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University of North Florida
Abstract

AN EFFICIENT IMPLEMENTATION OF THE
TRANSPORTATION PROBLEM

By Alissa Michele Sustarsic

Chairperson of the Thesis Committee:  Dr. Adel Boules
Department of Mathematics and Statistics

The transportation problem is a special type of linear program in which the objective is to
minimize the total cost of shipping a single commodity from a number of sources (m) to a

number of destinations or sinks (n).

Because of the special structure of the transportation problem, a special algorithm can be
designed to find an optimal solution efficiently. Due to the large amount of information
in the problem, judicious storage and management of the data are essential requirements

of any viable implementation of the transportation algorithm.

Using sparse matrix techniques to store the solution array, and a rooted trec as the
labeling method for handling the associated information provides a viable method to

solve the transportation problem.

A difficult test problem was designed to test the computer program and demonstrate its
efficiency. We were able to successfully implement the transportation algorithm for
problems invelving one million possible shipping routes. The FORTRAN code

developed is included, as well as the results of several runs of the test problem,



Chapter 1

INTRODUCTION AND SOME STANDARD RESULTS

Linear programs are among the most widely used applications of mathematics in
industry, business, and government. The objective of linear programming is to
minimize (or maximize) a linear objective function in # real vanables subject to a (finite)

set of linear constraints, which can be either equations or inequalities.

Definition: The standard form of a linear program (LP) is one of the form:
Minimize ¢’ x  Subject to Ax=b, x20 (1.1)
where A = (aj;) 1s areal m x » matnix, x and ¢ are n-dimensional column vectors, and 5

is an m-dimensional column vector.

Any linear program can be easily converted to standard form. The details of such
conversions can be found in most textbooks on linear programming. (See Taha for

details).

Definition: A point x is said to be a feasible solution of (1.1) if it satisfies the

constraints, 1.e., Ax =band x = 0. A feasible point, xg, is said to be an optimal solution

of the linear program (1.1) if it satisfies ¢"xg < cTx for any feasible x. In other words
g 0 Y ,

the objective function attains its minimum value at x;.



One can always assume that m <»n and that 4 has full rank, 1.e. rank(4) = m.
Thus A has m linearly independent columns. This can be assumed because if there are
any dependencies among the rows, there is either no solution caused by contradictory

constraints or there are redundant equations that can be eliminated.

Definition: Let B be a nonsingular m x m submatrix of 4 made up of m linearly
independent columns. Set all # - m components of x that are not associated with the
columns of B equal to zero. The solution to the resulting set of equations is said to be a
basic solution to 4x =5 with respect to the basis 8. The components of x associated
with the columns of B are called basic variables. Because of the full rank assumption, a

linear program will always have basic solutions.

Definition: If a feasible solution is also basic, it is referred to as a basic feasible

solution. Ifit is also optimal, it 1s referred to as an optimal basic feasible solution.

The basic variables are not necessarily positive. If at least one of the basic variables in a

basic solution is zero, then the solution is called a degenerate basic feasible solution.
One of the most important theorems in linear programming is the Fundamental

Theorem of Linear Programming because it gives a criterion for limiting the search for

optimal solutions.

Fundamental Theorem of Linear Programming (1.a). Given the standard linear
program (1.1):

1) Ifthere is a feasible solution, there is a basic feasible solution.

2) Ifthere is an optimal feasible solution, there is an optimal basic feasible

solution.



The above theorem states that the search for optimal solutions must be limited to the set
of basic feasible solutions. The proof of The Fundamental Theorem of Linear
Programming can be found in Luenberger, on page 18.

The notion of duality is central to both the development of linear programming
algorithms and the computational aspects of the subject. Associated with every linear

programming problem there is a dual linear program, defined as follows:

Definition: The dual of the linear program

Minimize ¢ x Subjectto  Ax=d, x20 (1.2)
18 defined as
.. T . T T
Maximize A’ b Subject to AA<e’, Az0. (1.3)

The LP (1.2) is referred to as the primal problem and (1.3) is often called the dual

problem. A is called the dual vector, and x is called the primal vector.

It can be shown, using the above definition, that the standard linear program (1.1)

has the following dual program:
Maximize A’b  Subjectto  ATAdscl (1.4).
The following theorem and its corollary provide the important link between the

primal and the dual problem, which will help to solve a linear program. A proof of the

Weak Duality Theorem can be found in Luenberger, on page 89.

Weak Duality Theorem (1.b). Consider the standard dual pair (1.1) and (1.4). If x and

A are feasible for (1.1) and (1.4) respectively, then Tx>aTh.



This shows that a feasible vector to either problem provides a bound on the value of the

other problem. The corollary below gives a condition for the optimality of a solution.

Corollary (1.c). Ifx,and A, are feasible for (1.1) and (1.4) respectively, and if

¢ x, =A; b, then x, and 2, are optimal for their respective problems.

The above corollary leads to the important necessary and sufficient conditions for

optimality (See Taha, pg. 154 for the proof), called the complementary slackness

condition:

Complementary Slackness Theorem (1.d). Let x and A be feasible solutions for (1.1)

and (1.4) respectively. Then x and A are optimal for their respective problems if and only

if they meet the complementary slackness condition: (cT HETA)x =0.

One method used to solve a linear program 1s the simplex algorithm, which uses
the previous theorem as a stopping criterion. The simplex method proceeds from one
basic feasible solution to another where the cost, barring degeneracy, is continually
decreasing, until an optimal solution (minimum) is reached. The general philosophy
behind the primal simplex method is to generate a sequence of primal basic feasible
solutions and a corresponding sequence of vectors A (not necessarily dual feasible), such
that the complementary slackness conditions are met by each pair x and A at each
iteration. The algorithm terminates once A becomes feasible for the dual problem.

The simplex method can be performed in tableau form. The first step to the

simplex method is to put the problem in standard eanonical form.



Definition: A standard linear program is said to be in canonical form if it has the
following properties:
b, 2 0 for all i, the matrix 4 contains the columns of the identity matrix and the cost

coefficients corresponding to the identity matrix are 0.

The simplex tablean in standard canonical form 1s depicted in Figure (1-1).

a a4, e a. e SR a, e a b
1 0 0 Vimel e Yy oo e Y, Y
0 1

6 0 : Vimel oo Vi oo e Vi Y
0 0 1 ym,m+l ymj ymn ymO
0 0o ... 0 ¥ reeeee T e v, Z,

Simplex Tableau

Figure (1-1)

The r, are the reduced cost coefficients, which replace the cost coefficients once the

manipulation of the tableau starts. The columns of the 1dentity matrix are not necessarily
the leading columns in the tablean, but the above depiction is used for the simplicity of
notation. Once a problem is in canonical form, a basic solution can be read directly from

the tableau; in the above depiction, x, through x, are the basic variables with values b,

through b . Step two of the simplex algorithm consists of examining the reduced cost

5



coefficients. If all the reduced costs, r, >0, then the current basic feasible solution is

optimal. If there exists a column with a negative reduced cost coefficient and all the

entries within the column are nonpeositive, there is no optimal solution. Otherwise, pick

b b.
an r, <0 and pivot around y, . such that —— = min ——’-| ¥y, >0;1<i <mg. Return to the
! h Vs Yii y

beginning of step 2 until an optimal solution is determined.

The relationship between the primal and the dual problem defined above can be
seen more clearly in the simplex method when 1t 1s written in matrix notation. Let B be a
basis matrix, i.e., a square submatrix of 4 consisting of the m linearly independent

columns of A corresponding to the basic variables x,, while D consists of the columns of
A that correspond to the nonbasic vanables x,,. The standard linear program problem can

be rewritten, using the partition A=[B,D], x=[xs,xs], and ¢'=[cz",cp"], as
Minimize ¢} x, +c¢}x, Subjectto Bx,+Dx,=5b, x,20,x,20 (1.5).

The basic solution, x=[x,,0] corresponds to the basis B where x, = B™' b because x,=0.
For any value of x,, x, =B"'b— B™'D x,, from (1.5) and thus by substitution, the
objective function becomes
BB+ (e -l B D), (1.6).
From (1.6), the reduced cost coefficients for the nonbasic variables x , are defined
as tp=ch—cy B'D (1.7).
The components of r, determine the entering variable into the basis or whether the

solution is optimal as described above.



Now it is possible to write the simplex tableau in matrix form as

[,4|b] B’D|b
- (1.8).

T T T
clO cﬂch‘O

_ B7 |0
If the matrix B is used as the basis, then multiplying (1.8) by the matrix, {f—l1:|

will result in
I | B'D | B

T T T T T (1'9)'
~AB+cy | -AD+cy | -Ab

T
This corresponds to the one pivoting step in the simplex tableau, with A defined as
A" =¢} B™'. The vector A is called the simplex multiplier. Substituting the value of A

into (1.9), the resulting tableau is

I | B'D . B7b
0 | ¢f-c;B'D | —ciBD

(1.10).

Note that {c” ——/’LTA)X = (cj; -ATB)xB + (cg - ETD)X » =0 because, by definition
of A, the values of the reduced cost coefficients of the basic variables, x, are 0 and the
value of the nonbasic variables, x,, are 0. In other words, the primal simplex method
meets the complementary slackness condition for each basic feasible solution, x and the
corresponding simplex multiplier A. By the Complementary Slackness Theorem (1.d),
the current solution x optimal if and only if A 1s dual feasible. But A is dual feasible if
ATA<c”, whichmeans A’B<c] and ' D <c] . By construction A7 B=c¢! , so the first

inequality holds. Therefore, the necessary and sufficient condition for optimality reduces



toct —A'D = ¢l —¢lB'D = 0. Thus, the reduced cost coefficients of the

nonbasic variables, ] must be greater than or equal to 0 for optimality to oceur.
The simplex method requires the inversion of the basis matrix B, and this is done

in a number of steps, or iterations, where in each step the matrix B differs from the

previous in only one column. Thus, the inversion of B can be done easily.



Chapter 2

THE TRANSPORTATION PROBLEM

The balanced transportation problem is a special type of linear program in
which the problem is to minimize the total cost of shipping a single commodity from a
number of sources (m) to a number of destinations or sinks (7). The simplex method can
be used to solve this problem. However, the special structure of the transportation
problem allows for a different technique to be created to solve these problems. This
method follows the same basic theory as the simplex method, but will be more

computationally efficient and accurate.

Definition: The balanced transportation problem is defined as

Minimize  z{x)= iich =y 2.1
i=1 j=1
Subject to ilx,._j =a, fori=1 tom (2.2)
=
'er:xu =b; for j=lton (2.3)
x, . =0 fori=ftom, j=1ton

where for all i and j, @;> 0, b;> 0 and Z:ai = ij .



The only data needed for this problem is the cost of transporting the commodity per unit
from each source { to each sink j (¢;;), the availability of the commodity in source i, a,,
and the demand of sinkj, b;. x;;Tepresents the amount shipped from source / to sink ;.
m denotes the number of sources while # denotes the number of sinks. Notice that the
number of constraints of the transportation problem is m+n while the number of variables
is mn. The first set of constraints (2.2) comes from the fact that the sum of the slupments
from source i to all the destinations is equal to the supply available in source i. The
second set of constraints (2.3) follows similarly, by considering the sum of the shipments
from all the sources to destination ;.

The transportation problem is depicted in Figure (2-1).

Source Destination
C.,. X
3 /?\ 11211 > .
"‘i?“‘—‘;__‘ —_—— e ———————— ——
1 v ‘“\IQ\:\-H‘H_\& - P 1 1
- \::f;x\—;"” - ) N
- — -
a [ 2 ez e b
2 \> T . 2
TN — _,’,;,-:"””" -
a ! o
m M) I — b,

The Transportation Problem

Figure (2-1)

A node represents a source or a destination, and an arc that joins two nodes (a source and

a destination) represents a shipping route through which the commodity is shipped.

10



The transportation problem is “balanced” because the total supply equals the total

demand, Za,. = ij . In most applications, this is not the case. However, dummy

sources or sinks can always be added to the problem to make it balanced. Being a
“balanced” problem is an important feature of the transportation model and as we will
now show is the necessary and sufficient condition for the transportation problem to be

feasible. To show the sufficiency of this condition, let § be equal to the total supply

. b.
which is also equal to the total demand), S= > a. = > b, . Let x, . &% fori=1i,...m
( q i i i, J S

" "oa. b m Ly b
and j=/,...,n. So fo..f =Z lS L =g, and in.dnz ‘SJ =b,. Therefore, x is
= =1 i=1 i=

feasible, and a feasible solution always exists for the balanced transportation problem.

