View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UNF Digital Commons

b

UNF UNIVERSITY of ..
NORTH FLORIDA. UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2007

Performance Analysis of Security Protocols

Praveen Kumar Donta
University of North Florida

Suggested Citation

Donta, Praveen Kumar, "Performance Analysis of Security Protocols” (2007). UNF Graduate Theses and Dissertations. 172.
https://digitalcommons.unf.edu/etd/172

This Master's Project is brought to you for free and open access by the

Student Scholarship at UNF Digital Commons. It has been accepted for \

inclusion in UNF Graduate Theses and Dissertations by an authorized

administrator of UNF Digital Commons. For more information, please UNF UNIVERSITY of
contact Digital Projects. NORTH FLORIDA.

© 2007 All Rights Reserved

https://core.ac.uk/display/129588435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

PERFORMANCE ANALYSIS OF SECURITY PROTOCOLS

by

Praveen Kumar Donta

A project submitted to the
School of Computing
in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

April, 2007

Copyright (©) 2007 by Praveen Kumar Donta

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of Praveen Kumar Donta or his designated representative.

The project "Performance Analysis of Security Protocols" submitted by Praveen Kumar
Donta in partial fulfillment of the requirements for the degree of Master of Science in
Computer and Information Sciences has been

Approved by: Date

Signature deleted /f / g /) 7

Dr. Sanjay Ahuja o
Project Director

Signature deleted /
776/17

Dr. Charles N7 Winton
Graduate Director

Signature deleted

_ 7 //D /97
Dr. Judith L. So#no et
Diredtor, School of Computing

111

ACKNOWLEDGEMENTS

I am thankful for Dr. Sanjay Ahuja’s invaluable suggestions and assistance throughout
this project. My wife, Sunitha, and my son, Nihal, gave their help and encouragement
during long hours of project work. My gratitude to my brother, Ramesh, for his

continuous support in every part of my life. I am thankful for my parents’ care and love.

CONTENTS

LISE OF FIQUIES ..ttt nb et e nae s ne e b viil
LISt OF TADIES ...t X
ADSTFACT ... Xi
Chapter 1: INTrOAUCTIONc.eiiieiieie et 1
Chapter 2: Security Algorithms, Message Digest and SSLcccovveviieiiievie e 3
2.1 Symmetric Key AlGOrthmScccooiiiiiiiiiicie e 3

2.1.1 DES .. 3

2.1.2 3BDES .. 3

2.0.3 AES e 4

214 RCA ..o 4

2.2 Public-Private Key AIgOrthmS..........ccoooiiiiiiiniieesece e 5

2.2.1 RS A e 5}

2.2.2 EIGAMAL ..o 5

2.3 MESSAQE DIJESESveeiieiiiiie ittt sttt nre s 6

2.3. 1 IMIDS .. 6

2.3.2 SHAL ... 7

2.4 SSL e 7
Chapter 3: Project DESCIIPLION.........ccuiiieiiiie sttt 9
3.1 OVEIVIBW ..ttt bttt bbb 9

3.2 HAIAWATE ...t 11

i3 SO VAN .o ettt e e e e e e e e ——————aaaaaa 11

Chapter 4: Testing MethodolOgycccviveiiiieiieri e 12
4.1 Security Algorithms Testing Method...........cccccvvviiiiieiieeecee e 12
4.2 SSL Testing Methodcoveiiiieieec e 12
Chapter 5: RESUILSccveeivieiecie sttt et e e aeene e sneeeeenes 13
5.1 DES Versus RC4 Encryption and Decryption TimeS.........ccceevvvvervesvennnnn, 13

5.2 3DES Versus RC4 Versus AES Encryption and Decryption Times
WIith 192 Bit KEYceeoeeeeeeeeeeeeeeeeeeeeeseees s eee e eseeeesee e eese s 15
5.3 RC4 Versus AES With SK Filecooviiiiiiie e 17
5.4 RC4 Versus AES With 10K fileccoooiiiiiii 19
5.5 RSA Algorithm Encryption and Decryption..........cccocevereneeneninseeniennnn 21
5.6 ElGamal Encryption and Decryption TIMES..........ccovveererieneerieniensieenieeneenns 24
5.7 Digital Certificate SHAL Versus MD5 With RSA ..o 27
5.8 SSL Communication Timings for Two Sets of Security Algorithms........... 28
Chapter 6: Analysis and CONCIUSIONScouiiiiiieieiie e 30
6.1 ANalysis Of TeSt RESUILS........ccviiiiiiiii e 30
6.2 Security Algorithms Performance Comparison From Previous Studies......... 32
6.2.1 Crypro++ 5.2.1 BENChMArKScccooiiiiiiiiiece e 32
6.2.2 Testing a Variety of Encryption Technologiescccceevvivneenne 34
6.2.3 Security Performancecccooeiieiinie i 35
6.3 CONCIUSIONS. ...t 37
RETEIEINCES ...ttt 38
Appendix A: Security Protocols Code LiStINGSccovierieereiiiiiieicse e 39

Vi

vii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Figure 20:

LIST OF FIGURES

Example of a Digital Signature SChemecccccoiiiiiniiii e, 6
Layers for a User Browsing With SSL ... 8
Simplified Version of the SSL Connection Establishment Protocol 8
DES Versus RC4 With 64 Bit Key Encryption and Decryption 14
3DES Versus RC4 Versus AES Encryption With 192 Bit Key.........ccccceeueeee. 15
3DES Versus RC4 Versus AES Decryption With 192 Bit Key.........cccccevvennene 16
RC4 Versus AES Encryption With 5K File ... 18
RC4 Versus AES Decryption With SK File ... 18
RC4 Versus AES Encryption With 10K File ..., 20

RC4 Versus AES Decryption With 10K File........cccoooiiiiiiniiiee e 20
RSA Encryption Times for 100 bytes Fileccooovviiiiiiniiinecee e 22
RSA ENCryption TIMESccuviiiiiiiiie ettt 22
RSA Decryption Times for 100 bytes File ..o 23
RSA DECIYPHION TIMES ...eevveiieieeie ettt nne s 23
ElGamal Encryption Times for 100 bytes File........cccocoviiiiiiiiiiiieeeeen 25
ElGamal ENCryption TIMEScccuiiiiiieieiie et 25
ElGamal Decryption Times for 100 bytes Filecccoviiiiiiiiiiiieieenn 26
ElGamal Decryption TIMES......cc.oiuiiiiieiie et 26
Digital Certificate Times SHAL Versus MD5 With RSA........c.ccccoveveieennean, 27
Digital Certificate Maximum Throughput SHA1 and MD5 With RSA 28

viil

Figure 21: SSL Communication 3DES-SHA1 Versus RC4-MD5 With RSA

Maximum Throughput

Figure 22: Maximum Throughput of Secure Socket Layercccooevvvrinniiennniinnnennn

LIST OF TABLES

Table 1: Throughput For Security Algorithms Using Cryptot+ccccvviieeieniienennnnn, 33
Table 2: Performance of RSA Public Key Algorithm Using Crypto++ccccovvvevennnnne 34
Table 3: Testing a Variety of Encryption TeChnologies...........cccovviiiiiiiinnciieieenenne 35
Table 4: Digital Signature Verification Times and Maximum Throughput 36

ABSTRACT

Security is critical to a wide range of applications and services. Numerous security
mechanisms and protocols have been developed and are widely used with today’s
Internet. These protocols, which provide secrecy, authentication, and integrity control,

are essential to protecting electronic information.

There are many types of security protocols and mechanisms, such as symmetric key
algorithms, asymmetric key algorithms, message digests, digital certificates, and secure
socket layer (SSL) communication. Symmetric and asymmetric key algorithms provide
secrecy. Message digests are used for authentication. SSL communication provides a

secure connection between two sockets.

The purpose of this graduate project was to do performance analysis on various security
protocols. These are performance comparisons of symmetric key algorithms DES (Data
Encryption Standard), 3DES (Triple DES), AES (Advanced Encryption Standard), and
RC4; of public-private key algorithms RSA and ElGamal; of digital certificates using
message digests SHA1 (Secure Hash Algorithm) and MD5; and of SSL (Secure Sockets

Layer) communication using security algorithms 3DES with SHA1 and RC4 with MD5.

Xi

Chapter 1

INTRODUCTION

There are many network security algorithms widely available today for use, including
symmetric-key algorithms, public-private key algorithms, and secure hash functions. The
purpose of this project was to determine which algorithm performs better for given input

data and to conduct a performance analysis of various security algorithms.

Symmetric key algorithms use the same key for encryption and decryption. Some of the
symmetric algorithms are DES (Data Encryption Standard), 3DES (Triple DES), RC4
and AES (Advanced Encryption Standard). In public key algorithms, the encryption and
decryption keys are different. It is not feasible to derive the decryption key from the
encryption key. Some of the public key algorithms are RSA and ElGamal. Secure hash
functions or message digests work on an authentication scheme and do not require
encrypting the entire message. A secure hash function scheme is based on the idea of a
one-way hash function that computes from an arbitrarily long piece of plaintext a fixed-
length bit string. Some of the message digests are MD5 and SHA1 (Secure Hash

Algorithm).

To sign a message with a digital signature, a secure hash operation and a private key
operation must be performed. Verifying a signature requires a secure hash and a public

key operation. The authentication protocol SSL (Secure Sockets Layer) is currently used

for the majority of e-commerce transactions on the World Wide Web. It is used for
mutual or one-way authentication and for ensuring the integrity and confidentiality of the
data being exchanged. It is a complex transaction that has two phases: a handshake phase
and the data transfer phase. In the handshake phase, the client and server use a public-
private key algorithm to authenticate each other and exchange a secret. This process
requires the server to send the client its public key. The client generates a secret, encrypts
it using the server’s public key, then sends it to the server. The server decrypts the secret
using its private key. At this point, both the client and server have the same secret. They
both use this secret to generate a symmetric key for the data transfer operation. During
the data transfer phase, the client and server use this symmetric key along with a message

digest to communicate securely.

The purpose of this project was to conduct a performance analysis of various security
protocols. This includes the study of basic operations of symmetric key and public-
private key algorithms, the study of the efficiency of these algorithms with increasing key
sizes, and the measurement of the efficiency of secure hash functions. In addition, a
comparison study of composite security operations of secure hash functions with
symmetric encryption algorithms and secure hash functions with public key algorithms

was carried out.

Chapter 2

SECURITY ALGORITHMS, MESSAGE DIGESTS AND SSL

2.1 Symmetric Key Algorithms

Symmetric key algorithms use the same key for encryption and decryption. They use
block ciphers, which take an n-bit block of plaintext as input and transform it using the
key into an n-bit block of ciphertext. DES and AES are block ciphers. A block cipher is
basically a monoalphabetic substitution cipher using big characters, which means
whenever the same plaintext block goes in the front end, the same ciphertext block comes

out the back end.

2.1.1 DES

DES was widely adopted by the industry for use in security products. With DES,

plaintext is encrypted in blocks of 64 bits and yields 64 bits of ciphertext. The algorithm,

which is parameterized by a 56-bit key, has 19 distinct stages. [Tanenbaum03]

2.1.2 3DES

According to Tanenbaum, DES key length was too short, so a way was devised to

effectively increase it using triple encryption: 3DES, which employs two keys and three

stages. In the first stage, the plain text is encrypted using DES in the usual way with K1.
In the second stage, DES is run in decrypted mode, using K2 as the key. Finally, another

DES encryption is done with K1. [Tanenbaum03]

2.1.3 AES

AES is based on Rijandael. It is like DES and uses substitution and permutations; it also
uses multiple rounds. The number of rounds depends on key size and block size.
However, unlike DES, all operations involve entire bytes to allow for efficient
implementation in both hardware and software. AES supports three key lengths: 128,

192, and 256 bit block size. [TanenbaumO03]

2.14 RC4

RC4 is a stream cipher designed by Ronald Rivest for RSA Data Security. It is a variable
key-size stream cipher with byte oriented operations. The algorithm is based on the use of
random permutations. The algorithm keystream is completely independent of the
plaintext used. RC4 uses a variable length key from 1 to 256 bytes to initialize a 256-byte
state table. The state table is used for subsequent generation of a pseudo random stream
that is XORed with the plaintext to give the ciphertext. It has the capability of using keys

between 1 and 2048 bits. [Vocal03]

2.2 Public-Private Key Algorithms

In public key algorithms, encryption and decryption keys are different. It is not feasible to
derive the decryption key could not feasibly be derived from the encryption key. Public
key cryptography requires each user to have two keys: a public key, used by the entire
world for encrypting messages to be sent to the user, and a private key, which the user

needs for decrypting messages.

2.2.1 RSA

The RSA algorithm gets its security from the difficulty of factoring large numbers.
Essentially, the public and private keys are functions of a pair of large numbers.
Recovering the plaintext from a given ciphertext and the public key used to create it is
believed to be equivalent to the problem of recovering the primes used to make the keys.
However, it requires keys of at least 1024 bits for good security, which makes it quite

slow. [Hook05]

2.2.2 ElGamal

ElGamal is based on the difficulty of solving the discrete logarithm problem. The
ElGamal algorithm can be used for both encryption and decryption. The security of the
ElGamal scheme relies on the difficulty of computing discrete logarithms over GF(p),
where p is a large prime. Prime factorization and discrete logarithms are required to

implement the RSA and ElGamal cryptosystems. [Hook05]

2.3 Message Digests

Message digests provide authenticity, but not secrecy. This scheme is based on the idea
of a one-way hash function that computes from an arbitrarily long piece of plaintext a
fixed-length bit string. Computing a message digest from a piece of plaintext is much
faster than encrypting the plaintext with a public key algorithm, so message digests can

be used to speed up digital signature algorithms. [TanenbaumO03]

To sign a digital signature, both a secure hash operation and a private key operation need
to be performed. Verifying a signature requires a secure hash and a public key operation.

Figure 1 depicts the operation of a digital signature.

Alice's
. private key, D
Alice's
plaintext 160-Bit SHA-1 +
message hash of M Signed hash
M SHA-1 RSA
(arbitrary algorithm algorithm Sent
length) to
» | Bob
Figure 1: Example of a Digital Signature Scheme [TanenbaumO3]
2.3.1 MD5

MD?5 is the fifth in a series of message digests designed by Ronald Rivest. It operates by
mangling bits in a sufficiently complicated way so every output bit is affected by every

input bit. It starts out by padding the message to a length of 448 bits. Then the original

length of the message is appended as a 64-bit integer to give a total input whose length is
a multiple of 512 bits. The last pre-computation step is initializing a 128-bit buffer to a

fixed value. [TanenbaumO03]

2.3.2 SHA1

SHA1 was developed by the NSA. SHAL processes input data in 512-bit blocks, and
generates 116-bit message digests. SHA1 pads the message by adding a 1 bit to the end,
followed by as many 0 bits as needed to make the length a multiple of 512 bits. Then a
64-bit number containing the message length before padding is ORed into the low-order

64 bits. [Tanenbaum03]

2.4 SSL

SSL builds a secure connection between two sockets including parameter negotiation
between client and server, mutual authentication of client and server, secret
communication, and data integrity protection. The positioning of SSL in the

usual protocol stack is illustrated in Figure 2. It is a new layer interposed between the
application layer and the transport layer, accepting requests from the browser and sending

them down to TCP for transmission to the server. [Tanenbaum03]

Application (HTTP)
Security (SSL)
Transport (TCP)
Network (IP)
Data link (PPP)
Physical (modem, ADSL, cable TV)

Figure 2: Layers for User Browsing With SSL [Tanenbaum03]

Once a secure connection has been established, SSL’s main job is handling compression

and encryption. Figure 3 shows a simplified version of the SSL connection establishment

protocol.
1 .
SSL version, Preferences, Ry =
< I SSL version, Choices, Rg
3 o .
-+ X.509 certificate chain
4
- Server done
@ 5 o
= -
- Eg (Premaster key) 2

Change cipher

7

Finished >

< Change cipher

< Finished

Figure 3: Simplified Version of the SSL Connection Establishment Protocol
[TanenbaumO3]

SSL supports multiple cryptographic algorithms. 3DES with SHA1 and RC4 with MD5
are commonly used combinations. 3DES and RC4 are used for encryption and SHAL and

MD?5 are used for message integrity.

Chapter 3

PROJECT DESCRIPTION

3.1 Overview

The overall goal of the study was to measure the performance of various security
algorithms. The project implemented a client and server application, enabling the client
and server to send encrypted messages to each other. As an example, the server encrypted
the message, measured the time it took to encrypt the message, and sent the message to
the client. The client decrypted the message it received and measured the decryption

time.

The project was divided into two parts. First, we studied the performance of the basic
operations of symmetric key encryption algorithms (DES, 3DES, and AES) and public-
private key algorithms (RSA, ElGamal), with increasing key size for operations using the
open source Bouncy Castle library and the efficiency of secure hash functions (MD5 and
SHAZ1). Second, we compared composite security operations. This included the
performance analysis of digital signatures, specifically RSA with MD5 and RSA with
SHAL. Also, included is the comparison study of the SSL protocols of RC4 with MD5

and 3DES with SHAL, using open SSL software.

The first part of the project was as follows:

Performed basic operations and compared DES versus RC4 with 64-bit key size and
with various file sizes from 1K to 10K.

Performed basic operations and compared various symmetric algorithms,
specifically, 3DES versus RC4 versus AES with key size of 192 bits with various file
sizes from 1K to 10K.

Compared the encryption and decryption times of RC4 versus AES with a 5K file
with varying key sizes from 64 bits to 2048 bits.

Compared the encryption and decryption times of RC4 versus AES for a 10K file and
varying key sizes from 64 bits to 2048 bits.

Compared the encryption times of the RSA algorithm for various files sizes (100
bytes, 1K, 5K, 10K) with different key sizes (1024 bits, 2048 bits, 3072 bits, 4096
bits, 5120 bits).

Compared the encryption times of EIGamal algorithm for different files sizes (100

bytes, 1K, 5K, 10K) with different key sizes (600 bits, 800 bits, 1000 bits, 1200 bits).

The following outlines the secod part of the study:

Compared the digital signature verification times of the RSA algorithm with the
SHAL1 hash function versus the RSA algorithm with the MD5 hash function for a
1MB file with different key sizes (512 bits, 768 bits, 1024 bits, 2048 bits).
Determined the maximum throughput for digital signatures for the RSA algorithm
with the SHA1 hash function and the RSA algorithm with the MD5 hash function for

a 1MB file with different key sizes (512 bits, 768 bits, 1024 bits, 2048 bits).

-10 -

e Measured the maximum throughput of two different SSL setups: one used RC4 and
MD?5 and the another used 3DES and SHAL with different RSA key sizes (512 bits,

768 bits, 1024 bits, 2048 bits).

