
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1999

An Efficient Implementation of the Transportation
Problem
Alissa Michele Sustarsic
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 1999 All Rights Reserved

Suggested Citation
Sustarsic, Alissa Michele, "An Efficient Implementation of the Transportation Problem" (1999). UNF Graduate Theses and
Dissertations. 81.
https://digitalcommons.unf.edu/etd/81

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/129588449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu


AN EFFICIENT IMPLEMENTATION OF THE 
TRANSPORTATION PROBLEM 

by 

Alissa Michele Sustarsic 

A thesis submitted to the Department of Mathematics and Statistics 
in partial fulfillment of the requirements for the degree of 

Masters in Mathematical Science 

UNIVERSITY OF NORTH FLORIDA 

COLLEGE OF ARTS AND SCIENCES 

April,1999 

Unpublished work c Alissa Michele Sustarsic 



The thesis of Alissa Michele Sustarsic is approved: 

Committee Chairperson 

Accepted for the Department: 

Chairperson 

Accepted for the College: 

 
Dean 

Accepted for the University: 

Dean of Graduate Studies 

11 

(Date) 

AfWl'l 2J( ~ 'J 

IJpn I. d-~ (rt; 

4fd4qj 

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted



ACKNOWLEDGEMENTS 

I would like to thank Dr. Adel Boules for his support, guidance, and patience he 

gave throughout the time spent making this thesis possible. His encouragement and 

dedication made this thesis possible. I would also like to thank Dr. Champak Panchal 

and Dr. Mei-Qin Zhan for serving on the thesis committee. Thank you as well to Mrs. 

Theresa Kleinpoppen who helped edit this paper. 

In addition, I would like to thank my parents and family for their encouragement 

throughout my time at UNF. Finally, I would like to thank my husband Jeff for his 

support, patience, and encouragement which helped in ways to numerous to mention. 

111 



TABLE OF CONTENTS 

List of Figures ...................................................................................................... v 

Abstract ............................................................................................................... vi 

Chapter 1 

Introduction and Some Standard Results ..................................................... 1 

Chapter 2 

The Transportation Problem ......................................................................... 9 

Chapter 3 

Labeling Methods in the Primal Transportation Algorithm ...................... 29 

Chapter 4 

A Computer Program for the Transportation Problem ............................. 39 

Chapter 5 

Fortran Code for the Transportation Problem .......................................... .45 

Chapter 6 

Results and Conclusions ............................................................................ 69 

Bibliography ....................................................................................................... 74 

Vita ..................................................................................................................... 75 

IV 



LIST OF FIGURES 

Number Page 

1-1 Simplex Tableau 5 

2-1 The Transportation Problem 10 

2-2 Transportation Problem in the Simplex Tableau 12 

2-3 Transportation Tableau 14 

2-4 An Example of the Northwest Comer Rule 15 

2-5 The Altered Transportation Tableau 22 

3-1 An Example of a Rooted Tree 33 

3-2 Example of the Indices corresponding to a Rooted Tree 34 

3-3 Example of Dropping and Entering Edge ofa Tree 37 

3-4 Example of a Modified Tree 38 

6-1 Example of 6 x 6 Test Problem Optimal Solution 70 

6-2 6 x 6 Test Problem Initial Basic Feasible Solution 71 

using the NW Comer Rule 

6-3 Results from the Computer Program 72 

v 



University of North Florida 

Abstract 

AN EFFICIENT IMPLEMENTATION OF THE 
TRANSPORTATION PROBLEM 

By Alissa Michele Sustarsic 

Chairperson of the Thesis Committee: Dr. Adel Boules 
Department of Mathematics and Statistics 

The transportation problem is a special type oflinear program in which the objective is to 

minimize the total cost of shipping a single commodity from a number of sources (m) to a 

number of destinations or sinks (n). 

Because of the special structure of the transportation problem, a special algorithm can be 

designed to find an optimal solution efficiently. Due to the large amount of information 

in the problem, judicious storage and management of the data are essential requirements 

of any viable implementation ofthe transportation algorithm. 

Using sparse matrix techniques to store the solution array, and a rooted tree as the 

labeling method for handling the associated information provides a viable method to 

solve the transportation problem. 

A difficult test problem was designed to test the computer program and demonstrate its 

efficiency. We were able to successfully implement the transportation algorithm for 

problems involving one million possible shipping routes. The FORTRAN code 

developed is included, as well as the results of several runs of the test problem. 

VI 



Chapter 1 

INTRODUCTION AND SOME STANDARD RESULTS 

Linear programs are among the most widely used applications of mathematics in 

industry, business, and government. The objective of linear programming is to 

minimize (or maximize) a linear objective function in n real variables subject to a (finite) 

set of linear constraints, which can be either equations or inequalities. 

Definition: The standard form of a linear program (LP) is one of the form: 

Minimize Subject to Ax=b, x~O (1.1) 

where A = (aiJ) is a real m x n matrix, x and c are n-dimensional column vectors, and b 

is an m-dimensional column vector. 

Any linear program can be easily converted to standard form. The details of such 

conversions can be found in most textbooks on linear programming. (See Taha for 

details). 

Definition: A point x is said to be a feasible solution of (1.1) if it satisfies the 

constraints, i.e., Ax = b and x ~ O. A feasible point, xo, is said to be an optimal solution 

of the linear program (1.1) if it satisfies cT Xo ::;; cT x for any feasible x. In other words, 

the objective function attains its minimum value at Xo. 



One can always assume that m s n and that A has full rank, i.e. rank(A) = m. 

Thus A has m linearly independent columns. This can be assumed because if there are 

any dependencies among the rows, there is either no solution caused by contradictory 

constraints or there are redundant equations that can be eliminated. 

Definition: Let B be a nonsingular m x m submatrix of A made up of m linearly 

independent columns. Set all n - m components of x that are not associated with the 

columns of B equal to zero. The solution to the resulting set of equations is said to be a 

basic solution to Ax = b with respect to the basis B. The components ofx associated 

with the columns of B are called basic variables. Because ofthe full rank assumption, a 

linear program will always have basic solutions. 

Definition: If a feasible solution is also basic, it is referred to as a basic feasible 

solution. If it is also optimal, it is referred to as an optimal basic feasible solution. 

The basic variables are not necessarily positive. If at least one of the basic variables in a 

basic solution is zero, then the solution is called a degenerate basic feasible solution. 

One of the most important theorems in linear programming is the Fundamental 

Theorem of Linear Programming because it gives a criterion for limiting the search for 

optimal solutions. 

Fundamental Theorem of Linear Programming (l.a). Given the standard linear 

program (1.1): 

1) Ifthere is a feasible solution, there is a basic feasible solution. 

2) If there is an optimal feasible solution, there is an optimal basic feasible 

solution. 
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The above theorem states that the search for optimal solutions must be limited to the set 

of basic feasible solutions. The proof of The Fundamental Theorem of Linear 

Programming can be found in Luenberger, on page 18. 

The notion of duality is central to both the development oflinear programming 

algorithms and the computational aspects of the subject. Associated with every linear 

programming problem there is a dual linear program, defined as follows: 

Definition: The dual ofthe linear program 

Minimize 

is defined as 

Maximize 

Subject to 

Subject to 

Ax~b, x~O 

The LP (1.2) is referred to as the primal problem and (1.3) is often called the dual 

problem. A, is called the dual vector, and x is called the primal vector. 

(1.2) 

(1.3) 

It can be shown, using the above definition, that the standard linear program (1.1) 

has the following dual program: 

Maximize Subject to (1.4). 

The following theorem and its corollary provide the important link between the 

primal and the dual problem, which will help to solve a linear program. A proof of the 

Weak Duality Theorem can be found in Luenberger, on page 89. 

Weak Duality Theorem (1.b). Consider the standard dual pair (1.1) and (1.4). If x and 

A, are feasible for (1.1) and (1.4) respectively, then cT x ~ A,Tb . 
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This shows that a feasible vector to either problem provides a bound on the value of the 

other problem. The corollary below gives a condition for the optimality of a solution. 

Corollary (1.c). If Xo and ,,1,0 are feasible for (1.1) and (1.4) respectively, and if 

c T Xo = A~ b, then Xo and Ao are optimal for their respective problems. 

The above corollary leads to the important necessary and sufficient conditions for 

optimality (See Taha, pg. 154 for the proof), called the complementary slackness 

condition: 

Complementary Slackness Theorem (l.d). Let x and A be feasible solutions for (1.1) 

and (1.4) respectively. Then x and A are optimal for their respective problems if and only 

if they meet the complementary slackness condition: (c T - ~ A)x = 0 . 

One method used to solve a linear program is the simplex algorithm, which uses 

the previous theorem as a stopping criterion. The simplex method proceeds from one 

basic feasible solution to another where the cost, barring degeneracy, is continually 

decreasing, until an optimal solution (minimum) is reached. The general philosophy 

behind the primal simplex method is to generate a sequence of primal basic feasible 

solutions and a corresponding sequence of vectors A (not necessarily dual feasible), such 

that the complementary slackness conditions are met by each pair x and A at each 

iteration. The algorithm terminates once A becomes feasible for the dual problem. 

The simplex method can be performed in tableau form. The first step to the 

simplex method is to put the problem in standard canonical form. 
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Definition: A standard linear program is said to be in canonical form ifit has the 

following properties: 

b; ~ 0 for all i, the matrix A contains the columns of the identity matrix and the cost 

coefficients corresponding to the identity matrix are O. 

The simplex tableau in standard canonical form is depicted in Figure (1-1). 

o 
o 

o o 

0 0 

0 0 

a m 

o 

1 

0 

a. a 
J n 

Y;,m+! 

Ym,m+! Ymj Y mn 

rm+! r. r 
J n 

Simplex Tableau 

Figure (1-1) 

b 

Y;o 

Y mO 

-zo 

The r} are the reduced cost coefficients, which replace the cost coefficients once the 

manipulation of the tableau starts. The columns of the identity matrix are not necessarily 

the leading columns in the tableau, but the above depiction is used for the simplicity of 

notation. Once a problem is in canonical form, a basic solution can be read directly from 

the tableau; in the above depiction, XI through xm are the basic variables with values hI 

through bm. Step two ofthe simplex algorithm consists of examining the reduced cost 
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coefficients. If all the reduced costs, rj ;::: 0, then the current basic feasible solution is 

optimal. If there exists a column with a negative reduced cost coefficient and all the 

entries within the column are nonpositive, there is no optimal solution. Otherwise, pick 

an rj < ° and pivot aroundyho such that ~ = min{~1 Yij > 0; 1:S; i :s; m}. Return to the 
y Y~ Yij 

beginning of step 2 until an optimal solution is determined. 

The relationship between the primal and the dual problem defined above can be 

seen more clearly in the simplex method when it is written in matrix notation. Let B be a 

basis matrix, i.e., a square submatrix of A consisting ofthe m linearly independent 

columns of A corresponding to the basic variables xB' while D consists of the columns of 

A that correspond to the nonbasic variables xD• The standard linear program problem can 

be rewritten, usingthepartitionA=[B,D], X=[XB,Xn], and CT=[CB~CDT], as 

The basic solution, X=[XB' 0] corresponds to the basis B where x B = B-1 b because xD=O. 

For any value of x D' x B = B-1 b - B-1 D x D from (1.5) and thus by substitution, the 

objective function becomes 

(1.6). 

From (1.6), the reduced cost coefficients for the nonbasic variables xD are defined 

as (1.7). 

The components of r-: determine the entering variable into the basis or whether the 

solution is optimal as described above. 
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Now it is possible to write the simplex tableau in matrix form as 

(1.8). 

If the matrix B is used as the basis, then multiplying (1.8) by the matrix, [ B-~ I 0 ] 
-A 11 

will result in 

(1.9). 

T 
This corresponds to the one pivoting step in the simplex tableau, with A defined as 

AT = c~ B-1
• The vector A is called the simplex multiplier. Substituting the value of A 

into (1.9), the resulting tableau is 

[ I 

o (1.10). 

of A, the values of the reduced cost coefficients of the basic variables, x Bare 0 and the 

value of the nonbasic variables, xD are O. In other words, the primal simplex method 

meets the complementary slackness condition for each basic feasible solution, x and the 

corresponding simplex multiplier A. By the Complementary Slackness Theorem (l.d), 

the current solution x optimal if and only if A is dual feasible. But A is dual feasible if 

AT A :::;; cT , which means AT B :::;; c~ and AT D ::; c;. By construction AT B = c~ ,so the first 

inequality holds. Therefore, the necessary and sufficient condition for optimality reduces 
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to c~ - AT D = C~ - C~ B-1 D ~ O. Thus, the reduced cost coefficients of the 

nonbasic variables, r~ must be greater than or equal to 0 for optimality to occur. 

