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University of North Florida
Abstract

Robust I-Sample Analysis of Means Type Randomization Tests for Variances

by Anthony Joseph Bernard
Chairperson of the Supervisory Committee: Professor Dr. Peter Wludyka

Department of Mathematics and Statistics

The advent of powerful computers has brought about the randomization technique for
testing statistical hypotheses.  Randomization tests are based on shuffles or
rearrangements of the (combined) sample. Putting each of the [ samples “in a bowl”

forms the combined sample. Drawing samples “from the bowl” forms a shuffle. Shuffles

can be made with or without replacement.

In this thesis, analysis of means type randomization tests will be presented to solve the
homogeneity of variance problem. An advantage of these tests is that they allow the user
to graphically present the results via a decision chart similar to a Shewhart control chart,
The focus is on finding tests that are robust to departures from normality. The proposed
tests will be compared against commonly used nonrandomization tests. The type I error
stability across several nonnormal distributions and the power of each test will be studied

via Monte Carlo simulation.
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Chapter 1

Introduction

1.1 PROBLEM DEFINITION

The global marketplace has become extremely competitive, and companies are always
searching for cheaper and faster ways to produce their goods. As part of gaining process
knowledge, companies must focus on process variability. When highly variable
manufacturing methods are identified, altemative procedures may be implemented.
These “new” processes must be assessed to determine how they impact process
variability. Consider, for example, a battery manufacturer who is interested in reducing
the variability in battery lifetime. Since consumers do not want batteries with
significantly different lifetimes, it is desirable to make batteries that perform consistently.
The manufacturer may evaluate several pumps used to supply anode to the battery. The
claim that all anode pumps have the same variability will be referred to as the
homogeneity of variance (HOV) hypothesis. The HOV hypothesis for a single factor

experiment with / factor levels (different pumps) will be represented as
H,:0l=...=0] (1.1)
where & is the variance of the i® population. The alternative hypothesis is H , : not

H,. The interest here is the case where / >2; that is, where three or more populations



are being compared. The focus of this paper will be on one-way balanced designs, but

the discussions extend to more complex designs.

1.2 HYPOTHESIS TESTING
Estimation of parameters and tests of statistical hypotheses are the two major areas

treated by statistical theory. Parameter estimation uses information gathered from sample

data to determine the value of a population parameter, and hypothesis testing uses sample
data to determine which of two statements regarding a distribution is correct. The

discussion that follows in the remainder of this section and sections 1.2.2 and 1.2.3 was

summarized from Wludyka (1999).

Suppose a researcher is interested in / populations, each with distribution function
F,(x,.8,), where 6,e(a,b)c(~o0,00) and x,eW, c(~ro0,00). Often
(a,,b,)=(~o0,00). Let

Q=(a,,b, )x(az,bz)x---x(a, ,b,)
be the parameter space. Furthermore, partition the parameter space into subsets £, c Q
and Q, C £, where £, and Q, are disjoint. Frequently Q=Q, U£2,. Often there is
interest in the case where Q, =4, ,....8,) | 8, =...=8, }. This leads to the definition of

a null and alternative hypothesis.

DEFINITION 1. A null hypothesis is a statement of the form H, (6,,....0,)e Q.. The

corresponding alternative hypothesis is a statement of the form H , : (0,,..,0, )€ Q.
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To determine if H, is true, samples of size n; are drawn from each of the 7 populations.

In this paper the samples will be independent and random. Denote the observations by

x;, i=1...,I and j=1..,n,. The set of all samples will be denoted by ¥'. After the

samples are collected the researcher will use the data to make a decision concerning the

hypotheses.

DEFINITION 2. The Decision Space D is the set of all decisions the researcher can

make. The poinis in the space will be denoted by 8, .

Usually the decision space consists of the points 8, = ACCEPT H, and 8, = REJECT

H,. In other cases, sequential tests for example, the decision space may be larger.

1.2.1 STANDARD HYPOTHESIS TESTS

DEFINITION 3. A (standard) hypothesis test is a rule that, given H, and H,,

associates with each sample X a point in the decision space. That is, a hypothesis test is
a function that maps from the set of all samples to the decision space:

T(X):¥ —>D.

DEFINITION 4. Two statistical tests, T, and T,, are equivalent if any given H, and

H ,, each sample X is mapped to the same point in the decision space. That is,

T,(X)=T,(X) V Xe Y.



DEFINITION 5. The Power Function of a test is that function which yields the

probability of correctly rejecting the null hypothesis.

1.2.2 RANDOMIZED HYPOTHESIS TESTS

Randomized tests are used most frequently when the populations of interest are discrete.
These tests allow the user to achieve an exact significance level by using the result of a
supplemental independent random experiment. Hogg and Craig (1995) and Rinaman

(1993) give examples of randomized hypothesis tests.

1.2.3 RANDOMIZATION TESTS

There are two types of randomization tests: exact randomization tests and approximate
randomization tests. Randomization tests are based on shuffles (resamplings or
rearrangements) of the (combined) sample. The combined sample is formed by putting
each of the I samples “in a bowl.” “Drawing from the bowl” forms shuffles. The
shuffles can be made with replacement (called a bootstrap shuffle) or without

replacement (called a permutation shuffle), the latter being more commonly used in

practice.

DEFINITION 6. A shuffle consists of n, assignments from the combined sample of

sample values to each of I groups. Distinct shuffles can be labeled X @ .



For example, consider the sample below (for which 7 =3 and n, =2).
5 4
X= ? .
7 3 2
An example of a (bootstrap) shuffle is given by
YO _ 75 4 .
373

An example of a (permutation) shuffle is given by

X - 2 9 7
4 5 3/

In an exact randomization test each of the N shuffles is found. That is, associated with

each sample X is a collection of shuffles

S(X)={X91each X@ is adistinct shuffle X,g=1,...,.N,}.

1.2.3.1 EXACT RANDOMIZATION TESTS

DEFINITION 7. An exact randomization test is a rule that, given H, and H ,,

associates with each sample X (and the set of shuffles § (X ) associated with X ) a point
in the decision space. That is, an exact randomization test is a function mapping from the

set of all samples to the decision space:

T(X,S(X)):¥ — D.

It should be noted that the above definition is the same as the definition of a (standard)
hypothesis test in DEFINITION 3. The explicit inclusion of (X ) in the definition is

there for emphasis and as a reminder that the exact randomization test itself is performed
5



in a somewhat different manner than other tests. Performance of a randomization test
usually involves:

1. calculation of a test statistic for the initial sample C(X )

2. calculation of the same test statistic for each of the shuffles C(x @)

3. adecision based on the “unusualness” of C(X) in relation to the set of

c(x@)s.

For example, suppose one is testing the equality of / means based on independent
samples of size n,. At step one an ANOVA-F statistic is calculated based on the initial
sample. At step two an ANOVA-F statistic is calculated for each possible shuffle. In
step three the list N, +1 F-statistics 1s ordered and the empirical quantile associated with
the initial sample is calculated. If the empirical quantile is less than a prespecified level

of significance then the equal means hypothesis is rejected. An advantage offered by this

test is that no assumption regarding the distribution of the ANOVA-F statistic is required

(Edgington, 1987).

The practical difficulty associated with an exact randomization test is that the number of
shuffles in S(X ) can become prohibitively large and hence creating S (X ) can be too

expensive. Thus, this paper will focus on approximate randomization tests.



1.2.3.2 APPROXIMATE RANDOMIZATION TESTS

In an approximate randomization test a random sample from S(X ) is selected. That is,
N, shuffles are randomly selected from S(X ). Typically a computer is used to generate
a sequence of (pseudo) random shuffled samples from the combined sample. Denote this

random sample of shuffles by

SA(X) ={ X9 each X'? is a random shuffle X,g=1,..,N, }.

DEFINITION 8. An approximate randomization test is a rule that, given H, and H ,,

associates with each sample X (and the random set of shuffles SA(X ) associated with

X ) a point in the decision space. That is, an approximate randomization test is a
SJunction RT mapping from the set of all samples augmented by the set of all shuffles for

each X to the decision space

RT(X,5A(Xx)): ¥,8(X)->D.

DEFINITION 9. Twe randomization tests, RT, and RT,, are equivalent if for any given
H, and H,, each sample X (and the same set of random shuffles SA(X) associated

with X ) maps to the same point in the decision space. That is,

RT,(X,SA(X ))=RT, (X, SA(X)).



The following flowchart, taken from Edgington (1987), will give the reader a better feel

for the technique used for approximate randomization tests.

TNPUT

COMPUTE TEBT 8TATIBTIC

TEST STATIHTIC VALUE
GREATER THAN OR EQUAL TO
OBTAINED TEST STATISTIC
VALUE?

ADD 1 TO GOUNTER

LAST DATA BHUFFLE? ND—+ GHUFFLE DATA I

YES

DIVIDE COUNTER TOTAL BY NUMBER OF
SHUFFLES TO GET PROBABILITY

A key point is that the set of shuffles SA(X) is not unique to X . In practice there are a
very large number of distinct SA(X )’s for any X . Hence, the decision is not uniquely
determined by X and the test RT. For a test RT and a sample X there is associated
with each point in the decision space a probability that the test will map to that decision.
That is,

Pr(5,1X,N,)=p,.



In practice this probability will not be known. However, a heuristically sensible
approximate randomization test should have the property that when the state of nature is

such that decision &; is the correct decision then for sufficiently large N, the associated
probability p, should be close to one. When decision &, is an incorrect decision then for

sufficiently large N, the associated probability p, should be close to zero.

1.3 I-SAMPLE TESTS FOR VARIANCES

A user has many options in testing hypothesis {1.1). HOV tests proposed by Bartlett
(1973), Hartley (1940 and 1950), Cochran (1941), Foster (1964) and Wludyka and
Nelson (1997 A) may be employed when normality is a reasonable assumption. When
the normality assumption is not valid the user may adopt an assortment of tests. See
Conover, Johnson and Johnson (1981) for a good discussion. Robust analysis of means
(ANOM) type tests have been proposed by Wludyka and Nelson (1997 B). The objective
of this paper is to provide users with new HOYV tests that are robust and compare these

tests with some commonly used tests via a Monte Carlo study.



Chapter 2

ANOVA-F and ANOM Type Tests for Variances

2.1 DATA TRANSFORMATIONS

In the previous chapter it was noted that a user has many options for testing hypothesis
(1.1) when the normality assumption is not tenable. Transforming the original (location)
measurements into scale measurements creates tests for variability by using the
transformed measurements as input to standard location tests. Two standard location
tests will be considered in this chapter: the ANOVA-F test and the ANOM test. Three

standard transformations that have been used will be defined. In each of the

transformations x; will be defined as the j* observation from the i* sample.

SQUARED DEVIATIONS FROM THE MEAN (SDM)

Yy = (x,.j —if)z where X, is the mean of the i** sample 2.1

ABSOLUTE DEVIATIONS FROM THE MEDIAN (ADM)

¥; =|x,.j. - x,'"“’l where x™* is the median of the i* sample (2.2)

Note that one of the absolute deviations from the median becomes zero when there are an

odd number of observations in a sample. Wludyka and Nelson (1999) state that since
10



variability is being measured as the absolute deviation from the median, the median of
the sample imparts no information about variability. Thus, for samples containing an odd

number of observations the y, corresponding to the median should be deleted, and the

sample size per group is reduced to n—1.

TRANSFORMATIONS OF RANKS (TR)

This transformation consists of three steps:
1. d; =|x,.j —x{"‘dl
2. r;=Rank (d i ). the values of the combined sample are ranked from smallest to

largest

The inverse nommal transformation is performed on a uniform random variable,

This transformation produces a random variable that is approximately normal

(Ross, 1997),

Either the ANOVA-F test or the analysis of means (ANOM) test can be applied to the

transformed values (2.1) — (2.3).

2.2 ANOVA-F TESTS FOR VARIANCES
The ANOVA-F test for variances will be applied to scale transformed observations.

Denoting the transformed values by y;, the test statistic is

11



I —_ a—
Yy (G, —y._)z( ) ;
/-1 S _VY; 5 =% y/
where y; _,21 Y, andy —2. N 24

b= " -y, ; =1 j=1
Z.-=1Z,-=1 (yu Yi, % B ])

HOV hypothesis (1.1) is rejected when L exceeds the 100(1 —a)"' percentile of the F-

distribution with (I —1) and (N —1) degrees of freedom,

2.2.1 LEVENE'S TEST
Various modifications of this test exist, but the version considered here is the one
determined to be the best by Brown and Forsythe (1974) and Conover et al. (1981).

Their version is simply the one-way ANOVA-F test on absolute deviations from the

median, transformation (2.2).

2.2.2 FLIGNER-KILLEEN TEST
The version of the Fligner-Killeen (F-K) test presented here is one proposed by Conover
et al. (1981). ANOVA-F test (2.4) uses the transformed ranks of the absolute deviations

from the median (2.3) to perform the HOV test.

