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ABSTRACT 
 

This master’s thesis involves the definition and development of a policy-based routing 

scheme for peer-to-peer overlay networks.  Many peer-to-peer networks are in existence 

today and each has various methods for discovering new peers, searching for content, 

and overcoming connectivity problems.  The addition of efficient policy-based routing 

enhances the ability of peers within overlay networks to make appropriate routing 

decisions.  Policy-based routing provides a means for peers to define the types of 

network traffic they are willing to route and the conditions under which they will route it.  

The motivations for these policies are many and are described in upcoming sections.   

 

In order to express and enforce policies, a simple policy definition language was 

developed.  This language is sufficient for owners of overlay nodes to choose to route 

traffic based on their own requirements and gives node owners a means to express these 

requirements, such that other nodes within the overlay network can learn them.  A 

mechanism is presented that allows these policies to be stored either in a distributed hash 

table or on a set of directory servers. 

 

The effectiveness of policy-based routing was tested using a simulated network.  The 

affect of these routing policies, in terms of both additional network traffic and 

requirements for client software, was also assessed.  Finally, a comparison was made 

between storing policy information in a distributed hash table, versus on a set of 

directory servers. 
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Chapter 1 

INTRODUCTION 
 

Overlay networks are becoming more prevalent in the Internet as a means of allowing 

users to communicate, share content, gain connectivity, and even play games.  An 

overlay network can be defined as a network defined atop an existing network.  The 

“existing network” is commonly the Internet, and that is the focus of this thesis.  One of 

the attractive qualities of overlay networks is a user can connect to any other node in the 

network, without regard to the other node’s characteristics on the underlying network 

(the underlay network).  Of course, matters are not this simple; logic in the overlay 

network’s program code must account for many different aspects of the underlay 

network, in order to allow this level of connectivity.  The good news is much work has 

been done in this area and today’s overlay networks are capable of dealing with a variety 

of issues that would ordinarily prevent two hosts from communicating, such as Network 

Address Translation (NAT), firewalls, and even unreliable network links [Andersen01A].   

 

In addition to consistent connectivity, overlay networks can provide other benefits to 

users.  The Tor network, for example, provides its users with anonymity [Dingledine04].  

Users who join the Tor network have their network traffic encrypted and routed between 

Tor nodes in such a way that makes it extremely difficult for anyone to discover actions 

taken by individual Tor users.  The RON network provides its users with continuous 

access, even in the face of network problems [Andersen01A].  Experimental overlay 

networks like MBONE and 6bone were used by researchers who needed a functioning 
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multicast and IPv6 infrastructure, when these features were not yet available on the 

Internet [Fink04, Savetz95]. 

 

All overlay networks share a certain number of primitive functions, which allow the 

network to exist and function.  The first of these are the join operation and its inverse, the 

leave operation.  In order for nodes to participate in the network, they must have a way of 

discovering the network, and making the network aware of their presence.  This implies 

the availability of the current state of the network, or at least enough state information to 

allow a new node to introduce itself to the network.  There are several means of 

providing this state, from using a centralized “network state” store, to using a fully 

distributed representation of the network state, where each participant holds a portion of 

the overall state.  When joining, a node is usually required to present some information 

about itself so other nodes can contact it. 

 

The other primitives common to overlay networks involve communication:  the ability of 

a node to both locate another node and having located it, to send messages to it.  In order 

for nodes to communicate, there must be some path between them on the underlay 

network.  The job of the overlay network, then, is to determine this path and the specific 

mechanism to allow the communication to take place, so applications running on the 

overlay network do not need to be concerned about the details of the path through the 

underlay.  Communication between nodes is an interesting problem in itself and a 

heavily studied topic, as researchers try to connect nodes with minimal latency [Jesi06], 
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route overlay traffic efficiently relative to the underlay [Xu03], or group nodes based on 

a common interest [Zhang05]. 

 

Another feature of overlay networks, not primitive but very common, is search.  Users of 

overlay networks frequently want to share resources with other users, or consume 

resources offered by others.  Users need a means of locating these resources on the 

network.  There have been many approaches to implementing search within overlay 

networks, with each alternative bringing its own advantages and tradeoffs.  Many 

networks implementing search provide a means of improving subsequent searches for the 

same data and may even provide a node identifier that can be used to re-contact a node, 

without needing to search for it each time [Dabek03]. 

1.1 Peer-to-Peer Networks 

Many different peer-to-peer networks are in operation today.  Among these, the I2P 

Anonymous Network and the Tor Project have several features, which help to illustrate 

the multiple methods of storing and distributing information among members of the 

network.  The Blossom network, which has been proposed but is not in existence today, 

is also presented.  Though not implemented, Blossom introduced a policy language and a 

method of publishing policies using directory servers [Goodell06]. 

1.1.1 Tor 

The Tor peer-to-peer network is designed to provide anonymous, untraceable Internet 

access to its users.  Tor extended the Onion Routing concept first developed by the U.S. 

Naval Research Lab [Goldschlag96]. 
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When an individual Tor node starts, it collects a set of attributes that describe it.  These 

attributes include its IP address, a user-friendly name, information about the Tor software 

version and underlying operating system, and a public key.  This information is 

published to a Tor directory server in the form of a router descriptor, allowing other Tor 

peers to learn about the new node [TorDir11]. 

 

In addition to these attributes, Tor nodes can specify an exit policy, which allows a node 

to define a list of IP addresses and port numbers for which it is willing to carry traffic 

[TorDir11].  The exit policy is published to Tor directory servers, as part of the router 

descriptor, at the same time attribute information is being published.  Tor clients seeking 

access to a particular destination or service can learn which peers are willing to provide 

that access by parsing and evaluating the various exit policies versus the service sought.   

 

This information is published to Tor directory authorities.  Directory authorities work 

together to create a consensus about the condition of the network, thus providing a 

unified picture of the state of the routers (nodes) within the Tor network, along with their 

attributes, capabilities, and exit policies [TorDir11].  Tor has a small number of directory 

authorities (fewer than 20), but the shared network state information is provided to a 

much larger set of directory caches, which respond to client queries seeking information 

about other nodes on the network [TorDir11]. 
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Since a Tor router descriptor contains information about a node’s attribute information, 

capabilities, and exit policy, Tor uses a single mechanism to store all types of node 

information. 

1.1.2 I2P 

I2P is a peer-to-peer network allowing peers to communicate anonymously.  An I2P user 

can communicate with another user by using the pseudonym of the other user.  The I2P 

software routes this communication through the network in such a way that neither user 

is aware of the IP address or other underlay details of the other user.  To allow this, each 

I2P node serves as a tunnel for other I2P nodes, as the network makes these anonymous 

connections [I2P11A]. 

 

When an I2P node starts, it registers itself with the I2P netDb, a distributed network 

database [I2P11B].  I2P clients publish a “RouterInfo” item with a list of attributes, 

including their software version, uptime, and a list of capabilities.  The netDb is 

maintained by a set of floodfill routers, a special type of I2P node similar in function to 

Tor’s directory servers [I2P11B].  However, the storage mechanism and record 

propagation method is very different from Tor’s.  Instead of attempting to replicate the 

complete set of node descriptors, I2P uses the Kademlia algorithm to break up the node 

set into portions and assign responsibility for these portions to different floodfill servers 

[I2P11B, Maymounkov02].  For redundancy, the floodfill server responsible for any 

particular descriptor will also replicate the descriptor to the nearest seven floodfill servers 

[I2P11B].  Nearness, in this context, refers to distance as defined by Kademlia, applying 
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the XOR operator to node identifiers and counting the number of differing bits; nearer 

nodes have fewer differing bits [Maymounkov02].  Because I2P uses nearness to 

determine which floodfill servers should be responsible for a given data element, it can 

selectively distribute data to a subset of floodfill servers.  This also allows I2P queries to 

be issued against both the floodfill server responsible for a certain data element and a 

“nearby” server, providing redundancy in case of node failure.   

1.1.3 Blossom 

Geoffrey Goodell’s thesis, Perspective Access Networks, describes a new use for overlay 

networks:  that of providing access to network perspectives [Goodell06].  Network 

perspectives are defined here to mean the view a certain host sees of the Internet, which 

can be different for different hosts, for various reasons.  Some web sites, for example, 

offer different content to visitors based on the geographic location of the visitor.  

Goodell’s experimental implementation of a perspective access network client is called 

“Blossom.”  It allows users of the network to offer, search for, and utilize perspectives 

offered by other network users.   

 

Blossom is built as a part of Tor, an existing peer-to-peer overlay built for purposes of 

anonymity.  Blossom does not have a specific requirement for Tor, but the Tor network 

provides a level of maturity and functionality of which Blossom can take advantage.  For 

example, Tor provides means of building pathways (circuits in Tor’s terminology) 

between nodes, which Blossom can make use of when constructing routes [Goodell06].  

As an existing, mature overlay network, Tor has already implemented all the primitive 
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functions discussed earlier, such as join and leave.  Blossom, as an application running 

on that network, can take advantage of these functions, without regard to their 

implementation.   

 

Figure 1 illustrates a simple Blossom network.  In this example, a user in Japan (Node_3) 

has built a Tor circuit (shown with a heavy line) to a node in the United States (Node_1), 

allowing this user to use the network perspective of Node_1 and, for instance, surf the 

web from the perspective of a user located in the United States.  Node_3 learned of this 

perspective by querying its directory server Directory_2, which learned it from a 

relationship with Directory_1 (shown with a dotted line). 

