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University of North Florida 

Abstract 

Robust I-Sample Analysis of Means Type Randomization Tests for Variances 

by Anthony Joseph Bernard 

Chairperson of the Supervisory Committee: Professor Dr. Peter Wludyka 

Department of Mathematics and Statistics 

The advent of powerful computers has brought about the randomization technique for 

testing statistical hypotheses. Randomization tests are based on shuffles or 

rearrangements of the (combined) sample. Putting each of the I samples "in a bowl" 

forms the combined sample. Drawing samples "from the bowl" forms a shuffle. Shuffles 

can be made with or without replacement. 

In this thesis, analysis of means type randomization tests will be presented to solve the 

homogeneity of variance problem. An advantage of these tests is that they allow the user 

to graphically present the results via a decision chart similar to a Shewhart control chart. 

The focus is on finding tests that are robust to departures from normality. The proposed 

tests will be compared against commonly used nonrandomization tests. The type I error 

stability across several nonnormal distributions and the power of each test will be studied 

via Monte Carlo simulation. 
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Chapter 1 

Introduction 

1.1 PROBLEMDEFINmON 

The global marketplace has become extremely competitive, and companies are always 

searching for cheaper and faster ways to produce their goods. As part of gaining process 

knowledge, companies must focus on process variability. When highly variable 

manufacturing methods are identified, alternative procedures may be implemented. 

These "new" processes must be assessed to determine how they impact process 

variability. Consider, for example, a battery manufacturer who is interested in reducing 

the variability in battery lifetime. Since consumers do not want batteries with 

significantly different lifetimes, it is desirable to make batteries that perform consistently. 

The manufacturer may evaluate several pumps used to supply anode to the battery. The 

claim that all anode pumps have the same variability will be referred to as the 

homogeneity of variance (HOV) hypothesis. The HOV hypothesis for a single factor 

experiment with I factor levels (different pumps) will be represented as 

(1.1) 

where (J'j2 is the variance of the ;th population. The alternative hypothesis is H A : not 

H o. The interest here is the case where I > 2; that is, where three or more populations 



are being compared. The focus of this paper will be on one-way balanced designs, but 

the discussions extend to more complex designs. 

1.2 HYP01HESIS TESTING 

Estimation of parameters and tests of statistical hypotheses are the two major areas 

treated by statistical theory. Parameter estimation uses information gathered from sample 

data to determine the value of a population parameter, and hypothesis testing uses sample 

data to determine which of two statements regarding a distribution is correct. The 

discussion that follows in the remainder of this section and sections 1.2.2 and 1.2.3 was 

summarized from Wludyka (1999). 

Suppose a researcher is interested in I populations, each with distribution function 

F; (xp8i ), where 8 i e (apbJ~ (- 00,00) and Xi e Wi ~ (- 00,00). Often 

(a i ,bi )= (- 00, 00). Let 

be the parameter space. Furthermore, partition the parameter space into subsets no en 

and n A en, where no and n A are disjoint. Frequently n = no UnA. Often there is 

interest in the case where no = {(8p ••• ,8J I 8} = ... =8J. This leads to the definition of 

a null and alternative hypothesis. 

DEFINmON 1. A null hypothesis is a statement of the form H 0 : (8} , ... ,8[ )e no. The 

corresponding alternative hypothesis is a statement of the form H A : (81 , ... ,81 )e n A • 
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To determine if H 0 is true, samples of size nj are drawn from each of the I populations. 

In this paper the samples will be independent and random. Denote the observations by 

xij' i = 1, ... ,/ and j = 1, ... ,n j • The set of all samples will be denoted by '1'. After the 

samples are collected the researcher will use the data to make a decision concerning the 

hypotheses. 

DEFINmON 2. The Decision Space D is the set of all decisions the researcher can 

make. The points in the space will be denoted by 01 • 

Usually the decision space consists of the points 0, = ACCEPT H 0 and O2 = REJECT 

H o. In other cases, sequential tests for example, the decision space may be larger. 

1.2.1 STANDARD HYPOTHESIS TESTS 

DEFINmON 3. A (standard) hypothesis test is a rule that, given H 0 and H A' 

associates with each sample X a point in the decision space. That is, a hypothesis test is 

a function that maps from the set of all samples to the decision space: 

T(X):'I' ~D. 

DEFINITION 4. Two statistical tests, T, and T2 , are equivalent if any given H 0 and 

H A' each sample X is mapped to the same point in the decision space. That is, 
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DEFINmON 5. The Power Function of a test is that function which yields the 

probability of correctly rejecting the null hypothesis. 

1.2.2 RANDOMIZED HYPOTHESIS TESTS 

Randomized tests are used most frequently when the populations of interest are discrete. 

These tests allow the user to achieve an exact significance level by using the result of a 

supplemental independent random experiment. Hogg and Craig (1995) and Rinaman 

(1993) give examples of randomized hypothesis tests. 

1.2.3 RANDOMIZATION TESTS 

There are two types of randomization tests: exact randomization tests and approximate 

randomization tests. Randomization tests are based on shuffles (resamplings or 

rearrangements) of the (combined) sample. The combined sample is formed by putting 

each of the I samples "in a bowl." "Drawing from the bowl" forms shuffles. The 

shuffles can be made with replacement (called a bootstrap shuffle) or without 

replacement (called a permutation shuffle), the latter being more commonly used in 

practice. 

DEFINITION 6. A shuffle consists of ni assignments from the combined sample of 

sample values to each of I groups. Distinct shuffles can be labeled X (q) • 
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For example, consider the sample below (for which I = 3 and nj = 2). 

x = [~ : ~} 
An example of a (bootstrap) shuffle is given by 

An example of a (pennutation) shuffle is given by 

In an exact randomization test each of the N E shuffles is found. That is, associated with 

each sample X is a collection of shuffles 

s(X) = { X (q) I each X (q) is a distinct shuffle X, q = 1, ... , N E }. 

1.2.3.1 EXACT RANDOMIZATION TESTS 

DEFINITION 7. An exact randomization test is a rule that, given H 0 and H A' 

associates with each sample X (and the set of shuffles S(X) associated with X ) a point 

in the decision space. That is, an exact randomization test is a function mapping from the 

set of all samples to the decision space: 

T(X,S(X»:'¥ ~D. 

It should be noted that the above definition is the same as the definition of a (standard) 

hypothesis test in DEFINITION 3. The explicit inclusion of S(X) in the definition is 

there for emphasis and as a reminder that the exact randomization test itself is perfonned 
5 



in a somewhat different manner than other tests. Performance of a randomization test 

usually involves: 

1. calculation of a test statistic for the initial sample C(X) 

2. calculation of the same test statistic for each of the shuffles C(X (q) ) 

3. a decision based on the "unusualness" of C(X) in relation to the set of 

C(X(q) )'s. 

For example, suppose one is testing the equality of I means based on independent 

samples of size n j • At step one an ANOY A-F statistic is calculated based on the initial 

sample. At step two an ANOY A-F statistic is calculated for each possible shuffle. In 

step three the list N E + 1 F-statistics is ordered and the empirical quantile associated with 

the initial sample is calculated. If the empirical quantile is less than a prespecified level 

of significance then the equal means hypothesis is rejected. An advantage offered by this 

test is that no assumption regarding the distribution of the ANOY A-F statistic is required 

(Edgington, 1987). 

The practical difficulty associated with an exact randomization test is that the number of 

shuffles in S(X) can become prohibitively large and hence creating S(X) can be too 

expensive. Thus, this paper will focus on approximate randomization tests. 
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1.2.3.2 APPROXIMATE RANDOMIZATION TESTS 

In an approximate randomization test a random sample from S(X) is selected. That is, 

N A shuffles are randomly selected from S(X). Typically a computer is used to generate 

a sequence of (pseudo) random shuffled samples from the combined sample. Denote this 

random sample of shuffles by 

SA(X) = { X(q) I each X(q) is a random shuffle X,q = 1, ... ,N A}. 

DEFINmON 8. An approximate randomization test is a rule that, given H 0 and H A' 

associates with each sample X (and the random set of shuffles SA(X) associated with 

X ) a point in the decision space. That is, an approximate randomization test is a 

function RT mapping from the set of all samples augmented by the set of all shuffles for 

each X to the decision space 

RT(X,SA(X»: 'P,S(X)~D. 

DEFINITION 9. Two randomization tests, RT, and RT2, are equivalent if for any given 

H 0 and H A' each sample X (and the same set of random shuffles SA(X) associated 

with X ) maps to the same point in the decision space. That is, 

RT, (X, SA(X» = RT2 (X, SA(X». 
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The following flowchart, taken from Edgington (1987), will give the reader a better feel 

for the technique used for approximate randomization tests. 

NO 

SHUFFLE DATA 

A key point is that the set of shuffles SA(X) is not unique to X. In practice there are a 

very large number of distinct SA(X)'s for any X. Hence, the decision is not uniquely 

detennined by X and the test RT. For a test RT and a sample X there is associated 

with each point in the decision space a probability that the test will map to that decision. 

That is, 
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In practice this probability will not be known. However, a heuristically sensible 

approximate randomization test should have the property that when the state of nature is 

such that decision 8 j is the correct decision then for sufficiently large NAthe associated 

probability P j should be close to one. When decision 8 j is an incorrect decision then for 

sufficiently large NAthe associated probability Pi should be close to zero. 

1.3 I-SAMPLE TESTS FOR VARIANCES 

A user has many options in testing hypothesis (1.1). HOV tests proposed by Bartlett 

(1973), Hartley (1940 and 1950), Cochran (1941), Foster (1964) and Wludyka and 

Nelson (1997 A) may be employed when normality is a reasonable assumption. When 

the normality assumption is not valid the user may adopt an assortment of tests. See 

Conover, Johnson and Johnson (1981) for a good discussion. Robust analysis of means 

(ANOM) type tests have been proposed by Wludyka and Nelson (1997 B). The objective 

of this paper is to provide users with new HOV tests that are robust and compare these 

tests with some commonly used tests via a Monte Carlo study. 
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Chapter 2 

ANOV A-F and ANOM Type Tests for Variances 

2.1 DATA TRANSFORMATIONS 

In the previous chapter it was noted that a user has many options for testing hypothesis 

(1.1) when the normality assumption is not tenable. Transforming the original (location) 

measurements into scale measurements creates tests for variability by using the 

transformed measurements as input to standard location tests. Two standard location 

tests will be considered in this chapter: the ANOVA-F test and the ANOM test. Three 

standard transformations that have been used will be defined. In each of the 

transformations xij will be defined as the ph observation from the ith sample. 

SQUARED DEVIATIONS FROM THE MEAN (SDM) 

Y ij = (xij - Xi Y where Xi is the mean of the ith sample (2.1) 

ABSOLUTE DEVIATIONS FROM THE MEDIAN (ADM) 

Yij =IXij - x~1 where X'("'d is the median of the ith sample (2.2) 

Note that one of the absolute deviations from the median becomes zero when there are an 

odd number of observations in a sample. Wludyka and Nelson (1999) state that since 
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variability is being measured as the absolute deviation from the median, the median of 

the sample imparts no information about variability. Thus, for samples containing an odd 

number of observations the Y ij corresponding to the median should be deleted, and the 

sample size per group is reduced to n - 1 . 

TRANSFORMATIONS OF RANKS (TR) 

This transformation consists of three steps: 

2. 'ij = Rank(dij)' the values of the combined sample are ranked from smallest to 

largest 

3 (
0.5 + 'i; I ) h . th . (2 3 . Yij = INV ;(2In + 1) w ere INV IS e Inverse normal score .). 

The inverse normal transformation is performed on a uniform random variable. 

This transformation produces a random variable that is approximately normal 

(Ross, 1997). 

Either the ANOVA-F test or the analysis of means (ANOM) test can be applied to the 

transformed values (2.1) - (2.3). 

2.2 ANOV A-F TESTS FOR VARIANCES 

The ANOV A-F test for variances will be applied to scale transformed observations. 

Denoting the transformed values by Y ij' the test statistic is 

11 



I fit ;; / 

and Y .. = I,I,Y'1N. 
i=l j=l 

(2.4) 

HOV hypothesis (1.1) is rejected when L exceeds the 100(1-at percentile of the F-

distribution with (/ -1) and (N - /) degrees of freedom. 

2.2.1 LEVENE'S TEST 

Various modifications of this test exist, but the version considered here is the one 

determined to be the best by Brown and Forsythe (1974) and Conover et al. (1981). 

Their version is simply the one-way ANOV A-F test on absolute deviations from the 

median, transformation (2.2). 

2.2.2 FLIGNER-KILLEEN TEST 

The version of the Fligner-Killeen (F-K) test presented here is one proposed by Conover 

et al. (1981). ANOVA-F test (2.4) uses the transformed ranks of the absolute deviations 

from the median (2.3) to perform the HOV test 

2.3 ANOM TYPE TESTS FOR VARIANCES 

Ott (1967) was the first to introduce the ANOM. Wludyka and Nelson (1997 A) then 

developed an ANOM type test for variances (ANOMV). ANOM type tests are relatively 

simple to perform and they allow the user to assess practical and statistical significance 

by graphically displaying differences in a decision chart. The decision chart, similar to a 

Shewhart control chart, allows the user to view which populations differ from the overall 
12 



mean. The assumptions for ANOM are identical with those for the ANOV A-F test, and 

the two procedures have roughly the same power (Nelson, 1985). Three robust ANOM 

type HOV tests will be described: ANOMV-LEV, ANOMV-TR and ANOMV-JK. 

2.3.1 ANOMV-LEV 

ANOMV-LEV is the ANOM version of Levene's test. That is, the ANOM is applied to 

the absolute deviations from the median (2.2). The advantage of this new procedure is 

that the test can be presented via a decision chart that allows for graphical interpretations 

of the result. 