2.3 ANOM TYPE TESTS FOR VARIANCES

Ott (1967) was the first to introduce the ANOM. Wludyka and Nelson (1997 A) then
developed an ANOM type test for vanances (ANOMYV). ANOM type tests are relatively
simple to perform and they allow the user to assess practical and statistical significance
by graphically displaying differences in a decision chart. The decision chart, similar to a

Shewhart control chart, allows the user to view which populations differ from the overall
12



mean. The assumptions for ANOM are identical with those for the ANOVA-F test, and
the two procedures have roughly the same power (Nelson, 1985). Three robust ANOM

type HOV tests will be described: ANOMV-LEV, ANOMV-TR and ANOMV-JK.

2.3.1 ANOMV-LEV
ANOMV-LEYV is the ANOM version of Levene’s test. That is, the ANOM is applied to
the absolute deviations from the median (2.2). The advantage of this new procedure is

that the test can be presented via a decision chart that allows for graphical interpretations

of the result.

The following example illustrates the procedure. The data in Table 1 consists of four

. ! T - .
random samples of size 10. In Table 1, S =——~—Z(x‘.. —xi)z . Table 2 contains the
n— 1 j:l Y

- : - 1
absolute deviations from the sample median. In Table 2, Y, =—2(y,.j) and
n

i

St=

nil JZ:;(yu - i,.)z . Hypothesis (1.1) will be tested versus H , : not the null. The

decision lines are constructed as follows:
UDL =Y +h_s\J(T = 1)/(In) = 0.893 + (2.59)0.666 Y0.2739) = 1.365

CL=Y =0.893

LDL=Y — h,sJ{T — 1)/{In) =0.893 — (2.590.666{0.2739)=0.421

13



— - 2
Where Y = Zy/’ s =1’ZS‘ , and critical value A, is obtained from Nelson (1983)

for I=4, n=10 and a =0.05, UDL is the upper decision line, CL is the center line and

LDL is the lower decision line.

Since y, =1.464 is above the UDL the HOV hypothesis (1.1} is rejected. The decision

chart for the test is in Figure 1.

2.3.2 ANOMV-TR
ANOMV-TR is described in Wludyka and Nelson (1999). ANOMV-TR employs the

same transformation as the Fligner-Killeen test. Instead of the ANOVA-F test, the

ANOM is applied to the y from (2.3).

2.3.3 ANOMV-JK

The third ANOM type test is ANOMV-JK where JK represents jackknifing. The
technique is described in Wludyka and Nelson (1997 B). An overview of the test is
presented below:

1. Replace cach observation x; with a jackknifed variance
2 2
2. U, =n In(s?)-(-1)in(s2,)

3. Perform ANOM on the UV .

14



Consider, for example, four samples containing five observations per sample. Each

observation is replaced with a jackknifed variance.  The jackknifed variance

1 - — 1 . .
Sih =DZ(x& —xm)z , where x, ) =mzh » 15 the sample variance computed
kzj

Exj
on the remaining four elements (the j* observation is deleted). The “new” data set now
consists of jackknifed variances. Wludyka and Nelson (1997 B) state that the resulting

jackknifed variances are dependent and the ANOM may not be applied directly to them.

Thus, the transformation, U/, is applied (based on an idea of Tukey (1962)), and the

g'j!

ANOM procedure is applied directly to U, .

Figure 1: ANOMV-LEV Decision Chart

ANOMV-LEV Decision Chart
: 1.464 1
& 1.365 UDL (alpha = 0.05)
o
=
25
g3

| £ 5 0893 l CL
< g 0.6734 l 0.7367 & 0.6969 !
&b
& 0.421 LDL (alpha = 0.05)
< 1 2 3 4
Sample i

15



Table 1: Raw Data — Test Examples

1 2 3 4
05119 03756 -1.648 0.2821
0.6137 0.1026 0.06582 2411
06311 -0.2989 0.5893 4350
0.5025 0.5242 0.04181 -1.704
1577 -1.455 02225 09703
-1.32 -1.481 01234 -0.9169
0.3896 0.5361 -2.350 0.6221
0.6738 0.6953 -0.5466 -3.017
-0.09655 1243 1.268 -0.04799
-0.6112 -1.253 0.1959 -2.235
’ 0.7227 0.7384 1120 3.071
i
Table 2: Absolute Deviations from Sample Median — Test Examples
1 2 3 4
0.7550 0.7872 1.702 1.593
0.8568 0.5142 0.0120 1.101
03880 0.1127 05355 3.049
0.2594 0.1127 0.0120 0.3936
1.820 1.043 0.1687 2.281
1.077 1.069 0.1772 03934
0.1465 0.9477 2.404 1.933
09169 1107 0.6004 1.707
0.1465 0.8315 1215 1.262
0.3681 0.8415 0.1421 0.9246
= 06734 0.7367 0.6969 1.464
¥;
52 0.2754 0.1375 0.6692 0.6920




Chapter 3

Analysis of Means Type Randomizaton Tests for Variances

3.1 OVERVIEW OF PROPOSED RANDOMIZATION TESTS
Four ANOM type randomization tests for variances will be proposed. These tests can be
performed using either permutation shuffles or bootstrapping shuffles. They are
RANDANOMV-D, RANDANOMYV-DD, RANDANOMYV-R and RANDANOMYV-RD.
These tests differ with respect to

1. the test statistics computed on the original data

2. the data that is shuffied

3. the test statistics computed on the shuffled data,

Table 3 outlines each randomization test with respect to the above items. In the table and
—_— 2
subsequently S” = %Z(xq - f,.)z and §? =ZS% . From the table the reader may
n —

see that the tests can be classified as either difference tests or ratio tests. The difference
tests are RANDANOMV-D and RANDANOMV-DD, and the ratio tests are

RANDANOMYV-R and RANDANOMYV-RD.

Two versions (one- and two-sided) of RANDANOMYV-D will be presented. Only two-

sided versions of the other tests will be presented. The two-sided version has an
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advantage over the one-sided version in that a decision chart may be constructed. The
decision chart enables its user to do two things: 1) assess practical as well as statistical
significance and 2) determine which particular samples have more or less variability

when compared to the other samples.

3.2 RANDANOMV-D

RANDANOMV-D is a randomization test that uses sample variances and a pooled
estimate of the common variance (the average of the sample variances). Deviations of
the sample variances from the common variance are computed, and extreme (maximum

and minimum) deviations are used as test statistics on both the initial and shuffled data.

A one-sided (RANDANOMYV-D1) and two-sided (RANDANOMYV-D) version of this
test will be investigated. As mentioned earlier, the two-sided version allows the user to

construct decision lines and present a decision chart similar to ANOM.

The steps in RANDANOMYV-D1 are as follows:

1. Calculate AD, = max

S? —ﬂ on the initial sample where S is the
sample variance and S7 is the average sample variance
2. Randomly shuffle the original data some number of times, NS

3. Calculate AD, =max|S; - ﬂ after each shuffle where S is the sample

variance and §° is the average sample variance

4, If AD; > AD, then ge=ge+1
18



5. If p-value = ((36 + %NS N 1)]< o then hypothesis (1.1} is rejected.

RANDANOMYV-D is carried out by:

1. Calculate AD,_, =m:;tx(5',-2 —S_z) and AD_ = min(S,.2 —F) on the initial
sample where S’ is the sample variance and 52 is the average sample variance

2. Randomly shuffle the original data some number of times, NS

3. Calculate AD?, =maxls?-S$?) and ADY, =min{s? - 57) after each
shuffle where S} is the sample variance and S? is the average sample variance

4, If AD!, > AD,__ then ngmx=ngmx+1

5. If AD. < AD,_, then ngmn=ngmn+1
6. If p-value-high = ((ngmx +%N <+ 1)]<% or p-value-low =

(("Sm" +%VS N 1)]<% then hypothesis (1.1) is rejected.

This procedure will be called the p-value method.

A decision chart for RANDANOMYV-D can be constructed. For level of significance o

the decision lines are

uDL =5 + ADEY) 3.1)
CL=58* (3.2)
LoL=5% + aD%) (3.3)
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UDL is the upper decision line, CL is the center line, LDL is the lower decision line,

ADL%) is the (upper) —g— quantile of AD?,, g=1,..,NS and AD:(ZE)

is the (lower) %

quantile of AD?. g=1,..,NS. Hypothesis (1.1) is rejected when at least one S’ plots

outside the decision lines. AD:(;%) can be found by ordering the set

th
A ={w,: lg=1,...,N§ } Then AD&_?{) is the [NS - H(NS + I)gm - 1:” largest value

in set A, where [ X|] is the greatest integer in X . Denote this as ADL) . AD%) can be

found by ordering the set B={4D,‘jﬂnlq=l,...,NS}. Then ADr(zné) is the

FAY:.]

NS —”(NS +1{1—%]- 1” smallest value in set B, where [X II is the smallest

integer in X . Denote this as ADt[njl. This procedure will be called the decision chart

method.

THEOREM : The decision chart method is equivalent to the p-value method.

PROOF :

Notation:

AD,E;;}( = X order statistic; therefore, AD,E;”’) = largest order statistic,

AD,Eﬁ X order statistic; therefore, AD;SE. = smallest order statistic,

HX |] is the greatest integer in X , and "X II is the smallest integer in X .
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Assume the p-value method rejects H, because p-value-high < % .

= ((ngmx +1)/(NS . 1))<% and ngmx < (NS + 1{%}— 1.

=>ngmxs[(Ns + 1)%—1”

e.g. NS =1,000 and & =0.05, ngmx <[24.025) or ngmx <24

There are 24 or fewer shuffles such that AD?, > AD__

= ADS™ < max(s? —57) =3 i>5? - 57 > ADT

= 57 > 5%+ AD®’® for some i

= Reject H, using the decision chart method.

Assume the p-value method rejects H; because p-value-low <% .

=>((ngmn +%VS+1)]<% and ngmn < (NS+1{%]—1.

= ngmn s[(NS+1)%—l”

e.g. NS =1,000 and a=0.05, ngmn < [24.025) or ngmn <24
There are 24 or fewer shuffles such that AD!, < AD_ .
= AD® > min(s? - 57) =3 i>57— 57 <AD®

=8 <S_2+AD(£) for some i
21



= Reject H, using the decision chart method.

Assume the p-value method does not reject H|, because p-value-high 2%.

:((ngmﬂ)(NSH))z% and ngme[(NS+1{%]—l]+l.

e.g. There are 25 or more shuffles such that AD? > AD_ . when NS =1,000
and o =0.05, ngmx > [24.025]+1=25.
= AD®® > max(s? —57) =57 <57 + ADE forall i

=» Do not reject H, with the decision chart method.

Assume the p-value method does not reject H, because p-value-low Zg—.

= ((ngmn +%VS . 1)}2% and ngmn > [(NS + 1(%)— 1]+ 1.

¢.g. There are 25 or more shuffles such that AD}!, <AD_, when NS =1,000 and
a =005, ngmn 2 [24.025]+1=25.
= AD®) < min(s? 57 ) =52>5 + ADZ forall i

= Do not reject H,, with the decision chart rule.

Assume the decision chart procedure rejects H; by exceeding the upper decision
line. Thus, 3 i35? >S§2 + ADE™
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=52 =57 > AD®™® for some i
= ADT® <max(s? -57)=AD,,,

e.g. There are 24 or fewer AD? > AD__ when NS =1,000 and o =0.05.

ngmx+1< 24 +1

< =.024975<.025
NS +1 1001

= ngmx <24 = p-value-high=

=» Reject H, using the p-value rule.

Assume the decision chart procedure rejects H, by exceeding the lower decision
line. Thus, 3 {352 <S? + AD®

=52 -5 <AD®) for some i

= ADZ) > minls? - 57 )= 4D,

e.g. There are 24 or fewer AD?, <AD_, when NS =1,000 and & =0.05.

ngmn+1<24+1
NS+1 ~ 1001

= ngmn <24 = p-value-low = =.024975<.025

= Reject H;, using the p-value rule.

Assume the decision chart rule does not reject H .
=52<S2+ADTO Vi =87 -85 <ADE™ v
— max(s? -5 )< ADE® = AD__ < ADE™

e.g. There are 25 or more ADS;‘; >AD_ . when NS =1000 and a=0.05.
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ngmx+1:25+1
NS +1 1001

=.02597 > .025

= ngmx 225 = p-value-high =

= Do not reject H, using the p-value rule.

Assume the decision chart rule does not reject H,,.

=52>8+AD® Vi =87 -5*>AD® Vi

= m'm(.f,2 —S'_2)> AD®Y = AD_, >AD®)

e.g. There are 25 or more ADY) < AD__ when NS =1,000 and & =0.05.

= ngmn 225 = p-value-low = 8L _BH_ 05075 025
NS+1 1001

= Do not reject H, vsing the p-value rule.

In general,

(("gmx * I%NS + 1)]< % ’ ((ngmn +%Ns + 1)]< %

=>ngmx<(NS+1{%]—1 , ngmn<(NS+l(%]—l

(NS + 1)% - 1” , ngmn < [ (NS + 1)% - 1”

= ngmx < [
So the upper and lower decision lines are

UDL=57 + AD.. ez

r

and LDL=5% + AD:_[|(NS+]{1_%}1|]
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e.g. When @=0.10 and NS =1,000: ngmx’ =49 and AD®., ngmn' =49 and

ADD .