Conversely, if the transportation problem has a feasible solution ., then Z fo, ;= Zb ;

i=1 j=1 i=1

n

and Zx,.‘ ;= Zai . Therefore, Zai = Zb ; » which establishes the necessity of the

balance.
The feasible region is also bounded, since x,; < a; and x, ; <b, forall i and ;.
Thus, X; S min {a,. b ; |V i,J }, and since the feasible region is also closed, it 1s actually

compact. Thus, the objective function will always achieve a minimum value (an optimal

solution).

Let us look at the tableau form of the simplex method for the transportation
problem, shown in Figure (2-2), where ¢} =(c;,C;p5mnnnn€,, ) for 1<i<m, 17 is arow

vector of n ones, I is a 7 x n identity matrix, and b= (b,,b,,...,b,)".

11



lT a;

1T a;

17 a,,

I I I b
e ) cn

Transportation Problem in the Simplex Tableau

Figure (2-2)

For future reference, let the matrix in the above tableau be denoted by A; thus

A= (2.4).

The next theorem summarizes the above discussion and determines the

(maximum) number of nonzero components in a basic feasible solution.

Theorem (2.a). A balanced transportation problem always has a feasible solution. The
rank of the matrix 4 is m+n-1. In other words, there is exactly one redundant constraint

and the maximum number of nonzero components in a basic feasible solution 1s m+n—1.

Proof: The existence of a feasible solution was shown above, so it remains to show that

the rank of 4 is as stated. Let Ry, R, ...,.Ru, Rinriye et , Ripn denote the m+n rows of the

12



transportation matrix 4 (2.4). Clearly Ri+Rat.. ARm-Rmii-...... -Rin=0. Thus, the
rank{4)< m+n, so at least one row can be written as a linear combination of the others.
To prove rank(A4) =m+n-1, it suffices to show that Ry, Rz, ....Rm, Rint1s- - JLRmen-1
are lincarly independent. Suppose not. Let oy, &ty,..., ¢y and By, Bo,..., Buy be
coefficients of the rows such that o,Ri+c:Rot+. .. #F0mR PR+ ... +B1 Rt =0.
This is equivalent to the vector equation
(0L +B1,000HB2s 1+ P10 02 HB 1,02 B 1,025 ey B 15y B Brm1,0m)=0. It clearly
follows that o.=(~=0. Therefore, no nontrivial linear relationship exists between rows R,

Rs,...,Rips-1, 50 rank(4)=m+n-1. ¢

It follows from this theorem that any basis of the transportation problem consists of
m+n-1 varables,

A direct application of the simplex method in tableau form to Figure (2-2) is
computationally inefficient and requires a prohibitive amount of computer storage. For
example, in a problem of 1000 sources and as many sinks, the matrix 4 would have 2,000
x 1,000,000 entries, which is obviously prohibitively large and quite wasteful, since 4 is
very sparse and well structured.

Three questions arise naturally in the development of an algorithm to solve the
transportation problem:

1) How do we construct an initial basic feasible solution?

2) How do we determine the optimality of a given basic feasible solution?

3) If the current basic feasible solution is not optimal, how do we construct a new
basic feasible solution that is “closer” to the optimal solution than the current
solution?

13



We will answer these three questions in turn, but first let us look at the
transportation tableau, which is often used to illustrate paper and pencil calculations. The

transportation tableau is depicted in Figure (2-3).

LST! X1z Xin a
Cir Ci2 Cin
d;
Xmi Xmn am
Cml Cmn
by b, b,

The Transportation Tableau

Figure (2-3)

Each of the boxes, in the above tableau, is called a cell. The unit cost of shipment
from source I to sink j, Cip is depicted in the center of the cell (7,7) {row i, columny). The

bottom row contains the demands and the rightmost column contains the supplies. The
location and value of a basic variable is indicated by putting the value of that variable in
the top right hand comer of the corresponding cell. Thus, if a cell has only the cost

coefficient ¢, the corresponding variable is nonbasic.

if*
We now answer the first of the three questions that were posed previously, by

showing how to construct an initial basic feasible solution. There are several different

methods for generating an initial basic feasible solution. One of the easiest methods is

14



the Northwest Corner Rule. This method can be illustrated using the transportation

tableau, Figure (2-3).

Definition: The Northwest Corner Rule:

1) Begin with all empty cells.

2) Start with the cell in the upper-left hand cormer.

3) Allocate the maximum possible amount consistent with row and column sum
requircments. At least one of these requirements will be met, i.e. the supply
will be exhausted or the demand will be fulfilled.

4) If the row requirement (supply) is not exhausted, move one cell to the right. If
the column requirement (demand) is not met, move one cell down. If both
requirements arc met simultancously and the current assignment is not the last,
enter a value of 0 in the cell immediately to the right, then move down one cell.
{(The solution is degenerate in this case.} If more assignments are to be made,

go to step 2.

The Figure below is an illustration of the Northwest Corner Rule.

10 10
5 10 5 20
15 15
10 20 30
15 10 30 20

An Example of the Northwest Comer Rule

Figure (2-4)
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The solution determined by the Northwest Comer Rule is clearly feasible. The

following concept 1s needed to establish the fact that it is basic.

Definition: A loop is an ordered sequence of at least four cells of an array if:
1) Any two consecutive cells lie in either the same row or same column.
2) No three consecutive cells lie in the same row or column.
3) The last cell in the sequence has a row or a column in common with the first

cell in the sequence.

The following theorem gives a necessary and sufficient condition for a feagible

solution of the transportation problem to be basic:

Theorem (2.b). In a balanced transportation problem, a set of m+n-1 variables is basic if

and only the corresponding cells in the transportation tableau contain no loops.

Proof: Assume the set of cells contains a loop. Allocate a value of +1 and -1 alternately
among the cells in the loop, and entries of 0 in all the rest of the cells not in the loop.
Then the sum of all entries in the rows and columns of the array is zero. This
corresponds with the multiplication of the constraints of the transportation problems (2.1)
that coincide with a cell in the loop with +1 and by —1 respectively. If the columns are
summed, the result will be the zero vector. Hence the set of the column vectors is linear
dependent. Hence, any set of cells that contain a 8-loop will be linearly dependent.
Therefore, the set of cells can not be a basis.

Let A be a set of cells corresponding to a basis and assume that A contains a loop.
As seen from theorem (2.a), the columns corresponding to A are linear independent.

Thus there does not exist a nonzero linear combination of the column vectors that equal
16



the zero vector. Therefore, there can not be two entries in each row. This leads to a

contradiction because a loop must contain two entries within each row that contains an

entry of the loop.

We now turn to the question of finding a criterion for determining the optimality
of a basic feasible solution. The notion of a triangular matrix is needed in order to
achieve this. Simply put, a triangular matrix is a nonsingular square matrix that becomes

lower triangular after an appropriate permutation of its columns and rows.

Definition: A matrix is said to be a triangular matrix if it satisfies the following
properties:
1) The matrix has a row that contains exactly one nonzero entry.
2) The submatrix, formed from the matrix by crossing out the row and the column
that contains the nonzero entry, also satisfies property (1). This procedure can

be repeated until all rows and columns are crossed out.

Clearly, any matrix that satisfies the above 2 properties is a triangular matrix. Therefore,
it can be put in lower triangular form by arranging the rows and columns in the order that

was determined by the procedure listed above.
The importance of a matrix M being triangular is that the matrix equations,
M x =d , can then be solved by backward substitution, So, if M is a triangular matrix,
then after the reordering of the columns and the rows, the system takes the form

M'x=d,where M' is lower triangular, and can be solved by backward substitution.

17



An important structural property of the transportation problem is given by the

following theorem:

Basis Triangularity Theorem (2.c). Every basis of the transportation problem is

triangular.

Proof: Consider the transportation matrix 4 (2.4). Let us change the sign of the first half
of the system that corresponds to the supply constraints. Then, the coefficient matrix of
the system will have entries of +1, 0, or -1. By theorem (2.a), one redundant equation can
be eliminated. From the resulting matrix M, form a basis B by selecting a square
nonsingular submatrix with m+n-1 columns.

Each column in 4 contains two nonzero entries including a +1 and -1, and,
hence, each column in B contains at most two nonzero entries also. Thus, the total
nenzero entries of B will be at most 2(m+n-1). If every column of B contained two
nonzero entries, the sum of all the rows in B would be 0 as seen from theorem (2.a). This
is a contradiction to B being nonsingular. Therefore, the nonzero entries in B must be
less than 2(m+n-1). Since B is of order (m+n-1), there must be a row with only one
nonzero entry. This verifies the first property of a triangular matrix. A similar argument
can be made for the submatrix created from deleting the row and column of B that
contained the single nonzero entry; that submatrix will also have a single row with only

one nonzero entry. This argument can be repeated, which establishes that the basis B is

triangular.

18



The triangularity of the basis makes it unnecessary to explicitly calculate the

inverse of the basis B, in order to calculate the simplex multipliets, given by A" B = ch.
Therefore, for a transportation problem, because the basis is triangular, the simplex
method at this step simplifies to solving for the simplex multipliers directly, using
backward substitution.

The next important step of the transportation problem is the form of the dual.
The dual of the transportation problem is in the form of (1.4). Let ?LT=(uT,vT) be
partitioned in accordance with the natural partitioning of A. Thus u'= (uy,...,uy) and v
= (vy,...,v,). Remembering that 4 has two nonzero entries in each column, which can be
scen from (2.4), the components corresponding to ¢,; In the constraints A" 4 < ¢’ of the

dual can be rewritten as u, +v; < ¢, . Summarizing, the dual of the transportation

problem can be rewritten as

Maximize Za,. u, +ij v; subjectto u, +v, <¢; fori=i,.m (2.5).
=l =1

and j=1,..n

The complementary slackness condition, (cT - /‘LTA)x =0, can also be rewritten as

ZZ(CQ. —u, —v;)x; =0 (2.6). The nonbasic variables always have a value of 0.

i=1 j=l

Therefore to meet the complementary slackness condition, (¢; —u; —v;)=0 for all basic

variables. If A'=(u’,v") is also dual feasible, then the solution is optimal by the

Complementary Slackness Theorem. Notice, the reduced cost coefficients

19



r; = (¢; —u,—v,), for the nonbasic cells x;. So again the criterion for optimality reduces

down to whether the reduced costs are nonnegative for the nonbasic variables.

Therefore, after an initial basic feasible solution is found for the primal, the

simplex multipliers, A=(1,v) need to be computed and then tested for feasibility. From

the primal simplex method, the multipliers are computed from solving A" B=c,. A
column from A (2.4), that corresponds to the basic variable x;, will contain exactly two
+1 entries, corresponding to the i™ position within the top portion (sources) and to the ™
position of the bottom portion (sinks). Thus, each column corresponding to the basic
variable x;, will generate the simplex multiplier equation, #;+ v;= ¢;. Remembering that
one constraint is redundant, one of the multipliers can be assigned an arbitrary value. For
simplicity, set v,=0. The set of equations u;+ v;= ¢; (for all basic variables) can now be
solved easily by backward substitution. Notice, by solving these equations, the

complementary slackness condition is met.

Therefore, testing whether the simplex multiplier is dual feasible will define the
criterion of whether the solutions are optimal. If (,v) satisfies the inequality,

u,+v, <c; foralliandyj, itis dual feasible. Since this inequality is already met for all

basic cells (i,/), the inequality, ¢, —u, —v, 2 0 for the nonbasic cells (i,7) 1s a necessary
and sufficient condition for optimality. This is equivalent to calculating the reduced cost
coefficients and if they are all nonnegative, the solution (u,v) is feasible for the dual

problem and (x,v) and x are optimal for their respective problems.
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Therefore, the next step in the primal transportation algorithm is to calculate the
reduced costs, 7; =c; —u; ~v,. They only need to be calculated for the nonbasic cells

because by design, the reduced cost for the basic cells is 0.
If the reduced cost coefficients are not all nonnegative for the basis, then a new
basis must be constructed. First, the next theorem allows us to use the reduced cost

coefficients from step to step instead of keeping the original cost coefficients.