The simplex method requires the inversion ofthe basis matrix B, and this is done 

in a number of steps, or iterations, where in each step the matrix B differs from the 

previous in only one column. Thus, the inversion of B can be done easily. 
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Chapter 2 

THE TRANSPORTATION PROBLEM 

The balanced transportation problem is a special type of linear program in 

which the problem is to minimize the total cost of shipping a single commodity from a 

number of sources (m) to a number of destinations or sinks (n). The simplex method can 

be used to solve this problem. However, the special structure ofthe transportation 

problem allows for a different technique to be created to solve these problems. This 

method follows the same basic theory as the simplex method, but will be more 

computationally efficient and accurate. 

Definition: The balanced transportation problem is defined as 

Minimize 

Subject to 

m n 

z(x) = "" c .. x· . L..J L..J ',j ',j 
i=1 j=1 

n 

"x .. =a. L..J ',j , 
j=1 

m "x .. =b. L..J ',j j 
i=1 

for i=j to m 

for j=J to n 

for i=J to m,j=J to n 

9 

(2.1) 

(2.2) 

(2.3) 



The only data needed for this problem is the cost of transporting the commodity per unit 

from each source i to each sink} (Ci), the availability of the commodity in source i, ai, 

and the demand of sink}, bj . Xijrepresents the amount shipped from source i to sink}. 

m denotes the number of sources while n denotes the number of sinks. Notice that the 

number of constraints of the transportation problem is m+n while the number of variables 

is mn. The first set of constraints (2.2) comes from the fact that the sum ofthe shipments 

from source i to all the destinations is equal to the supply available in source i. The 

second set of constraints (2.3) follows similarly, by considering the sum of the shipments 

from all the sources to destination}. 

The transportation problem is depicted in Figure (2-1). 

Source Destination 
C11 : X11 

~0 a1 1 ~-~ b1 "---/ 
------------------------------------------ ---------~ ----a2 2 -------------------- b2 

The Transportation Problem 

Figure (2-1) 

A node represents a source or a destination, and an arc that joins two nodes (a source and 

a destination) represents a shipping route through which the commodity is shipped. 
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The transportation problem is "balanced" because the total supply equals the total 

demand, La; = Lbj . In most applications, this is not the case. However, dummy 

sources or sinks can always be added to the problem to make it balanced. Being a 

"balanced" problem is an important feature of the transportation model and as we will 

now show is the necessary and sufficient condition for the transportation problem to be 

feasible. To show the sufficiency of this condition, let S be equal to the total supply 

"" a;bj (which is also equal to the total demand), S= L..Ja; = L..Jbj . Let X;,j = S for i=l, ... ,m 

n n a. b. m m a. b. 
and}=l, ... ,n. So LX;,j = LT=a; and LX;,j = LT=bj . Therefore,xis 

j=1 j=1 ;=1 ;=1 

feasible, and a feasible solution always exists for the balanced transportation problem. 

m n n 

Conversely, ifthe transportation problem has a feasible solution x, then L L X;,j = Lbj 
;=1 j=1 j=1 

n m m 

and LLX;,j = La;. Therefore, La; = Lbj , which establishes the necessity ofthe 
j=1 ;=1 ;=1 

balance. 

The feasible region is also bounded, since x;,j ~ a; and X;,j ~ bj for all i and}. 

Thus, xij ~ min {a; , b j IV i, j} , and since the feasible region is also closed, it is actually 

compact. Thus, the objective function will always achieve a minimum value (an optimal 

solution). 

Let us look at the tableau form of the simplex method for the transportation 

problem, shown in Figure (2-2), where c{ = (c;pc;z, ....... 'c;n) for 1 ~ i ~ m, 1 T is a row 

vector ofn ones, I is a n x n identity matrix, and b = (bpbz, ... ,bn)T. 
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.......... ---........................................ -~-_ .......................... _._--,--........................................ _ ... _-_ ................... _ ... _ .......................................................... __ ............ -
i 

~-............................................ ---+--....... - ..................... -... ----_.- ........................... _ .... -.... __ .............................. _. __ .. ........... ~ .... --... -.......................... ! 

I T 
a2 

-.-.--+---............................ - .. --.... L ............................ --.. - ................... -- ! 
• i · ........ ·1 

..................... 
_ 

........ 1............. I . ,...................... .. .......................... _ .... _-...1.. ...................... _. - .. --..... ~.-.. ------ ........... --.--.. -......... - .......... · ... ·1 

IT 
---------~---------~---------~--------- ---------~ 

I I I b 

Transportation Problem in the Simplex Tableau 

Figure (2-2) 

For future reference, let the matrix in the above tableau be denoted by A; thus 

IT 
IT 

A= (2.4). 

IT 
I I I 

The next theorem summarizes the above discussion and determines the 

(maximum) number of nonzero components in a basic feasible solution. 

Theorem (2.a). A balanced transportation problem always has a feasible solution. The 

rank of the matrix A is m+n-I. In other words, there is exactly one redundant constraint 

and the maximum number of nonzero components in a basic feasible solution is m+n-I. 

Proof The existence of a feasible solution was shown above, so it remains to show that 

the rank of A is as stated. Let Rl, R2, ... ,Rm, Rm+1, •••••• , Rm+n denote the m+n rows of the 
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transportation matrix A (2.4). Clearly RI+R2+ ... +Rm-Rm+l- ...... -Rm+n=O. Thus, the 

rank(A)< m+n, so at least one row can be written as a linear combination of the others. 

To prove rank(A) =m+n-1, it suffices to show that RI, R2, ... ,Rm, Rm+l, ...... ,Rm+n-t 

are linearly independent. Suppose not. Let ah a 2,. .. , a m and Ph P 2,· .. , P n-t be 

coefficients of the rows such that atRl+a2R2+ ... +amRm+PtRm+I+ ...... +Pn-tRm+n-t=O. 

This is equivalent to the vector equation 

follows that al=PrO. Therefore, no nontrivial linear relationship exists between rows Rio 

R2, ... ,Rm+n-I, so rank(A)=m+n-l.. 

It follows from this theorem that any basis of the transportation problem consists of 

m+n-1 variables. 

A direct application of the simplex method in tableau form to Figure (2-2) is 

computationally inefficient and requires a prohibitive amount of computer storage. For 

example, in a problem of 1000 sources and as many sinks, the matrix A would have 2,000 

x 1,000,000 entries, which is obviously prohibitively large and quite wasteful, since A is 

very sparse and well structured. 

Three questions arise naturally in the development of an algorithm to solve the 

transportation problem: 

1) How do we construct an initial basic feasible solution? 

2) How do we determine the optimality of a given basic feasible solution? 

3) If the current basic feasible solution is not optimal, how do we construct a new 

basic feasible solution that is "closer" to the optimal solution than the current 

solution? 

13 



We will answer these three questions in tum, but first let us look at the 

transportation tableau, which is often used to illustrate paper and pencil calculations. The 

transportation tableau is depicted in Figure (2-3). 

XlI X12 Xin al 
ClI C12 Cin 

a2 

XmI Xmn am 
CmI Cnm 
bi b2 .... bn 

The Transportation Tableau 

Figure (2-3) 

Each of the boxes, in the above tableau, is called a cell. The unit cost of shipment 

from source i to sink}, cij' is depicted in the center of the cell (iJ) (row i, column}). The 

bottom row contains the demands and the rightmost column contains the supplies. The 

location and value of a basic variable is indicated by putting the value of that variable in 

the top right hand comer of the corresponding cell. Thus, if a cell has only the cost 

coefficient cij' the corresponding variable is nonbasic. 

We now answer the first of the three questions that were posed previously, by 

showing how to construct an initial basic feasible solution. There are several different 

methods for generating an initial basic feasible solution. One of the easiest methods is 

14 



the Northwest Corner Rule. This method can be illustrated using the transportation 

tableau, Figure (2-3). 

Definition: The Northwest Corner Rule: 

I) Begin with all empty cells. 

2) Start with the cell in the upper-left hand comer. 

3) Allocate the maximum possible amount consistent with row and column sum 

requirements. At least one of these requirements will be met, i.e. the supply 

will be exhausted or the demand will be fulfilled. 

4) Ifthe row requirement (supply) is not exhausted, move one cell to the right. If 

the column requirement (demand) is not met, move one cell down. Ifboth 

requirements are met simultaneously and the current assignment is not the last, 

enter a value of 0 in the cell immediately to the right, then move down one cell. 

(The solution is degenerate in this case.) If more assignments are to be made, 

go to step 2. 

The Figure below is an illustration ofthe Northwest Comer Rule. 

10 10 

5 10 5 20 

15 15 

10 20 30 

15 10 30 20 

An Example of the Northwest Comer Rule 

Figure (2-4) 
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The solution determined by the Northwest Comer Rule is clearly feasible. The 

following concept is needed to establish the fact that it is basic. 

Definition: A loop is an ordered sequence of at least four cells of an array if: 

1) Any two consecutive cells lie in either the same row or same column. 

2) No three consecutive cells lie in the same row or column. 

3) The last cell in the sequence has a row or a column in common with the first 

cell in the sequence. 

The following theorem gives a necessary and sufficient condition for a feasible 

solution of the transportation problem to be basic: 

Theorem (2.b). In a balanced transportation problem, a set of m+n-l variables is basic if 

and only the corresponding cells in the transportation tableau contain no loops. 

Proof Assume the set of cells contains a loop. Allocate a value of + 1 and -1 alternately 

among the cells in the loop, and entries of 0 in all the rest ofthe cells not in the loop. 

Then the sum of all entries in the rows and columns of the array is zero. This 

corresponds with the multiplication of the constraints of the transportation problems (2.1) 

that coincide with a cell in the loop with + 1 and by -1 respectively. If the columns are 

summed, the result will be the zero vector. Hence the set of the column vectors is linear 

dependent. Hence, any set of cells that contain a 8-100p will be linearly dependent. 

Therefore, the set of cells can not be a basis. 

Let ~ be a set of cells corresponding to a basis and assume that ~ contains a loop. 

As seen from theorem (2.a), the columns corresponding to ~ are linear independent. 

Thus there does not exist a nonzero linear combination ofthe column vectors that equal 
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the zero vector. Therefore, there can not be two entries in each row. This leads to a 

contradiction because a loop must contain two entries within each row that contains an 

entry of the loop .• 

We now tum to the question of finding a criterion for determining the optimality 

of a basic feasible solution. The notion of a triangular matrix is needed in order to 

achieve this. Simply put, a triangular matrix is a nonsingular square matrix that becomes 

lower triangular after an appropriate permutation of its columns and rows. 

Definition: A matrix is said to be a triangular matrix if it satisfies the following 

properties: 

1) The matrix has a row that contains exactly one nonzero entry. 

2) The submatrix, formed from the matrix by crossing out the row and the column 

that contains the nonzero entry, also satisfies property (1). This procedure can 

be repeated until all rows and columns are crossed out. 

Clearly, any matrix that satisfies the above 2 properties is a triangular matrix. Therefore, 

it can be put in lower triangUlar form by arranging the rows and columns in the order that 

was determined by the procedure listed above. 

The importance of a matrix Mbeing triangular is that the matrix equations, 

M x = d , can then be solved by backward substitution. So, if M is a triangular matrix, 

then after the reordering of the columns and the rows, the system takes the form 

M' x = d , where M' is lower triangular, and can be solved by backward substitution. 
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An important structural property of the transportation problem is given by the 

following theorem: 

Basis Triangularity Theorem (2.c). Every basis of the transportation problem is 

triangular. 

Proof Consider the transportation matrix A (2.4). Let us change the sign ofthe first half 

of the system that corresponds to the supply constraints. Then, the coefficient matrix of 

the system will have entries of + 1, 0, or -1. By theorem (2.a), one redundant equation can 

be eliminated. From the resulting matrix M, form a basis B by selecting a square 

nonsingular submatrix with m+n-l columns. 

Each column in A contains two nonzero entries including a + 1 and -1, and, 

hence, each column in B contains at most two nonzero entries also. Thus, the total 

nonzero entries of B will be at most 2(m+n-l). If every column of B contained two 

nonzero entries, the sum of all the rows in B would be 0 as seen from theorem (2.a). This 

is a contradiction to B being nonsingular. Therefore, the nonzero entries in B must be 

less than 2(m+n-l). Since B is of order (m+n-l), there must be a row with only one 

nonzero entry. This verifies the first property of a triangular matrix. A similar argument 

can be made for the submatrix created from deleting the row and column of B that 

contained the single nonzero entry; that submatrix will also have a single row with only 

one nonzero entry. This argument can be repeated, which establishes that the basis B is 

triangular .• 
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The triangularity of the basis makes it unnecessary to explicitly calculate the 

inverse of the basis B-1, in order to calculate the simplex multipliers, given by AT B = C~ • 

Therefore, for a transportation problem, because the basis is triangular, the simplex 

method at this step simplifies to solving for the simplex multipliers directly, using 

backward substitution. 