3.2.1 RANDANOMV-D1 EXAMPLE

The data in Table 1 will be used to illustrate the method.

J— 1 4 )
s7=13 57 21413 3.4
42 : (3.9
AD, =m_ax|s,? ~7|=1.658 3.5)
p-value = BEFL_THL_ 408 3.6)
NS+1 1001

The average sample variance was calculated to be 1.413. The test statistic computed on
the original data (AD,) was 1.658. The data was shuffled 1,000 times and a significance
level (a) of 0.05 was used. The p-value associated with RANDANOMV-D1 was
determined to be 0.08. Therefore, the initial test statistic was exceeded 79 times out of
the 1,000 data shuffles. Since 0.08 > 0.05 one may conclude that 1.658 was not

unusually large, and hypothesis (1.1) was not rejected.

3.2.2 RANDANOMYV-D EXAMPLE

The test statistics generated from the p-value method are below.

AD_ = m?x(sf 57 )=1658 (3.7)

AD,, = minls? - 5% )= ~0.690 (3.8)

r
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high = - ~0.08 3.9
PMEN= TS +1 1001 39

_ngmn+1_635+1

=0.635 (3.10)
NS +1 1001

Test statistics on the original sample are given in (3.7) and (3.8). The data was shuffled
1,000 times and a significance level (a )} of 0.05 was used. P-low was 0.635 and p-high

was 0.080. Hypothesis (1.1) was not rejected since both p-high and p-low > 0.025.

The RANDANOMYV-D decision chart for the example is in Figure 2. From 1,000

shuffles there were 1,000 values of AD? _ and 1,000 values of AD?  generated. Since

{NS—[I(NS+1)%—1|:”= 1000—“(1001)9:503-1”=1000-24=976, the required

r

value was ADP™ which ADY’® =1852. Since NS—H(NSH)(l—%]—lH =

r

1000-”(1001{1 -%]-1” =1000 - 975=25, the required value was ADZ! which

AD'™ =_1223 . The decision lines were determined to be

UDL=S + ADY™ =1.413+1.852 =3.265 (3.11)
CL=58%=1413 3.12)
LDL=S8? + AD'™) =1.413+ (~1.223)=0.190 (3.13)
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Notice each §? was within the decision lines. That is, there were no differences in

variability among the samples.

3.3 RANDANOMV-DD

Baker (1995) writes that many two-sample non-parameteric tests of variability assume a
commor center of location. Good (1994) offers a solution (a two-sample test) that does
not assume a common center of location. Good’s test permutes squared deviations from
the sample median. RANDANOMYV-DD uses a similar modification where deviations
from the mean are permuted, and a sample variance-type statistic is computed on the

shuffled data. The reader may consult Table 3.

RANDANOMY-DD uses the sample variance and a pooled estimate of the sample
variances (the average sample variance) to determine test statistics on the initial data.
Deviations of the sample vanance from the pooled value are computed. As in
RANDANOMYV-D, extreme deviations (maximum and minimum) are used as initial test

statistics.

RANDANOMYV-DD employs the following steps:

1. Calculate the mean of each sample, X,

2. Calculate Zy = X; — X,

3.
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4 Calculate AD, =max(s? —57)and AD_, =min(s? —57) on the initial

sample

5. Randomly shuffle z; some number of times, NS

“ 2
2 Zj

6. Calculate P* = /!

—1) and P? after each shuffle

7. Calculate AD? , =max(1“‘.2 —?) and AD] =1nin(F’,.2 —F) after each
shuffle

8. If AD? > AD__ then ngmx =ngmx +1

9. If AD! < AD_, then ngmn=ngmn +1
10. If p-value-high = ((ngmx +%NS 4 1)]-:% or p-value-low =

( (rngmn + U/(NS . 1)]< % then hypothesis (1.1) is rejected.

As with RANDANOMYV-D, this procedure will be called the p-value method.

Using (3.1) — (3.3) and a level of significance ¢, a decision chart for RANDANOMYV-

DD can be constructed. Similar to RANDANOMYV-D, ADS;%) is the (upper) %

max

quantile of AD! g=1,..,NS and AD,EZ?} is the (lower) % quantile of AD},

g=1,...,NS . Hypothesis (1.1) is rejected when at least one S plots outside the decision

lines. This will be denoted the decision chart procedure.
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3.3.1 RANDANOMYV-DD EXAMPLE

The data in Table 1 will be used to illustrate the method. Test statistics (3.7) and (3.8)
were the test statistics on the original sample for RANDANOMYV-DD. The p-values
from the test were

ngmx+1_13+1
NS+1 1001

p-high = =0.014 (3.14)

plow = P8R FL_327T+1_ 49g (3.15)

NS +1 1001

Since (3.14) <0.025 hypothesis (1.1} was rejected.

The RANDANOMV-DD decision chart for the example is in Figure 3. ADY™ and

AD,E'gj} were computed in the same manner as was done for RANDANOMYV-D. The

decision lines were determined to be

UDL=S$" + AD™ =1.413+1.53=2.943 (3.16)
CL=5?=1413 (3.17)
LDL=57 + AD'®™ =1.413+ (~1.008)=0.405 (3.18)

From Figure 3 one may see that S, was above the upper decision line.

3.4 RANDANOMYV-R
RANDANOMYV-D and RANDANOMYV-DD have test statistics that are based on extreme

values of differences from some pooled estimate, RANDANOMYV-R uses a ratio of the
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sample variance to the sum of the sample variances. Extreme (largest and smallest) ratios
are used as test statistics for the initial and shuffled dataa. RANDANOMV-R is a
randomization version of the Analysis of Means for Variances presented by Wludyka and

Nelson (1997 A).

RANDANOMYV-R uses the following steps:

2

1. Calculate AD,, =max 5 : and AD__ = min on
35
i=1
the initial sample where S is the sample variance
2, Randomly shuffle the original data some number of times, NS
2
3. Calculate AD?, =max and AD’ =min| after

i=1
each shuffle where S’ is the sample variance
4. If AD!, > AD,_,_ then ngmx =ngmx +1

5. If AD?, <AD_, then ngmn =ngmn+1

6. If p-value-high = ((n3m+])(NS +1)J<% or p-value-low =

((ngmn + 1)/(NS + 1)]<% then hypothesis (1.1) is rejected.

This procedure will be called the p-value method.
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A decision chart for RANDANOMV-R can be constructed. However, since

RANDANOMYV-R is a ratio test, for a level of significance & the decision lines are
" o2 t-94)
UDL=|Y'S! | AD,.* ) (3.19)
i=1

CL=$? (3.20)

LDL:(i 57 IAD,EZE)] (3.21)

ADL%) and AD &) represent the same values as presented in sections 3.2 and 3.3. This

min

method will be denoted the decision chart procedure.

3.4.1 RANDANOMV-R EXAMPLE

The data in Table 1 will be used to illustrate the method. Test statistics from the p-value

method are below.

AD_, =max (3.22)

AD_, =min (3.23)

p-high = TEMxFL_39+1_ 0, (3.24)
NS+1 1001

ngmn +1 =528+1 —0.528 (3.25)

p-low =

NS +1 1001
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Test statistics on the original sample are given in (3.22) and (3.23). The data was

shuffled 1,000 times and a significance level (&) of 0.05 was used. P-low was 0.528,
and p-high was 0.040. Hypothesis (1.1) was not rejected since both p-low and p-high >

0.025.

The RANDANOMYV-R decision chart for the example is in Figure 4. AD&::(’) and

AD'™) were computed in the same manner as was done for RANDANOMV-D and

RANDANOMY-DD. The decision lines were determined to be

I

UDL = ( Y s? }Aog“’)z 5.653x0.552=3.121 (3.26)
i=1

CL=S%=1413 (3.27)
f

LDL:( 3 s? }Apgg”))=5.653x0.049 =0.278 (3.28)

From Figure 4 one may see that each S was within the decision lines. That is, there

were no differences in variability among the samples.

3.5 RANDANOMV-RD

RANDANOMV-RD is the ratio version of RANDANOMV-DD. The same issue
presented in section 3.3 motivates RANDANOMV-RD. This test calculates initial test
statistics using the ratio of each sample variance to the sum of the sample variances
(similar to RANDANOMY-R), shuffles deviations from the mean (similar to

RANDANOMYV-DD) and calculates a ratio of sample variance-type statistics on the
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shuffled data (similar to RANDANOMYV-DD). Extreme ratios (maximum and minimum)

are used as test statistics.

RANDANOMYV-RD is carried out using the following steps:

1. Calculate the mean of each sample, ;

2. Calculate z; =X, - X

4. Calculate AD_, =max on

the initial sample

5. Randomly shuffle z; some number of times, NS

1;
23

6. Calculate P’ =/ ) after each shuffle

(n‘. -1

7. Calculate AD! & =max ; and AD? =min

2P
i=1

8. If AD! > AD,_,  then ngmx=ngmx +1

9. If AD!, <AD_, then ngmn=ngmn+1
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10, If p-value-high = ((ngmx+1)(NS +1)]<% or p-value-low =

[ (rgmn +1) < % then hypothesis (1.1) is rejected.

(NS + 1)]

This will be referred to as the p-value method.

Using the same ideas presented for RANDANOMV-R, a decision chart can be
constructed using (3.19) — (3.21) for a level of significance . This will be called the

decision chart procedure.

3.5.1 RANDANOMV-RD EXAMPLE
The data in Table 1 will be used to illustrate the method. Test statistics (3.22) and (3.23)

are the test statistics on the original sample for RANDANOMV-RD. The p-values from

the test were
p-high = "emxtl_13+1_ 4614 (3.29)
NS+1 1001
plow = "Ematl_327+1_, g (3.30)

NS +1 1001

Since (3.29) <0.025, hypothesis (1.1) was rejected.

The RANDANOMVYV-RD decision chart for the example is in Figure 5. AD,E;?:‘S) and

AD,(;,;_'f’j) were computed in the same manner as was done for the other randomization

tests. The decision lines were constructed in a similar manner to those for

RANDANOMYV-R. The decision lines were determined to be
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I
UDL= (Esf }AD,E;:;"” )=5.653x0.521=2.943 (3.31)
=1

CL=5§=1.413 (3.32)

1
LDL= [23,? }AD,;;?))=5.653><0.0716 =0.405 (3.33)
i=l

From Figure 5 one may see that .S was above the upper decision line.

3.6 COMPUTER PROGRAM FOR THE RANDOMIZATION TESTS

The previous sections in this chapter outlined the steps to perform each approximate
randomization test. A FORTRAN program that the reader may use to perform the tests
will be discussed in this section. The program was used to determine the p-values and
decision limits for the examples presented for each approximate randomization test. The
program performs permutation shuffles, but it may be modified for bootstrapping

shuffles.

integer numshuf,npops,nsanp, iseed

parameter (numshuf=1000, npops=4, nsamp=10, iseed=1579)

real alpha

parameter (alpha=0.05)

dimension gemvar (npopsg).,shufvar{npops), ddvarto (npops)

dimension rdratio({npops),ratiovar (npops}

dimension devvar {npops},devvarto(npops), sampavg (npops)

dimension randstol (numshuf), randstoh{numshuf)

dimension ddsle (numshuf), ddshi (numshuf}

dimension sampvar {npops),ratdev (npops*nsamp), dev (npops*nsamp)

dimension randsone (numshuf),ratioslo (numshuf),ratioshi (numshuf)

dimension rdslo(numshuf), rdshi {(numshuf)

real e {npops,nsamp),devmean (npops, nsamp), c{npops,nsamp}

dimension pop{npops*nsamp)

data pop/.5119, .6137,-.6311,-.5025,1.577,-1.32,-.3896,
.6738,-.09655,-.6112, .3756, .1026,-.2989,-.5242,-1.455,
-1.481, .5361, .6953,-1.243,-1.253,-1.648, .06582, .5893,
.04181, .2225,-.1234,-2.350,1.269,-.5466, .1959, .2821,-2.411,
-4.359,-1.704,.9703,-.9169, .6221,-3.017,-.04799,-2,235/

+ + 4+ +
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npopsamp nsamp*npops
halfalph = alpha/2.