The following example illustrates the procedure. The data in Table I consists of four 

, 1 " 
random samples of size 10. In Table 1, Sj2 = --I, (xij - Xj y. Table 2 contains the 

n -1 j=! 

absolute deviations from the sample median. In Table 2, Yj =.!. L (y ij) and 
n j 

S: = _1_ t (y ij - Yj y. Hypothesis (1.1) will be tested versus H A : not the null. The 
n -1 j=! 

decision lines are constructed as follows: 

UDL = Y + has.J(I -1)/(In) = 0.893 + (2.59 XO.666XO.2739)= 1.365 

CL=Y =0.893 

WL= Y -has.J(I -1)/(In) =0.893 - (2.59XO.666XO.2739) = 0.421 

13 



Where Y = LY;;{, s = ~L S!J ' and critical value ha is obtained from Nelson (1983) 

for I = 4, n = 10 and a = 0.05, UDL is the upper decision line, CL is the center line and 

LDL is the lower decision line. 

Since Y4 = 1.464 is above the UDL the HOV hypothesis (1.1) is rejected. The decision 

chart for the test is in Figure 1. 

2.3.2 ANOMV -TR 

ANOMV-TR is described in Wludyka and Nelson (1999). ANOMV-TR employs the 

same transformation as the Fligner-Killeen test. Instead of the ANOVA-F test, the 

ANOM is applied to the Y ij from (2.3). 

2.3.3 ANOMV -JK 

The third ANOM type test is ANOMV -JK where JK represents jackknifing. The 

technique is described in Wludyka and Nelson (1997 B). An overview of the test is 

presented below: 

1. Replace each observation xij with a jackknifed variance 

3. Perform ANOM on the U ij • 

14 



Consider, for example, four samples containing five observations per sample. Each 

observation is replaced with a jackknifed variance. The jackknifed variance 

S;~j) =-I-I(xik -X;(k)Y ,where x;(j) =-I-IxiIc' is the sample variance computed 
n - 2 k"¢j n -1 bj 

on the remaining four elements (the ph observation is deleted). The "new" data set now 

consists of jackknifed variances. Wludyka and Nelson (1997 B) state that the resulting 

jackknifed variances are dependent and the ANOM may not be applied directly to them. 

Thus, the transformation, U ij' is applied (based on an idea of Tukey (1962», and the 

ANOM procedure is applied directly to U ij. 

Figure 1: ANOMV-LEV Decision Chart 

ANOMV -LEV Decision Chart 

1.464 
1.365 UDL (alpha = 0.05) 

0.893 

0.67341 0.7367! 0.69691 

CL 

0.421 LDL (alpha = 0.05) 
2 3 4 

Sample i 
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Table 1: Raw Data - Test Examples 
2 3 4 

05119 03756 -1.648 0.2821 

0.6137 0.1026 0.06582 -2.411 

-0.6311 -0.2989 0.5893 -4.359 

-05025 -0.5242 0.04181 -1.704 

1577 -1.455 0.2225 0.9703 

-1.32 -1.481 -0.1234 -0.9169 

-0.3896 05361 -2.350 0.6221 

0.6738 0.6953 -0.5466 -3.017 

-0.09655 -1.243 1.269 -0.04799 

-0.6112 -1.253 0.1959 -2.235 

, 0.7227 0.7384 1.120 3.071 
S~ 

I 

Table 2: Absolute Deviations from Sample Median - Test Examples 
2 3 4 

0.7550 0.7872 1.702 1.593 

0.8568 0.5142 0.0120 1.101 

0.3880 0.1127 0.5355 3.049 

0.2594 0.1127 0.0120 0.3936 

1.820 1.043 0.1687 2.281 

1.077 1.069 0.1772 0.3934 

0.1465 0.9477 2.404 1.933 

0.9169 1.107 0.6004 1.707 

0.1465 0.8315 1.215 1.262 

0.3681 0.8415 0.1421 0.9246 

0.6734 0.7367 0.6969 1.464 
Yj 

S2 0.2754 0.1375 0.6692 0.6920 
I 
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Chapter 3 

Analysis of Means Type Randomization Tests for Variances 

3.1 OVERVIEW OF PROPOSED RANDOMIZATION TESTS 

Four ANOM type randomization tests for variances will be proposed. These tests can be 

perfonned using either pennutation shuffles or bootstrapping shuffles. They are 

RANDANOMV-D, RANDANOMV-DD, RANDANOMV-R and RANDANOMV-RD. 

These tests differ with respect to 

1. the test statistics computed on the original data 

2. the data that is shuffled 

3. the test statistics computed on the shuffled data. 

Table 3 outlines each randomization test with respect to the above items. In the table and 

2 1 ~ ( _ \2 -2 ~ SY;2 subsequently Sj =--~ xij -Xj) and S =~ I I . From the table the reader may 
n-1 

see that the tests can be classified as either difference tests or ratio tests. The difference 

tests are RANDANOMV-D and RANDANOMV-DD, and the ratio tests are 

RANDANOMV -R and RANDANOMV -RD. 

Two versions (one- and two-sided) of RANDANOMV-D will be presented. Only two-

sided versions of the other tests will be presented. The two-sided version has an 
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advantage over the one-sided version in that a decision chart may be constructed. The 

decision chart enables its user to do two things: 1) assess practical as well as statistical 

significance and 2) determine which particular samples have more or less variability 

when compared to the other samples. 

3.2 RANDANOMV-D 

RANDANOMV-D is a randomization test that uses sample variances and a pooled 

estimate of the common variance (the average of the sample variances). Deviations of 

the sample variances from the common variance are computed, and extreme (maximum 

and minimum) deviations are used as test statistics on both the initial and shuffled data. 

A one-sided (RANDANOMV-Dl) and two-sided (RANDANOMV-D) version of this 

test will be investigated. As mentioned earlier, the two-sided version allows the user to 

construct decision lines and present a decision chart similar to ANOM. 

The steps in RANDANOMV-Dl are as follows: 

1. Calculate ADo = maxlsj2 - S2j on the initial sample where Sj2 IS the 

sample variance and S 2 is the average sample variance 

2. Randomly shuffle the original data some number of times, NS 

3. Calculate AD j = maxlsj2 - S2j after each shuffle where Sj2 is the sample 

variance and S2 is the average sample variance 

4. If AD j > ADo then ge = ge + 1 
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5. If p-value = ((ge + 9(NS + 1»)< a then hypothesis (1.1) is rejected. 

RANDANOMV -D is carried out by: 

1. Calculate ADmax = max~j2 - S2 ) and ADmin = min~j2 - S2 ) on the initial 

sample where Sj2 is the sample variance and S2 is the average sample variance 

2. Randomly shuffle the original data some number of times, NS 
3. Calculate AD!ax = max~j2 - S2) and AD!un = min~j2 - S2) after each 

shuffle where Sj2 is the sample variance and S2 is the average sample variance 

4. If AD !ax > AD max then ngmx = ngmx + 1 

5. If AD!un < AD min then ngmn = ngmn + 1 

6. If p-value-high = ((ngmx + 9(NS + 1»)< ~ or p-value-Iow = 

((ngmn + 9(NS + 1) ) < ~ then hypothesis (1.1) is rejected. 

This procedure will be called the p-value method. 

A decision chart for RANDANOMV -D can be constructed. For level of significance a 

the decision lines are 

UDL=S2 +AD~--%) 
max (3.1) 

CL=S2 (3.2) 

(3.3) 
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UDL is the upper decision line, CL is the center line, LDL is the lower decision line, 

AD~) is the (upper) ~ quantile of AD!ax q = 1, ... , NS and AD~) is the (lower) ~ 

quantile of AD!m q=I, ... ,NS. Hypothesis (1.1) is rejected when at least one S; plots 

outside the decision lines. AD~) can be found by ordering the set 

A = {OW.:.. I q = 1, ... , NS}. Then AD,t;.) is Ibe ( NS - [I(NS + 1)~ -11] r largest value 

in set A, where ~xl] is the greatest integer in X. Denote this as AD!l. AD!2P can be 

found by ordering the set B = {4n!m I q = 1, ... , NS }. Then 

[ NS - [ (NS + 1 {1- ~ )-1 r r smallest value in set B, where Ixl! is Ibe smallest 

integer in X. Denote this as ADU. This procedure will be called the decision chart 

method. 

THEOREM: The decision chart method is equivalent to the p-value method. 

PROOF: 

Notation: 

AD~ = X order statistic; therefore, AD~) = largest order statistic. 

AD~ = X order statistic; therefore, AD!2 = smallest order statistic. 

~XI] is the greatest integer in X , and ~Xlr is the smallest integer in X . 
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Assume the p-value method rejects H 0 because p-value-high < a . 
2 

~ ((ngmx + *,NS + 1»)< ~ and ngmx < (NS + 1{ ~ )-1. 

e.g. NS = 1,000 and a = 0.05, ngmx ~ [24.025] or ngmx ~ 24 

There are 24 or fewer shuffles such that AD!ax > AD max 

~ S~ > S2 + AD (976) for some i 
I max 

~ Reject Housing the decision chart method. 

Assume the p-value method rejects H 0 because p-value-low < a . 
2 

e.g. NS = 1,000 and a = 0.05, ngmn ~ [24.025] or ngmn ~ 24 

There are 24 or fewer shuffles such that AD!m < ADmin 

~ AD~) > min~j2 - sz) ~::3 i 3 Sj2 - S2 < AD~) 
I 

~ S2 < S2 + AD(~) for some i 
I IDlD 
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::::::) Reject Housing the decision chart method. 

Assume the p-value method does not reject H 0 because p-value-high ~~ 

e.g. There are 25 or more shuffles such that AD!ax > ADmax when NS = 1,000 

and a = 0.05, ngmx ~ [24.025] + 1 = 25 . 

::::::)AD(976»max{"'~ _S2) ::::::)S~ <S2 + AD (976) for all i 
max \l, , max 

::::::) Do not reject H 0 with the decision chart method. 

Assume the p-value method does not reject H 0 because p-value-Iow ~~ 

e.g. There are 25 or more shuffles such that AD!u. < ADmin when NS = 1,000 and 

a = 0.05, ngmn ~ [24.025]+ 1 = 25. 

::::::) Do not reject H 0 with the decision chart rule. 

Assume the decision chart procedure rejects H 0 by exceeding the upper decision 

line. Thus, :3 i"3 S~ > S2 + AD (976) 
I max 
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~ S~ - S2 > AD (976) for some i 
J max 

e.g. There are 24 or fewer AD!ax > ADmax when NS = 1,000 and a = 0.05. 

. ngmx + 1 24 + 1 
~ ngmx ~ 24 ~ p-value-high = < --= .024975 < .025 

NS +1 1001 

~ Reject Housing the p-value rule. 

Assume the decision chart procedure rejects H 0 by exceeding the lower decision 

line. Thus, :3 i 3 Sj2 < S2 + AD~) 

~ S~ - S2 < AD(~5) for some i 
J !DID 

~ AD(~) > min{n2 - S2)= AD . nun . ~, nnn 
J 

e.g. There are 24 or fewer AD!m < ADmin when NS = 1,000 and a = 0.05. 

ngmn + 1 24+ 1 
~ ngmn ~ 24 ~ p-value-Iow = < --= .024975 < .025 

NS +1 1001 

~ Reject Housing the p-value rule. 

Assume the decision chart rule does not reject H 0 • 

---'0. S2 < S2 + AD (976) 'V. ---'0. S2 _ S2 < AD (976) 'V. 
---Y' J max I ---Y' J max I 

e.g. There are 25 or more AD~ > ADmax when NS = 1,000 and a = 0.05 . 
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· ngmx+1 => ngmx ~ 25 => p-value-hlgh = --=:::...--
NS+1 

=> Do not reject Housing the p-value rule. 

25 + 1 = .02597 > .025 
1001 

Assume the decision chart rule does not reject H 0 • 

e.g. There are 25 or more AD~ < ADmin when NS = 1,000 and a = 0.05. 

ngmn+1 25+1 => ngmn ;::: 25 => p-value-Iow = --= .02597> .025 
NS +1 1001 

=> Do not reject Housing the p-value rule. 

In general, 

( (ngmx + %) )< a ((ngmn + %) )< a 
(NS + 1) 2' (NS + 1) 2 

=> ngmx < (NS + 1 {' ~ ) -1 , ngmn < (NS + 1 {' ~ )-1 

So the upper and lower decision lines are 
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e.g. When a = 0.10 and NS = 1,000: ngmx * = 49 and AD~, ngmn· = 49 and 

3.2.1 RANDANOMV-D1 EXAMPLE 

The data in Table 1 will be used to illustrate the method. 

ge+1 p-value =...::::.....--
NS+1 

79+1 =0.08 
1001 

(3.4) 

(3.5) 

(3.6) 

The average sample variance was calculated to be 1.413. The test statistic computed on 

the original data (ADo) was 1.658. The data was shuffled 1,000 times and a significance 

level (a) of 0.05 was used. The p-value associated with RANDANOMV-D1 was 

determined to be 0.08. Therefore, the initial test statistic was exceeded 79 times out of 

the 1,000 data shuffles. Since 0.08 > 0.05 one may conclude that 1.658 was not 

unusually large, and hypothesis (1.1) was not rejected. 

3.2.2 RANDANOMV -D EXAMPLE 

The test statistics generated from the p-value method are below. 

(3.7) 

(3.8) 
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h· h ngmx+1 p- 19 = 
NS+l 

I ngmn +1 p-ow= 
NS+l 

79+1 =0.08 
1001 

635+ 1 0.635 
1001 

(3.9) 

(3.10) 

Test statistics on the original sample are given in (3.7) and (3.8). The data was shuffled 

1,000 times and a significance level (a) of 0.05 was used. P-Iow was 0.635 and p-high 

was 0.080. Hypothesis (1.1) was not rejected since both p-high and p-Iow > 0.025. 

The RANDANOMV-D decision chart for the example is in Figure 2. From 1,000 

shuffles there were 1,000 values of AD !ax and 1,000 values of AD!m generated. Since 

, 

\ ()()() - [ (\ 00 \ {\ - O~5)_ \] = \ ()()() - 975 = 25. the required value was AD:I which 

AD~) = -1.223. The decision lines were determined to be 

UDL = S2 + AD!;!~6) = 1.413 + 1.852 = 3.265 (3.11) 

CL=S2 =1.413 (3.12) 

LDL=S2 +AD~) =1.413+(-1.223)=0.190 (3.13) 
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Notice each Sj2 was within the decision lines. That is, there were no differences in 

variability among the samples. 

