

were expedited to UNF, overnight, in a vacuum sealed bag.
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Figure 29: SEM images of fresh Ag nanorods (Top left), Ag nanorods after 28 days in air
(Top right), fresh Au nanorods (Bottom left), and Au nanorods after 28 days in air
(Bottom right).

SEM images were taken within 12 hours of growth and again 28 days after growth.
As shown in the SEM images included in Figure 29, the morphological change is
apparently absent in the Ag structure, however, in the Ag structure there is a significant
loss of particles even though overall structure and diameter remaining the same for both
cases. Some coarsening through diffusion is likely in the Ag, but is not evident in Au. The

lack of Au coarsening is evident through the small, sharp details of the structure persisting

over the course of the 28 days.
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FTIR spectra were taken on day 1 and again on day 28, Figure 30. On day 28, new

peaks emerged for Ag and Au that were not visible on day 1. On day 1, no peaks were
visible throughout the spectra, as expected for clean metallic surfaces. Hydrocarbon peaks
are visible for Ag around wavenumber 2800 and 1600. These peaks are substantially
stronger for Ag that for Au, which has only a minute trace of these peaks. The sequestration
of some material from the air is expected for any nanostructured material. Interestingly, the
greater sequestration of Ag than Au may be due to greater reactivity, or the activation of
the surface through a change of termination. The change of termination of the immediate
surface may be understood through the peak at 520 wavenumber, seen amplified in the
inset. This peak designates the vibrational mode of AgS and shows that there is S binding
to the surface. The active AgS compound may then act to attract additional materials out

of the air.
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Figure 30: FTIR spectra of Au and Ag nanorods after 28 days storage in air. Peaks for
AgS and hydrocarbons can be seen at around 520 and 2800 respectivly. Contamination is
more pronounced on the Ag substrate.

When SERS is performed to detect aqueous 1 x 10°® M R6G on both of the
substrates on day 1, the Ag sample outperforms the Au sample by a factor of 20, as shown
in Figure 31. Representative R6G peaks are shown for both Ag and Au, while Au
demonstrates a flatter signal. This experimental set is of interest for two reasons, first, the
use of Au rods from PVD has never before been shown in the literature for SERS. Second,
Au is shown to have a strong enhancement, as Ag in this configuration has a tremendous

enhancement for R6G. It is possible that the use of a wavelength closer to the resonance

wavelength of Au would lead to stronger Raman signals. For comparison, when the same
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concentration of R6G is used on a Corning Glass slide, there is no distinguishable Raman

signal.
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Figure 31: Raman spectra taken on day 1 for Ag and Au substrates. Spectrum for Au has
been multiplied by a factor of 10 to compare to the significantly stronger signal of Ag

When this test is repeated weekly on samples from the same substrate with fresh
R6G solution, the results show that Au is remarkably stable when compared to Ag, Figure
32. To compare the relative stability of the two samples, signal to noise ratio is taken for
wavenumber 1650 and plotted against the day this measurement was taken. While Ag
shows a markedly negative trend over 28 days, Au remains nearly perfectly stable. Spread
in the signal to noise from day to day can be attributed to the expected spread between

spots on an individual substrate.
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Figure 32: Comparison of signal to noise ratios for Au and Ag nanorods substrates stored
in air over 28 day period

Discussing these results, two salient features arise. First, the physical degradation
of Ag nanorods in air over the length scale of days could be due to oxidation and
sulphurization from the ambient atmosphere causing the morphological changes. This is
supported by the fact that Ag has clearly distinguishable AgS and hydrocarbon peaks in
the FTIR spectra at 28 days alongside the notable loss of structure. When compared to the
lack of change on the Au structure alongside the lack of absorbance peaks in the Au FTIR
spectrum, it is evident to the possibility of contaminates accelerating surface diffusion. The
second salient feature is the implication of the stability of Au. For shear enhancement
factor, Ag nanorods will of course remain king. However, if someone wants to sell a
commercial Raman spectroscopy substrate with good shelf life or study the degradation of

the analyte over time, Au affords this ability.
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Since no morphological change is evident in Au, this experiment will be replicated
in the future with heating of the Au and Ag nanorods to drive morphological changes to a
more stable configuration as seen in previous experiments. This will allow effects of

chemical degradation of Au and Ag to be directly comparable.
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CONCLUSION

This work reports on two areas of study: 1) the design of a degradation resistant
SERS substrate; 2) A scientific ingestion into the mechanism of Raman signal degradation.