3.2 Hardware

The hardware for this project consisted of two Intel based workstations with the
Microsoft XP operating system, version 2002, service pack 2. Each workstation had an
Intel Pentium 3 GHZ processor and 1 GB RAM. They were connected by 100 megabit

Ethernet.

3.3 Software

The software for this project consisted of a Java 2 Runtime environment, standard
edition, version 1.4. We used Java for developing the security algorithms and open source
Bouncy Castle software Release 1.32 for implementing the algorithms. The software for
implementing the SSL project consisted of Cygwin, version 1.5.21-1. We used open
source Open SSL Library, version 0.9.8, for implementing the SSL security algorithms.

C was used to develop the SSL applications.

-11 -

Chapter 4

TESTING METHODOLOGY

4.1 Security Algorithms Testing Method

We ran client and server applications on two different workstations. The client connected
to the server at a specific port number and provided a list of security algorithms with
different key lengths. Upon selecting a security algorithm, the client was prompted for a
test file with encrypted plaintext, which was then sent to the server. Upon receiving the
client test file, the server decrypted the received text and saved it to a file. We recorded
the encrypting and decrypting timings at the client and server with increasing file sizes

and increasing key sizes.

4.2 SSL Testing Method

We ran the security server and the security client on two different workstations. The
client began by connecting to the server and providing authentification to the server by
handshaking. After successfully handshaking, the client provided a list of security
algorithms with different RSA algorithm key lengths. Upon selecting a particular security
algorithm, the client was prompted for a test file and sent encrypted text to the server.
Upon receiving the client test file, the server decrypted the received text and saved it to a

file. We recorded the encrypting and decrypting timings for the client and server.

-12 -

Chapter 5

RESULTS

5.1 DES Versus RC4 Encryption and Decryption Times

We ran the client and server programs for the DES and RC4 security algorithms with a 64
bit key for different test file sizes. Test file sizes ranged from 1K to 10K, varying in size
by 1K increments . We measured encryption and decryption times at the client and server

and graphs were plotted representing the measured times.

In Figure 4 we can see the DES algorithm encryption and decryption times increase
almost linearly as the file size increases. DES encryption times increased by a factor of
1.017 to 1.09 with each 1K increment in the test file size. The DES decryption times
increased by a factor of 1.03 to 1.1 times with each 1K increment in the test file size.
Like all symmetric key algorithms, the DES decryption times are 1.2 to 1.3 times faster

than encryption times.

-13 -

DES vs RC4 with 64 bit key

[ERN
o

Time (milli seconds)
O N A OO
\
<

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
File Sizes (K Bytes)

——DES encryption —#— RC4 encryption
DES decryption RC4 decryption

Figure 4: DES versus RC4 with 64 Bit Key Encryption and Decryption

In the above the figure we can also see that the RC4 encryption and decryption times
linearly increase as the file size increases. The RC4 encryption times increase by a factor
of 1.009 to 1.04 for each 1K increment in test file size. The RC4 decryption times
increase by a factor of 1.02 to 1.1 times with each 1K increment in test file size. Like all
symmetric key algorithms, the RC4 decryption times are 1.4 to 1.99 times faster than

encryption.

Figure 4 shows the DES security algorithm had better response times than the RC4
algorithm. DES encryption times are 1.19 to 1.5 times faster than those of RC4
encryption times. DES decryption times are 1.014 to 1.069 times faster than those of RC4

decryption times.

-14 -

5.2 3DES Versus RC4 Versus AES Encryption and Decryption Times With 192 Bit Key

We ran the client and server programs for the 3DES, RC4, and AES security algorithms
with a 192 bit key. Test file sizes ranged from 1K to 10K, varying in size by 1K
increments. We measured encryption and decryption times at the client and server, and

graphs were plotted representing the measured times.

In Figures 5 and 6 we can see 3DES encryption rates increased by a factor of 1.006 to
1.043 for each 1K increment in test file size and decryption rates increased by a factor of
1.042 to 1.097 for each 1K increment in test file size. 3DES decryption times are 1.18 to

1.53 times faster than encryption times.

3DES vs RC4 vs AES encryption with 192 bit key

10

Time (milli seconds)

o N B O O

1K 2K 3K 4K 5K 6K 7K 8K gk 1ol
File Sizes (K Bytes)

—o— 3DES encryption —#—RC4 encryption AES encryption

Figure 5: 3DES versus RC4 versus AES Encryption with 192 Bit Key

-15 -

3DES vs RC4 vs AES decryption with 192 bit key

oo

\h

Time (milli seconds)
(o))
&\

N

o

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
File Sizes (K Bytes)

—e— 3DES decryption —#—RC4 decryption AES decryption

Figure 6: 3DES versus RC4 versus AES Decryption with 192 Bit Key

From Figures 5 and 6 we can see RC4 encryption times increased by a factor of 1.02 to
1.06 for each 1K increment in test file size. RC4 decryption times increased by a factor of
1.01 to 1.05 for each 1K increment in test file size. RC4 decryption rates are 1.3 to 1.4

times faster than encryption rates.

In Figures 5 and 6 we can see AES encryption times increased by a factor of 1.02 to
1.057 for each 1K increment in test file size. AES decryption times increased by a factor
of 1.02 to 1.04 for each 1K increment in test file size. AES decryption times are 1.2 to 1.3

times faster than encryption times.

From Figures 5 and 6 it can be seen that the 3DES security algorithm had better response
times than the RC4 and AES algorithms and RC4 performed better than AES. 3DES

encryption times are 1.16 to 1.24 times faster than RC4 encryption times and 1.29 to 1.36

-16 -

times faster than AES encryption times. 3DES decryption times are 1.07 to 1.4 times are
faster than RC4 decryption times and 1.29 to 1.36 times faster than AES decryption
times. RC4 encryption times are 1.28 to 1.36 times faster than AES encryption times and

RC4 decryption times are 1.21 to 1.67 times faster than AES decryption times.

5.3 RC4 Versus AES With 5K File

We ran the client and server programs for the RC4 and AES security algorithms with a
5K file for various key sizes. Key sizes included 128 bits, 192 bits, and 256 bits. We
measured encryption and decryption times at the client and server and graphs were

plotted representing the measured times.

Figure 7 shows RC4 and AES encryption times for a 5K file and Figure 8 shows RC4 and
AES decryption times for a 5K file. RC4 encryption times increased by a factor of 1.019
and 1.016 for 192 and 256 bit keys respectively. RC4 decryption times are increased by a
factor of 1.08 and 1.04 for 192 and 256 bit keys respectively. RC4 decryption times are

1.51 to 1.64 times faster than RC4 encryption times.

-17 -

—=— RC4 encryption AES encryption

Figure 7: RC4 versus AES Encryption Times With 5K File

—»-RC4 decryption —— AES decryption

Figure 8: RC4 versus AES Decryption With 5K File

-18 -

In Figures 7 and 8, we also can see AES encryption times increasing by a factor of 1.019
and 1.016 for 192 and 256 bit keys respectively. AES decryption times increase by a
factor of 1.059 and 1.014 for 192 and 256 bit keys respectively. AES decryption times are

1.48 to 1.53 times faster than AES encryption times.

In Figures 7 and 8, we observed that the RC4 security algorithm had better response
times than the AES algorithm. RC4 encryption times are 1.005 to 1.014 times faster than
AES encryption times. RC4 decryption times are 1.024 to 1.05 times faster than AES

decryption times.

5.4 RC4 Versus AES With 10K File

We ran the client and server programs for the RC4 and AES security algorithms with a
10K file for various key sizes. Key sizes included 128 bits, 192 bits, and 256 bits. We
measured encryption and decryption times at the client and server, and graphs were

plotted representing the measured times.

Figures 9 and 10 show RC4 and AES encryption and decryption times for a 10K file.
RC4 encryption times increased by a factor of 1.0197 and 1.037 for 192 and 256 bit keys.
RC4 decryption times increased by a factor of 1.043 and 1.037 for 192 and 256 bit keys

respectively.

-19 -

—u
=
.——

—#—RC4 encryption AES encryption

Figure 9: RC4 versus AES Encryption With 10K File

e
//)(
0//></

—<— RC4 decryption —e— AES decryption

Figure 10: RC4 versus AES Decryption With 10K File

-20 -

AES encryption times increased by a factor of 1.02 and 1.04 for 192 and 256 bit keys.

AES decryption times increased by a factor of 1.04 and 1.03 for 192 and 256 bit keys.

As seen in both figures, the RC4 security algorithm had better response times than the
AES algorithm. RC4 algorithm encryption times are 1.028 to 1.04 times faster than AES
encryption times. RC4 algorithm decryption times are 1.03 to 1.044 times faster than

those produced by the AES algorithm.

5.5 RSA Algorithm Encryption and Decryption

We ran the client and server programs for the RSA security algorithm employing various
test files and key sizes. Test file sizes included 100 bytes, 1K, 5K, and 10K. Key sizes
included 1024 bits, 2048 bits, 3072 bits, 4096 bits, and 5120 bits. We measured
encryption and decryption times on the client and server and graphs were plotted

representing measured times.

In Figure 11 we see, for every 1024 bits increment in key size, public key encryption
times increased by a factor of 1.16 to 1.26 for the 100 byte file. In Figure 12 we see,
encryption times increased by a factor of 1.32 to 2.72 for the 1K file, 1.53 to 2.73 for the

5K file, and 1.56 to 2.58 for the 10K file.

-21 -

—=—100 bytes

Figure 11: RSA Encryption Times for 100 bytes file

//
—
| 1K 5K ——10K |

1K —<-5K ——10K

Figure 12: RSA Encryption Times

In Figure 13 we see, for every increment of 1024 bits in key size, decryption times

increased by a factor of 1.94 to 5.98 for the 100 byte file. In Figure 14 we see, the

=22

corresponding increase in decryption times are 1.9 to 6.4 for the 1K file, 1.9 to 6.8 for the

5K file, and 1.9 to 7.06 for the 10K file.

—=—100 bytes

Figure 13: RSA Decryption Times for 100 bytes file

1K —<-5K ——10K

Figure 14: RSA Decryption Times

-23-

The figures also show that RSA algorithm decryption times were slower than encryption
times. The ratio between private and public key operation times grows linearly with the
key length. For the file of size 100 bytes, the ratio between private and public key
operation times increased from 2.6 to 107 times with key size increase. For a 1K file this
ratio increased from 13 to 175 times with key size increase; for the 5K file, this ratio
increased from 29 times to 240; and for 10K file this ratio increased from 33 to 236
times. So the file size and key size impact RSA performance. This indicates

performance is a tradeoff for security.

5.6 ElGamal Encryption and Decryption Times

We ran the client and server programs for the EIGamal security algorithm for various test
file and key sizes. Test file sizes included 100 bytes, 1K, 5K, and 10K. Key sizes
included 600 bits, 800 bits, 1000 bits, and 1200 bits. We measured encryption and
decryption times on the client and server and graphs were plotted representing the

measured times.

As seen in Figures 15 and 16, with increasing key size, public key encryption times
increased by a factor of 1.49 to 2.25 for the 100 byte test file, 1.63 to 2.1 for the 1K test
file, 1.66 to 2.2 for the 5K test file, and 1.62 to 2.21 for the 10K test file. Figures 17 and
18 shows, with increasing key size, ElGamal decryption times increased by a factor of
1.65 to 1.85 for the 100 byte test file, 1.6 to 2.1 for 1K test file, 1.5 to 2.2 for 5K test file,

and 1.65 to 2.3 for the 10K test file.

-24 -

—=— 100 bytes

Figure 15: ElGamal Encryption Times for 100 bytes file

—=#—100 bytes 1K 5K —e—10K

Figure 16: EIGamal Encryption Times

-25-

—=—100 bytes

Figure 17: EIGamal Decryption Times for 100 bytes file

1K —< 5K ——10K

Figure 18: EIGamal Decryption Times

For the EIGamal algorithm, decryption times were faster than encryption times. Private

key decryption times are about two times faster than public key encryption times for all

-26 -

test files. In contrast to the RSA algorithm, the EIGamal algorithm public key operation is

slower than the private key operation.

5.7 Digital Signature SHA1 Versus MD5 With RSA

We ran the client and server programs for digital signature with SHA1 and MD5 with
various RSA key sizes. Key sizes included 512 bits, 768 bits, 1024 bits, and 2048 bits. A
1MB test file was used. We measured digital signature verification times on the client
and server and graphed the measured times.

Figure 19 shows the digital signature verification times with SHAL increased by a factor
of 1.09 to 1.23 for each increment of RSA key size. Digital signature verification times

with MD?5 increased by a factor of 1.01 to 1.3 for each increment of RSA key size.

Digital signature times SHA1 vs MD5 with RSA

100

80 ——=
60 —————
40

20

Time (milli seconds)

512 768 1024 2048
RSA Key Sizes (bits)

—=— SHA1 MD5

Figure 19: Digital Signature Verification Times SHAL versus MD5 with RSA

-27-

Figure 20 shows digital signature maximum throughput for SHA1 and MD5. As RSA key
size increses, SHAL throughput decrements at the rate of 0.88, 0.91, and 0.80 while the

MDS5 throughput decrements at the rate of 0.94, 0.91, and 0.74.

Digital signature maximum throughput SHA1 vs MD5 with RSA

T 40000
(@]
5]
2 30000
'E 20000 -
S \.\
O =
10000
o
2 0
512 768 1024 2048

RSA Key Sizes (bits)

——SHA1 MD5

Figure 20: Digital Signature Maximum Throughput SHA1 versus MD5 with RSA

Figure 20 illustrates our finding that digital signatures with MD5 exhibit better

throughput than digital signatures with SHA1. MD5 digital signature rates are faster by

1.61 to 1.77 times for RSA key sizes 512, 768, 1024, and 2048 bits.

5.8 SSL Communication Timings for Two Sets of Security Algorithms

We ran the client and server programs for SSL communication with the 3DES-SHAL and

RC4-MD?5 security algorithms with various RSA key sizes. RSA key sizes included 512

-28 -

bits, 768 bhits, 1024 bits, and 2048 bits. A 10K test file was used. We measured

encryption and decryption times and graphed the measured times.

In Figure 21 we can see, as the key size increased, 3DES-SHAL throughput rates
decreased at the rates of 0.61, 0.85, 0.91 and RC4-MD?5 throughput rates decreased at the
rate of 0.66, 0.86, and 0.87. We also observed that RC4-MD5 had better throughput than

the SDES-SHA1 combination. RC4-MD5 was 1.052 to 1.09 times faster than 3DES-

SHAL.
SSL communication 3DES-SHA1 vs RC4-MD5 with RSA maximum
throughput
e 25
(@] ry
2 20
7}
= 15 -
= D
E 10 =
2 5
2
o
512 768 1024 2048
RSA Key Sizes (bits)
—a— 3DES-SHA1 RC4-MD5

Figure 21: SSL Communication 3DES-SHA1 versus RC4-MD5 with RSA Maximum
Throughput

-29 -

Chapter 6

ANALYSIS AND CONCLUSIONS

6.1 Analysis of Test Results

Even if a cipher is unbreakable by exploiting structural weaknesses in the algorithm, it is
possible to run through the entire space of keys in what is known as a brute force attack.
Since longer keys require more work for a brute force search, a long enough key will
require more work than is feasible. Thus, length of the key is important in resisting this
type of attack [Wikipedia01]. Symmetric algorithms are more susceptible to brute force

attack.

When deciding upon key length in the design or use of a cryptographic algorithm, one
must consider two tradeoffs. Long keys can provide more security. Short keys can
provide greater efficiency. Therefore, it is important to determine an optimal key length
by evaluating the likelihood of the key being guessed, versus the impact of a longer key
on the time required to encrypt the plaintext and the time required by the intended
receiver to decrypt the ciphertext [Williams02]. Out test results show symmetric
algorithm encryption and decryption times increase with key size. This proved to be true

in our tests of DES, 3DES, RC4, and AES.

The effectiveness of public key cryptosystems depends on the intractability

(computational and theoretical) of certain mathematical problems such as integer

-30-

factorization. These problems are time consuming to solve, but usually faster than trying
all possible keys by brute force. Thus, asymmetric algorithm keys must be longer for
equivalent resistance to attack than symmetric algorithm keys. As of 2002, a key length
of 1024 bits was generally considered the minimum necessary for the RSA encryption

algorithm[Wikipedia01].

Private key operations are generally slower than those with public keys. The ratio
between private and public key operation times grows almost linearly with key length
and longer keys provide an increased level of security at a performance cost
[Manasce03]. Our test results confirm this and show the RSA algorithm private key

based decryption times were slower than public key based encryption operations.

Encryption under EIGamal requires two exponentiations; however, these exponentiations
are independent of the message and can be computed ahead of time if need be. The
ciphertext is twice as long as the plaintext, which is a disadvantage as compared to some
other algorithms. Decryption only requires one exponentiation [Wikipedia02]. This
explains why our EIGamal public key encryption times were slower than the private key
decryption times. This is in contrast to our results with the RSA algorithm in which

private key decryption times were slower than pubic key encryption operations.

Verification time increases as security increases, but maximum throughput decreases

with security [Menasce03]. We examined the performance of SHA1 and MD5 with the

RSA algorithm. Digital certification verification times increased with an increase in RSA

-31-

key size. Digital certificate verification with MD5 was faster and had better throughput
than with SHAL. These results suggest SHA-1 is more secure than MD5 and the longer

the key, the stronger the security.

6.2 Security Algorithms Performance Comparison From Previous Studies

We encountered few previous performance studies on security algorithms. The following

sections compare these studies to our project results.

6.2.1 Crypro++ 5.2.1 Benchmarks

Crypto++ 5.2.1 are speed benchmarks for some of the most commonly used

cryptographic algorithms. All were coded in C++, compiled with Microsoft Visual C++
.NET 2003 (whole program optimization, optimized for speed, P4 code generation), and
run on a Pentium 4 2.1 GHz processor under Windows XP SP 1. For multiple-precision

addition and subtraction, 386 assembly routines were used[Wei04].

Table 1 shows the throughput (mb/seconds) for various security algorithms using
Crypto++ software. The DES algorithm has better throughput than the RC2 and RC6
algorithms. AES with 192 bit key has better throughput than 3DES algorithm. These
results are consistent with the results of our study, in which DES encryption times were
faster than RC4 encryption times, suggesting better throughput. AES has better

throughput than the DES-EDES3 algorithm, which conflicts the results of our study. Our

-32 -

AES verification times were slower than those produced when the 3DES algorithm was

used so, in our study 3DES had better throughput than AES.

