
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1993

Simulation Modeling of Prehospital Trauma Care
Robert L. Wears
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 1993 All Rights Reserved

Suggested Citation
Wears, Robert L., "Simulation Modeling of Prehospital Trauma Care" (1993). UNF Graduate Theses and Dissertations. 156.
https://digitalcommons.unf.edu/etd/156

http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

SIMULATION MODELING OF PREHOSPITAL TRAUMA CARE

by

Robert L. Wears, MD

A thesis submitted to the
Department of Computer and Information Sciences

in partial fulfillment of the requirements
for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

April 30, 1993

The thesis "Simulation Modeling of Prehospital Trauma Care"
submitted by Robert L. Wears in partial fulfillment of the
requirements for the degree of Master of Science in computer
and Information Sciences has been

Approved by the thesis committee: Date

Charles N. Winton
Thesis Adviser and Committee chairperson

J ' Susan R. Wallace

Accepted for the Department of Computer and Information
Sciences:

Robert F. Roggio (7
Chairperson of the Department

Accepted for the College of Computing Sciences and
Engineering:

Robert F. Roggio
Dean of the College

Accepted for the university:

Dean of Graduate Studies

- ii -

d»/v
I 7

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Acknowledgement/Dedication

I wish to thank my wife and family for their patience,

understanding and support during my second postgraduate

education.

- iii -

Table of contents

Abstract · · · · · · · · · · · xi

Chapter 1 Introduction · · · · · · · · · 1

1.1 statement of the Problem · · · · · 1

1.2 Historical Perspective · · · · · · 1

Chapter 2 Description of the System · · · · 3

2.1 Definition . . · · · · · · · · · · 3

2.2 System Elements · · · · · · · · · · · 3

2.2.1 Patients · · · · · · · 3

2.2.2 Vehicles · · · · · · · · · 4

2.2.3 Receiving Facilities · · · · · · · 4

2.2.4 Transportation Network · · · · 5

2.3 System operation · · · · · · · · · · · 5

2.3.1 Temporal Sequence · · · · · · · 5

2.3.2 Physiologic Sequence · · · 7

2.4 Goals of the Model · · · · · · · · 7

2.5 Potential Enhancements · · · · · · · · 8

Chapter 3 Model Design . . · · · · · · · · · · · 9

3.1 General Design Issues · · · · · · · · 9

3.1.1 Simulation Environment · · · · 9

3.1. 2 Verification and Validation · · · · 10

3.1. 3 Statistical Issues · · · · 10

3.2 Specific Design Issues · · · · · · · · 12

3.2.1 Patterns of Injury · · · · · · 12

- iv -

3.2.2 Transportation Network · · · · · · 13

3.2.3 Edge Effects · · · 14

3.2.4 Ambulance Routing · · · · · · · 15

3.2.5 Physiologic Model · · · · · 15

3.2.6 Injury Pattern · · · · · · · · 16

3.2.7 critical outputs · · · · · · · · · 17

Chapter 4 Implementation . · · · · · · · · · · · 18

4.1 Overview . . . · · · · · · · · · · 18

4.2 Data structures · · · · · · · · · · · · · 18

4.2.1 Permanent Entities · · · · · · 20

4.2.2 Temporary Entities · · · · 23

4.3 Procedures . . . · · · · · · · · · 26

4.3.1 Initialization Procedures · · · 27

4.3.2 Trace and Reporting
Procedures · · · · · · 30

4.3.3 Modeling Procedures · · · · · · · · 31

4.3.4 Flow of Control · · · · · · 37

4.4 Selection of Input Distributions · · · · · 39

Chapter 5 Verification and Validation · · · 43

5.1 Verification · · · · · · · · · 43

5.1.1 Random variate generators · 43

5.1. 2 Static and Dynamic Analysis 45

5.2 Validation . . · · · · · · 49

Chapter 6 Demonstrative Experiments · . · · · · · · 52

6.1 Triage Policy · · · · · · · . · · 52

6.2 Helicopter Dispatch Policy · · · · 55

6.3 Conclusion . . · · · · · · · · · · 56

- v -

6.4 Further Work.

References

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

1

2

3

4

5

Program Source Code

Data Cross-Reference .

Data Files • .

Sample Output

Fitting Input Distributions

6 Log of Model Assumptions .

6.1 Distribution of Accidents

6.2 Definitive Care Survival.

6.3 Private Travel

Appendix 7 Log of Improvements and Enhancements .

7.1 Improvements.

7.1.1 Transit time

7.1.2 Choke points

7 • 1 • 3 Events

7.1.4 End-of-run

7.1. 5 Memory management .