3.3 RANDANOMV -DD 

Baker (1995) writes that many two-sample non-parameteric tests of variability assume a 

common center of location. Good (1994) offers a solution (a two-sample test) that does 

not assume a common center of location. Good's test permutes squared deviations from 

the sample median. RANDANOMV -DD uses a similar modification where deviations 

from the mean are permuted, and a sample variance-type statistic is computed on the 

shuffled data. The reader may consult Table 3. 

RANDANOMV -DD uses the sample variance and a pooled estimate of the sample 

variances (the average sample variance) to determine test statistics on the initial data. 

Deviations of the sample variance from the pooled value are computed. As in 

RANDANOMV-D, extreme deviations (maximum and minimum) are used as initial test 

statistics. 

RANDANOMV -DD employs the following steps: 

1. Calculate the mean of each sample, Xj 

2. 

n'i J I ~>: _ ISj2 
Calculate S 2 = j=l ( ) and S 2 = j=l 

I \nj -1 I 3. 
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4. Calculate ADmax = max~: - S2 ) and ADmin = min~j2 - S2 ) on the initial 

sample 

5. Randomly shuffle zij some number of times, NS 

nl ;( ~z~ £.. lJ -2 . 2 Calculate p; = J=! (nj _ 1) and P after each shuffle 6. 

7. Calculate AD!ax = max{p;2 - p2 ) and AD!m = min{p;2 - p2) after each 

shuffle 

8. If AD!ax > ADmax then ngmx =ngmx + 1 

9. If AD!m < AD min then ngmn = ngmn + 1 

10. If p-value-high = (ngmx + 9(NS + 1))< ~ or p-value-Iow = 

(ngmn + 9(NS + 1))< ~ then hypothesis (1.1) is rejected. 

As with RANDANOMV-D, this procedure will be called the p-value method. 

Using (3.1) - (3.3) and a level of significance a, a decision chart for RANDANOMV-

DD can be constructed. Similar to RANDANOMV-D, AD!Ji) is the (upper) ~ 

quantile of AD!ax q=l, ... ,NS and AD2P is the (lower) a quantile of AD!m 
2 

q = 1, ... , NS. Hypothesis (1.1) is rejected when at least one S: plots outside the decision 

lines. This will be denoted the decision chart procedure. 
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3.3.1 RANDANOMV -DD EXAMPLE 

The data in Table 1 will be used to illustrate the method. Test statistics (3.7) and (3.8) 

were the test statistics on the original sample for RANDANOMV-DD. The p-values 

from the test were 

h· h ngmx+l p- 19 = 
NS+l 

1 
ngmn +1 p-ow= 
NS+l 

13+ 1 =0.014 
1001 

327 + 1 0.328 
1001 

Since (3.14) < 0.025 hypothesis (1.1) was rejected. 

(3.14) 

(3.15) 

The RANDANOMV-DD decision chart for the example is in Figure 3. AD~6) and 

AD~) were computed in the same manner as was done for RANDANOMV-D. The 

decision lines were determined to be 

UDL=S2 +AD~6) =1.413+1.53=2.943 (3.16) 

CL = S2 = 1.413 (3.17) 

LDL=S2 + AD~) =1.413+ (-1.008)=0.405 (3.18) 

From Figure 3 one may see that S~ was above the upper decision line. 

3.4 RANDANOMV-R 

RANDANOMV-D and RANDANOMV-DD have test statistics that are based on extreme 

values of differences from some pooled estimate. RANDANOMV-R uses a ratio of the 
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sample variance to the sum of the sample variances. Extreme Oargest and smallest) ratios 

are used as test statistics for the initial and shuffled data. RANDANOMV-R is a 

randomization version of the Analysis of Means for Variances presented by Wludyka and 

Nelson (1997 A). 

RANDANOMV -R uses the following steps: 

1. ;12 

Calculate AD max = max j I 

I,Sj2 
j=1 

and AD ... = min /1s,' on 

the initial sample where S; is the sample variance 

2. Randomly shuffle the original data some number of times, NS 

3. Calculate AD:" =ma{/1s,' 1 and AD!. =1/1s,' 1 after 

each shuffle where Sj2 is the sample variance 

4. If AD !ax > AD max then ngmx = ngmx + 1 

5. If AD !un < AD min then ngmn = ngmn + 1 

6. If p-value-high = ( ngmx + %) )< a 
(NS + 1) 2 or p-value-Iow = 

(ngmn + WNS + 1»)< ~ then hypothesis (1.1) is rejected. 

This procedure will be called the p-value method. 
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A decision chart for RANDANOMV -R can be constructed. However, since 

RANDANOMV -R is a ratio test, for a level of significance a the decision lines are 

(3.19) 

(3.20) 

(3.21) 

AD~) and AD!P represent the same values as presented in sections 3.2 and 3.3. This 

method will be denoted the decision chart procedure. 

3.4.1 RANDANOMV -R EXAMPLE 

The data in Table 1 will be used to illustrate the method. Test statistics from the p-value 

method are below. 

~
2 

ADmax = m~ ; I = 0.543 
I I,S;2 

;=1 

h· h ngmx+l 
p- 19 = -N,=--S-+-I-

1 
ngmn +1 

p- ow = ---=---
NS+l 

39+1 =0.04 
1001 

528+ 1 0.528 
1001 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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Test statistics on the original sample are given in (3.22) and (3.23). The data was 

shuffled 1,000 times and a significance level (a) of 0.05 was used. P-Iow was 0.528, 

and p-high was 0.040. Hypothesis (1.1) was not rejected since both p-Iow and p-high > 

0.025. 

The RANDANOMV-R decision chart for the example is in Figure 4. AD~6) and 

AD~) were computed in the same manner as was done for RANDANOMV-D and 

RANDANOMV-DD. The decision lines were determined to be 

UDL = [ t s i' JAD~'»)= 5.653x 0.552 = 3.121 (3.26) 

CL=S2 =1.413 (3.27) 

LDL=[ tSi' }w~»)=5.653XO.049=0.278 (3.28) 

From Figure 4 one may see that each Sj2 was within the decision lines. That is, there 

were no differences in variability among the samples. 

3.5 RANDANOMV-RD 

RANDANOMV -RD is the ratio version of RANDANOMV -DD. The same issue 

presented in section 3.3 motivates RANDANOMV -RD. This test calculates initial test 

statistics using the ratio of each sample variance to the sum of the sample variances 

(similar to RANDANOMV-R), shuffles deviations from the mean (similar to 

RANDANOMV-DD) and calculates a ratio of sample variance-type statistics on the 
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shuffled data (similar to RANDANOMV -DD). Extreme ratios (maximum and minimum) 

are used as test statistics. 

RANDANOMV -RD is carried out using the following steps: 

1. Calculate the mean of each sample, Xj 

2. 

3. 
"i;( LZ~ 

Calculate S ~ = j=1 ( ) 
I \nj-l 

4. and AD,;, =min ns,' ;12 

Calculate AD max = max j I 

LSj2 
j=1 

on 

the initial sample 

5. Randomly shuffle zij some number of times, NS 

6. 
"i;( ~>~ 

Calculate p/ = j=1 (n
j 
-1) after each shuffle 

7. 

8. If AD !ax > AD max then ngmx = ngmx + 1 

9. If AD!m < AD min then ngmn = ngmn + 1 
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10. If p-value-high = ((ngmx + 9(NS + 1))< ~ or p-value-Iow = 

((ngmn + 9(NS + 1))< ~ then hypothesis (1.1) is rejected. 

This will be referred to as the p-value method. 

Using the same ideas presented for RANDANOMV-R, a decision chart can be 

constructed using (3.19) - (3.21) for a level of significance a. This will be called the 

decision chart procedure. 

3.5.1 RANDANOMV-RD EXAMPLE 

The data in Table 1 will be used to illustrate the method. Test statistics (3.22) and (3.23) 

are the test statistics on the original sample for RANDANOMV-RD. The p-values from 

the test were 

h' h ngmx+1 13+1 =0.014 
p- 19 = NS+1 1001 

I ngmn+1 
p- ow = -N,::""'-'S-+-1- 327 + 1 0.328 

1001 

Since (3.29) < 0.025, hypothesis (1.1) was rejected. 

(3.29) 

(3.30) 

The RANDANOMV-RD decision chart for the example is in Figure 5. AD~~6) and 

AD~) were computed in the same manner as was done for the other randomization 

tests. The decision lines were constructed in a similar manner to those for 

RANDANOMV -R. The decision lines were detennined to be 
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UDL=( ts,' }D!!:6»)=5.653X0.521 = 2.943 (3.31) 

CL=S2 =1.413 (3.32) 

WL = ( t S: ' AD!"»)= 5.653 x 0.0716 = 0.405 (3.33) 

From Figure 5 one may see that S; was above the upper decision line. 

3.6 COMPUTER PROGRAM FOR THE RANDOMIZATION TESTS 

The previous sections in this chapter outlined the steps to perform each approximate 

randomization test. A FORTRAN program that the reader may use to perform the tests 

will be discussed in this section. The program was used to determine the p-values and 

decision limits for the examples presented for each approximate randomization test. The 

program performs permutation shuffles, but it may be modified for bootstrapping 

shuffles. 

integer nurnshuf,npops,nsamp,iseed 
parameter (nurnshuf=1000, npops=4, nsamp=10, iseed=1579) 
real alpha 
parameter (alpha=0.05) 
dimension semvar(npops),shufvar(npops),ddvarto(npops) 
dimension rdratio(npops),ratiovar(npops) 
dimension devvar(npops),devvarto(npops),sampavg(npops) 
dimension randstol(nurnshuf),randstoh(nurnshuf) 
dimension ddslo(nurnshuf),ddshi(nurnshuf) 
dimension sampvar(npops),ratdev(npops*nsamp),dev(npops*nsamp) 
dimension randsone(nurnshuf),ratioslo(nurnshuf),ratioshi(nurnshuf) 
dimension rdslo(nurnshuf),rdshi(nurnshuf) 
real e(npops,nsamp),devrnean(npops,nsamp),c(npops,nsamp) 
dimension pop(npops*nsamp) 
data pop/.5119, .6137,-.6311,-.5025,1.577,-1.32,-.3896, 

+ .6738,-.09655,-.6112, .3756, .1026,-.2989,-.5242,-1.455, 
+ -1.481, .5361, .6953,-1.243,-1.253,-1.648, .06582, .5893, 
+ .04181, .2225,-.1234,-2.350,1.269,-.5466, .1959, .2821,-2.411, 
+ -4.359,-1.704, .9703,-.9169, .6221,-3.017,-.04799,-2.235/ 
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npopsarnp = nsarnp*npops 
halfalph = alpha/2. 
ildl = numshuf*halfalph 
iudl = numshuf - ildl + 1 
donerjct O. 
dtworjcl = O. 
dtworjch = O. 
ddrjcl = o. 
ddrjch = O. 
rrjcl = o. 
rrjch = o. 
rdrjcl o. 
rdrjch = o. 

C ASSIGNS THE DATA VALUES TO THEIR RESPECTIVE SAMPLE 
jd 1 
do j = 1 , npops 

do k = 1 , nsarnp 
dev(k) = pop(jd) 
jd = jd + 1 

enddo 

C FINDS MEAN AND VARIANCE FOR EACH SAMPLE 
call arne anva r (dev, nsarnp, savg, svar) 
sarnpavg(j) savg 
sampvar(j) = svar 

C FINDS DEVIATION FROM MEAN FOR -DD AND -RD 
do k = 1 , nsarnp 

devrnean(j,k) = dev(k) - sarnpavg(j) 
enddo 

enddo 

avgvar o. 
varsum o. 

C FINDS AVERAGE SAMPLE VARIANCE 
do j = 1 , npops 

varsum = varsum + sarnpvar(j) 
enddo 
avgvar = varsum / float (npops) 

C FINDS DEVIATION FROM AVERAGE VARIANCE AND RATIO TO SUM 
do j = 1 , npops 

devvar(j) = abs(sarnpvar(j) - avgvar) 
devvarto(j) sarnpvar(j) avgvar 
ratiovar(j) = sarnpvar(j) / varsum 

enddo 
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C SORTS THE DEVIATIONS FROM AVERAGE VARIANCE AND RATIOS TO SUM 
call bubsort(devvar,npops) 
call bubsort(devvarto,npops) 
call bubsort (ratiovar, npops) 

C ASSIGNS THE TEST STATISTICS FOR THE INITIAL DATA SET 
randone = devvar(npops) 
rand two I devvarto(l) 
randtwoh = devvarto(npops) 
ratiolow = ratiovar(l) 
ratiohi = ratiovar(npops) 

C PREPARES THE DEVIATIONS FROM MEAN SO THEY MAY BE SHUFFLED 
rnd = 1 
do j = 1 , npops 

do k = 1 , nsarnp 
ratdev(rnd) = devrnean(j,k) 
rnd = rnd + 1 

enddo 
enddo 

C SHUFFLES THE ORIGINAL DATA AND THE DEVIATIONS FROM THE MEAN 
C SHUFFLES ARE PERFORMED WITHOUT REPLACEMENT 

do i = 1 , nurnshuf 
do ij = 1 , npopsarnp - 1 

rnn = float(npopsarnp + 1 - ij) 
ih = int(rnn*ranl(iseed)) + ij 
trnp = pop (ij) 
trnpp = ratdev(ij) 
pop(ij) = pop(ih) 
ratdev(ij) = ratdev(ih) 
pop (ih) = trnp 
ratdev(ih) = trnPP 

enddo 

C ASSIGNS THE SHUFFLED DATA TO THEIR RESPECTIVE SHUFFLE SAMPLE 
C SQUARES THE DEVIATIONS FROM THE MEAN FOR -DD AND -RO 

rnd 1 
do j = 1 , npops 

do k = 1 , nsarnp 
devrnean(j,k) = ratdev(rnd) 
c(j,k) = devrnean(j,k)**2 
e(j,k) = pop(rnd) 
rnd = rnd + 1 

enddo 
enddo 
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C PERFORMING OPERATIONS ON SHUFFLED DATA 
C THIS IS IN PREPARATION FOR CALCULATING TEST STATISTICS 

rn = float (nsamp) 
do j = 1 , npops 

shsum = O. 
shssum = o. 
shsq = o. 
do k = 1 , nsamp 

shsum = c(j,k) + shsum 
shssum = e(j,k) + shssum 
shsq = (e(j,k)**2) + shsq 

enddo 
semvar(j) = shsum / (rn - 1.) 
vars = shsq - (shssum*shssum/rn) 
shufvar(j) = vars / (rn - 1.) 

enddo 

savgvar = O. 
avssemvr = O. 
sumsem = O. 
sumshuf = o. 