 

Node_1

Country: USA
City: Jacksonville

Node_2

Country: Germany
City: Berlin

Node_3

Country: Japan
Network: 10.10.0.0/16

Directory_1

Node_1
Country: USA

City: Jacksonville

Node_2
Country: Germany

City: Berlin

Directory_2

Node_2
Country: Germany

City: Berlin

Node_3
Country: Japan

Network: 10.10.0.0/16

Node_1 (via Node_2)
Country: USA

City: Jacksonville

 

Figure 1:  A Sample Blossom Overlay Network 
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In Blossom, each node must register with at least one directory server.  When registering, 

nodes send information about their perspectives to the directory server, thereby 

advertising them to the peer-to-peer network.  These perspectives can contain a variety of 

information, such as the country in which the node resides, a particular network that node 

has access to, or a service the node could provide [Goodell06].  Blossom’s directory 

servers store this information and allow other users to learn of these perspectives by 

issuing directory queries.  A Blossom user who learned of an interesting perspective 

could contact the provider of the perspective by building a circuit through the Tor 

network, as Node_3 has done in this example. 

 

In the Blossom network, nodes store information about themselves on a set of directory 

servers, which have explicitly configured connections to each other [Goodell06].  This 

requires manual intervention on the part of directory operators to function and, 

depending on configuration choices made by directory operators, could result in a 

disjoint network.  That is, certain peers could advertise resources and routing policies to a 

network of directory servers, but other peers may never be able to learn of these 

attributes or policies.  Figure 2 depicts a disjoint network.  Even though Directory_1 and 

Directory_2 can communicate, neither of them can reach Directory_3 or Directory_4.  

Users of Directory_3 or Directory_4 can never learn of resources advertised on 

Directory_1 or Directory_2. 
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Directory_1

Node_1
Country: USA

City: Jacksonville

Node_2
Country: Germany

City: Berlin

Directory_2

Node_2
Country: Germany

City: Berlin

Node_3
Country: Japan

Network: 10.10.0.0/16

Node_1 (via Node_2)
Country: USA

City: Jacksonville

Directory_3

Country:  Germany, Japan, USA
City:  Berlin, Jacksonville

Network: 10.10.0.0/16

Directory_4

(No local data)

 

Figure 2:  A Disjoint Blossom Network 

 

Even if all directory servers were directly or indirectly reachable, queries involving 

iterative or recursive lookups may force clients to wait as the overlay infrastructure 

propagates the query.  Blossom supports directory replication, which could improve 

clients’ lookup times, at the expense of added replication traffic across the network and 

the increased storage requirement of the directory servers.   

 

Blossom directory servers support the aggregation of attributes, in an effort to reduce the 

amount of data sent between peers.  Aggregation allows route attributes to be expressed 

in a compact manner, but ultimately results in some information being lost.  In 

computing a route based on aggregated route information, multiple peers within the 

overlay may satisfy a route, but one or more possible routes are ultimately not usable, 

due to policies enforced within some of the peers.  This limitation cannot be discovered 

without attempting to create the route and if a routing limitation is discovered using one 

potential path, another must be selected. 
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Figure 3 illustrates attribute aggregation.  In this example, Directory_3 aggregates 

information learned from Directory_2.  If Directory_4 queried Directory_3 for the 

“Country” attribute “USA,” Directory_3 would respond, but further queries would be 

necessary to locate the attribute.   

 

Directory_1

Node_1
Country: USA

City: Jacksonville

Node_2
Country: Germany

City: Berlin

Directory_2

Node_2
Country: Germany

City: Berlin

Node_3
Country: Japan

Network: 10.10.0.0/16

Node_1 (via Node_2)
Country: USA

City: Jacksonville

Directory_3

Country:  Germany, Japan, USA
City:  Berlin, Jacksonville

Network: 10.10.0.0/16

Directory_4

(No local data)

 

Figure 3:  Attribute Aggregation 

1.2 Internet Routing 

The idea of using directory servers to store perspective and routing information, as 

described above, is based on the mechanisms used to exchange routing information on 

the Internet.   

 

The Internet is, as the name suggests, a group of networks.  These networks are operated 

by various entities, each with their own priorities in mind.  There are also financial 

interests at play; high-speed communication equipment and the expertise to operate it 

cost money.  For this reason, network operators often have contractual agreements with 
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other operators to provide the communication that makes the Internet possible 

[Huitema95].   

 

A network managed by a single entity and with a consistent routing policy is called an 

autonomous system (AS).  An autonomous system can consist of any number of 

computers and networks, but in order to interact with other parts of the Internet, it needs 

a way to connect to other ASes.  The routers responsible for connecting the AS to other 

ASes are called border routers and are responsible for enforcing the previously 

mentioned contractual agreements among various parties [Huitema95].  Border routers 

exchange this information using the Border Gateway Protocol (BGP).  BGP allows 

routers to communicate information to each other about networks for which they are 

responsible, and about networks to which they can provide connectivity [Huitema95].  

The directory server arrangement used by Blossom is based heavily on BGP’s 

architecture. 

 

These routing policies, in addition to being stored within the border routers themselves, 

can be stored in a globally available database.  There are several databases, which 

maintain this information, such as RIPE (Réseaux IP Européens) [RIPE11].  It is 

important to note, while these databases store routing information and make it available 

to interested parties; enforcement always takes place at the border routers themselves.   

 

Several proposals have been made that would move routing policies into centralized 

route servers, which are responsible for maintaining routing policies in a central 
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authoritative location, as opposed to being simply a searchable repository [Feamster04, 

Govindan98].  These route servers could then drive the configuration of routers, which 

would ensure policies were both described and applied consistently.  Parties wishing to 

establish routes would always be able to rely on the routing information learned from the 

route servers to be correct and consistent with the policies enforced within border routers. 

1.3 Overlay Routing 

Content location in peer-to-peer networks has been heavily studied.  A variety of 

contemporary algorithms exists to allow requestors to locate content, which could 

represent a file, the location of another node, or anything else.  In the past, networks like 

Napster used centralized content location, which made a single entity (i.e., Napster) 

responsible for tracking the location of content and answering queries for that content.  

The Napster organization was the single point of failure in this design.  When Napster 

was shut down, the network ceased to exist [BBC00].  This single point of failure was 

eliminated in Gnutella’s design, though it ultimately proved not to be scalable 

[Jovanovic01].  Current efforts like Chord and Kademlia use distributed hash tables to 

locate content [Stoica01, Maymounkov02].   

 

Once a requestor locates the desired content, the peer-to-peer network’s next task is to 

allow the user to connect to the content provider.  In its most simple form, this is done 

using the underlay network, which is generally the Internet.  The requestor could make a 

standard TCP/IP connection across the Internet and request the content directly from the 

provider.  However, this is not always possible, due to firewalls, NAT, or other obstacles 
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between the requestor and provider.  Therefore, overlay networks add a layer on top of 

the Internet and provide the requestor with an abstraction of the provider.  This 

abstraction allows the requestor and provider to communicate, not necessarily using 

TCP/IP to make a direct connection, but by using the communication services of the 

overlay network.  In addition to simply making the connection, the overlay could also 

provide enhanced capabilities, including anonymity, security, robustness, and 

connectivity that would not otherwise be possible [Andersen01B, Stoica02].  These 

additional capabilities come at a price.  In order to provide this abstraction, overlay 

networks must often take on the additional task of routing traffic.  That is, many of the 

low-level routing functions that move traffic through the internet are re-implemented to 

move traffic through the overlay. 

1.4 Shortcomings in Overlay Routing 

In both standard Internet routing and in overlay routing, the primary goal is to move data 

closer to its destination.  In addition to this, there can be other secondary tasks as well.  

For example, some peer-to-peer networks attempt to select peers that have close 

proximity, to allow for lower latency in the network [Xu03].  Others try to meet a 

different objective, such as reducing the number of crossings between provider networks 

[Jesi06].   

 

Goodell introduced the concept of policy-based routing in his work on Blossom 

[Goodell06].  Policy-based routing would allow nodes to offer services to their peers 

selectively, based on individual characteristics of that peer and on the services the peer 
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was seeking.  These policies could be made available to the network, allowing peers to 

make intelligent decisions on whether to carry the network traffic of other peers. 

 

There are several potential benefits to providing new policy-based routing features within 

overlay networks.  First, peers may have the ability to forward traffic between parts of 

the overlay or out of the overlay, but might want to reserve some of their bandwidth for 

specific purposes.  A routing policy would provide the means to express this to the 

network and could be used by the node itself in enforcing the limit.  A flexible enough 

policy could enforce this limit only in the presence of higher-priority traffic or only at 

certain times.   

 

Second, peers may want to provide priority services to certain types of users; for 

example, a peer may want to give preference to users who would otherwise have 

problems reaching certain content.  Some governments, for example, block access to 

certain web sites for ideological reasons.  Requestors specifically seeking access to these 

services could be given priority over users seeking unrelated services.   

 

Third, peers may be unwilling to route traffic originating from certain other peers or 

groups of peers, within the network.  Alternatively, peers may be willing to route traffic 

only when it originates from certain other peers or groups of peers.  Peers may also wish 

to restrict the locations to which they are willing to forward messages.  A robust routing 

policy could express all these limitations, so other peers could learn it before attempting 

to use these forwarding services.  This could prevent clients from attempting to forward 



 
   
  

- 15 - 

traffic through nodes unwilling to carry the traffic, because clients could learn the 

policies ahead of time.   