Theorem (2.d). Let r; represent the reduced cost coefficients. Then Zr,.j x, differs
iJj

from the objective function, Z c; x; by aconstant. Therefore, an optimal vector for
i

PR

> ¢; x; is also an optimal vector for ) r; x
i ij

Proof: er}' X, = ZZ(CU —u; —V;)X; =
=2 2.5 xij_z(zxij)uf_z(lej)vj
=D, 2.0 %y = D8 u; =D b, v, ¢

Therefore, during the calculations to solve the transportation problem, the reduced
cost coefficients can be used to find the optimal solution. For the reason stated above,
using the reduced cost coefficients to find an optimal solution will be helpful to show the
solution meets the complementary slackness condition.

Once an initial primal feasible solution is recorded in the tableau, # and v can be

recorded in the place allocated for ¢ and b. From the previous theorem, the reduced costs
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can be used in place of the original cost coefficients in the rest of the problem. If at least
one reduced cost coefficient is negative, a new basis needs to be defined. These

alterations of the transportation tableau are shown in Figure (2-5).

Xn X2 Xin 4
r r r 1
11 12 In
------ u2
Xmi Xmn Uy
T'mi1 Tmn
Vi Va Va

The Altered Transportation Tableau
Figure (2-5)

Finally, we turn to the last question of how to generate a new basis when the
current basic feasible solution is not optimal. A new criterion for finding the location of
a variable within the transportation problem needs to be defined. Because of the structure
of the tableau displayed in Figure (2-3), the sum of the basic variables in each row and
each column must remain the same at each step. Using a loop that contains the entering
variable to obtain a new basis will allow for the feasibility of the primal problem to be

kept throughout the changes of the basis. A 8-loop will assist in changing the basis.

Definition: A subset of cells is a O-loop if entries of +6 and —8 are put alternately in the
cells of the loop, such that if a row or a column contains a cell from the loop with a +0

entry, then it also contains an entry with a -0,
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A basis for the transportation problem has been shown to not contain a loop and
also to be triangular. A collection of cells of the transportation array is a minimal
linearly dependent set if and only if (1) it is linearly dependent and (2) no proper subset
of it is linearly dependent. By the definition of a 0-loop, it is clear that a 6-loop is a
minimal linearly dependent set. The following theorem will define a criterion of how to

find a unique 6-loop.

8-Loop in B U {(p,q)} Theorem (2.f). Suppose B is a basic set of m+n-1 cells from the
mxn transportation array and {(p,q)} is a nonbasic cell. Then the collection of cells

B {(p,g)} contains exactly one 8-loop and this 8-loop contains the nonbasic cell.

Proof. Since B is a basic set, B is linearly independent so it can not contain a 8-loop.
Thus, if there 1s a 6-loop in B v {(p,q)}, the loop must contain {(p,q)}. Since the rank of
A (2.1) is m+n-1, no subset of m+n cells is linear independent. So BV {(p.q)} is linearly
dependent. From the previous theorems, B U {(p,q)} contains at least one 6-loop. From

Linear Algebra, a set containing a basis and exactly one nonbasic column vector contains

a unmique minimal linearly dependent set. Thus, the set of column vectors contained in the

set B {(p,q)}, contains exactly one 8-loop. ¢

To find a 0-loop in B W {(p.q)}, place an eniry of +0 in the nonbasic cell (p,g).
Then make alternating entries of -6 and +8 among the basic cells, such that each row and

column contains a +6 and -6 or none at all. The cells marked by +0 and -0 creates a
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unique 8-loop. Cells marked +9 are called recipient cells and cells marked -0 are called

donor cells. 8-loops can be used to change the basis, which is shown in the next theorem.

Theorem (2.g). Let B be a basis from 4 (ignoring one row) and let & be another column
corresponding to a nonbasic variable which is entering the basis. The vector y=B"d will
give the changes in the current basic variables when the new variable is entered. The

components of the vector y=B'd are +1, -1 or 0.

Proof: Lety be a solution to By=d. Then y is the linear combination of the basis that

det(B,)
det(B)

represents d. This can be solved by Cramer’srule as y, = where B, 1s the matrix

obtained by replacing the k™ column of B by d. Since B is triangular, it may be put into
lower triangular form with 1°s on the diagonal by a combination of row and column
mnterchanges. Therefore det(B)=+1 or —1. Because any square submatrix of A4 will only
contain entries of 0 or 1 with a maximum of two 1’s in each column by the design of the
matrix 4, every determinant of any submatrix of 4 will have a value of +1, -1, or 0, so

det(Bk)= 0, +1, or —1. Therefore »=0,+1l,0or-1.¢

The significance of the above theorem is that the current basic variables will
change by +1, -1, or 0 when a new variable is entered into the basis, at unit level. If the
new variable has a value of 0, then the current basic variables will then change by +6, -0,
or 0 corresponding to whether it is a recipient cell, donor cell, or a cell not within the

loop, respectively.

24



Therefore, to change the basis, pick a nonbasic variable (x, ;) corresponding to a
negative cost coefficient (usually the most negative) to enter the basis. Find the unique
8-loop in the set B {{p.,g)}. Place a +6 in the cell (p,g) and the entries -6 and +6

alternatively among the cells within the loop. Let X represent the current basic feasible

solution. Therefore, the values of the new basic feasible solution is x;; = Sc:j +68, EEU -,

or X, depending on whether (i,j} is a recipient cell, 2 donor cell, or a cell not within the

loop, respectively and x,,=0. All other nonbasic variables have a value of zero.
All of the values within the vector x must remain nonnegative so that the
solution remains feasible at every step. By choosing 6 by the minimum ratio rule,

@=minf{ x_; (r.s) a donor cell}, x will always remain feasible. Therefore, 8 is
determined at each step so that the primal feasibility of x is always retained. The donor
cell from which 0 is attained, is the cell that is leaving the basis. If more than one donor
cell meets this criterion, one is arbitrarily chosen and is replaced in the basis by the cell
(p,q). Because 0 > 0, the objective function at each step will at most be equal to the
previous system. The objective function at each step will be z{ ¥ }+7,,,0. This can be seen
by looking at the value of the objective function at two consecutive steps. At the first
step,

z(f)=2cg. SE,]. = ZZ:‘,} E,;,. +Zai u, +ij v;

i i

with the value of r; equal to 0 for the current basic variables and the value of X, equal to

0 for the nonbasic variables. Therefore, the objective function has a value of
d%)=D aqu+ybv,.
i j
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The objective function corresponding to the new basic feasible solution is

z(x):Zerj X +Zai U, +ij. Vi =Fp Xy +Za,. U, +ij v,
i i i K
because the only value changed from the previous objective function, that was not

multiplied by 0, is x,, /= 0. Therefore, the objective function differs by r,,x,, where x,,=6

from the previous step.

Therefore, to summarize the transportation algorithm:

1) Compute an initial basic feasible solution.

2) Compute the simplex multipliers and the reduced cost coefficients. If all
reduced cost coefficients are nonnegative, stop; the solution 1s optimal.
Otherwise, go to 3.

3) Select a nonbasic variable corresponding to a negative reduced cost
coefficient to enter the basis. Find the unique 6-loop and update the solution.
Go back to 2.

The following is an example that illustrates the transportation algorithm in tableau form:

2 3 2 20
2 2 2 15
4 1 4 25
10 30 20

1) Find initial basic feasible solution to the primal. We used the Northwest Corner Rule.

10 10
2 3 2 20
15
2 2 2 15
5 20
4 1 4 25
10 30 20
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2) Find the simplex multipliers (put in place of a,b).

10 10
2 3 2 u =06
15
2 2 2 =5
5 20
4 1 4 U= 4
V1=-4 V2=-3 v3=O

3) Find the reduced cost coefficients (put them in place of cost coefficients).

10 10
0 0 4 6
15
! 0 3 5
5 20
4 0 0 4
-4 -3 0

4) Select the most negative cost coefficient. Find the 0-loop containing this. Select x; 3

as nonbasic variable entering the basis.

10, (10-10 10(+10
0 0 -4 6
15
1 0 -3 5
15¢5+10 10¢20-10
4 0 0 4
-4 -3 0

5) Find the simplex muliipliers.

10 10
0 0 -4 u, =-4
15
1 0 -3 =10
15 10
4 0 0 =10
V1=4 Va= 0 V3= 0
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6} Find the reduced cost coefficients.

10 10
0 4 0 -4
15
-3 0 -3 0
15 10
0 0 0 0
4 0 0

7) Select the most negative cost coefficient. Find the 8-loop. Select x; 3.

10 10]
0 4 0 -4
Sa5-10 IO(HO)W
-3 0 -3 0
25(15+10 (10-10
0 0 0 0
4 0 0
8) Find the simplex multipliers.
10 10
0 4 0 uy =90
5 10
-3 0] -3 u;=-3
25
0 0 0 uy=-3
vi=0 vy=13 vy=0
9) Find the reduced cost coefficients.
10 10
0 1 0 0
5 10
0 0 0 -3
25
3 0 3 -3
0 3 0

This solution is optimal because all reduced cost coefficients are nonnegative.
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Chapter 3

LABELING METHODS IN THE PRIMAL TRANSPORTATION ALGORITHM

Although the transportation algorithm described in chapter 2 is an efficient
specialization of the simplex method, it is obviously ineffective when dealing with larger
problems. Larger problems clearly involve a tremendous amount of data, and keeping
track of all the data could be quite difficult. A good example of that is the step of finding
the 0-loop, where it is obvious that some kind of a “map” is needed to navigate the
transportation tableau.

There is an effective labeling method used to keep track of the basis, which is
quite efficient when dealing with larger problems. This method uses graph theory to
label the m sources and # destinations creating a directed graph. This method is very
useful in the computer implementation of the problem. In order to explain the use of this
method, some background in graph theory must be given.

A graph G=(N,4) is a pair of sets including a set N of points or nodes {(or
vertices) and a set of lines, A , called edges or arcs, with each edge joining a pair of
distinct points in N. The edge denoted by (i,f) 1s the edge connecting node i to node ;.
There is at most one edge between two nodes and every edge contains exactly two points

of N. A directed graph is a graph where every arc has a specific direction. A pathisa
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sequence of distinct arcs that join two nodes. The length of the path is defined to be
equal to the number of edges in the sequence. A simple path is a path where every node
along the path appears in the sequence only once. A cycle is a path between a node and
itself that contains at least two nodes and a simple cycle is a cycle where each node
appears only once within the cycle. A graph G is a connected graph if there exists a
path in G between any two of its vertices and is disconnected otherwise. A connected
graph that contains no cycles, is a tree. Therefore a unique path joins every two distinct
points within a tree. A terminal node within a tree is a node where there is exactly one
edge in A4 incident at it.

The tree associated with a basis for the transportation tableau is constructed as
follows: let the sources 1,2,...,/n be represented by the nodes with serial numbers
1,2...,m, and let the sinks 1,2,...,n be represented by the nodes with serial numbers
m+l1, ...mtn. Therefore, N={1,...,m,m+1,...m+n} and if a cell (i} in the transportation
array is basic, then there is a corresponding edge (i;/+m) in the graph. For a subset A
of a basis B, the set of corresponding edges can be denoted by Ax={(i;j+m):cell (i,/) €A}.
The graph associated with the subset is then Ga=(N,Ax).

To construct the tree, let node m+n be the root of the tree. The following
procedure is repeated until all of the nodes in /V are included in the tree: Include in the
tree all points eV that have not been included yet, satisfying (i;f)e A, for some j with the
property that 7 is a point included in the graph at the previous stage.

It follows from the above that the immediate descendants of m+# are the row

indices ¢ where x,, is a basic variable of the current solution, i.e. cell (i,#) is a basic cell.
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Thus, the immediate descendants of the root, m+# are the sources for which a shipping
route to sink » exists.

Because these edges within the rooted tree link sources to sinks and vice versa,
this graph is directed. All points included in the tree during an even numbered stage are
associated with rows of the transportation array (sources) and all points included in the
tree during an odd numbered stage are associated with columns of the transportation
array (sinks). Therefore at each step the direction alternates so that the arc is pointing
from a source to a sink. A basic cell in the transportation array always corresponds to an
edge between two nodes, the absence of an edge being equivalent to a cell being
nonbasic.