7.2 Enhancements

7.2.1 Non-trauma patients.

7.2.2 Injury model

7.2.3 Transfers.

7.2.4 Data editor

7.2.5 Graphical output

7.2.6 Trace control

7.2.7 Interruption

56

58

62

119

151

160

173

183

183

183

183

185

185

185

185

185

186

186

186

186

187

187

187

188

188

188

7.2.8 Non-regenerative Simulation. . 189

- vi -

Appendix 8 Log of Program Bugs

8.1 Discrete-continuous Interaction

8.2 Pended Accidents.

vita

- vii -

190

190

190

191

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figures

Logical model of the overall transportation
network. (See Figure 3 for node
acronymns)

Logical model of the central region of the
transportation network. (See 3 for node
acronymns)

Spatial distribution of trauma incidents in
the study area.

Proportion arrivals in 12 hour periods over
one week, corresponding to data in
Table 2. • . . • . .

Histogram of 2500 variates from mygamma.f
given arguments 1.5, 1.5. . ..

Probability plot of 2500 variates from
mygamma.f given arguments 1.5, 1.5.

Quantile plot comparing the model's
transport times with those provided by
Campbell.

Distribution given need to secure.

Probability plot: exponential ..

Quantile plot: exponential.

19

20

21

45

46

47

51

173

173

173

probability plot: Weibull distribution. 174

Quantile plot: Weibull(6.686, 1.412). 174

probability plot: lognormal. . 174

Quantile plot: lognormal. 174

Distribution of time to patient. 175

Probability plot: exponential. 175

Quantile plot: exponential. 175

- viii -

Figure 18. Distribution of scene treatment time
(includes extrication if needed) . · · · 176

Figure 19. Probability plot: Weibull. · · · · · · 176

Figure 20. Quantile plot: Weibull (11. 023, 1.892). · · 176

Figure 21. Probability plot: gamma(3). · · · · · 177

Figure 22. Quantile plot: gamma(3). · · · · · 177

Figure 23. Weibull (dashed line) and gamma pdf's. 177

Figure 24. Distribution of time to hospital. · · · · · 178

Figure 25. Probability plot: Weibull. · · · · · · · · 178

Figure 26. Quantile plot: Weibull(9.974, 2.242) • 178

Figure 27. Probability plot: lognormal. · · · · · 179

Figure 28. Quantile plot: lognormal. · · · · · · · · 179

Figure 29. Probability plot: gamma (3) . · · · · · · · 179

Figure 30. Quantile plot: gamma(3). · · · · · · · 179

Figure 31. Distribution of time to release of
patient. · · · · · 180

Figure 32. Probability plot: Weibull. · · · · · · 180

Figure 33. Quantile plot: Weibull(2.718, 1. 810) . 180

Figure 34. Probability plot: lognormal. · · · · · · · 181

Figure 35. Quantile plot: lognormal. · · · · 181

Figure 36. Probability plot: gamma. · · · · · · · 181

Figure 37. Quantile plot: gamma (1. 5) . · · · · 181

Figure 38. Probability plot: exponential. · · · · · · 182

Figure 39. Quantile plot: exponential. · · · 182

- ix -

Tables

Table 1. Random variables used in the model .• 42

Table 2. Example data file of mean arrivals by
interval for testing the nsp.f routine. 44

Table 3. Characteristics of ISS scores obtained by the
model and those reported by Baker. . 46

Table 4. Portions of trace output demonstrating the
manifestation of specific model design
items in the implementation. 48

Table 5. comparison of outcome estimates produced by
the model with those estimated by
Jacksonville Fire/Rescue. 49

Table 6. System performance (mean ± 95% confidence
interval) under different trauma center
triage criteria. 53

Table 7. Convergence points including at least a full
seven day cycle. 54

Table 8. System performance (mean ± 95% confidence
interval) under alternate helicopter
dispatch criteria. 55

- x -

Abstract

Prehospital emergency care systems are complex and do not

necessarily respond predictably to changes in management. A

combined discrete-continuous simulation model focusing on

trauma care was designed and implemented in S1MSCR1PT 11.5

to allow prediction of the systems response to policy

changes in terms of its effect on the system and on patient

survival.

The utility of the completed model was demonstrated by the

results of experiments on triage and helicopter dispatching

policies. Experiments on current and two alternate triage

policies showed that helicopter utilization is significantly

increased by more liberal triage to Level 1 trauma centers,

which was expected, but that the waiting time for pending

accidents tended to decrease, an unexpected consequence.

Experiments on helicopter dispatch policy showed that

liberalization of the dispatch policy would have much

greater consequences than would changing the triage

criteria. Again, this result was unexpected and has

received little attention from system planners and

administrators, especially with respect to the degree of

discussion and controversy surrounding triage criteria.

- xi -

Chapter 1

Introduction

1.1 statement of the Problem

Prehospital care of the sick and injured has developed into

a complex system in the last 30 years. Much of this

development has been "bottom-up," driven by technological

factors and the availability heuristic (any available tool

will eventually be used). This has eventually led to

considerable debate in the medical literature over the

appropriate role of several treatment modalities routinely

employed in many localities. Furthermore, as resource

constraints and other external factors have stressed the

system, the need for a systematic overview of the system has

become apparent. This project will develop a simulation

model of a prehospital trauma care system in order to

provide a method by which the effect of modifications to the

system can be estimated.