C FINDS AVERAGE VARIANCE AND AVERAGE SEMI-VARIANCE 
do j = 1 , npops 

sumsem = semvar (j) + sumsem 
sumshuf = shufvar(j) + sumshuf 

enddo 
avssemvr = sumsem / float (npops) 
savgvar = sumshuf / float (npops) 

C FINDS DEVIATIONS FROM AVERAGE AND RATIOS TO SUM 
do j = 1 , npops 

devvar(j) = abs(shufvar(j) - savgvar) 
devvarto(j) = shufvar(j) - savgvar 
ddvarto(j) = semvar(j) - avssemvr 
ratiovar(j) = shufvar(j) / sumshuf 
rdratio(j) = semvar(j) / sumsem 

enddo 

C SORTS THE DEVIATIONS FROM AVERAGE AND RATIOS TO SUM 
call bubsort(devvar,npops) 
call bubsort(devvarto,npops) 
call bubsort (ddvarto, npops) 
call bubsort(ratiovar,npops) 
call bubsort(rdratio,npops) 

C ASSIGNS TEST STATISTICS FOR THE SHUFFLED DATA 
rands one (i) devvar(npops) 
randstol(i) = devvarto(1) 
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randstoh(i) = devvarto(npops) 
ddslo(i) = ddvarto(l) 
ddshi(i) = ddvarto(npops) 
ratioslo(i) = ratiovar(l) 
ratioshi(i) = ratiovar(npops) 
rdslo(i) rdratio(l) 
rdshi(i) = rdratio(npops) 

C COMPARES TEST STATISTICS OF SHUFFLED DATA AND ORIGINAL DATA 
C ADDS ONE TO COUNTER IF ORIGINAL EXCEEDED BY SHUFFLED VALUE 

it (randsone(i) .gt.randone) donerjct = donerjct + 1. 
it (randstol(i) .It.randtwol) dtworjcl ; dtworjcl + 1. 
it (randstoh(i) .gt.randtwoh) dtworjch = dtworjch + 1. 
it (ddslo(i) .It.randtwol) ddrjcl = ddrjcl + 1. 
it (ddshi(i) .gt.randtwoh) ddrjch = ddrjch + 1. 
it (ratioslo(i) .It.ratiolow) rrjcl = rrjcl + 1. 
it (ratioshi(i).gt.ratiohi) rrjch = rrjch + 1. 
it (rdslo(i) .It.ratiolow) rdrjcl = rdrjcl + 1. 
it (rdshi(i).gt.ratiohi) rdrjch = rdrjch + 1. 

enddo 

C 
call 

SORTS SHUFFLED TEST STATISTICS AND FINDS DECISION LIMITS 
bubsort(randstol,numshut) 

call bubsort(randstoh,numshut) 
call bubsort(ddslo,numshut) 
call bubsort(ddshi,numshut) 
call bubsort(ratioslo,numshut) 
call bubsort(ratioshi,numshut) 
call bubsort(rdslo,numshuf) 
call bubsort(rdshi,numshut) 

dldl = avgvar + randstol(ildl) 
dudl = avgvar + randstoh(iudl) 
ddldl = avgvar + ddslo(ildl) 
ddudl = avgvar + ddshi(iudl) 
rldl = varsum * ratioslo(ildl) 
rudl = varsum * ratioshi(iudl) 
rdldl varsum * rdslo(ildl) 
rdudl = varsum * rdshi(iudl) 

C CALCULATES P-VALUES 
sn tloat(numshut) + 1. 
pvone = (donerjct + 1.) / sn 
pvtwol = (dtworjcl + 1.) / sn 
pvtwoh = (dtworjch + 1.) / sn 
pvddl = (ddrjcl + 1.) / sn 
pvddh = (ddrjch + 1.) / sn 
pvrl = (rrjcl + 1.) / sn 
pvrh = (rrjch + 1.) / sn 
pvrdl (rdrjcl + 1.) / sn 
pvrdh = (rdrjch + 1.) / sn 
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C DETERMINES REJECT DECISION FOR EACH TEST 
C THE REJECT DECISION IS PRINTED AS OUTPUT ALONG WITH THE P-VALUE 
C THE DECISION LIMITS ARE ALSO PRINTED FOR THE APPLICABLE TESTS 

C THIS IS FOR RANDANOMV-Dl 
if (pvone.lt.alpha) then 

write(*,*) '-Dl rejects, p-value is' ,pvone 
print 5 

5 format ('0') 
else 
write(*,*) '-Dl does not reject, p-value is' ,pvone 
print 15 

15 format ('0') 
endif 

C THIS IS FOR RANDANOMV-D 
if (pvtwol.lt.halfalph) go to 100 
if (pvtwoh.lt.halfalph) go to 100 
go to 20 

100 write(*,*) '-D rejects, p-values are' ,pvtwol,pvtwoh 
write(*,*) 'LDL and UDL are' ,dldl,dudl 
print 25 

25 format ('0') 
go to 30 

20 write(*,*) '-D does not reject, p-values are' ,pvtwol,pvtwoh 
write(*,*) 'LDL and UDL are' ,dldl,dudl 
print 35 

35 format ('0') 

C THIS IS FOR RANDANOMV-DD 
30 if (pvddl.lt.halfalph) go to 200 
if (pvddh.lt.halfalph) go to 200 
go to 40 

200 write(*,*) '-DD rejects, p-values are' ,pvddl,pvddh 
write(*,*) 'LDL and UDL are' ,ddldl,ddudl 
print 45 

45 format ('0') 
go to 50 

40 write(*,*) '-DD does not reject, p-values are' ,pvddl,pvddh 
write(*,*) 'LDL and UDL are' ,ddldl,ddudl 
print 55 

55 format ('0') 

C THIS IS FOR RANDANOMV-R 
50 if (pvrl.lt.halfalph) go to 300 
if (pvrh.lt.halfalph) go to 300 
go to 60 

300 write(*,*) '-R rejects, p-values are' ,pvrl,pvrh 
write{*,*) 'LDL and UDL are' ,rldl,rudl 
print 65 

40 



65 format ('0') 
go to 70 

60 write(*,*) '-R does not reject, p-values are' ,pvrl,pvrh 
write(*,*) 'UDL and LDL are' ,rldl,rudl 
print 75 

75 format ('0') 

C THIS IS FOR RANDANOMV-RD 
70 if (pvrdl.lt.halfalph) go to 400 
if (pvrdh.lt.halfalph) go to 400 
go to 80 

400 write(*,*) '-RD rejects, p-values are' ,pvrdl,pvrdh 
write(*,*) 'LDL and UDL are' ,rdldl,rdudl 
print 85 

85 format ('0') 
go to 90 

80 write(*,*) '-RD does not reject, p-values are' ,pvrdl,pvrdh 
write(*,*) 'LDL and UDL are' ,rdldl,rdudl 

90 end 

C THIS SUBROUTINE CALCULATES THE SAMPLE MEAN AND VARIANCE 
subroutine arneanvar(b,n,vrnean,vvar) 
dimension b(n) 
sum = o. 
sq = o. 
do j = 1 , n 

sum = sum + b(j) 
sq = sq + (b(j)**2) 

enddo 
rn = float (n) 
vrnean = sum / rn 
vvar = (sq - sum*sum / rn) / (rn - 1.) 
return 
end 

C THIS SUBROUTINE SORTS VALUES IN ASCENDING ORDER 
subroutine bubsort(devs,n) 
dimension devs(n) 
do j = 1 , n-1 

do k = 1 , n-j 
if (devs(k) .gt.devs(k+1)) then 
tmp = devs (k) 
devs(k) = devs(k+1) 
devs(k+1) = tmp 
endif 

enddo 
enddo 
return 
end 
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C THIS FUNCTION PROVIDES RANDOM NUMBERS TO SHUFFLE DATA 
C THE FUNCTION WAS OBTAINED FROM NUMERICAL RECIPES 

FUNCTION RAN 1 (iseed) 
DIMENSION R(97) 
PARAMETER (Ml=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6) 
PARAMETER (M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6) 
PARAMETER (M3=243000,IA3=4561,IC3=51349) 
DATA IFF /0/ 
IF (iseed.LT.O.OR.IFF.EQ.O) THEN 

IFF=l 
IX1=MOD(IC1-iseed,Ml) 
IX1=MOD(IA1*IX1+IC1,Ml) 
IX2 =MOD (IXl , M2 ) 
IX1=MOD(IA1*IX1+IC1,Ml) 
IX3 =MOD (IX1, M3 ) 
DO 11 J=1,97 

IX1=MOD(IA1*IX1+IC1,Ml) 
IX2=MOD(IA2*IX2+IC2,M2) 
R(J)=(FLOAT(IX1)+FLOAT(IX2) *RM2) *RMl 

11 CONTINUE 
iseed=l 

ENDIF 
IX1=MOD(IA1*IX1+IC1,Ml) 
IX2=MOD(IA2*IX2+IC2,M2) 
IX3=MOD(IA3*IX3+IC3,M3) 
J=1+(97*IX3)/M3 
IF(J.GT.97.0R.J.LT.l)PAUSE 
RANl=R(J) 
R(J)= (FLOAT(IX1)+FLOAT(IX2) *RM2)*RMl 
RETURN 
END 

The program allows the user to specify the number of shuffles (numshuf), the number of 

samples (npops), the number of elements in each sample (nsamp), the level of 

significance (alpha) and the seed (iseed) used to start the shuffle function. After these 

items have been declared, the user enters their data between the slashes (I). The data 

from Table 1 lies between the slashes. The program may then be compiled and executed. 

The program will output a reject/do not reject decision along with p-values. Upper and 

lower decision limits are produced so that a decision chart similar to those presented in 

sections 3.2 - 3.5 may be constructed. 
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Table 3: Outline of Randomization Tests 

Test Statistic (Initial) What is shuffled? Statistic (Shuffled) 
-Dl maxlSi2 - S2l Original data maxis i

2 
- S2l 

-D min and max 
~i2 _S2) 

Original data min and max ~: -S£) 

-DD min and max Deviations from the min and max ~2 -p£) 
~i2 _S2) sample mean, where 

zij =Xij -Xi ";/ Iz: 
p/ = j=l (n

i 
-1) 

-R min and max Original data min and max 
/ '\ / 

X ' ts; 
I X , ts,' 

-RD min and max Deviations from the 

mm and max[7~p" ) 
[/is" 1 

sample mean, 
zij =Xij -Xi 

where 

';/ LZ: 
p? = j=l ( ) 

I ni -l 
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Figure 2: RANDANOMV -D Decision Chart 
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Figure 3: RANDANOMV -DD Decision Chart 
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Figure 4: RANDANOMV -R Decision Chart 
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Figure 5: RANDANOMV-RD Decision Chart 
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Chapter 4 

Variance Configurations 

Particularizing Section 1.2, suppose a researcher is interested in the variances of I 

populations, each with distribution function F; (x;, a;2). Let 

0= (O,oo)x (0,00 )x···x (0,00) 

be the parameter space for an HOV test. A variance configuration is a particular set of 

values for the I variances such that 

{al , ••• ,af}e n. 

There are infinitely many variance configurations I populations may take. For that reason 

it is useful to partition the variance configuration into subspaces 

Note the HOV hypothesis (l.I) is true for all configurations (al , ••• ,a f ) in 0 1 • 

DEFINIDON 10. The least favorable configuration (LFCrJ for an HOV test is that 

configuration in n r with the lowest power. 

In this manner the LFC for the HOV tests is indexed by r. Different tests may have 

different LFCs for the same r. 
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Since ANOM and ANOV A are used in the nonrandomization tests presented in this 

paper, the LFC for these location tests will be presented. Let 

be subspaces of the parameter space of population means. Note that specifying a 

difference in terms of Acr amounts to measuring differences of means in cr units. The 

LFC for the ANOVA-F test and ANOM (see Nelson (1998)) are of the form 

(
A(J -A(J J 2'-2-,0, ... ,0 (4.1) 

That is, when I - 2 of the means are in the middle, and the other two means are 

equidistant above and below. 

For the nonrandomization tests in this paper ANOV A and ANOM are applied to scale 

transformations Y ij to test the HOV hypothesis. These tests are actually comparing 

E(Y ij) for the I populations. The LFC for these tests will be when the configuration of 

expected values (E(Y,J ... ,E(Yij)) is of the form of the ANOV NANOM LFC. That is, 

where one is large, one is small, and the rest are in the middle. Now a particular variance 

configuration ((J p ... , (J /) for the x ij , s will induce a parameter configuration of 

(E(Y,j } ... ,E(Y/j )). The configuration of (J's that induces the LFC (E(Y,j } ... ,E(Yij)) is 

the LFC for the variance test. This variance configuration should be of the form 

(l,m, ... ,m,r) since this will induce a configuration of means (E(Y,J ... ,E(Yij )), which 

has the proper form. The value for m which produces the LFC likely depends on the 

underlying population (of x's) and since that in general is not known the LFC is 
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indeterminate. There are complications involved since the transformed values do not in 

general meet the assumptions for ANOV AlANOM tests and these assumptions are 

involved in the determination of the ANOV AI ANOM LFCs. However, the robustness of 

these tests is exploited for the HOV tests. Monte Carlo experimentation can be used to 

learn about HOV tests' LFCs for particular populations. 