11dl = numshuf*halfalph
iudl = numshuf - ildl + 1
donerjct = 0.

dtworjcl = 0.

dtworjch = 0.
ddrjecl = 0.
ddrjch = 0
rrjcl = 0.
rrjch = 0.
rdrjcl = 0.
rdrjch = 0.
& ASSIGNS THE DATA VALUES TO THEIR RESPECTIVE SAMPLE
id = 1

de § = 1 , npops
do k = 1 , nsamp
dev(k) = pop(jd)
jd = jd + 1
enddo

C FINDS MEAN AND VARTANCE FOR EACH SAMPLE
call ameanvar (dev, nsamp, savyg, svar)
gampavg(j) = savg
sampvar(j)} = svar

C FINDS DEVIATION FROM MEAN FOR -DD AND -RD
do k = 1 , nsamp
devmean(j,k) = dev(k) - sampavg({j)}
enddo
enddo

avgvar = 0.
varsum

1l
[}

C FINDS AVERAGE SAMPLE VARIANCE
do j = 1 , npops
varsum = varsum + sampvar(j)
enddo
avgvar = varsum / float (npops)

C FINDS DEVIATICN FROM AVERAGE VARIANCE AND RATIO TQ SUM
do j = 1, npops

devvar(j) = abs(sampvar (j) - avgvar)

devvarto(j) = sampvar(j) - avgvar

ratiovar{j) = sampvar(j) / varsum
enddo
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C SORTS THE DEVIATIONS FROM AVERAGE VARIANCE AND RATIOS TO SUM
call bubsort(devvar,npops)

call bubsort (devvarto, npops)

call bubsort(ratiovar,npops)

C ASSIGNS THE TEST STATISTICS FOR THE INITIAIL DATA SET
randone = devvar (npops)

randtwol = devvarto(l)

randtwoh devvarto (npops}

ratiolow = ratiovar(l)

ratiohli = ratiovar{npops)

C PREPARES THE DEVIATIONS FROM MEAN SO THEY MAY BE SHUFFLED
md = 1
do j = 1 , npops
do k = 1 , nsamp

ratdev(md) = devmean(j,k)
md = md + 1
enddo
enddo
C SHUFFLES THE ORIGINAL DATA AND THE DEVIATIONS FROM THE MEAN
C SHUFFLES ARE PERFORMED WITHOUT REPLACEMENT

do i =1 , numshuf
do ij = 1 , npopsamp - 1
rnn = float{npopsamp + 1 - ij)
ih = int{(rnn*ranl(iseed)) + ij

tmp = pop(ij)
tmpp = ratdev(ij)
pop(ij) = poplih)
ratdev(ij) = ratdev(ih)
pop(ih}) = tmp
ratdev{ih) = tmpp
enddo
C ASSIGNS THE SHUFFLED DATA T0O THEIR RESPECTIVE SHUFFLE SAMPLE
C SQUARES THE DEVIATIONS FROM THE MEAN FCR —-DD AND -RD
mad = 1

do j = 1 , npops
do k = 1 , nsamp
devmean(j, k) = ratdev(md)
c(j, k) = devmean (], k)**2
e(j,k}) = pop(md}
md = md + 1
enddo
enddo

37



PERFORMING OPERATIONS ON SHUFFLED DATA
THIS IS IN PREPARATION FOR CALCULATING TEST STATISTICS
rn = float (nsamp)
do j =1 , npops
ghsum = 0
shssum =
shsg = 0.
do k =1 , nsamp
shsum = c(j,k}) + shsum
shssum = e(j,k) + shssum
shsqg = (e(j,k})**2) + shsqg

enddo

semvar(j) = shsum / (rn - 1.)

vars = shsg - {shssum*shssum/rn)

shufvar(j) = vars / (rn - 1.}
enddo

savgvar = 0.
avssemvr = 0.
gumsem = (.

sumshuf = §.

FINDS AVERAGE VARTANCE AND AVERAGE SEMI-VARIANCE
do j = 1 , npops

sumsem = semvar{(j) + sumsem

sumshuf = shufvar(j) + sumshuf

enddo
avssemvr = sumsem / float (npops)
savgvar = sumshuf / fleoat (npops)

FINDS DEVIATIONS FRCM AVERAGE AND RATIOS TO SUM
do j = 1 , npops

devvar({j} = abs(shufvar(j}) - savgvar)

devvarto{j) = shufvar(j) - savgvar

ddvarto(j) = semvar(j) - avssemvr

ratiovar{j) = shufvar{j) / sumshuf

rdratio(j) = semvar{j} / sumsem
enddo

SORTS THE DEVIATIONS FROM AVERAGE AND RATIOS TO SUM
call bubsort{(devvar,npops)
call bubsort (devvarto, npops)
call bubsort{ddvarto,npops)
call bubsort({ratiovar, npops)
call bubsort(rdratio,npops}

ASSIGNS TEST STATISTICS FOR THE SHUFFLED DATA
randsone (i) = devvar {npopsg)
randstol (1) devvarto(l)
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randstoh(i) = devvarto (npops)
ddslo(i) = ddvarto(l)
ddshi{i} = ddvarto(npops)
ratioslo(i) = ratiovar (1}
ratioshi(i) = ratiovar{npops)
rdslo (i) = rdratio(l)

rdshi (i) = rdratio(npops}

C COMPARES TEST STATISTICS OF SHUFFLED DATA AND ORIGINAL DATA
c ADDS ONE TO COUNTER IF ORIGINAL EXCEEDED BY SHUFFLED VALUE
if (randsone(i).gt.randone) donerjct = donerjct + 1.
if (randstol(i).lt.randtwol) dtworjcl = dtworjcl + 1.
if {randstoh(i).gt.randtwoh) dtworjch = dtworjch + 1.
if (ddslo(i).lt.randtwol) ddrjcl = ddrjcl + 1.
if (ddshi{i).gt.randtwoh) ddrjch = ddrjch + 1.
if {(ratioglo(i).lt.ratiolow) rrjcl = rrjecl + 1.
if {(ratioshi(i}.gt.ratiohi} rrjch = rrjch + 1.
if (rdslo{i).lt.ratioclow) rdrjcl = rdrjcl + 1.
if (rdshi{i}.gt.ratichi) rdrjch = rdrjch + 1.
enddo

c SORTS SHUFFLED TEST STATISTICS AND FINDS DECISION LIMITS
call bubsgort (randstol, numshuf)

call bubsort (randstoh, numshuf)

call bubsort(ddsloc, numshuf)

call bubsort{ddshi, numshuf)

call bubsort (ratioslo, numshuf)

call bubsort{ratioshi, numshuf)

call bubsort{rdslo, numshuf)

call bubsort (rdshi, numshuf)

dldl
dudl =
ddldl
ddudl
rldl
rudl =
rdldl
rdudl

avgvar + randstol (ildl)
avgvar + randstoh(iudl)
avgvar + ddslo(ildl}
avgvar + ddshi (iudl)
varsum * ratioslo(ildl)
varsum * ratioshi(iudl)
varsum * rdslo{ildl)
varsum * rdshi (iudl)

H

C CALCULATES P-VALUES

sn = float (numshuf) + 1.
pvone = {(donerject + 1.) / sn
pvtwol = (dtworjcl + 1.) / sn
pviwoh = {(dtworjch + 1.) / 2n
pvddl (ddrjcl + / sn
pvddh {(ddrjch / sn

pvrl = (rrjcl +
pvrh (rrjch +
pvrdl (rdrjecl
pvrdh {rdrijch

1
1
)
)
1
1

o+t

}

)

/ sn
/ sn

) / sn
Yy / sn
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c DETERMINES REJECT DECISION FOR EACH TEST

C THE REJECT DECISION IS PRINTED AS OUTPUT ALONG WITH THE P-VALUE
c THE DECISION LIMITS ARE ALSO PRINTED FOR THE APPLICABLE TESTS
C THIS IS FOR RANDANOMV-DL
if (pvone.lt.alpha) then
write(*,*) '-D1 rejects, p-value is' ,pvone
print 5%
5 format ('0")
else
write(*,*) '-D1 does not reject, p-value is' ,pvone
print 15
15 format ('0')
endif
C THIS IS FOR RANDANOMV-D

if (pvtwol.lt.halfalph) go to 100

if (pvtwoh.lt.halfalph) go to 100

go to 20

100 write(*,*) '-D rejects, p-values are' ,pvtwol,pviwoh
write(*,*}) 'LDL and UDL are' ,dldl, dudl

print 25

25 format ('0°')

go to 30
20 write(*,*) '-D does not reject, p-values are' ,pvtwol,pvtwoh
write(®,*) 'LDL and UDL are' ,dldl,dudl

print 35

35 format ('0')

C THIS IS FOR RANDANOMV-DD
30 if (pvddl.lt.halfalph) go to 200

if (pvddh.lt.halfalph} go to 200

go to 40

200 write(*,*) '-DD rejects, p-values are' ,pvddl,pvddh
write(*,*) 'LDL and UDL are' ,ddldl, ddudl

print 45
45 format ('0')

go to 50
40 write(*,*) '-DD does not reject, p-values are' ,pvddl,pvddh
write(*,*) 'LDL and UDL are' ,ddldl,ddudl

print 5SS

55 format {'0*")

Cc THIS IS FOR RANDANOMV-R
50 if (pvrl.lt.halfalph) go toc 300
if (pvrh.lt.halfalph) go to 300

go to 60

300 write(*,*) '-R rejects, p-values are' ,pvrl,pvrh
write{*,*) 'LDL and UDL are' ,rldl, rudl

print &5
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65 format ('0")

go to 70

60 write(*,*) '-R does not reject, p-values are' ,pvrl,pvrh
write(*,*) 'UDL and LDL are' ,rldl,rudl

print 75

75 format ('0°')

C THIS IS FOR RANDANOMV-RD
70 if (pvrdl.lt.halfalph} go to 400

if {pvrdh.lt.halfalph) go to 400

go to 80
400 write(*,*) '-RD rejects, p-values are' ,pvrdl,pvrdh
write(*,*) 'LDL and UDL are' ,rdldl, rdudl

print 85

85 format ('0°)

go to 390
80 write(*,*) '-RD does not reject, p-values are' ,pvrdl,pvrdh

write(*,*}) 'LDL and UDL are' ,rdldl,rdudl

90 end

C THIS SUBROUTINE CALCULATES THE SAMPLE MEAN AND VARIANCE
subroutine ameanvar (b,n,vmean, vvar)
dimension b(n)
sum = 0,
sq = 0.
do j =1, n
sum = sum + b(j}
sq = sq + (b(j)**2)
enddo
rn = float(n)
vmean = sum / rn

vvar = (sgq - sum*sum / rn) / (rn - 1.}

return

end

C THIS SUBROQUTINE SORTS VALUES IN ASCENDING ORDER

subroutine bubsort {devs,n}
dimension devs(n)
do j =1, n-1
do k=1, n-j
if (devs(k).gt.devs(k+1l)) then
tmp = devs (k)
devs (k) = devs(k+l)
devs (k+1) = tmp
endif
enddo
enddo
return
end
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c THIS FUNCTION PROVIDES RANDOM NUMBERS TO SHUFFLE DATA
c THE FUNCTION WAS OBTAINED FROM NUMERICAL RECIPES
FUNCTION RAN1 (iseed)
DIMENSION R{97)
PARAMETER (M1=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6)
PARAMETER (M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6)
PARAMETER (M3=243000,IA3=4561,IC3=51349)
DATA IFF /0/
IF (iseed.LT.0.0OR.IFF.EQ.0) THEN
IFF=1
IX1=MOD(ICl-iseed,M1)
IX1=MOD(IAl1*IX1+IC1l,M1)
IX2=MOD(IX1,M2}
IX1=MOD(IA1*IX1+IC1,M1}
IX3=MOD(IX1,M3)
Do 11 J=1,97
IX1=MOD(IAI*IX1+IC1,M1)
IX2=MOD (IAZ*IX2+IC2,M2)
R(J)=(FLOAT(IX1)+FLOAT (IX2)*RM2) *RM1
11 CONTINUE
iseed=1
ENDIF
IX1=MOD(IAl1*IX1+IC1,M1)
IX2=MOD(IA2*IX2+IC2,M2)
IX3=MOD(IA3*IX3+IC3,M3)
J=1+(97*IX3) /M3
IF{J.GT.97.0R.J.LT.1) PAUSE
RAN1=R(J)
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1
RETURN
END

The program allows the user to specify the number of shuffles (numshuf), the number of
samples (npops), the number of elements in each sample (nsamp), the level of
significance (alpha) and the seed (iseed) used to start the shuffle function. After these
items have been declared, the user enters their data between the slashes (/). The data
from Table 1 lies between the slashes. The program may then be compiled and executed.
The program will output a reject/do not reject decision along with p-values. Upper and
lower decision limits are produced so that a decision chart similar to those presented in

sections 3.2 — 3.5 may be constructed.
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Table 3: Qutline of Randomization Tests

Test Statistic (Initial) What is shuffled? Statistic (Shuffled)
-D1 max|§? _ﬂ Original data maxls? _S—zl
-D min and max Original data | i and max {52 — 57
(Siz — S—z) |
-DD min and max Deviations from the | .0 204 max (P2 _?)
(Szz -8 2) sample foean, where
Zy =X — X m
32
2 _ j=l Y
Pj - (ni - 1)
-R Original data min and max
-RD min and max Deviations from the
( ) sarmple mean, min and max| F
— i
=% T 2P
i=1
where
2 _ =1
F=" /1)
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Figure 2: RANDANOMV-D Decision Chart
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Figure 3: RANDANOMYV-DD Decision Chart
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Figure 4: RANDANOMYV-R Decision Chart
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Chapter 4

Variance Configurations

Particularizing Section 1.2, suppose a researcher is interested in the variances of [
populations, each with distribution function F, (xi o} ) Let

Q =(0,50)x(0,0)x---x(0,)
be the parameter space for an HOV test. A variance configuration is a particular set of

values for the I variances such that

{0, Je Q.
There are infinitely many variance configurations / populations may take. For that reason

it is useful to partition the variance configuration into subspaces

Q. ={(cr, O )2 l’gi_lx(%j ]= }

Note the HOV hypothesis (1.1} is true for all configurations (0, ,...,0,) in Q,.