The next important step of the transportation problem is the form of the dual. 

The dual of the transportation problem is in the form of(l.4). Let A.T=(u~ vT) be 

partitioned in accordance with the natural partitioning of A. Thus uT = (UI," .,urn) and vT 

= (VI" .. ,vn)· Remembering that A has two nonzero entries in each column, which can be 

seen from (2.4), the components corresponding to Cij in the constraints /IT A ~ cT of the 

dual can be rewritten as U i + Vj ~ cij' Summarizing, the dual ofthe transportation 

problem can be rewritten as 

m n 

Maximize Z>i ui + Z)j Vj subject to U i + Vj ~ cij for i=i, .. m (2.5). 
i=1 J=I 

andj=i, .. n 

The complementary slackness condition, (c T 
- Ar A)x = 0, can also be rewritten as 

m n 

LZ)cij -u i -vj)xij = 0 (2.6). The nonbasic variables always have a value ofO. 
i=1 j=1 

Therefore to meet the complementary slackness condition, (cij -u i -v)=O for all basic 

variables. If A. T=(u~ vT) is also dual feasible, then the solution is optimal by the 

Complementary Slackness Theorem. Notice, the reduced cost coefficients 
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r ij = (Cij - U j - v j) , for the nonbasic cells xij. So again the criterion for optimality reduces 

down to whether the reduced costs are nonnegative for the nonbasic variables. 

Therefore, after an initial basic feasible solution is found for the primal, the 

simplex multipliers, 'A=(u, v) need to be computed and then tested for feasibility. From 

the primal simplex method, the multipliers are computed from solving AT B = c~. A 

column from A (2.4), that corresponds to the basic variable xij, will contain exactly two 

+ I entries, corresponding to the ith position within the top portion (sources) and to the /h 

position ofthe bottom portion (sinks). Thus, each column corresponding to the basic 

variable xij, will generate the simplex multiplier equation, Uj + Vj = cij. Remembering that 

one constraint is redundant, one ofthe multipliers can be assigned an arbitrary value. For 

simplicity, set vn=O. The set of equations Uj + Vj = Cij (for all basic variables) can now be 

solved easily by backward substitution. Notice, by solving these equations, the 

complementary slackness condition is met. 

Therefore, testing whether the simplex multiplier is dual feasible will define the 

criterion of whether the solutions are optimal. If (u,v) satisfies the inequality, 

U j + Vj :::; cij for all i and}, it is dual feasible. Since this inequality is already met for all 

basic cells (i,j), the inequality, cij - U j - v j ~ 0 for the nonbasic cells (i,j) is a necessary 

and sufficient condition for optimality. This is equivalent to calculating the reduced cost 

coefficients and if they are all nonnegative, the solution (u, v) is feasible for the dual 

problem and (u, v) and x are optimal for their respective problems. 
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Therefore, the next step in the primal transportation algorithm is to calculate the 

reduced costs, rli = Cij -Uj -vj . They only need to be calculated for the nonbasic cells 

because by design, the reduced cost for the basic cells is O. 

If the reduced cost coefficients are not all nonnegative for the basis, then a new 

basis must be constructed. First, the next theorem allows us to use the reduced cost 

coefficients from step to step instead of keeping the original cost coefficients. 

Theorem C2.d). Let r ij represent the reduced cost coefficients. Then 2>ij xij differs 
j,j 

from the objective function, ICij xij by a constant. Therefore, an optimal vector for 
j,J 

I eij xij is also an optimal vector for I rij Xij . 
W W 

= IIcij Xij - IcIxij)u j - IcIXij)Vj 
j j j 

= IIcijxij - Iaju j - IbjVj 
j 

• 

Therefore, during the calculations to solve the transportation problem, the reduced 

cost coefficients can be used to find the optimal solution. For the reason stated above, 

using the reduced cost coefficients to find an optimal solution will be helpful to show the 

solution meets the complementary slackness condition. 

Once an initial primal feasible solution is recorded in the tableau, U and v can be 

recorded in the place allocated for a and b. From the previous theorem, the reduced costs 
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can be used in place of the original cost coefficients in the rest ofthe problem. If at least 

one reduced cost coefficient is negative, a new basis needs to be defined. These 

alterations of the transportation tableau are shown in Figure (2-5). 

XlI x 12 x ln 
r ll r12 rln 

u l 

...... U2 

. ..... 

Xrnl Xrnn urn 
frnl fmn 

VI V2 ...... Vn 

The Altered Transportation Tableau 

Figure (2-5) 

Finally, we tum to the last question of how to generate a new basis when the 

current basic feasible solution is not optimal. A new criterion for finding the location of 

a variable within the transportation problem needs to be defined. Because ofthe structure 

of the tableau displayed in Figure (2-3), the sum ofthe basic variables in each row and 

each column must remain the same at each step. Using a loop that contains the entering 

variable to obtain a new basis will allow for the feasibility of the primal problem to be 

kept throughout the changes of the basis. A 8-100p will assist in changing the basis. 

Definition: A subset of cells is a 8-loop if entries of +8 and -8 are put alternately in the 

cells of the loop, such that if a row or a column contains a cell from the loop with a +8 

entry, then it also contains an entry with a-8. 

22 



A basis for the transportation problem has been shown to not contain a loop and 

also to be triangular. A collection of cells of the transportation array is a minimal 

linearly dependent set if and only if(l) it is linearly dependent and (2) no proper subset 

of it is linearly dependent. By the definition ofa 8-100p, it is clear that a 8-100p is a 

minimal linearly dependent set. The following theorem will define a criterion of how to 

find a unique 8-100p. 

8-Loop in B u {(P,q)} Theorem (2.t). Suppose B is a basic set ofm+n-l cells from the 

mxn transportation array and {(P,q)} is a nonbasic cell. Then the collection of cells 

B u {(P,q)} contains exactly one 8-100p and this 8-100p contains the nonbasic cell. 

Proof Since B is a basic set, B is linearly independent so it can not contain a 8-100p. 

Thus, ifthere is a 8-100p in B u {(P,q)} , the loop must contain {(P,q)}. Since the rank of 

A (2.1) is m+n-l, no subset ofm+n cells is linear independent. So B u {(P,q)} is linearly 

dependent. From the previous theorems, B u {(P,q)} contains at least one 8-100p. From 

Linear Algebra, a set containing a basis and exactly one nonbasic column vector contains 

a unique minimal linearly dependent set. Thus, the set of column vectors contained in the 

set B U {(P,q)}, contains exactly one 8-100p .• 

To find a 8-100p in B U {(P,q)} , place an entry of +8 in the nonbasic cell (p,q). 

Then make alternating entries of -8 and +8 among the basic cells, such that each row and 

column contains a +8 and -8 or none at all. The cells marked by +8 and -8 creates a 
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unique 8-100p. Cells marked +8 are called recipient cells and cells marked -8 are called 

donor cells. 8-100ps can be used to change the basis, which is shown in the next theorem. 

Theorem (2.g). Let B be a basis from A (ignoring one row) and let d be another column 

corresponding to a nonbasic variable which is entering the basis. The vector y=B-1 d will 

give the changes in the current basic variables when the new variable is entered. The 

components ofthe vector y=B-1 dare + 1, -lor O. 

Proof Let y be a solution to By=d. Then y is the linear combination of the basis that 

represents d. This can be solved by Cramer's rule as Yk = det(Bk ) where Bk is the matrix 
det(B) 

obtained by replacing the kth column of B by d. Since B is triangular, it may be put into 

lower triangular form with 1 's on the diagonal by a combination ofrow and column 

interchanges. Therefore det(B)= + 1 or -1. Because any square submatrix of A will only 

contain entries of 0 or 1 with a maximum of two 1 's in each column by the design ofthe 

matrix A, every determinant of any submatrix of A will have a value of + 1, -1, or 0, so 

det(Bk)= 0, +1, or-I. ThereforeYk=O, +1, or-1.+ 

The significance of the above theorem is that the current basic variables will 

change by + 1, -1, or 0 when a new variable is entered into the basis, at unit level. If the 

new variable has a value of 8, then the current basic variables will then change by +8, -8, 

or 0 corresponding to whether it is a recipient cell, donor cell, or a cell not within the 

loop, respectively. 
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Therefore, to change the basis, pick a nonbasic variable (xp,q) corresponding to a 

negative cost coefficient (usually the most negative) to enter the basis. Find the unique 

8-100p in the set B u {(P,q)}. Place a +8 in the cell (p,q) and the entries -8 and +8 

alternatively among the cells within the loop. Let x represent the current basic feasible 

solution. Therefore, the values of the new basic feasible solution is XiJ = xij + 8 , xij - 8, 

or xij' depending on whether (i,j) is a recipient cell, a donor cell, or a cell not within the 

loop, respectively and xpq=8. All other nonbasic variables have a value of zero. 

All of the values within the vector x must remain nonnegative so that the 

solution remains feasible at every step. By choosing 8 by the minimum ratio rule, 

8 = min { xrs ; (r,s) a donor cell}, x will always remain feasible. Therefore, 8 is 

determined at each step so that the primal feasibility of x is always retained. The donor 

cell from which 8 is attained, is the cell that is leaving the basis. If more than one donor 

cell meets this criterion, one is arbitrarily chosen and is replaced in the basis by the cell 

(p,q). Because 8 ~ 0, the objective function at each step will at most be equal to the 

previous system. The objective function at each step will be z( x )+rpq8. This can be seen 

by looking at the value of the objective function at two consecutive steps. At the first 

step, 

z(X)= LCij xij = LLrij xij + Lai ui + Lbj Vj 
i j 

with the value ofrij equal to ° for the current basic variables and the value of xij equal to 

° for the nonbasic variables. Therefore, the objective function has a value of 

z(X)= Laiui + Lbjvj . 
i j 
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The objective function corresponding to the new basic feasible solution is 

z(x)= LLrij Xij + Lai U i + Lb j Vj = rpq Xpq + Lai U i + Lb j Vj 
i j i j 

because the only value changed from the previous objective function, that was not 

multiplied by 0, is Xp,q= 8. Therefore, the objective function differs by rpqXpq where xpq=8 

from the previous step. 

Therefore, to summarize the transportation algorithm: 

1) Compute an initial basic feasible solution. 

2) Compute the simplex multipliers and the reduced cost coefficients. If all 

reduced cost coefficients are nonnegative, stop; the solution is optimal. 

Otherwise, go to 3. 

3) Select a nonbasic variable corresponding to a negative reduced cost 

coefficient to enter the basis. Find the unique 8-100p and update the solution. 

Go back to 2. 

The following is an example that illustrates the transportation algorithm in tableau form: 

2 3 2 20 

2 2 2 15 

4 1 4 25 

10 30 20 

1) Find initial basic feasible solution to the primal. We used the Northwest Comer Rule. 

10 10 
2 3 2 20 

15 
2 2 2 15 

5 20 
4 1 4 25 
10 30 20 

26 



2) Find the simplex multipliers (put in place of a,b). 

10 10 
2 3 2 uI=6 

15 
2 2 2 U2= 5 

5 20 
4 1 4 u3=4 

VI =-4 V2= -3 V3= 0 

3) Find the reduced cost coefficients (put them in place of cost coefficients). 

10 10 
0 0 -4 6 

15 
1 0 -3 5 

5 20 
4 0 0 4 

-4 -3 0 

4) Select the most negative cost coefficient. Find the 8-loop containing this. Select Xu 

as nonbasic variable entering the basis. 

10 (10-10 10(+10 
0 0 -4 6 

15 
1 0 -3 5 

15(5+10 10(20-10 
4 0 0 4 

-4 -3 0 

5) Find the simplex multipliers. 

10 10 
0 0 -4 UI =-4 

15 
1 0 -3 U2=O 

15 10 
4 0 0 U3= 0 

vI=4 V2= 0 V3= 0 
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6) Find the reduced cost coefficients. 

10 10 
0 4 0 -4 

15 
-3 0 -3 0 

15 10 
0 0 0 0 

4 0 0 

7) Select the most negative cost coefficient. Find the 8-loop. Select X2,3. 

10 10 
0 4 0 -4 

5(15-10 10(+10 
-3 0 -3 0 

25(15+10 (10-10 

0 0 0 0 

4 0 0 

8) Find the simplex multipliers. 