The following example illustrates the correspondence between a basis and the tree

describing it.

X X 1

X X 2
X X X 3
X X 4
5 6 7 8 9 10

This tableau has an x entered in each basic cell, with the rightmost column corresponding
to the serial number labeling the rows and the last row corresponding to the serial number

labeling the columns.
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The tree that corresponds to this basis is depicted in Figure (3-1).

An Example of a Rooted Tree

Figure (3-1)

A set of arrays is needed for the explicit storage of the information needed to

describe a tree. Below is a description of the four arrays needed to achieve that goal.

32



Choose node m+n as the root, then determine all the row indices 7 such that
(m+n ; i) is an arc within the tree. Each such i is called a immediate successor (or child)
of m+n, and m+n is the predecessor of each such node. Predecessors and immediate
successors of other nodes are defined similarly. The notation for the predecessor index of
node j is P(). If a node is a source, the predecessor index will be the serial number of a
sink and vice versa. If a node does not have a unique immediate successor, these
successors are considered brothers of each other, which are identificd as a sequence
ranging from eldest to youngest. Designate the successor index of a node to be the eldest
son. Thus, for example if the younger brothers of node j are {j,,j5, Js,. .-, j;}. then
designate S(j)=], and the younger brother of j, to be j,., for 1<t <r-1, denoted as
YB()=j;; - The elder brother index is now self-explanatory. The notation for the elder
brother of j is EB(f) and for the previous example, EB(j,,;)=), for 1<t <r-1. If one of the
relationships does not exist for a certain node, the corresponding value is set to 0. For
example, for the root m+n, P(m+n)=0, YB(m+n)=0, and EB(m+n)=0. Also for any
terminal node j, S{/)=0.

The set of younger brothers ofj is the union of {YB(/)} and the set of younger
brothers of YB(y). The set of immediate successors of a point j if S(/)=& is the union of
{S(7)} and the set of the set of younger brothers of S(7). The descendants of / is the union

of the set of immediate successors of i and the sets of all descendants of j as f ranges over

the set of immediate successors of 7. If 7 is a terminal node, then the set of immediate

successors and descendents will be empty.
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The predecessor, successor, younger brother, and the elder brother indices help
label the basis and are needed to alter the tree when a new basis is to be created.

Continuing with the previous example, the indices for the nodes obtained from the

current basis are as follows:

Nodes 1 2 3 4 5 6 7 8 9 10
Predecessor 10 6 5 5 1 3 3 4 2 0
Successor 5 9 6 8 3 2 0 0 0 1

Younger Brother| 0 0 4 0 0 7 0 0 0 0

Elder Brother 0 0 0 3 0 0 6 0 0 0

Example of the Indices corresponding to a Rooted Tree

Figure (3-2)

Now we address the procedure of how to change a basis while using a tree as the
labeling method. The results of the following theorems are used to find a 6-loop within

the tree.

Theorem (3.a). Let i, and i. be a pair of points on a tree G. Then there exists a unique

simple path in G from i, to 1..

Proof: G is a tree so 1t 1s connected. Therefore there exists at least one path from i, to i«.
If more than one path exists then combining these paths would create a cycle from i, to i.

This contradicts the assumption of (& being a tree. ¢
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In the discussion below, A denotes a subset of cells.

Simple Cycles and 0-loops Theorem (3.b). Every 0-loop in A corresponds to a simple

cycle in G and vice versa.

Proof This follows from the definition of a loop and a simple cycle. ¢

Therefore A contains a 6-loop iff there is a simple cycie in Ga.  1f A4 contains m+n-1
edges, which is equivalent to a basis for the transportation array, it follows that G, is a
tree and therefore contains no cycles. This is equivalent to saying the tree contains no 0-
loops, which has already been proven for any basis of a transportation problem. Thus, A
is a basis for the transportation array iff Ga=(N,4,) 1s a tree.

The simple path between a point i and the root m+n is referred to as the
predecessor path of node 7 in G (defined by the basis B) because only the predecessor
indices are used.

Definition: A simple path between a point and the root can be defined as follows:
1) The edge (¢;P(?)) is the first edge in the path. If P(i) is the root node, terminate.
Otherwise pick P(7} as the current point /.
2) (;P(y)) is the next edge in the path.
3) IfP()) is the root node, terminate. Otherwise, change the current point to P(j)
and return to step 2.

Let B be the basic set of cells for the transportation array and let (p,¢) be the

nonbasic cell being introduced into the basis. The unique 0-loop in BV {(p,q)} can be

determined by the predecessor indices. The cell (p,¢) corresponds to the emerging edge
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(p,m+q) within the modified tree of the current graph Gg. The 6-loop corresponds to the
simple cycle created when the edge (p;m+q) is included 1 graph, (N,Az {(p;m+g)}).

To find the simple cycle, the unique simple path from m+g to the root node as
well as the unique simple path from p to the root node needs to be found. Eliminate all
common edges between these two simple paths. The last common point of these two
paths is known as the apex of the simple cycle. Combine what is left from both cycles to
create the simple cycle. When i is a node corresponding to a row index, the edges (/) in
this simple cycle correspond to the cells (i,j-m) from the transportation array in the 6-
loop. Therefore once this simple cycle is found, the new basic feasible solution is formed
by adding +6 and -8 as described in chapter 2 and dropping one basic cell from the basis.
Assume the dropping cell is (r,s). Then the graph of the new basis B’, (Gp- is obtained
from the graph Gy by deleting the edge (#;m+s) and adding the edge (p;m+g).

To illustrate the modification of a tree, consider the example discussed earlier in
this chapter. Let the variable (3,6) be the variable selected to enter the basis and the
variable (3,1) be the variable leaving the basis (the dotted lines correspond to the loop).

The new tableau corresponding to this change is as follows:

S e e ] X 1
i X X é 2
s e
e T R 3
5 6 7 8 9 10
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The modifying of the tree in Figure (3-2) corresponding to this new basis is as

follows:

Example of Dropping and Entering Edge of a Tree

Figure (3-3)

The dashed line represents the entering edge and the edge that is slashed represents the

edge that is being removed.
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Figure (3-4) displays the modified tree that {its the new basis.

Example of a Modified Tree

Figure (3-4)
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Chapter 4

SOME IMPLEMENTATION DETAILS

The computer program used to solve the transportation problem essentially
follows the steps of the transportation algorithm outlined in the previous chapters. In this
chapter, we outline some of the implementation details. Not all the subroutines will be
discussed because there is extensive documentation within the program.

The sparsity of the transportation array, x, is an obvious problem that needs to be
addressed; Only m+n-1 entries can be nonzero while x contains mn entries. In this
program, a special method was used to store this matrix. The m+n-1 basic variables are
stored in a linear array X. Thus, X(1), X(2),..., X(m+n-1) will always contain the basic
variables, arranged by rows. In the vector ROW, the i™ entry contains the location in X

of the first basic entry from the i™ row forl< i< n, and in the vector COL, the j™ entry

contains the column index of the basic variables X(j) for 1< j< m+n-1. This allows the
program to store the basic feasible solutions more efficiently, since the rest of the values
within the matrix x are 0. This method of storage does complicate the program, but the

memory space saved by this method far out weighs the expense of adding these pieces.
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The following is an example of how the basis is stored.

1 4
3 2
6 8 7
9 12
)| 1 2 3 4 5 7 8 9
X 1 4 3 2 3 7 12
Column 1 6 2 5 1 2 3 1 4
)| I 1 | 2 | 3 ‘ 4
Row I 1 | 3 f 5 ’ 8

For example, if we want to find the value of the basic vanable x;, the entries
COL(k) should be scanned for Row(/) < k < ROW(i+1)-1, until COL(k)=f. Subroutine
FIND performs this task and can be found on page 61. It will output the index value of
where the bhasic variable is located within X.

The first step of this program is to find an initial basic feasible solution to the
primal. This is done using the Northwest Corner Rule and is performed by the subroutine
NW, found on page 54. The design of this method makes it easier to program than other
methods. The entries of COL(f) and X(j) are recorded at each step in the order in which
the basic variables are allocated, while the value of the i™ entry in ROW()) is assigned j
when the first entry of the i row is assigned. The program will print a statement

signaling that the problem is degenerate, if a value of 0 is assigned to any of the basic
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variables. Once the initial basic feasible solution is found, the initial cost is calculated
and stored. As discussed earlier, when a new basic feasible solution is found, adding the
reduced cost of the entering variable multiplied by 6 gives the cost of the new solution.

An important step of this algorithm is to determine if the solution obtained is
optimal. This is where the computer algorithm differs from the hand calculation
algorithm. Trees need to be introduced so that a 8-loop can be determined easily. The
initial rooted tree is created using the subroutine TREE located on page 56 and 57. The
predecessor, successor, younger brother, and elder brother indices of each node (/=1 to
m-+n-1) are saved in the following vectors respectively: PRED(y), SUCC(), YB(y), and
EB(j). The successor index saves the serial number of the eldest son. The younger
brother index saves the serial number of the eldest among the set of younger brothers and
the eldest brother index saves the serial number of the youngest among the set of the
eldest brothers. In order to keep track of which nodes have been labeled so far, a vector
SLIST is used. SLIST is initially set so that the i™ entry equals i, for i=1 to m+n-1.

Once a node has been labeled, the entry corresponding to its serial number in SLIST is
changed to 0. The vector NODE is used to store the nodes, which need to be processed at
a later stage. The value of the vanable KOUNTER 1s the number of the node currently
being processed.

IT KOUNTER is a source node, then the column indices associated with the
successors of KOUNTER are known because of the way that X is stored. If the node
corresponding to the column has not already been processed, its predecessor index is
defined to be equal to the KOUNTER. If there is more than one column that corresponds

to this row and they have not been processed yet, these will be brothers, letting the eldest
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brother correspond to the first column obtained and the youngest brother correspond to
the last. The same process is carried out if KOUNTER corresponds with a column index,
except that the location of the row indices, corresponding to the basic cells in that
column, must be determined. This process is repeated until each node is labeled. If a
node does not have one of these indices, it 1s labeled as a 0.

The first step of the main loop of this program is to determine if all reduced costs
are positive, and, if not, to determine the entering variable into the basis. This is done by
the subroutine NEWBAS, which is located on page 58. NEWBAS is designed to pick
the new variable to enter the basis using the modified row first negative method. This
method was used because a study published in “Management Science” in 1974 showed
that this method was most efficient, taking into consideration the time it takes to find the
pivot variable, the average time per pivot, and the total pivot time (Glover, pg. 801).
Modified Row First Negative Method finds the first row with a negative cost coefficient
and then scans the rest of that row for any smaller reduced cost, saving the smallest. It
saves the row index of the variable entering the basis as NBR, and the column index of
the variable entering the basis as NBC. If all reduced costs are nonnegative, this solution
is optimal, and the program terminates. If not, the program will print the iteration
number and what variable is entering the basis.

The next step in the main iteration loop is to find the 6-loop using the rooted tree.
This is done within the subroutine QLOOP on page 59 and 60. In order to do this, the
simple path from P= NBR to the root and the simple path from Q= NBC+m to the toot
must be found. These simple paths are found by starting with P or ), and moving up the

tree using the predecessor indices until the root is reached (saving the nodes along the
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path). PPATH has a designated first entry of NBR and the rest of the entries correspond
to the nodes contained in the simple path between P= NBR and the root. QPATH’s first
two entries correspond to NBR and NBC+m, respectively. After these first two entries,
the nodes in the simple path between Q = NBC+m and the root are stored, with the last
entry being the root. After these two paths are determined, they are combined within
(QPATH, eliminating any duplicated nodes contained within each path except for the
APEX of this cycle. At the end of this subroutine, QPATH contains the simple cycle
from P=NBR to Q = NBC and PPATH contains the simple path from P = NBR to the
APEX.