DEFINITION 10. The least favorable configuration (LFC,) for an HOV test is that

configuration in 2, with the lowest power.

In this manner the LFC for the HOV tests is indexed by r. Different tests may have
different LFCs for the same r.
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Since ANOM and ANOVA are used in the nonrandomization tests presented in this

paper, the LFC for these location tests will be presented. Let
M, :ix :ﬂil T ¥ n%z}xhu,. —[.tj|2AO'J
be subspaces of the parameter space of population means. Note that specifying a

difference in terms of AG amounts to measuring differences of means in ¢ units. The

LEC for the ANOVA-F test and ANOM (see Nelson (1998)) are of the form

Ag A0 5.0 @.1)
22

That is, when I —2 of thc mecans arc in the middle, and the other two means are

equidistant above and below.

For the nonrandomization tests in this paper ANOVA and ANOM are applied to scale

transformations y, to test the HOV hypothesis. These tests are actually comparing
E(J’u) for the I populations. The LFC for these tests will be when the configuration of
expected values (E(y,; }..., E(y, ) is of the form of the ANOVA/ANOM LFC. That is,

where one is large, one is small, and the rest are in the middle. Now a particular variance

configuration ((:l'1 w0, ) for the x;’s will induce a parameter configuration of

(E(yu)....,E(yﬂ )) The configuration of o ’s that induces the LFC (E(y,j),...,E(y,j)) is
the LFC for the variance test. This variance configuration should be of the form
(1,m,...,m,r) since this will induce a configuration of means (E(y1 i ),...,E(y i )), which

has the proper form. The value for m which produces the LFC likely depends on the

underlying population (of x’s) and since that in general is not known the LFC is
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indeterminate. There are complications involved since the transformed values do not in
general meet the assumptions for ANOVA/ANOM tests and these assumptions are
involved in the determination of the ANOVA/ANOM LFCs. However, the robustness of
these tests is exploited for the HOV tests. Monte Carlo experimentation can be used to

learn about HOV tests” LFCs for particular populations.

LFCs for the ANOM-type randomization tests presented in this paper again probably
depend on the parent populations. Monte Carlo methods may be used to shed light on
this problem. Intuition suggests these LFCs are of the form (1,m,...,m, r) since the

randomization tests are modeled after the ANOM tests.
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Chapter 5

Monte Carlo Study

5.1 METHODOLOGY

A Monte Carlo study was carried out to evaluate each of the tests with respect to type I
error stability and power. The type 1 error stability study assessed the relationship
between observed rejection rates and the nominal rejection rates {&t) when the HOV
hypothesis (1.1} was true. The power study evaluated the ability of each test to detect

differences among sample variances when the HOV hypothesis (1.1) was false,

FORTRAN programs were written to perform the Monte Carlo study. The program used
to simulate the randomization tests is in the Appendix. The program had to be modified
slightly to evaluate different numbers of populations and different sample sizes. The
non-randomization tests used 10,000 replications, and the randomization tests used 2,000

replications with 1,000 shuffles per replication.

Since the focus of this paper was on robust tests, six of the seven distributions were
nonnormal in the type I error stability study and power study. Three common and four

special distributions were used in each study. The three common distributions were

N(0,1), #>(@) and an exponential distribution with A =1, Exp(1). The four special

49



distributions were (i) a symmetric distribution with kurtosis of 6 (generated using a
method devised by Fleishman (1978} and employing tables from Barnes (1981)) to obtain

KUR(6)=0.66268N(0,1)+0.10189N*(0,1) 5.1)
(ii) a distribution with no kurtosis and skewness of 3 (generated using Fleishman (1978}
and Barnes (1981)) to obtain

SKW (3)=—0.05134—2.91756N(0,1)+ 0.05134N*(0,1)+ 0.87133N*(0,1) (5.2)
(iii) Gamma [3,1] and (iv) a 50:50 mixture of two normals where one was N(-2,1), and

the other was N(2,1).

The majority of the power study was conducted with the KUR(6) and SKW(3); however,
the power of each test was evaluated for each of the distributions in the type I error

stability study.

5.2 VARIANCE CONFIGURATIONS STUDIED
Two variance configurations were studied:
. Configuration 1, where I —1 variances were equal and the last was larger.

This configuration was of the form (1,...,1,7).

. Configuration 2, where 7 —2 variances were equal, the first was smaller,
and the last was larger. This configuration was of the form (l,m,...,m, r). Two
variations of Configuration 2 were studied. One arrangement was m = (0.5), and

the other arrangement was m = (0.75)r. The latter variation of Configuration 2
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was studied to sce the performance of the tests on a configuration thought to

produce lower power.

Configuration 1 was chosen because it was a common circumstance of interest, and it

was a favorable LFC. Configuration 2 was selected because it was thought to be an

unfavorable LFC.

5.3 TYPE I ERROR STABILITY

The type I error rates are given in the case where each of the I populations have the
same variance. The ideal test will be robust across different underlying distributions.
That is, a robust test will have a type I error rate that is consistent from distribution to
distribution. Similar to Conover, Johnson and Johnson (1981), Wludyka and Nelson
(1999} gave guidelines on assessing the degree of robustness. A test was deemed to have
“good robustness” if its rejection rate was less than twice the nominal rate and “adequate
robustness” if its rejection rate was less than three times the nominal rate. Tests may also
be classified as either “conservative” or “liberal.” “Conservative” tests are those in
which the empirical rejection rate is less than the nominal rate. “Liberal” tests are those

in which the empirical rejection rate is greater than the nominal rate.

Tables 4 and 5 contain results from the Monte Carlo study performed to evaluate the
empirical type I error stability. Table 4 holds information from the study conducted

using five samples, and Table 5 holds similar information for 10 samples.
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Levene and ANOMV-LEV were the only nonrandomization tests that displayed “good
robustness™ for each of the six nonnormal distributions, although ANOMV-LEYV slightly

exceeded the criterion for SKW(3). ANOMV-JK exhibited “good robustness” for the
mixture, but the test was “inadequate” for SKW(3) and x2(1). ANOMV-TR
demonstrated “good robustness” for all distributions except Exp(1) and °*(1). This test
was “inadequate” for x*(1). F-K showed “good robustness” for parent distributions of
KUR(6), SKW(3) and the mixture, The test was “inadequate” for y(1). Levene’s test
proved to be conservative for all parent distributions. None of the other
nonrandomization tests were consistently conservative or liberal. ANOMV-LEV and

ANOMV-JK leaned toward conservative and liberal, respectively. ANOMV-TR and

ANOMYV-FK jumped around the nominal rejection rate.

Two of the four randomization tests demonstrated “good robustness™ for the nonnormal
parent distributions. RANDANOMYV-D and RANDANOMY-R were the two tests that

were “good” for all distributions. RANDANOMYV-DD and RANDANOMYV-RD were
“inadequate” for x°(1), Exp(l) and Ga.mma("/9 ,l) when permutation shuffling was used.

RANDANOMYV-DD exhibitied “good” robustness when bootstrap shuffling was used.
None of the four tests were consistently conservative or liberal; however, the tests were

more conservative when bootstrap shuffling was used.
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5.4 POWER
Tables 6 — 12 contain results from the power study. Tables 6 — 9 hold power information
for KUR(6). Tables 10 and 11 contain power results for SKW(3), and Table 12 contains

the results from a power study using one variance configuration for the other five

distributions used in the type I error stability study.

Each of the tests had greater power for Configuration 1 than for variance Configuration 2.
The power of each test increased with n. Among the randomization tests
RANDANOMYV-D and RANDANOMYV-R appear to be the best. When looking at the
nonrandomization tests, ANOMV-LEV was the best. There were no significant
differences in power when comparing the nonrandomization group as a whole to the
randomization group as a whole when permutation shuffling was used. Bootstrap
shuffling had a negative impact on the power of the randomization tests. This type of
shuffling had the greatest impact on RANDANOMYV-D and RANDANOMV-DD while
the other randomization tests were impacted minimally. There were instances where

individual tests were inappropriate for the distribution under study.

5.5 UNEQUAL MEANS

It was noted in section 3.3 that many non-parametric tests of variability assume a
common center of location (Baker 1995). For this reason RANDANOMV-DD was
developed. The following example will illustrate the problem that arises with

RANDANOMYV-D when populations have unequal means.
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Consider the sample below for which I =3, n, =2, s> =0.5, 52 =0.5, 52 =1250 and
5% =417.
2 20 100
X =
3 21 150
From the initial sample AD_,_ =833 and AD_, =-416.5. There are six distinct

permutations of the data that produce different test statistics. That is, the original sample

produces the same test statistics as

20 100 2

X = .

21 150 3

Two such distinct permutations are
X _ 2 3 100 and X = 2 20 21 .
20 21 150 3 100 150

For the first permutation s2 =162, s2 =162, s? =1250, s? =524.67, AD.. =-362.67
and AD] =725.33. The test statistics from the permuted data do not exceed the test
statistics from the original sample. For the second permutation s’ =0.5, s> =3200,

52 =8320.5, s? =3840.33, AD?, =—3839.83 and AD?_ =4480.17. The test statistics

from the permuted data exceed the test statistics from the original sample.

This was done for the remaining four permutations. Four of the six distinct permutations
produced test statistics that exceeded the initial test statistics. Thus, one would conclude
that there was no difference in varability among the samples. This example illustrates a

problem with RANDANOMV-D: this test may have difficulty detecting differences
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among variances if the populations have very different means. Thus, caution should be

exercised when using this test when the means are known to be very different.

A Monte Carlo study was carried out using an unequal means case. The study used a
situation where the means were not “too different.”” The type I error results are in Table

10. The results from the power study are in Table 11.

The example presented earlier in this section showed that large differences in the mean
could lead to problems with RANDANOMYV-D. The Monte Carlo results show that
small differences in the mean may not have a big impact on RANDANOMYV-D or any of

the randomization tests.

From the Monte Carlo study it was seen that bootstrap shuffling is slightly more robust
and less powerful than permutation shuffling. The small increase in robustness was
offset by the decrease in power. It was also shown that small differences in the mean
may not greatly impact the performance of the randomization tests, but care should be
exercised when using these tests when the means greatly differ. Because of the previous
two issues, the user should employ randomization tests with permutation shuffling when
it is known that the means are not very different. When the randomization tests are used
in these situations, RANDANOMYV-D and RANDANOMYV-R are the best, especially
with larger sample sizes. These two tests control the type I error rate for all of the
distributions in the study, and these tests are as robust as commonly used
nonrandomization tests. With smaller sample sizes, RANDANOMYV-D and
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RANDANOMYV-R are still robust tests, but the user sacrifices some power. The user
should be hesitant about using RANDANOMY-DD and RANDANOMYV-RD when the

data is skewed as the Monte Carlo study shows inflated type I error rates for these tests.
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Table 4: Empirical Type I Error Rates for I = 5, n = 10 (20 in parentheses), o =0.05 left of semi-colon, & =0.10 right

of semi-colon. * Denotes Bootstrap Shuffling

Distribution
Test Ni(D,1) KUR(6) | SKW(3) [ Chisg) | Exp(1) [ Gamma(4/9,1) | 50:50 Mixture
Levene 0297033); .D6E (LO71)  3ZCOF)- O3 (OB OIS (OL7);.030(0a4) 099 (0d5); 095 (094) M6 (049); .092(096) 044 (UAZy; (GB(.0BZ) 018 (0143, 033 (.053)
ANOMV-LEV | 032(034);.060 (074) 044 (047); (90C.092) .02B(0%7); 066(083)  .063(DSS);.106(103)  .0ST(055);.103(100)  .056(46); J02(.089) 019 (016); B42(.036)
ANOMV-JK | -051052); 0RB(.0S1) 099 (100);.174(170) . 26(317); 344¢430)  .136(12D);.207¢201) .19 (115):.195(185)  121(110);.196(186) 024 (.030); 043 (060}
ANOMV-TR | 034 (0390720073 041(039);.085(082) 018(020); 044 ({48)  .154(.180); 2453 (282) BT (098) ; 143 (.171) 081 (087); 146 (1600 014 (009); .032(025)
EK 031 (.033); 066(.073) 03B (.03B);.080(.081} .0I7(OLB);.40(045)  .162(198);.254(305)  .OB7(1DG);.1S3(177;  .0BS(092);.149(164) 012 (.008);.027(.022)
RAND-D1 057 (.052) ; 108 (.091) 053 (.058);.098(.091)  .046 (066): 9B (099)  .US0(DGG); .0B0(.110) 054 (048): 113(.104;  .043 (.047); 096 (.08Y)  .0S0(046);.093(.093)
RAND-D 061 £.047); 108 (.0B3) 059 (.046);.102(.091) .040 (046); 0B9(113)  .0SB(064);.100(107y 050 (D47);.101(093)  .G4B(050);.092(.101)  .044 (044};.000(.090)
RAND-DD | 0BZ(O03B);145009%) .114(072);.177(120) .16001113; 2310165  410(272); 501357y 267 (169);.367(235)  .2SB(207);.350(.275)  .061(047);.107 (.08Z)
RAND-R 060 (043);.111 (083) 059 (D47);.107(.090) .047(051);.089(.088)  .053(055);.102¢.102)  .054{042);.007(.088) 049 (046);.096(103)  .044 (.046}; 086 (.0BG)
RAND-RD | 0820088);.1450099) 114(072);.177¢120) .160(111); 23 (165)  410(272);.501 (35)  .267(169); 367 (235)  .258(207);.350(275) 061 (.047);.107 (.082)
*RAND-D1 043 ;.09 042; 103 30; 0% A1 105 ;108 4B 108 031 091
*RAND-D 026, 067 DI .47 D15, 048 012; 004 012038 DIB: 053 030;.076
*RAND-DD 027 .07 021 ;.055 0255 051 038 ; 087 45 ; 099 .050; 106 045 ; .094
*RAND-R 032; .071 039 ;.074 023 ; 068 022; 058 029 ; 064 021 072 027 ; 055
*RAND-RD 055 112 068 ;.47 .070; 160 40 442 212; A2 .200; 302 054 ;.098