1.2 Historical Perspective

since prehospital care systems form complex networks of

interacting entities that are difficult to work with

analytically, simulation has frequently been used as an aid

in planning and organizing such systems. The majority of

- 1 -

these simulations have concentrated on relatively static

aspects of the system, such as the number and location of

responders [Fitzsimmons82, Uyeno84], improvements in

response or transport time, etc. [Valenzuela90). This

project will focus more on clinical issues which are more

easily modified on a dynamic basis by changing clinical and

administrative policies.

- 2 -

2.1 Definition

Chapter 2

Description of the System

The system under consideration is the that portion of the

pre-hospital emergency medical care system (EMS) which deals

with injury in the seven county service area of northeast

Florida and southeast Georgia. The EMS system is obviously

impacted by non-traumatic illness as well, so the model must

include some representation of their effects, but they will

not be the focus of the model.

2.2 System Elements

The system can be decomposed into four fundamental elements:

patients, vehicles, receiving facilities, and a

transportation network over which vehicles move patients

from sites of injury to or between receiving facilities.

2.2.1 Patients. Patients suffer injuries in a particular

temporal and spatial distribution. Their occurrence is

frequently not independent; for example, most automobile

accidents involve two cars and therefore at least two

patients. In addition, injuries occur in the two broad,

nonexclusive categories of blunt and penetrating. within

these categories, patterns of correlated injuries exist; for

- 3 -

example, brain injury is typically isolated in penetrating

trauma, but typically associated with chest and abdominal

injuries in blunt. Injuries differ in severity, which

affects the probability of survival.

2.2.2 Vehicles. Vehicles in the system are helicopter

ambulances, ground ambulances, and private conveyances.

Helicopter ambulances are typically few and therefore

subject to more stringent dispatching criteria than ground

ambulances. The receiving facilities have a degree of

control over the destination of ambulances, and receive

prior notification of incoming ambulance patients, but

benefit from neither with respect to patients arriving by

private conveyances. Additionally, ambulance personnel may

perform a limited number of therapeutic interventions prior

to transporting the patient to a receiving facility. Ground

ambulances and private conveyance are constrained to use the

transportation network; helicopter ambulances generally

travel faster and by line of sight, but are constrained by

weather conditions and the need for a safe landing zone.

2.2.3 Receiving Facilities. Receiving facilities in the

system are hospitals and other acute care facilities such as

clinics or physicians' offices. Hospitals may be classified

into Levell, 2, or 3 trauma centers as defined by Florida

statute. Alternatively, they may choose not to participate

in the trauma center system; their actual capabilities

typically do not change by virtue of this decision.

- 4 -

Receiving facilities will perform initial resuscitation and

evaluation of incoming patients, and then transfer them out

of the system to definitive care.

2.2.4 Transportation Network. The transportation network

consists of existing major roads, highways and bridges. A

patient's transport time by ground conveyance is a function

of the available path through the transportation network and

the time of day. Geographic barriers such as the st. John's

River are reflected in the transportation network. Because

ambulances are most commonly directly managed by county

governments, political boundaries also may affect

transportation decisions. For example, in patients with

relatively minor injuries, the target receiving facility may

be chosen such that the path to it does not involve crossing

a county or state line; these considerations are dropped in

the face of severe injury.

2.3 System operation

System operation consists of a temporal sequence of events

running in parallel and interacting with a continuous

pattern of physiological changes.

2.3.1 Temporal Sequence. A typical cycle begins with an

injury-producing episode which generates one or more

patients at a particular location and time with a given

pattern and severity of injuries. The prehospital system is

then activated and an ambulance dispatched to the location,

- 5 -

typically on a proximity basis. The time from injury to

arrival on scene is termed "activation time," and will be

noted as tao Once on scene, EMS personnel may have to

locate and/or extricate patients, and may perform some

therapeutic services such as starting intravenous fluids,

endotracheal intubation, etc. These maneuvers typically

will extend the "on scene time" (te). Their efficacy is a

matter of some debate and could be an item of study in the

simulation model.

Once extrication, initial assessment, and initial therapy

(if any) have been performed, the patient is transported to

a receiving facility in "transport time" (tt). The means of

choosing a receiving facility (e.g., nearest hospital,

nearest hospital of a given level, etc.) has also provoked

considerable debate, and will be examined in the simulation.

The receiving facility will perform initial resuscitation

and evaluation and will then deliver the patient to

definitive care (e.g., the operating room, admitted to the

hospital, etc.) after "resuscitation time" (tr) and some

additional waiting time (tx). Definitive care is considered

to be outside the system. In some cases, the receiving

facility may transfer the patient to another facility,

repeating the transport and resuscitation stages of the

cycle.