LFCs for the ANOM-type randomization tests presented in this paper again probably 

depend on the parent populations. Monte Carlo methods may be used to shed light on 

this problem. Intuition suggests these LFCs are of the form (1, m, ... , m, r) since the 

randomization tests are modeled after the ANOM tests. 
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5.1 METHODOLOGY 

Chapter 5 

Monte Carlo Study 

A Monte Carlo study was carried out to evaluate each of the tests with respect to type I 

error stability and power. The type I error stability study assessed the relationship 

between observed rejection rates and the nominal rejection rates (a) when the HOV 

hypothesis (1.1) was true. The power study evaluated the ability of each test to detect 

differences among sample variances when the HOV hypothesis (1.1) was false. 

FORTRAN programs were written to perform the Monte Carlo study. The program used 

to simulate the randomization tests is in the Appendix. The program had to be modified 

slightly to evaluate different numbers of populations and different sample sizes. The 

non-randomization tests used 10,000 replications, and the randomization tests used 2,000 

replications with 1,000 shuffles per replication. 

Since the focus of this paper was on robust tests, six of the seven distributions were 

nonnormal in the type I error stability study and power study. Three common and four 

special distributions were used in each study. The three common distributions were 

N(O,l), X 2 (1) and an exponential distribution with A = 1, Exp(1). The four special 
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distributions were (i) a symmetric distribution with kurtosis of 6 (generated using a 

method devised by Fleishman (1978) and employing tables from Barnes (1981» to obtain 

KUR(6) = 0.66268N(0,1)+ 0.10189N3 (0,1) (5.1) 

(ii) a distribution with no kurtosis and skewness of 3 (generated using Fleishman (1978) 

and Barnes (1981» to obtain 

SKW(3) = -{).05134- 2.91756N(0,1)+ 0.05134N2 (0,1)+ 0.87133N3 (0,1) (5.2) 

(iii) Gammal: ,1) and (iv) a 50:50 mixture of two nonnals where one was N(- 2,1), and 

the other was N(2,1). 

The majority of the power study was conducted with the KUR(6) and SKW(3); however, 

the power of each test was evaluated for each of the distributions in the type I error 

stability study. 

5.2 VARIANCE CONFIGURATIONS STUDIED 

Two variance configurations were studied: 

• Configuration 1, where I -1 variances were equal and the last was larger. 

This configuration was of the fonn (1, ... ,1, r). 

• Configuration 2, where I - 2 variances were equal, the first was smaller, 

and the last was larger. This configuration was of the fonn (l,m, ... ,m,r). Two 

variations of Configuration 2 were studied. One arrangement was m = (0.5)r , and 

the other arrangement was m = (0.75),-. The latter variation of Configuration 2 

50 



was studied to see the perfonnance of the tests on a configuration thought to 

produce lower power. 

Configuration 1 was chosen because it was a common circumstance of interest, and it 

was a favorable LFC. Configuration 2 was selected because it was thought to be an 

unfavorable LFC. 

5.3 TYPE I ERROR STABILITY 

The type I error rates are given in the case where each of the I populations have the 

same variance. The ideal test will be robust across different underlying distributions. 

That is, a robust test will have a type I error rate that is consistent from distribution to 

distribution. Similar to Conover, Johnson and Johnson (1981), Wludyka and Nelson 

(1999) gave guidelines on assessing the degree of robustness. A test was deemed to have 

"good robustness" if its rejection rate was less than twice the nominal rate and "adequate 

robustness" if its rejection rate was less than three times the nominal rate. Tests may also 

be classified as either "conservative" or "liberal." "Conservative" tests are those in 

which the empirical rejection rate is less than the nominal rate. "Liberal" tests are those 

in which the empirical rejection rate is greater than the nominal rate. 

Tables 4 and 5 contain results from the Monte Carlo study perfonned to evaluate the 

empirical type I error stability. Table 4 holds infonnation from the study conducted 

using five samples, and Table 5 holds similar infonnation for 10 samples. 
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Levene and ANOMV -LEV were the only nonrandomization tests that displayed "good 

robustness" for each of the six nonnonnal distributions, although ANOMV -LEV slightly 

exceeded the criterion for SKW(3). ANOMV -JK exhibited "good robustness" for the 

mixture, but the test was "inadequate" for SKW(3) and X2(1). ANOMV-TR 

demonstrated "good robustness" for all distributions except Exp(l) and X2 (1). This test 

was "inadequate" for X2 (1). F-K showed "good robustness" for parent distributions of 

KUR(6), SKW(3) and the mixture. The test was "inadequate" for X2 (1). Levene's test 

proved to be conservative for all parent distributions. None of the other 

nonrandomization tests were consistently conservative or liberal. ANOMV-LEV and 

ANOMV -JK leaned toward conservative and liberal, respectively. ANOMV -TR and 

ANOMV-FKjumped around the nominal rejection rate. 

Two of the four randomization tests demonstrated "good robustness" for the nonnonnal 

parent distributions. RANDANOMV-D and RANDANOMV-R were the two tests that 

were "good" for all distributions. RANDANOMV-DD and RANDANOMV-RD were 

"inadequate" for X 2 (1), Exp(1) and Gamma ~ ,1) when pennutation shuffling was used. 

RANDANOMV -DD exhibitied "good" robustness when bootstrap shuffling was used. 

None of the four tests were consistently conservative or liberal; however, the tests were 

more conservative when bootstrap shuffling was used. 
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5.4 POWER 

Tables 6 - 12 contain results from the power study. Tables 6 - 9 hold power information 

for KUR(6). Tables 10 and 11 contain power results for SKW(3), and Table 12 contains 

the results from a power study using one variance configuration for the other five 

distributions used in the type I error stability study. 

Each of the tests had greater power for Configuration 1 than for variance Configuration 2. 

The power of each test increased with n . Among the randomization tests 

RANDANOMV-D and RANDANOMV-R appear to be the best. When looking at the 

nonrandomization tests, ANOMV -LEV was the best. There were no significant 

differences in power when comparing the nonrandomization group as a whole to the 

randomization group as a whole when permutation shuffling was used. Bootstrap 

shuffling had a negative impact on the power of the randomization tests. This type of 

shuffling had the greatest impact on RANDANOMV-D and RANDANOMV-DD while 

the other randomization tests were impacted minimally. There were instances where 

individual tests were inappropriate for the distribution under study. 

5.5 UNEQUAL MEANS 

It was noted in section 3.3 that many non-parametric tests of variability assume a 

common center of location (Baker 1995). For this reason RANDANOMV-DD was 

developed. The following example will illustrate the problem that arises with 

RANDANOMV -D when populations have unequal means. 

53 



Consider the sample below for which I = 3, nj = 2, s? = 0.5, s; = 0.5, s; = 1250 and 

s2=417. 

(
2 20 1(0) 

X = 3 21 150 

From the initial sample AD max = 833 and AD min = -416.5 . There are six distinct 

permutations of the data that produce different test statistics. That is, the original sample 

produces the same test statistics as 

Two such distinct permutations are 

X(I) = (2 3 1(0) and X (2) = (2 20 21) 
20 21 150 3 100 150 . 

For the first permutation s? = 162, s; = 162, s; = 1250, S2 = 524.67 , AD!nn = -362.67 

and AD!mx = 725.33. The test statistics from the permuted data do not exceed the test 

statistics from the original sample. For the second permutation s? = 0.5, s; = 3200, 

s; =8320.5, S2 =3840.33, AD!m =-3839.83 and AD!ax =4480.17. The test statistics 

from the permuted data exceed the test statistics from the original sample. 

This was done for the remaining four permutations. Four of the six distinct permutations 

produced test statistics that exceeded the initial test statistics. Thus, one would conclude 

that there was no difference in variability among the samples. This example illustrates a 

problem with RANDANOMV-D: this test may have difficulty detecting differences 
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among variances if the populations have very different means. Thus, caution should be 

exercised when using this test when the means are known to be very different. 

A Monte Carlo study was carried out using an unequal means case. The study used a 

situation where the means were not "too different." The type I error results are in Table 

10. The results from the power study are in Table 11. 

The example presented earlier in this section showed that large differences in the mean 

could lead to problems with RANDANOMV -D. The Monte Carlo results show that 

small differences in the mean may not have a big impact on RANDANOMV -D or any of 

the randomization tests. 

From the Monte Carlo study it was seen that bootstrap shuffling is slightly more robust 

and less powerful than permutation shuffling. The small increase in robustness was 

offset by the decrease in power. It was also shown that small differences in the mean 

may not greatly impact the performance of the randomization tests, but care should be 

exercised when using these tests when the means greatly differ. Because of the previous 

two issues, the user should employ randomization tests with permutation shuffling when 

it is known that the means are not very different. When the randomization tests are used 

in these situations, RANDANOMV-D and RANDANOMV-R are the best, especially 

with larger sample sizes. These two tests control the type I error rate for all of the 

distributions in the study, and these tests are as robust as commonly used 

nonrandomization tests. With smaller sample sizes, RANDANOMV -D and 
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RANDANOMV -R are still robust tests, but the user sacrifices some power. The user 

should be hesitant about using RANDANOMV-DD and RANDANOMV-RD when the 

data is skewed as the Monte Carlo study shows inflated type I error rates for these tests. 
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Table 4: Empirical Type I Error Rates for 1= 5, n = 10 (20 in parentheses), a = 0.05 left of semi-colon, a = 0.10 right 
of semi-colon. * Denotes Bootstrap Shuffling 

Distribution 
Test N(O 1) I KUR(6) I SKW(3) I Chi-sa(1) I ExP(I) I Gamma(4191) I 50:50 Mixture 

Levene .029 (,033) ; .061 (.071) .032 (.037) ; .U73 (.083) .015 (.017); .039 (.044) .049 (.045); .095 (.094) .046 (,049) ; .092 (,096) .044 (.042) ; .088 (.082) .018 ('014); .035 (.033) 

ANOMY-LEV .032 (.034) ; .069 (.074) .044 (.047) ; .090 (,092) .028 (.037) ; .066 (.083) .063 (.055); .116(.103) .057 (,055); .103 (.100) .056 (.046); .102 (.089) .0\ 9 ('016) ; .042 (.036) 

ANOMY-JK .051 (.052) ; .088 (,091) .099 (.100); .174 (,170) .246 (.313);.344 (.430) .136 (.122); .217 (.201) .119 (.115); .195 (.185) .121 (.110); .196(.186) .024 (.030) ; .043 (.060) 

ANOMY-TR .034 (.035) ; !.TI2 (,073) .041 (.039); .085 (.082) .0\8 (.020);.044 (.048) .154 (.180) ; .245 (.282) .087 (,098); .145 (.171) .081 (.087) ; .146 (.160) .0\4 (.009); .032 (.025) 

F-K .031 (.033) ; .066 (,073) .038 (.038) ; .080 (.081) .017 (.018) ; .040 (,045) .162 (.198); .254 (.305) .087 (.106); .153 (.In) .085 (.092); .149 (.164) .0\ 2 (.009) ; .027 (.022) 

RAND-Dl .057 (.052);.108 ('091) .053 (.058) ; .099 (,091) .046 (.066) ; .098 ('099) .050 (.066); .090 (.110) .054 (.048); .113 (.104) .043 (.047) ; .096 (,089) .050 (,046) ; .095 (.093) 

RAND-D .061 (,043) ; .108 (.083) .059 (,046); .102(.091) .049 (,046) ; .089 (.113) .058 (.064); .110 (.107) .050 (.047); .101 (,093) .048 (.050) ; .092 (,1 01) .044 (.044); .090 (.090) 

RAND-DO .082 (,058) ; .145 (.099) .114 (,072);.177 (.120) .160 (.111); .231 (.165) .410 (.272); .501 (.357) .267 (.169); .367 (,235) .258 (.207) ; .350 (.275) .061 (.047);.107 (,082) 

RAND-R .060 (.043) ; .111 (.083) .059 (.047); .107 (.090) .047 (.051); .089 (.088) .053 (.055); .102 (.102) .054 (.042); .097 (.088) .049 (.046) ; .096 (.1 03) .044 (.046) ; .086 (,086) 

RAND-RO .082 (.058) ; .145 (.099) .114 (.072);.177 (.120) .160 (.111); .231 (.165) .410 (.272); .501 (.357) .267 (.169); .367 (.235) .258 (.207) ; .350 (.275) .061 (.047) ; .107 (,082) 

"'RAND-Dl .043; .094 .042; .103 .030; .094 .031; .105 .031; .105 .048;.108 .041; .091 

"'RAND-D .026; .067 .018; .047 .015; .048 .0\2; .034 .0\2; .038 .018; .053 .030; .076 

"'RAND-DO .027; .078 .021 ; .055 .025; .051 .038; .087 .045; .099 .050;.106 .046; .094 

"'RAND-R .032; .071 .039; .074 .023; .065 .022; .058 .029; .064 .027; .072 .027; .055 

"'RAND-RD .055; .112 .068; .147 .U70;.I60 .340; .442 .212; .322 .209; .302 .054; .098 

Table 5: Empirical Type I Error Rates for 1= 10, n = 10 (20 in parentheses), a = 0.05 left of semi-colon, a = 0.10 right 
of semi-colon. * Denotes Bootstrap Shuffling 

Distribution 
Test N(01) I KUI!(6) 1 SKW(31 1 Chi-sqt1) J ExP(I} 1 Gamma(4191) 1 50:50 Mixture 

Levene .022 (.034) ; .053 (.076) .032 (.046); .071 (.093) .013 (.023); .032(.050) .047 (.053); .094 (.105) .050 (.051); .092 (.098) .044 (.046) ; .084 (.090) .009 (.007); .021 (.021) 

ANOMY-LEV .032 (,037) ; .061 (.075) .074 (.070); .125 (.119) .109 (.127); .187 (.202) .096 (.091); .154 (.140) .082 (.073); .134 (.123) .080 (.071); .130(.114) .013 (.016); .030(,033) 

ANOMV-JK .051 (.054) ; .086 (.101) .128 (,137); .210 (.228) .539 (.623); .627 (.718) .157 (.155); .246 (.239) .141 (.131); .227 (,214) .142 (.135); .227 (.219) .035 (.035) ; .050 (,065) 

ANOMV-TR .032 (.036) ; .061 (.075) .042 (.043); .081 (.086) .020 (.023) ; .042 (.050) .180 (.236) ; .281 (.359) .102 (.113); .167 (.196) .092 (.105) ; .155 (.190) .009 (.010); .023 (.025) 

F-K .024 (.034) ; .053 (,076) .036 (.042) ; .U74 (.088) .011 (.014); .026 (.037) .227 (.329); .338 (.454) .104 (.136); .178 (.219) .098 (.131); .168(,217) .005 (.005); .0\3 (.015) 

RAND-Dl .031 (.046) ; .082 (,096) .041 (.042); .086 (,103) .063 (.046); .114 (.092) .052 (.054); .113 (.101) .051 (.068); .092(.126) .031 (.043); .076 (.087) .051 (.044); .106(.092) 

RAND-D .019 (.052) ; .062 (.103) .028 (.048) ; .068 (,096) .054 (.050); .110(.094) .030 (.055); .088 (.108) .052 (.050) ; .092 (.093) .042 (.044); .085 (.096) .050 (.043); .106 (.091) ! 