10 10 
0 4 0 U1=O 

5 10 
-3 0 -3 U2= -3 

25 
0 0 0 U3= -3 

V1=O V2= 3 V3= 0 

9) Find the reduced cost coefficients. 

10 10 
0 1 0 0 

5 10 
0 0 0 -3 

25 
3 0 3 -3 

0 3 0 

This solution is optimal because all reduced cost coefficients are nonnegative. 
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Chapter 3 

LABELING METHODS IN THE PRIMAL TRANSPORTATION ALGORITHM 

Although the transportation algorithm described in chapter 2 is an efficient 

specialization of the simplex method, it is obviously ineffective when dealing with larger 

problems. Larger problems clearly involve a tremendous amount of data, and keeping 

track of all the data could be quite difficult. A good example of that is the step of finding 

the 8-100p, where it is obvious that some kind of a "map" is needed to navigate the 

transportation tableau. 

There is an effective labeling method used to keep track of the basis, which is 

quite efficient when dealing with larger problems. This method uses graph theory to 

label the m sources and n destinations creating a directed graph. This method is very 

useful in the computer implementation of the problem. In order to explain the use of this 

method, some background in graph theory must be given. 

A graph G=(N,A) is a pair of sets including a set N of points or nodes (or 

vertices) and a set of lines, A , called edges or arcs, with each edge joining a pair of 

distinct points in N. The edge denoted by (i;j) is the edge connecting node i to node j. 

There is at most one edge between two nodes and every edge contains exactly two points 

of N. A directed graph is a graph where every arc has a specific direction. A path is a 
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sequence of distinct arcs that join two nodes. The length of the path is defined to be 

equal to the number of edges in the sequence. A simple path is a path where every node 

along the path appears in the sequence only once. A cycle is a path between a node and 

itself that contains at least two nodes and a simple cycle is a cycle where each node 

appears only once within the cycle. A graph G is a connected graph if there exists a 

path in G between any two of its vertices and is disconnected otherwise. A connected 

graph that contains no cycles, is a tree. Therefore a unique path joins every two distinct 

points within a tree. A terminal node within a tree is a node where there is exactly one 

edge in A incident at it. 

The tree associated with a basis for the transportation tableau is constructed as 

follows: let the sources 1,2, .. . ,m be represented by the nodes with serial numbers 

1,2 ... ,m, and let the sinks 1,2, .. . ,n be represented by the nodes with serial numbers 

m+ 1, .. . m+n. Therefore, N= {I, ... ,m,m+ 1, .. .. m +n} and if a cell (iJ) in the transportation 

array is basic, then there is a corresponding edge (i;}+m) in the graph. For a subset L1 

ofa basis B, the set of corresponding edges can be denoted by At,={{iJ+m):cell (iJ) EL1}. 

The graph associated with the subset is then Gt,=(N,At,). 

To construct the tree, let node m+n be the root of the tree. The following 

procedure is repeated until all of the nodes in N are included in the tree: Include in the 

tree all points i EN that have not been included yet, satisfying (iJ) EAt, for some} with the 

property that} is a point included in the graph at the previous stage. 

It follows from the above that the immediate descendants of m+n are the row 

indices i where xin is a basic variable ofthe current solution, i.e. cell (i,n) is a basic cell. 
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Thus, the immediate descendants of the root, m+n are the sources for which a shipping 

route to sink n exists. 

Because these edges within the rooted tree link sources to sinks and vice versa, 

this graph is directed. All points included in the tree during an even numbered stage are 

associated with rows ofthe transportation array (sources) and all points included in the 

tree during an odd numbered stage are associated with columns of the transportation 

array (sinks). Therefore at each step the direction alternates so that the arc is pointing 

from a source to a sink. A basic cell in the transportation array always corresponds to an 

edge between two nodes, the absence of an edge being equivalent to a cell being 

nonbasic. 

The following example illustrates the correspondence between a basis and the tree 

describing it. 

x x 1 

x x 2 

x x x 3 

x x 4 

5 6 7 8 9 10 

This tableau has an x entered in each basic cell, with the rightmost column corresponding 

to the serial number labeling the rows and the last row corresponding to the serial number 

labeling the columns. 
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The tree that corresponds to this basis is depicted in Figure (3-1). 

An Example of a Rooted Tree 

Figure (3-1) 

A set of arrays is needed for the explicit storage of the infonnation needed to 

describe a tree. Below is a description of the four arrays needed to achieve that goal. 
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Choose node m+n as the root, then detennine all the row indices i such that 

(m+n ; i) is an arc within the tree. Each such i is called a immediate successor (or child) 

of m+n, and m+n is the predecessor of each such node. Predecessors and immediate 

successors of other nodes are defined similarly. The notation for the predecessor index of 

node} is P(j). If a node is a source, the predecessor index will be the serial number of a 

sink and vice versa. If a node does not have a unique immediate successor, these 

successors are considered brothers of each other, which are identified as a sequence 

ranging from eldest to youngest. Designate the successor index of a node to be the eldest 

son. Thus, for example if the younger brothers of node} are {h,j2' j3' ... ' jr}, then 

designate S(j)= j! and the younger brother of jt to be jt+! for 1::;; t ::;; r-l, denoted as 

YB(jJ=jt+!. The elder brother index is now self-explanatory. The notation for the elder 

brother of} is EB(j) and for the previous example, EB(jt+!)=jt for 1::;; t ::;; r-I. If one of the 

relationships does not exist for a certain node, the corresponding value is set to 0. For 

example, for the root m+n, P(m+n)=O, YB(m+n)=O, and EB(m+n)=O. Also for any 

tenninal node j, S(j)=O. 

The set of younger brothers of} is the union of {YB(j)} and the set of younger 

brothers ofYB(j). The set of immediate successors of a point} if S(j)*0 is the union of 

{S(j)} and the set of the set of younger brothers of S(j). The descendants of i is the union 

of the set of immediate successors of i and the sets of all descendants of} as} ranges over 

the set of immediate successors of i. If i is a tenninal node, then the set of immediate 

successors and descendents will be empty. 
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The predecessor, successor, younger brother, and the elder brother indices help 

label the basis and are needed to alter the tree when a new basis is to be created. 

Continuing with the previous example, the indices for the nodes obtained from the 

current basis are as follows: 

Nodes I 2 3 4 5 6 7 8 9 10 

IPredecessor 10 6 5 5 I 3 3 4 2 0 

Successor 5 9 6 8 3 2 0 0 0 I 

Younger Brother 0 0 4 0 0 7 0 0 0 0 

Elder Brother 0 0 0 3 0 0 6 0 0 0 

Example of the Indices corresponding to a Rooted Tree 

Figure (3-2) 

Now we address the procedure of how to change a basis while using a tree as the 

labeling method. The results of the following theorems are used to find a a-loop within 

the tree. 

Theorem (3.a). Let io and i. be a pair of points on a tree G. Then there exists a unique 

simple path in G from io to i •. 

Proof G is a tree so it is connected. Therefore there exists at least one path from io to i •. 

If more than one path exists then combining these paths would create a cycle from io to io. 

This contradicts the assumption of G being a tree .• 
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In the discussion below, L1 denotes a subset of cells. 

Simple Cycles and 9-loops Theorem (3.b). Every 9-100p in L1 corresponds to a simple 

cycle in G t!,. and vice versa. 

Proof This follows from the definition of a loop and a simple cycle .• 

Therefore L1 contains a 9-100p iff there is a simple cycle in Gt!,.. If At!,. contains m+n-I 

edges, which is equivalent to a basis for the transportation array, it follows that Gt!,. is a 

tree and therefore contains no cycles. This is equivalent to saying the tree contains no 9-

loops, which has already been proven for any basis of a transportation problem. Thus, L1 

is a basis for the transportation array iff Gt!,.=(N,At!,.) is a tree. 

The simple path between a point i and the root m+n is referred to as the 

predecessor path of node i in GB (defined by the basis B) because only the predecessor 

indices are used. 

Definition: A simple path between a point and the root can be defined as follows: 

1) The edge (i;P(i)) is the first edge in the path. IfP(i) is the root node, terminate. 

Otherwise pick P(i) as the current point}. 

2) (j;P(j)) is the next edge in the path. 

3) IfP(j) is the root node, terminate. Otherwise, change the current point to P(j) 

and return to step 2. 

Let B be the basic set of cells for the transportation array and let (p,q) be the 

nonbasic cell being introduced into the basis. The unique 9-100p in B u {(P,q)} can be 

determined by the predecessor indices. The cell (p,q) corresponds to the emerging edge 
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(p;m+q) within the modified tree of the current graph GB. The 8-100p corresponds to the 

simple cycle created when the edge (p;m+q) is included in graph, (N.ABU {(p;m+q)}). 

To find the simple cycle, the unique simple path from m+q to the root node as 

well as the unique simple path from p to the root node needs to be found. Eliminate all 

common edges between these two simple paths. The last common point of these two 

paths is known as the apex of the simple cycle. Combine what is left from both cycles to 

create the simple cycle. When i is a node corresponding to a row index, the edges (i,j) in 

this simple cycle correspond to the cells (ij-m) from the transportation array in the 8-

loop. Therefore once this simple cycle is found, the new basic feasible solution is formed 

by adding +8 and -8 as described in chapter 2 and dropping one basic cell from the basis. 

Assume the dropping cell is (r,s). Then the graph ofthe new basis B', GB " is obtained 

from the graph GB by deleting the edge (r;m+s) and adding the edge (p;m+q). 

To illustrate the modification of a tree, consider the example discussed earlier in 

this chapter. Let the variable (3,6) be the variable selected to enter the basis and the 

variable (3, I) be the variable leaving the basis (the dotted lines correspond to the loop). 

The new tableau corresponding to this change is as follows: 

x - ------- ------ ------- ------ x 1 
I 

X x 2 

x x x 3 
--- ------- ------- ------- ------- - --

x x 4 

5 6 7 8 9 10 
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The modifying ofthe tree in Figure (3-2) corresponding to this new basis is as 

follows: 

o 
I 
I 

I 
I 

I 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 
I 

I 
I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 

I 
I 

Example of Dropping and Entering Edge ofa Tree 

Figure (3-3) 

The dashed line represents the entering edge and the edge that is slashed represents the 

edge that is being removed. 
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Figure (3-4) displays the modified tree that fits the new basis. 

Example of a Modified Tree 

Figure (3-4) 

38 



Chapter 4 

SOME IMPLEMENTATION DETAILS 

The computer program used to solve the transportation problem essentially 

follows the steps of the transportation algorithm outlined in the previous chapters. In this 

chapter, we outline some ofthe implementation details. Not all the subroutines will be 

discussed because there is extensive documentation within the program. 

The sparsity of the transportation array, x, is an obvious problem that needs to be 

addressed; Only m +n-l entries can be nonzero while x contains mn entries. In this 

program, a special method was used to store this matrix. The m+n-l basic variables are 

stored in a linear array X. Thus, X(l), X(2), ... , X(m+n-l) will always contain the basic 

variables, arranged by rows. In the vector ROW, the ith entry contains the location in X 

of the first basic entry from the ith row forI$; i$; n, and in the vector COL, the /h entry 

contains the column index of the basic variables XU) for l$;j$; m+n-l. This allows the 

program to store the basic feasible solutions more efficiently, since the rest ofthe values 

within the matrix x are O. This method of storage does complicate the program, but the 

memory space saved by this method far out weighs the expense of adding these pieces. 

39 



The following is an example of how the basis is stored. 

1 4 

3 2 

6 8 7 

9 12 

I 1 2 3 4 5 6 7 8 9 
X 1 4 3 2 6 8 7 9 12 

Column 1 6 2 5 1 2 3 1 4 

I 1 2 3 4 

Row 1 3 5 8 

For example, if we want to find the value ofthe basic variable xij' the entries 

COL(k) should be scanned for Row(i)::; k::; ROW(i+ 1 )-1, until COL(k)=). Subroutine 

FIND performs this task and can be found on page 61. It will output the index value of 

where the basic variable is located within X. 

The first step of this program is to find an initial basic feasible solution to the 

primal. This is done using the Northwest Comer Rule and is performed by the subroutine 

NW, found on page 54. The design of this method makes it easier to program than other 

methods. The entries of COL(j) and X(j) are recorded at each step in the order in which 

the basic variables are allocated, while the value ofthe ith entry in ROW(i) is assigned) 

when the first entry of the ith row is assigned. The program will print a statement 

signaling that the problem is degenerate, if a value of 0 is assigned to any of the basic 
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variables. Once the initial basic feasible solution is found, the initial cost is calculated 

and stored. As discussed earlier, when a new basic feasible solution is found, adding the 

reduced cost of the entering variable multiplied by 8 gives the cost ofthe new solution. 