- 6 -

2.3.2 Physiologic Sequence. During this process, the

patient's physiological state will change depending on his

injuries and the therapy received. Some patients will die

before being delivered to definitive care; for those that do

not, their probability of survival will be estimated from

their injuries and their physiological state at the time of

exit from the system [Wears90, Champion91]. Based on their

major immediate physiologic effects, injuries can be

categorized into three large groups: those producing blood

loss; those interfering with respiratory exchange; and those

affecting the central nervous system. The physiologic state

in each of these deteriorates over time without

intervention. Indirect evidence of the severity of injury

in these categories is combined into a "trauma score" which

is used by EMS personnel to make therapeutic and

transportation decisions.

2.4 Goals of the Model

Any simulation model should be constructed to answer

specific questions, rather than just show that a model can

be constructed. This model will be designed to estimate the

effects of changes in:

a. Triage criteria that determine the center to which a

patient should be routed.

b. Number of trauma centers of specified level.

c. criteria for helicopter transportation vs ground

transportation.

- 7 -

d. Divert policy (the circumstances and length of time

during which a hospital may divert incoming cases to

another facility).

e. Location of trauma centers.

These effects will be measured from two perspectives: from

the point of view of the system (numbers of patients

received, percent utilization, etc.) and from the point of

view of the patient (length of time until definitive care,

change in survival probability).

2.5 Potential Enhancements

While not an immediate goal of this project, the potential

for enhancement of the model to handle additional questions

will be kept in mind as a secondary goal. Such additional

questions might include analysis of the system during

periods of drastically increased demand and/or reduced

capacity, as might occur during a natural or man-made

disaster; extension of the model to handle non-traumatic

medical conditions. Another secondary goal will be

portability to other geographic areas without re-

compilation; thus to the extent it is practical, area-

specific information will be represented by data elements

read in from a file, perhaps in a pre-computing step, rather

than directly embedded in the program code.

- 8 -

Chapter 3

Model Design

3.1 General Design Issues

General design issues for this project are those common to

virtually all simulation models: selection of a simulation

environment and the appropriate level of detail,

verification of the implementation, validation of model, and

the design and analysis of appropriate experiments.

3.1.1 simulation Environment. The model was implemented in

SIMSCRIPT 11.5 (CACI Products, La Jolla, CA) for several

reasons. SIMSCRIPT is available on a large number of

computer systems and has wide general acceptance as a

simulation language, thereby facilitating the potential

portability of the model. The EMS model proper lends itself

easily to discrete simulation, while the physiologic model

is more naturally thought of as continuous; SIMSCRIPT

provides support for simultaneous continuous and discrete

simulation, thus facilitating modeling the interaction

between these two components. And finally, local expertise

and experience with SIMSCRIPT was available.

- 9 -

3.1.2 Verification and Validation. separate verification

runs checking aspects of the model's logic have been

performed and compared to specific test cases derived from

available Trauma Registry data. Many of these verification

runs were initially performed at the module level so that

the desired (true) behavior of the model can be more easily

predicted. An activity trace is produced by the model to

aid in verification and validation.

The model was validated by checking its output against

aggregate data on injury types, patterns of transportation

and survival using published data and University Medical

Center's local trauma registry. It is unfortunately the

case that detailed data on the overall operation of the

prehospital care system are not maintained; a modified

Turing test may assist in further model validation. The

current level of validation of the model is not considered

sufficiently definitive for the model to be used in

establishing policy. Further validation will require

explicit collection of data from the system for comparison

to model output.

3.1.3 statistical Issues. Care has been taken to maintain

synchronization of the random number streams when

considering policy alternatives; this reduces the variance

of the difference between policy alternatives, yielding an

increase in statistical power and perhaps a reduction in

computing time.

- 10 -

The system under study does not possess well-defined

starting and ending times. However, it is the case that the

system as defined here does empty out from time to time1 •

Therefore, no warm-up period to eliminate the effect of

start-up transients was used. Instead, the model is started

empty and idle, and the regenerative method will be used to

determine run lengths; i.e., a run will be ended when the

system returns to the empty and idle state. It should be

noted that this method of experimental design might not be

desired when the goal is determining system performance

under overload (mass casualty) situations; however, only the

method of experimentation, not the actual model, would have

to be changed.

The primary goal of the model is effect estimation, not

hypothesis testing. statistical testing of the differences

between model outputs under differing policies is

complicated by the use of the regenerative method, since it

cannot be guaranteed that parallel runs will always be

directly comparable, even though every random component for

each patient is guaranteed to be comparable. For example,

individual runs might not necessarily have the same numbers

of patients; in general, parallel runs will diverge and

reconverge at unpredictable points. A naive direct

1 This does not make it a terminating simulation, because
even though the system is empty of patients, the ending
value of time for the first run is the beginning value
of time for the second, and the time until the next
accident is dependent on the current time [Law91].