Algorithm Megabytes(2°'20 bytes) Time Taken MB/Second
Processed
MD5 1.02e+003 4.726 216.674
SHA-1 256 3.766 67.977
SHA-256 256 5.758 44.460
SHA-512 64 5.618 11.392
DES 128 5.998 21.340
DES-EDE3 64 6.499 9.848
RC2 64 5.548 11.536
RC6 128 3.385 37.814
AES (Rijndael) 256 4.196 61.010

(128-bit key)
AES (Rijindael)

(192 bit key) 256 4.817 53.415
AES (Rijindael)
(256 bit key) 256 5.308 48.229

Table 1: Throughput for Security Algorithms Using Crypto++ [Wei04]

Table 2 shows the performance of the RSA algorithm using Crypto++ software. Private
key decryption operations are in general slower than public key encryption operations.
Verification times increase as security increases. Our project results are consistent with
the results of the above study. We tested the performance of public key algorithms, RSA
and ElGamal, with various key sizes. Both RSA and EIGamal encryption and decryption
times increased with an increase in key sizes. RSA private key based decryption times
were slower than public key based encryption operations. EIGamal public key encryption

times were slower than private key decryption operations.

-33-

Operation

RSA 1024 Encryption
RSA 1024 Decryption
RSA 2048 Encryption
RSA 2048 Decryption

Iterations
27607
1050
11022
177

Total Time

5.007
5.007
5.007
5.028

Milliseconds/Operation
0.18

4.77

0.45

28.41

Table 2: Performance of RSA Public Key Algorithm Using Crypto++ [Wei04]

6.2.2 Testing a Variety of Encryption Technologies

Henson reviewed and tested the speeds of various encryption technologies using Entrust

Software [Henson01]. Multiple encryption algorithms were included in the product. The

algorithms tested were IDEA, CAST, DES, and RC2. For testing they used a 7.7MB

Word document file that included complex graphics and timed encryption, decryption,

and signing [Henson01].

Table 3 shows the encryption and decryption times for various security algorithms using

Entrust software. All of the symmetric algorithm encryption times are slower than the

decryption times. The DES algorithm is faster than 3DES, RC2-40, and RC2-120, since it

uses a 64 bit key. 3DES, which uses a 192 bit key, exhibited the same performance as

RC2 with a 40 bit key and RC2 with a 128 bit key.

-34 -

Algorithm Encrypt
Time

CAST-40 ~8 sec
CAST-64 ~7 sec
CAST-80 ~7 sec
CAST-128 ~7 sec

IDEA ~10 sec
DES ~9 sec

3DES ~14 sec
RC2-40 ~14 sec

RC2-128 ~14 sec

Decrypt
Time

~3 sec
~2 sec
~2 sec
~3 sec
~4 sec
~3 sec
~6 sec
~6 sec
~6 sec

Sign Time

~7 sec
~7 sec
~10 sec
~8 sec
~7 sec
~8 sec
~7 sec
~7 sec
~7 sec

Decrypt
Signing
Time

~2 sec
~2 sec
~4 sec
~2 sec
~2 sec
~3 sec
~2 sec
~2 sec
~2 sec

Encrypt &
Sign Time

~8 sec
~7 sec
~7 sec
~7 sec
~10 sec
~0 sec
~14 sec
~14 sec
~14 sec

Decrypt
Encrypted
& Signed
File Time
~2 sec
~2 sec
~3 sec
~3 sec
~5 sec
~4 sec
~5 sec
~6 sec
~5 sec

Table 3: Testing a Variety of Encryption Technologies [Henson01]

Our results are generally consistent with Hudson’s study. DES performed better than

RC4 with a 64 bit key and, 3DES exhibited better performance than RC4 with a 192 bit

key.

6.2.3 Security Performance

Table 4 shows the digital signature verification times and maximum throughput for two

hash functions and various key sizes. The verification time using SHA-1 is between 35

and 38 percent higher than for MD5 in this study [Manasce03]. Our results are consistent

with this study. SHA-1 took more time and had less maximum throughput than MD5.

Verification times for both SHA1 and MD5 increased with increasing key size and

maximum throughput decreased with increasing key size.

-35-

Hash function

Public key size (bits)

Verification time

Maximum throughput

(seconds) (requests per second)
MD5 512 0.067 14.9
768 0.068 14.8
1024 0.068 14.6
2048 0.073 13.8
SHA-1 512 0.093 10.8
768 0.093 10.7
1024 0.094 10.6
2048 0.098 10.2

Table 4: Digital Signature Verification Times and Maximum Throughput [Menasce03]

Figure 22 shows maximum throughput of secure socket layer for various combinations of

cryptographic algorithms and key lengths. Maximum throughput decreased with

increasing key size/security and RC4-MD5 had better throughput than 3DES-SHAL1. We

also studied SSL performance with a security algorithm using 3DES with SHA1 and RC4

with MD5. RC4 with MD5 had better throughput than 3DES with SHAL. The throughput

for both algorithms decreased with an increase in RSA key length.

-36 -

100

80+

100.0
720
&0
454
40 365
28.1

20 A |I!I i 167

c' T T T T T u

Monsecure RC4-MD5 3DES-SHAI RC4-MDS 3DES-SHAI RC4-MD5 3DES-SHAI
connectlons {512 bics) (512 bits) {768 bis) {768 bics) {1024 bics) (1024 bits)

Maximum throughput (requests’sec)

Figure 22: Maximum Throughput of Secure Socket Layer [Menasce03]

6.3 Conclusions

The purpose of this project was to conduct performance analysis of various network

security algorithms. It has been shown that the results were generally consistent with

other such studies. The results should therefore, be able to be used by application

developers when deciding upon the appropriate security algorithm for their applications.

-37-

REFERENCES

Print Publications:

[Hook05]
Hook, D., Cryptography with Java, Wiley Publishing, Indianapolis, IN, 2005.

[TanenbaumO3]
Tanenbaum, A., Computer Networks, Prentice Hall, Upper Saddle River, NJ, 2003.

Electronic Sources:

[Henson01]

Henson, T. J., “Testing a Variety of Encryption Technologies,” http://www.lInl.gov/tid/
lof/documents/pdf/243786.pdf, last revision April 9, 2001, last accessed November
12, 2006.

[Vocal03]
Vocal Technologies, “RC4 Encryption Algorithm,” http://www.vocal.com/RC4.pdf, last
revision 2003, last accessed November 11, 2006.

[Wei04]
Wei, D., “Crypto++ 5.2.1 Benchmarks,” http://www.eskimo.com/~weidai/
benchmarks.html, last revision July 23, 2004, last accessed November 12, 2006.

[Menasce03]
Menasce, D., “Security Performance,” http://csd.computer.org/dl/mags/ic/2003/03/
w3084.htm, Internet Computing (Vol. 7, No. 3) pp. 84-87, May/June, 2003.

[Williams02]

Williams, L., “A Discussion of the Importance of Key Length in Symmetric and
Asymmetric Cryptography,”
http://www.giac.org/certified_professionals/practicals/gsec/0848.php.

[WikipideaO1]
Wikipidea., “Key Size,” http://en.wikipedia.org/wiki/Key_size, last revision November
22, 2006.

[Wikipidea02]

Wikipidea., “ElGamal Encryption,”
http://en.wikipedia.org/wiki/EIGamal_encryption, last revision November 2, 2006.

-38 -

Appendix A

SECURITY PROTOCOL CODE LISTINGS

Program name: SecurityServer.java

ox F * X
ok ok ok %

* *

package unf.grad.proj;

import java.io.*;
import java.net.*;

/**

* @author Praveen Donta

* File: SecurityServer.java

* Desc: Security server for accepting client connections and
decrypting encrypted text file.

*

*/

public class SecurityServer {
static ServerSocket sr;
boolean stop = false;

public static void main(String argv[]) {
String port; // server port
ServerThread st;
ServerSocket serverSocket = null;
boolean listening = true;

try {

// Check for input
if (argv.length >= 1) {
port = argv[O0];
} else {
System.out.printIn("’'Missing server port. Please enter
server port.');
port = getString();

¥
// Start new server socket
try {

serverSocket = new
ServerSocket(Integer.parselnt(port));
} catch (10Exception e) {
System.err._printIn(*'Could not listen on port:
1234.");
System.exit(-1);

-39-

while (listening)

new ServerThread(serverSocket.accept()).start();

serverSocket.close();

} catch (10Exception e) {
System.out.printIn("%s", e.message());

//final Reader from_server = new
InputStreamReader(s.getinputStream());
//PrintWriter to_server = new PrintWriter(new
OutputStreamWriter(s.getOutputStream()));
}

/**

* @return string for the input

* @throws I0Exception

*/

public static String getString() throws I0Exception

{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s; package unf.grad.proj;

Program name: ServerThread.java

X ok X ok

import java.io.*;
import java.net.*;
import java.util._Calendar;

/**
* @author Praveen Donta
* File: SecurityThread. java

* Desc:
*

*/

public class ServerThread extends Thread {
private Socket socket = null;
private PrintWriter outStream;

public ServerThread(Socket client) {
this.socket = client;
}
public void run(Q) {
String inputLine;
String serverFile = "ServerFile.txt";

try {

System._out_printIn('Client Connected™);

=40 -

* *

* ook % % X

PrintWriter out = new PrintWriter(socket.getOutputStream(),
true);
BufferedReader in = new BufferedReader(
new InputStreamReader(
socket.getlnputStream()));
outStream = new PrintWriter(new FileOutputStream(serverFile));

out.printIn('test message');
while ((inputLine = in.readLine()) != null) {

if (inputLine.equals('DES™))
processDES(in);

else if (inputLine.equals('3DES™))
process3DES(in);

else if (inputLine.equals(*'RC4™))
processRC4(in);

else if (inputLine._equals('AES™))
processAES(in);

else if (inputLine.equals(''RSA™))
processRSA(in);

else if (inputLine.equals(*ELG™))
processeLG(in);

else if (inputLine.equals('SHA1™))
processSHAL1(in);

else i1f (inputLine.equals('MD5'))
processMD5(in);

System.out.printIn(‘'Message from client: ' + inputLine);
if (inputLine == "Bye")
break;
out.printIn(received™);
}
} catch (InterruptedlOException e) {}
catch (10Exception e) {}

}

/**

* @return void

* @throws I0Exception

*/

public void processDES(BufferedReader in) {

String inputLine = null;
PrintWriter out = null;
String encryptfile = "DESEncrypt.txt";
String outfile = "DESDecrypt.txt";
long sttime, endtime;

try
{ N _ _

out = new PrintWriter(new FileOutputStream(encryptfile));
}
catch (10Exception fnf)
{

System.err._printIn("'Output file not created

[*+encryptfile+"]™);
System.exit(l);

-4] -

}

try {
outfile = "DES" + in.readLine();

while ((inputLine = in.readLine()) !'= null) {
if (inputLine.equals(’end™))
break;
out.write(inputLine);
out.write("\n");

}
} catch (10Exception e) {}
out.close();
prDES de = new prDES(encryptfile, outfile, false);

/*
* Start and end timer
*/
sttime = startTimer();
de.process();
endtime = endTimer();
System.out.printIn(*"Time took for Decryption of DES " + outfile
+ " - " + (endtime - sttime));
outStream.printIn("'Time took for Decryption of DES " + outfile +
'+ (endtime - sttime));
outStream.flush();
}

/**

* @return void

* @throws 10Exception

*/

public void process3DES(BufferedReader in) {

String inputLine = null;
PrintWriter out = null;
String encryptfile = "3DESEncrypt.txt";
String outfile = "3DESDecrypt.txt';
long sttime, endtime;

try

{
out = new PrintWriter(new FileOutputStream(encryptfile));

}
catch (10Exception fnf)

{
System.err.printIn(*'Output file not created
["+encryptfile+"]"");
System.exit(l);
}

try {
outfile = "3DES"™ + iIn.readLine();

while ((inputLine = in.readLine()) !'= null) {
if (inputLine.equals('end™))
break;

-42 -

out.write(inputLine);
out.write("\n");

}
} catch (10Exception e) {}
out.close();
pr3DES de = new pr3DES(encryptfile, outfile, false);

/*
* Start and end timer
*/
sttime = startTimer();
de.process();
endtime = endTimer();
System.out.printIn(*'Time took for Decryption of 3DES " + outfile
+ " - " + (endtime - sttime));
outStream.printIn("'Time took for Decryption of 3DES " + outfile +
" o " + (endtime - sttime));
outStream.flush();

/**

* @return void

* @throws I0Exception

*/

public void processRC4(BufferedReader in) {

String inputLine = null;
String keylen = null;
PrintWriter out = null;
String encryptfile = "Rc4Encrypt.txt';
String outfile = "RC4Decrypt.txt";
long sttime, endtime;

try

{
out = new PrintWriter(new FileOutputStream(encryptfile));

}
catch (10Exception fnf)

{
System.err._printIn("'Output file not created
["+encryptfile+"]™);
System.exit(l);
}

try {
outfile = in.readLine();

keylen = in.readLine();
outfile = "RC4"™ + keylen + outfile;

while ((inputLine = in.readLine()) != null) {
if (inputLine.equals('end™))
break;
out.write(inputLine);
out.write(*\n");

3
} catch (I0Exception e) {}

-43-

out.close();
prRC4 rc = new prRC4(encryptfile, outfile, keylen, false);

/*

* Start and end timer

*/

sttime = startTimer();

rc.process();

endtime = endTimer();

System.out.printIn(*'Time took for Decryption of RC4 " + outfile +

"of keylen " + keylen + " :" + (endtime - sttime));
outStream.printIn("'Time took for Decryption of RC4 " + outfile +
"of keylen " + keylen + " :" + (endtime - sttime));
outStream.flush();
}
/**

* @return void

* @throws I0Exception

*/

public void processAES(BufferedReader in) {

String inputLine = null;
String keylen = null;
PrintWriter out = null;
String encryptfile = "AESEncrypt.txt";
String outfile = "AESDecrypt.txt";
long sttime, endtime;

try
{
out = new PrintWriter(new FileOutputStream(encryptfile));
}
catch (10Exception fnf)
{

System.err._.printIn("'Output file not created
["+encryptfile+"]'™");
System.exit(l);
}

try {
outfile = in.readLine();

keylen = in.readLine();
outfile = "AESOut™ + keylen + outfile;

while ((inputLine = in.readLine()) !'= null) {
if (inputLine.equals(end™))
break;
out.write(inputLine);
out.write("\n");
}
} catch (10Exception e) {}

out.close();

-44 -

prAES ae = new prAES(encryptfile, outfile, keylen, false);

/*

* Start and end timer

*/

sttime = startTimer();

ae.process();

endtime = endTimer();

System.out._printIn("'Time took for Decryption of AES " + outfile +

"of keylen " + keylen + " :" + (endtime - sttime));
outStream.printIn("Time took for Decryption of AES " + outfile +
"of keylen " + keylen + " " + (endtime - sttime));
outStream.flush();
}
/**

* @return void

* @throws 10Exception

*/

public void processRSA(BufferedReader in) {

String inputLine = null;
PrintWriter out = null;
String encryptfile = "RSAEncrypt.txt";
String outfile = "RSADecrypt.txt";
long sttime, endtime;

try
{ N _ _
out = new PrintWriter(new FileOutputStream(encryptfile));
}
catch (10Exception fnf)
{
System.err.printIn("'Output file not created

["+encryptfile+"]™);
System.exit(l);
3

try {
outfile = "RSAOut" + in.readLine();
readRsaKeyStream(in);
while ((inputLine = in.readLine()) !'= null) {
if (inputLine.equals(end™))
break;
out.write(inputLine);
out.write("\n");
}
} catch (I0Exception e) {}
out.close();
prRSA rsa = new prRSA(encryptfile, outfile, false);
/*

* Start and end timer
*/

=45 -

sttime = startTimer();
rsa.process(""");
endtime = endTimer();
System.out.printIn(*"Time took for Decryption of RSA ' + outfile
+ " " + (endtime - sttime));
outStream.printIn("Time took for Decryption of RSA " + outfile +
" + (endtime - sttime));
outStream.flush();
}

/**

* @return void

* @throws 10Exception

*/

public void processeELG(BufferedReader in) {

String inputLine = null;
PrintWriter out = null;
String encryptfile = "ELGEncrypt.txt";
String outfile = "ELGDecrypt.txt";
long sttime, endtime;

try

{
out = new PrintWriter(new FileOutputStream(encryptfile));

catch (10Exception fnf)

{
System.err._printIn("'Output file not created
["+encryptfile+"]'™");
System.exit(l);
}

try {
outfile = "ELGOut™ + in.readLine();

readeElgKeyStream(in);
while ((inputLine = in.readLine()) !'= null) {
if (inputLine.equals('end™))
break;
out._write(inputLine);
out.write("\n");

}
} catch (10Exception e) {}
out.close();
prElGamal elg = new prElGamal(encryptfile, outfile, false);

/*
* Start and end timer
*/
sttime = startTimer();
elg.process('"");
endtime = endTimer();
System.out._printIn(*'Time took for Decryption of AlGamal ™ +

outfile + " " + (endtime - sttime));
outStream.printIn("'Time took for Decryption of AlGamal ' +
outfile + " " + (endtime - sttime));

-46 -

outStream.flush();
Y

/**

* @return void

* @throws I0Exception

*/

public void processSHAl1(BufferedReader in) {

String inputLine = null;
PrintWriter out = null;
PrintWriter encrypt = null;
String encryptmd = null;
String clientmd = null;
String servmd = null;
String infile = "SHAlfile.txt";
String encryptfile = "RSAEncrypt.txt';
String outfile = "RSADecrypt.txt";
long sttime, endtime;
byte[] md;

try

{
out = new PrintWriter(new FileOutputStream(infile));

encrypt = new PrintWriter(new
FileOutputStream(encryptfile));

}
catch (10Exception fnf)

{
System.err._printIn("'Output file not created
[""+infile+"]"");
System.exit(l);
}
try {
/*
* Input file name
*/
outfile = "SHA1Out" + in.readLine();
/*
* Get Client Message Digest
*/
clientmd = in.readLine();
/*
* Get RSA Keys
*/
readRsaKeyStream(in);
/*
* encrypted RSA message digest
*/

encryptmd = in.readLine();
encrypt.write(encryptmd);

/*
* Get Input file
*/
while ((inputLine = in.readLine()) !

null) {

-47 -

if (inputLine.equals('end™))
break;

out.write(inputLine);

out.write("\n");

}
} catch (10Exception e) {}

out.close();
encrypt.close();

/*

* Get Message Digest for input file
*/

prSHA1 shal = new prSHAL1(infile);