Table 5: Empirical Type I Error Rates for I = 10, n = 10 (20 in parentheses), & =0.05 left of semi-colon, & =0.10 right

of semi-colon. * Denotes Bootstrap Shuffling

Distribution
Test N@©,1 KUR({6 SKw(3 Chi-ag(1 Exp(l Gamma(4/9,1 50:50 Mixture
Levene BZZ(034)7 053 (076) 032 (046): 071 (093) 013 (023); DIL(OS0) 047 (053); 94 (.105)  (5OL031};.002(.098) .04 (096); 084 (.000) D09 (007); .21 {021
ANOMV-LEV | 0320037; 061 (075) 074 (070);.125(.119) .108 (127);,187{202)  096(091); 154140}  .082(073);.134(.123)  .080(071);.030(114)  Di3(016); 030{.033)
ANOMV-TK | 051 (054); 0860100 [28(137); 210 (228)  S9(623); 627(T18)  .IS7C155); . 246(239)  I41C131);.227(214) 42 (135);.227(219) 035 (035 ; 050 {.065)
ANOMV-TR | 032(036); 061 (075) .032(043); 081086} .020(02%);.042(.050)  .180(236); .281(359)  .102{113);.167(196)  .092(105);.155(.190) .09 (DI0);.023(.025)
F-K 024 (,034) ;053 (.076) 036(042); 074 (0BEy D11 (014); B26(.03T)  .227(329); .33B(454)  .ID4(136);.178(219)  .09B(131);.06B(217) 005 (,005);.013 (015)
RAND-D1 | 0300046} ; 0B2(.096) 041 (042);.086(.108) D63 (046); 114 (.09}  G52(034); 113(1013 051068y, W92(.126) 031 (043}, D76( 087 051 (D44); .106(.093)
RAND-D U19¢052); 062(.303] OB (048): 6K (096) .054 (050);.110(0%4]  .030(0S5); (I8 (I0R)  .052(050);.002(093) 042 (.044); 0BS(096)  .0S0(043);.106¢.091)
RAND-DD | 043¢065);.092(122) 072(084):.136(144) 199 (109);.263(173)  .S00(38D); 619(460)  311(222);.423(306) 301 (242);.813(329)  .090(042);.135(.093)
RAND-R 024 (058); 069 ,102) 027 (052);.070 (101}  .0SBCO40);.104(005)  .030(D60); OT6(.106)  .046(.096); 0SB (.084) 033 (046);.074(.09))  .052(044); .10 (089)
RAND-RD | 930065 002122 .0720084);.136(148) .199109); 263(173)  .500(380); 619(460)  .311(222); 423(306) 301 (242); 413(329)  .090(042);.135(.093)
*RAND-DI 053113 0435107 PR W0, 113 036 ; 106 039 ; 110 43, 096
*RAND-D 09 .07 DI ; 045 013 ;045 004 ; .03t 4, 036 014 ;.03 039,078
*RAND-DD 037 091 023072 {018; 151 025 ; 084 031 ; 050 033 ; 083 052;.009
*RAND-R 044, 096 043 ;.087 032 ; 075 019, 060 034, 077 0325 070 039, 076
*RAND-RD 0715135 091 ;.180 102; 213 453 568 298 ;.72 .264 ;383 0665108
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Table 6: Empirical Rejection Rates — Configuration 1 for = 5, n = 10 (20 in parentheses), o/ =0.05 left of semi-colon,

o =0.10 right of semi-colon, KUR(6) Distribution. * Denotes Bootstrap Shuffling

Test r=1 r=3 | r=4 r=5 | r=6 | r=9 | r=16
Levene D32 (037); 073 (083) 140 (363); 244 (3BL) . 2A2(533); I60(674) 334 (.J02); 459 (.799)  AI3 (BOO); 534 (B7i4) 596 (938); J16(866) 8O3 (993); 883 (390
ANOMV-LEY | 0440047);.090 (092) .196(416);.288(.518) .313(619); 421(710)  422(761);.525(829)  .S08(849); 615(H99)  .T00(.958);.780(975)  .B86(997);.929 (998
ANOMV-IK | 09010005 174 (170) 202¢320);.299 (435) 265 (457); . 376(564)  .331(564); #44(661)  .I00(645); 302(733)  .520(790);.629(B31) 698 (H17T); 780 (948)
ANOMV-TR | D41(039); 0B85 (082) .167(369);.252(478) .261 (567); 364(666)  .352(710);.461(792)  .432(BOT);.S42(873)  .607(941); T12(966)  .B13(993); .BI7 (997
FK DB (.038) ; OBOC.C81) 151 (333):.238(.456) .232(517); M41(638)  311(688); 427(765  3IB0OCTS9: 501 (845)  .S6(914); 663(953) 749 (98T); 839 (99%)
RAND-D1 033 (098) ; 099 (091) 183 (389) ; 214 (4B6) 281 (.569); 373 (676) 365 (697); 469 (.787)  .43B(BOB); 351 (830]  0.605(I03) ;.694 (340 600 (992) ; .B64{597)
RAND-D 059 (.046) ; 1OZCOOL) 154 (320); 45 (428) .231(502); .333(610)  .302(632); 410(T2)  I69{T46); 4T9(830)  0.533(E7E); .632(S15) 724 (9E3);.B10{99L)
RAND-DD | 1140072);177 (1200 256 (384): 353 (.500) 353 (577), 474 (668)  ASS(702); .855(791)  522(798);.632(368)  0.681 (911); 767 (950) 859 (934); 911 (596)
RAND-R 059 (047); 107 {0900 .166(323);.251 (439) .244(511); 357¢620)  32B(65A); 437(730)  .395(752);.516(83M) 0579 (BBT); 677(921) 785 (9ES); B6O(.5%4)
RAND-RD | 1140672;.177¢120) .256(3B4); 353(.500)  .353(577); AT4(668)  ASS(703); 555(791)  .522(798);.G32(H68) 0681 (911); 767 (950) 859 (.994); 911 (.996)
*RAND-D1 042;.108 160; 286 35 ; 302 313 ; 470 T 372; 547 1494 ;701 653, B
*RAND-D D018 ; 047 087 ;.167 148 ; 240 206 ; 320 25137 354 498 494 ; 657
*RAND-DD 021; 055 o ;177 .153; 250 201 ; 216 239;.9M 350; 498 492 ; 638
*RAND-R 039 0714 31,231 216 302 287 ; 414 353 ; 488 .513; 642 728 435
*RAND-RD 068 ; 147 214 ;337 307 439 384 377 A58 ;602 £13;.744 B14; 905

Table 7: Empirical Rejection Rates ~ Configuration
@ =0.10 right of semi-colon, KUR(6) Distribution.

1 for /=10, n = 10 (20 in parentheses), & =0.05 left of semi-colon,

* Denotes Bootstrap Shuffling

Test r=1 r=3 r=4 | r=5 | r=6 | r=9 i r=16
Levene OALC046) ; DTLCI93) L1A5(353): 230 (A%) D08 (35%): 33706%)  J36(707); Aa4(78%) A5 B09); 1869 G6ZZ(947); . TIB(I6T)  B41(996);.803 (I98)
ANOMV-LEV | 074(070); 125(119) .252(457);.326(.539) 383 (,669);.459(735) 497 (B0S) ; .573 (.852) .591 (B8T); .665(.218) J79(.976) ; 828 (.984) 929 (.999) ; .950(.999)
ANOMV-JK | 120137, 210(228) 2000308); 299 415) 251 (426); 352(538)  .I06(SI); A11(.639)  356(62);.463(72)  ABB(702);.595(862) 684 (938):.770(96)
ANOMV-TR | 042¢043; 081 (086) 1700385),.204¢476) .27B(390); 359 (678)  .373(73M); AGG(BOG)  462(B35); S55(8BS)  .657(956);.TAZ(971)  .B52(.99); BOZ(99%)
EK 036042); 074 COBB)  (23(303); 2020418  196C485); 2B61591)  .2P4(638); IBICTIY  MBLTIN; A5S(H1S) 509 (905); .626(541) T35 (985); BLE(IS%)
RAND-D1 | 031 (09%); 0860103} 147 (296} ;.227 (A87) 38 (477); 347 (578) 33606210, 74(697)  AST(713); 34(788)  .636(883), 708 (926) .84 (DBU) ;.885 [98B)
RAND-D 028 (048); 068C.008) .121(263);.188(352)  .214(426); 297 (524)  92(573);.391(658)  IBI(6TN); AT2(T4E)  .SS5(854); 64T (93}  TSH(972); .810(98)
RAND-DD | 0720084 ;036 148) 189(322); 295(477)  290¢A84); 413597}  4D40631);.506(720)  493(728); S99CB02)  .672(8%4); 75B(927)  .BOD(I8S); .920(990)
RAND-R 07 (0S2); 070 (101) 117(266): 186 (356)  .227(426);.302(528)  .301(382); A00(666) 393 (68T); A96(755) SIS (86D);.679(9005  .BLZ(976);.855(.987)
RAND-RD | 0720084); (36 (144) .189(322): 205(427) 299 (484); 413(SUT)  AD4(E31): S06L720) 493 (728); S09(B0D)  .672(804);.75B(927) 890 (985); .920(990)
*RAND-D1 [ERWT] 143247 A7 % 35 A5 FIERE SRR ] 767 ; 865
*RAND-D 018 ; 045 073144 144 238 211; 329 281 ; 414 AlB; 573 590, 767
*RAND-DD 023, 0m 087 ;.187 143, 292 218; 391 283 ; 469 410 642 573, 847
*RAND-R 043 5 087 1221205 194 ; 296 (181 397 363, 477 531, 646 759 835
*RAND-RD 091; 180 191,01 272; 412 a7, 516 456 ; 595 636; 749 B3 ;910




Table 8: Empirical Rejection Rates — Configuration 2 for 7 = 5, n = 10 (20 in parentheses),
a =0.05 left of semicolon, o =0.10 right of semi-colon, KUR(6) Distribution. * Denotes

Bootstrap Shuffling
Test m=25r=5 | m=35r=7 | m=12r=16 | m=1875,r=25 | m=3675r=49
Levene J32(.346) ;230 0.497) 168 (.465) ; .289 (.628) 265 (788) ; A35(916) 333 (.891) ; .545 (.969) 429 (9613 ; .663(583)
ANOMYV-LEV | -150(330); .2430488)  .175(.439); 286 (.607) 250 (855) ; 463 (.951) 357 (945); 577 (.986) 463 (986) ; 727 (996}
ANOMV-TK | 2#20098); 9¢516) 319 (549, 435652 663 (900) ; 755 (.932) JTTB(953) ; 849 (.969) 891 (98S) ; 928 (.989)
ANOMYV-TR | 144(3%0); 26¢501)  .102(528); 324 (676) ABT (967); 686 (98T 670(.996) ; 831 (.999) 875(1.00) ; .956 (1.00)
EK 150377 ; 292(520) 206 (.536) ; 331 (684) A47 (940) ; .636 (979 395 (989) ; 777 (397 795(999) ; .918.(1,00)
RAND-D1 | -133(237); 2100376 150(281);.231 (.396) T4 (172} ;.200 (3637 17 (192} ; 210 (403 120028 ; 217 (443)
RAND-D 154 (320) ;251 (456) 210{468) ; 316 (.609) 0B {927y 632 (.962) 623 (.982) ; 740 (.998) 741 (997} ; .B25(.999)
RAND-DD | 285(386);.401(5Z7)  374(.519); 492(.693) .T73(969) ; BSZ {986) B95(995) ; 938 (.998) 977 (.998) ; 089 (1.00)
RAND-R AT0(329);.263(463)  242(494) ; 351 (.623) 632 (946} ; 769 (.974) 19 (595) ; 884 (.995) S48 (998) ; .97B(999)
RAND-RD | -285(386); 401 (527) 374 (579); 492 (693) 773(968) ; 852 (986) 895 (.999) ; 938 (.998) 977 (998} ; .98% (1.00)
*RAND.DI 119;.229 1%, .42 101 ; .220 104; 226 105 ; .33
*RAND-D 062 5,131 072149 082 ;.193 100 ;223 120.259
*RAND-DD 072 143 082 ;.163 098 ; .96 119; 284 45,328
*RAND-R 1303251 200; 342 573723 767 ; 864 926 ; 966
*RAND-RD 227 369 321 ; 480 716; 826 857919 965 ; 986