- 11 -

comparison of alternatives as if they were independent will

typically overestimate the variance of the difference in

effect. To compare the alternatives properly, summary

measures must be calculated at a point where the model has

reconverged under each alternative.

3.2 Specific Design Issues.

certain problems peculiar to this project arose in the

development of the model, and were dealt with as follows.

3.2.1 Patterns of Injury. The spatial pattern of injury

was assumed to be roughly proportional to population

density. This has been shown to be the case in at least one

major city [Zachariah92]. Zachariah also showed that the

distribution of types of accidents (e.g., assault, auto

accident, gun-shot wound, etc.) was to a large extent

invariant across time and space; therefore these variables

were assumed to be constant in the model.

The temporal pattern of injury was modeled by a non-

stationary batch Poisson process, using the method of ~inlar

[~inlar75]. Raw data kindly provided by Zachariah (personal

communication) was used to estimate the diurnal pattern of

injury occurrence. Variation across days of the week was

obtained from Baker92, and the two items combined to produce

the weekly cycle of injury incidence used in the model.

- 12 -

3.2.2 Transportation Network. The geographic area of

interest was represented at a higher level than blocks or

map coordinates by modeling the area as a digraph. Nodes in

this graph represent certain critical areas, such as:

neighborhoods or fire-rescue service areas from which

requests for care arise; choke points -- areas such as

bridges which transporters must traverse en route to their

destination; and receivers, typically hospitals categorized

according to Florida's trauma statute. Arcs in the digraph

were assigned weights representing transport time across

that arc; these weights may vary with time of day. While

some information on average transport times is available

from the Fire-Rescue system, information about the

distribution of transport times is not. However, Campbell

[Campbel192] has published detailed summary results of a

variety of pre-hospital time intervals, and kindly agreed to

provide his raw data for use in the project (personal

communication). Therefore, distributions were fit to

Campbell's data using quantile and probability plots, or

occasionally using the method of moments.

since there are extensive and highly functional mutual

assistance agreements among the political jurisdictions in

the study area, political boundaries have not been

explicitly represented in this model. It would be possible,

if desired, to represent political boundaries by placing an

empirical penalty function on the pertinent arcs; such a

- 13 -

penalty function should be greater for minor injuries and

zero for major injuries.

3.2.3 Edge Effects. Only a finite area will be simulated,

but resources located near the boundary of the simulated

area might be called to service events occurring beyond the

boundary; similarly, injuries occurring within the boundary

might be managed at hospitals outside the boundary.

Carter74 handled this problem by simulating those events at

a lower level of detail. However, this merely moves the

problem further away, although at a smaller cost than simply

enlarging the simulated area. In the system under

consideration here, the boundaries tend to fall at

"watershed" lines, where events are rare, and very little

boundary crossing occurs. For example, it is common for

ambulances in st. John's county to respond to calls in Duval

county or to transport patients into Duval county. It is

very uncommon that they do so with respect to Flagler

county, because of the population densities and pre-existing

referral patterns. Therefore we will neglect edge effects

in this model (although this assumption might be subjected

to sensitivity analysis), save for judiciously choosing the

boundaries of the simulated area to keep such effects to a

minimum. In the current model, the Keystone Heights area of

Clay County was removed from consideration, since the flow

of referral in that area tends to move towards Stark and

Gainesville, i.e., away from the center of the study system.

- 14 -

For similar reasons, only the Kings Bay area in Georgia was

included in the model.

3.2.4 Ambulance Routing. Average node to node times within

the transportation network routes are precomputed and stored

prior to a simulation run. These times are used to generate

ambulance call lists for each node, and hospital destination

lists for each node, and the basis of shortest expected

travel time. The call and dispatch lists are saved in a

file that can be edited to reflect special circumstances.

Helicopter ambulances are assumed to be callable to any

locations, and to alternate calls. The choice of helicopter

vs ground ambulance is based on Trauma Score and distance by

current policy, and will be the subject of experimentation.

3.2.5 Physiologic Model. Each patient will be represented

as a distinct entity within the model, as will resources

such as ambulances, helicopters, and hospitals. A limited

set of physiologic variables will be modeled for each

patient; however, since detailed physiological modelling

[MaZzoni88] is computationally intensive, this information

will be kept to the minimum necessary to assess probability

of survival at different times.

The model of hemorrhage developed by Wears and winton

[Wears90] will be adapted for use in this project. This

model can be easily extended to accommodate respiratory

exchange as well. Direct eNS injury seems to be a distinct

- 15 -

problem [Baxt87], which is synergistic with both hemorrhage

and respiratory injury. It will be modeled as a "black box"

process, whose main effect is to cause a downward adjustment

in the probability of survival.