 

The Tor network offers a basic set of features that begin to address routing policies.  Tor 

nodes may specify their willingness to serve as exit nodes (i.e., their willingness to allow 

traffic to leave the Tor overlay and exit onto the Internet).  Furthermore, they may 

specify what types of traffic they want to exit and to which destinations.  This 

information is known as an exit policy [TorDir11].  Exit nodes register this information 

with Tor’s directory servers, when they join the network [TorDir11].  When a Tor client 

wishes to build a route through the network, it uses information learned from directory 

servers to decide which exit node is able to provide the desired services. 

 

Tor’s exit policy definition allows for a single, global set of rules that apply equally to all 

traffic handled by a node.  There is no capability to enforce rules based on characteristics 

of the requestor.  Therefore, Tor is able to address peer-to-peer routing policies up to a 

point, but lacks the complete policy-based routing capabilities described in section 2.1.3 

[Dingledine04].  This is expected, of course, since the entire purpose of Tor is to allow 

users to access the network anonymously.  If an exit node were able to determine 

characteristics of other nodes requesting its services, it would compromise Tor’s purpose. 

 

The I2P network has an even more limited set of options.  I2P does not share Tor’s 

purpose of providing anonymous access to Internet resources, so it does not need a way 

to specify which types of traffic it is willing to carry.  Instead, I2P focuses on 
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pseudonymous communication within the I2P network itself and on the ability to host 

services within the I2P network.  I2P does not have a counterpart to Tor’s exit nodes. 

 

Goodell outlines a modification to the internet standard RPSL (Routing Policy 

Specification Language) that allows some of these policies to be expressed [Goodell06].  

These routing policies are expressed as a series of attributes peers could publish to the 

overlay network, so they could be available as routes are being built by the overlay.  

These attributes would be aggregated among directory servers in Goodell’s proposed 

approach.  Route determination would be an iterative process of querying directory 

servers and following references, until one or more peers offering the service is located.  

Then, a route to one of the peers must be established and in the event the route could not 

be completed (e.g., if one of the intermediate peers was unwilling to route traffic), other 

routes could be tried iteratively [Goodell06].  Though policies and query methods are 

described in [Goodell06], they are not actually implemented in Blossom. 

1.5 Areas of Possible Improvement 

The shortcomings described in the previous section fall into two categories.  First, a peer-

to-peer node needs a generalized way to describe it, the services it wishes to offer to the 

network, and the conditions under which it will grant access to those services.  Second, a 

node needs a way to make this information available to the rest of the peer-to-peer 

network, where it can be discovered and used by other nodes. 
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1.5.1 Routing Policy Definition Language 

Goodell proposed a modification to RPSL, Perspective Routing Policy Perspective 

Language (PRPSL), which meets Blossom’s design goals but proved too limited for all 

the cases described above [Goodell06].  RPSL is designed to allow expression of Internet 

autonomous system policies and PRPSL modifies RPSL, to express Blossom directory 

server peering policies and perspective configuration [Goodell06].   

 

PRPSL has some directives to offer or hide routes from individual clients who have 

authenticated with the directory server.  However, the main purpose of PRPSL is to 

configure directory server peering and to define selective perspective advertisement 

among directory servers [Goodell06].  

 

Ideally, a policy definition language would provide the benefits described in section 1.4, 

and be extensible enough to meet unanticipated needs.  This language would give 

individual nodes, rather than directory servers, the ability to define their capabilities and 

policies.  Such a language is described in the subsequent sections. 

1.5.2 Attribute and Routing Policy Storage 

Though routing policies are ultimately enforced by the nodes, which provide access to 

routes, there are various possibilities for the storage and distribution of routing policy 

information, as well as for the attributes used to evaluate other nodes against the policy. 
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Routing policies could be stored on directory servers, as is currently done in Tor and I2P, 

and discussed in Blossom.  This method of storage is familiar and well understood, and 

provides many advantages and capabilities, since directory servers are capable of 

understanding client requests and tailoring their responses to individual clients. 

 

On the other hand, if routing information were stored centrally, clients could select peers 

offering a particular resource by querying the central route store, rather than by 

iteratively following a series of references.  This should improve the performance of 

route determination by allowing clients to choose peers they know are willing to carry 

traffic, based on the routing policy.  The use of centralized routing information has been 

proposed by Feamster et al. [Feamster04] and Govindan et al. [Govindan98], though in 

these cases, the proposal applies to internetwork routing, rather than routing in peer-to-

peer networks. 

 

In the past few years, much work has taken place in the area of distributed hash tables.  

Distributed hash tables (DHTs) provide the typical benefits of hash tables familiar to the 

computing community, but have their storage spread across a number of nodes within a 

peer-to-peer network.  DHTs do not provide traditional hash tables’ O(1) lookup times, 

because their data is diffused over many nodes in the network, but they are still capable 

of O(log n) lookup times in most cases [Androutsellis-Theotokis04], where n represents 

the number of nodes.  It should be possible for distributed hash tables to serve as a 

centralized store of node attributes and routing policies. 
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It is not currently clear whether directory servers or distributed hash tables would provide 

the best method of storing policy data.  Goodell entertains distributed hash table storage, 

but dismisses DHTs on the basis they are not functionally suitable for the Blossom 

network, which cannot be guaranteed to have full connectivity [Goodell06].  I2P has 

experimented with a Kademlia DHT, in the past, and is considering moving back toward 

DHT storage, in the future [I2P11C].  A comparison between directory server and 

distributed hash table storage is needed to determine whether one method is more 

suitable for storing routing policy data.  
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Chapter 2 

A NEW METHOD FOR POLICY-BASED ROUTING 
 

2.1 Defining Attributes, Capabilities, and Policies 

The peer-to-peer networks described in the previous section provide peers a way to 

define and publish attributes about themselves, their capabilities, and to some extent 

policies defining the type of traffic they are willing to route.  This section describes a 

method of expressing these three things in detail, and of encoding and representing them 

in a consistent manner, in a way that they can be stored and discovered within the 

network.  The section will conclude with a description of how both directory servers and 

distributed hash tables can provide this storage and discovery, and some of the 

advantages and trade-offs of each approach. 

2.1.1 Attributes 

A peer’s attributes are properties about itself it wishes to make available to other peers in 

the network.  Tor provides a minimal number of attributes, since it is focused on the 

anonymity of its peers; similarly, I2P’s few attributes relate to software versions.  As we 

will see, making policy decisions based on a peer’s attributes will require peers to present 

more detailed information, therefore, we allow arbitrary attributes to be defined in a 

simple attribute_name = attribute_value format.  Multiple values for a single attribute are 

not supported.  The collection of a node’s attributes make up an attribute set, an example 

of which is shown in Figure 4. 
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Figure 4:  An Example of an Attribute Set 

 

The attribute set can then be made available to any nodes in the network that wish to 

inspect it.  This is done at routing policy enforcement time, as discussed below.  A list of 

example attribute fields and their purpose is shown in Table 1. 

 

Attribute name Purpose 

country the country a node resides in 

publickey a public key representing the node, which could be 
useful in a reputation system 

nodename a user-defined name for the node, which could be useful 
in a reputation system 

network a CIDR-style network address where the node resides 

jointime a date/time field representing the time the node joined 
the network 

hostos the host operating system 

netversion the version of the P2P network software 

netname a network name of significance to the P2P network 

 
Table 1:  Example Attribute Names 

 

The precise meaning of the values is not defined as part of this work.  For example, 

“country” might be a descriptive name, or might be an ISO 3166-style country code.  

These details can be specified apart from the work here and do not affect the ability to 

evaluate the suitability of attributes and their storage against the goals of this work or the 

country = us    

publickey = 123456 

nodename = Saturn 
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performance of the network.  Furthermore, additional attributes can be defined in the 

same manner to allow new features to be added to the network. 

2.1.2 Capabilities 

Nodes wishing to provide services within the network will have a set of capabilities they 

can offer.  For example, a node may be willing to provide e-mail forwarding to certain 

users, or to provide web proxying, or access to a particular network perspective.  These 

capabilities are grouped into capability sets.  A node can use policies to make capability 

sets selectively available to other peers based on their attributes, as shown in the next 

section.  An example showing two different capability sets is shown in Figure 5.   

 

 

Figure 5:  An Example of a Capability Set 

 

In this example, a node wishes to offer a capability set called “basicweb” containing 

content related to “news” and “discussion” on ports 80 and 443, and another capability 

set called “mail” offering different content and ports, and specifying a bandwidth limit 

for those capabilities.  Table 2 shows a list of possible capability types, and Figure 6 

contains the capability set grammar. 

capset basicweb { 

    content = news, discussion; 

    port = 80, 443; 

} 

capset mail { 

    content = email, anonymity; 

    port = 25, 587; 

    maxbw = 50; 

} 



 
   
  

- 23 - 

 

Capability name Purpose 

content a content type (such as news, discussion, or anonymity) 
for which a peer is willing to provide services.  These 
concepts are taken from [Goodell06] 

service a service a node is willing to perform, such as web 
proxying, e-mail relaying, etc. 

minbw the minimum bandwidth a node can provide to a given 
service (kB/s) 

maxbw the maximum bandwidth a node will provide to a given 
service (kB/s) 

port TCP ports to which a node is willing to forward 

perspective a perspective a node can provide 

 
Table 2:  Example Capability Types 

  

 

Figure 6:  Capability Language Grammar 

 

It is conceivable that many other capabilities could be represented, such as a minimum or 

maximum allowed throughput, connectivity to a different network, or the use of 

encryption.  The language is extensible in that it allows additional capabilities to be 

added to the definition and to be expressed, using the same form.  The set defined above 

S ::= CapSet+ <EOF> 

 

CapSet ::= "capset" String "{" (CapLine ";")+ "}" 

 

CapLine ::= String "=" ValueList 

 

ValueList ::= Value [ ("," Value)+ ] 

 

Value ::= [ "not" ] String 

 

String ::= ["A"-"Z", "a"-"z", "0"-"9"]+ 
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is enough to illustrate the idea of capability sets and to allow peers to search for specific 

capabilities. 