RAND-DO .043 (.065); .092 (.122) .072 (.084) ; .136 (.144) .199 (.109); .263 (,173) .500 (.380) ; .619 (.460) .311 (.222) ; .423 (.306) .301 (.242); .413 (.329) .090 (.042); .135 (.093) I 

RAND-R .024 (.058) ; .069 (.102) .027 (.052) ; .070 (.101) .058 (.049); .114 (,095) .030 (.060); .076(.106) .046 (.056); .088 (.094) .033 (.046) ; .074 (.093) .052 (.044); .103 (,089) 

RAND-RO .043 (.065); .092 (.122) .072 (.084); .136 (.144) .199 (.109); .263 (.173) .500 (.380); .619 (.460) .311 (,222) ; .423 (.306) .301 (.242) ; .413 (.329) .090 (.042); .135 (.093) 

"'RAND-Dl .053; .113 .043; .107 .035; .108 .030; .115 .036;.106 .039; .110 .043; .096 

"'RAND-D .029; .071 .018; .045 .013; .045 .004; .031 .014; .036 .014; .039 .039; .U78 

"'RAND-DO .037; .091 .023 ; .U72 .018; .151 .025; .084 .031; .090 .033; .083 .052; .099 

"'RAND-R .044; .096 .043; .087 .032; .075 .019; .060 .034; .077 .002;!.TI0 .039; .076 

"'RAND-RD .071; .135 .091; .180 .102; .213 .453; .569 .258; .373 .264; .385 .066; .105 
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Table 6: Empirical Rejection Rates - Configuration 1 for 1= 5, n = 10 (20 in parentheses), a = 0.05 left of semi-colon, 
a = 0.10 right of semi-colon, KUR(6) Distribution. >I< Denotes Bootstrap Shuffling 

Test r=1 I r=3 I r=4 I r=S I r=6 I r=9 I r=16 
Levene .032 (.037) ; .073 (.083) .149 (.363) ; .244 (.482) .242 (.555); .360(.674) .334 (.702) ; .459 (.799) .413 (.800); .544(.874) .596(.938); .716(.966) .805 (.993) ; .885 (.997) 

ANOMV-LEV .044 (.047) ; .090 (.092) .196 (.416); .288 (.518) .313 (.619); .421 (.710) .422 (.761) ; .525 (.829) .508 (.849) ; .615 (.899) .700 (.958); .780 (.975) .886 (.997) ; .929 (.998) 

ANOMV-JK .099 (.100); .174 (.170) .202 (.329) ; .299 (.435) .265 (.457); .376 (.564) .331 (.564); .444 (.661) .390 (.645) ; .502 (.733) .520 (.790); .629 (.851) .698 (.917); .780(.948) 

ANOMV-TR .041 (.039) ; .085 (.082) .167 (.369); .252(.478) .261 (.567) ; .364 (.666) .352 (.710) ; .461 (.792) .432 (.807) ; .542 (.873) .607 (.941); .712(.966) .813 (.993); .877 (.997) 

F-K .038 (.038) ; .080 (.081) .151 (.333) ; .238 (.456) .232 (.517); .341 (.638) .311 (.658); .427 (.763) .380 (.759) ; .501 (.845) .546 (.914) ; .663 (.953) .749 (.987); .839 (.995) 

RAND-Dl .053 (.058) ; .099 (.091) .183 (.389) ; .274 (.486) .281 (.569); .373 (.676) .365 (.697) ; .469 (.787) .438 (.808); .551 (.850) 0.605 (.903) ; .694 (.940) .800 (.992) ; .864 (.997) 

RAND-D .059 (.046) ; .102 (.091) .154 (.320) ; .245 (.428) .231 (.502); .333 (.610) .302 (.632); .410 (.723) .369 (.746) ; .479 (.830) 0.533 (.878) ; .632 (.915) .724 (.983); .810(.992) 

RAND-DD .114 (.072) ; .1 77 (.120) .256 (.384) ; .353 (.500) .353 (.577) ; .474 (.668) .455 (.703); .555 (.791) .522 (.798); .632 (B68) 0.681 (.911) ; .767 (.950) .859 (.994) ; .911 (.996) 

RAND-R .059 (.047) ;.107 (.090) .166 (.323); .251 (.439) .244 (.511); .357 (.620) .328 (.653) ; .437 (.730) .395 (.752); .516 (.837) 0.579 (.887) ; .677 (.921) .785 (.988);.860 (.994) 

RAND-RD .114 (.072);.177 (.120) .256 (.384) ; .353 (.500) .353 (.577) ; .474 (.668) .455 (.703); .555 (.791) .522 (.798) ; .632 (.868) 0.681 (.911) ; .767 (.950) .859 (.994); .911 (.996) 

*RAND-Dl .042; .103 .160; .286 .235; .392 .313; .470 .372; .547 .494; .701 .654; .854 

"'RAND-D .018; .047 .087 ; .167 .148; .240 .206; .320 .251 ;.377 .354; .498 .494; .657 

"'RAND-DD .021 ; .055 .097 ; .177 .153; .250 .201; .316 .239; .377 .350; .498 .492; .638 

"'RAND-R .039; .074 .131 ; .231 .216; .332 .287; .414 .353; .488 .513; .642 .728 ; .835 

"RAND-RD .068; .147 .214; .337 .307; .439 .384; .527 .458; .602 .613; .744 .814; .905 

Table 7: Empirical Rejection Rates - Configuration 1 for 1= 10, n = 10 (20 in parentheses), a = 0.05 left of semi-colon, 
a = 0.10 right of semi-colon, KUR(6) Distribution. >I< Denotes Bootstrap Shuffling 

Test r=1 I r=3 I r=4 I reS I r=6 I r=9 I r=16 
Levene .032 (.046) ; .071 (.093) .145 (.352) ; .222 (.458) .238 (.555) ; .337 (.653) .336 (.707) ; .444 (.785) .425 (.809); .531 (.869) .622 (.947) ; .718 (.967) .841 (.996); .893 (.998) 

ANOMV-LEV .074 (.070);.125 (.119) .252 (.457) ; .326 (.539) .383 (.669) ; .459 (.735) .497 (.806) ; .573 (.852) .591 (.887); .665 (.918) .779 (.976); .828 (.984) .929 (.999); .950 (.999) 

ANOMV-JK .128(.137) ;.210(.228) .200 (.308) ; .293 (.415) .251 (.426); .352 (.538) .306 (.531) ; .411 (.639) .356 (.621) ; .463 (.722) .488 (.792) ; .595 (.862) .684 (.938); .770 (.965) 

ANOMV-TR .042 (.043) ; .081 (.086) .170 (.385) ; .244 (.476) .278 (.590) ; .359 (.678) .373 (.738) ; .466 (.806) .462 (.835) ; .555 (.885) .657 (.956); .732(.971) .852 (.996); .892 (.998) 

F-K .036 (.042) ; .074 (.088) .123 (.303); .202(.411) .196 (.485); .296 (.591) .274 (.628); .383 (.724) .348 (.733); .455 (.816) .509 (.905) ; .626 (.941) .735 (.985); .815 (.993) 

RAND-Dl .041 (.042) ; .086 (.103) .147 (.296) ; .227 (.387) .255 (.477) ; .347 (.578) .356 (.621); .474 (.697) .451 (,715); .544 (.788) .636 (.883); .708 (.926) .804 (.980) ; .885 (.988) 

RAND-D .028 (.048) ; .068 (.096) .121 (.263) ; .188 (.352) .214 (.426); .297 (.524) .292 (.573); .391 (.658) .383 (.677); .472 (.745) .555 (.854); .647 (.893) .759 (.972); .810 (.983) 

RAND-DD .072 (.084); .136 (.144) .189 (.322) ; .295 (.427) .299 (.484); .413 (.597) .404 (.631); .506 (.720) .493 (.728) ; .599 (.802) .672 (.894); .758 (.927) .890 (.985); .920 (.990) 

RAND-R .027 (.052) ; .070 (.101) .117 (.266) ; .186 (.356) .227 (.426) ; .302 (.528) .301 (.582) ; .400 (.666) .393 (.687); .496 (.755) .575 (.860); .679 (.900) .812 (.976); .855 (.987) 

RAND-RD .072 (.084) ; .136 (.144) .189 (.322) ; .295 (.427) .299 (.484); .413(.597) .404 (.631); .506 (.720) .493 (.728) ; .599 (.802) .672 (.894); .758 (.927) .890 (.985) ; .920 (.990) 

"'RAND-Dl .043; .107 .143; .247 .237; .359 .328; ,457 .414; .533 .573; .703 .767; .865 

"'RAND-D .018; .045 .079; .144 .144; .238 .211 ; .329 .281; .414 .418; .573 .590; .767 

"'RAND-DD .023; .072 .087 ; .187 .143; .292 .218; .391 .283; .469 .410; .642 .573; .847 

"'RAND-R .043; .087 .122 ; .205 .194; .296 .281 ; .397 .363; .477 .531; .646 .759; .835 

*RAND-RD .091; .180 .191 ; .311 .272; .412 .371; .516 .456; .595 .636; .749 .839; .910 



Table 8: Empirical Rejection Rates - Configuration 2 for I = 5, n = 10 (20 in parentheses), 
a = 0.05 left of semi-colon, a = 0.10 right of semi-colon, KUR(6) Distribution. * Denotes 
Bootstrap Shuffling 

Test m=2.5,r=5 I m=3.5 r=7 I m= 12,r= 16 1 m = 18.75 r= 25 I m= 36.75 r= 49 
Levene .132 (.346); .230(.497) .168 (.465) ;.289 (.628) .265 (.188) ; .455 (.916) .333 (.891) ; .545 (.969) .429 (.961) ; .663 (.993) 

ANOMY-LEV .150 (.330) ; .243 (.468) .115 (.439) ; .286 (.607) .250 (.855); .463 (.951) .331 (.945) ; .511 (.986) .463 (.986) ; .121 (.998) 

ANOMY-JK .242 (.398); .349 (.516) .319 (.544); .435 (.652) .663 (.900); .155 (.932) .118 (.953) ; .849 (.969) .891 (.985); .928 (.989) 

ANOMY-TR .144 (.356);.246 (.501) .192 (.528) ;.324 (.616) .481 (.961) ; .686 (.987) .610 (.996) ; .831 (.999) .875 (1.00); .956(1.00) 

F-K .150(.312); .252(.521) .206 (.536) ; .331 (.684) .441 (.940) ; .636 (.919) .595 (.989) ; .111 (.991) .196 (.999); .918 (1.00) 

RAND-Dl .133 (.251); .210 (.316) .ISO (.281); .231 (.396) .114 (.112);.100 (.365) .111 (.192); .210 (.404) .120 (.229); .211 (.442) 

RAND-D .154 (.329) ; .251 (.456) .210 (.468) ; .316 (.609) .508 (.927) ; .632 (.962) .623 (.982) ; .140 (.998) .141 (.997); .825 (.999) 

RAND-DD .285 (.386) ; .401 (.521) .314 (.519) ; .492 (.693) .113 (.969) ; .852 (.986) .895 (.995) ; .938 (.998) .971 (.998) ; .989 (1.00) 

RAND-R .110 (.329); .263 (.463) .242 (.494) ; .351 (.623) .652 (.946); .169 (.914) .819 (.995) ; .884 (.995) .948 (.998); .978 (.999) 

RAND-RD .285 (.386) ; .401 (.527) .314 (.519) ; .492 (.693) .113 (.969); .852 (.986) .895 (.995) ; .938 (.998) .971 (.998) ; .989 (1.00) 

*RAND-Dl .119; .229 .129; .242 .101 ;.220 .104; .226 .105; .233 

*RAND-D .062;.131 m2;.149 .()82; .193 .100;.223 .120; .259 

*RAND-DD .012; .143 .082; .163 .098; .236 .119; .284 .145; .328 

*RAND-R .130; .251 .200; .342 .513; .123 .161; .864 .926; .966 

*RAND-RD .221; .369 .321; .480 .116; .826 .851; .919 .965; .986 

Table 9: Empirical Rejection Rates - Configuration 2 for I = 10, n = 10 (20 in parentheses), 
a = 0.05 left of semi-colon, a = 0.10 right of semi-colon, KUR(6) Distribution. * Denotes 
Bootstrap Shuffling 

Test m- 2.5, r=5 I m-3.5,r-7 I m= 12,r= 16 I m = 18.75, r = 25 I m=36.75,r=49 
Levene .102 (.263); .118 (.385) .120 (.341); .211 (.418) .155 (.558) ; .281 (.139) .185 (.685) ; .336 (.843) .230 (.815); .400 (.931) 