The three components of the physiologic model will be used

to compute the Revised Trauma Score (RTS), [Champion81,

Champion91], which, in conjunction with the Injury Severity

Score [Baker74] or ISS, has achieved general acceptance in

predicting survival. The RTS assigns each component of the

physiologic model a value on a 0 to 4 scale. These scores

may then be simply summed to form a 0 to 12 scale, but a

weighted sum [Champion91] with a maximum total of 7.804 is

thought to provide better prediction. A mapping between the

hemorrhage component and these scores has already been

developed in Wears90.

3.2.6 Injury Pattern. Injuries occur in identifiable

patterns which a model should represent in order to achieve

face validity. This would ideally require generation of

categorical variables having a given correlation pattern.

While many simulation models have assumed independence of

variables, apparently successfully, there is are several

instances [Law91] in which it has been shown that the

failure to model correlation between variables substantially

affected the results. Devroye [Devroye86] offers several

plausible approaches towards the general problem of

generating correlated random variates, although he does not

- 16 -

specifically address this particular situation. Alternative

approaches have been suggested by Johnson [Johnson87].

Unfortunately, the covariance structure of injury patterns

has yet to be described quantitatively. Therefore, it was

assumed that blunt and penetrating injuries had the same ISS

distribution. Injuries were then modeled by assigning an

ISS value {drawn from a scaled beta distribution fit to data

from MacKenzie86], partitioning the total ISS among the

three major categories of physiologic derangement as

suggested in Baxt87 and MacKenzie86, and mapping those

components to either direct physiologic variables (e.g.,

blood pressure) or to RTS components. The Revised Trauma

Score values thus computed were validated by comparing their

distribution to the distribution of TS reported by

Champion81 and Morris86, with good agreement.

3.2.7 critical Outputs. certain critical variables were

used as the basis of comparison between policy alternatives.

These included the dynamic proportion of utilization of

trauma centers at each level. Since trauma centers

typically must maintain excess capacity, an alternative

measure of utilization, the proportion of time the center is

at or over capacity, will also be tracked. Other important

outcome measures include the total time in the system, the

mortality in each phase prior to definitive care, and the

overall probability of survival following definitive care.

- 17 -

4.1 Overview

Chapter 4

Implementation

The model's realization in SIMSCRIPT is provided in detail

in the Appendices. Appendix 1 contains the program code and

Appendix 3 the data files used to instantiate the model.

This chapter provides an overview of the entire

implementation. The geographic area selected was modelled

as a digraph as illustrated in Figure 1 and Figure 2.

(Routes in these Figures are shown with single lines for

clarity only; inspection of the data files in Appendix 3

will confirm the implementation as a digraph). The spatial

distribution of trauma incidents used in the model is

illustrated in Figure 3, and roughly corresponds to

population density in the target area. The remainder of the

implementation can be divided into two major sections; data

structures and procedures.

4.2 Data structures

A variety of SIMSCRIPT data structures were used to

represent the various model elements. Two general

principles were used in representing entities in the model.

First, entities having a potential lifespan in the model

greater than a typical run length were be represented as

- 18 -

Figure 1.
network.

KGB

Hil .. FOB
.YUL

CAL'

BRY.

MCl'" .'

,'.

.... - OWY
lMT

PKV ,
'. w,JX .- 'SPFEJ '1.:Rl "
. ·MWH ~:::: .. AVO BK . RGY·· ATB

MBG' ...

RVS SSO SPl JXB
WSD TMQ JTB · "PVB

, , ,

, OPW ... op{ MNO

PlK

STA
,,' . CRB

HST·:····

Logical model of the overall transportation
(See Appendix 3 for node acronymns).

SIMSCRIPT permanent entities, while entities that

potentially might "come and go" during the course of a run

were represented as SIMSCRIPT temporary entities. Second,

no entity should have greater knowledge about itself or

about conditions in the system than its would its real-world

analog. Application of these principles to the model

entities described in 2.2 produced the following set of data

structures (lines 39 - 256 in the preamble, Appendix 1.)

4.2.1 Permanent Entities. The following structures are set

up by the initialization code and exist throughout the

entire simulation.

- 19 -

'MWH

· .OWY '"

LMT

PKV

WJX SPF . EJX

.... ·AVO ..
:,RVS

WSO TMQ

.,OPW i
, OPE

ARL"

,:.SBK RGy ·· ·

',SSO : ;

JTB

MNO

Swz

Figure 2. Logical model of the central region of the
transportation network. (See Appendix 3 for node
acronymns).

4.2.2 Nodes (lines 43 - 54). Nodes in the transportation

network represent areas in which accidents might arise.