 

Unlike attributes, capability sets can contain multiple values for a given capability name.  

As shown in Figure 5, the “basicweb” capability is willing to provide forwarding on two 

different TCP ports.  It is implied that the capability set excludes values not specified.  

Capabilities could also be excluded by using the keyword “not.”  A node wishing to offer 

access to all defined content types except “news” could specify “content = not news, *.”  

A peer providing only news access and no access to other content types, would specify 

“content = news.”  The allowable values, such as “news,” “discussion,” “anonymity,” are 

not defined here; in an actual network implementation, these values and their meanings 

would be specified in a universally available document. 

 

The information within capability sets is made available to any peers in the network.  

Peers seeking access to a particular capability can search the network for this capability 

and determine which nodes were candidates for providing them with the desired service.   

2.1.3 Policies 

Policies tie capability sets to attributes and allow nodes offering services to decide 

whether they should provide these services to requestors, based on requestors’ attributes.  

A sample list of policies is shown in Figure 7.  The policy language grammar is shown in 

Figure 8. 
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Figure 7:  An Example of a Policy 
 

 

Figure 8:  Policy Language Grammar 

 

The first part of the policy, the “for” portion, allows the specification of one or more 

attributes that must be matched in order to apply the policy.  The second part lists the 

specific capability sets granted, or denied, to peers matching the attributes in the first 

part.  In the example shown in Figure 7, a peer with an attribute set containing “country = 

ca” (i.e., a peer located in Canada) would match the second policy line.  Such a peer 

for country = us, network = 192.168.0.0/16 

  deny basicmail, web; 

 

for country = ca 

  allow web; 

 

for country = cn 

  allow web, basicmail, enhancedmail; 

 

S ::= PolicyItem+ <EOF> 

 

PolicyItem ::= "for" AttrMatch Action CapsetList 

 

AttrMatch ::= AttrExpr [ ("," AttrExpr)+ ] 

 

AttrExpr ::= [ "not" ] String "=" (String | Wildcard) 

 

Action ::= "allow" 

         | "deny" 

 

CapsetList ::= Capset [ ("," Capset)+ ] 

 

Capset ::= String 

 

String ::= ["A"-"Z", "a"-"z", "0"-"9"]+ 

 

Wildcard ::= "*" 
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would be granted access, via the “allow” keyword, to the “web” capability set, as defined 

on the node containing the policy. 

 

When attempting to determine a node’s access via the policy, evaluation continues 

through all defined policy lines until a match against the “for” criteria is found.  

Evaluation stops at that point and further policy lines are not considered.  If no match is 

found, the requestor is denied access to all capability sets.  Since the “deny” keyword 

explicitly denies access to a requestor matching certain attributes, it can be useful if a 

later policy rule grants access to a broader group of attributes.  This is illustrated in 

Figure 9. 

  

 

Figure 9:  A Policy with Precedence 

 

Since policies and capability sets are available to both the requesting peer and the 

providing peer, both are equally capable of making a decision about whether the 

requesting peer can access a given capability.  This allows the requesting peer to evaluate 

itself against the policy and avoid making a request to a peer that will ultimately deny it 

access.  In fact, any peer on the network could perform this evaluation, which is a helpful 

characteristic discussed in the subsequent sections. 

for country = us 

  deny web; 

 

for country = * 

  allow web; 
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2.1.4 Security Implications 

It is useful to allow requestors to see a node’s policy before requesting access to a 

capability, because they can determine for themselves whether they would be granted 

access and therefore avoid the need to request it.  However, access to the policy would 

seem to give a requestor exactly what they need to try access a service illicitly.  A 

requestor could seemingly construct an attribute set that exactly matches the criteria to 

access a desired capability. 

 

A node providing a service has two methods for determining whether a requestor has 

presented a correct attribute set.  Some attributes can be directly verified.  For example, 

“country” could be validated by using a geolocation service.  With the requesting peer, 

“publickey” could be validated cryptographically.  Another option is to use a reputation 

scheme, perhaps provided by the peer-to-peer network.  Reputation systems for peer-to-

peer networks are an active area of research, covered in detail in [Marti05].    

2.2 Storing Attributes, Capabilities, and Policies 

Both Tor and Blossom use a directory server approach to store attributes, capabilities, 

and policies (though attributes, capabilities, and policies are not treated as distinct in 

these networks).  I2P uses a floodfill server approach, which resembles a directory server 

approach, but introduces elements of distributed hash tables to spread the data among the 

directories.  In this thesis, a comparison is made between storing attribute, capability, and 

policy information in directory servers, versus using a distributed hash table for the same 

purpose.  The implementation of each approach is discussed in the following sections.  
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2.2.1 Attribute Sets 

A requesting node’s attribute set can always be provided to the requestor at the time a 

request is made, so it may not seem necessary to provide for attribute storage at all.  

Nevertheless, we provide a means to store an attribute set in both a directory server and a 

DHT, because this prevents peers from needing to send their attributes every time they 

request a service.  An attribute set’s value is stored in its entirety, using a lookup key 

consisting of a node identifier specific to the overlay network.  This node identifier is a 

network-specific abstraction that allows for direct communication with a node, thus 

bypassing the routing services of the P2P network [Dabek03].  Using the attribute set 

given as an example in Figure 4, a node with an identifier of 1190683980 would store the 

data as shown in Table 3.  Any other node could easily look up the attribute set of 

another node via the node identifier.  Note this approach works for both directory server 

and DHT storage. 

 

Key Value 

1190683980 country = us    

publickey = 123456 

nodename = Saturn 

 
Table 3:  Attribute Set Storage 

2.2.2 Capability Sets 

The most straightforward way for a node to publish its capability sets to the network is to 

send the entire set as a unit, along with its node identifier.  While this could work in a 

directory server-based network, using a node identifier as the sole key would preclude 
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nodes in a DHT-based network from querying for specific capabilities.  With this in 

mind, it makes more sense to break capability sets into individual capability definitions 

and to store these definitions.  For example, a node offering a “content=discussion, 

news” capability would store two separate entries:  one with a key of 

“content=discussion” and another with “content=news.”  The value of each is the node 

identifier of the node offering the service.  A node with identifier 382719848 would store 

this data, as shown in Table 4.  The capability set name, such as “basicweb” or “mail,” as 

given in the example in Figure 5, must also be stored, since the querying node must 

know the capability set name in order to evaluate the policy. 

 

Key Value 
content=discussion 382719848, basicweb 
content=news 382719848, basicweb 

 
Table 4:  Capability Set Storage 

 

When a peer wishes to search for a capability, such as “content=news,” it sends this 

query to the directory server or DHT and gets back one or more identifiers of nodes it 

should contact.  The peer can then use the identifiers to contact these nodes and request 

the capability.  As we will see in the next section, a peer could also look up the policies 

of the nodes offering the capability and determine which node, if any, is willing to 

provide it service. 



 
   
  

- 30 - 

2.2.3 Policies 

Like attribute sets, a policy can always be obtained directly from the nodes enforcing the 

policy.  Even so, we still provide for storage of policies in directory servers, as well as a 

DHT.  Similar to attribute sets, policies are stored with a lookup key consisting of the 

node identifier and with a value containing the text of the policy.  Therefore, a node with 

the identifier 382719848 and the example policy shown in Figure 7 would store the entry 

as shown in Table 5.  

 

Key Value 

382719848 for country = ca 

  allow web; 

for country = cn 

  allow web, basicmail, enhancedmail; 

 
Table 5:  Policy Storage 

 

2.3 Applicability of a Directory Server Approach 

The use of directory servers to store attributes, capabilities, and policies is 

straightforward.  Individual nodes can register their attributes, capabilities, and policies 

when they join the network and other nodes can query the directory servers, using the 

keys as described above.  Because of their flexibility in storing the data they receive, 

directory servers can provide lookup methods in addition to the simple key-based 

lookups described in the previous section.  For example, a node wishing to find a server 

willing to provide a web proxy capability from a British perspective could specify 

“country=gb, service=webproxy.”  Unlike a distributed hash table, which can only map 
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from single capabilities to node handles, a directory server has access to complete 

capability sets and is able to provide a list of all known nodes providing that specific 

combination of service.  Directory servers can also evaluate more complex queries, such 

as queries using an inequality operator.  For example, a query like “minbw > 50” could 

be answered by the directory server, since it has complete information about all the 

“minbw” entries it stores.  A directory server could even evaluate a requestor’s attributes 

against the policies of all nodes satisfying a capability query and only provide the 

requestor with a list of nodes willing to perform the service for the requestor.   

2.4 Applicability of a DHT Approach 

A distributed hash table can easily be used to store attribute sets and policies as described 

above.  A node seeking attribute information about another node simply looks it up using 

the other node’s handle as a key.  Likewise, a node requesting another node’s policy 

could look it up using the other node’s handle.   

 

A peer querying for a given capability, such as “content=news,” is able to get a listing of 

nodes offering this capability.  In addition to the node handle, the peer learns the 

capability set name, as defined on each node.  It uses this when it subsequently evaluates 

the node’s policy, to determine if it can access the capability, based on its attributes.   