An important step of this algorithm is to determine if the solution obtained is 

optimal. This is where the computer algorithm differs from the hand calculation 

algorithm. Trees need to be introduced so that a 8-100p can be determined easily. The 

initial rooted tree is created using the subroutine TREE located on page 56 and 57. The 

predecessor, successor, younger brother, and elder brother indices of each node (j= 1 to 

m+n-l) are saved in the following vectors respectively: PRED(j), SUCC(j), YB(j), and 

EB(j). The successor index saves the serial number of the eldest son. The younger 

brother index saves the serial number of the eldest among the set of younger brothers and 

the eldest brother index saves the serial number of the youngest among the set of the 

eldest brothers. In order to keep track of which nodes have been labeled so far, a vector 

SLIST is used. SLIST is initially set so that the ilh entry equals i, for i=l to m+n-l. 

Once a node has been labeled, the entry corresponding to its serial number in SLIST is 

changed to o. The vector NODE is used to store the nodes, which need to be processed at 

a later stage. The value of the variable KOUNTER is the number of the node currently 

being processed. 

If KOUNTER is a source node, then the column indices associated with the 

successors of KOUNTER are known because of the way that X is stored. If the node 

corresponding to the column has not already been processed, its predecessor index is 

defined to be equal to the KOUNTER. If there is more than one column that corresponds 

to this row and they have not been processed yet, these will be brothers, letting the eldest 
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brother correspond to the first column obtained and the youngest brother correspond to 

the last. The same process is carried out if KOUNTER corresponds with a column index, 

except that the location of the row indices, corresponding to the basic cells in that 

column, must be determined. This process is repeated until each node is labeled. If a 

node does not have one of these indices, it is labeled as a O. 

The first step of the main loop of this program is to determine if all reduced costs 

are positive, and, if not, to determine the entering variable into the basis. This is done by 

the subroutine NEWBAS, which is located on page 58. NEWBAS is designed to pick 

the new variable to enter the basis using the modified row first negative method. This 

method was used because a study published in "Management Science" in 1974 showed 

that this method was most efficient, taking into consideration the time it takes to find the 

pivot variable, the average time per pivot, and the total pivot time (Glover, pg. 801). 

Modified Row First Negative Method finds the first row with a negative cost coefficient 

and then scans the rest of that row for any smaller reduced cost, saving the smallest. It 

saves the row index of the variable entering the basis as NBR, and the column index of 

the variable entering the basis as NBC. If all reduced costs are nonnegative, this solution 

is optimal, and the program terminates. If not, the program will print the iteration 

number and what variable is entering the basis. 

The next step in the main iteration loop is to find the 8-loop using the rooted tree. 

This is done within the subroutine QLOOP on page 59 and 60. In order to do this, the 

simple path from P= NBR to the root and the simple path from Q= NBC+m to the root 

must be found. These simple paths are found by starting with P or Q, and moving up the 

tree using the predecessor indices until the root is reached (saving the nodes along the 
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path). PPATH has a designated first entry ofNER and the rest of the entries correspond 

to the nodes contained in the simple path between P= NER and the root. QP ATH' s first 

two entries correspond to NBR and NBC+m, respectively. After these first two entries, 

the nodes in the simple path between Q = NBC+m and the root are stored, with the last 

entry being the root. After these two paths are determined, they are combined within 

QP ATH, eliminating any duplicated nodes contained within each path except for the 

APEX of this cycle. At the end of this subroutine, QP ATH contains the simple cycle 

from P=NBR to Q = NBC and PPATH contains the simple path from P = NBR to the 

APEX. 

Now that the e-Ioop has been found and stored within QPATH, the value ofe 

must be determined, and X must be modified. The subroutine MODFYX on page 62 and 

63, performs these operations. In this subroutine, lIN = NBR and JIN = NBC. The first 

step of determining the value of e is to determine the donor and the recipient cells. 

Because of the way QP ATH was constructed and because the tree is a directed graph, the 

nodes will correspond alternately to a row and a column index, allowing the variables 

corresponding to the basis to easily be determined. The first two entries within QP ATH 

were defined so that they would correspond to the row and the column of the variable 

entering the basis. Starting with the third entry, the first basic variable ofthe loop is equal 

to X(QPATH(3), QPATH(2)-m), and corresponds to a donor cell. For i=3 and 

subsequent odd indices to the end of the array, the next two basic variables are X( 

QPATH(i), QPATH(i+ l)-m), corresponding to a recipient cell and X(QPATH(i+2), 

QPATH(i+l)-m), corresponding to a donor cell. With the row and column indices 

known, each basic variable must be found within the X vector using the FIND subroutine. 
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Once it is found, the location of where it is located within COL and X is saved within 

LIST. The minimum value of X for donor cell is saved as THETA, and the row index as 

lOUT, the column index as lOUT, and the location of where the cell is within X as 

IDROP. Then THETA is subtracted from the donor cells and added to the recipient cells, 

which can be done easily because the location of each cell was saved within LIST 

(alternating donor and recipient). 

Now the variable leaving the basis must be removed from X and the entering 

variable must be added. Because of the way that the basic variables were saved in X, it 

must be decided if the row of the cell entering is greater than the row ofthe cell that is 

leaving. The entering variable will be listed at the beginning of the section of COL and 

X, corresponding to its row. If lIN> lOUT, the indices in COL and X need to be 

shifted to the left. Otherwise, the indices in COL and X need to be shifted to the right. 

The indices are only altered between the rows of the entering and the leaving variables. 

Once the X values have been modified, RLEFT is given the value of the row and 

CLEFT is given the value of the column of the variable leaving the basis. The rest of the 

program is well documented in the following chapter. 
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Chapter 5 

FORTRAN CODE FOR THE TRANSPORTATION PROBLEM 

!*********************************************************************************************** 

!OPTRAN IS A PROGRAM THAT CALCULATES THE OPTIMAL SOLUTION FOR A 
!TRANSPORTATION PROBLEM 
!************************************************************************************* 

PROGRAM OPTTRAN 
PARAMETER (M=l OOO,N=1000) 
INTEGER A(M), B(N), C(M,N), X(M+N-l), U(M), V(N), THETA, COST 
INTEGER ROW(M+l), COL(M+N-l), RLEFT, CLEFT, RROW, ROOT 
INTEGER PRED(M+N), SUCC(M+N), EB(M+N), YB(M+N), 
INTEGER NINJC(N), NINJR(M), RINJS(M), CINJS(N) 
INTEGER DESJSTAR(M+N), ALPHA, NDESJSTAR(M+N) 
INTEGER QPATH(M+N+l), PPATH(M+N+l), JPATH(M+N), RED COST 
REAL A VLENDJ 

X=O 
ROW=O 
COL=O 
U=O 
V=O 
NBR=O 
NBC=O 
KSTOP=l 
COST=O 
ROW(M+l)=M+N 

!************************************************************************************* 
!CALCULATING A COST MATRIX, A,B FOR A TEST PROBLEM WHICH CREATES THE 
!OPTIMAL SOLUTION TO BE CREATED BY THE SOUTHEAST CORNER RULE 

M= # OF SOURCES 
N= #OFSINKS 
C= COST MATRIX 
A= V ALUE AVAILABLE FROM SOURCE 
B= VALUE NEEDED AT SINK 

!************************************************************************************* 

CALL CREATE(M,N,C,A,B) 
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!************************************************************************************* 
! CALCULATING THE INITIAL BASIC FEASIBLE SOLUTION FOR THE TRANSPORTATION 
!METHOD USING THE NORTHWEST CORNER RULE 

ROW =TELLS WHERE THE FIRST ENTRY FROM ROW I IS STORED AT 
WITIDN X AND COL 

COL =CURRENT COLUMN VALUE OF THE BASIC CELLS 
X =V ALUE SENT FROM SOURCE I TO SINK J 

COST=TOTAL COST OF SHIPMENT WITH THE BFS 
!************************************************************************************* 

CALL NW(X,A,B,ROW,COL,M,N) 

K=l 

DO I=l,M+N-l 
IF (ROW(K) == I) THEN 

RROW=K 
K=K+l 

END IF 
COST=COST +C(RROW,COL(I»*X(I) 

END DO 

!************************************************************************************* 
!CALCULATE THE INITIAL DUAL V ARIABLES(U,V) WHEN USING THE NWC RULE TO 
!FIND A BFS SOLVING THE EQUATION C(I,J)=U(I)+V(J) FOR ALL BASIC CELLS 

SET V(N)=O SO U(M)=C(M,N) 
!************************************************************************************* 

CALL DUAL(M,N,U,V,C,COL) 

!************************************************************************************* 
!COMPUTING THE INITIAL REDUCED COST COEFFICIENTS AND SAVING THEM IN 
!THE COST MATRlX-C 
!************************************************************************************* 

DO I=l,M 
DO J=l,N 

C(I,J)=C(I,J)-U (1)-V (J) 
END DO 

END DO 

!************************************************************************************* 
!CREATING A ROOTED TREE wmCH WILL ALLOW FOR A 8-LOOP TO BE PICKED 

PRED=PREDECESSORINDICES 
SUCC=SUCCESSOR INDICES (SERIAL #OF THE ELDEST SON) 
YB=YOUNG BROTHER INDICES 

(SERIAL #OF THE ELDEST AMONG THE SET OF YOUNGER BROTHERS) 
EB=ELDER BROTHER INDICES 

(SERIAL #OF THE YOUNGEST AMONG THE SET OF ELDEST BROTHERS) 
(YOUNGEST= RIGHTMOST NODE OF THE TREE ON THAT LEVEL) 

!************************************************************************************* 

CALL TREE(PRED,SUCC,YB, EB, M, N, ROW, COL) 
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!************************************************************************************* 
!START OF LOOP TO FIND OPTIMAL SOLUTIONHAVE BASIC FEASIBLE SOLN, 

NEED DUAL TO ALSO BE FEASIBLE SO NEED ALL REDUCED COSTS> 0 
KOUNT=KEEPS TRACK OF HOW MANY ITERATIONS 
KSTOP=WHEN ALL RC>O TillS IS SET TO 0 SO THAT IT EXITS LOOP 

!************************************************************************************* 

KOUNT=1 

DO WHILE (KSTOP = 1) !BEGINNING OF LARGE LOOP 

!************************************************************************************* 
!PICKING THE NEW VARIABLE TO ENTER THE BASIS USING MODIFIED ROW FIRST 
!NEGATIVE METHOD. TillS METHOD FINDS THE FIRST ROW WITH A NEG REDUCED 
!COST COEFFICIENT AND THEN SCANS THE REST OF THAT ROW FOR ANY OTHER RC 
!WHICH IS MORE NEGATIVE. 

NBR= ROW OF VARIABLE ENTERING THE BASIS 
NBC= COLUMN OF VARIABLE ENTERING THE BASIS 

!************************************************************************************* 

CALL NEWBAS(M,N,C,NBR,NBC,KSTOP) 

IF (KSTOP = 0) THEN 
GO TO 1000 

END IF 

!EXIT LOOP IF OPTIMAL 

PRINT *, 'AT ITERA TION',KOUNT " THE ENTERING VARIABLE INTO THE BASIS IS' 
PRINT *, 'XC, NBR, NBC,')' 

!************************************************************************************* 
!THIS FINDS THE 8-LOOP USING THE ROOTED TREE WITH THE NONBASIC 
!CELL(P,Q)=(NBR,NBC) TO ENTER THE BASIS. IN ORDER TO DO THIS -THE SIMPLE 
!PATH FROM P TO THE ROOT(M+N) AND THE SIMPLE PATH FROM Q(M+Q) TO THE 
!ROOT MUST BE FOUND. THEN WE COMBINE THESE TWO PATHS ELIMINATING ANY 
!DUPLICATES, LEAVING ONLY ONE DUPLICATE, WHICH IS THE APEX. 

QPATH= SIMPLE PATH FROM Q TO THE ROOT 
AT END- SIMPLE CYCLE FROM P TO Q 

LENQ= LENGTH OF QPATH 
PPATH= SIMPLE PATH FROM P TO ROOT 

AT END- SIMPLE PATH FROM P TO APEX 
LENP= LENGTH OF PATHOFP 

!************************************************************************************* 

CALL QLOOP(NBR,NBC,QPATH,M,N,PRED,LENQ,LENP,PPA TH) 
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!************************************************************************************* 
!THIS CHANGES THE VALUE OF X (THE BASIS) - ADD e TO RECIPIENT CELLS AND 
!SUBTRACT e FROM THE DONOR CELLS. CHANGE THE NONBASIC TO A BASIC CELL. 