Now that the 8-loop has been found and stored within QPATH, the value of 6
must be determined, and X must be modified. The subroutine MODFYX on page 62 and
63, performs these operations. In this subroutine, IIN = NBR and JIN = NBC. The first
step of determining the value of @ is to determine the donor and the recipient cells.
Because of the way QPATH was constructed and because the tree is a directed graph, the
nodes will correspond alternately to a row and a column index, allowing the variables
corresponding to the basis to easily be determined. The first two entries within QPATH
were defined so that they would correspond to the row and the column of the variable
entering the basis. Starting with the third entry, the first basic variable of the loop is equal
to X(QPATH(3), QPATH(2)-m), and corresponds to a donor cell. For i=3 and
subsequent odd indices to the end of the array, the next two basic variables are X(
QPATH(z), QPATH(i+1)-m), corresponding to a recipient cell and X( QPATH(#+2),
QPATH(i+1)-m), corresponding to a donor cell. With the row and column indices

known, each basic variable must be found within the X vector using the FIND subroutine.
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Once it is found, the location of where it is located within COL and X is saved within
LIST. The minimum value of X for donor cell is saved as THETA, and the row index as
IOUT, the column index as JOUT, and the location of where the cell is within X as
IDROP. Then THETA is subtracted from the donor cells and added to the recipient cells,
which can be done easily because the location of each cell was saved within LIST
(alternating donor and recipient).

Now the variable leaving the basis must be removed from X and the entering
variable must be added. Because of the way that the basic variables were saved m X, it
must be decided if the row of the cell entering 1s greater than the row of the cell that is
leaving. The entering variable will be listed at the beginning of the section of COL and
X, corresponding to its row. If 1IN > IQUT, the indices in COL and X need to be
shifted to the left. Otherwise, the indices in COL and X need to be shifted to the right.
The indices are only altered between the rows of the entering and the leaving variables.

Once the X values have been modified, RLEFT is given the value of the row and
CLEFT is given the value of the column of the variable leaving the basis. The rest of the

program is well documented in the following chapter.
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Chapter 5

FORTRAN CODE FOR THE TRANSPORTATION PROBLEM

TRRRERARE ARG AT EARARA TR AT AR IR AR Ar btk k v d kb kA Ak kAR Ak bk A A AR A b kb kXX d b dF A X AT AR LA AT T AT ARR
.

IOFPTRAN IS A PROGRAM THAT CALCULATES THE OPTIMAL SOLUTION FOR A
TRANSPORTATION PROBLEM

THEREREAXATERTIERIE XA ZREARART I AR AR R RN RARARA R AR A A AR A AR AR A b h kARt b bbb R Rbhhhhd
-

PROGRAM OPTTRAN
PARAMETER (M=1000,N=1000)

INTEGER  A(M), B(N), CG(M,N), X(M+N-1), U(M), V(N), THETA, COST
INTEGER ROW(M+1), COL(M+N-1), RLEFT, CLEFT, RROW, ROOT
INTEGER  PRED(M+N), SUCC(M+N), EB(M+N), YB(M+N),

INTEGER  NINJC(N), NINJR(M), RINJS(M), CINJS(N)

INTEGER  DESISTAR(M+N), ALPHA, NDESJSTAR(M+N)

INTEGER  QPATH(M+N+1), PPATH(M+N+1), JPATH(M+N), REDCOST
REAL AVLENDI

X=0
ROW=0

COL=0

U=0

V=0

NBR=0

NBC=0

KSTOP=1
COST=0
ROW(M-+1)=M+N

thikkdkdithhhdhhhddtbhhhdhbdRdkdhhdhhh bk dRrfhhdiRidddRvbhhhhdRRheRRhkdddhdhhkddddrthhhhhhhd

ICALCULATING A COST MATRIX, A,B FOR A TEST PROBLEM WHICH CREATES THE
'OPTIMAL SOLUTION TO BE CREATED BY THE SOUTHEAST CORNER RULE

! M= # OF SOURCES

! N= # OF SINKS

! C= COST MATRIX

! A= VALUE AVAILABLE FROM SOURCE

! B= VALUE NEEDED AT SINK

!***#*********************************************************************************

CALL CREATE(M,N,C,A.B)
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!********************************************************************W****************

! CALCULATING THE INITIAL BASIC FEASIBLE SOLUTION FOR THE TRANSPORTATION
IMETHOD USING THE NORTHWEST CORNER RULE

! ROW =TELLS WHERE THE FIRST ENTRY FROM ROW 1 IS STORED AT

! WITHIN X AND COL

! COL =CURRENT COLUMN VALUE OF THE BASIC CELLS

! X =VALUE SENT FROM SOURCE I TO SINK J

! COST=TOTAL COST OF SHIPMENT WITH THE BFS

!

Fhhkhkdehkk kR R R R RN RN TR TR TRV ERRNARR L AR AR RR TRk Rd Rk R ddddhdd kb hk ki hhddhhk

CALL NW(X,A,B,ROW,COLM,N)

K=1
DO I=1,M+N-1

IF (ROW(K) ==T) THEN

RROW=K
K=K+1

END IF

COST=COST+C(RROW,COL(I)*X(I)
END DO

ThEFAhkhkhhrhhhddddhh bR R R hd AT RN R R LRk RRR R A dd b h bR AN b AR A IR ARk eh A A A X 4% %
+

!CALCULATE THE INITIAL DUAL VARIABLES(U,V) WHEN USING THE NWC RULE TO
IFIND A BFS SOLVING THE EQUATION C(I))=U(D)+V(J) FOR ALL BASIC CELLS
' SET V(N)=0 SO U(M)=C(M,N)

TR R AR R AR A AR AR TR AL A T R AR R A A AT AR IR A AR II I I IR R R N T IR I T IRRRIRETRRE TSRk ko hEk

CALL DUAL(M,N,U,V,C,COL)

PRtk o e SRR e s Al R AN e e AR R Rk T okl e o o e ook o R e
ICOMPUTING THE INITIAL REDUCED COST COEFFICIENTS AND SAVING THEM IN
ITHE COST MATRIX-C

Tk bkt hd AL AR AT ALALERERRE AT AT AL AT AN IA R AT A A F A A bk bk hhdwrhkhkbddk kbbb e eiwd

DO I=1,M
DO J=1,N
C(LT=C(LT)-U()-V({J)
END DO
END DO

!*************************************************************************************

ICREATING A ROOTED TREE WHICH WILL ALLOW FOR A 6-LOOP TO BE PICKED

! PRED=PREDECESSOR INDICES

! SUCC=SUCCESSOR INDICES (SERIAL #OF THE ELDEST SON)

! YB=YOUNG BROTHER INDICES

! (SERIAL #0F THE ELDEST AMONG THE SET OF YOUNGER BROTHERS)

! EB=ELDER BROTHER INDICES

! (SERIAL #0F THE YOUNGEST AMONG THE SET OF ELDEST BROTHERS)
! {(YOUNGEST=RIGHTMOST NODE OF THE TREE ON THAT 1.LEVEL)

TR R AR I T AR R LI LRI IR I NEIIRL LA TR T IR RN RA Rk kR R Rk h kb fkhdhh ki ihhd

CALL TREE(PRED,SUCC,YB, EB, M, N, ROW, COL)
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!START OF LOOP TO FIND OPTIMAL SOLUTIONHAVE BASIC FEASIBLE SOLN,
! NEED DUAL TO ALSO BE FEASIBLE SO NEED ALL REDUCED COSTS >0

! KOUNT=KEEPS TRACK OF HOW MANY ITERATIONS

! KSTOP=WHEN ALL RC>0 THISIS SET TO 0 SO THAT IT EXITS LOOP

TREEFERRAARERIF AL AR I AT h AT A NI oWk RR W kR Rk h TR R kR R RN kR kbR Rk dhhhh kR w
]

KOUNT=1
DO WHILE (KSTOP =1) IBEGINNING OF LARGE L.OOP

TRRRARTETRETRRRRTIF RS g hofodofe i dfedodo ok do i e ke e v e o sie s vle ok sie e o8 o e Yo W oo ofe e e e o o Yo o 3 Y o o e e ol ol e e e e e W e ok e R o e e e e e
.

IPICKING THE NEW YARIABLE TO ENTER THE BASIS USING MODIFIED ROW FIRST
INEGATIVE METHOD. THIS METHOD FINDS THE FIRST ROW WITH A NEG REDUCED
!COST COEFFICIENT AND THEN SCANS THE REST OF THAT ROW FOR ANY OTHER RC
!'WHICH IS MORE NEGATIVE.

! NBR=ROW OF VARIABLE ENTERING THE BASIS

! NBC= COLUMN OF VARIABLE ENTERING THE BASIS

FTAAREAAFENTAXAXRET A AR R AR AR LA RERAR AR A RE AL R AR ARRAA AR AT SR R AR AR A h bbb R dRe vk hhddd

CALL NEWBAS(M,N,CNER,NBC KSTOP)

IF (KSTOP == 0) THEN {EXIT LOOP IF OPTIMAL
GO TO 1000
END IF

PRINT *, 'AT ITERATION' KOUNT , THE ENTERING VARIABLE INTO THE BASIS IS'
PRINT *,'X(', NBR, NBC,"y

1 e ¢ e ofe ofe ok e she ok e e s ok ol o obe s sk ok o e e ok ok ok ol o s ok e obe sk s e abe st abe o s ol sk e o ok ol ol vk ok ol e o ok ol ok sk ok ok ol ok ok ok e ol ok o ok ke e okt ok sl skl ok ok ok ke e ke ke Ak ok

'THIS FINDS THE 6-LOOP USING THE ROOTED TREE WITH THE NONBASIC
ICELL(P,Q)={NBR,NBC) TO ENTER THE BASIS. IN ORDER TO DO THIS -THE SIMPLE
'PATH FROM P TO THE ROOT(M+N) AND THE SIMPLE PATH FROM Q{M+Q)) TO THE
IROOT MUST BE FOUND. THEN WE COMBINE THESE TWO PATHS ELIMINATING ANY
'DUPLICATES, LEAVING ONLY ONE DUPLICATE, WHICH IS THE APEX.

! QPATH= SIMPLE PATH FROM Q TO THE ROOT

! AT END- SIMPLE CYCLE FROM P TO Q

! LENQ=LENGTH OF QPATH

! PPATH= SIMFPLE PATH FROM P TO ROOT

! AT END- SIMPLE PATH FROM P TO APEX

! LENP= LENGTH OF PATHOFP

1 s 3 e ofe ok she e o sk o e e o ol ke ohe she ok ol ok ol ol ok o ke sk ok sk e ode ke ok e ol ol e ol ol s sk ke e sl sl ok e e ol e ol ok sk e sl ok ok ok ok ol ol v ok ol dle ke ok sk sk e e e obe s sk ok e ke ok ok ok ok ok ok

CALL QLOOP(NBR,NBC,QPATH,M,N,PRED,LENQ,LENP,PPATH)
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ITHIS CHANGES THE VALUE OF X (THE BASIS) - ADD 0 TO RECIPIENT CELLS AND
ISUBTRACT 6 FROM THE DONOR CELLS. CHANGE THE NONBASIC TO A BASIC CELL.
! IDROP=POSITION OF THE BASIC CELL WHICH IS LEAVING THE BASIS
RLEFT=ROW INDEX OF CELL LEAVING THE BASIC FEASIBLE SOLN
CLEFT=COLUMN INDEX OF CELL LEAVING THE BASIC FEASIBLE SOLN
THETA=VALUE OF NEW BASIC CELL/OLD BASIC CELL

1
H
1
s
1
.
IhfdddR kb dhhrdrhhddhkhkdrhdbddrddhhddhdddhdrhrdhkhhrkhdtkhhkdrhkhrhdddhrdrddhhhrhrhhkdRwndbthrd
H

CALL MODFYX(QPATH,LENQ M,N, X ROW,COL,IOUT,IDROP,JOUT,THETA)

CLEFT=JOUT
RLEFT=IOUT

PRINT *, THETA=', THETA

Yl dhkddkdkbhhhh kb ddRbhb bbb hwbdbbdhbdreddrdhbhd ek ehhtd bR wbh ik bk RRikhRtrrd bR kit
*

ITHIS IS THE BEGINNING OF UPDATING THE ROOTED TREE
RINJS= THE ROW INDICES CONTAINED AS A DESCENDANT OF J*
CINJS= THE COLUMN INDICES CONTAINED AS A DESCENDANT OF J*
LENR=LENGTH OF RINJS

LENC=LENGTH OF CINJS

(I11;J1) IS THE EDGE THAT IS ADDED

(12;JSTAR) IS THE EDGE THAT IS LEAVING

12=PRED(JSTAR)