 

Implementing the “not” operation for capabilities proves difficult.  For example, nodes 

wishing to exclude a certain perspective from the results of a capability query would 

implicitly be searching for all other possible values.  The only way to search for this, 
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given the encoding described in section 2.2.2 would be to specify all values except the 

one to exclude.  This would only be possible where a fixed, predefined number of 

capability values existed and even then would be inefficient.  In addition, since hash 

tables work based on exact matches, a node wishing to express a comparative match 

would not be able to do so.  Queries such as “minbw > 50,” which can be answered by a 

directory server, could not be answered by a distributed hash table.  Some possible 

workarounds using a hybrid approach are mentioned in Chapter 4, but are beyond the 

scope of consideration here. 

 

Finally, searching for combinations of capabilities is more difficult with distributed hash 

tables.  Since capabilities are stored separately, applications must make a separate search 

for each capability desired and combine the results to determine which nodes offer all of 

the desired capabilities. 
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Chapter 3 

EXPERIMENTATION AND EVALUATION  
 

3.1 Network Simulators 

Several network simulation products exist, each of which can model networks at various 

levels of abstraction.  Some of these platforms are intended for simulating the lower 

layers of the network and are useful for network protocol testing.  Other platforms 

dispense with the lowest network layers and instead focus on providing a framework on 

which overlay networks can be built and tested.  Several requirements were considered in 

selecting a simulator for experimentation.  First, the simulator needed to be extensible, 

meaning additional features could be added if they did not exist.  Second, the simulator 

needed to provide an implementation of a distributed hash table, since the goal was to 

experiment with a distributed hash table, not to implement one.  Finally, the simulator 

needed to allow applications to be written and to execute using the services of the 

simulated network.  The ability to record the use of the network’s resources was critical 

for understanding the behavior of the approaches being studied. 

 

OMNeT++ is a popular low-level simulator, capable of simulating sensor networks, 

lower-layer protocols, such as Ethernet, and higher-layer Internet protocols, such as IP 

and TCP [OMNeT11].  Since OMNeT++ operates at such a low level, it is not well 

suited for testing overlay networks.  Because of this, the OverSim framework was written 

to build on OMNeT++ and to provide many features specific to overlay testing 
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[OverSim11].  Both OMNeT++ and OverSim are written in C++ and considerable 

difficulty was encountered in compiling them and their dependencies.  Because of these 

difficulties, the complexity involved in C++ development, and the potential for 

portability problems in running simulations on different computer systems, OverSim was 

eliminated from consideration.   

 

P2Psim is intended for simulating overlay networks and is cited several times in the peer-

to-peer literature [P2Psim11].  It provides several distributed hash table implementations, 

including Chord.  It has not been updated since 2005, and because it was written in C++ 

and provided little documentation, it was not considered further. 

 

PeerSim is a popular Java-based simulator [PeerSim11].  PeerSim allows new peer-to-

peer protocols to be implemented and tested and provides a good separation between the 

protocol and network code.  It is written in Java and is kept up-to-date.  The separation 

between the protocol code and application code is not as well defined and its 

documentation is not as complete as some of the other simulators considered.   

 

Overlay Weaver is a relatively new simulator, written in Java and providing a good 

separation between application, protocol, and network code [OverlayWeaver11].  It 

provides several distributed hash table implementations and allows simulations to run 

across multiple computers simultaneously.  It also provides visualization of running 

simulations, though this is best used with small network sizes. 
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Ultimately, the PlanetSim simulator was chosen for all the experiments performed in this 

work [García05].  It is written in Java, allowing it to be easily extended and allowing 

simulations to run on a variety of platforms.  PlanetSim provides several documents with 

examples of its use and provides complete JavaDoc documentation of its internal 

components.  Of the simulators considered, PlanetSim provided the best separation 

between applications and the overlay network, which was required to experiment with 

the DHT-versus-directory server approaches.   

 

Using PlanetSim, it is possible to configure many nodes in any configuration, to schedule 

events, and to measure the performance of the network.  PlanetSim is implemented using 

a model defined in [Dabek03], which provides a common way to implement overlay 

networks and to run applications against them.  PlanetSim’s lowest-level object is the 

Network object.  This contains a collection of Node objects, which would most 

commonly represent end-users’ personal computers on the Internet.  PlanetSim nodes can 

host one or more Application objects, which represent executable code running on a 

computer system [García05].  During the execution of a simulation, applications make 

use of the lower layers to send and receive messages.  The handling of these messages, 

including their routing and delivery, is handled by the lower layers.  PlanetSim’s 

architecture is shown in Figure 10.  Note application objects exist on each node, but are 

only shown for one node. 
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Figure 10:  An Illustration of PlanetSim’s Architecture 

 

The PlanetSim model implements routing in the overlay layer, though it is possible for 

applications to provide “hints” to the overlay, if they know a node’s exact location.  This 

would be the case, for example, if nodes have previously communicated or a node has 

learned another node’s address via a lookup.  These hints, or “NodeHandles” in 

PlanetSim’s terminology, allow the network to send messages directly to their 

destination, bypassing the routing logic in the overlay.  This accurately models 

applications using the routing services provided by the overlay network, which are 

subject to the performance limitations of the overlay (e.g., Chord’s O(log n) performance 

[Stoica01]) and applications acting directly on information learned from queries.  

 

During a simulation run, PlanetSim can gather response times and compute the average 

time taken for applications to discover and use routes.  The results can be compared 

between simulation runs using distributed hash table storage and runs using directory 

server storage.   
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3.2 Application Architecture 

PlanetSim’s application objects allow application logic to be implemented.  During the 

simulation, applications are responsible for generating and consuming messages within 

the network.  The lower layers of the architecture are important for ensuring messages 

reach their destinations, but applications are responsible for producing and consuming all 

messages.  Applications represent actions taken by end-users and ultimately drive the 

simulation.  This section describes three PlanetSim applications implemented to test the 

proposed methods of storing routing policies in the network.   

3.2.1 DHT Application 

PlanetSim provides an implementation of the Chord [Stoica01] and Symphony 

[Manku03] distributed hash tables.  Chord is frequently cited within the DHT literature.  

Because of its wide acceptance and familiarity, it was used for the DHT platform in this 

thesis.  Note, however, no Chord-specific features were used, so any DHT 

implementation should be equally functional.  The DHT application provided by 

PlanetSim allows multiple values to be stored for a given key, so if multiple nodes 

registered a particular capability, a querying application would receive a response 

containing information about all nodes offering the capability.   

3.2.2 Directory Application 

To experiment with a directory server implementation of routing policy distribution, a 

Blossom-like directory application was written that provided similar functionality to the 

directory servers described in [Goodell06].  As specified in Goodell’s paper, only a 
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subset of nodes functioned as directory servers.  The proportion of directory nodes to 

non-directory nodes could be varied to measure the effect on the resulting lookup times 

and network traffic, but a fixed proportion was used for all experiments.  This is further 

described in section 3.3.1.   

 

Directory servers were used to store application-level data, including attributes, 

capability sets, and routing policies.  When applications were started, they registered 

themselves with a particular directory server and sent it any attributes, capabilities, and 

routing policies they wished to advertise to the network.   

 

As in Blossom, the directory servers were configured with explicit peering relationships 

to each other.  There are several types of possible peering relationships; the most 

important types, and the ones implemented in the directory application, are full peering 

and proxy peering.  These are the peering types implemented in the PlanetSim directory 

application.  Full peering involves a full exchange of directory records, so a server B 

peered with server A would have a complete copy of A’s records, as well as its own local 

record store.  Proxy peering allows servers to make recursive lookups to satisfy queries.  

In this case, if server B had server A as a proxy peer, it could forward any requests it was 

unable to satisfy to server A.  Figure 11 uses example data to illustrate the proxy and full 

peering relationships. 
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Directory_1

    Local data:
        Node_1
        Node_2

    Replicated data:
        Node_3
        Node_4

Directory_2

    Local data:
        Node_3
        Node_4

    Replicated data:
        Node_1
        Node_2

Directory_3

    Local data:
        Node_5
        Node_6

    Data available via proxy:
        Node_1
        Node_2
        Node_3
        Node_4

 

Figure 11:  Peering Relationships between Directory Servers 

 

There are six client nodes (not shown), two registered with each of the directory servers 

shown.  Directory_1 and Directory_2 are full peers of each other, represented by the 

solid line.  Each has a complete copy of the other’s data; Directory_2 learned of Node_1 

and Node_2 through its peering relationship with Directory_1.  Both Directory_1 and 

Directory_2 are able to answer queries with the data from Node_1 through Node_4. 

 

Directory_3 has Directory_2 as a proxy peer, represented by the dashed line.  It has 

access to its own data, and through its proxy relationship with Directory_2, has indirect 

access to Node_1 through Node_4.  Directory_3 is, therefore, able to answer queries with 

data from all six nodes. 

 

These peering relationships were critical to the performance of the network, as well as 

the amount of storage space required.  The higher the degree of connectivity between 

directory servers, the faster lookup requests could be satisfied.  However, in the case of 

full replication, higher connectivity increased the amount of replication traffic, since 

every user application registered with a directory server resulted in application data being 

sent to all that server’s full peers.  For proxy peering, higher connectivity meant 
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directories would try to satisfy requests by contacting all their proxy peers, increasing the 

amount of network traffic generated by a single query.  Even though some peers may not 

have been able to satisfy a query, they would receive it and possibly forward it to their 

proxy peers.  Directory servers did refuse to forward proxy requests to peers who had 

already seen the request, to prevent loops.  They also refused to forward proxy requests 

more than a configurable number of times, as described in section 3.3.1.  Even with these 

safeguards, proxy queries increased traffic on the network.  Furthermore, if multiple 

peers could satisfy a query, the network was forced to carry redundant responses.   