/*
* Start and end timer
*/
sttime = startTimer();
md = shal.process();
endtime = endTimer();
System.out._printIn(*"Time took for SHAl1 MessageDigest ' +
outfile + " " + (endtime - sttime));
outStream.printIn(""Time took for SHAl MessageDigest ' + outfile
+ " " + (endtime - sttime));
outStream.flush();
/*
* Decrypt RSA message
*/
prRSA rsa = new prRSA(encryptfile, outfile, false);

/*
* Start and end timer
*/
sttime = startTimer();
rsa.process("");
endtime = endTimer();
System.out.printIn(*"'Time took for Decryption of RSA " +

outfile + " " + (endtime - sttime));
outStream.printIn("Time took for Decryption of RSA " + outfile
+ " " + (endtime - sttime));

outStream.flush();

/*
* Compare results
*/
try {
BufferedlnputStream mdstream =
new BufferedlnputStream(new
FilelnputStream(outfile));
BufferedReader mdReader = new BufferedReader(new
InputStreamReader (mdstream));
servmd = mdReader.readLine();
mdstream.close();
mdReader.close();
} catch (10Exception e){}

-48 -

if (servmd.equals(new String(md)))
System.out.printIn(*File is Authenticated
successfully');
else
System.out.printIn("'File Authentication failed");

}

/**

* @return void

* @throws 10Exception

*/

public void processMD5(BufferedReader in) {

String inputLine = null;
PrintWriter out = null;
PrintWriter encrypt = null;
String encryptmd = null;
String clientmd = null;
String servmd = null;
String infile = "MD5File.txt";
String encryptfile = "RSAEncrypt.txt';
String outfile = "RSADecrypt.txt";
long sttime, endtime;
byte[] md;

try
{

out = new PrintWriter(new FileOutputStream(infile));
encrypt = new PrintWriter(new
FileOutputStream(encryptfile));

}
catch (10Exception fnf)

{
System.err._.printIn("'Output file not created
["+infile+"]"™);
System.exit(l);
}
try {
/*
* Input file name
*/
outfile = "MD50ut™ + in.readLine();
/*
* Get Client Message Digest
*/
clientmd = in.readLine();
/*
* Get RSA Keys
*/
readRsaKeyStream(in);
/*
* encrypted RSA message digest
*/

encryptmd = in.readLine();
encrypt.write(encryptmd);

-49-

/*
* Get Input file
*/
while ((inputLine = in.readLine()) !'= null) {
if (inputLine.equals('end™))
break;
out.write(inputLine);
out.write("\n");

3
} catch (I0Exception e) {}

out.close();
encrypt.close();

/*

* Get Message Digest for input file
*/

prMD5 md5 = new prMD5(infile);

/*
* Start and end timer
*/
sttime = startTimer();
md = md5.process();
endtime = endTimer();
System.out._printIn(*"Time took for MD5 Message Digest ' +
outfile + " " + (endtime - sttime));
outStream.printIn("'Time took for MD5 Message Digest ' + outfile
+ " " + (endtime - sttime));
outStream.flush();

/*

* Decrypt RSA message

*/

prRSA rsa = new prRSA(encryptfile, outfile, false);

/*
* Start and end timer
*/
sttime = startTimer();
rsa.process("");
endtime = endTimer();
System.out.printIn(*'Time took for Decryption of RSA " +

outfile + " " + (endtime - sttime));
outStream.printIn("Time took for Decryption of RSA " + outfile
+ " " + (endtime - sttime));
outStream.flush();
/*
* Compare results
*/
try {

BufferedlnputStream mdstream =
new BufferedlnputStream(new
FilelnputStream(outfile));
BufferedReader mdReader = new BufferedReader(new
InputStreamReader (mdstream));

-850 -

servmd = mdReader.readLine();
mdstream.close();
mdReader.close();
} catch (10Exception e){}

if (servmd.equals(new String(md)))
System.out.printIn("File is Authenticated
successfully');
else
System.out.printIn("'File Authentication failed");

}

/**
* @return void
* @throws 10Exception

*/
private static void readRsaKeyStream(BufferedReader in)
{
String bv;
String keyfile = "ServRSAKey.dat";
PrintWriter out;
int i;
try {
out = new PrintWriter(new FileOutputStream(keyfile));
// write variables mod, pubExp, privExp, p, q, dp, dq,
qinv

for (i=0; 1 < 8;i++)
if ((bv = in.readLine()) !'= null)
out.printin(bv);

out.close();
} catch (10Exception createKey)

{
System.err.printIn(*’'Could not decryption create key file
"+ "[T+keyFile+"]™);
System.exit(l);
}

}

/**
* @return void
* @throws I10Exception
*/
private static void readElgKeyStream(BufferedReader in)
{
String bv;
String keyfile = "ServElGamalKey.dat";
PrintWriter out;
int i;

try {
out = new PrintWriter(new FileOutputStream(keyfile));

// write variables p, g, X

for (i=0; 1 < 3ji++)
if ((bv = in.readLine()) !'= null)

-51-

out.printin(bv);
out.close();

} catch (10Exception createKey)
{

System.err._printIn(*"Could not decryption create key file
"

"["+keyFile+"]");
System.exit(l);
}

}

/**
* @return long
* @throws I0Exception
*/
public static long startTimer()
{
Calendar rightNow;
String outTxt;
String addr;
FileWriter out;
long sttime;
int hour, min, sec, milli;

// Get Starting Time
rightNow = Calendar.getlnstance();
sttime = System.nanoTime();
hour = rightNow.get(Calendar_HOUR);
min = rightNow.get(Calendar_MINUTE);
sec = rightNow.get(Calendar.SECOND);
milli = rightNow.get(Calendar.MILLISECOND);
// Display Results
System.out._printIn(*'Starting Time for server decryption
+ Integer.toString(hour) + *:*
+ Integer.toString(min) + ":"
+ Integer.toString(sec) + ":"
+ Integer_toString(milli) + "\n");

return sttime;

}

/**
* @return long
* @throws I0Exception
*/
public static long endTimer()
{
Calendar rightNow;
String outTxt;
String addr;
FileWriter out;
long endtime;
int hour, min, sec, milli;

-52 -

// Get Ending Time
rightNow = Calendar.getlnstance();
endtime = System.nanoTime();
hour = rightNow.get(Calendar_HOUR);
min = rightNow.get(Calendar .MINUTE);
= rightNow.get(Calendar.SECOND) ;
milli = rightNow.get(Calendar.MILLISECOND);

// Display Results
System.out.printIn(*Ending Time for server decryption "
+ Integer._toString(hour) + ":*
+ Integer.toString(min) + ":"
+ Integer._toString(sec) + "I
+ Integer.toString(milli) + "\n"");

return endtime;

}

/**

* @return string for the input

* @throws I0Exception

*/

public static String getString() throws I0Exception

{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}

/**
* @return long representation for the input
* @throws I0Exception
*/
public static long getLong() throws I0Exception
{
String s = getString();
return Long.parseLong(s);
}
>

/**
* @return long representation for the input
* @throws I0Exception
*/
public static long getLong() throws I0Exception
{
String s = getString();
return Long.parseLong(s);

(]

*ox ok X

Program name: SecurityClient.java

-B53 -

* ok % ¥

package unf.grad.proj;

import java.io.*;
import java.net.™;
import java.util_Calendar;

/**
* @author Praveen Donta
* File: SecurityClient.java

* Desc: Security Client connects to server and encrypts a text file

and send it to the server.
*
*/
public class SecurityClient {
public static void main(String argv[]) {

try {
String server; // server name
String port; // server port
String fromServer;
String infile = "infilel.txt";

String outfile = "outfilel._txt";

String mdfile = "mdfile._txt";

String clientfile = "clientout.txt";

String keylen = null;

String rv;

String outString;

long 11_in = O;

long sttime, endtime;

byte[] md;

Socket socket;
PrintWriter out = null;
BufferedReader in = null;
BufferedlnputStream inStream;
PrintWriter outStream = null;

if (argv.length == 1) {
server = argv[0];
System.out.printIn(‘'Missing server port. Please enter
server port.');
port = getString();
} else if (argv.length == 2){
server = argv[0];
port = argv[1];
} else {
System.out.printIn(''Missing server name. Please enter
server name.');
server = getString(Q);
System.out._printIn(*'Missing server port. Please enter
server port.');
port = getString();
}

// Create Socket
socket = new Socket(server, Integer.parselnt(port));

-54 -

out = new PrintWriter(socket.getOutputStream(), true);

in = new BufferedReader(new
InputStreamReader (socket._getlnputStream()));

try

{
outStream = new PrintWriter(new
FileOutputStream(clientfile));

catch (10Exception fnf)
{

["+clientFile+"]");

System.err._printIn("'Output file not created

}

System.exit(l);

while ((fromServer = in.readLine()) != null) {

System.out._printIn(*'Server: ' + fromServer);
System.out._printIn(*'1. DES Test - Multiple Ffile sizes with

64 bit key ");

System.out.printIn(*'2. 3DES Test - Multiple file sizes with

192 bit key ");

System.out._printIn(*'3. RC4 Test - Multiple Ffile sizes with

192 bit key'™);

System.out.printIn(*"4. AES Test

Multiple File sizes with

192 bit key'™);

System.out._printIn(*'5. RC4 Test - Multiple key sizes with

5K or 10K file™);

System.out.printIn(*'6. AES Test

Multiple key sizes with

5K or 10K file™);

System.out.printIn(*7. RSA Test - Multiple key sizes (1024,

2048, 3072, 4096, 5120)");

System.out.printIn(*'8. ElGamal Test - Multiple key sizes

(100, 800, 1000, 1200) ');

System.out.printIn(*'9. RSA with SHA-1 - multiple keys (512,

768, 1024, 2048) bits);

System.out._printIn(*'10. RSA with MD-5 - multiple keys with

(512, 768, 1024, 2048) bits™);

user

System.out.printIn(’'0. Quit'™);
System.out.print(*'Please choose one of the option: ');

try {
Il _in = getLong(Q); // get input from

} catch(NumberFormatException e) { // catch invalid

integer errors

System.out._printIn("'\nPlease enter selection from 1 to 10

only, please try again.');

/************************************/
/* Option 1 */
/***********************************/
it (Il_in == 1) {
System.out.printIn("Enter testfile from 1K to 10K"™);
infile = getString();
prDES de = new prDES(infile, outfile, true);
/*

-55 -

* Start and end timer

*/

sttime = startTimer();

de.process();

endtime = endTimer();

System.out.printIn(*'Time took for encryption of DES

for input file " + infile + " - " + (endtime - sttime));
outString = "Time took for encryption of DES for
input file " + infile + ™ - " + (endtime - sttime);

outStream.printin(outString);
outStream.flush();

inStream = new BufferedInputStream(new
FilelnputStream(outfile));

BufferedReader br = new BufferedReader(new
InputStreamReader(inStream));

out_printIn("’'DES™);

out.printIn(infile);

while ((rv = br.readLine()) != null)

out.printin(rv);

out.printin(end™);

br_close();

inStream.close();

} else if (Il _in == 2) {

System.out.printIn("'Enter testfile from 1K to 10K');

infile = getString();

pr3DES de = new pr3DES(infile, outfile, true);

/*
* Start and end timer
*/
sttime = startTimer();
de.process();
endtime = endTimer();
System.out.printIn(*'Time took for encryption of 3DES

for input file " + infile + " - " + (endtime - sttime));
outString = "Time took for encryption of 3DES for
input file " + infile + ™ - " + (endtime - sttime);

outStream.printin(outString);
outStream.flush();

inStream = new BufferedInputStream(new
FilelnputStream(outfile));

BufferedReader br = new BufferedReader(new
InputStreamReader(inStream));

out_printIn(’*'3DES™);

out.printIn(infile);

while ((rv = br.readLine()) != null)

out.printin(rv);

out._printIn("end™);

br_close();

inStream.close();

} else if (1l_in == 3) {

System.out.printIn("Enter testfile from 1K to 10K"™);

infile = getString();

prRC4 rc = new prRC4(infile, outfile, "3", true);

- 56 -

/*
* Start and end timer
*/
sttime = startTimer();
rc.process();
endtime = endTimer();
System.out.printIn(*"Time took for encryption of RC4

for input file " + infile + " - " + (endtime - sttime));
outString = "Time took for encryption of RC4 for
input file " + infile + ™ - " + (endtime - sttime);

outStream.printin(outString);
outStream.flush();

inStream = new BufferedInputStream(new
FilelnputStream(outfile));
BufferedReader br = new BufferedReader(new
InputStreamReader(inStream));
out.printIn(*'RC4");
out.printIn(infile);
out.printin(*'3");
while ((rv = br.readLine()) != null)
out.printin(rv);
out.printIn(end™);
br_.close();
inStream.close();
} else if (Il_in == 4) {
System.out._printIn("Enter testfile from 1K to 10K'™);
infile = getString(Q);
prAES ae = new prAES(infile, outfile, "3, true);

/*
* Start and end timer
*/
sttime = startTimer();
ae.process();
endtime = endTimer();
System.out._printIn("'Time took for encryption of AES

for input file " + infile + " : " + (endtime - sttime));
outString = "Time took for encryption of AES for
input Ffile " + infile + " : " + (endtime - sttime);

outStream.println(outString);
outStream.flush();

inStream = new BufferedlnputStream(new
FilelnputStream(outfile));

BufferedReader br = new BufferedReader(new
InputStreamReader (inStream));

out.printin(""AES™);

out.printin(infile);

out._printIn(*'3");

while ((rv = br.readLine()) !

out.printin(rv);

out.printin(end™);

br_close();

inStream.close();

} else if (1l_in == 5) {
System.out.printIn("Enter testfile 5K or 10K');

null)

-57-

infile = getString();

System.out.printIn("Enter Key length (2 for 64 bits,
3 for 128 bits, 4 for 256 bits)");

keylen = getString();

prRC4 rc = new prRC4(infile, outfile, keylen, true);

/*
* Start and end timer
*/
sttime = startTimer();
rc.process();
endtime = endTimer();
System.out._printIn(*"Time took for encryption of RC4
for input file " + infile + " with key len " + keylen + ™ - " +
(endtime - sttime));
outString = "Time took for encryption of RC4 for
+ infile + " with key len + keylen + " - " + (endtime -

input file

sttime);
outStream.printin(outString);
outStream.flush();

inStream = new BufferedlnputStream(new
FilelnputStream(outfile));

BufferedReader br = new BufferedReader(new
InputStreamReader(inStream));

out.printIn(*'RC4");

out_printiIn(infile);

out.printin(keylen);

while ((rv = br.readLine()) != null)

out.printin(rv);

out._printin(’end™);

br_close();

inStream.close();

} else it (Il_in == 6) {

System.out.printIn(*Enter testfile 5K or 10K");

infile = getString();

System.out_printIn("'Enter Key length (2 for 64 bits,
3 for 128 bits, 4 for 256 bits)");

keylen = getString();

prAES ae = new prAES(infile, outfile, keylen, true);

/*
* Start and end timer
*/
sttime = startTimer();
ae.process();
endtime = endTimer();
System.out.printIn(*'Time took for encryption of AES

for input File " + infile + " with keylen " + keylen +" : " + (endtime
- sttime));

outString = "Time took for encryption of AES for
input file " + infile + " with keylen " + keylen +" : " + (endtime -
sttime);

outStream.println(outString);
outStream.flush();

- 58 -

inStream = new BufferedlnputStream(new
FilelnputStream(outfile));

BufferedReader br = new BufferedReader(new
InputStreamReader(inStream));

out._printIn(""AES™);

out.printIn(infile);

out_printin(keylen);

while ((rv = br.readLine()) != null)

out.printin(rv);

out.printIn(end™);

br.close();

inStream.close();

} else if (1l_in == 7) {

System.out._printIn("Enter testfile of 100bytes or 1K
or 5K or 10K');

infile = getString();

System.out.printIn("Enter Key length (1024, 2048,
3072, 4096, 5120 bits)");

keylen = getString();

prRSA rsa = new prRSA(infile, outfile, true);

/*
* Start and end timer
*/
sttime = startTimer();
rsa.process(keylen);
endtime = endTimer();
System.out.printIn(*"'Time took for encryption of RSA

for input file " + infile + " with key len " + keylen + ™ - " +
(endtime - sttime));

outString = "Time took for encryption of RSA for
input file " + infile + " with key len " + keylen + ™ - " + (endtime -
sttime);

outStream.printin(outString);
outStream.flush();

out.printIn("'RSA™);

out.printiIn(infile);

writeRsaKeyStream(out);

inStream = new BufferedlnputStream(new
FilelnputStream(outfile));

BufferedReader br = new BufferedReader(new
InputStreamReader(inStream));

while ((rv = br.readLine()) != null)

out.printin(rv);

out_printIn('end™);

br_.close();

inStream.close();

} else if (Il_in == 8) {

System.out_printIn("Enter testfile of 100bytes or 1K
or 5K or 10K"™);

infile = getString(Q);

System.out.printIn(*'Enter Key length (100, 800, 1000,
1200 bits)'™);

keylen = getString();

prElGamal el = new prElGamal(infile, outfile, true);

-59 -

/*
* Start and end timer
*/
sttime = startTimer();
el _process(keylen);
endtime = endTimer();
System.out.printIn(*'Time took for encryption of

AlGamal for input file " + infile + " with key len ™ + keylen + ™ " +
(endtime - sttime));

outString = "Time took for encryption of AlGamal for
input file " + infile + " with key len " + keylen + " " + (endtime -

sttime);
outStream.printin(outString);
outStream.flush();

out.printin("ELG™);

out_printIn(infile);

writeElgKeyStream(out);

inStream = new BufferedInputStream(new
FilelnputStream(outfile));

BufferedReader br = new BufferedReader(new
InputStreamReader(inStream));

while ((rv = br.readLine()) !

out.printin(rv);

out.printin(end™);

br.close();

inStream.close();

null)

} else if (ILl_in == 9) {
/*
* Get required Files
*/

System.out._printIn(Enter testfile of 1 MB™);
infile = getString(Q);
/*
* Get Key Strength
*/
System.out.printIn("Enter Key length (612, 768, 1024,
2048 bits)');
keylen = getString();

/*
* Get Message Digest for given input file and write
to a file for RSA encryption

*/

prSHA1l sha = new prSHA1(infile);
/*

* Start and end timer

*/

sttime = startTimer();

md = sha.process();

endtime = endTimer();

System.out.printIn("'Time took for SHAl1l message digest

for input file " + infile + " : " + (endtime - sttime));
outString = "Time took for SHAl message digest for
input file " + infile + ™ - " + (endtime - sttime);

outStream.printin(outString);
outStream.flush();

-60 -

writeToFile(mdfile, new String(md));