They are identified by location (latitude and longitude),

and have an edge. set of arcs representing paths to and from

other nodes. Additionally, nodes can own ambulances or

hospitals if one is located in a node's area. Each node has

a list of ambulances to call for events occurring in its

area, and a list of hospitals to which patients will be

transported from accidents occurring in the node. Nodes are

- 20 -

Figure 3. spatial distribution of trauma incidents in the
study area.

collected in sets so that nodes containing hospitals or

ambulance bases may be easily identified.

4.2.2.1 Paths (lines 56 - 63). Every node - node pair is

connected by a path in each direction. The path is held in

the pair's route set, and consists of the sequence of arcs

to be traversed in proceeding from one node to the other.

Each path is associated with a mean transit time and a

flight time. Unidirectional paths may be implemented by

- 21 -

assigning them an essentially infinite travel time in the

reverse direction.

4.2.2.2 Hospitals (lines 65 - 100). Each hospital in the

system is assigned a level according to Florida Trauma

Center designation standards. Hospitals also are assigned a

capacity, based on the maximum number of active

resuscitations they can handle, and a number of flags

indicated whether they are allowed to divert, whether or not

they have diverted in a given period, etc. Hospitals also

track the number of patients they are currently

resuscitating, and a variety of other statistical counters.

Hospital divert status is represented by membership in a

green (no divert) and a red (divert) set.

4.2.2.3 Ambulances (lines 102 - 117). Each ambulance has a

type, indicating whether it is a ground or an air

(helicopter) ambulance, and a base node. It also maintains

a pointer to an ambulance run process (if any) representing

an actual run, and has storage for its current location,

although this attribute is not always guaranteed to be

current. Ambulances belong to a variety of sets to track

their activity, the most important being the ready. set.

Membership in the ready.set indicates the ambulance is

available to be called to an accident. This representation

was chosen over SIMSCRIPT's built-in 'resource' entity since

ambulances are not entirely interchangeable.

- 22 -

4.2.3 Temporary Entities. The following structures may be

created and destroyed as needed throughout the simulation.

The procedures (if any) associated with temporary entities

are discussed in section 4.3.

4.2.3.1 Arcs (lines 121 - 132). Arcs representing logical

(not necessarily physical) routes of travel are implemented

as temporary entities under the supposition that they could,

at least in theory, come into and disappear from existence

during the course of a simulation. Arc's are unidirectional

and are identified by their source and sink nodes, and a

weight representing the average travel time in minutes from

the center of the source node to the center of the sink

node. A choke weight is also available to represent the

average additional delay that might be experience at a choke

point. Cumulative weights are used in the calculation of

best routes from node to node, but are not subsequently used

during the simulation. since an arc may not belong to more

than one set of a given type in SIMSCRIPT, but a given arc

may be part of many different routes, duplicate arcs are

created, at some cost in storage space (see Appendix 7.1.5).

4.2.3.2 Dispatch lists (lines 134 - 143). Two dispatch

lists are maintained by each node; a list of call. items

(pointers to ambulances) to be called for incidents

occurring in that node, and a list of go. items (pointers to

hospitals) indicating destination hospitals for incidents

occurring in a node.

- 23 -

4.2.3.3 Ambulance runs (lines 148 - 165). An ambulance run

is represented by a process that is created when the

dispatcher assigns an ambulance to an accident, and ends

when the ambulance returns to its base and is back in

service. Ambulance runs are divided into two kinds, trauma

and medical. An ambulance run is always associated with a

particular ambulance, and has attributes for identifying the

accident it is serving, the node from which it travels, and

the node, hospital, and hospital's level to which it is

bound. Two flags are maintained: status, to identify when

a run ends in a recall, and helo.coming, to indicate when an

ambulance should wait for the helicopter's arrival, even

though it would otherwise be ready to travel (i.e., its

scene.time is over). Ambulances keep track of the patients

they manage on a run by filing them in the amb.patient.set.

4.2.3.4 Patients (lines 167 - 213). Patients are

represented as processes created by accidents, and are

destroyed when they either die or are transferred to

definitive care. A patient's condition may be alive or

dead; they move through several phases (e.g., awaiting

treatment, scene treatment, transport, etc.), with phase

changes being triggered by setting the change. flag.

Physiologic information about a patient consists of the

hemodynamic components of the Lewis model of hemorrhage

[Lewis86] as modified by Wears and winton [Wears90],

extended to account for the impact of respiratory

- 24 -

embarrassment on oxygen delivery. The patient's degree of

injury is measured by the ISS. From the ISS and systolic

blood pressure (sbp), the components of the revised

Champions trauma score, and the score itself can be

determined. A functional attribute, cts.f, allows the

trauma score to be updated periodically to reflect the

patient's changing condition. Finally, patient maintains a

variety of time intervals of interest for reporting

purposes.