3.2.3 End-User Application 

Every node in the simulated network ran an “end-user application,” which represented 

functions being performed by an end-user.  This could represent any action taken by a 

user of a peer-to-peer application that involved actual interaction with the network, 

including issuing queries and attempting to make use of network services.  The end-user 

application registered a variety of attributes, capability sets, and routing policies on 

behalf of the user.  In addition, the end-user application performed work, attempting to 

access capabilities offered by other applications on the network; these capabilities were 

discovered by querying either the distributed hash table or directory server, depending on 

the experiment’s configuration. 

 

The end-user application also served as the enforcement point of routing policies.  Peers 

attempting to make use of routing services offered by other peers could only be allowed 

to do so when the routing policy of the target peer allowed it.  The target peer enforced or 
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denied routing requests based on its policy.  Since an application was able to learn the 

target peer’s routing policy before contacting it, the application could avoid the wasted 

effort of contacting a peer, which would ultimately deny it access, based on the routing 

policy.   

3.3 Simulation Setup 

To assess the impact the proposed routing policy definition would have on a peer-to-peer 

network; several different scenarios were simulated within PlanetSim.  The common 

elements in all these scenarios were the attributes, capabilities, and policies configured 

on each application, and the work performed by each application.  At the start of the 

simulation, PlanetSim read a set of data files, allowing it to configure each application 

individually with both its properties and a set of tasks to be performed over the course of 

the simulation.  During the simulation run, PlanetSim recorded statistics such as the 

number of messages passed over the network, the size of the messages, and the time 

needed to perform the various tasks.  This allowed modification of the data storage 

configuration, and measurement of the effect of different configurations on applications 

and the network.   

 

As the simulator created the nodes that made up the network, it configured each end-user 

application with a list of attributes read from a file.  These attributes were selected to 

resemble the I2P and Tor networks; for example, the distribution of all nodes’ “country” 

attributes was taken from the country distribution observed in the actual Tor network.  

Similarly, the “version” attribute was distributed like that of the I2P network.  Each node 
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was given a unique nodename.  These attributes had no effect on the behavior of the 

application, but were used in policy decisions made by other applications during the 

simulation.  All attribute data was pre-generated, allowing the same experiment to be run 

multiple times with the same results.  Examples of the attribute data used are provided in 

Appendix A. 

 

Each application offered certain capabilities to the network.  The offered capabilities 

were distributed randomly among the various applications and grouped into capability 

sets, each of which was given a random name.  Like attribute data, capability set data 

was pre-generated and the same input was used for each experiment.  Appendix A 

contains examples of the capability data used for applications. 

 

Finally, policy data was generated granting access to each of a node’s capability sets.  

Each capability set offered by a node had at least one policy granting access to it.  The 

attributes required to match a given capability set varied from universal matches, such as 

“nodename=*,” to somewhat common matches, like “country=us,” to rare matches like 

“country=in, version=1.1.”  This ensured that not all capability queries would result in a 

list of nodes willing to grant access to the capability desired, and forced the application to 

consider the policy.  Examples of the attribute data used are provided in Appendix A. 

 

After each node’s end-user application read its input parameters, it published its 

attributes, capabilities, and policies as described in section 2.2.  For experiments using 

the distributed hash table, keys and values were written to the distributed hash table; for 
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experiments using directory servers, data was published onto the directory server with 

which the application had registered.  At this time, directory servers replicated this data 

to their full peers.  Once the data was published, each application proceeded to run 

various capability queries and act on the results.  For example, an application may have 

queried for “content=discussion.”  It may have received one or more responses to this 

query.  Upon receiving a response, it attempted to locate the policy of one of the nodes 

providing the capability.  It was then able to evaluate itself against the policy, and if it 

met the policy’s criteria, it attempted to access the desired capability.  If it did not meet 

the criteria, and if multiple nodes provided the capability, it continued requesting policies 

and evaluating itself against those policies, until it succeeded in finding a match, or ran 

out of candidates.  Pseudo code showing an application’s processing for a query is shown 

in Figure 12. 

 

  

Figure 12:  Application Query Procedure 
 

 

send capability query 

receive list of candidates 

 

do while (capability not granted) and (more candidates): 

  request next candidate's policy 

  evaluate candidate policy against this my attributes 

  am I granted access, based on the policy? 

    capability = granted 

end do 

 

is capability granted? 

  contact candidate to access capability 
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Each application ran twenty queries over the course of the simulation.  The queries 

themselves were predefined in a data file, allowing the simulation to be run repeatedly 

with the same results.  An example of the data contained in this file is shown in 

Appendix C. 

 

When an application attempted to access content defined on another peer, the other 

peer’s application evaluated the requestor’s attributes against the policies it had defined, 

and decided whether the requestor should be granted access.  Although applications 

offering content always enforced access control based on their policy, client applications 

were able to determine whether they possessed the attributes required to access a 

capability based on the policy, and avoid contacting nodes which would deny access. 

 

Two separate groups of simulation experiments were performed.  The first tested the 

directory server-based approach, and the second tested a distributed hash table-based 

approach.  In addition to these experiments, a third experiment was performed with no 

routing policies at all, to determine the overhead the addition of routing policies imposed.  

 

The attributes, capabilities, and policies read by each node, as well as the actions 

performed by each node, were identical across all experiments, regardless of the 

underlying data storage method.  Applications run under these conditions would expect 

to see very little difference in functionality; an application would expect to receive the 

same answers from queries it generated.  Applications would expect to notice a 
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difference in the time taken to receive a response to a query, and in the amount of 

network traffic processed. 

3.3.1 Simulation Parameters 

Many different parameters could be set before starting the simulation.  These parameters 

could greatly influence the outcome.  Therefore, it was important to select realistic values 

before running any experiments. 

 

The first parameter to consider was the size of the simulated network.  The majority of 

Chord testing was conducted on a network of 10,000 nodes [Stoica01].  The size of the 

Tor network varies, but as of January 15, 2011, had approximately 6,300 nodes.  I2P also 

varies in size, but had 2,311 nodes as of February 10, 2011.  Therefore, 10,000 was 

selected as a reasonable and realistic network size to simulate.  In order to determine if 

the network experienced problems with scaling, another series of experiments was 

conducted using 5,000 nodes and another at 1,000 nodes. 

 

For the directory server-based experiments, only a subset of nodes actually functioned as 

directory servers.  Determining the exact number of directory servers was important.  

Using a small number of servers would result in less replication traffic among the 

directories and potentially faster response, but could place an undue burden on the 

directory servers, since they would be required to support more clients.  Again, the Tor 

and I2P networks were observed to determine a realistic proportion.  A considerable 

difference was observed in these networks:  approximately 53% of Tor nodes function as 
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directory servers, and 2.8% of I2P nodes function as floodfill servers.  Using the example 

in [Yang03], with a cluster size of 10, we chose to have a directory server for every 10 

nodes in the network.  In this arrangement, one of every 10 nodes, in addition to being a 

regular peer, also functioned as a directory server.  Because of their special function 

within the network, directory servers would be considered “super-peers” in Yang and 

Garcia-Molina’s terminology [Yang03]. 

 

Since a directory server could be peered with any number of other directory servers, and 

multiple peering arrangements are possible (full peering versus proxy peering), the 

peering configuration was important.  Many full-peering arrangements could result in 

faster lookups by clients, but would increase the amount of replication traffic.  Too many 

proxy-peering arrangements would result in a lengthy lookup path through the network.  

Since the directory servers in this simulation functioned differently than Tor directory 

servers or I2P floodfill servers, no direct correlation could be made.  Instead, the Goodell 

thesis was used as a guideline, giving four neighbors per directory server [Goodell06].  

Goodell experimented with various peering arrangements, but never mixed them in a 

single experiment; all were peered as full or proxy neighbors together.  In an effort to 

provide a balance of low-latency query response times and storage efficiency, we used an 

arrangement of four peering relationships per directory, with any given directory having 

two full peers and two proxy peers.  As in Goodell’s examples, the set of directory 

servers was fully connected.  Figure 13 illustrates this for fifteen directory servers.  Full 

peering relationships are represented by solid lines and proxy peering relationships by 

dashed lines.  Note peering relationships themselves are not symmetric; in the 
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illustration, the double-ended arrows actually represent two separate peering 

relationships. 

 

 

Figure 13:  Directory Server Peering Example 

 

Directory servers with proxy peers could forward lookup requests to their proxies; these 

proxies, in turn, could continue to forward the requests if they were unable to answer.  

For queries with few or no results, a large number of proxy queries could be generated 

from a single incoming request.  To prevent this, a forwarding limit of two was 

established, using the guidelines in [Yang03].  Popular capabilities had a good chance of 

being discovered within two proxy hops, but for more obscure capabilities, the 
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reachability was limited.  In the simulations conducted, the directory server experiments 

were able to satisfy 83% of all queries satisfied by the DHT.  Increasing the proxy-

forwarding limit was expected to increase the reach, but also increase the amount of 

directory traffic.     