The novel Ag/Al composite SERS substrate showed interesting results. The
unusual structure shown after heating and surface diffusion happening is the result of
mobile Ag structures, partially immobilized by the rough surface provided by the Al seed
underlayer. It was hypothesized that the Al layer provided a sufficiently large energy
barrier to prevent the entire coalescence of the Ag particles. Particles that were close
enough to each other coalesced into larger particles through Ostwald ripening where they
could touch during thermal reshaping.

Vacuum storage of these substrates also provided interesting results, with the Ag
structure going through more surface diffusion than the substrates stored at atmospheric
pressure. The vacuum stored substrates had significantly more loss to their Raman signal
than the substrates stored under air. This suggests that surface diffusion may contribute
more to the decay in signal than surface contamination for Ag

When testing Ag nanorods against Ag nanorods over the course of 28 days in air,
the Au nanorods exhibit almost no degradation to the Raman signal while Ag nanorods
have a significant loss in structure and Raman signal. While neither substrate appears to
have experience dramatic surface diffusion, Ag shows about a 20% loss of structure, and
the FTIR spectra show the binding of sulfur and adsorption of hydrocarbons to the Ag.

This contamination explains the decay in signal for the Ag substrate while the Au substrate
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experienced little loss in signal and could possibly be the cause of the loss of structure in
Ag.

Additional experiments to consider performing are a comparison between storage
at atmosphere, under vacuum, and above atmospheric pressure. An experiment involving
the entire fabrication of the substrates without breaking vacuum to study the mobility of
the Ag nanoparticles and its effect on coalescence. Additionally, an experiment comparing
nanorods surface diffusion across different fabrication methods, i.e. Thermal evaporation
vs e-beam. Finally, performing experiments with Au nanorods grown on top of Al
nanoseeds to utilize the restrictions on surface mobility the structure provides alongside

the chemical stability seen in Au samples.
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APPENDIX A: WATANABE’S CALCULATED DATA FOR R6G VIBRATIONAL

MODES

Table 2: Calculated and Experimental Vibrational Frequencies for R6G [1]
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1192 135.7 104 1202 N{40)LA10).P(47)

1239 120 177.5 1235 A(13).P(RT)

1259 378 3808 1250 X(39).P(55)

1263 20.6 241.3 1255 X{42).A(11).P(47)

1265 54 27.0 X(71).A(28)

1271 35 4.1 P(95)

1273 52 24 1278 P(100)

1291 149.6 162 1294 X(53).A(40)

1301 105 382 A(LT7).P(76)

1301 59 188.4 1296 X(28).A(72)

1307 119.1 269 1312 X(30).A(48).P(21)

1314 139 1197.8 1313 X(59).A(38)

1351 3517 1.4 1364 X(70).A(17)

1360 61.4 93.1 1367 X(17).A(80)

1365 6.5 115 N(43).A(53)

1373 4.7 9.6 P{100Y)

1373 200 16.4 X{57).A{40)

1388 GE.O 19.6 1389 1387 A(WM)

1388 23.1 2.6 1389 A(99)

1390 65.0 1.9 1389 M(87)

1392 19.3 2.8 1389 M(95)

1400 7.0 10.3 P(100)

1419 141.1 119.1 1422 1421 X(69).M(17)

1432 17.1 71.0 1446 X(55).A(26).M(17)

1445 10.4 7.0 P(96)

1457 9.1 9.0 P{100)

1458 379 404 1450 1452 X(16).A(42).M{42)

1458 81 16.2 M(97)

1459 28.7 21.7 A(15)M(7T)

1462 35 1.8 A(95)

1464 58 49 X(10),A(53).M(37)

1466 9.0 29.6 A(94)

1467 248 L5 1472 A(9T)

1468 9.8 38 P(100)

1476 2.7 56.3 1477 X{49).A(30).M(21)

1480 46.2 65 1490 N(19),M(54),P(20)