ANOMY-LEV .162 (.210) ; .233 (.311) .112 (.311) ; .249 (.461) .151 (.155); .218 (.904) .180 (.901) ; .341 (.975) .245 (.983) ; .480 (.998) 

ANOMY-JK .208 (.334); .316(.461) .268 (.416) ; .384 (.594) .640 (.907) ; .135 (.936) .m (.961) ; .841 (.973) .903 (.989); .936 (.991) 

ANOMY-TR .111 (.255); .181 (.316) .130 (.380); .219 (.529) .333 (.953) ; .530 (.983) .522 (.995) ; .121 (.999) .804 (1.00) ; .925 (1.00) 

F-K .106 (.215); .119 (.400) .135 (.395) ; .231 (.532) .268 (.823); .434 (.916) .360 (.940) ; .549 (.980) .514 (.997) ; .111 (1.00) 

RAND-Dl .083 (.139); .146(.234) .086 (.146) ; .153 (.241) .068 (.083); .121 (.158) .068 (.084) ; .123 (.160) .010 (.085); .125 (.164) 

RAND-D .096 (.234); .161 (.342) .140 (.395) ; .231 (.514) .455 (.925) ; .514 (.958) .604 (.984); .118 (.989) .136 (.998); .852(1.00) 

RAND-DD .113 (.314); .291 (.430) .258 (.481) ; .319 (.600) .139 (.958); .839 (.914) .897 (.991) ; .931 (.994) .987 (.999) ; .991 (1.00) 

RAND-R .104 (.241);.111 (.345) .163 (.401) ; .243 (.521) .590 (.944); .125 (.963) .800 (.988);.886 (.991) .963 (.999) ; .979 (1.00) 

RAND-RD .173 (.314); .291 (.430) .258 (.481) ; .319 (.600) .139 (.958) ; .839 (.914) .897 (.991) ; .931 (.994) .987 (.999); .991 (1.00) 

*RAND-Dl .082;.181 .088; .187 .066; .144 .061; .145 .061; .146 

*RAND-D .041; .084 .042; .092 .032; .103 .039; .123 .043; .153 

*RAND-DD .056; .123 .058; .131 .053; .168 .064; .205 .082; .249 

*RAND-R .101; .181 .146; .254 .569; .684 .161; .852 .948; .974 

*RAND-RD .188; .311 .264; .394 .112; .808 .860; .925 .918; .988 
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Table 10: Empirical Rejection Rates - Configuration 2 for I = 5, n = 10 (20 in parentheses), 
a = 0.05, SKW(3) Distribution. * Denotes Bootstrap Shuffling. *** Denotes Test is 
Inappropriate for SKW(3). 

Test m = 6.75, r=9 I m= 12,r= 16 I m= 18.75,r=25 I m=27,r=36 I m=36.75,r=49 

Levene .259(.664) .397 (.789) .487 (.846) .551 (.874) .596 (.887) 

ANOMY-LEV .302(.704) .471 (.819) .574 (.864) .636(.890) .675(.904) 

ANOMY-JK ... ... . .. . .. . .. 
ANOMY-TR .443 (.955) .683 (.994) .824 (.999) .900 (.999) .942 (1.00) 

F-K 379 (.926) .590 (.987) .727 (.997) .824 (.999) .881 (.999) 

RAND-Dl 357 (.366) .415 (.407) .437 (.436) .456 (.461) .463 (.469) 

RAND-D .734 (.874) .826 (.919) .860(.953) .888 (.979) .904 (.987) 

RAND-DD ... . .. ... . .. . .. 
RAND-R .833 (.880) .903 (.928) .934 (.962) .954 (.980) .970(.990) 

RAND-RD ... ... . .. . .. . .. 
·RAND-Dl .312 (.270) 367 (.304) 387 (.321) .402(.330) .411 (.335) 

·RAND-D 370(.363) .429 (.411) .455 (.433) .471 (.451) .486(.463) 

·RAND-DD .381 (.373) .439 (.420) .469(.442) .484 (.458) .497 (.471) 

·RAND-R .758 (.843) .877 (.914) .920 (.946) .942(.964) .955 (.978) 

·RAND-RD .807 (.852) .890(.920) .929 (.952) .948 (.965) .960 (.980) 

Table 11: Empirical Rejection Rates - Configuration 2 for 1= 10, n = 10 (20 in parentheses), 
a = 0.05, SKW(3) Distribution. * Denotes Bootstrap Shuffling. *** Denotes Test is 
Inappropriate for SKW(3). 

Test m=6.75, r-9 I m-l2,r-16 I m-I8.75, r- 25 I m- 27,r-36 I m=36.75,r=49 
Levene .098 (.427) .158(.591) .208 (.676) .248 (.728) .278 (.761) 

ANOMY-LEV .241 (.604) .356 (.760) .444 (.830) .507 (.866) .553 (.889) 

ANOMY-JK ... . .. . .. ... . .. 
ANOMY-TR . 252 (.939) .550 (.993) .753 (.999) .860 (.999) .924 (1.00) 

F-K .155 (.807) .270 (.948) 368 (.985) .459 (.997) .535 (.999) 

RAND-Dl .152(.113) .171 (.125) .182(.132) .194 (.136) .200 (.138) 

RAND-D .722 (.870) .848 (.931) .894 (.963) .919 (.978) .930(.986) 

RAND-DD ... . .. . .. ... . .. 
RAND-R .837 (.877) .908 (.933) .944 (.967) .955 (.977) .962 (.987) 

RAND-RD ... . .. . .. ... . .. 
·RAND-Dl . 118 (.090) .144(.103) .158(.108) .164 (.110) .167 (.112) 

·RAND-D .207 (.264) .262(.308) .287 (.330) .300 (.345) .315 (.352) 

·RAND-DD .240(.278) .288(.322) .319 (.348) 333(.369) .344 (.375) 

·RAND-R .726 (.843) .879 (.912) .916 (.955) .946 (.973) .961 (.983) 

·RAND-RD .828 (.853) .908 (.919) .940 (.958) .961 (.974) .974 (.985) 
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Table 12: Empirical Rejection Rates - Configuration 2 for m = 27, r = 36, 1= 5, n = 10 (20 in 
parentheses), a = 0.05. * Denotes Bootstrap Shuffling. *** Denotes Test is Inappropriate for 
Distribution. 

Test N(O,l) I chi-sq(l) I exp(l) I Gamma(4/9,1) I 50:50 Mixture 
Levene .703 (1.00) .192(.504) 318 (.845) 319(.840) .789 (1.00) 

ANOMV-LEV .823 (1.00) .178 (.526) 307 (.914) .316(.914) .910(1.00) 

ANOMV-JK .993 (1.00) ... . .. ... .998 (1.00) 

ANOMV-TR .901 (1.00) ••• .802 (.999) .796(.999) .921 (1.00) 

F-K .8~(I.00) ... .752(.996) .750(.998) .831 (1.00) 

RAND-Dl .206 (.890) .069 (.122) .065 (.122) .060(.094) .885 (1.00) 

RAND-D .912(1.00) .139 (.630) .186 (.869) .171 (.839) .993 (1.00) 

RAND-DD .997 (1.00) ... ... . .. 1.00(1.00) 

RAND-R .997 (1.00) .465 (.887) .826 (.997) .840 (.995) 1.00(1.00) 

RAND-RD .997 (1.00) ... . .. ... 1.00(1.00) 

·RAND-Dl .213 (.858) .036(.051) .040 (.066) .045 (.075) .882(1.00) 

·RAND-D .535 (.997) .014 (.036) .017 (.118) .021 (.107) .990 (1.00) 

·RAND-DD .590 (.997) .090(.183) .166(.454) .In (.446) 1.00(1.00) 

·RAND-R .998(1.00) .355 (.854) .749 (.988) .760(.990) 1.00(1.00) 

·RAND-RD .999 (1.00) ... ... ... 1.00(1.00) 

Table 13: Empirical Type I Error Rates - Unequal Means, 1= 5, n = 10 (20 in parentheses), 
a = 0.05, Mean Configuration = (1,1.2,1.4,1.6,1.8), Permutation Shuffling 

Distribution 

Test N(O,l) I KUR(6) I SKW(3) 
RAND-Dl .040(.040) .050 (.050) .045 (.045) 

RAND-D .032 (.027) .037 (.035) .043 (.041) 

RAND-DD .082(.059) .112(.069) .161 (.121) 

RAND-R .059 (.043) .086 (.070) .050(.054) 

RAND-RD .082 (.059) .112(.069) .161 (.121) 

Table 14: Empirical Rejection Rates - Unequal Means, I = 5, n = 10 (20 in parentheses), 
a = 0.05, Mean Configuration = (1,1.2,1.4,1.6,1.8), KUR(6) Distribution, Permutation 
Shuffling 

Configuration 
Test 1,r=9 I 1, r=16 I 2 , m=l8. 75 r=25 

RAND-Dl .580 (.895) .7n(.990) .118(.202) 

RAND-D .5~(.872) .704 (.979) .609 (.972) 

RAND-DD .681 (.911) .859(.994) .891 (.995) 

RAND-R .604 (.901) .806 (.989) .823 (.994) 

RAND-RD .681 (.911) .859(.994) .891 (.995) 
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Chapter 6 

Equivalence of Two Proposed Randomization Tests for Variances 

In the Monte Carlo study the randomization tests RANDANOMV-DD and RANDANOMV-

RD exhibited identical type I error stability and power for permutation shuffles. The 

following lemma will be used to prove equivalence of RANDANOMV-DD and 

RANDANOMV -RD for permutation shuffles. DEFINmON 9 stated the equivalence of two 

randomization tests. 

LEMMA 1. Consider the case where X ij are 1 samples of size n. Let Xi be the mean of 

the ;th group and X be the grand mean. Suppose the observations are (randomly) shuffled. 

=* 
Let Xi and X be the group and grand mean for the permuted data. 

max~*,i =1, ... ,/)- X * > max(Xi,i = 1, ... ,/)- X if and only if 

max~*'i=I,.1t.'1 I _* >max~'i=I'.li..'/) I _. 

LXi LXi 
i=l i=l 

The lemma's proof is simplified since the observations are randomly permuted without 

replacement. 
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max{Xi *,i = 1, ... ,/)- X * > max{Xi,i = 1,000,/)- X 

Since X * = X ~ max(Xi *,i = 1,000'/» max{Xpi = 1, ... , I). 

S· ~X* - ~X max{X;*,i=l,ft··,/ >maX~'i=I'./t..,/) IDce £.J i - £.J i ~ I _* I _. 

i=l i=l LXi LXi 
i=l i=l 

Proving the lemma in the other direction one gets 

max{X;*,i=l,ft··,/ I _* >max~'i=I,./t..'/) I _. 

LXi LXi 
i=l i=l 

I -* I - b* ) tv ) Since LXi = LXi ~ max\Xi ,i = 1 .... ,/ > max,Xpi = 1, ... ,/ . 
i=l i=l 

Since X* =x~max(Xi*,i=I, ... '/)-X* >max{Xpi=I, ... ,/)-X. 

With this result the two tests may be shown equivalent. 

Since the zij are randomly permuted without replacement 

max~;*,i = 1, ... ,/)- p2 * > max(p;,i = 1, ... ,/)- p2 
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Using the lemma in the other direction one starts with 

max~:*,i = l,jt .. ,/ I > max(p: ,i = 1'./1.' I) I • 

~ 2* ~ 2 
~Pi ~Pi 
i=1 ;=1 

Since ±P:* = ±P: ~ max~:*,i = 1, ... ,1» max(p:,i = 1, ... ,/). 
;=1 i=1 

Since p2* =p2 ~ max~;*,i=I, ... ,/)-p2* >max(p;,i=I, ... ,/)-p2. Thus, the 

two tests are equivalent. 
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Chapter 7 

Summary, Conclusions and Future Research 

7.1 SUMMARY AND CONCLUSIONS 

Robust HOV tests are required when practitioners suspect that the populations being sampled 

are nonnormal. This is particularly true when populations are moderately skewed or kurtotic. 

In this thesis, randomization tests were proposed as alternatives to (some frequently used) 

HOV tests that in previous research have been shown to be robust to nonnormality. 

Of the proposed randomization tests RANDANOMV -R performed well across all 

distributions and variance configurations. RANDANOMV-R was robust for all distributions 

examined (with both permutation shuffling and bootstrap shuffling) and displayed somewhat 

greater power than RANDANOMV -D. Power was somewhat higher for RANDANOMV-R 

with permutation shuffling, which in general produced greater power for all the randomization 

tests. RANDANOMV-R was much more powerful than Levene for Configuration 2, and it 

was nearly as good as (roughly equivalent to) Levene for Configuration 1. Since the former is 

likely near the LFC, this suggests that RANDANOMV-R has greater power than Levene's 

test at low power configurations. RANDANOMV-R showed power comparable to the best of 

the remaining nonrandomization tests for both configurations studied. Those 

nonrandomization tests were much less robust to extreme kurtosis than RANDANOMV-R. 
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Hence, RANDANOMV -R (with pennutation shuffling) is a good all-purpose robust HOV test 

that outperfonns other tests in circumstances in which the population means are not very 

different. 

In the case where (it is suspected) the populations means are very different, RANDANOMV-

DD/-RD (with pennutation shuffling) or RANDANOMV -DD (with bootstrap shuffling) 

should be used instead of RANDANOMV -R. RANDANOMV -DD and -RD were shown to 

be equivalent in the case of pennutation shuffling. A benefit associated with using 

RANDANOMV-DD/-RD (with pennutation shuffling) is that it is more powerful than 

RANDANOMV -R. However, RANDANOMV -DD/-RD (with pennutation shuffling) is not 

robust to situations where the distribution is extremely skewed or kurtotic. When that is 

suspected, RANDANOMV-DD (with bootstrap shuffling) should be used since it is robust in 

all cases, but this test has lower power than either RANDANOMV-DD/-RD (with 

pennutation shuffling), RANDANOMV-R, or Levene's test 

The randomization tests that have been presented allow the user to construct a decision chart 

to assess practical as well as statistical significance. This offers an advantage to practitioners 

not offered by commonly used robust HOV tests such as those by Levene or Fligner and 

Killeen. The ANOM version of Levene's test (ANOMV-LEV) does offer this advantage. 