Table 9: Empirical Rejection Rates — Configuration 2 for I = 10, n = 10 (20 in parentheses),
o =0.05 left of semi-colon, & =0.10 right of semi-colon, KUR(6) Distribution. * Denotes

Bootstrap Shuffling
Test m=25r=5 | wm=35r=7 | m=12r=16 | m=1875r=25 | m=3675r=49
Levene 102 (263); .178 (385) 120 (.341) ;.217 (478) 155 (558); 281 (739) 185 (.685) ;.335 (.B43) 230 EB15); 400(.931)
ANOMVY-LEV A62(270); . 33(3™TH A72(317);.249 (461) 151 (755); .27 (.94) 180 (.907); 347 (975 245 (.9%3) ; 480(.998)
ANOMV-JK 208 (33); 316(.461) 268 {.476) ; .3B4 {594) 640 (907} T35 (936} T73(.961) ; 841 (973 903 (.989); 936{991)
ANOMV-TR 11 (.255);.181 (.376) 130 (380) ; 219 (.529) 333 (.953); . 530 (983} S22(.995); T (999} LB94 (100} ; 925 (1.00)
F-K J106¢275);.179(400)  .135¢.395); 231 (332 268 (R13); 434 (516) 360 (940) ; 549 (.980) 514 (997 ; 717 (L.00}
RAND-DIL GBI (139);.146(23) 086 (146) ; 193 (.24T) "068 (.083) ; 121 (.158) 068 (.083) ; 123 (.160) 070 (UB5) ; 125 (.16}
RAND-D 096 (.234) ; 161 (.342) 140 (,399) ;237 (514 455 (925) ; 574 (958) 604 (,984) ;718 (.989) 736 (.998) ; 832 (L.00}
RAND-DD 173 (314); .291{430) 258 (487} ; 379 (.600) 730 (958) ; .B39{974) BY7 (9913 ; 937 (.994) 987 (999): .97 (1.00)
RAND-R 04024105171 (345) 163 (407); 43 (52D 590 (944) ; 725 (.963) B0 (988} ; 886 (.991) 963 (599) ; .97 (1.00)
RAND-RD J3(314); . 29E (A30) 258 (.487) ; .379 (.600) 739 (958); .839(.974) BST (.891) ; 937 {.5%4) 987 (999) ; .997 (1.00)
*RAND-DI 082 181 088 ;187 066144 067 ;145 067 ;146
*RAND-D .041 ; .084 042 ;.092 .032; .103 038,113 0435 .153
*RAND-DD 056;.123 058;.131 053 ;168 D64 ; 208 082 ; 249
*RAND-R 101 ; 181 146 ; .254 569 ; .684 761 ; B52 948 ; 974
*RAND-RD J188;. 311 264 ; .394 712 808 .B60 ; 925 978 ; .988
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Table 10: Empirical Rejection Rates — Configuration 2 for I = 5, n = 10 (20 in parentheses),
e =0.05, SKW(3) Distribution. * Denotes Bootstrap Shuffling. *** Denotes Test is

Inappropriate for SKW(3).

Test m=6.75,r=9 | m=12,r=16 ] m=1875,r=25 | m=27,r=3 l m=36._75;r=49
Levene 259 (.664) 397 (789) 48T (846} 551 (874) 596 (B87)
ANOMV-LEV 302(.704) ATL (819 574 { B64) 636 (890 675 (.904)
ANOMV-IK
ANOMV-TR 443 (955) 683 (.994) BU (N 200 (,999) 942 (1.00)
F-K 379 (.926) 590 (9871 I (997 824 (99 881 (959
RAND-D1 357 (.366) A15 (.A07) A7 (A36) 456 (461) 463 (469}
RAND-D 734 (.874) B26 (.91%) BS0 (.953) B8 (.979) 904 (.987)
RAND-DD
RAND-R 833 (880) 503 (928) 934(.962) 954 (980) 970 (.990)
RAND-RD
*RAND-DI1 3120710) 367 (304) 387 (321) A02 (330 Al (335
*RAND-D 370(.363) A9 (411) A55(,433) AT1 (4513 ABE (.463)
*RAND-DD 381 (.373) 439 (4200 A69 (442) 484 (458) A9T (471
*RAND-R 158 (.B43) 877 (9514) 920 (.946) 942 (964} 8255 { 978)
*RAND-RD 807 {852) 890 (.920) 929 (952) 948 (965} 960 (,930)

Table 11: Empirical Rejection Rates — Configuration 2 for I = 10, n = 10 (20 in parentheses),
a =005, SKW(3) Distribution. * Denotes Bootstrap Shuffling. **¥* Denotes Test is
Inappropriate for SKW(3).

Test m=6.75r=9 ] m=12,r=16 I m=18.75,r=125 l m=27,r=3 I m=36.75,r=49
Levene {98 (42T) 158 (.591) 208 (.676) 248 (728) 278 (.761)
ANOMYV-LEV 241 (.604) 336 760 444 (830} 507 (.866) 553 (B89)
ANOMV'JK L1 Lo ld 11 L il L1
ANOMV-TR 252(.939) 550(.993) 7530999 860 {.99%) H24(1.00)
F-K .155 (.BOT) 270 (.948) 368 (985) A59 997} 535 (.999)
RAND-D1 152 (.113) 171 (125) 182 (.132) 194 (136) 200 (.138)
RAND-D J22 (.B70) B48(.931) R4 (.963) 919¢.978) 930 (.986)
R.AND'DD (11} *hE rkk £l anx
RAND-R 837 (81T 908 {.933) 944 (96T 955 (977 962 (987
RAND'RD ¥ ke LLT P .k
*RAND-D1 118 (090 144 (.103) 158¢.108) s (1D A67 (112
*RAND-D 207 {.264) 262 (.308) 287 (.330) 300 {.345) 15 {.352)
*RAND-DD 0 (.278) 288 (.32D) 319 (M8) 1333 (.369} 344 (379
*RAND-R T26{843) B9 916 (.955) 946¢.973) 961 (.983)
*RAND-RD 828 (833} 08 (.919) 940 (.958) 861 (.974) 974 (.98S)
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Table 12: Empirical Rejection Rates — Configuration 2 form =27, r=36,1/=5,n=10 (20 in
parentheses), @ =0.05. * Denotes Bootstrap Shuffling. *** Denotes Test is Inappropriate for
Distribution.

Test w)_ | chi-sq(1) | exp(1) | Gamma(4/9,1) l 50:50 Mixture
Levene 703 (1.00) 192 (. 504) J18 (.845) 319 (.840) 789 (1.00)
ANOMV-LEV B23 (1.00) 178 (.528) 307 (N4 316 (914) 910(1.00
ANOMV-JK 993 (100) s e s 998 (1.00)
ANOMV-TR 901 (1.00) e £02(.999) 796 (.999) 921 (1.00)
F-K BOB {1.00) e 752(.996) 750 {.998} 831 {1.00)
RANTLDI 306 (.890} 069 (122 065 (122) 060 .054) B85 (1.00)
RAND-D 912(1.00) 139 (.630) J186(.869) 171 (.B39) 993 (100
RAND-DD 297 (LOD) wer b hid 100 (1.00)
RAND-R 997 {1.00) A65 (887) B26 (,997) B40(.995) 1,00 (1.00;
RAND-RD 497 (1.00) Lhid bl e 1.00 (1.00)
*R AND-DI 213 L858) 036 (.051) 1040 (.066) 45 (075} AR (1.00)
*RAND-D S535(w7 014 (.03G) 017 (118) 021 (.107) 990 (1.00)
*RAND-DD 590 (957 090 (183 166 (.454) 177 (,446) 1.00 (1,009
*RAND-R 998 (1.00) 355 (854} 749 ((988) 760 (.990) 1.00 {1.003
*RAND-RD 999 (1.00) e s il 1.00 (1.00)

Table 13: Empirical Type I Error Rates — Unequal Means, / = 5, n = 10 (20 in parentheses),
a =0.05, Mean Configuration = (1,1.2,1.4,1.6,1.8), Permutation Shuffling

Distribution

Test N(0,1) T KUR(®6) | SKW(3)
RAND-D1 D40 (040 050 (.050) 045 (045}
RAND-D 032 (027 037 (.39 043 (.041)
RAND-DD D82 (059) 112{.069) 61 (.121)
RAND-R 059 (.043) 086 (,070) 050 (.054)
RAND-RD 082 (.059) 112 (.069) 161 (.121)

Table 14: Empirical Rejection Rates — Unequal Means, I = 5, n = 10 (20 in parentheses),
a =005, Mean Configuration = (1,1.2,1.4,1.6,1.8), KUR(6) Distribution, Permutation
Shuffling

Configuration
Test 1,r=9 l 1, =16 l 2, m=1875 =25
RAND-D1 5B0(.B95) 77 (550) T8(202)
RAND-D 508 (872) 704 (.979) 609 (.972)
RAND-DD 681 (911} B39 (954) 891 (.995)
RAND-R 604 (.901) B06(,989) B2 (.994)
RAND-RD 681 (911) 859 (.994) 891 (.9935)
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Chapter 6

Equivalence of Two Proposed Randomization Tests for Variances

In the Monte Carlo study the randomization tests RANDANOMV-DD and RANDANOMYV-
RD exhibited identical type I error stability and power for permutation shuffles. The
following lemma will be used to prove equivalence of RANDANOMYV-DD and
RANDANOMYV-RD for permutation shuffles. DEFINITION 9 stated the equivalence of two

randomization tests.

LEMMA 1. Consider the case where X are 1 samples of size n. Let X, be the mean of
the i* group and X be the grand mean. Suppose the observations are (randomly) shuffled.

Let f,.‘ and X be the group and grand mean for the permuted data.

max|X, ,i:1,...,l)—} >max()?l.,i=1,...,1)-? if and only if

The lemma’s proof is simplified since the observations are randomly permuted without

replacement.
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I . —
. — ZX;-/ 2.X, P R
Thus, X =X== /= 7 =>§X,. =y X,.

i=1
max(T i =Lt )X > max(Xosi =1onl)= X

Since 7 =7=>max X,.‘,izl,...,l)> max()?,.,i=1,...,1).

Since ¥ X,

i=1

Proving the lemma in the other direction one gets

max(XT‘,i =1,...,1

Since 3%, =3 X, = max(®, i =1,...1 > max(X,.i=1...1)
i=1 i=1

Since E =§=}max X‘.‘,l‘=l,...,1)—-f >max(X_,-,i=1,---J)—?-

With this result the two tests may be shown equivalent.
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Since p* = p* = maxlp?”i=1...1)> max(p?,i=1,...1).

Since ip.-z. =ip,-2 — max(p?‘,i=l,...}/l . >max(pl_2,i=l,...,1) L
i=] i=l . :
Z,p. 2]‘, P

Using the lemma in the other direction one starts with

two tests are equivalent.



Chapter 7

Summary, Conclusions and Future Research

7.1 SUMMARY AND CONCLUSIONS

Robust HOV tests are required when practitioners suspect that the populations being sampled
are nonnormal. This s particularly true when populations are moderately skewed or kurtotic.
In this thesis, randomization tests were proposed as altematives to (some frequently used)

HOV tests that in previous research have been shown to be robust to nonnormality.

Of the proposed randomization tests RANDANOMV-R performed well across all
distributions and variance configurations. RANDANOMYV-R was robust for all distributions
examined (with both permutation shuffling and bootstrap shuffling) and displayed somewhat
greater power than RANDANOMYV-D. Power was somewhat higher for RANDANOMV-R
with permutation shuffling, which in general produced greater power for all the randomization
tests. RANDANOMYV-R was much more powerful than Levene for Configuration 2, and it
was nearly as good as (roughly equivalent to) Levene for Configuration 1. Since the former is
likely near the LFC, this suggests that RANDANOMYV-R has greater power than Levene’s
test at low power configurations. RANDANOMYV-R showed power comparable to the best of
the remaining nonrandomization tests for both configurations studied. Those

nonrandomization tests were much less robust to extreme kurtosis than RANDANOMYV-R.
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Hence, RANDANOMYV-R (with permutation shuffling) is a good all-purpose robust HOV test

that outperforms other tests in circumstances in which the population means are not very

different.

In the case where (it is suspected) the populations means are very different, RANDANOMYV-
DD/-RD (with permutation shuffling) or RANDANOMYV-DD (with bootstrap shuffling)
should be used instead of RANDANOMYV-R. RANDANOMYV-DD and -RD were shown to
be equivalent in the case of permutation shuffling. A benefit associated with using
RANDANOMYV-DD/-RD (with permutation shuffling) is that it is more powerful than
RANDANOMYV-R. However, RANDANOMYV-DD/-RD (with permutation shuffling) is not
robust to situations where the distribution is extremely skewed or kurtotic. When that is
suspected, RANDANOMY-DD (with bootstrap shuffling) should be used since it is robust in

all cases, but this test has lower power than ecither RANDANOMYV-DD/-RD (with

permutation shuffling), RANDANOMV-R, or Levene’s test.