IDROP= POSITION OF THE BASIC CELL WHICH IS LEAVING THE BASIS 
RLEFT=ROW INDEX OF CELL LEAVING THE BASIC FEASIBLE SOLN 
CLEFT=COLUMN INDEX OF CELL LEAVING THE BASIC FEASIBLE SOLN 
THETA= VALUE OF NEW BASIC CELL/OLD BASIC CELL 

!************************************************************************************* 

CALL MODFYX(QP A TH,LENQ,M,N,X,ROW,COL,IOUT,IDROP,JOUT, THETA) 
CLEFT=JOUT 
RLEFT=IOUT 

PRINT *, 'THETA=', THETA 

!************************************************************************************* 
!THIS IS THE BEGINNING OF UPDATING THE ROOTED TREE 

RINJS= THE ROW INDICES CONTAINED AS A DESCENDANT OF J* 
CINJS= THE COLUMN INDICES CONTAINED AS A DESCENDANT OF J* 
LENR=LENGTH OF RINJS 
LENC=LENGTH OF CINJS 
(I1;Jl) IS THE EDGE THAT IS ADDED 
(I2;JSTAR) IS THE EDGE THAT IS LEAVING 
I2=PRED(JSTAR) 
ALPHA= USED LATER FOR CHANGING RC COEFFICIENTS 
KTESTER=KEEPS TRACK OF IF 12,J* ARE ON PPATH TO THE APEX 

!************************************************************************************* 

RINJS=O 
CINJS=O 
LENC=O 
LENR=O 

IF (PRED(RLEFT) = CLEFT+M) THEN 
JSTAR=RLEFT 
I2=CLEFT+M 
RINJS(1)=JSTAR 
LENR=1 

ELSE 
JSTAR=CLEFT+M 
I2=RLEFT 
CINJS(l)=JSTAR-M 
LENC=1 

END IF 

KTESTER=O 
IV=1 
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!TESTING WHICH PATH THE EDGE THAT IS LEAVING IS ON 
DO WHILE (KTESTER < 2 .AND. IV < LENP+ 1) 

IF(RLEFT == PPATH(IV) .OR. CLEFT+M = PPATH(IV» THEN 
KTESTER = KTESTER + 1 

END IF 
IV=IV+l 

END DO 

IF (KTESTER = 2) THEN 
Jl=NBR 
I1=NBC+M 
ALPHA=-l 

ELSE 
Jl=NBC+M 
I1=NBR 
ALPHA=l 

END IF 

!************************************************************************************* 
!DETERMINING THE SIMPLE PATH FROM Jl TO J* 

JPATH= ARRAY THAT DETERMINES THE SIMPLE PATH FROM Jl TO JSTAR 
JPATHLEN= COUNTER FOR LENGTH OF JMAT 

!************************************************************************************* 

JPATH=O 
JPATH(l)=Jl 

IF (Jl = JSTAR) THEN 
KTESTER=O 
JPATHLEN=l 

ELSE 
KTESTER=l 
JPATHLEN=2 

END IF 

DO WHILE (KTESTER = 1) 
JPATH(JPATHLEN) = PRED(JPATH(JPATHLEN-l» 

IF (JPATH(JPATHLEN) == JSTAR) THEN 
KTESTER=O 

ELSE 
JP ATHLEN=JP A THLEN+ 1 

END IF 
END DO 

!IF Jl=JSTAR,IT DOESN'T 
! GO INTO THE LOOP 

!WHEN JSTAR IS REACHED, 
! KTESTER=O 

!************************************************************************************* 
!CALCULATING THE DESCENDANTS OF JSTAR AND THE ROW AND COLUMN INDICES 
!WITHIN THIS WILL BE USED TO UPDATE THE REDUCED COSTS 

DESJST AR= SAVES INDICES ARE DESCENDANTS OF JST AR 
LENDJ=LENGTH OF DESJST AR 
RINJS=ROWS THAT ARE DESCENDANTS OF JSTAR 
CINJS=COLS THAT ARE DESCENDANTS OF JSTAR 

!************************************************************************************* 

CALL DESCEND(SUCC,DESJSTAR,YB,M,N,JSTAR,LENDJ,RINJS,CINJS,LENR,LENC) 
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!************************************************************************************* 
!NEED TO CUT THE PIECE IN THE TREE WHICH IS LEAVING. THIS ALTERS THE TREE 
!BY CUTTING IT INTO 2 SEPARATE TREES-

1 CONTAINING DESCENDANTS OF JSTAR, 
THE OTHER CONTAINING THE REST OF THE TREE 

!THE SUCCESSOR INDEX OF I2=PRED(JSTAR) ALSO IS CHANGED 
!************************************************************************************* 

IP=PRED(JSTAR) 
IE=EB(JSTAR) 
IY=YB(JSTAR) 
EB(JSTAR)=O 
YB(JSTAR)=O 
PRED(JST AR)=O 

IF(IE = 0) THEN 
IF(IY /= 0 ) THEN 

EB(IY) = 0 
SUCC(IP)=IY 

ELSE 
SUCC(IP)=O 

END IF 

ELSE 
IF (IY /= 0) THEN 

EB(IY)=IE 
YB(IE)=IY 

ELSE 
YB(IE)=O 

END IF 
END IF 

!(lE=O,IY /=0) 

!(lE=O,IY=O) 

!(IE/=O,JY/=O) 

!(IE/=O,JY=O) 

!************************************************************************************* 
!CALCULATING THE ROW AND COLUMNS INDICES WHICH ARE NOT DESCENDANTS 
!OF JSTAR. THIS WILL BE USED TO UPDATE THE REDUCED COSTS. 

ROOT=ROOT OF TREE 
NDESJSTAR= INDICES THAT ARE NOT DESCENDANTS OF JSTAR 
LENNDJ=LENGTH OF NDESJSTAR 
NINJR=ROWS THAT ARE NOT DESCENDANTS OF JSTAR 
KKl= LENGTH OF NINJR 
NINJC=COLS THAT ARE NOT DESCENDANTS OF JSTAR 
KK2= LENGTH OF NINJC 

!************************************************************************************* 

NINJR=O 
NINJC=O 
KK2=1 
KKl=O 
ROOT=M+N 
NINJC(l)=N 

CALL DESCEND(SUCC,NDESJSTAR,YB,M,N,ROOT,LENNDJ,NINJR,NINJC,KKl,KK2) 
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!************************************************************************************* 
! UPDATE THE RELATIVE COST COEFFICIENTS 

ALPHA= 1 IF It IS A NODE CORRESPONDING TO A ROW IN THE 
=-1 IF OTHERWISE TRANSPORTATION ARRAY 

REDCOST=REDUCED COST OF THE ENTERING CELL 
!************************************************************************************* 

REDCOST=C(NBR,NBC) 

CALL UPDA TE(ALPHA,M,N,REDCOST,C,RINJS,CINJS,LENR,LENC,NINJR,NINJC,KK1 ,KK2) 

!************************************************************************************* 
! UPDATE THE TREE BY REBIDLDING JPATH AND It 
!************************************************************************************* 

CALL UPTREE(M,N,PRED,SUCC,YB,EB,JP A TH,JP A THLEN,n ,I1,JSTAR) 

!************************************************************************************* 
!THIS CALCULATES THE COST OF THE SIDPPING WHERE C= COST MATRIX 

COST=COST+THETA*C(NBR,NBC) 
!************************************************************************************* 

COST=COST+THETA*REDCOST 

KOUNT=KOUNT + 1 
PRINT *, "COST=", COST 

END DO !END OF LARGE LOOP 

!TESTS TO SEE IF CORRECT ANSWER FOR THE CREATED TEST PROBLEM 
1000 ICOST=O 

DO J=1,M+N-1 
ICOST= ICOST+J*(M+N-J) !CALCULATING COST FOR TEST PROBLEM 

END DO 

!SWITCIDNG COL IN ORDER WI RESPECT TO ROW (USED TO SEE IF X IS CORRECT) 
KK=1 
DO I=l,M 

IF (COL(ROW(I)) < COL(ROW(I)+l» THEN 
nCOL=COL(ROW(l)) 
JJX=X(ROW(l)) 
COL(ROW(I))=COL(ROW(I)+ 1) 
COL(ROW(I)+ 1)= nCOL 
X(ROW(l))=X(ROW(I)+ 1) 
X(ROW(I)+1)=JJX 

END IF 
!SUBTRACT VALUE FROM X THAT IT SHOULD HAVE 
X(ROW(I))=X(ROW(I))-KK 
X(ROW(I)+ l)=X(ROW(I)+ l)-KK-l 
KK=KK+2 

END DO 
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!SUM THE X VALUES AND SHOULD GET ZERO FOR TIDS TEST PROBLEM 
IX=O 

STOP 
END 

DO I=l,M+N-l 
IX=IX+X(I) 

END DO 

PRINT *, 'IX=', IX 
PRINT *, 'OPTIMAL COST SHOULD BE " ICOST 
PRINT *, 'OPTIMAL COST AT ITERATION', KOUNT, 'IS', COST 
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!************************************************************************************* 
!CREATING A COST MATRIX, A,B FOR A TEST PROBLEM WHICH CREATES THE 
!OPTIMAL SOLUTION TO BE CREATED BY THE SOUTHEAST CORNER RULE 

M=N AND HAVE TO BE EVEN 
M= # OF SOURCES 
N=# OF SINKS 
C=COST MATRIX 
A= VALUE AVAILABLE FROM SOURCE 
B= VALUE NEEDED AT SINK 

!************************************************************************************* 

SUBROUTINE CREATE(M,N,C,A,B) 
INTEGER C(M,N), A(M), B(N) 

A=O 
B=O 

!******CREATING COST 
C=5*N 

DO J=1,N-1 
C(N-J+1,J) = 2*J-1 
C(N-J,J) = 2*J 

END DO 

C(1,N)=2*N-1 

!*****CREATING A,B 
KK=M+N-1 
A(M)=M+N-1 
B(N)=l 

DO II=1,N-1 
B(II)=2*KK-1 
A(M-II)=2*(KK-1)-1 
KK=KK-2 

END DO 

RETURN 
END 
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!************************************************************************************* 
! CALCULATING THE INITIAL BASIC FEASIBLE SOLUTION FOR THE TRANSPORTATION 
!METHOD USING THE NORTHWEST CORNER RULE 

THE X VALUES ARE STORED IN THE VECTOR X 
ROW{I)= TELLS WHERE THE FIRST ENTRY FROM ROW I IS STORED AT 

WITHIN X AND COL 
COL(I)= THE COLUMN INDICES THAT CORRESPOND TO EACH BFS 

X= VALUE SENT FROM SOURCE I TO SINK J 
!************************************************************************************* 

SUBROUTINE NW(X,A,B,ROW,COL,M,N) 
INTEGER X(M+N-l), A(M), B(N) 
INTEGER ROW(M+1), COL(M+N-l) 

1=1 
J=1 
K=1 

ROW(I)=1 

DO WHILE (K < M+N) 
IF (A(I) > B(J» THEN 

X(K)=B(J) 
A(I)=A(I)-B(J) 
COL(K)=J 
J=1+1 

ELSE IF (A(I) < B(J» THEN 
X(K)=A(I) 
B(J)=B(J)-A(I) 
ROW(l+l)=K+l 
COL(K)=J 
1=1+1 

ELSE 
X(K)=B(J) 
COL(K)=J 
IF (J < N) THEN 

K=K+l 
X(K)=O 
ROW(I+ 1 )=K + 1 
COL(K)=1+1 
J=1+1 
1=1+1 
PRINT *, 'THIS PROBLEM IS DEGENERATE AT X' ,1-1, J 

END IF 
END IF 
K=K+l 

END DO 

RETURN 
END 
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!************************************************************************************* 
!CALCULATES THE INITIAL DUAL V ARlABLES(U,V) WHEN USING THE NWC RULE TO 
!FIND BFS SOLVING THE EQUATION 

C(I,J)=U(I)+V(J) FOR ALL BASIC CELLS 
SET V(N)=O SO U(M)=C(M,N) 

!************************************************************************************* 

SUBROUTINE DUAL(M,N,U,V,C,COL) 
INTEGER U(M), V(N), C(M,N), COL(M+N-I) 

KU=M 
KV=N 
U(M)=C(M,N) 

DO I=N+M-I,2,-1 
IF (COL(I) = COL(I-I)) THEN 

KU=KU-I 
U(KU)=C(KU,KV)-V(KV) 

ELSE 
KV=KV-I 
V(KV)=C(KU,KV)-U(KU) 