/*

* Encrypt Message digest with RSA

*/

prRSA rsa = new prRSA(mdfile, outfile, true);
/*

* Start and end timer

*/

sttime = startTimer();

rsa.process(keylen);

endtime = endTimer();
System.out.printIn(*'Time took for encryption of RSA

with keylen "™ + keylen + ' : " + (endtime - sttime));
outString = "Time took for encryption of RSA with
keylen ™ + keylen + ™ : " + (endtime - sttime);

outStream.printin(outString);
outStream.flush();

/*

* Write stream to Server socket

*/

out.printIn(*'SHA1™); /* Algorithm */
out.printIn(infile); /* input file */

out.printin(new String(md)); /* message digest
*/
writeRsaKeyStream(out); /* write RSA keys */
/*
* write RSA encrytion
*/

inStream = new BufferedlnputStream(new
FilelnputStream(outfile));

BufferedReader rs = new BufferedReader(new
InputStreamReader(inStream));

out_printIn(rs.readLine());

rs.close();

inStream.close();

/*
* Write input file
*/
inStream = new BufferedlnputStream(new
FilelnputStream(infile));
BufferedReader br = new BufferedReader(new
InputStreamReader (inStream));
while ((rv = br.readLine()) != null)
out.printin(rv);

/*
* End of communication
*/
out._printin(’end™);
br_close();
inStream.close();

} else if (10_in == 10) {

-61 -

/*
* Get Required file
*/
System.out._printIn("Enter testfile of 1 MB™);
infile = getString();
/*
* Get Key length
*/
System.out.printIn(Enter Key length (612, 768, 1024,
2048 bits)');
keylen = getString();

/*
* process message digest and write to a File
*
/
prMD5 md5 = new prMD5(infile);

/*
* Start and end timer
*/
sttime = startTimer();
md = md5.process();
endtime = endTimer();
System.out.printIn("'Time took for MD5 Message Digest for

input file " + infile + " - " + (endtime - sttime));
outString = "Time took for MD5 Message Digest for input
file " + infile + " - " + (endtime - sttime);

outStream.printin(outString);
outStream.flush();

writeToFile(", new String(md));
prRSA rsa = new prRSA(mdfile, outfile, true);

/*
* Start and end timer
*/
sttime = startTimer();
rsa.process(keylen);
endtime = endTimer();
System.out.printIn("'Time took for encryption of RSA with

keylen ™ + keylen + ™ : " + (endtime - sttime));
outString = "Time took for encryption of RSA with keylen
" + keylen + " - " + (endtime - sttime);

outStream.println(outString);
outStream.flush();

/*

* Write stream to a socket server
*/

out._printIn(*'MD5");
out.printIn(infile);
out.printin(md);
writeRsaKeyStream(out);

/*

* write RSA encrytion
*/

-62 -

inStream = new BufferedlnputStream(new
FilelnputStream(outfile));

BufferedReader rs = new BufferedReader(new
InputStreamReader(inStream));

out_printIn(rs.readLine());

rs.close();

inStream.close();

/*
* Write input file
*/
inStream = new BufferedInputStream(new
FilelnputStream(infile));
BufferedReader br = new BufferedReader(new
InputStreamReader (inStream));
while ((rv = br.readLine()) !
out.printin(rv);

null)

/*
* End of communication
*/
out_printin(’'end™);
br.close();
inStream.close();
} else if (1l_in == 0) {
outStream.close();
return;

/****************************l

/***************************/

} else {
System.out._printIn('Invalid entry. Please select a
selection from 1 to 10™);
System.out._printIn(’'\n");
}

}

catch (Exception e) {
System.out.printIn("'Error while looking up account:');
e.printStackTrace();
}
}

/**
* @return void
* @throws I0Exception
*/
private static void writeRsaKeyStream(PrintWriter out)
{
String bv;
String keyfile = "RSAKey.dat";
int i1;
try {
BufferedlnputStream keystream =
new BufferedlnputStream(new
FilelnputStream(keyfile));

-63 -

BufferedReader keyReader = new BufferedReader(new
InputStreamReader(keystream));

// write variables mod, pubExp, privExp, p, q, dp, dq, ginv
for (i=0; 1 < 8;i++)
if ((bv = keyReader.readLine()) !'= null)
out.printin(bv);

keystream.close();
keyReader.close();

} catch (10Exception createKey) {
System.err._printIn(*'Could not decryption create key file "+
"[+keyFile+"]");
System_exit(1);
}

}

/**
* @return void
* @throws I0Exception
*/
private static void writeElgKeyStream(PrintWriter out)
{
String bv;
String keyfile = "ElGamalKey.dat";
int i;

try {
BufferedlnputStream keystream =
new BufferedIlnputStream(new
FilelnputStream(keyfile));
BufferedReader keyReader = new BufferedReader(new
InputStreamReader (keystream));

// write variables p, g, X
for (i=0; 1 < 3ji++)
if ((bv = keyReader.readLine()) != null)
out._printin(bv);

keystream.close();
keyReader.close();

} catch (10Exception createKey)

{
System.err._printIn(*’Could not decryption create key file "+
Il[ll+keyfi Ie+ll]ll);
System.exit(l);
}

}

/**

* @return void

* @throws I0Exception

*/
public static void writeToFile(String infile, String md)
{

-64 -

try {
PrintWriter pr = new PrintWriter(new

FileOutputStream(infile));

}

/**

pr-println(md);

pr.close();
} catch (10Exception createKey) {
}

* @return long representation for the input
* @throws 10Exception

*/

public static long startTimer()

{

}

/**

Calendar rightNow;

String outTxt;

String addr;

FileWriter out;

long sttime;

int hour, min, sec, milli;

// Get Starting Time
rightNow = Calendar.getlnstance();
sttime = System.nanoTime();
hour = rightNow.get(Calendar_HOUR);
min = rightNow.get(Calendar_MINUTE);
sec = rightNow.get(Calendar.SECOND);
milli = rightNow.get(Calendar_.MILLISECOND);
// Display Results
System.out.printIn(*'Starting Time for client encrytion”
Integer.toString(hour) + *:"
+ Integer.toString(min) + "o
+ Integer._toString(sec) + "I
+ Integer.toString(milli) + "\n"");

+

return sttime;

* @return long representation for the input
* @throws I10Exception

*/

public static long endTimer()

{

Calendar rightNow;

String outTxt;

String addr;

FileWriter out;

long endtime;

int hour, min, sec, milli;

// Get Ending Time

rightNow = Calendar.getlnstance();
endtime = System.nanoTime();

- 65 -

hour = rightNow.get(Calendar.HOUR);
min = rightNow.get(Calendar .MINUTE);
sec = rightNow.get(Calendar.SECOND);
milli = rightNow.get(Calendar_MILLISECOND);

// Display Results
System.out.printIn("Ending Time for client decryption”
+ Integer.toString(Chour) + *:*
+ Integer.toString(min) + ":"
+ Integer.toString(sec) + ":"
+ Integer.toString(milli) + "\n");

return endtime;

}

/**

* @return string for the input

* @throws 10Exception

*/

public static String getString() throws I0Exception

{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

}

/**
* @return long representation for the input
* @throws I0Exception
*/
public static long getLong() throws I0Exception
{
String s = getString();
return Long.parseLong(s);

* *
*

* Program name: prDES.java

*

* *
/**

* @author Praveen Donta
* File: prDES.java

* Desc: encrypts and decrypts text file using DES algorithm.
*

*/

package unf.grad.proj;

import java.io.BufferedlnputStream;
import java.io.BufferedOutputStream;

import java.io.BufferedReader;
import java.io.FilelnputStream;

- 66 -

X ok X %

import java.
import java.
import java.
import java.

import
import
import
import
import
import

public

{
//

-FileNotFoundException;
-FileOutputStream;

- 10Exception;

- InputStreamReader;

- -
Oo0oo0o

org.bouncycastle.crypto.CryptoException;
org.bouncycastle.crypto.engines.DESEngine;
org.bouncycastle.crypto.modes.CBCBlockCipher;
org.bouncycastle.crypto.paddings.PaddedBufferedBlockCipher;
org.bouncycastle.crypto.params.KeyParameter;
org.bouncycastle.util.encoders.Hex;

class prDES extends Object

Encrypting or decrypting ?

private boolean encrypt = true;

// To hold the initialised DESede cipher
private PaddedBufferedBlockCipher cipher = null;

// The input stream of bytes to be processed for encryption
private BufferedlnputStream in = null;

// The output stream of bytes to be procssed
private BufferedOutputStream out = null;

// The key
private byte[] key = null;

/*

* start the application

*/

public static void main(String[] args)

{

boolean encrypt = true;
String infile = null;
String outfile = null;

if (args.length < 2)

{
prDES de = new prDESQ);

System.err._printIn(‘'Usage: java ''+de.getClass().getName()+

' infile outfile);
System.exit(l);

infile = args[0];
outfile = args[1];

if (args.length > 2)

encrypt = false;

}

prDES de = new prDES(infile, outfile, encrypt);
de.process();

-67 -

// Default constructor, used for the usage message
public prDESQ

{
}

/*
* Constructor, that takes the arguments appropriate for
* processing the command line directives.
*/
public prDES(
String infile,
String outfile,
boolean encrypt)

/*
First, determine that infile & keyfile exist as appropriate.

This will also create the BufferedlnputStream as required
for reading the input file. All input files are treated

as if they are binary, even if they contain text, it"s the
bytes that are encrypted.

o % % % ¥

*/

this.encrypt = encrypt;
try

{

in = new BufferedlnputStream(new FilelnputStream(infile));

}
catch (FileNotFoundException fnT)

{
System.err.printIn("'Input file not found ["+infile+"]");
System.exit(l);

}

try

{

out = new BufferedOutputStream(new
FileOutputStream(outfile));

}
catch (10Exception fnf)
{
System.err._printIn("'Output file not created

["+outFile+"]"");
System.exit(l);

}
key = Hex.decode(''0123456789abcdef'");
}
public final void process()
{
/*

* Setup the DESede cipher engine, create a
PaddedBufferedBlockCipher

* 1n CBC mode.

*/

cipher = new PaddedBufferedBlockCipher(

- 68 -

new CBCBlockCipher(new
DESEngine()));

/*
* The input and output streams are currently set up
* appropriately, and the key bytes are ready to be
used.

*

*

*/
if (encrypt)
{

performEncrypt(key);
}

else

{
}

// after processing clean up the files
try
{

performDecrypt(key);

in.close();
out_fFlush(Q);
out.close();

catch (10Exception closing)
{

}
}

/*
* This method performs all the encryption and writes
* the cipher text to the buffered output stream created
* previously.
*/
private final void performEncrypt(byte[] key)
{
// initialise the cipher with the key bytes, for encryption
cipher.init(true, new KeyParameter(key));

/*
* Create some temporary byte arrays for use in
* encryption, make them a reasonable size so that
* we don"t spend forever reading small chunks from
* a file.
*
*/
// int inBlockSize = cipher.getBlockSize() * 5;
int inBlockSize = 47;
int outBlockSize = cipher.getOutputSize(inBlockSize);

byte[] inblock = new byte[inBlockSize];
byte[] outblock = new byte[outBlockSize];

/*

-69 -

0);

* now, read the Ffile, and output the chunks
*/
try
t
int inL;
int outL;
byte[] rv = null;
while ((inL=in.read(inblock, 0, inBlockSize)) > 0)

outL = cipher.processBytes(inblock, 0, inL, outblock,

/*
* Before we write anything out, we need to make sure
* that we"ve got something to write out.
*/
if (outL > 0)
{
rv = Hex.encode(outblock, O, outL);
out.write(rv, 0, rv.length);
out.write("\n");

s
}
try
{

/*

* Now, process the bytes that are still buffered
* within the cipher.

*/

outL = cipher.doFinal(outblock, 0);

if (outL > 0)

rv = Hex.encode(outblock, 0, outL);
out.write(rv, 0, rv.length);
out.write("\n");

}

catch (CryptoException ce)

}
catch (10Exception ioeread)
{
ioeread.printStackTrace();
}
}
/*

* This method performs all the decryption and writes
* the plain text to the buffered output stream created
* previously.
*/
private final void performDecrypt(byte[] key)
{
// initialise the cipher for decryption
cipher.init(false, new KeyParameter(key));

-70 -

* As the decryption is from our preformatted file,

* and we know that it"s a hex encoded format, then

* we wrap the InputStream with a BufferedReader

* so that we can read it easily.

*/

BufferedReader br = new BufferedReader(new
InputStreamReader(in));

/*
* now, read the file, and output the chunks
*/
try
.
int outL;
byte[] inblock = null;
byte[] outblock = null;
String rv = null;
while ((rv = br.readLine()) != null)
{
inblock = Hex.decode(rv);
outblock = new
byte[cipher.getOutputSize(inblock.length)];

outL = cipher.processBytes(inblock, 0, inblock.length,
outblock, 0);
/*
* Before we write anything out, we need to make sure
* that we"ve got something to write out.

*/
it (outL > 0)
{
out.write(outblock, 0, outL);
}
}
try
{
/*

* Now, process the bytes that are still buffered
* within the cipher.

*/

outL = cipher.doFinal(outblock, 0);

if (outL > 0)

{

}

catch (CryptoException ce)

out_write(outblock, 0, outL);

}

catch (10Exception ioeread)

{

ioeread.printStackTrace();

-71-

* *
*

* Program name: pr3DES.java

*

* *
/**

* @author Praveen Donta
* File: pr3DES.java
* Desc: encrypts and decrypts text file using 3DES algorithm.

*

*/
package unf.grad.proj;

import java.io.BufferedlnputStream;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;

import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.lOException;

import java.io.lnputStreamReader;

import org.bouncycastle.crypto.CryptoException;

import org.bouncycastle.crypto.engines.DESedeEngine;

import org.bouncycastle.crypto.modes.CBCBlockCipher;

import org.bouncycastle.crypto.paddings.PaddedBufferedBlockCipher;
import org.bouncycastle.crypto.params.KeyParameter;

import org.bouncycastle.util.encoders.Hex;

/**

*/
public class pr3DES extends Object

{
// Encrypting or decrypting ?
private boolean encrypt = true;

// To hold the initialised DESede cipher
private PaddedBufferedBlockCipher cipher = null;

// The input stream of bytes to be processed for encryption
private BufferedlnputStream in = null;

// The output stream of bytes to be procssed
private BufferedOutputStream out = null;

// The key
private byte[] key = null;

/*

-72-

* ook % X% ¥

* start the application

public static void main(String[] args)

{

}

boolean encrypt = true;
String infile = null;
String outfile = null;

if (args.length < 2)
{
pr3DES de = new pr3DESQ);
System.err._printIn("'Usage: java "'t+de.getClass().getName()+
" infile outfile™);
System.exit(l);

infile = args[0];
outfile = args[1];

it (args.length > 2)

encrypt = false;

}

pr3DES de = new pr3DES(infile, outfile, encrypt);
de.process();

// Default constructor, used for the usage message
public pr3DESQ

{
}

/*
* Constructor, that takes the arguments appropriate for
* processing the command line directives.

public pr3DES(

String infile,
String outfile,
boolean encrypt)

/*
First, determine that infile & keyfile exist as appropriate.

This will also create the BufferedlnputStream as required
for reading the input file. All input files are treated

as if they are binary, even if they contain text, it"s the
bytes that are encrypted.

X ok X ok X

*/

this.encrypt = encrypt;
try

{

in = new BufferedlnputStream(new FilelnputStream(infile));
}
catch (FileNotFoundException fnfT)

{
System_err_printIn('Input file not found ["+infile+"]"");

-73-

System.exit(l);
}

try

{
out = new BufferedOutputStream(new
FileOutputStream(outfile));

}
catch (10Exception fnf)
{
System.err.printIn("'Output file not created

["+outFile+"]"");
System.exit(l);

}
key =
Hex.decode(*'0123456789abcdef0123456789abcdef0123456789abcdef") ;
}
public final void process()
{
/*

* Setup the DESede cipher engine, create a
PaddedBufferedBlockCipher
* in CBC mode.
*/
cipher = new PaddedBufferedBlockCipher(
new CBCBlockCipher(new
DESedeEngine()));

/*

* The input and output streams are currently set up
* appropriately, and the key bytes are ready to be
used.

*

*

*/
if (encrypt)
{

performeEncrypt(key);
3

else

{
}

// after processing clean up the files
try
{

performDecrypt(key);

in.close();
out.flush(Q);
out.close();

}
catch (10Exception closing)
{

-74 -

0)

}

/*

* This method performs all the encryption and writes

* the cipher text to the buffered output stream created
* previously.

private final void performEncrypt(byte[] key)

{

// initialise the cipher with the key bytes, for encryption
cipher.init(true, new KeyParameter(key));

/*

* Create some temporary byte arrays for use in

* encryption, make them a reasonable size so that
* we don"t spend forever reading small chunks from
* a file.

*

*/
// int inBlockSize = cipher.getBlockSize() * 5;
int inBlockSize = 47;
int outBlockSize = cipher.getOutputSize(inBlockSize);

byte[] inblock = new byte[inBlockSize];
byte[] outblock = new byte[outBlockSize];

/*
* now, read the Ffile, and output the chunks
*/
try
t
int inL;
int outL;
byte[] rv = null;
while ((inL=in.read(inblock, 0, inBlockSize)) > 0)
{

outL = cipher.processBytes(inblock, 0, inL, outblock,

/*
* Before we write anything out, we need to make sure
* that we"ve got something to write out.
*/
if (outL > 0)
{
rv = Hex.encode(outblock, O, outL);
out.write(rv, 0, rv.length);
out.write("\n");

}
}
try
{

/*

* Now, process the bytes that are still buffered
* within the cipher.
*/

-75-

outL = cipher.doFinal(outblock, 0);
if (outL > 0)

{
rv = Hex.encode(outblock, O, outL);
out.write(rv, 0, rv.length);
out.write("\n");

}

}
catch (CryptoException ce)

}
catch (10Exception ioeread)
{
ioeread.printStackTrace();
}
}
/*

* This method performs all the decryption and writes

* the plain text to the buffered output stream created

* previously.

*/

private final void performDecrypt(byte[] key)

{
// initialise the cipher for decryption
cipher.init(false, new KeyParameter(key));

/*

* As the decryption is from our preformatted file,
* and we know that it"s a hex encoded format, then
* we wrap the InputStream with a BufferedReader
* so that we can read it easily.
*/

BufferedReader br = new BufferedReader(new

InputStreamReader(in));

/*
* now, read the file, and output the chunks
*/
try
A
int outL;
byte[] inblock = null;
byte[] outblock = null;
String rv = null;
while ((rv = br.readLine()) != null)

inblock = Hex.decode(rv);
outblock = new
byte[cipher.getOutputSize(inblock.length)];

outL = cipher.processBytes(inblock, 0, inblock.length,
outblock, 0);

/*
* Before we write anything out, we need to make sure

-76 -

* that we"ve got something to write out.