The randomization tests that have been presented allow the user to construct a decision chart
to assess practical as well as statistical significance. This offers an advantage to practitioners
not offered by commonly used robust HOV tests such as those by Levene or Fligner and
Killeen. The ANOM version of Levene’s test (ANOMYV-LEV) does offer this advantage.
The other ANOM-type HOV tests (ANOMV-JK and ANOMV-TR) can be used to produce

decision charts; however, the points plotted on these charts are not as easily interpreted as the
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sample variances (standard deviations) plotted on the decision charts for Analysis of Means

type randomization tests for variances.

7.2 FUTURE RESEARCH

While it appears the randomization tests presented in this paper provide viable alternatives to
some commonly used HOV tests, there are areas that warrant further study. One such area
relates to unequal means. It was presented that some randomization tests may not be useful
when the means are “too different.” How different must the means be to render a test useless?
Along similar lines it was shown that RANDANOMV-RD was not effective when the parent

distribution was too kurtotic or too skewed. How kurtotic or skewed must a distribution be?

The last area for additional work centers on making the randomization tests more useful for
practitioners. The programs in this paper were coded in FORTRAN, and this requires the use
of a compiler and knowledge of a specific language. A macro could be written in a
commonly used statistical analysis program. This could make the tests more available to

potential users.
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dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
real e(5,1
read (*,*)
read (*,*)
read (*,*)
read (*,%*)
read (*,*)

nsampdub =
nreps 20
iseed = 15
numshuf =
npopsamp

halfalph

rjdone
rijdtwe
rjdd =
rijr

rijrd

0.
0.
0.

do iz 1

donerjct
dtworjcl
dtworjch
ddrjecl =
ddrijch =
rricl

o

0.

o ol

2 =R

APPENDIX

FORTRAN PROGRAM FOR THE RANDOMIZATION TESTS

gemvar {5), shufvar (5),ddvarto (5}
rdratio(5), ratiovar (5)
cdev(1000),dev{1000)
devvar (5),devvarto (5),var{9)
sampavg (5), randstol (1000), randstoh {(1000)
ddslo (1000)
sampvar {5) ,ratdev (1000)
randsone (1000}
ddshi {1000),ratioslo (1000),ratioshi (1000)
rdslo(1000), rdshi (1000}
0),devmmean{b,10}),c{(5,10)

nsamp

npops

var

idist

alpha

nsamp*2
oo
79
1000
nsamp*npops
alpha/2.

nreps

s

68



rrjch = 0.
rdrjcl = 0.
rdrich = 0.

ak = -0.05134
bk = -2.91756
ck = 0.05134
= 0.87133
ee = 2.718281828

ae 0.637298B719
uone = 0.
utwo = 0.

jd 1

do j = 1 , npops

f (idist.ne.?7) then
do k = 1 , nsamp
if (idist.eg.l) then
x = gasdev(iseed)

dev(k) = x * sgrc(var(j))
cdev (jd) = dev(ik)

jd = jd+1

endif

if (idist.eq.2) then
x = gasdev(iseed)

devi{k) = ((0.66268*x)+(0.10189*(x**3)))*sgrt(var(j))
cdev({jd)} = dev(k)

jd = jd+1

endif

if {idist.eg.3) then

X = gasdev(iseed)

dev({k) = ak+{bk*x)+ (ck*{x**2) )+ {dk* (x**3})
cdev(jd} = dev{k)

jd = ja+1

endif

if (idist.eqg.4) then
x = gasdev(isead)
dev(k) = x**2

cdev (jd) = devik)

jd = jd+1

endif

if (idist.eqg.b) then
dev (k) = expdev(iseed)
cdev(jd) = dev (k)

jd = jd+1

endif

if (idist.eqg.6) then

uone = ranl(iseed)
utwo = ranl{iseed)
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vy = (-4./9.})*1ogl0 (uone)
2Z = ee** ({(-5./9.)+(5.%yy/4.)}
ww = (yy**{(-5./9.))*ae*zz
if (utwo.ge.ww) then
go to 1
else
devik) = vy
cdev(jd) = dev(k)
ja = jd+1
endif
endif
enddo
endif

if (idist.eq.7) then

do k = 1 , nsampdub
x = gasdev{idum)
dev(k) = x

enddo

do k = 1 , nsampdub-1, 2
if {(dev(k).gt.0) then
anum = 2.
else
anum = -2.
endif
dev(k+l) = devi(k+1i) + anum
enddo

do k = 2 , nsampdub, 2
devi{k/2) = devik)
cdevi{jd) = dev(k/2)
jd = jd + 1

enddo

endif

call ameanvar {dev, nsamp, savyg, svar)
sampavg (j) = savg
sampvar{j) = svar

FINDS DEVIATION FRCM MEAN FOR -DD AND -RD
do k = 1, nsamp
devmean(j,k) = dev(k) - sampavg(j)
enddo
enddo

avgvar = 0.
varsum =

|
(=]

FINDING AVERAGE SAMPLE VARIANCE
do j = 1 , npops

varsum = varsum + sampvar({j)
enddo
avgvar = varsum / float (npops)
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FINDING TEST STATISTICS ON INITIAL DATA
do j =1 , npops

devvar(j) = abs(sampvar(j} - avgvar)

devvarto{(j) = sampvar(j} - avgvar

ratiovar{(j) = sampvar(j} / varsum
enddo

call bubsort(devvar, npops)
call bubsort (devvarto,npops)
call bubsort(ratiovar,npops)

randone = devvar (npops)
randtwol = devvarto(l)
randtwoh devvarto (npops)
ratiolow = ratiovar(l)
ratichi = ratiovar (npops)

SHUFFLES DATA

md = 1

de j = 1 , npops
do k = 1 , nsamp

ratdev{md) = devmean(j, k)
md = md + 1
enddo
enddo

do i = 1 , numshuf
do ij = 1 , npopsamp — 1
ron = fleoat{npopsamp + 1 - ij)
ih = int{rnn*ranl (iseed}) + ij
tmp = cdev(ij)
tmpp = ratdev{ij)
cdev(ij) = cdev(ih)
ratdev{ij) = ratdev(ih)
cdev(ih) = tmp
ratdev(ih) = tmpp

enddo
md = 1
do j = 1 , npops
do X = 1 , nsamp
devmean(j.k) = ratdev{md}

c{j,k) = devmean (j,k)**2
e{j,.k} = cdev(md)
md = md + 1
enddo
enddo

PERFORMING OPERATIONS ON SHUFFLED DATA
rn = float(nsamp)
do j = 1 , npops

shsum = 0.

shgsum = §.
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shsg = 0.

do k = 1 , nsamp

shsum = c (3,

k) + shsum

shssum = e(j,k) + shssum

shsg = (e{(j.,k)**2) + shsqg
enddo
semvar (j) = shsum / (rn - 1.)
vars = (shsg-shssum*shssum/rn)
shufvar(j) = vars / {(rn - 1.)
enddo

savgvar = 0.

avssemvr =
sumsem = 0.

0.

sumshuf = 0.

do J =1 , npops
semvar(j) + sumsem

do j =1, npops

sumsem

sumshuf = shufvar(j) + sumshuf
enddo
avssemvr = sumsem / float(npops)
savgvar = sumshuf / float(npops)

devvar(j) = abs(shufvar{(j) - savgva
devvarto(j) = shufvar(j) - savgvar
ddvartc{j) = semvar(j) - avssemvr

ratiovar (j) =

shufvar(j) / sumshuf

rdratio{j) = semvar(j) / sumsem
enddo

call bubsort(devvar, npops)
call bubsort(devvarto, npops)
call bubsort (ddvarto, npops)
call bubsort (ratiovar,npops)
call bubsort{rdratic,npops)

r)

CALCULATES TEST STATISTICS ON SHUFFLED DATA
randsone (i) = devvar (npops)
randstol{i) = devvarto(l)
randstoh{i) = devvarto{(npops)
ddslo (i) = ddvarto(l)

ddshi (i} = ddvarto (npops)

ratioslo(i) = ratiovar(l)

ratioshi (i) = ratiovar (npops)
rdslo(i} = rdratio(l)}

rdshi{i) = rdratio(npops)

if {(randsone({i).gt.randone) donerjct
if (randstol(i).lt.randtwol) dtworijcl
if (randstoh(i}.gt.randtwoh) dtworijch
if (ddsle(i).lt.randtwel) ddrjcl = 44
if {ddshi{i).gt.randtwoh) ddrjch = dd
if (ratiosleof{i).lt.ratiolow} rrjcl =
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if {ratioshi(i).gt.ratichi) rrjch = rrjch + 1.

if {rdslo(i).lt.ratiolow) rdrjcl = rdrjcl + 1.

if (rdshi{i).gt.ratiohi) rdrjch = rdrjch + 1.
enddo

sn = float (numshuf) + 1.

pvone = {donerjct + 1.) / sn
pviwol = (dtworijcl + 1.) / sn
pvtwoh = (dtworjch + 1.} / sn
pvddl = {(ddrjcl + 1.} / sn
pvddh = {(ddrjch + 1.) / sn
pvrl = (rrjcl + 1.) / sn
pvrh = {rrjch + 1.) / sn
pvrdl = (rdrjcl + 1.) / sn
pvrdh = (rdrjch + 1.) / sn

if (pvone.lt.alpha) rjdone = rjdone + 1.
if (pvtwol.lt.halfalph) go to 100
if (pvtwoh.lt.halfalph) go to 100

go to 20

100 rjdtwo = rjdtwo + 1.

20 i1f (pvddl.lt.halfaiph) go to 200
1if {pvddh.lt.halfalph) go te 200
go to 30

200 rijdd = rjdd + 1.

30 if {(pvrl.lt.halfalph) go to 300
if (pvrh.lt.halfalph) go to 300
go to 40

300 rijr = rijr + 1.

40 if (pvrdl.lt.halfalph) go to 400
if (pvrdh.lt.halfalph) go to 400
go to 500

400 rjrd = rjrd + 1.
500 enddo

pvaldone = rjdone / float (nreps)}
pvaldtwo = rjdtwo / float{nreps)
pvaldd = rjdd / float (nreps)
pvalr = rjr / float(nreps)
pvalrd = rjrd / float(nreps)

write {(*,*) 'RANDANOMV-D]1 rejected’' , pvaldone

write (*,*} 'RANDANOMV-D rejected' , pvaldtwo
write (*,*) 'RANDANOMV-DD rejected' , pvaldd
write (*,*) 'RANDANOMV-R rejected' , pvalr

write (*,*) 'RANDANOMV-RD rejected' , pvalrd

end
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subroutine ameanvar (b,n, vmean,vvar)
dimension b{n)
sum = 0.
sq = 0.
do =1, n
sum = sum + b{j)
sqg = sg + (b{J)**2)
enddo
rn = float(n)
vmmean = sum / rn
vvar = (&g - sum*sum / rn} / {(rn - 1.)
return
end

subroutine bubscrt (devs,n)
dimension devs(n)
do j =1, n-1
do k=1, n-j
if (devs(k).gt.devs(k+1l)) then
tmp = devs (k)
devs (k) = devs(k+l)
devs(k+1l) = tmp
endif
enddo
endado
return
end

FUNCTION RAN1{iseed)
DIMENSION R{57}
PARAMETER (M1=259200,3IA1=7141,IC1=54773,RM1=3.8580247E~8&)
PARAMETER (M2=134456,IA2=8121,IC2=28411,RrRM2=7.4373773E-6)
PARAMETER {(M3=243000,IA3=4561,IC3=51349)
DATA IFF /0/
IF (iseed.lLT.0.0R.IFF.EQ.(Q) THEN
IFF=1
IX1=MOD(ICl-iseed, M1}
IX1=MOD(IA1*IX1+IC1,M1)}
IX2=MOD(IX1,6M2)
IX1=MOD(IA1*IX1+IC1,M1)
IX3=MOD{IX1,6M3)
Do 11 J=1,97
IX1=MOD(IAl1*IX1+IC1,M1)
IX2=MOD(IAZ*IX2+IC2,M2)
R(J)=(FLOAT (IX1)}+FLOAT (IX2)*RM2) *RM1
CONTINUE
iseed=1
ENDIF
IX1=MOD(IA1*IX1+IC1l,6 M1}
IX2=MOD{IA2*IX2+IC2,M2)
TX3=MOD{IA3*IX3+IC3,M3)
J=1+(97*IX3) /M3
IF(J.GT.97.0R.J.LT.1)PAUSE
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RAN1=R(J)
R(J)={FLOAT(IX1)+FLOAT(IX2) *RM2)*RM1
RETURN

END

FUNCTION GASDEV({iseed)

DATA ISET/0/

IF (ISET.EQ.0) THEN
V1=2.*RAN1 (iseed)-1.
V2=2.*RAN]1 (iseed)-1.
R=V1**242**2
IF(R.GE.1.)GO TO 1
FAC=8QRT{-2.*LOG(R) /R)
GSET=V1*FAC
GASDEV=V2*FAC
ISET=1

ELSE
GASDEV=GSET
ISET=0

ENDIF

RETURN

END

FUNCTION EXPDEV{iseed)
EXPDEV=-LOG (RAN]1 (iseed))

RETURN

END
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