END IF 
END DO 

RETURN 
END 
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!************************************************************************************* 
! CREATING A ROOTED TREE WHICH WILL ALLOW FOR A 8-LOOP TO BE CHOSEN 

PRED=PREDECESSOR INDICES 
SUCC=SUCCESSOR INDICES (SERIAL #OF THE ELDEST SON) 
YB=YOUNG BROTHER INDICES 

(SERIAL #OF THE ELDEST AMONG THE SET OF YOUNGER BROTHERS) 
EB=ELDER BROTHER INDICES 

(SERIAL #OF THE YOUNGEST AMONG THE SET OF ELDEST BROTHERS) 
(YOUNGEST= RIGHTMOST NODE OF THE TREE ON THAT LEVEL) 
KOUNTER= KEEPS TRACK OF WHICH NODE THAT NEEDS TO BE EXPLORED 
LlST= HELPS KEEP TRACK FOR BROTHERS 
NODE= KEEPS TRACK OF WHICH NODE WILL BE PROCESSED NEXT 
SLlST= KEEPS TRACK OF WHICH NODES HAVE BEEN USED SO FAR 

!************************************************************************************* 

SUBROUTINE TREE(PRED,SUCC,YB, EB, M, N, ROW, COL) 
INTEGER SUCC(M+N), PRED(M+N), YB(M+N), EB(M+N), ROW(M+1), COL(M+N-1) 
INTEGER SLIST(M+N), LIST(M+N), NODE(M+N), INDEX 

KOUNTER=O 
INDEX=1 
SUCC=O 
PRED=O 
YB=O 
EB=O 
NODE=O 
NODE(1 )=M+N 

DOK=1,M+N 
SLIST(K)=K 

END DO 

DO II=1,M+N 
KOUNTER=NODE(II) 
SLIST(KOUNTER)=O 
K=1 
LIST=O 
IF (KOUNTER <= M) THEN 

DO I=ROW(KOUNTER),ROW(KOUNTER+ 1 )-1 
J=COL(I)+M 
IF (SLIST(J) = 1) THEN 

PRED(J) = KOUNTER 
LIST(K)=J 
INDEX=INDEX+1 
K=K+1 
NODE(INDEX)=J 

END IF 
END DO 
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ELSE 
ICOL=KOUNTER-M 
DOJ=l,M 

IF (SLIST(J) = 0) GO TO 600 
CALL FIND(M,N,ROW,COL,J,ICOL,IFLAG) 
IF (IFLAG = 0) GO TO 600 
PRED(J) = KOUNTER 

LIST(K)=J 
INDEX=INDEX+1 
K=K+1 
NODE(INDEX)=J 

600 ENDDO 
END IF 
SUCC(KOUNTER)=LIST( 1) 
ICOUNT=2 
DO WHILE (LIST(ICOUNT) /= 0) 

EB(LIST(ICOUNT))=LIST(ICOUNT -1) 
YB(LIST(ICOUNT-1))=LIST(lCOUNT) 
ICOUNT=ICOUNT + 1 

END DO 
END DO 

RETURN 
END 
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!J=ROW INDEX 

!SEE IF A ROW CONTAINS 
!TillS COL, IF A ROW DOESN'T 
!CONTAIN THE COL IT GOES 
lTONEXTROW 



!************************************************************************************* 
! PICKING THE NEW VARIABLE TO ENTER THE BASIS USING MODIFIED ROW FIRST 
!NEGATIVE METHOD. THIS METHOD FIND THE FIRST ROW WITH A NEG REDUCED 
!COST COEFFICIENT AND THEN SCANS THE REST OF THAT ROW FOR ANY OTHER RC 
!WHICH IS MORE NEGATIVE. 

NBR= ROW OF VARIABLE ENTERING THE BASIS 
NBC= COLUMN OF VARIABLE ENTERING THE BASIS 
KTEST= KEEPS TRACK OF COST SO CAN COMPARE REST OF ROW 

& PICK SMALLEST 
KSTOP= SET TO 0 WHEN ALL RC>=O 

!************************************************************************************* 

SUBROUTINE NEWBAS(M,N,C,NBR,NBC,KSTOP) 
INTEGER C(M,N) , KTEST 

NBR=O 
NBC=O 

DOI=l,M 
DO J=l,N 

IF(C(I,J) < 0) THEN 
NBR=I 

NBC=J 
KTEST=C(I,J) 
GO TO 40 

END IF 
END DO 

END DO 

KSTOP=O 
GO TO 50 

40 NB=NBC 
DO JS=NBC+l,N 

JF(C(NBR,JS) < KTEST) THEN 
KTEST=C(NBR,JS) 

NB=JS 
END IF 

END DO 

NBC=NB 

50 RETURN 
END 

!IF ALL RC ~O THEN OPTIMAL SOLUTION-EXIT 
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!************************************************************************************* 
!THIS FINDS THE 8-LOOP USING THE ROOTED TREE AND THE NONBASIC CELL 
!(P,Q)=(NBR,NBC) TO ENTER THE BASIS. IN ORDER TO DO THIS THE SIMPLE PATH 
!FROM P TO THE ROOT AND THE SIMPLE PATH FROM Q(M+Q) TO THE ROOT MUST BE 
!FOUND. THEN WE COMBINE THESE TWO PATHS ELIMINATING ANY DUPLICATES, 
!LEA VING ONLY ONE DUPLICATE WHICH IS THE APEX. 

QPATH=SIMPLE PATH FROM Q TO THE ROOT 
AT END-SAVES SIMPLE CYCLE FROM P TO Q 

LENQ= LENGTH OF QTROOT 
PPATH=SIMPLE PATH FROM P TO ROOT 

AT END-SAVES SIMPLE PATH FROM P TO APEX 
LENP= LENGTH OF PTROOT 
APEX= SAVES THE NUMBER OF THE APEX 

!************************************************************************************* 

SUBROUTINE QLOOP(NBR,NBC,QPATH,M,N,PRED,LENQ,LENP,PPATH) 
INTEGER QPATH(M+N+l), PPATH(M+N+l),PRED(M+N), APEX 

APEX=O 
QPATH=O 
PPATH=O 
QPATH(l)=NBR 
QPATH(2)=NBC+M 
LENQ=2 
LENP=l 
PPATH(1 )=NBR 

!CALCULATING THE SIMPLE PATH FROM Q TO THE ROOT 
DO WHILE (QPATH(LENQ) /= M+N) 

LENQ=LENQ+ 1 
QP A TH(LENQ) = PRED(QP A TH(LENQ-l» 

END DO 

!CALCULATING THE SIMPLE PATH FROM P TO THE ROOT 
DO WHILE (PPATH(LENP) /= M+N) 

LENP=LENP+ 1 
PP A TH(LENP) = PRED(PP A TH(LENP-l» 

END DO 

!THIS ELIMINATES THE DUPLICATES 
QP A TH(LENQ)=O 

DO WHILE (QPATH(LENQ) = PPATH(LENP» 
APEX=QP A TH(LENQ) 
PP ATH(LENP)=O 
LENP=LENP-l 
LENQ=LENQ-l 

END DO 

LENQ=LENQ+ 1 
QP ATH(LENQ)=APEX 
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!RECORDING THE SIMPLE PATHE FROM P TO Q 
DO I=LENP,l,-l 

LENQ=LENQ+ 1 
QPATH(LENQ) = PPATH(I) 

END DO 

LENP=LENP+ 1 
PP ATH(LENP)=APEX 

RETURN 
END 
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!************************************************************************************* 
!THIS FINDS THE LOCATION OF AN X 
!************************************************************************************* 

SUBROUTINE FIND(M,N,ROW,COL,III,JJJ,INDEX) 
INTEGER ROW(M+l),COL(M+N-l) 

INDEX=O 

DO K=ROW(III),ROW(III+1)-1 
IF(COL(K) == HI) THEN 

INDEX=K 
GO TO 10 

END IF 
END DO 

10 RETURN 
END 

!IF INDEX=O THEN ITEM NOT FOUND 
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!************************************************************************************* 
!THIS CHANGES THE VALUE OF X( THE BASIC FEASIBLE SOLN) 

IIN=NBR=ROW OF ENTERING VARIABLE 
JIN=NBC=COL OF ENTERING VARIABLE 
LIST=LOCATION OF WHERE CELLS ARE THAT ARE WITHIN THE LOOP 
INDEX=LOCATION OF WHERE THE COL AND X VALUE ARE LOCATED 
IOUT=ROW OF CELL LEAVING (RLEFT) 
IDROP=LOCATION OF COL OF CELL LEAVING 
JOUT=COL OF CELL LEAVING (CLEFT) 

!************************************************************************************* 

SUBROUTINE MODFYX(QPATH,LENQ,M,N,X,ROW,COL,IOUT,IDROP,JOUT,THETA) 
INTEGER QPATH(M+N+l), ROW(M+l), COL(M+N-l),THETA, LIST(M+N-l) 
INTEGER X(M+N-l) 

!CALCULATING WHERE DONOR,RECIPIENT CELLS ARE LOCATED 
IIN=QPATH(l) 
JIN=QPATH(2)-M 
I1=QPATH(3) 
JJ=JIN 

CALL FIND(M,N,ROW,COL,I1,JJ,INDEX) 

IOUT=I1 
THETA=X(INDEX) 
LIST(l)=INDEX 
IDROP=INDEX 

DO I=3,LENQ-2,2 
II=QPATH(I) 
JJ=QPATH(I+l)-M 
CALL FIND(M,N,ROW,COL,I1,JJ,INDEX) 
LIST(I-l)=INDEX 
II=QP A TH(I+2) 
CALL FIND(M,N,ROW,COL,I1,JJ,INDEX) 
LIST(I)=INDEX 
IF (X(INDEX) < THETA) THEN 

IDROP=INDEX 
IOUT=I1 
THETA=X(INDEX) 

END IF 
END DO 

IF (THETA> 0) THEN 
DO I=1,LENQ-2 

THETA=-THETA 
I1=LIST(I) 
X(II)= X(I1)+ THETA 

END DO 
END IF 
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THETA=-THETA 
JOUT=COL(IDROP) 

IF (lIN> lOUT) THEN 
DO I=IDROP,ROW(IIN)-2 

COL(I)=COL(I+ 1) 
X(I)= X(I + 1 ) 

END DO 
X(ROW(IIN)-l )=THETA 
COL(ROW(IIN)-l)=JIN 
DO 1=IOUT+1,IIN 

ROW(I)=ROW(I)-l 
END DO 

ELSE 
DO I=IDROP,ROW(IIN)+ 1,-1 

COL(I)=COL(I-1 ) 
X(I)= X(I -1 ) 
END DO 
COL(ROW(IIN)=JIN 
X(ROW(IIN»=THETA 
DO 1=IIN+1,IOUT 
ROW(I)=ROW(I)+ 1 
END DO 

END IF 

RETURN 
END 

!NEED TO SHIFT INDICES IN COL&X TO LEFT 

!NEED INDICES SIDFTED TO RIGHT IF 
(NBR gu.EFT) = (lIN ::; lOUT) 
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!************************************************************************************* 
!THIS DETERMINES THE DESCENDANTS OF EITHER J* OR THE ROOT OF THE TREE 

JSTARR=WHICH NODE WANT DESCENDANTS 
SUCC= SUCCESSOR INDICES 
DESCEN= SAVES DESCENDANTS OF JSTARR 
LEND= LENGTH OF DESCEN 
YB=YOUNGER BROTHER INDEX 
INR=ROWS THAT ARE DESCENDANTS 
INC=COLUMNS THAT ARE DESCENDANTS 
LENR=LENGTH OF INR 
LENC=LENGTH OF INC 
11= CONTROLS WHICH NODE IS CONSIDERED NEXT 

!************************************************************************************* 

SUBROUTINE DESCEND(SUCC,DESCEN,YB,M,N,JSTARR,LEND,INR,INC,LENRR,LENCC) 
INTEGER SUCC(M+N), DESCEN(M+N), YB(M+N), LEND, TEST, LENRR, LENCC, INR(M),INC(N) 

DESCEN=O 
DESCEN(1)=JSTARR 
TEST=1 
11=1 
LEND=1 

DO WHILE (TEST = 1) 
IF(SUCC(DESCEN(II» /= 0) THEN 

DESCEN(LEND+ 1 )=SUCC(DESCEN(II» 
IF (DESCEN(LEND+1) < M+1) THEN 

INR(LENRR+1) = DESCEN(LEND+1) 
DO WHILE (YB(DESCEN(LEND+1» /= 0) 