ALPHA= USED LATER FOR CHANGING RC COEFFICIENTS
KTESTER=KEEPS TRACK OF IF I2,J* ARE ON PPATH TO THE APEX

TRk R AR RN R R A AR R AR R AR R AT ARR AR A IR AR E TR IRRARL AR AR RN AR ek kb ikt k

Bk bk bk e sme S Wed ok hew

RINJS=0
CINIS=0
LENC=0
LENE=0

IF (PRED(RLEFT) = CLEFT+M) THEN
JSTAR=RLEFT
12=CLEFT+M
RINIS(1=]STAR
LENR=1

ELSE
JSTAR=CLEFT+M
12=RLEFT
CINIS(1)=JSTAR-M
LENC=1

END IF

KTESTER=0
Iv=1
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'TESTING WHICH PATH THE EDGE THAT IS LEAVING IS ON
DO WHILE (KTESTER < 2 .AND. IV < LENP+1)
IF(RLEFT == PPATH(IV) .OR. CLEFT+M == PPATH(IV)) THEN
KTESTER = KTESTER +1
END IF
IV=IV-+1
END DO

IF (KTESTER = 2) THEN
J1=NBR
[1=NBC+M
ALPHA=-1
ELSE
J1=NBC+M
I11=NBR
AILPHA=1
END IF

PR AR AR RN AR AR R ARARET LR RRER AR AR I HAE R I IR AL A AR IR I TRk FThR oS bRk h kb hd Rk hh ki iadid

!DETERMINING THE SIMPLE PATH FROM J1 TO J*
! JPATH= ARRAY THAT DETERMINES THE SIMPLE PATH FROM J1 TO JSTAR
! JPATHLEN= COUNTER FOR LENGTH OF JMAT

TRRERREKEXERREARERETARLFA o hk kit hhdhhhdhhdhhdhkhhhkhddhhdhhhdhdkRihhhhkhhdhhdhhdbhdihhhidd

JPATH=0
JPATH(1)=T1

[F (J1 = JSTAR) THEN IF J1=JSTAR,IT DOESN'T
KTESTER=0 ! GO INTO THE LOOP
JPATHLEN=1

ELSE
KTESTER=1
JPATHLEN=2

END IF

DO WHILE (KTESTER == 1) !WHEN JSTAR IS REACHED,
JPATH(JPATHLEN) = PRED(JPATH(JPATHLEN-1}) ! KTESTER=0
IF (JPATH(JPATHLEN) == JSTAR) THEN
KTESTER=0
ELSE
JPATHLEN=JPATHLEN+1
END IF
END DO

!w********w****************w**********************************************************

ICALCULATING THE DESCENDANTS OF JSTAR AND THE ROW AND COLUMN INDICES
'WITHIN THIS WILL BE USED TO UPDATE THE REDUCED COSTS

! DESISTAR= SAVES INDICES ARE DESCENDANTS OF JSTAR

! LENDJ=LENGTH OF DESJSTAR

! RINJS=ROWS THAT ARE DESCENDANTS OF JSTAR

! CINJS=COLS THAT ARE DESCENDANTS OF JSTAR

tdhkhtrhRrrhehRiRbdd IR RREEERRE AR AT R TR AT RN R Rk bkhd kb bk khh kb h ek h ik hhhdkidh
.

CALL DESCEND({SUCC,DESJSTAR,YB ,M,N,JSTAR,LENDJ,RINJ5,CINJS,LENR,LENC)
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INEED TO CUT THE PIECE IN THE TREE WHICH IS LEAVING. THIS ALTERS THE TREE
IBY CUTTING IT INTO 2 SEPARATE TREES-

! 1 CONTAINING DESCENDANTS OF JSTAR,

! THE OTHER CONTAINING THE REST OF THE TREE

!THE SUCCESSOR INDEX OF I2=PREI{JSTAR) ALSO IS CHANGED

PR AR A AT NN TR AR hdeh AT A E T AT T IR AR RN AR AR A TR Ak kkk Ak ek hhhk kit

IP=PRED(JSTAR)
IE=EB(JSTAR)
IY=YB(JSTAR)
EB(JSTAR)=0
YB(JSTAR)=0
PRED(JSTAR)=0

IF(IE == 0) THEN
IF(IY /= 0 ) THEN '(TE=0,IY/=0)
EB(IY) =0
SUCC(IP)=IY
ELSE
SUCC(IP}=0 IE=0,IY=0)
END IF

ELSE
IF (IY /= 0) THEN Y(E/=0,TY/=0)
EB(IY)=IE
YB(IE)}-IY
ELSE 1(IE/=0,TY=0)
YB(IE)=0
END IF
END IF

TR R R A AR AR R R AT R AR AT F R R T TR R R R R R AR L A AR AR LA AT R AR A I T AT R I A AR T A A ANAL T AR R AT h*k

!CALCULATING THE ROW AND COLUMNS INDICES WHICH ARE NOT DESCENDANTS
!OF JSTAR. THIS WILL BE USED TO UPDATE THE REDUCED COSTS.

! ROOT=ROOT OF TREE

! NDESJSTAR=INDICES THAT ARE NOT DESCENDANTS OF JSTAR

! LENNDJ=LENGTH OF NDESJISTAR

! NINJR=ROWS THAT ARE NOT DESCENDANTS OF JSTAR

! KK1=LENGTH OF NINJR

! NINJC=COLS THAT ARE NOT DESCENDANTS OF JSTAR

! KK2=1.ENGTH OF NINJC

PRk RN N TR R IR TR RN TR R R TR TR AT TR IR R R TR TR R ARk R kAR AR Tkt hd v khnk

NINJR=0
NINJC=0
KK2=1
KK1=0
ROOT=M+N
NINIC(1)=N

CALL DESCEND(SUCC,NDESISTAR,YB,M N, ROOT,LENNDININJR,NINIC,KK1,KK2)
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! UPDATE THE RELATIVE COST COEFFICIENTS
! ALPHA= 1IFI11IS A NODE CORRESPONDING TO A ROW IN THE

! =1 iF OTHERWISE TRANSPORTATION ARRAY
! REDPCOST=REDUCED COST OF THE ENTERING CELL

TR A h kAR R kAT R R AR AL I T AT R L AR R AR LA AA R AR A AR I T A RIFT LA AT AL S bk bk drhdh kbR E kL id
.

REDCOST=C(NBR,NEC)

CALL UPDATE(ALPHA,M,N,REDCOST,C,RINJIS,CINJS,LENR,LENC NINJTR,NINJC KK 1,KK?)

thhhkdhddhkdhdkhkdrdhhdhhhh btk dhb kR TR A Ak ekl kRl r kR kR Ak hhhhhhkhkik

! UPDATE THE TREE BY REBUILDING JPATH AND 11

ThA LA TAEAI A FEERATRAIRTARRR AR RERRREERERAA AR AL AN AR AN AR AR AR A AR R RTARNARRERRRLR AR A dh Ry

CALL UPTREE(M,N,PRED,SUCC,YB,EB,JPATH,JPATHLEN,J1,I1,JSTAR)

Thhdhddikhk il AR sk d etk dodod dode kodo o ook ok o vk e ok s e o ol o v ok e vl vl o o o o ke sk e o o ol o e W e e ol e e e e ok e o e e ol e ok e e e ok e ok e e ke e e

ITHIS CALCULATES THE COST OF THE SHIPPING WHERE C=COST MATRIX
! COST=COST+THETA*C(NBR,NBC)

PR R R AR R R AR R TR E A AN AT R AR E AR A AT AN R R RN R AR NI R R R TR R R RS R R RE L bk ke ks

COST=COST+THETA*REDCOST

KOUNT=KOUNT+I
PRINT *, "COST=", COST
END DO IEND OF LARGE LOOP

ITESTS TO SEE IF CORRECT ANSWER FOR THE CREATED TEST PROBLEM
1000 ICOST=0
DO J=1,M+N-1
ICOST=ICOST+I*(M+N-]) ICALCULATING COST FOR TEST PROBELEM
END DO

ISWITCHING COL IN ORDER W/ RESPECT TO ROW (USED TO SEE IF X IS CORRECT)
KK=1
DO I=1,M
IF (COL(ROW(I)) < COL(ROW(I)+1)) THEN
JICOL=COL(ROW(I))
JIX=X(ROW(I))
COL(ROW(I1))=COL(ROW(I)+1)
COL(ROW(I)+1)=ITCOL
X(ROW(I)=X(ROW(I)}+1)
X(ROW(D)+1)=1TX
END IF
ISUBTRACT VALUE FROM X THAT IT SHOULD HAVE
XROW(D))=X(ROW(I))-KK
XROW(D)+1)=X(ROW(I}+1)-KK-1
KK=KK+2
END DO
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1SUM THE X VALUES AND SHOULD GET ZERO FOR THIS TEST PROBLEM
IX=0
DO I=1,M+N-1
IX=IX+X(I)
END DO

PRINT *, TX=', IX

PRINT *,' OPTIMAL COST SHOULD BE', ICOST
PRINT *, 'OPTIMAL COST AT ITERATION', KOUNT, 'IS', COST

STOP
END
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ICREATING A COST MATRIX, A,B FOR A TEST PROBLEM WHICH CREATES THE
IOPTIMAL SOLUTION TO BE CREATED BY THE SOUTHEAST CORNER RULE
M=N AND HAVE TO BE EVEN

M= # OF SOURCES

N=# OF SINKS

C=COST MATRIX

A=VALUE AVAILABLE FROM SOURCE

B=VALUE NEEDED AT SINK

Pl kA A A A AR RL XA AT L ARRREARTERAREEER AL AL AR AR RRRE LA AR AL AR R RA AR ARk A KRR AR AKX NIEE

- b wm am am g

SUBROUTINE CREATE(M,N,C,A,B)
INTEGER  C(M,N), A(M), B(N)

A=Q
B=0

[rxiekk s CREATING COST
C=5*N

DO J=1,N-1
C(N-J+1,0) = 2%]-1
C(N-1,J) = 2*]

END DO

C(1,N)=2*N-1

1+*+++*CREATING A,B
KK=M+N-1
A(M)=M+N-1

B(N)=1

DO II=1,N-1
B(I)=2*KK-1
AM-ID=2%(KK-1)-1
KK=KK-2

END DO

RETURN
END
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! CALCULATING THE INITIAL BASIC FEASIBELE SOLUTION FOR THE TRANSPORTATION
'METHOD USING THE NORTHWEST CORNER RULE

! THE X VALUES ARE STORED IN THE VECTOR X

! ROW()=TELLS WHERE THE FIRST ENTRY FROM ROW 1 IS STORED AT

! WITHIN X AND COL

! COL(I)=THE COLUMN INDICES THAT CORRESPOND TO EACH BFS

! X=VALUE SENT FROM SOURCE I TO SINK J

fhdkkdhhtiihbrdihdhRihdhrrihdihbbidRhhrthddkddRrhbhd bbbtk kbbbt ihvhhsd
.

SUBROUTINE NW(X,A,B,ROW,COL,M,N)
INTEGER  X(M+N-1), A(M), B(N)
INTEGER  ROW(M+1), COL(M+N-1)

I=1
J=1
K=t

ROW(1)=1

DO WHILE (K < M+N)
IF {(A(l} > B(J}) THEN
X(K)=B())
A(=A(T)-B(1)
COL(K)=1]
J=J+1
ELSE IF (A(I}) < B{))} THEN
X(K)=A(D)
B(I=B(N)-A()
ROW(I+1)=K+1
COL(K)=]
I=1+1
ELSE
X(Ky=B{NH
COL(K)=J
IF (J<N) THEN
E=K+1
X(Ky=0
ROW(T+1)=K+1
COL(K)=}+1
I=J+1
I=I+1
PRINT *, 'THIS PROBLEM IS DEGENERATE AT X', I-1, J
END IF
END IF
K=K+1
END DO

RETURN
END
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ICALCULATES THE INITIAL DUAL VARIABLES(U,V) WHEN USING THE NWC RULE TO
IFIND BFS SOLVING THE EQUATION

! C(LJ)=U(I)+V({J) FOR ALL BASIC CELLS

! SET V(N)=0 SO UM)=C(M,N)

ITRAAAFREREAEEFARARARTRRA IR AR T TR A AT RF AT A IR LR R AR R AL T RERE R R TR Ak dhdhkhkhhhdhhhdkhid
.