3.3.2 Routing Policies with Directory-Based Storage and Lookup 

The directory-based storage simulations used a Blossom-like directory application.  The 

peering configuration of the directory servers, described above, was pre-determined and 

read from a data file, allowing consistent results to be produced for each simulation run.  

Directory server peering took place prior to any application queries being performed.  An 

example of directory server peering data is given in Appendix B. 

 

It was expected that some application queries would perform extremely quickly.  If a 

directory server were able to answer a request directly, then from the end-user’s 

perspective, the lookup would take one round-trip-time (RTT), or two simulation steps.  

If recursion was required, the lookup could take longer, but the maximum time required 

for a response would be determined by the distance to the furthest directory server 

reachable via a proxy peering configuration.  It was possible that some application 

queries would go unanswered; if a directory was not able to answer a query directly, it 

would forward the request to its proxy peers, but if none of them had the answer, the 

application would never receive a response.  In this case, the application would need to 

implement a timeout counter, to ensure the user was notified of the failed lookup.  On the 

other hand, if multiple proxy peers returned a response, the application would receive 
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several separate responses, originating from various proxy peers.  Applications assigned 

a unique query ID to each query submitted, ensuring they could track responses 

accurately. 

3.3.3 Routing Policies with DHT-Based Storage and Lookup 

The Chord distributed hash table supplied by PlanetSim was used to store attributes, 

capabilities, and routing policies.  Using a distributed hash table instead of directory 

servers eliminated replication traffic among the directory servers, as well as any 

recursive lookups and unnecessary proxy requests from directory servers.  Applications 

executed the same queries, but these were serviced by the distributed hash table.  The 

maximum time required for a response depended on the performance of the hash table; in 

Chord’s case, this is O(log n) [Stoica01].  Where a query for a nonexistent attribute 

would result in no answer from a directory server, an application would receive a 

negative response from the distributed hash table, because the DHT was able to map the 

query to a single node responsible for the data.  This eliminated the need for applications 

to implement a timeout counter, as required in the directory server scenario.  In addition, 

since a single node was responsible for a query, an application would never receive 

multiple responses to a single query, as might happen for directory server queries. 

3.4 Metrics and Evaluation 

In order to determine whether this work added any value to the field, it needed to be 

evaluated using criteria accepted by existing research, and against the shortcomings 

presented in the introduction.  The following quantitative metrics were directly measured 

by experimentation, and should serve to justify the methods outlined in the previous 
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sections.  These statistics were collected for both the initial insertion of data into the 

network (directory server or distributed hash table) and the subsequent execution of 

queries against the network. 

3.4.1 Wait Time 

The end-user experience is important in any application.  An application that performs 

poorly is unlikely to be embraced by users, even if it offers additional functions.  Some 

PlanetSim experimenters have used elapsed time as a measure of algorithm performance 

[Braunisch06], but this makes many assumptions about the state of the hardware and 

software system used to run the experiment.  A consistent form of measurement must be 

used within the simulator, so various simulation runs can be compared independently.   

 

Bischofs et al. [Bischofs06] use simulation steps as a measure of node wait time.  

Because simulation steps provide consistency among experiments, they were measured 

in all experiments in this work.  PlanetSim keeps a simulation counter, which allows 

applications to check the simulated step count before and after performing an action.  

This metric is comparable across runs, even if simulations are run on different systems.   

3.4.2 Network Traffic 

All messages sent between PlanetSim nodes are Java objects.  The classes that define 

these objects were extended to calculate their size in bytes.  The node classes in 

PlanetSim were likewise extended to count the number of messages sent.  A single query 

sent by an application resulted in a number of messages; each query needed to be sent to 
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one or more directory servers, perhaps recursively, or move around the Chord ring, and 

each hop resulted in an additional message handled by the network.   

 

In their work, Hu and Xia [Hu09] consider the impact on the network, based on the 

number of messages per second and the total size per second.  Similarly, Yang and 

Garcia-Molina [Yang03] measure network load, based on bits per second.  In the 

experiments we conducted, using a simulated network with simulation steps rather than 

seconds, it was more appropriate to compare the total number of messages sent, as well 

as the average and total size of these messages.  Since each experiment ran for the same 

number of simulation steps, these results were comparable across runs.    

3.4.3 Application Requirements 

It is possible to measure the amount of storage space used within the client applications.  

For example, the size of attributes and routing policies stored in directory servers can be 

counted in bytes.  As a comparison, the storage space used by each node participating in 

the distributed hash table can be counted.  Application storage is a metric used in other 

experiments; for example, Hu and Xia use this metric in determining the node resource 

requirements in their P2P streaming analysis [Hu09].   

 

To support the collection of application storage data, methods were added to the Java 

classes that make up the DHT and directory server applications, giving them the ability 

to calculate the total amount of storage required during each experiment. 
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3.5 Results 

3.5.1 Wait Times 

Table 6 and Figure 14 show the average query response time experienced by applications 

running in a directory server configuration, versus applications running in a distributed 

hash table configuration.  In most cases, the directory server was able to locate the 

requested information either directly or with a single proxy query.  As the number of 

nodes increased, applications using directory servers continued to observe the same 

response time.  As expected, applications querying the distributed hash table saw slower 

performance, as the number of nodes increased and increasingly more hops were 

required to route the query to its destination.  It should be noted that the increase in wait 

time was in line with Chord’s O(log n) performance expectations [Stoica01].  

 

 1000 nodes 5000 nodes 10000 nodes 

Directory Server 2.30 2.34 2.32 

DHT 6.92 7.92 8.43 

Table 6:  Average Query Wait Time (steps) 
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Figure 14:  Average Query Wait Time 

3.5.2 Network Traffic 

Both the number of messages sent and the total size of all messages increased linearly 

with the number of nodes in both the directory server and DHT experiments.  In the 

directory server experiments, a ten-fold increase in the number of nodes resulted in the 

number of messages and total byte count increasing just under ten times.  With the same 

increase in the number of nodes, the DHT experiments resulted in a larger, but still 

linear, increase.  These results are presented in Figures 15 and 16, and in Table 7.   

 

 



 
   
  

- 54 - 

0

1

2

3

4

5

6

7

1000 nodes 5000 nodes 10000 nodes

N
u

m
b

e
r 

o
f 

m
e

s
s

a
g

e
s

 (
m

il
li

o
n

s
)

Directory s erver

DHT

 

Figure 15:  Total Network Messages Sent 
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Figure 16:  Total Network Traffic (bytes) 

 

Comparing the two approaches to each other, the directory server experiment resulted in 

far fewer messages than the DHT experiment and considerably fewer bytes as well.  It 

should be noted here that the average message size in directory server experiments was 
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nearly double the average DHT message size, because of the increased size of the 

directory synchronization messages.  Table 7 provides the results of these experiments. 

 

 1000 nodes 5000 nodes 10000 nodes 

Directory server total 
messages (millions) 

0.150 0.747 1.480 

DHT total messages 
(millions)  

0.381 2.77 6.40 

    

Directory server total 
bytes (millions) 

11.8 58.3 116 

DHT total bytes (millions) 14.1 93.5 21.0 

    

Directory server average 
message size (bytes) 

78.7 78.1 78.3 

DHT average message 
size (bytes) 

33.5 33.8 32.8 

Table 7:  Network Statistics 

3.5.3 Application Requirements 

All applications stored their own attributes, capability sets, and policies, by design.  The 

different storage requirements came into play at the point data was being made available 

to the network, using directory servers or a distributed hash table.  Since all nodes served 

as Chord nodes in the DHT experiment, but only one in ten nodes served as directory 

nodes, it was expected that directory servers would have heavier storage requirements.  

Directory servers required more than ten times the space of DHT nodes, because each 

directory server stored both the data of its direct clients and of its full peers’ clients.  In 
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both DHT and directory server experiments, the amount of storage space remained 

constant as the size of the network increased, because the increased amount of data was 

distributed among an increased number of Chord nodes or directory servers.  The 

application storage requirements are presented in Table 8. 

 

 1000 nodes 5000 nodes 10000 nodes 

Average directory server 
application storage (bytes) 

10,040 10,035 10,025 

Average DHT server 
application storage (bytes) 

455 455 453 

Table 8:  Application Storage Requirements 

3.5.4 Routing Policy Overhead 

A series of experiments were conducted using no routing policies at all.  In these 

experiments, nodes still registered attributes and capabilities, but no policy information.  

Registration of a capability was considered an implicit grant of that capability to all 

nodes.  In this way, capabilities became a sort of global policy, much like in the Tor 

network.  The same set of experiments were run without routing policies, to determine 

the overhead the introduction of routing policies added to the network.  Since in these 

experiments, the existence of a capability implied access to the capability, applications 

did not need to submit an additional query to determine a candidate node’s policy.  Thus, 

the application query procedure noted in Figure 12 was modified to eliminate the 

iteration over candidate nodes. 
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Not surprisingly, the addition of routing policies carried a penalty both in terms of the 

storage required by applications and the amount of data traveling over the network.  

Table 9 shows the decreased application storage requirements.  While routing policies do 

require more space, the absolute difference is not excessive and does not change with the 

size of the network. 

 

 1000 nodes 5000 nodes 10000 nodes 

Average directory server 
application storage (bytes) 

6,288 6,292 6,296 

Average DHT server 
application storage (bytes) 

315 315 313 

Table 9:  Application Storage Requirements (no policies) 

 

The differences in network traffic are shown in Figure 17 and Figure 18.  Adding policies 

to the network did affect the network, in terms of both message count and the total 

number of bytes.  This increase was less pronounced in the directory server experiments. 
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Figure 17:  Comparison of Network Messages, Policies vs. No Policies 
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Figure 18:  Comparison of Network Traffic, Policies vs. No Policies 
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3.5.5 Discussion 

The experiments showed using directory servers provided the best overall performance.  