*/
if (outL > 0)
{
out_write(outblock, 0, outL);
}
}
try
{
/*
* Now, process the bytes that are still buffered
* within the cipher.
*/
outL = cipher.doFinal(outblock, 0);
if (outL > 0)
{
out_write(outblock, 0, outL);
}
¥ _
catch (CryptoException ce)
}
catch (10Exception ioeread)
{
ioeread.printStackTrace();
}
}
}
* Program name: prRC4.java
*
/**

* @author Praveen Donta
* File: prRC4._java
* Desc: encrypts and decrypts text file using

*

*/
package unf.grad.proj;

import java.io.BufferedlnputStream;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;

import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.lOException;

import java.io.lnputStreamReader;

-77 -

RC4 algorithm.

X ok X %

import org.bouncycastle.crypto.engines.RC4Engine;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.util._encoders._Hex;

import org.bouncycastle.crypto.StreamCipher;

public class prRC4 extends Object

{

// Encrypting or decrypting ?
private boolean encrypt = true;

// To hold the initialised DESede cipher
private StreamCipher cipher = null;

// The input stream of bytes to be processed for encryption
private BufferedlnputStream in = null;

// The output stream of bytes to be procssed
private BufferedOutputStream out = null;

// The key
private byte[] key = null;

/*
* start the application
*/
public static void main(String[] args)
{
boolean encrypt = true;
String infile = null;
String outfile = null;
String keylen = null;

if (args.length < 2)
{
prRC4 rc = new prRC4Q);
System.err._printIn("'Usage: java "+rc.getClass().getName()+
" infile outfile keylen™);
System.exit(l);

infile = args[O0];
outfile = args[1];
keylen = args[2];

if (args.length > 3)
{

encrypt = false;

}

prRC4 rc = new prRC4(infile, outfile, keylen, encrypt);
rc.process();

}

// Default constructor, used for the usage message
public prRC4()
{

}

-78 -

/*
* Constructor, that takes the arguments appropriate for
* processing the command line directives.
*/
public prRC4(
String infile,
String outfile,
String keylen,
boolean encrypt)

{ o
int i;
String strKey = ""';
/*
* First, determine that infile & keyfile exist as appropriate.
*
* This will also create the BufferedlnputStream as required
* for reading the input Ffile. All input files are treated
* as iIf they are binary, even if they contain text, it"s the
* bytes that are encrypted.
*/
this.encrypt = encrypt;
try
{

in = new BufferedlnputStream(new FilelnputStream(infile));

catch (FileNotFoundException fnf)

{
System_err_printIn('Input file not found ["+infile+"]"");
System.exit(l);

}

try

{

out = new BufferedOutputStream(new
FileOutputStream(outfile));

}
catch (10Exception fnf)
{
System.err._printIn("'Output file not created

[+outFile+"]™");
System.exit(l);

}
for (i =0;i < (Integer.parselnt(keylen));i++)
strkey += '"0123456789abcdef"’;
key = Hex.decode(strKey);
}
public final void process()
{
/*

* Setup the DESede cipher engine, create a
PaddedBufferedBlockCipher

* 1n CBC mode.

*/

cipher = new RC4Engine();

-79-

}

/*
* This method performs all the encryption and writes
* the cipher text to the buffered output stream created
* previously.

/*
* The input and output streams are currently set up
* appropriately, and the key bytes are ready to be
used.

*

*

*/
it (encrypt)
{

performencrypt(key);
}

else

{
}

// after processing clean up the files
try
{

performDecrypt(key);

in.close();
out._flush(Q);
out.close();

catch (10Exception closing)
{

}

private final void performEncrypt(byte[] key)

{

// initialise the cipher with the key bytes, for encryption
cipher.init(true, new KeyParameter(key));

/*
* Create some temporary byte arrays for use in
* encryption, make them a reasonable size so that
* we don"t spend forever reading small chunks from
* a file.
*

*/
// int inBlockSize = cipher.getBlockSize() * 5;
int inBlockSize = 47;

byte[] inblock = new byte[inBlockSize];
byte[] outblock = new byte[inBlockSize];

/*
* now, read the file, and output the chunks
*/
try

-80 -

int inL=0;
int outlL=0;
byte[] rv = null;
while ((inL=in.read(inblock, 0, inBlockSize)) > 0)
{
cipher.processBytes(inblock, 0, inL, outblock, 0);
/*
* Before we write anything out, we need to make sure
* that we"ve got something to write out.
*/
if (outblock.length > 0)

{
rv = Hex.encode(outblock, 0, outblock.length);

out.write(rv, 0, rv.length);
out.write("\n");

}

catch (10Exception ioeread)

{
}

ioeread.printStackTrace();

}

/*
* This method performs all the decryption and writes
* the plain text to the buffered output stream created
* previously.
*/
private final void performDecrypt(byte[] key)
{
// initialise the cipher for decryption
cipher.init(false, new KeyParameter(key));

* As the decryption is from our preformatted file,

* and we know that it"s a hex encoded format, then

* we wrap the InputStream with a BufferedReader

* so that we can read it easily.

*/

BufferedReader br = new BufferedReader(new
InputStreamReader(in));

/*
* now, read the Ffile, and output the chunks
*/
try
{
int outL;
byte[] inblock = null;
byte[] outblock = null;
byte[] input;
String rv = null;
while ((rv = br.readLine()) != null)
{

-81-

inblock = Hex.decode(rv);

outblock = new byte[inblock. length];

cipher.processBytes(inblock, 0, inblock.length,
outblock, 0);

if (outblock.length > 0)
out.write(outblock, 0, outblock.length);

catch (10Exception ioeread)
ioeread.printStackTrace();
* *
* *
* Program name: prAES.java *
* *
* *

package unf.grad.proj;

import java.io.BufferedlnputStream;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;

import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.lOException;

import java.io.lnputStreamReader;

import org.bouncycastle.crypto.CryptoException;

import org.bouncycastle.crypto.BufferedBlockCipher;

import org.bouncycastle.crypto.modes.CBCBlockCipher;

import org.bouncycastle.crypto.engines.AESEngine;

import org.bouncycastle.crypto.paddings.PaddedBufferedBlockCipher;
import org.bouncycastle.crypto.params.KeyParameter;

import org.bouncycastle.util._encoders._Hex;

/**
* @author Praveen Donta
* File: prAES.java
* Desc: encrypts and decrypts a given text file using AES algorithm.
*

*/

public class prAES extends Object

{
// Encrypting or decrypting ?

private boolean encrypt = true;
// To hold the initialised DESede cipher

private BufferedBlockCipher cipher = null;
//private OFBBlockCipher cipher = null;

-82 -

// The input stream of bytes to be processed for encryption
private BufferedlnputStream in = null;

// The output stream of bytes to be procssed
private BufferedOutputStream out = null;

// The key
private byte[] key = null;

/*
* start the application
*/
public static void main(String[] args)
{
boolean encrypt = true;
String infile = null;
String outfile = null;
String keylen = null;

if (args.length < 2)

{
pPrAES rc = new prAESQ;

System.err._printIn("'Usage: java ''+rc.getClass().getName()+

' infile outfile');
System.exit(l);

infile = args[0];
outfile = args[1];
keylen = args[2];

it (args.length > 3)
{

encrypt = false;

}

prAES rc = new prAES(infile, outfile, keylen, encrypt);
rc.process();

}

// Default constructor, used for the usage message
public prAESQ
{

}

/*
* Constructor, that takes the arguments appropriate for
* processing the command line directives.
*/
public prAES(
String infile,
String outfile,
String keylen,
boolean encrypt)
int i;
String strKey = ""';

-83-

First, determine that infile & keyfile exist as appropriate.

This will also create the BufferedlnputStream as required
for reading the input file. All input files are treated

as if they are binary, even if they contain text, it"s the
bytes that are encrypted.

o oF % % ¥

*/

this.encrypt = encrypt;
try

{

in = new BufferedlnputStream(new FilelnputStream(infile));

}
catch (FileNotFoundException fnT)

{
System.err.printIn("Input file not found ["+infile+"]");
System.exit(l);

}

try

{

out = new BufferedOutputStream(new
FileOutputStream(outfile));

catch (10Exception fnf)
{
System.err_printIn("'Output file not created

["+outFile+"]"");
System.exit(l);

}
for (i =0;i < (Integer.parselnt(keylen));i++)
strkey += '"0123456789abcdef"’;
key = Hex.decode(strKey);
}
?ublic final void process(Q)

cipher = new PaddedBufferedBlockCipher(new CBCBlockCipher(new
AESEngine()));
//cipher = new OFBBlockCipher(new AESEngine(), 16);

/*
* The input and output streams are currently set up
* appropriately, and the key bytes are ready to be
used.

*

*
*/
if (encrypt)
{
performeEncrypt(key);
}

else

-84 -

0);

}
/

p
{

{

performDecrypt(key);
}
// after processing clean up the files
try
{

in.close();
out.flush(Q);
out.close();

catch (10Exception closing)
{

}

*

* This method performs all the encryption and writes

* the cipher text to the buffered output stream created
* previously.

*/

rivate final void performEncrypt(byte[] key)

// initialise the cipher with the key bytes, for encryption
cipher.init(true, new KeyParameter(key));

/*
* Create some temporary byte arrays for use in
* encryption, make them a reasonable size so that
* we don"t spend forever reading small chunks from
* a file.
*

*/
// int inBlockSize = cipher.getBlockSize() * 5;
int inBlockSize = 47;
int outBlockSize = cipher.getOutputSize(inBlockSize);

byte[] inblock = new byte[inBlockSize];
byte[] outblock = new byte[outBlockSize];

/*
* now, read the Ffile, and output the chunks
*/
try
{
int inL=0;
int outlL=0;
byte[] rv = null;
while ((inL=in.read(inblock, 0, inBlockSize)) > 0)
{

outL = cipher.processBytes(inblock, 0, inL, outblock,

// cipher_processBlock(inblock, 0, outblock, 0);

/*
* Before we write anything out, we need to make sure
* that we"ve got something to write out.

-85 -

*/
if (outL > 0)

{
rv = Hex.encode(outblock, O, outL);
out.write(rv, 0, rv.length);
out.write("\n");
}
}
try
{
/*
* Now, process the bytes that are still
buffered
* within the cipher.
*/
outL = cipher.doFinal(outblock, 0);
it (outL > 0)
{
rv = Hex.encode(outblock, 0, outL);
out.write(rv, 0, rv.length);
out.write(*\n");
}
catch (CryptoException ce)
{
}
catch (10Exception ioeread)
{
ioeread.printStackTrace();
}
}
/*

* This method performs all the decryption and writes
* the plain text to the buffered output stream created
* previously.
*/
private final void performDecrypt(byte[] key)
{
// initialise the cipher for decryption
cipher.init(false, new KeyParameter(key));

/*

* As the decryption is from our preformatted file,
* and we know that it"s a hex encoded format, then
* we wrap the InputStream with a BufferedReader

* so that we can read it easily.

*/

BufferedReader br = new BufferedReader(new

InputStreamReader(in));

/*
* now, read the Ffile, and output the chunks

- 86 -

*/
try

{

int inL, outL;

// int inBlockSize = 16;
byte[] inblock = null;
byte[] outblock = null;

byte[] input;
String rv = null;
while ((rv = br.readLine()) != null)
// while ((inL=in.read(inblock, 0, inBlockSize)) > 0)

inblock = Hex.decode(rv);
outblock = new
byte[cipher.getOutputSize(inblock. length)];
//outblock = new byte[inblock.length];
outL = cipher.processBytes(inblock, 0, inblock.length,
outblock, 0);
//cipher_processBlock(inblock, 0, outblock, 0);

if (outL > 0)
out.write(outblock, 0, outlL);

}
try
{
/*
* Now, process the bytes that are still
buffered
* within the cipher.
*/
outL = cipher.doFinal(outblock, 0);
if (outL > 0)
{
out.write(outblock, 0, outL);
}
catch (CryptoException ce)
}
catch (10Exception ioeread)
{
ioeread.printStackTrace();
}
}
}
* *
* *
* Program name: prRSA.java *
* *
* *

/**

-87-

* @author Praveen Donta

* File: prRSA.java

* Desc: encrypts and decrypts a given text file using RSA algorithm.
*

*/
package unf.grad.proj;

import java.io.BufferedlnputStream;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.PrintWriter;

import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.lOException;

import java.io.lnputStreamReader;
import java.math.Biglnteger;

import java.security.SecureRandom;

import org.bouncycastle.util.encoders.Hex;

import org.bouncycastle.crypto.engines.RSAEngine;

import org.bouncycastle.crypto.AsymmetricBlockCipher;

import org.bouncycastle.crypto.params.RSAKeyParameters;

import org.bouncycastle.crypto.generators.RSAKeyPairGenerator;
import org.bouncycastle.crypto.params.RSAPrivateCrtKeyParameters;
import org.bouncycastle.crypto.params.RSAKeyGenerationParameters;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;

public class prRSA extends Object

{
// Encrypting or decrypting ?

private boolean encrypt = true;

// To hold the initialised DESede cipher
private AsymmetricBlockCipher cipher = null;

// The input stream of bytes to be processed for encryption
private BufferedlnputStream in = null;

// The output stream of bytes to be procssed
private BufferedOutputStream out = null;

/*

* start the application

*/

public static void main(String[] args)
{

boolean encrypt = true;
String infile = null;
String outfile = null;
String keylen = null;

it (args.length < 3)
{

- 88 -

pPrRSA rsa = new prRSAQ);
System.err.printIn("'Usage: java '"'+rsa.getClass().getName()+
' infile outfile keylength™);
System._exit(l);

}
infile = args[0];
outfile = args[1];
keylen = args[2];
if (args.length > 3)
{
encrypt = false;
}

prRSA rsa = new prRSA(infile, outfile, encrypt);
//rsa._process("'768™);

//rsa_process(keylen);

rsa.generateKey(keylen);

}

// Default constructor, used for the usage message
public prRSAQ

{
}

/*
* Constructor, that takes the arguments appropriate for
* processing the command line directives.
*/
public prRSA(
String infile,
String outfile,
boolean encrypt)

First, determine that infile & keyfile exist as appropriate.

This will also create the BufferedlnputStream as required
for reading the input file. All input files are treated

as if they are binary, even if they contain text, it"s the
bytes that are encrypted.

FoX o+ X % ¥

*/

this.encrypt = encrypt;
try

{

in = new BufferedlnputStream(new FilelnputStream(infile));

}
catch (FileNotFoundException fnf)

{
System._err._printin(""Input file not found ["+infile+"]"");
System._exit(1l);

}

try

{

out = new BufferedOutputStream(new
FileOutputStream(outfile));

-89 -

}

catch (10Exception fnf)

{

System.err_printIn("'Output file not created

["+outFile+"]"");

}

}

public
{

System.exit(l);

final void process(String keylen)

cipher = new RSAEngine();

/*
*
*
*

*

The input and output streams are currently set up
appropriately, and the key bytes are ready to be
used.

*/

if
{

}

(encrypt)

performEncrypt(keylen);

else

{

}
1/

try

{

performbecrypt();

after processing clean up the files

in.close();
out.flush(Q);
out.close();

catch (10Exception closing)

{

}
}

private final void generateKey(String keylLen)

{

String keyfile = "RSAkey.dat';

RSAKeyPairGenerator pGen = new RSAKeyPairGenerator();
RSAKeyGenerationParameters genParam = new

RSAKeyGenerationParameters(Biglnteger.valueOf(0x11), new
SecureRandom(), Integer.parselnt(keyLen), 25);

pGen. init(genParam);
AsymmetricCipherKeyPair pair = pGen.generateKeyPair();

Biglnteger para;

byte[] keyhex;
try {

-90 -

BufferedOutputStream keystream =
new BufferedOutputStream(new
FileOutputStream(keyfile));
keyhex =
((RSAKeyParameters)pair.getPublic()) .getModulus() -toString() -getBytes()

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAKeyParameters)pair.getPublic()) .getExponent() .toString() -getBytes(
E

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()) .getPublicExponent() .toS
tring() .getBytes();

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getP().toString() -getBy
tesQ;

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getQ().toString() -getBy
tesQ;

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getDP().toString() .getB
ytesQ);

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getDQ() .toString() .getB
ytesQ);

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getQInv().toString().ge
tBytes();

keystream.write(keyhex, 0, keyhex.length);

keystream.flush(Q);
keystream.close();

} catch (10Exception createKey)
{

System.err._printIn(*'Could not create key file "+

"["+keyFile+"]");
System.exit(l);
}

}

/*
* This method performs all the encryption and writes

-91 -

* the cipher text to the buffered output stream created
* previously.
*/
private final void performEncrypt(String keylLen)
{
String srKeyfile="";
ifT (keyLen.equals(''512"))
srKeyfile = "RSAkey512._dat";
else if (keyLen.equals('768'™))
srKeyfile = "RSAkey768.dat";
else if (keyLen.equals(''1024'))
srKeyfile = "RSAkeyl1024._dat";
else if (keyLen.equals(''2048'))
srKeyfile = "RSAkey2048._dat";
else if (keyLen.equals(''3072"))
srKeyfile = "RSAkey3072.dat";
else 1Tt (keyLen.equals('4096'"))
srKeyfile = ""RSAkey4096.dat";
else if (keyLen.equals(''5120™))
srKeyfile = "RSAkey5120.dat";

String keyfile = "RSAkey.dat';

/*

RSAKeyPairGenerator pGen = new RSAKeyPairGenerator();

RSAKeyGenerationParameters genParam = new
RSAKeyGenerationParameters(Biglnteger.valueOf(0x11), new
SecureRandom(), Integer.parselnt(keylLen), 25);

pGen.init(genParam);

AsymmetricCipherKeyPair pair = pGen.generateKeyPair();

Biglnteger para;
byte[] keyhex;
try {
BufferedOutputStream keystream =
new BufferedOutputStream(new
FileOutputStream(keyfile));
keyhex =
((RSAKeyParameters)pair.getPublic()) .getModulus() -toString() -getBytes()

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAKeyParameters)pair.getPublic()) .getExponent() .toString() -getBytes(
):

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()) .getPublicExponent() .toS
tring() .getBytes();

keystream.write(keyhex, 0, keyhex.length);

keystream.write("\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getP().toString() .getBy
tes(Q);

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

-92 -

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getQ().toString() .getBy
tes(Q);

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getDP().toString() -getB
ytesQ);

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getDQ() -toString() -getB
ytesQ);

keystream.write(keyhex, 0, keyhex.length);

keystream.write(*\n");

keyhex =
((RSAPrivateCrtKeyParameters)pair.getPrivate()).getQlnv().toString()-.ge
tBytes();

keystream.write(keyhex, 0, keyhex.length);

keystream.flush(Q);
keystream.close();

} catch (10Exception createKey)
{

System.err_printIn(*'Could not create key file "+

"["+keyFile+"]'");
System.exit(l);
}

*/

// initialise the cipher with the key bytes, for encryption
//cipher._init(true, pair.getPublic());

Biglnteger mod=null, pubExp=null;
String bv;
int i;

try {
BufferedlnputStream keystream =

new BufferedlnputStream(new
FilelnputStream(srKeyfile));
BufferedReader keyReader = new BufferedReader(new
InputStreamReader(keystream));
PrintWriter pr = new PrintWriter(new
FileOutputStream(keyfile));

// write variables mod, pubExp, privExp, p, q, dp,
dq, qinv

it ((bv = keyReader.readLine()) != null)
pr.printin(bv);

mod = new Biglnteger(bv);

// pubExp

if ((bv = keyReader.readLine()) != null)
pr.printin(bv);

pubExp = new Biglnteger(bv);

-03 -

for (i=0; 1 < 6;i++)
if ((bv = keyReader.readLine()) != null)
pr._printin(bv);

keystream.close();
keyReader.close();
pr.close();

} catch (10Exception createKey) {
System.err.printIn(*'Could not encyption create key
file "+ "["+keyfile+"]"");
System_exit(1l);
}

RSAKeyParameters pubParameters = new
RSAKeyParameters(false, mod, pubExp);
cipher.init(true, pubParameters);

N
*

Create some temporary byte arrays for use in
encryption, make them a reasonable size so that
we don"t spend forever reading small chunks from
a file.