The other ANOM-type HOV tests (ANOMV-IK and ANOMV-TR) can be used to produce 

decision charts; however, the points plotted on these charts are not as easily interpreted as the 
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sample variances (standard deviations) plotted on the decision charts for Analysis of Means 

type randomization tests for variances. 

7.2 FUTURE RESEARCH 

While it appears the randomization tests presented in this paper provide viable alternatives to 

some commonly used HOV tests, there are areas that warrant further study. One such area 

relates to unequal means. It was presented that some randomization tests may not be useful 

when the means are "too different." How different must the means be to render a test useless? 

Along similar lines it was shown that RANDANOMV -RD was not effective when the parent 

distribution was too kurtotic or too skewed. How kurtotic or skewed must a distribution be? 

The last area for additional work centers on making the randomization tests more useful for 

practitioners. The programs in this paper were coded in FORTRAN, and this requires the use 

of a compiler and knowledge of a specific language. A macro could be written in a 

commonly used statistical analysis program. This could make the tests more available to 

potential users. 
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APPENDIX 

FORTRAN PROGRAM FOR THE RANDOMIZATION TESTS 

dimension semvar(5),shufvar{5),ddvarto(5) 
dimension rdratio(5),ratiovar(5) 
dimension cdev(1000),dev(1000) 
dimension devvar(5),devvarto(5),var(5) 
dimension sarnpavg(5),randstol(1000),randstoh(1000) 
dimension ddslo(1000) 
dimension sarnpvar(5),ratdev(1000) 
dimension randsone(1000) 
dimension ddshi(1000),ratioslo(1000),ratioshi(1000) 
dimension rdslo(1000),rdshi(1000) 
real e(5,10),devrnean(5,10),c(5,10) 
read 
read 
read 
read 
read 

(*, *) 
(* , *) 
(*, *) 
(*, *) 
(* , *) 

nsarnp 
npops 
var 
idist 
alpha 

nsarnpdub = nsarnp*2 
nreps = 2000 
iseed = 1579 
nurnshuf = 1000 
npopsarnp 
halfalph 
rjdone 
rjdtwo = O. 
rjdd = O. 
rjr = O. 
rjrd = O. 

= nsarnp*npops 
= alpha/2. 
O. 

do iz = 1 , nreps 

donerjct o. 
dtworjcl o. 
dtworjch O. 
ddrjcl = O. 
ddrjch = O. 
rrjcl = O. 
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1 

rrjch = O. 
rcirjcl O. 
rcirjch = O. 

ak -0.05134 
bk -2.91756 
ck 0.05134 
elk 0.87133 
ee 2.718281828 
ae 0.637298719 
uone O. 
utwo O. 

jd 1 
do j 1 I npops 

if (idist.ne.7) then 
do k = 1 I nsamp 

if (idist.eq.1) then 
x = gasdev(iseed) 
dev(k) = x * sqrt(var(j)) 
cdev(jd) = dev(k) 
jd = jd+1 
endif 

if (idist.eq.2) then 
x = gasdev(iseed) 
dev(k) = «0.66268*x)+(O.10189*(x**3)))*sqrt(var(j)) 
cdev(jd) = dev(k) 
jd = jd+1 
endif 

if (idist.eq.3) then 
x = gasdev(iseed) 
dev(k) = ak+(bk*x)+(ck*(x**2))+(dk*(x**3)) 
cdev(jd) = dev(k) 
jd = jd+1 
endif 

if (idist.eq.4) then 
x = gasdev(iseed) 
dev(k) = x**2 
cdev(jd) = dev(k) 
jd = jd+1 
endif 

if (idist.eq.5) then 
dev(k) = expdev(iseed) 
cdev(jd) = dev(k) 
jd = jd+1 
endif 

if (idist.eq.6) then 
uone ran1(iseed) 
utwo = ranl(iseed) 
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C 

yy (-4./9.)*loglO(uone) 
zz ee**«-5./9.)+(5.*yy/4.» 
ww (yy**(-5./9.»*ae*zz 

if (utwo.ge.ww) then 
go to 1 
else 
dev(k) = yy 
cdev(jd) dev(k) 
jd = jd+l 
endif 

endif 
enddo 
endif 

if (idist.eq.7) then 
do k = 1 , nsampdub 

x = gasdev (idum) 
dev(k) = x 

enddo 

do k = 1 , nsampdub-l, 2 
if (dev(k) .gt.O) then 

anum 2. 
else 

anum -2. 
endif 
dev(k+l) = dev(k+l) + anum 

enddo 

do k = 2 , nsampdub, 2 
dev(k/2) = dev(k) 
cdev(jd) = dev(k/2) 
jd = jd + 1 

enddo 
endif 

call ameanvar (dev, nsamp, savg, svar) 
sampavg(j) savg 
sampvar(j) = svar 

FINDS DEVIATION FROM MEAN FOR -DD AND -RD 
do k = 1 , nsamp 

devrnean(j,k) = dev(k) - sampavg(j) 
enddo 

enddo 

avgvar o. 
varsum o. 

C FINDING AVERAGE SAMPLE VARIANCE 
do j = 1 , npops 

varsum = varsum + sampvar(j) 
enddo 
avgvar = varsum / float (npops) 
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C FINDING TEST STATISTICS ON INITIAL DATA 
do j = 1 , npops 

devvar(j) = abs(sampvar(j) - avgvar) 
devvarto(j) sampvar(j) avgvar 
ratiovar(j) = sampvar(j) / varsum 

enddo 

call bubsort(devvar,npops) 
call bubsort(devvarto,npops) 
call bubsort(ratiovar,npops) 

randone = devvar(npops) 
randtwol devvarto(l) 
randtwoh = devvarto(npops) 
ratiolow = ratiovar(l) 
ratiohi = ratiovar(npops) 

C SHUFFLES DATA 
md = 1 

C 

do j = 1 , npops 
do k = 1 , nsamp 

ratdev(md) = devrnean(j,k) 
md = md + 1 

enddo 
enddo 

do i = 1 , numshuf 
do ij = 1 , npopsamp - 1 

rnn = float(npopsamp + 1 - ij) 
ih = int(rnn*ranl(iseed)) + ij 
tmp = cdev (ij) 
tmpp = ratdev(ij) 
cdev(ij) = cdev(ih) 
ratdev(ij) = ratdev(ih) 
cdev(ih) = tmp 
ratdev(ih) = tmpp 

enddo 

md = 1 
do j l, npops 

do k = 1 , nsamp 
devrnean(j,k) = ratdev(md) 
c(j,k) = devrnean(j,k)**2 
e(j,k) = cdev(md) 
md = md + 1 

enddo 
enddo 

PERFORMING OPERATIONS ON SHUFFLED DATA 
rn = float (nsamp) 
do j = 1 , npops 

shsum = O. 
shssum = o. 
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C 

shsq = O. 
do k = 1 , nsarnp 

shsum = c(j,k) + shsum 
shssum = e(j,k) + shssum 
shsq = (e(j,k)**2) + shsq 

enddo 
semvar(j) = shsum / (rn - 1.) 
vars = (shsq-shssum*shssum/rn) 
shufvar(j) = vars / (rn - 1.) 

enddo 

savgvar = O. 
avssemvr = O. 
sumsem = O. 
sumshuf = O. 

do j = 1 , npops 
sumsem = semvar(j) + sumsem 
sumshuf = shufvar(j) + sumshuf 

enddo 
avssemvr = sumsem / float (npops) 
savgvar = sumshuf / float (npops) 

do j = 1 , npops 
devvar(j) = abs(shufvar(j) - savgvar) 
devvarto(j) = shufvar(j) - savgvar 
ddvarto(j) = semvar(j) - avssemvr 
ratiovar(j) = shufvar(j) / sumshuf 
rdratio(j) = semvar(j) / sumsem 

enddo 

call bubsort(devvar,npops) 
call bubsort (devvarto, npops) 
call bubsort(ddvarto,npops) 
call bubsort (ratiovar, npops) 
call bubsort (rdratio, npops) 

CALCULATES TEST STATISTICS ON SHUFFLED DATA 
rands one (i) devvar(npops) 
randstol(i) = devvarto(l) 
randstoh(i) = devvarto(npops) 
ddslo(i) = ddvarto(l) 
ddshi(i) = ddvarto(npops) 
ratioslo(i) = ratiovar(l) 
ratioshi(i) = ratiovar(npops) 
rdslo(i) rdratio(l) 
rdshi(i) = rdratio(npops) 

if (randsone(i) .gt.randone) donerjct = donerjct + 1. 
if (randstol(i) .It.randtwol) dtworjcl = dtworjcl + 1. 
if (randstoh(i) .gt.randtwoh) dtworjch = dtworjch + 1. 
if (ddslo(i).lt.randtwol) ddrjcl = ddrjcl + 1. 
if (ddshi(i) .gt.randtwoh) ddrjch = ddrjch + 1. 
if (ratioslo(i) .It.ratiolow) rrjcl = rrjcl + 1. 
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if (ratioshi(i) .gt.ratiohi) rrjch = rrjch + 1. 
if (rds1o(i).lt.ratiolow) rdrjcl = rdrjcl + 1. 
if (rdshi(i).gt.ratiohi) rdrjch = rdrjch + 1. 

enddo 

sn = float (nurnshuf) + 1. 
pvone = (donerjct + 1.) / sn 
pvtwol = (dtworjcl + 1.) / sn 
pvtwoh = (dtworjch + 1.) / sn 
pVddl = (ddrjcl + 1.) / sn 
pvddh = (ddrjch + 1.) / sn 
pvrl = (rrjcl + 1.) / sn 
pvrh = (rrjch + 1.) / sn 
pvrdl (rdrjcl + 1.) / sn 
pvrdh = (rdrjch + 1.) / sn 

if (pvone.lt.alpha) rjdone = rjdone + 1. 
if (pvtwol.lt.halfalph) go to 100 
if (pvtwoh.lt.halfalph) go to 100 
go to 20 

100 rjdtwo = rjdtwo + 1. 

20 if (pvddl.lt.halfalph) go to 200 
if (pvddh.lt.halfalph) go to 200 
go to 30 

200 rjdd = rjdd + 1. 

30 if (pvrl.lt.halfalph) go to 300 
if (pvrh.lt.halfalph) go to 300 
go to 40 

300 rjr = rjr + 1. 

40 if (pvrdl.lt.halfalph) go to 400 
if (pvrdh.lt.halfalph) go to 400 
go to 500 

400 rjrd = rjrd + 1. 

500 enddo 

pvaldone = rjdone / float (nreps) 
pvaldtwo = rjdtwo / float (nreps) 
pvaldd = rjdd / float (nreps) 
pvalr = rjr / float (nreps) 
pvalrd = rjrd / float (nreps) 

write (*,*) 'RANDANOMV-D1 rejected' , pvaldone 
write (*,*) 'RANDANOMV-D rejected' , pvaldtwo 
write (*,*) 'RANDANOMV-DD rejected' , pvaldd 
write (*,*) 'RANDANOMV-R rejected' , pvalr 
write (*,*) 'RANDANOMV-RD rejected' , pvalrd 

end 
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subroutine ameanvar(b,n,vrnean,vvar) 
dimension ben) 
sum = O. 
sq = O. 
do j = 1 , n 

sum = sum + b(j) 
sq = sq + (b(j)**2) 

enddo 
rn = float(n) 
vrnean = sum 1 rn 
vvar = (sq - sum*sum 1 rn) 1 (rn - 1.) 
return 
end 

subroutine bubsort(devs,n) 
dimension devs(n) 
do j = 1 , n-1 

do k = 1 , n-j 
if (devs(k) .gt.devs(k+1)) then 
tmp = devs(k) 
devs(k) = devs(k+1) 
devs (k+1) = tmp 
endif 

enddo 
enddo 
return 
end 

FUNCTION RAN 1 (iseed) 
DIMENSION R(97) 
PARAMETER (M1=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6) 
PARAMETER (M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6) 
PARAMETER (M3=243000,IA3=4561,IC3=51349) 
DATA IFF 101 
IF (iseed.LT.O.OR.IFF.EQ.O) THEN 

IFF=l 
IX1=MOD(IC1-iseed,M1) 
IX1=MOD(IA1*IX1+IC1,M1) 
IX2 =MOD (IX1 , M2 ) 
IX1=MOD(IA1*IX1+IC1,M1) 
IX3 =MOD (IX1 , M3 ) 
DO 11 J=l,97 

IX1=MOD(IA1*IX1+IC1,M1) 
IX2=MOD(IA2*IX2+IC2,M2) 
R(J) = (FLOAT (IX1) +FLOAT(IX2) *RM2) *RM1 

11 CONTINUE 
iseed=l 

ENDIF 
IX1=MOD(IA1*IX1+IC1,M1) 
IX2=MOD(IA2*IX2+IC2,M2) 
IX3=MOD(IA3*IX3+IC3,M3) 
J=1+(97*IX3) 1M3 
IF(J.GT.97.0R.J.LT.1)PAUSE 
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RANl=R(J) 
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RMl 
RETURN 
END 

FUNCTION GASDEV(iseed) 
DATA ISET/O/ 
IF (ISET.EQ.O) THEN 

1 Vl=2.*RAN1(iseed)-1. 
V2=2.*RAN1(iseed)-1. 
R=Vl**2+V2**2 
IF(R.GE.l.)GO TO 1 
FAC=SQRT(-2.*LOG(R)/R) 
GSET=Vl* FAC 
GASDEV=V2*FAC 
ISET=l 

ELSE 
GASDEV=GSET 
ISET=O 

ENDIF 
RETURN 
END 

FUNCTION EXPDEV(iseed) 
EXPDEV=-LOG(RAN1(iseed)) 

RETURN 
END 
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