SUBROUTINE DUAL(M,N,U,V,C,COL)
INTEGER  U(M), V(N), C(M,N), COL(M+N-1)

KU=M
KV-N
UM)=C(M,N)

DO I=N+M-1,2,-1
IF (COL(I) = COL(I-1)) THEN
KU=KU-1
U(KU)=C(KU,KV)-V(KV)
ELSE
KV=KV-1
V(K V)=C(KU,KV)-U(KU)
END IF
END DO

RETURN
END
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! CREATING A ROOTED TREE WHICH WILL ALLOW FOR A 6-LOOP TO BE CHOSEN
! PRED=PREDECESSOR INDICES
SUCC=SUCCESSOR INDICES (SERIAL #0OF THE ELDEST SON)
! YB=YOUNG BROTHER INDICES
! (SERIAL #0OF THE ELDEST AMONG THE SET OF YOUNGER BROTHERS)
! EB=ELDER BROTHER INDICES
! {SERIAL #OF THE YOUNGEST AMONG THE SET OF ELDEST BROTHERS)
! (YOUNGEST= RIGHTMOST NODE OF THE TREE ON THAT LEVEL)
! KOUNTER= KEEPS TRACK OF WHICH NODE THAT NEEDS TO BE EXPLORED
! LIST=HELPS KEEP TRACK FOR BROTHERS
! NODE=KEEPS TRACK OF WHICH NODE WILL BE PROCESSED NEXT
! SLIST=KEEPS TRACK OF WHICH NODES HAVE BEEN USED SO FAR
!

kiR Rkhhkkdhkkhddhhhhkhhddddh b d kbR hdhwhkbh kbbb hhkhdd ik kdrddhkhrtdddthhhrrix
L]

SUBROUTINE TREE(PRED,SUCC,YB, EB, M, N, ROW, COL)
INTEGER SUCC(M+N), PRED(M+N), YB(M+N), EB(M+N) , ROW(M+1), COL(M+N-1)
INTEGER  SLIST(M+N), LIST(M+N), NODE(M~+N), INDEX

KOUNTER=0

INDEX=1

SUCC=0

PRED=0

YB=0

EB=0

NODE=0

NODE(1)=M+N !(ROOT OF TREE IS M+N}

DO K=1,M+N
SLIST(K)=K
END DO

DO II=1,M+N
KOUNTER=NODE(II)
SLIST(KQOUNTER)=(0
K=1
LIST=0
IF (KOUNTER <=M} THEN TKOUNTER= A ROW INDEX

DO [FROW(KOUNTER),ROW(KOUNTER+1)-1
=COL{I+M
IF (SLIST(J)==I) THEN
PRED(]) = KOUNTER
LIST(K)=J
INDEX=INDEX+1
K=K+1
NODE(INDEX)=]
END IF
END DO
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ELSE
ICOL=KOUNTER-M
DO =1 M
IF(SLIST(H=0) GO TOGH0
CALL FIND(M,N,ROW,COL,J,ICOL,IFLAG)
IF (IFLAG = 0) GO TO 600
PRED(J) = KOUNTER
LIST(K)=J
INDEX=INDEX+1
K=K+1
NODE(INDEX)=]
600 END DO
END IF
SUCC{KOUNTER)=LIST(1)
ICOUNT=2
DO WHILE (LISTJCOUNT) /= 0)
EB(LIST(ICOUNT)=LIST({ICOUNT-1}
YB(LIST(ICOUNT-1))=LIST(ICOUNT)
ICOUNT=ICOUNT+I1
END DO
END DO

RETURN
END
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! PICKING THE NEW YARIABLE TO ENTER THE BASIS USING MODIFIED ROW FIRST
INEGATIVE METHOD. THIS METHOD FIND THE FIRST ROW WITH A NEG REDUCED
!COST COEFFICIENT AND THEN SCANS THE REST OF THAT ROW FOR ANY OTHER RC
'WHICH IS MORE NEGATIVE.

! NBR=ROW OF VARIABLE ENTERING THE BASIS

! NBC= COLUMN OF YARIABLE ENTERING THE BASIS

! KTEST=KEEPS TRACK OF COST SO CAN COMPARE REST OF ROW

! & PICK SMALLEST

! KSTOP=SET TO 0 WHEN ALL RC>=(

'

dhkkdkhkbhkhkkhkdhhhhhbhkhhkhhhdhrhdhhhhhhhhkhbddhd bk rrdrhdk bR A AT R ELRARE LT AR AR AN T AR Rk w R R kW

SUBROUTINE NEWBAS(M,N,C,NBR.NBC,KSTOP)
INTEGER  C(M,N), KTEST

NBR=0
NBC=0

DOI=1M
DO J=1,N
TF(C(LJ) < 0) THEN
NBR=I
NBC=J
KTEST=C(LJ)
GO TO 40
END IF
END DO
END DO

KSTOP=0 HF ALL RC z0 THEN OPTIMAL SOLUTION-EXIT
GO TO 50

40 NB=NBC
DO IS=NBC+I,N
IF(C(NBR,JS) < KTEST) THEN
KTEST=C(NBR,JS)
NB=JS
END IF
END DO

NBC=NB

50 RETURN
END

58



IR AR A A AR A AN AR T TR IAARRIELL IR TR R R AR NIRRT AR IR T I A A A AR AT EARRER

ITHIS FINDS THE 6-LOOP USING THE ROOTED TREE AND THE NONBASIC CEILL
'(P,Q)=(NBR,NBC) TO ENTER THE BASIS. IN ORDER TO DO THIS THE SIMPLE PATH
!FROM P TO THE ROOT AND THE SIMPLE PATH FROM Q(M+Q) TG THE ROOT MUST BE
IFOUND. THEN WE COMBINE THESE TWO PATHS ELIMINATING ANY DUPLICATES,
ILEAVING ONLY ONE DUPLICATE WHICH IS THE APEX,

! QPATH=SIMPLE PATH FROM Q TO THE ROOT

! AT END-SAVES SIMPLE CYCLE FROM P TO Q

! LENQ=LENGTH OF QTROOT

! PPATH=SIMPLE PATH FROM P TO ROOT

! AT END-SAVES SIMPLE PATH FROM P TO APEX

! LENP=LENGTH OF PTROOT

! APEX=SAVES THE NUMBER OF THE APEX
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SUBROUTINE QLOOP(NBR,NBC,QPATH,M,N,PRED,LENQ,LENP,PPATH)
INTEGER QPATH(M+N+1), PPATH(M+N+1),PRED(M+N), APEX

APEX=0
QPATH=0
PPATH=0
QPATH(1)=NBR
QPATH(2)=NBC+M
LENQ=2

LENP=1
PPATH(1)=NBR

ICALCULATING THE SIMPLE PATH FROM Q TO THE ROOT
DO WHILE (QPATH(LENQ) /= M+N}

LENQ=LENGQ+1

QPATH(LENQ) = PRED(QPATH(LENQ-1)}
END DO

!CALCULATING THE SIMPLE PATH FROM P TO THE ROOT
DO WHILE (PPATH(LENP) /= M+N)

LENP=LENP+1

PPATH(LENP) = PRED(PPATH(LENP-1))
END DO

ITHIS ELIMINATES THE DUPLICATES
QPATH(LENQ)=0

DO WHILE (QPATH(LENQ) — PPATH(LENP))
APEX=QPATH(LENQ)
PPATH(LENP)=0
LENP=LENP-1
LENQ=LENQ-1

END DO

LENQ=LENQ+1
QPATH(LENQ)=APEX
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'RECORDING THE SIMPLE PATHE FROM P TO Q
DO I=LENP,1,-1

LENQ=LENQ+1

QPATH(LENQ) = PPATH(T)
END DO

LENP=LENP+1
PPATH(LENP)=APEX

RETURN
END
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'THIS FINDS THE LOCATION OF AN X

!*****'Jr'k******************************************************************************

SUBROUTINE FIND(M,N,ROW,COL,IILJJJ,INDEX)
INTEGER ROW(M+1),COL(M+N-1)

INDEX=0

DO K=ROW(IIT), ROW(IIT+1)-1
IF(COL(K) = JJJ) THEN
INDEX=K
GOTO 10
END IF

END DO IF INDEX=0 THEN ITEM NOT FOUND

10 RETURN
END
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'THIS CHANGES THE VALUE OF X( THE BASIC FEASIBLE SOLN)

!
!
!
!
!
!
!

IIN=NBR=ROW OF ENTERING VARIABLE

JIN=NBC=COL OF ENTERING VARIABLE

LIST=LOCATION OF WHERE CELLS ARE THAT ARE WITHIN THE LOOP
INDEX=LOCATION OF WHERE THE COL AND X VALUE ARE LOCATED
IOUT=ROW OF CELL LEAVING (RLEFT)

IDROP=LOCATION OF COL OF CELL LEAVING

JOUT=COL OF CELL LEAVING (CLEFT)
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SUBROUTINE MODFYX(QPATH,LENQ,M,N,X,ROW,COL,IOUT,IDROP,JOUT,THETA)
INTEGER QPATH(M+N-+1), ROW(M+1), COL(M+N-1), THETA, LIST(M+N-1)
INTEGER  X(M+N-1)

ICALCULATING WHERE DONOR,RECIPIENT CELLS ARE LOCATED
IIN=QPATH(1)

JIN

=QPATH(2)-M

II=QPATH(3)
JI=TIN

CALL FIND{M,N,ROW,COL,ILJI,INDEX)

I0UT=II
THETA=X(INDEX)
LIST(1)=INDEX
IDROP=INDEX

DO =3, LENQ-2,2

I-QPATH(T)
JI=QPATH(I+1)-M
CALL FIND(M.N,ROW,COL,ILJJ,INDEX)
LIST(I-1)=INDEX
I=QPATH(I+2)
CALL FIND{M,N,ROW,COL,1I,JJ,INDEX)
LIST(I)=INDEX
IF (X(INDEX) < THETA) THEN
IDROP=INDEX
IOUT=II
THETA=X(INDEX)
END IF

END DO

IF (THETA > 0) THEN

DO I=1,LENQ-2
THETA=-THETA
II=LIST(I)
X(ID=X(I1[}+ THETA

END DO

END IF
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THETA=-THETA
JOUT=COL(IDROF)

IF (IIN > IOUT) THEN INEED TO SHIFT INDICES IN COL&X TO LEFT
DO I=IDROP,ROW(IIN)-2
COL(T)=COL(I+1)
XM=X(I*+1)
END DO
X(ROW(IIN)-1)=THETA
COL(ROW(IIN)-1)=JIN
DO I=IOUT+1,IIN
ROW(I)=ROW(I)-1

END DO
ELSE INEED INDICES SHIFTED TO RIGHT IF
DO I=IDROP,ROW(IIN)+1,-1 (NBR <RLEFT) = (IIN < IOUT)

COL(I)=COL(I-1)
X(D=X(I-1)
END DO
COL(ROW(IIN))=JIN
X{ROW(IIN)}=THETA
DO I=IIN+1,I0UT
ROW(I)=ROW(I)}+1
END DO

END IF

RETURN
END
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ITHIS DETERMINES THE DESCENDANTS OF EITHER J* OR THE ROOT OF THE TREE

Gt Gl b mem mme s e e g b

JSTARR=WHICH NODE WANT DESCENDANTS
SUCC=SUCCESSOR INDICES
DESCEN=SAVES DESCENDANTS OF JSTARR
LEND=LENGTH OF DESCEN

YE=YOUNGER BROTHER INDEX

INR=ROWS THAT ARE DESCENDANTS
INC=COLUMNS THAT ARE DESCENDANTS
LENR=LENGTH OF INR

LENC=LENGTH OF INC

II= CONTROLS WHICH NODE IS CONSIDERED NEXT
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SUBROUTINE DESCEND(SUCC,DESCEN,YB,M,N,JSTARR,LEND,INR,INC,LENRR,LENCC)
INTEGER SUCC(M+N), DESCEN(M+N), YB(M+N), LEND, TEST, LENRR, LENCC, INR(M),INC(N)

DESCEN=0
DESCEN(1)=ISTARR
TEST=1

I1=1

LEND=1

DO WHILE (TEST == 1)