There is no particular reason for using getBlockSize()
to determine the size of the input chunk. It just

was a convenient number for the example.

*/

// int inBlockSize = cipher.getBlockSize() * 5;

int inBlockSize = 47;

X o X % % % ¥

byte[] inblock = new byte[inBlockSize];
byte[] outblock = new byte[inBlockSize];

/*
* now, read the Ffile, and output the chunks
*/
try
{
int InL=0;
int outL=0;
byte[] rv = null;
String st = null;
BufferedReader br = new BufferedReader(new
InputStreamReader(in));
// while ((inL=in.read(inblock, 0, inBlockSize)) > 0)
while ((st = br.readLine()) != null)
{

inblock = st.getBytes();
try {

0, inblock.length);

outblock = cipher._processBlock(inblock,

/*
* Before we write anything out, we need to make sure
* that we"ve got something to write out.

-94 -

*/
if (outblock.length > 0)

{
rv = Hex.encode(outblock, 0, outblock.length);

out.write(rv, 0, rv.length);
out.write("\n");

} catch (Exception e)

System._err._printIn("failed - exception "
+ e.toString());

}

in.close();
out.flush(Q;
out.close();

catch (10Exception ioeread)

{
}

ioeread.printStackTrace();

}

/*

* This method performs all the decryption and writes
* the plain text to the buffered output stream created
* previously.

*/

private final void performDecrypt()

{

String bv;
Biginteger mod=null, pubExp=null, privExp=null, p=null,
g=null, dp=null, dg=null, qinv=null;
String keyfile = "ServRSAKey.dat";
try {
BufferedlnputStream keystream =
new BufferedlnputStream(new
FilelnputStream(keyfile));
BufferedReader keyReader = new
BufferedReader(new InputStreamReader(keystream));
if ((bv = keyReader.readLine()) !'= null)

{
mod = new Biglnteger(bv);

}
it ((bv = keyReader.readLine()) != null)

{ pubExp = new Biglnteger(bv);
%f ((bv = keyReader.readLine()) != null)
{ privExp = new Biglnteger(bv);
if ((bv = keyReader.readLine()) != null)

p = new Biglnteger(bv);

-05 -

f ((bv = keyReader.readLine()) = null)
q = new Biglnteger(bv);
T ((bv = keyReader.readLine()) '= null)

dp = new Biglnteger(bv);
T ((bv = keyReader.readLine()) !'= null)
dg = new Biglnteger(bv);

T ((bv = keyReader.readLine()) != null)

B R L

qinv = new Biglnteger(bv);

}

keystream.close();
keyReader.close();

} catch (10Exception createKey)
{
System.err.printIn(*'Could not decryption create
key Ffile "+
"[+keyFile+"]");

}

System.exit(l);

// initialise the cipher for decryption
RSAKeyParameters privParameters = new
RSAPrivateCrtKeyParameters(mod, pubExp, privExp, p, q, dp, dg, qginv);
cipher.init(false, privParameters);

* As the decryption is from our preformatted file,

* and we know that it"s a hex encoded format, then

* we wrap the InputStream with a BufferedReader

* so that we can read it easily.

*/

BufferedReader br = new BufferedReader(new
InputStreamReader(in));

/*
* now, read the Ffile, and output the chunks
*/
try
{
int outL;
byte[] inblock = null;
byte[] outblock = null;
byte[] input;
String rv = null;
while ((rv = br.readLine()) != null)
{

-96 -

inblock = Hex.decode(rv);
outblock = new byte[inblock. length];

try {

inblock. length);

outblock = cipher.processBlock(inblock, O,

String te = new String(outblock);
it (outblock.length > 0) {

out_write(outblock, 0, outblock.length);

out.write("\n");
}

} catch (Exception e) {

System._err_printIn('failed - exception

+ e.toString());
}

}
catch (10Exception ioeread)
{
ioeread.printStackTrace();
}
}
}
* *
*
* Program name: prElGamal.java
*
* *
/**

* @author Praveen Donta

* File: prElGamal.java

* Desc: encrypts and decrypts a given text file using ElGamal
algorithm.

*

*/
package unf.grad.proj;

import java.io.BufferedlnputStream;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.PrintWriter;

import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.lOException;

import java.io.lnputStreamReader;
import java.math.Biglnteger;

import java.security.SecureRandom;

import org.bouncycastle.crypto.engines.ElGamalEngine;
import org.bouncycastle.crypto.AsymmetricCipherKeyPair;

import org.bouncycastle.crypto.generators.ElGamalKeyPairGenerator;

-97-

ok ok ok %

import org.bouncycastle.crypto.generators.ElGamalParametersGenerator;
import org.bouncycastle.crypto.params.EIlGamalParameters;

import org.bouncycastle.crypto.params.ElGamalKeyGenerationParameters;
import org.bouncycastle.crypto.params.ElGamalPrivateKeyParameters;
import org.bouncycastle.crypto.params.EIGamalPublicKeyParameters;
import org.bouncycastle.crypto.params.ParametersWithRandom;

import org.bouncycastle.util._encoders._Hex;

public class prElGamal extends Object
{
// Encrypting or decrypting ?
private boolean encrypt = true;

// To hold the initialised DESede cipher
private ElGamalEngine e = null;

// The input stream of bytes to be processed for encryption
private BufferedlnputStream in = null;

// The output stream of bytes to be procssed
private BufferedOutputStream out = null;

/*
* start the application
*/
public static void main(String[] args)
{
boolean encrypt = true;
String infile = null;
String outfile = null;
String keylen = null;

if (args.length < 3)
{
prElGamal rc = new prElGamal();
System.err._printIn("'Usage: java "+rc.getClass().getName()+
" infile outfile keylength™);
System.exit(l);

infile = args[O0];
outfile = args[1];
keylen = args[2]:

if (args.length > 3)
{

encrypt = false;

}

prElGamal el = new prElGamal(infile, outfile, encrypt);
//¢el _process('258™);
el _process(keylen);

}

// Default constructor, used for the usage message
public prElGamal()
{

- 08 -

}

/*
* Constructor, that takes the arguments appropriate for
* processing the command line directives.
*/
public prElGamal(
String infile,
String outfile,
boolean encrypt)

/*
First, determine that infile & keyfile exist as appropriate.

This will also create the BufferedlnputStream as required
for reading the input Ffile. All input files are treated

as iIf they are binary, even if they contain text, it"s the
bytes that are encrypted.

X ok X % ¥

*/

this.encrypt = encrypt;
try

{

in = new BufferedlnputStream(new FilelnputStream(infile));

}
catch (FileNotFoundException fnf)

{
System.err._printIn("Input file not found ["+infile+"]");
System.exit(l);

}

try

{

out = new BufferedOutputStream(new
FileOutputStream(outfile));

catch (10Exception fnf)
{
System.err._printIn("'Output file not created

["+outFile+"]'");
System.exit(l);

}
}
public final void process(String keylen)
{

e = new ElGamalEngine();
// testGeneration(258);
if (encrypt)
{
performeEncrypt(keylen);
}
else

{
}

performbDecrypt();

-99 -

// after processing clean up the files
try

in.close();
out.flush(Q);
out.close();

}
catch (10Exception closing)

{
}
}
private void testGeneration(
int size)
ElGamalParametersGenerator pGen = new

ElGamalParametersGenerator();
pGen.init(size, 10, new SecureRandom());

ElGamalParameters elParams =
pGen.generateParameters();

ElGamalKeyGenerationParameters params = new
ElGamalKeyGenerationParameters(new SecureRandom(), elParams);

ElGamalKeyPairGenerator kpGen = new
ElGamalKeyPairGenerator();

kpGen. init(params);

//

// generate first pair

//

AsymmetricCipherKeyPair pair =
kpGen.generateKeyPair();

ElGamalPubl icKeyParameters pu =
(ElGamalPublicKeyParameters)pair.getPublic();
ElGamalPrivateKeyParameters pv =

(ElGamalPrivateKeyParameters)pair.getPrivate();
ElGamalEngine e = new EIGamalEngine();

e.init(true, new ParametersWithRandom(pu, new
SecureRandom()));

String message = "This iIs a test';

byte[] pText = message.getBytes();
byte[] cText = e.processBlock(pText, 0, pText.length);

e.init(false, pv);

pText = e.processBlock(cText, 0, cText.length);

- 100 -

if (Imessage.equals(new String(pText)))
{

}

System.out._printIn(‘'generation test failed™);

/*

* This method performs all the encryption and writes

* the cipher text to the buffered output stream created
* previously.

*/
private final void performEncrypt(String keylen)
{

/*

ElGamalParametersGenerator pGen = new
ElGamalParametersGenerator();

//pGen._init(258, 10, new SecureRandom());
pGen.init(Integer.parselnt(keylen), 10, new
SecureRandom());

ElGamalParameters elParams =
pGen.generateParameters();

*/

String srKeyfile="";
String bv;
Biglinteger p=null, g=null;

it (keylen._.equals('600™))
srKeyfile = "ElGamalKey600.dat";
else if (keylen.equals(''800'))
srKeyfile = "EIGamalKey800.dat";
else if (keylen.equals(''1000'))
srKeyfile = "ElGamalKeyl1000.dat";
else if (keylen.equals(''1200™))
srKeyfile = "ElGamalKey1200.dat";

String keyfile = "ElGamalKey.dat";

try {
BufferedlnputStream keystream =

new BufferedlnputStream(new
FilelnputStream(srKeyfile));
BufferedReader keyReader = new BufferedReader(new
InputStreamReader (keystream));
PrintWriter pr = new PrintWriter(new
FileOutputStream(keyfile));

// write variables p, g, X

it ((bv = keyReader.readLine()) != null)
pr.printin(bv);

p = new Biglnteger(bv);

it ((bv = keyReader.readLine()) != null)
pr.printin(bv);

-101 -

g = new Biglnteger(bv);

if ((bv = keyReader.readLine()) != null)
pr.printin(bv);

keystream.close();
keyReader.close();
pr.close();

} catch (10Exception createKey) {
System.err.printIn(*'Could not decryption create key
file "+ "["+keyfile+"]"");
System_exit(1l);
}

ElGamalParameters elParams = new
ElGamalParameters(p, 9);

ElGamalKeyGenerationParameters params = new
ElGamalKeyGenerationParameters(new SecureRandom(), elParams);

ElGamalKeyPairGenerator kpGen = new
ElGamalKeyPairGenerator();

kpGen.init(params);

//

// generate first pair

//

AsymmetricCipherKeyPair pair =
kpGen.generateKeyPair();

ElIGamalPubl icKeyParameters pu =
(ElGamalPublicKeyParameters)pair.getPublic();
ElGamalPrivateKeyParameters pv =

(ElGamalPrivateKeyParameters)pair.getPrivate();

// Store Key

byte[] keyhex;

try {
BufferedOutputStream keystream =

new BufferedOutputStream(new
FileOutputStream(keyfile));

keyhex = elParams.getP().toString().getBytes();
keystream.write(keyhex, 0, keyhex.length);
keystream.write("\n");
keyhex = elParams.getG().toString().getBytes();
keystream.write(keyhex, 0, keyhex.length);
keystream.write(*\n");
keyhex = pv.getX().toString().getBytes();
keystream.write(keyhex, 0, keyhex.length);
keystream.write("\n");

keystream.flush();
keystream.close();

} catch (10Exception createKey)
System._err_printIn(*'Could not decryption create key

file "+

-102 -

"[+keyFile+"]™);
System._exit(l);
}

e_.init(true, new ParametersWithRandom(pu, new SecureRandom()));

// int inBlockSize = cipher.getBlockSize() * 5;
int inBlockSize = 47;

byte[] inblock = new byte[inBlockSize];
byte[] outblock = new byte[inBlockSize];

/*
* now, read the Ffile, and output the chunks
*/
try
{
int inL=0;
byte[] rv = null;
byte[] cText;

while ((inL=in.read(inblock, 0, inBlockSize)) > 0)

{
cText = e.processBlock(inblock, 0O, inL);
if (cText.length > 0)
{
rv = Hex.encode(cText, 0, cText.length);
out.write(rv, 0, rv.length);
out.write("\n");
}
}
catch (10Exception ioeread)
{
ioeread.printStackTrace();
}
}
/*

* This method performs all the decryption and writes
* the plain text to the buffered output stream created
* previously.

*/

private final void performDecrypt()

{

String bv;
Biginteger p=null, g=null, x=null;
String keyfile = "ServElGamalKey.dat";
try {
BufferedlnputStream keystream =
new BufferedlnputStream(new
FilelnputStream(keyfile));

-103 -

BufferedReader keyReader = new
BufferedReader(new InputStreamReader(keystream));

if ((bv = keyReader.readLine()) !'= null)
{ p = new Biglnteger(bv);
it ((bv = keyReader.readLine()) != null)
{ g = new Biglnteger(bv);
%f ((bv = keyReader.readLine()) != null)
; X = new Biglnteger(bv);

keystream.close();
keyReader.close();

} catch (10Exception createKey)
{

key file "+

System.err._printIn(*'Could not decryption create

“[+keyFile+"]™);
System.exit(l);

}

ElGamalParameters elParams = new
ElGamalParameters(p, 9);

ElGamalPrivateKeyParameters pv = new

ElGamalPrivateKeyParameters(x, elParams);

// initialise the cipher for decryption
e.init(false, pv);

* As the decryption is from our preformatted file,

* and we know that it"s a hex encoded format, then

* we wrap the InputStream with a BufferedReader

* so that we can read it easily.

*/

BufferedReader br = new BufferedReader(new
InputStreamReader(in));

/*
* now, read the Ffile, and output the chunks
*/
try
{
byte[] inblock = null;
byte[] outblock = null;
byte[] pText;
String rv = null;
while ((rv = br.readLine()) != null)

inblock = Hex.decode(rv);

-104 -

outblock = new byte[inblock. length];
pText = e.processBlock(inblock, 0, inblock.length);

if (pText.length > 0)
out.write(pText, 0, pText.length);

}
catch (10Exception ioeread)
{
ioeread.printStackTrace();
}
}
}
* *
* *
* Program name: prSHAl.java *
* *
* *
/**

* @author Praveen Donta
* File: prSHAl. java

* Desc: generates message digest for a given text file using SHAL.
*

*/
package unf.grad.proj;

import java.io.BufferedlnputStream;
import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.lOException;

import org.bouncycastle.util_encoders._Hex;
import org.bouncycastle.crypto.digests.SHAlDigest;

public class prSHAl extends Object

{
private SHAl1Digest digest;

// The input stream of bytes to be processed for digest
private BufferedlnputStream in = null;

/*

* start the application

*/

public static void main(String[] args)
{

String infile = null;
if (args.length < 2)

prSHAL1 de = new prSHA1(Q);
System.err.printIn(‘'Usage: java ''+de.getClass().getName()+

- 105 -

" infile outfile');
System.exit(l);

infile = args[0];

prSHAL pr = new prSHAL1(infile);
pr.process();

}

// Default constructor, used for the usage message
public prSHA1Q

{
}

/*
* Constructor, that takes the arguments appropriate for
* processing the command line directives.
*/
public prSHA1(String infile)
{
try
{

in = new BufferedlnputStream(new FilelnputStream(infile));

}
catch (FileNotFoundException fnf)

{
System.err._printIn("Input file not found ["+infile+"]");
System.exit(l);
}
}
public Ffinal byte[] process()
{

byte[] rv;
/*

* Create Digest
*

*/
digest = new SHAl1Digest();

/*
* The input and output streams are currently set up
* appropriately, and the key bytes are ready to be

* used.
*

*/
rv = performDigest();
// after processing clean up the Files
try
{

in.close();

}
catch (10Exception closing)
{

- 106 -

oX o+ % X

*

/**

}
/*

}

return rv;

* This method generates digest

*
*

*/

private final byte[] performDigest()

{

Program name: prMD5.java

*

int inBlockSize = 47;

byte[] inblock = new byte[inBlockSize];

/*
* now, read the Ffile, and output the chunks
*/
try
{
int inL;
byte[] resBuf = new byte[digest.getDigestSize()];
byte rv[];
while ((inL=in.read(inblock, 0, inBlockSize)) > 0)
{
digest.update(inblock, 0, inL);
}
digest.doFinal (resBuf, 0);
if (resBuf.length > 0)
{
rv = Hex.encode(resBuf, O, resBuf.length);
return rv;
}
}
catch (10Exception i1oeread)
{
ioeread.printStackTrace();
}

return null;

FoX o+ % X

* * * * * * * * * * * * * * * * * * *

* @author Praveen Donta
* File: prMD5.java
* Desc: generates message digest for a given text file using MD5.