1482 4.6 13.0 1490 A(91)

1482 4.7 228 X(11}AZ9)

1486 88 1.7 X(10).M(13).P(TT)

1488 144 33 P(94)

1500 7.0 T68.8 1501 X(80).M(13)

1505 692.0 3ze 1512 X(69).A(25)

1330 109.3 3694 1533 1529 X(8T)LA(12)

1554 16.2 778 X(72).A(26)

1559 8.2 377.0 1566 X(46),A(54)

1567 893 197.1 1559 1557 X(66),A(33)

1577 39.0 9. 1577 P(99)

1601 95.0 50 1599 P(100)

1615 103.4 11055 1609 1608 X(96)

1652 67.7 312.7 1651 1647 X{(98)

1716 50.3 2925 1722 1718 P(100)

« Vibrational frequencies scaled by a single factor of 0.9982 are given. Raman intensities are given in units of Asamu.1, and
infrared intensities in units of km mol-1. » Percentage of potential energy distribution (PED%) of normal mode of vibration is
given. X refers to the motion of the xanthene ring. A refers to the motion of the NHC2Hs groups. M refers to that of a pair of
methyl group adjacent to the xanthene ring. P refers to that of the phenyl ring with the COOC2Hs group. PED% less than 10%
is omitted.
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Table 3: Various calculated and experimental vibrational modes for R6G for off resonant Raman, Resonant Raman, Surface Enhanced Raman, and Tip Enhanced

Raman Spectroscopies [1]

experi ment?

calc? off-res Raman RRS SERRS TERS
mode v(iem™) v(cm™) rel int v (em™Y) rel int v (cm™) rel int v (cm™) rel int
53 615 613 032 611 1.00 612 0.87 608 030
54 631 639 0.00 641 0.00 637 0.03
55 664 660 0.03 657 0.13 660 0.04
56 673 679 0.07 675 0.03
25 702 } 705 0.09 712 0.11 704 0.02 702 0.15
59 705 : : : : :
65 77 775 0.16 775 0.58 M 033 766 030
70 819 833 0.01 826 0.03 830 0.01 808 0.03
78 805 903 0.01 912 0.05 902 0.01
80 923 936 0.00 934 0.03 931 0.04 919 0.04
86 1014 1022 0.00 1025 0.03 1022 0.01 1027 030
90 1047
4 - } 1061 0.01 1054 0.002 1054 035
93 1084 1091 0.03 1090 0.07 1084 0.05
9% 1125 1130 0.04 1127 0.06 1127 0.08 1120 0.35
103 1175 1184 0.25 1178 0.51 1185 031 1185 0.40
105 1192 1202 0.07 1200 0.07
111 1273 1278 0.03 1275 0.04 1275 0.05 1269 0.90
12 1291 1204 0.07 1284 0.06
115 1307 1312 047 1310 038 1311 031 1308 030
117 1351 1364 0.80 1361 088 1361 082 1359 0.70
122 1388 } 1389 0.07 1385 0.08 1383 0.08
124 1390 : ' :
127 1419 1422 0.04 1422 0.10 1420 0.05
131 1458 1450 0.04 1450 015 1448 0.07 1457 0.65
146 1505 1512 1.00 1505 0.50 1508 0.44 1503 030
147 1530 1533 011 1536 022 1538 033 1532 0.45
151 1577 1577 0.07 1577 041 1575 0.60 1570 0.70
152 1601 1599 0.09 1600 0.0 1508 0.10 1596 0.03
153 1615 1609 0.08 1612 0.06
154 1652 1651 0.13 1649 1.00 1650 1.00 1647 1.00
155 1716 1722 0.04 1720 0.03
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APPENDIX B: UV-VIS SPECRA

UV-Vis Absorbance Spectra for all Ag/50nm Al Substrates
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UV-Vis Absorbance Spectra for 50nm Ag/50nm Al Substrates
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UV-Vis Absorbance Spectra for 50nm Al Substrates
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APPENDIX C: RAMAN DATA FOR ALUMINUM/SILVER COMPOSITE SUBSTRATES
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Normalized Raman Spectra for 10nm Ag/ 50nm Al Substrates
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Normalized Raman Spectra for 25nm Ag/ 50nm Al Substrates
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Normalized Raman Spectra for 50nm Ag/ 50nm Al Substrates
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Normalized Raman Spectra for 100nm Ag/ 50nm Al Substrates
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Normalized Raman Spectra for 200nm Ag/50nm Al Substrates
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10.0 kV