TF(SUCC(DESCEN(ID) /= 0) THEN

DESCEN(LEND-1)=SUCC(DESCEN(II))
IF (DESCEN(LEND+1) < M +1) THEN

INR(LENRR+1) = DESCEN(LEND+1)

DO WHILE (YB(DESCEN(LEND+1)) /= 0)
DESCEN(LEND+2) = YB(DESCEN(LEND+1))
INR(LENRR+2)=DESCEN(LEND+2)
LENRR=LENRR+1
LEND=LEND+1

END DO

LENRR=LENRR+]

ELSE

INC(LENCC+1) = DESCEN(LEND+1)-M

DO WHILE (YB(DESCEN(LEND+1)) /= 0)
DESCEN(LEND+2) = YB(DESCEN(LEND+1))
INC(LENCC+2)=DESCEN(LEND+2)-M
LENCC=LENCC+]

LEND=LEND+1

END DO

LENCC=LENCC+1

END IF
LEND=LEND+1

END IF
I1=I1+1
IF (Il > LEND) THEN

TEST=0

END IF

END DO

RETURN

END
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'UPDATING THE BROTHER INDICES CHANGING JPATH, SUCC(I1)

!ASSUME THAT ANY NEW IMMEDIATE SUCCESSOR OF A POINT JOINS THE PREVIOUS
TMMEDIATE SUCCESSORS OF THIS POINT AS THEIR ELDEST BROTHER

! (JOINS AT THE LEFT OF THE SEQUENCE OF BROTHERS)

! (I1;J1) IS THE EDGE THAT IS ADDED

! JPATH=SIMPLE PATH FROM J1 TO J* WITH LENGTH=JPATHLEN

! YB.EB,SUCC=YOUNGER BROTHER, ELDER BROTHER, SUCCESSOR INDICES
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SUBROUTINE UPBROTHER(YB,EB,JPATH,JPATHLEN,SUCC,M,N,J1,I1)
INTEGER  YB(M+N), EB(M+N), SUCC(M+N}), JPATH(M+N), YBPRIME(M+N)

IBECAUSE YB CHANGES OVERLAP, THE CHANGES MUST BE STORED IN YBPRIME
YBPRIME=0

IREMOVING JPATH OUT OF LIST OF BROTHERS
DO KK=1,JPATHLEN-1
IF (EBUJPATH(KK)) /= 0) THEN
YB(EB(JPATH(KK)))=YB(JPATH(KK))
END IF
IF (YB(JPATH(KX)) /= 0) THEN
EB(YB(JPATH(KK)))=EB(JPATH(KK))
END IF
END DO

'BECAUSE THESE PTS JOIN AS THE ELDEST AMONG THEIR NEW BROTHERS
DO KK=1, JPATHLEN-1

EB(JPATH(KK))=0
END DO

ISTART SHIFT OF BROTHERS TO SIDE OF GRANDPARENT

'ATTACHING THE IMMEDIATE DESCENDANTS OF J1 AS THE BROTHERS OF JPATH(2)
IF (SUCC(J1) /= 0) THEN
EB(SUCC(J1))=JPATH(2)
END IF
YBPRIME(2)=SUCC(J1)

IATTACHING THE IMMEDIATE DESCENDANTS OF I1 AS THE BROTHERS OF JPATH(1)=J1
IF (SUCC(I1) /=0 ) THEN
EB(SUCC(I1)) =1
END IF
YBPRIME(1)=SUCC(I1)
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ISHIFTS JPATH AS EB OF GRANDPARENT
DO KK=2,JPATHLEN-1
IF (SUCC(JPATH(KK)) = JPATH(KK-1)) THEN
YBPRIME(KK-+1) = YB(JPATH(KK-1))
EB(YBPRIME(KK+1)) = JPATH(KK+1)
ELSE
EB(SUCC(JPATH(KK})) = JPATH(KK+1)
YBPRIME(KK+1) = SUCC(JPATH(KK))
END IF
END DO

DO KK=1, JPATHLEN
YB(JPATH(KK))=YBPRIME(KK)
END DO

RETURN
END
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ITHIS SUBROUTINE UPDATES THE TREE INDICES-PRED, SUCC, YB, EB USING JPATH
! YB.EB,SUCC=YOUNGER BROTHER, ELDER BROTHER, SUCCESSOR INDICES

! (I1;J1) IS THE EDGE THAT IS ADDED

! JPATH= SIMPLE PATH FROM J1 TO J* WITH LENGTH=JPATHLEN

PRI TR AT TR AR AT T A AR TR LA AR R I AR AR R AL AL L ARSI AR AR R AT R T AT AT ok Ak Rk dhkdkhh it

SUBROUTINE UPTREE(M,N,PRED,SUCC,YB,EB,JPATH, JPATHLEN,J1,I1,JSTAR)
INTEGER PRED(M+N), SUCC(M+N), YB(M+N), EB(M+N} , JPATH(M+N), YBJT

IUPDATING THE PREDECESSOR INDICES-ONLY ONES THAT CHANGE ARE THE JPATH
!PREDECESSOR INDICES BECOME THE OPPOSITE-REVERSE OF JPATH
PRED(J1)=I1
IF (JPATHLEN > 1) THEN
DO KK=2,JPATHLEN
PRED(JPATH(KK))=TPATH(KK-1)
END DO
END IF

{UPDATING THE BROTHER INDICES-  CHANGING JPATH, SUCC(1)
! ASSUME THAT ANY NEW IMMEDIATE SUCCESSOR OF A POINT JOINS THE PREVIOUS
t IMMEDIATE SUCCESSOR OF THIS POINT AS THEIR ELDEST BROTHER
1(JOINS AT THE LEFF END OF THE SEQUENCE OF BROTHERS)

YBIT=0

IF (JPATHLEN >1) THEN

YBIT=YB(JPATH(JPATHLEN-1))
END IF

CALL UPBROTHER(YB,EB,JPATH JPATHLEN,SUCC,M,N,J1,11)

IUPDATING THE SUCESSOR INDICES- ONLY CHANGE JPATH,I1,12. SUCCESSORS
'OF JPATH BECOME THEIR OLD PREDECESSOR INDEX(NEXT JPATH ENTRY)
! YBJT=OLD YB(JPATH(JPATHLEN-1)) BEFORE UPDATED
SUCC(11)=]1
IF (JPATHLEN > 1) THEN
DO KK=1,JPATHLEN-1
SUCC(JPATH(KK))=TPATH(KK+1)
END DO
END IF

IF (JPATHLEN > 1) THEN
IF (SUCC(JSTAR) = JPATH(JPATHLEN-1)) THEN
SUCC(JSTAR)=YBJT
'ELSE
! SUCC(JSTAR)=SUCC(JSTAR)
END I[F
END IF

RETURN
END
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'THIS SUBROUTINE UPDATES THE RELATIVE COST COEFFICIENTS

! ALPHA=11FI1 IS A NODE CORRESPONDING TO A ROW OF THE

! =1 IF OTHERWISE TRANSPORTATION ARRAY
! REDCOST= REDUCED COST OF CELL ENTERING THE BASIS

! RINJS=THR ROW INDICES WITHIN DESJSTAR

! LENR= CHANGROW LENGTH

! CINJS=THR COL INDICES WITHIN DESJSTAR

! LENC= CHANGCOL LENGTH

! NINJR=ROW INDEX WHICH IS NOT IN DESJSTAR

! KK1=LENGTH OF NINJR

! NINJC=COLUMN INDEX WHICH IS NOT IN DESJSTAR

! KK2=LENGTH OF NINJC

1
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SUBROUTINE UPDATE(ALPHA,M,N,REDCOST,C,RINJS,CINJS,LENR,LENC,NINJR,NINJC,KK1,KK2)
INTEGER  NINJC(N)}, NINJR(M), ALPHA, CINJS(M), RINJS(N), REDCOST, C(M,N)

ICHANGING COST COEFFICIENTS
DO I=1,LENR
DO J=1,KK2
C(RINTS(I),NINJC(J)) = C(RINJS(I),NINJC(J))+ ALPHA*REDCOST
END DO
END DO

DO I=1,KK1
DO J=1,LENC
C(NINJR(I),CINJS(T)) = C(NINJR(L),CINIS(J)) - ALPHA*REDCOST
END DO
END DO

RETURN
END
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Chapter 6

RESULTS AND CONCLUSIONS

In order to test this program, a test problem whose size can be completely
controlled was designed. The code for the subroutine CREATE is located on page 53.

For any integer n, we construct a transportation problem of  sources and # sinks with the

following optimal solution:

Xpirlg = 2n-2i+1 forl1<i<m
Xp-itl o1 = 20-21+2 for2<i<n
X;=0 otherwise

The vectors A and B will then have the corresponding value

A,.:Zx,.j:f-li—l fori<i<n
=l

Bj=2xg=4(n—j)+1 forl<j<n

i=1
Note, that the solution 1s concentrated on the skew diagonal of the array and the diagonal
above it.

The cost coefficients are defined as follows:

Cini+1 = 2n-2i+1 fori<i<n
Cicl i1 = 21-21+2 for2<i<n
cij=Sn otherwise
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The tableau corresponding to this test problem is depicted in Figure (6-1) for n=6.

2 1
30 30 30 30 10 11 3
4 3
30 30 30 8 9 30 7
6 5
30 30 6 7 30 30 1
8 7

30 4 5 30 30 30 15
10 9

2 3 30 30 30 30 19
11

1 30 30 30 30 30 11

21 17 13 9 5 1

Example of 6 x 6 Test Problem Optimal Solution

Figure (6-1)

Notice that the example is constructed in such a way that the given X is the
unique optimal solution to the problem. This is obvious, but one can also compute the
simplex multipliers and the reduced cost coefficients to demonstrate the optimality of the
stated solution.

The initial basic feasible solution that is constructed according to the Northwest

Corner Rule for this problem is depicted in Figure(6-2).
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3
30 30 30 30 10 11 3
7
30 30 30 8 9 30 7
11 0
30 30 6 7 30 30 11
15
30 4 5 30 30 30 15
2 13 4
2 3 30 30 30 30 19
5 5 1
1 30 30 30 30 30 11
21 17 13 5 5 1

6 x 6 Test Problem Initial Basic Feasible Solution-NW Comer Rule

Figure (6-2)

Notice that the Northwest Corner Rule will produce a solution where the basic
cells form a staircase, starting at the northwest comer of the array and ending at the
bottom right hand corner. It is clear the initial basic feasible solution provided by the
Northwest Comner Rule is among the most expensive basic feasible solutions of the test
problem.

Thus, we start with the most expensive solution of the problem and generate the
least expensive solution. As expected, the test problem turned out to be an excellent one
for testing the program.

Figure (6-3) contains the results of four runs of the test problem, corresponding to

n=100,300,500, and 1000.
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Size of Matrix | Number of Total Time Total Cost Average Length
nxn Iterations of DESJSTAR
100 x 100 3252 1 minute 1333300 44.1916
300 x 300 18709 6 minutes 35999900 90.13561
500 x 500 40383 24 minutes 166666500 149.8887
1000 x 1000 98637 165 minutes 1333333000 230.132

Results From the Computer Program

Figure (6-3)

The results clearly show that our program can efficiently handle problems with a
few hundred sources and an equal number of sinks. The number of iterations and the
time required to solve the problem as n approaches 1000 explodes quite rapidly as can be
seen from the table.

Recommendations: A few features of the current implementation should be
examined further in order to improve the performance of this program. One could
reprogram the calculation of the reduced cost coefficient doing away with computing the

2
entire set (exactly % such coefficients must be computed each iteration) and pivot at the

first entry a negative cost is detected. This is likely to reduce the calculations
significantly, although it is difficult to predict the exact impact of such strategy, since the
number of iterations may increase as a consequence of such alterations of the algorithm.
The average length of the DESJSTAR was computed in order to have a better

understanding of how big a portion of the tree must be modified (on average) at each
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step. This gave us some understanding of how complex the tree structure is for the
current test problem. The average length of DESISTAR was found to be relatively small
compared to the size of the test problem (2x nodes). More difficult test problems, where
there are far more (10 to 100 times) sinks than sources, can be easily developed along the
same lines of this test problem. The corresponding trees will have a more complex
structure because they will have much more lateral width than the trees of the test
problem used in this paper. Therefore, this new test problem would further test the

efficiency of the subroutines within this program that are concerned with the tree design.
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