*

*/

-107 -

package unf.grad.proj;

import java.io.BufferedlnputStream;
import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.lOException;

import org.bouncycastle.util_encoders._Hex;
import org.bouncycastle.crypto.digests.MD5Digest;

public class prMD5 extends Object

{
private MD5Digest digest;

// The input stream of bytes to be processed for encryption
private BufferedlnputStream in = null;

/*

* start the application

*/

public static void main(String[] args)
{

boolean encrypt = true;
String infile = null;

if (args.length < 2)

prMD5 de = new prMD5Q);

System.err.printIn(‘'Usage: java ''+de.getClass().getName()+
" infile outfile™);

System_exit(1l);

infile = args[0];

prMD5 pr = new prMD5(infile);
pr.process();

}

// Default constructor, used for the usage message
public prMD5Q)

{
}

/*

* Constructor, that takes the arguments appropriate for
* processing the command line directives.

*/

public prMD5(String infile)

try
{

in = new BufferedlnputStream(new FilelnputStream(infile));
}
catch (FileNotFoundException fnfT)

{
System_err_printIn('Input file not found ["+infile+"]"");

- 108 -

System.exit(l);

}
}
public Ffinal byte[] process(Q)
{
byte[] rv;
digest = new MD5Digest();
/*
* The input and output streams are currently set up
* appropriately, and the key bytes are ready to be
* used.
*
*/
rv = performDigest();
// after processing clean up the files
try
{
in.close();
}
catch (10Exception closing)
{
}
return rv;
}
/*
* This method performs digest
*/
private final byte[] performDigest()
{

int inBlockSize = 47;
byte[] inblock = new byte[inBlockSize];
byte[] rv;

/*

* now, read the Ffile, and output the chunks

*/

try

t
int inL;

byte[] resBuf = new byte[digest.getDigestSize()]:

while ((inL=in.read(inblock, 0, inBlockSize)) > 0)

{
}

digest.update(inblock, 0, inL);

digest.doFinal (resBuf, 0);
if (resBuf.length > 0)

{

rv = Hex.encode(resBuf, 0 , resBuf.length);

-109 -

return rv;

}

catch (10Exception ioeread)

{
}

return null;

ioeread.printStackTrace();

-110 -

X ok X %

* *

*

* Secur
* Autho

N

Appendix B

SSL CODE LISTINGS

* * * * * * *

ityServer.cpp
r: Praveen Donta

*

Program name: SSLSecurityServer.cpp

* * * * * * * * * * *

* Desc: SSL security server handles SSL client connections

*

*/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include
#include
#include
#include
#include

<stdio.h>
<unistd.h>
<stdlib.h>
<memory.h>
<errno.h>
<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<arpa/Zinet.h>
<netdb.h>
<sys/timeb.h>
<sys/time.h>

<openssl/rsa.h>
<openssl/crypto.h>
<openssl1/x509.h>
<openssl/pem.h>
<openssl/ssl._h>
<openssl/err._h>

/* SSLeay stuff */

/* define HOME to be dir for key and cert files... */

#define

#define
#define

#define
#define
#define
exit(2);

int proc
int proc

HOME **./*

CERTF HOME "RSACert2048.pem"
KEYF HOME "RSACert2048.pem"

CHK_NULL(x) 1f ((x)==NULL) exit (1)
CHK_ERR(err,s) if ((err)=

CHK_SSL(err) if ((err)
3

esslnputchoice(char *,
essRequest(int);

in

=-1) { perror(s); exit(l); }
1) { ERR_print_errors_fp(stderr);

t);

-111 -

* ook ok % %

int main (int argc, char argv[])

{

}

char hostName[10];
char ret;

// Check for number of command line arguments
ifT (argc < 2) {

exit(0);

}

for (G5) {
printf(C"\n\n"");
printf(*'1. 3DES-SHA with 512 bit RSA\n");
printf(*'2. 3DES-SHA with 768 bit RSA\n');
printf(’'3. 3DES-SHA with 1024 bit RSA\n");
printf("'4. 3DES-SHA with 2048 bit RSA\n");
printf("'5. RC4-MD5 with 512 bit RSA\n");
printf("'6. RC4-MD5 with 768 bit RSA\n");
printf("'7. RC4-MD5 with 1024 bit RSA\n');
printf("'8. RC4-MD5 with 2048 bit RSA\n');
printf('9. Quit\n™);
printf(''\n"");
printF("\nPlease Enter your choice (1-9) :');

scanf("'%s", &ret);
fflush(stdin);
if (ret == "9%) {
exit(0);

}
processRequest(ret);

}

printf("'Missing server port. Please enter server port.

int processlnputchoice(char *hostName, int choice) {

FILE *fp, *fout;
char code[15];
char outfile[15];
int i, len;

char inputfile[l1l5];

strcpy(inputfile, "TestFile.txt™);

//0pen input File
fp = fopen('TestFile", "r');
it (fp == NULL) {
printf('Cannot open input file\n");

return O;
}
len = strilen(inputfile);
len -= 3;

strncpy(outfile, inputfile, len);
outfile[len] = O;
strcat(outfile, ".out™);

-112 -

");

//0pen output File

fout = fopen(outfile, "w'™);

ifT (fout == NULL) {
printf("'Cannot open output file\n™);
return O;

}
printf(C"\n %d Outfile %s \n', len, outfile);

printfF(C"\n Inputfile %s Successfully processed\n", inputfile);
fclose(fp);
fclose(fout);

return O;

}

int processRequest(int choice)
{
int err;
int listen_sd;
int sd;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
//size_t client_len;
socklen_t client_len;
SSL_CTX* ctx;

SSL* ssl;
X509* client_cert;
char* str;
char buf [14096];

char certFile[20];

char keyFile[20];

struct timeval start_time, stop_ time;
struct timezone szone;

double elapsed;

SSL_METHOD *meth;

/* SSL preliminaries. We keep the certificate and key with the
context. */

SSL_load_error_strings(Q);

SSL_library _initQ);

meth=SSLv3_server_method();

ctx = SSL_CTX_new (meth);

ifT (choice == "17) {
SSL_CTX_set_cipher_list(ctx,""DES-CBC3-SHA™);
strcpy(certFile, "RSACert512.pem™);
strcpy(keyFile, "RSACert512.pem'™);

} else if (choice == "2%) {
SSL_CTX_set_cipher_list(ctx,""DES-CBC3-SHA™);
strcpy(certFile, "RSACert768.pem™);
strcpy(keyFile, "RSACert768.pem™);

} else if (choice == "37) {
SSL_CTX_set_cipher_list(ctx, " DES-CBC3-SHA™);
strcpy(certFile, "RSACertl1024.pem');

-113 -

strcpy(keyFile, "RSACertl024.pem'™);

} else if (choice == "47) {
SSL_CTX_set_cipher_list(ctx, " DES-CBC3-SHA™);
strcpy(certFile, "RSACert2048.pem'™);
strcpy(keyFile, '"RSACert2048.pem™);

} else if (choice == "5") {
printf("'In choice 5\n"");
SSL_CTX_set_cipher_list(ctx, " "RC4-MD5"");
strcpy(certFile, "RSACert512._pem™);
strcpy(keyFile, "RSACert512.pem™);

} else if (choice == "6") {
SSL_CTX_set_cipher_list(ctx,"RC4-MD5"");
strcpy(certFile, "RSACert768.pem™);
strcpy(keyFile, "RSACert768.pem™);

} else if (choice == "7") {
SSL_CTX_set_cipher_list(ctx,""RC4-MD5"");
strcpy(certFile, "RSACertl1024._pem'™);
strcpy(keyFile, "RSACertl1024._pem™);

} else if (choice == "8") {
SSL_CTX_set_cipher_list(ctx,""RC4-MD5"");
strcpy(certFile, "RSACert2048.pem');
strcpy(keyFile, "RSACert2048.pem™);

}

printF("'CTX Session key %d\n", ctx->generate_session_id);
iT (Tetx) {

ERR_print_errors_fp(stderr);

exit(2);
}

iT (SSL_CTX_ use certificate_file(ctx, certFile, SSL_FILETYPE_PEM) <=
0 {
ERR_print_errors_fp(stderr);
exit(3);

if (SSL_CTX use PrivateKey file(ctx, keyFile, SSL_FILETYPE_PEM) <= 0)
{
ERR_print_errors_fp(stderr);
exit(4);
}

if (ISSL_CTX check private key(ctx)) {
fprintf(stderr,"Private key does not match the certificate public
key\n'");
exit(b);

/e */
/* Prepare TCP socket for receiving connections */

listen_sd = socket (AF_INET, SOCK_STREAM, 0); CHK_ERR(listen_sd,
"socket);

memset (&sa_serv, "\0", sizeof(sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;

-114-

sa_serv.sin_port = htons (1111); /* Server Port

number */

err = bind(listen_sd, (struct sockaddr*) &sa_serv,
sizeof (sa_serv)); CHK_ERR(err, "bind™);

/* Receive a TCP connection. */

err = listen (listen_sd, 5); CHK_ERR(err,
isten™);

client_len = sizeof(sa_cli);

sd = accept (listen_sd, (struct sockaddr*) &sa_cli, &client_len);
CHK_ERR(sd, "accept');

close (listen_sd);

printf ('Connection from %lx, port %x\n',
sa_cli.sin_addr.s_addr, sa cli.sin_port);

/* ___ */
/* TCP connection is ready. Do server side SSL. */

ssl = SSL_new (ctx); CHK_NULL(ssl);
printf("'SSL Session key before %d\n', ssl->session->session_id);

SSL_set_fd (ssl, sd);
printf("'SSL Session key before %d\n", ssl->session->session_id);

err = SSL_accept (ssl); CHK_SSL(err);
printF('SSL Session key %d\n", ssl->session->session_id);

/* Get the cipher - opt */

printf ('SSL connection using %s\n',

SSL_CIPHER_get name(SSL_get current _cipher(ssl)));

/* Get client"s certificate (nhote: beware of dynamic allocation) -

opt */

0)

0)

client _cert = SSL_get peer_certificate (ssl);

if (client_cert = NULL) {
printf ("Client certificate:\n");

str = X509 NAME_oneline (X509 get subject name (client_cert), O,
" CHK_NULL(str);

printf (''\t subject: %s\n", str);

OPENSSL_free (str);

str = X509 NAME_oneline (X509 get_issuer_name (client_cert), O,

CHK_NULL(str);
printf '\t issuer: %s\n', str);
OPENSSL_free (str);

-115-

/* We could do all sorts of certificate verification stuff here
before
deallocating the certificate. */

X509 free (client_cert);
} else
printf ('Client does not have certificate_.\n");

/* DATA EXCHANGE - Receive message and send reply. */
// Start timing

gettimeofday(&start_time, &szone);
printf("'Start time %7f\n "', (double)start time.tv_usec);

err = 1;
// while (err > 0) {
err = SSL_read (ssl, buf, sizeof(buf) - 1); //

CHK_SSL(err);

buf[err] = "\0";

printf ("Got %d chars: \n", err);
// }

err = SSL_write (ssl, "l hear you.", strlen(’l hear you.'));
CHK_SSL(err);

// Stop timing and compute elapsed time
gettimeofday(&stop_time, &szone);
printf("'Stop time %f, %F \n ", (double)stop time.tv_usec);

elapsed=(((double) stop_time.tv_usec) - ((double) start time.tv_usec
));

// Output name and elapsed time
printf("" Server took %7.9F micro sec to execute this program \n",

close (sd);
SSL_free (ssl);
SSL_CTX_free (ctx);
return O;

}
/* EOF - SSLSecurityServer.cpp */

& X % %
o
=
o
Q
=
o
E|
S
o
E|
®
%)
4]
r
W
®
0
c
=
~+
<
9]
o
o
~+
0
e
T

* & & ok %k

/*
* SecurityServer.cpp

-116 -

* Author: Praveen Donta
* Desc: SSL security client sends encrypted requests to SSL server
*

*/

#include <stdio.h>
#include <memory.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in_h>
#include <arpa/Zinet._h>
#include <netdb.h>
#include <sys/timeb.h>
#include <sys/time.h>

#include <openssl/crypto.h>
#include <openssl/x509.h>
#include <openssl/pem.h>
#include <openssl/ssl._h>
#include <openssl/err.h>

#define CHK_NULL(X) if ((X)==NULL) exit (1)

#define CHK_ERR(err,s) if ((err)==-1) { perror(s); exit(l); }
#define CHK_SSL(err) if ((err)==-1) { ERR_print_errors_fp(stderr);
exit(2); }

int main
{
int err;
int sd;
struct sockaddr_in sa;
SSL_CTX* ctx;

SSL* ssl;
X509* server_cert;
char* str;
char buf [14096];

SSL_METHOD *meth;

struct timeval start_time, stop_time;
struct timezone szone;

double elapsed;

FILE *fp;

SSLeay add_ssl_algorithms();

meth = SSLv3_client_method();

SSL_load_error_strings(Q);

ctx = SSL_CTX _new (meth); CHK_NULL(ctx);
CHK_SSL(err);

/* ___ */
/* Create a socket and connect to server using normal socket calls.
*/

sd = socket (AF_INET, SOCK_STREAM, 0); CHK_ERR(sd, ''socket');

-117 -

sa.sin_fTamily AF_INET;

memset (&sa, "\0", sizeof(sa));
sa.sin_addr.s_addr = inet_addr (*'127.0.0.1"); /* Server 1P */

sa.sin_port htons (1111); /* Server Port number
*/

err = connect(sd, (struct sockaddr¥*) &sa,

sizeof(sa)); CHK_ERR(err, '"connect™);

/* ___ */

/* Now we have TCP conncetion. Start SSL negotiation. */

ssl = SSL_new (ctx); CHK_NULL(ssD);

SSL_set_fd (ssl, sd);

err = SSL_connect (ssl); CHK_SSL(err);

/* Following two steps are optional and not required for
data exchange to be successful. */

/* Get the cipher - opt */

printf ('SSL connection using %s\n',
SSL_CIPHER_get name(SSL_get current_cipher(ssl)));

/* Get server®s certificate (note: beware of dynamic allocation) -
opt */

server_cert = SSL_get peer_certificate (ssl);
CHK_NULL(server_cert);
printf (“Server certificate:\n");

str = X509 NAME_oneline (X509 get_subject_name (server_cert),0,0);
CHK_NULL(str);

printf '\t subject: %s\n', str);

OPENSSL_free (str);

str = X509 NAME_oneline (X509 get_issuer_name (server_cert),0,0);

CHK_NULL(str);

printf "\t issuer: %s\n', str);

OPENSSL_free (str);

/* We could do all sorts of certificate verification stuff here
before

deallocating the certificate. */
X509 free (server_cert);

/* ___ */
/* DATA EXCHANGE - Send a message and receive a reply. */

fp = fopen("TestFilelOk.txt", ''r'");

// Start timing

gettimeofday(&start_time, &szone);

printf('Start time %7f\n "', (double)start time.tv_usec);

while (feof(fp) == 0) {

-118 -

fread(buf, sizeof(buf) -1, 1, fp);
//printf("%s\n"*, buf);
err = SSL_write(ssl,buf, sizeof(buf)); CHK SSL(err);
fread(buf, sizeof(buf) -1, 1, fp);
//printf("%s\n'', buf);
err = SSL_write(ssl,buf, sizeof(buf)); CHK SSL(err);

}

err = SSL_write (ssl, "Hello World!", strlen("Hello World!"));
CHK_SSL(err);
printf("'Hello World\n');

err = SSL_read (ssl, buf, sizeof(buf) - 1);
CHK_SSL(err);

buf[err] = "\0~;

printf ("Got %d chars:"%s"\n", err, buf);

// Stop timing and compute elapsed time
gettimeofday(&stop_time, &szone);
printfF("'Stop time %f\n ", (double)stop time.tv_usec);

elapsed=(((double) stop_time.tv_usec) - ((double) start time.tv_usec
));

// Output name and elapsed time

printf("* Client took %7.9f micro sec to execute this program \n",
elapsed);

printf('----———————— - —-— - —-— - — .. ——— ——— — ——_———_——_ — ——
--\n"");

SSL_shutdown (ssl); /* send SSL/TLS close notify */
/* Clean up. */
// close (sd);

SSL_free (ssl);
SSL_CTX_free (ctx);

}
/* EOF - SSLSecurityClient.cpp */

-119 -

VITA

Praveen K. Donta received a Maser of Science in Mathematics from Osmania University,
India, in 1993 and expects to receive a Master of Science in Computer and Information
Sciences from the University of North Florida in December of 2006. Dr. Sanjay Ahuja of

the University of North Florida is serving as Praveen's project director.

Praveen is currently employed as a senior software engineer at CSX Corporation and has
been with the company for 8 years. Prior to that, Praveen worked for 3 years as a
programmer analyst with Computer Management Services, Inc. in Jacksonville, Florida.

Praveen has over 14 years of industry experience in Information Sciences.

Praveen’s interests are in real-time and parallel systems and distributed systems design

and development. Praveen is married and lives with his wife and 6 year old son in

Jacksonville.

-120 -

	UNF Digital Commons
	2007

	Performance Analysis of Security Protocols
	Praveen Kumar Donta
	Suggested Citation

	TITLE PAGE

	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Chapter 1: INTRODUCTION

	Chapter 2: SECURITY ALGORITHMS, MESSAGE DIGESTS AND SSL

	2.1 Symmetric Key Algorithms
	2.1.1 DES
	2.1.2 3DES
	2.1.3 AES
	2.1.4 RC4

	2.2 Public-Private Key Algorithms
	2.2.1 RSA
	2.2.2 ElGamal

	2.3 Message Digests
	2.3.1 MD5
	2.3.2 SHA1

	2.4 SSL

	Chapter 3: PROJECT DESCRIPTION

	3.1 Overview
	3.2 Hardware
	3.3 Software

	Chapter 4: TESTING METHODOLOGY

	4.1 Security Algorithms Testing Method
	4.2 SSL Testing Method

	Chapter 5: RESULTS

	5.1 DES Versus RC4 Encryption and Decryption Times
	5.2 3DES Versus RC4 Versus AES Encryption and Decryption Times With 192 Bit Key
	5.3 RC4 Versus AES With 5K File
	5.4 RC4 Versus AES With 10K File
	5.5 RSA Algorithm Encryption and Decryption
	5.6 ElGamal Encryption and Decryption Times
	5.7 Digital Signature SHA1 Versus MD5 With RSA
	5.8 SSL Communication Timings for Two Sets of Security Algorithms

	Chapter 6: ANALYSIS AND CONCLUSIONS

	6.1 Analysis of Test Results
	6.2 Security Algorithms Performance Comparison From Previous Studies
	6.2.1 Crypro++ 5.2.1 Benchmarks
	6.2.2 Testing a Variety of Encryption Technologies
	6.2.3 Security Performance

	6.3 Conclusions

	REFERENCES
	Appendix A: SECURITY PROTOCOL CODE LISTINGS

	Appendix B: SSL CODE LISTINGS