DESCEN(LEND+2) = YB(DESCEN(LEND+ 1» 
INR(LENRR+2)=DESCEN(LEND+2) 
LENRR=LENRR+ 1 
LEND=LEND+ 1 

END DO 
LENRR=LENRR+ 1 

ELSE 
INC(LENCC+1) = DESCEN(LEND+1)-M 
DO WHILE (YB(DESCEN(LEND+1» /= 0) 

DESCEN(LEND+2) = YB(DESCEN(LEND+ 1» 
INC(LENCC+2)=DESCEN(LEND+2)-M 
LENCC=LENCC+ 1 
LEND=LEND+ 1 

END DO 
LENCC=LENCC+ 1 

END IF 
LEND=LEND+ 1 

END IF 
II=II+1 
IF (II > LEND) THEN 

TEST=O 
END IF 

END DO 

RETURN 
END 
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!************************************************************************************* 
!UPDATING THE BROTHER INDICES CHANGING JPATH, SUCC(Il) 
!ASSUME THAT ANY NEW IMMEDIATE SUCCESSOR OF A POINT JOINS THE PREVIOUS 
!IMMEDIATE SUCCESSORS OF THIS POINT AS THEIR ELDEST BROTHER 

(JOINS AT THE LEFT OF THE SEQUENCE OF BROTHERS) 
(Il;J1) IS THE EDGE THAT IS ADDED 
JPATH= SIMPLE PATH FROM J1 TO J* WITH LENGTH=JPATHLEN 
YB,EB,SUCC=YOUNGER BROTHER, ELDER BROTHER, SUCCESSOR INDICES 

!************************************************************************************* 

SUBROUTINE UPBROTHER(YB,EB,JP ATH,JP ATHLEN,SUCC,M,N,J1,1l) 
INTEGER YB(M+N), EB(M+N), SUCC(M+N), JPATH(M+N), YBPRIME(M+N) 

!BECAUSE YB CHANGES OVERLAP, THE CHANGES MUST BE STORED IN YBPRIME 
YBPRIME=O 

!REMOVING JPATH OUT OF LIST OF BROTHERS 
DO KK=l,JPATHLEN-l 

IF (EB(JPATH(KK» /= 0) THEN 
YB(EB(JPATH(KK»)=YB(JPATH(KK» 

END IF 
IF (YB(JPATH(KK» /= 0) THEN 

EB(YB(JPATH(KK»)=EB(JPATH(KK» 
END IF 

END DO 

!BECAUSE THESE PTS JOIN AS THE ELDEST AMONG THEIR NEW BROTHERS 
DO KK=l, JPATHLEN-l 

EB(JPATH(KK»=O 
END DO 

!START SHIFT OF BROTHERS TO SIDE OF GRANDPARENT 

!ATTACHING THE IMMEDIATE DESCENDANTS OF J1 AS THE BROTHERS OF JPATH(2) 
IF (SUCC(J1) /= 0) THEN 

EB(SUCC(J1»=JPATH(2) 
END IF 
YBPRIME(2)=SUCC(J1 ) 

!ATTACHING THE IMMEDIATE DESCENDANTS OF 11 AS THE BROTHERS OF JPATH(1)=J1 
IF (SUCC(Il) /= 0) THEN 

EB(SUCC(Il» = J1 
END IF 
YBPRIME( 1 )=SUCC(I 1) 
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!SHIFTS JPATH AS EB OF GRANDPARENT 
DO KK=2,JPATHLEN-l 

IF (SUCceJPATH(KK)) == JPATH(KK-l)) THEN 
YBPRIME(KK+l) = YB(JPATH(KK-l)) 
EB(YBPRIME(KK+l)) = JPATH(KK+l) 

ELSE 
EB(SUCceJPATH(KK))) = JPATH(KK+l) 
YBPRIME(KK+l) = SUCceJPATH(KK)) 

END IF 
END DO 

DO KK=l, JPATHLEN 
YB(JPATH(KK))=YBPRIME(KK) 

END DO 

RETURN 
END 
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!************************************************************************************* 
!THIS SUBROUTINE UPDATES THE TREE INDICES-PRED, SUCC, YB, EB USING JPATH 

YB,EB,SUCC=YOUNGER BROTHER, ELDER BROTHER, SUCCESSOR INDICES 
(I1;Jl) IS THE EDGE THAT IS ADDED 
JPATH= SIMPLE PATH FROM Jl TO J* WITH LENGTH=JPATHLEN 

!************************************************************************************* 

SUBROUTINE UPTREE(M,N,PRED,SUCC,YB,EB,JP ATH,JPATHLEN,Jl,I1,JST AR) 
INTEGER PRED(M+N), SUCC(M+N), YB(M+N), EB(M+N) ,JPATH(M+N), YBIT 

!UPDATING THE PREDECESSOR INDICES-ONLY ONES THAT CHANGE ARE THE JPATH 
!PREDECESSOR INDICES BECOME THE OPPOSITE-REVERSE OF JPATH 

PRED(J1)=I1 
IF (JPATHLEN > 1) THEN 

DO KK =2,JP A THLEN 
PRED(JP A TH(KK»=JP ATH(KK-l) 

END DO 
END IF 

!UPDATING THE BROTHER INDICES- CHANGING JPATH, SUCC(Il) 
! ASSUME THAT ANY NEW IMMEDIATE SUCCESSOR OF A POINT JOINS THE PREVIOUS 
! IMMEDIATE SUCCESSOR OF TillS POINT AS THEIR ELDEST BROTHER 
!(JOINS AT THE LEFT END OF THE SEQUENCE OF BROTHERS) 

YBIT=Q 
IF (JPATHLEN >1) THEN 

YBIT=YB(JP A TH(JP A THLEN-l» 
END IF 

CALL UPBROTHER(YB,EB,JP A TH,JP ATHLEN,SUCC,M,N,J1,Il) 

!UPDATING THE SUCESSOR INDICES- ONLY CHANGE JPATH,I1,I2. SUCCESSORS 
!OF JPATH BECOME THEIR OLD PREDECESSOR INDEX(NEXT JPATH ENTRY) 
! YBJT= OLD YB(JPATH(JPATHLEN-l» BEFORE UPDATED 

SUCC(Il)=J1 
IF (JPATHLEN > 1) THEN 

DO KK=I,JPATHLEN-l 
SUCC(JPATH(KK»=JPATH(KK+l) 

END DO 
END IF 

IF (JPATHLEN > 1) THEN 
IF (SUCC(JSTAR) = JPATH(JPATHLEN-l» THEN 

SUCC(JSTAR)=YBIT 
!ELSE 
! SUCC(JSTAR)=SUCC(JSTAR) 
END IF 

END IF 

RETURN 
END 
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!************************************************************************************* 
!THIS SUBROUTINE UPDATES THE RELATIVE COST COEFFICIENTS 

ALPHA=1 IF 11 IS A NODE CORRESPONDING TO A ROW OF THE 
=-1 IF OTHERWISE TRANSPORTATION ARRAY 

REDCOST= REDUCED COST OF CELL ENTERING THE BASIS 
RINJS=THR ROW INDICES WITHIN DESJSTAR 
LENR= CHANGROW LENGTH 
CINJS=THR COL INDICES WITHIN DESJSTAR 
LENC= CHANGCOL LENGTH 
NINJR= ROW INDEX WHICH IS NOT IN DESJSTAR 
KKI = LENGTH OF NINJR 
NINJC=COLUMN INDEX WHICH IS NOT IN DESJSTAR 
KK2= LENGTH OF NINJC 

!************************************************************************************* 

SUBROUTINE UPDATE(ALPHA,M,N,REDCOST,C,RINJS,CINJS,LENR,LENC,NINJR,NINJC,KKl,KK2) 
INTEGER NINJC(N), NINJR(M), ALPHA, CINJS(M), RINJS(N), REDCOST, C(M,N) 

!CHANGING COST COEFFICIENTS 
DOI=l,LENR 

DOJ=1,KK2 
C(RINJS(I),NINJC(J) = C(RINJS(I),NINJC(J»+ ALPHA *REDCOST 

END DO 
END DO 

DOI=l,KKl 
DOJ=l,LENC 

C(NINJR(I),CINJS(J» = C(NINJR(I),CINJS(J» - ALPHA *REDCOST 
END DO 

END DO 

RETURN 
END 
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Chapter 6 

RESULTS AND CONCLUSIONS 

In order to test this program, a test problem whose size can be completely 

controlled was designed. The code for the subroutine CREATE is located on page 53. 

For any integer n, we construct a transportation problem of n sources and n sinks with the 

following optimal solution: 

Xn-i+l,i = 2n-2i+ 1 

Xn-i+l,i-l = 2n-2i+2 

Xij= 0 

for 2~ i ~ n 

otherwise 

The vectors A and B will then have the corresponding value 

n 

Ai = LXii =4i-l 
j=1 

n 

B j = LXii =4(n- j)+l 
i=1 

Note, that the solution is concentrated on the skew diagonal of the array and the diagonal 

above it. 

The cost coefficients are defined as follows: 

Ci,n-i+l = 2n-2i+ 1 

Ci-l,n-i+l = 2n-2i+2 

cij = 5n 

for 2~ i ~ n 

otherwise 
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The tableau corresponding to this test problem is depicted in Figure (6-1) for n=6. 

2 1 
30 30 30 30 10 11 3 

4 3 
30 30 30 8 9 30 7 

6 5 
30 30 6 7 30 30 11 

8 7 
30 4 5 30 30 30 15 

10 9 
2 3 30 30 30 30 19 

11 
1 30 30 30 30 30 11 

21 17 13 9 5 1 

Example of 6 x 6 Test Problem Optimal Solution 

Figure (6-1) 

Notice that the example is constructed in such a way that the given X is the 

unique optimal solution to the problem. This is obvious, but one can also compute the 

simplex multipliers and the reduced cost coefficients to demonstrate the optimality ofthe 

stated solution. 

The initial basic feasible solution that is constructed according to the Northwest 

Comer Rule for this problem is depicted in Figure(6-2). 
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3 
30 30 30 30 10 11 3 

7 
30 30 30 8 9 30 7 

11 0 
30 30 6 7 30 30 11 

15 
30 4 5 30 30 30 15 

2 13 4 
2 3 30 30 30 30 19 

5 5 1 
1 30 30 30 30 30 11 

21 17 13 9 5 1 

6 x 6 Test Problem Initial Basic Feasible Solution-NW Comer Rule 

Figure (6-2) 

Notice that the Northwest Comer Rule will produce a solution where the basic 

cells form a staircase, starting at the northwest comer of the array and ending at the 

bottom right hand comer. It is clear the initial basic feasible solution provided by the 

Northwest Comer Rule is among the most expensive basic feasible solutions of the test 

problem. 

Thus, we start with the most expensive solution of the problem and generate the 

least expensive solution. As expected, the test problem turned out to be an excellent one 

for testing the program. 

Figure (6-3) contains the results of four runs of the test problem, corresponding to 

n=100,300,500, and 1000. 
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Size of Matrix Number of Total Time Total Cost Average Length 
nxn Iterations ofDESJSTAR 

100 x 100 3252 1 minute 1333300 44.1916 

300 x 300 18709 6 minutes 35999900 90.13561 

500 x 500 40383 24 minutes 166666500 149.8887 

1000 x 1000 98637 165 minutes 1333333000 230.132 

Results From the Computer Program 

Figure (6-3) 

The results clearly show that our program can efficiently handle problems with a 

few hundred sources and an equal number of sinks. The number of iterations and the 

time required to solve the problem as n approaches 1000 explodes quite rapidly as can be 

seen from the table. 

Recommendations: A few features of the current implementation should be 

examined further in order to improve the performance of this program. One could 

reprogram the calculation of the reduced cost coefficient doing away with computing the 

2 

entire set (exactly ~ such coefficients must be computed each iteration) and pivot at the 
2 

first entry a negative cost is detected. This is likely to reduce the calculations 

significantly, although it is difficult to predict the exact impact of such strategy, since the 

number of iterations may increase as a consequence of such alterations of the algorithm. 

The average length of the DESJST AR was computed in order to have a better 

understanding of how big a portion of the tree must be modified (on average) at each 
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step. This gave us some understanding of how complex the tree structure is for the 

current test problem. The average length ofDESJSTAR was found to be relatively small 

compared to the size of the test problem (2n nodes). More difficult test problems, where 

there are far more (10 to 100 times) sinks than sources, can be easily developed along the 

same lines of this test problem. The corresponding trees will have a more complex 

structure because they will have much more lateral width than the trees of the test 

problem used in this paper. Therefore, this new test problem would further test the 

efficiency of the subroutines within this program that are concerned with the tree design. 
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