“mag
25 000 x

APPENDIX D: SEM IMAGES FOR ALUMINUM/SILVER COMPOSITE SUBSTRATES

®

s

= s A

s > o - o - - TR - ppL— . - 9 =
mode| curr WD —— — HV mag |[mode| curr WD det
SE |0.22nA[4.8 mm |ETD 10.0kV [25000x| SE |[0.22nA |53 mm|TLD

Figure 33: 200nm Silver nanorods on 50nm Aluminum seeds. Heated(left) and non-heated (right)
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HV
10.0 kV

WD det HV mag |mode| curr WD det

‘fnag ; mode| cu r.r
5000x| SE |0.22nA|52mm ETD 10.0kV|5000x| SE |0.22nA |52 mm ETD
Figure 34:100nm Silver nanorods on 50nm Aluminum seeds. Heated(left) and non-heated (right)
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3

mode| curr WD det | +——mu—— — HV mag |[mode| curr WD det
SE |0.22nA[5.2mm |ETD 10.0kV [25000x| SE [0.22nA |51 mm |ETD

Figure 35:100nm Silver nanorods on 50nm Aluminum seeds. Heated(left) and non-heated (right)
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Figure 36:50nm Silver nanorods on 50nm Aluminum seeds. Heated (left) and non-heated (right)
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Figure 37: 25nm Silver nanorods on 50nm Aluminum seeds. Heated (left) and non-heated (right)
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10.0kV [60000x| SE [0.22nA |51 mm|ETD 10.0kV |[60000x| SE [0.22nA|5.0mm |ETD

Figure 38: 10nm Silver nanorods on 50nm Aluminum seeds. Heated (left) and non-heated (right)
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SEM HV: 5.0 kV WD: 20.52 mm I | | | MIRA3 TESCAN

SEM MAG: 60.0 kx Det: SE 1pm
SEM MAG: 60.0 kx |Date(m/d/y): 05/31/17 University of North Florida MSERF

Figure 39: 100nm Ag nanorods on 50nm Al seeds. After 6months storage in air. Heated (left) and not heated (right)
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SEM HV: 5.0 kV WD: 20.41 mm | | | MIRA3 TESCAN
SEM MAG: 60.0 kx Det: SE 1pum
SEM MAG: 60.0 kx |Date(m/d/y): 05/31/17 University of North Florida MSERF

Figure 40:100nm Ag nanorods on 50nm Al seeds. After bmonths storage in vacuum. Heated (left) and not heated (right)



APPENDIX E: STATISTICAL DATA FOR AVERAGE PARTICLE SIZE AND DISTANCE BETWEEN PARTICLES

Nanorod Length | Average Particle size after heating (hm*2) STDev size STD Error Max Min
10 3651 3365 160 442 | 25110.05 11.898
25 7269 5446 376 210 | 33783.46 59.488
25 6454 5175 165 986 | 44165.27 | 169.997
50 26492 20053 2680 56 | 93503.87 | 618.679
50 21911 14435 439 | 1082 | 79598.16 | 379.491
100 33569 33970 4757 51 | 166888.2 | 358.266
100 38016 32797 2078 249 | 163503.3 33.999
200 49838 49614 9548 27 | 225820.6 | 1958.381
200 49909 39307 2955 177 | 222594.3 | 237.996
Nanorod Length Average distance between particles after heating (nm) STDeviation | STD Error
10 101.94 18.47 0.88 442
25 150.49 29.29 2.02 210
25 167.29 28.59 0.91 986
50 290.54 53.32 7.12 56
50 269.14 40.10 1.22 | 1082
100 310.97 76.00 10.64 51
100 334.78 62.77 3.98 249
200 404.66 99.71 19.19 27
200 385.04 61.83 4.65 177
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APPENDIX F: RAMAN DATA FOR VACUUM STORAGE

Normalized Enhancement
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Raw Counts
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