In addition to serving ten other nodes on the network, each directory server contained a 

replica of its two full peers’ data, giving its clients access to the attribute, capability, and 

policy data of 30 different peers within a single RTT.  In addition, through the two proxy 

peers, access to the data of 60 additional peers was available via a single proxy request.  

This allowed the directory servers to answer queries more quickly than the distributed 

hash table.  In addition, applications received consistent directory server response times, 

regardless of the size of the network. 

 

Using directory servers for data storage put the least load on the network.  Due to the 

large messages sent during full-peer replication, the average message size was greater 

when using directory servers.  However, fewer messages were needed overall, since 

directory servers were generally able to answer queries either directly or via a proxy 

request.  The overall amount of data sent over the network was significantly less using 

directory servers for storage. 

 

The full set of capabilities was not reachable given the experimental parameters defined 

in section 3.3.1.  When limiting the number of proxy hops to two, applications were able 

to get answers to approximately 83% of their capability queries.  Increasing this limit 

would result in higher reachability, at the expense of more network traffic.  Varying the 

peering arrangements could also result in higher reachability; this is an interesting area 

for future research.   
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Directory servers, by their nature, have additional demands placed on them, because they 

are required to store data and process queries for multiple nodes on the network.  

Directory servers must store attribute, capability, and policy information for each node 

they serve, as well as for each node served by full directory peers.  An average directory 

server required 20 times the amount of storage space as an average node in the 

distributed hash table.   
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Chapter 4 

CONCLUSION AND FUTURE WORK  
 

4.1 Contributions 

Peer-to-peer networks can benefit from the addition of flexible routing policies and from 

a way to express and publish these policies, so other peers on the network can find and 

use them.  It is important to measure the impact these policies have on clients, in terms of 

their expected response time and additional storage requirements.  It is also important to 

determine the impact on the network, so the most efficient means possible is used to 

store and query for policy information.  

 

In this work, a language was introduced which allows node owners to define capabilities 

they wish to offer to the network and to group these into capability sets.  Node owners 

reference these capability sets when defining policies, allowing them to grant access to 

capability sets based on criteria they define.  These criteria are based on the attributes of 

requesting peers, which allows nodes to offer different capabilities selectively to different 

peers, rather than offering only a global, one-size-fits-all policy.  A method was shown 

allowing attributes, capabilities, and policies to be stored in both directory servers and 

distributed hash tables, and to allow nodes to query the stored policy data in either 

arrangement.  The advantages and disadvantages to each approach were discussed, and 

while both methods are functionally suited to simple queries, directory servers were 

shown to be better able to process complex queries.  
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Since data can be stored and queried in either a directory server or DHT arrangement, 

this work showed experimentally that directory servers provide advantages in both query 

response time for individual peers and in lighter aggregate load on the network.  The 

directory servers themselves, however, were required to take on the additional workload 

of processing queries and replicating traffic to their peers and were shown to have greater 

storage requirements than nodes in a distributed hash table.    

4.2 Future Work 

Directory servers present many interesting possibilities not considered in this work.  For 

purposes of accurate comparison with distributed hash tables, the capabilities of directory 

servers could not be fully exploited.  For example, because a directory server stores a 

node’s capability sets and policies together, it can instantly evaluate a set of attributes 

against any node’s policy.  This information allows directory servers to answer queries 

differently based on the requestor’s attributes.  A directory server could filter its answer 

to a capability query to include only nodes that would allow the requestor to access the 

capability, based on the policy, both reducing the amount of data sent to a requestor and 

eliminating the need for the requestor to issue a separate policy query.  Directory servers 

also have the ability to answer more complex queries, such as requests for combinations 

of capabilities or ranges of capability values. 

 

Goodell mentioned a third type of directory server peering where directory servers 

summarize their data and send the summaries, rather than a full replica, to their peers 
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[Goodell06].  These summaries could be used to reduce the number of proxy requests 

sent, since directory servers could avoid sending proxy requests to peers that had not 

indicated knowledge of a capability. 

 

The results of this experimentation would appear to rule out distributed hash tables for 

policy data storage.  However, there may be certain conditions in which a distributed 

hash table would perform better than directory servers.  If most capabilities being 

advertised were rare in the network, directory servers would suffer from the coverage 

problem described in section 3.3.1.  Distributed hash tables may actually show a 

performance advantage here.  In addition, directory servers and distributed hash tables 

are not the only ways of storing data.  For example, routing indexes as described by 

[Crespo] and [Hose09] could be used to guide queries through the network. 
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APPENDIX A 

EXAMPLES OF ATTRIBUTE, CAPABILITY, AND POLICY DATA 
 
 

Description of Data 
 
During the initialization phase of the simulation, each application is assigned certain 
attributes, capabilities, and policies.  The application presents this information to the 
directory server or distributed hash table when it starts.  The attribute, policy, and 
capability data for three nodes is shown below.   
 
 
Example Attribute Data 
 
Attribute data is defined using a simple attribute_name = attribute_value format.  Lines 
beginning with “#” mark the start of a new node’s data. 
 
# Node 0 

country=in 

netname=Net05 

version=2.0 

nodename=alice-blue 

# Node 1 

country=pt 

netname=Net03 

version=1.2 

nodename=antique-white 

# Node 2 

country=vn 

netname=Net01 

version=0.2 

nodename=aquamarine 

 

Example Capability Data 

Capability set definitions are written in the language described in section 2.1.2.  
Applications register between zero and five capability sets, and they are assigned random 
names.  Lines beginning with “#” mark the start of a new node’s data. 
 
# Node 0 

capset qsbbxk0guq { 

 content = web, streamingaudio; 

 perspective = au; 

} 

capset 2s84ae0uni { 

 content = mailmix; 
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 port = 25; 

} 

capset bsttmjk65k { 

 content = web; 

 perspective = uk; 

} 

capset 60we0mzgrr { 

 content = politics; 

 perspective = nl; 

 service = chat; 

} 

# Node 1 

capset nkxd128y1y { 

 content = news; 

 encryption = aes256; 

 perspective = uk; 

} 

# Node 2 

capset 0vrnkj8vc8 { 

 content = email, anonymity; 

 port = 25, 587; 

 perspective = us; 

} 

capset wb87l9gq9u { 

 content = streamingvideo; 

 port = 80, 8080; 

 perspective = us; 

}  

 

 

 

Example Policy Data 

At least one policy item grants access to every capability set offered by an application.  
Policy definitions are written in the language described in section 2.1.3.  Lines beginning 
with “#” mark the start of a new node’s data.   
 
# Node 0 

for country = nl 

  allow qsbbxk0guq; 

for country = aq, netname = Net05 

  allow 2s84ae0uni, bsttmjk65k; 

for country = nl 

  allow bsttmjk65k, qsbbxk0guq, 2s84ae0uni; 

for not netname = Net01, country = es 

  allow 60we0mzgrr, qsbbxk0guq; 

# Node 1 

for country = mx 

  allow nkxd128y1y; 

# Node 2 

for country = us 

  allow 0vrnkj8vc8, wb87l9gq9u; 

for country = es 

  allow wb87l9gq9u, 0vrnkj8vc8; 
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APPENDIX B 

EXAMPLE OF DIRECTORY SERVER PEERING DATA 
 
 

During the initialization phase of the simulation, each directory server application makes 
a series of peering connections with other directory servers.  The peering configuration is 
read from a file, so multiple simulation runs result in the same peering arrangements.  
The following represents a peering configuration for ten directory servers, numbered 
from 0 to 9. 
 
Using this file, directory 0 would have directories 3 and 6 as full peers, and directories 1 
and 8 as proxy peers. 
 
0 full 3 

0 full 6 

0 proxy 1 

0 proxy 8 

1 full 4 

1 full 7 

1 proxy 2 

1 proxy 9 

2 full 5 

2 full 8 

2 proxy 3 

2 proxy 0 

3 full 6 

3 full 9 

3 proxy 4 

3 proxy 1 

4 full 7 

4 full 0 

4 proxy 5 

4 proxy 2 

5 full 8 

5 full 1 

5 proxy 6 

5 proxy 3 

6 full 9 

6 full 2 

6 proxy 7 

6 proxy 4 

7 full 0 

7 full 3 

7 proxy 8 

7 proxy 5 

8 full 1 

8 full 4 

8 proxy 9 

8 proxy 6 

9 full 2 

9 full 5 

9 proxy 0 

9 proxy 7 
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APPENDIX C 

EXAMPLE OF APPLICATION WORKLOAD DATA 
 
 

During the course of the simulation, each end-user application makes 20 queries against 
either its directory server or the distributed hash table, depending on the test 
configuration.  This data is read from a file, so multiple simulation runs result in the 
same workload executing against the peer-to-peer network.  The queries are randomly 
distributed over the course of 100,000 simulation steps. 
 
Using this file, at simulation step 903, the application on node 2 would execute the query 
“port = 25”.   
 
at 903 2 query port = 25 

at 982 1 query content = streamingvideo 

at 1188 0 query encryption = aes256 

at 1210 8 query nonexistent = nonexistent 

at 1487 6 query perspective = fr 

at 2523 8 query content = streamingvideo 

at 3558 8 query nonexistent = nonexistent 

at 4174 7 query port = 21 

at 4650 1 query content = web 
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