4.2.3.5 Accidents (lines 216 - 235). Accidents are

represented as processes that are created by the generator

and are destroyed when the last patient associated with an

accident is removed from the accident site. Accidents are

of two kinds, medical and trauma. In the current model,

medical accidents are served by ambulances just as trauma

accidents are; they create no patients but do constitute a

demand on the system. Trauma accidents may create several

patients, and may be blunt or not (i.e., penetrating). Both

medical and trauma cases may be placed on a pending list if

insufficient ambulances are available to meet their needs.

4.2.3.6 Events (lines 240 - 244). Events were used to

handle a hospital's going on and coming off of divert

status. A hospital that places itself on divert status

frequently must reopen to ambulances after a certain period

of time, regardless of its status at that time. The event

go.off.red is used to schedule this status change. In

- 25 -

addition, many jurisdictions clear all their divert status

once a day; the event clear.reds performs this function.

Finally, the event resp.support is used to model the effect

of therapeutic interventions assisting respiration and

ventilation occurring in the course of scene treatment or

resuscitation.

4.3 Procedures

The model has a natural structure that can be described as a

collection of independent but communicating entities. This

suggests that an object-oriented approach would have

provided the most natural implementation. since an object-

oriented simulation environment was not available, a monitor

process was used to handle interprocess communications. A

natural monitor, the dispatcher, exists in the real-world

system, so this approach meshed nicely with the target

model. Interestingly, the monitor function was more easily

provided as a procedure, rather than as a SIMSCRIPT entity.

Thus the dispatcher is the only major real world entity that

has only an implicit representation in the model.

In this implementation, procedures can be divided into three

classes: initialization procedures, trace and reporting

procedures, and the actual modeling procedures (with their

supporting utility procedures). The individual procedures

are described here; their relationship and the flow of

control among the procedures is described in section 4.3.4.

- 26 -

4.3.1 Initialization Procedures. The initialization

procedures get system information from a set of files and

create the data structures outlined in section 4.2. They

are not called again and in principle could be physically

separated from the simulation code itself.

4.3.1.1 Main (lines 417 - 498). Main is the fundamental

control routine in a SIMSCRIPT program. Main opens the

output files and then calls the routine initialize (see

4.3.1.2). At this point, main could begin a loop for each

arm of an experiment; this has been left for future

implementation if desired. Next, important global variables

such as time.v, nsp.tprime and nsp.last.time (used by the

non-stationary Poisson routine nsp.f) are initialized to

zero, and the run loop is entered. This loop resets all the

runwise totals and schedules the next time for clearing

hospital divert status, and then activates the generator

process to start the simulation. Once a run is finished,

runwise statistics are calculated and the run. report routine

is called, and then the loop is re-executed until the

requested number of runs has been obtained. The routine

final. report is then called and the program terminates.

4.3.1.2 Initialize (lines 2333 - 2365). Initialize gets

data to characterize this instantiation of the model. It

calls a series of initialization routines (get. table,

get.sim, get.net, get.hosp, get. ems, get. aces) that read

information from datafiles into model variables in a

- 27 -

straightforward manner. In addition to simply reading in

data on the transportation network, the routine get. net

creates the digraph of nodes and arcs, and calculates mean

transit times to all nodes in the system by calling the

function best.route (see 4.3.1.5).

The ambulance call list and hospital preference list are

either read from datafiles, if they exist, or are

constructed (and written to datafiles for editing or future

use) using default dispatching rules if they do not. This

process is controlled by the routine get. list (lines 1853 -

1873), which is driven by its subprogram variable

(SIMSCRIPT's term for pointer to function) arguments. The

actual construction of the lists is performed by the

routines build.call.list (see 4.3.1.3) and build.hosp.list

(see 4.3.1.4). Before returning, the initialize calls the

routine print. net to output the data it has read for

verification of the model's initialization.

4.3.1.3 Build.call.list (lines 884 - 972). Build.call.list

uses the internode transit times along the best path to

construct for each node a list of ambulances to be called

for incidents in that node, based on least travel time. The

default rules governing ambulance selection are: helicopter

ambulances will travel to all nodes; every node will have a

minimum of min.amb ambulances on its list; ambulances are

ranked on the list in order of closest travel time; and that

travel times that are within a given proportion of each

- 28 -

other (stored in the global variable atol) are presumed to

be sufficiently equal that all such units will be placed on

the list, even if the minimum number of ambulances is

exceeded. This is necessary to handle ties in travel time,

and to prevent the list from being unreasonably limited by

small differences in travel time.

4.3.1.4 Build.hosp.list (lines 975 - 1069).

Build.hosp.list constructs for each node a list of hospitals

to which victims in that node will be sent. It is

functionally similar to build.call.list (above), but handles

the additional complication of maintaining a list for each

trauma center level. The default rules here are analogous

to those for build.call.list, except that every node must

have at least one Level 1 center and at least one Level 2

center on its list. Again, as many hospitals whose travel

times are with a given proportion (htol) of each other may

be put on a list.

4.3.1.5 Best.route (lines 752 - 828). The function

best. route is given a source and a destination node as

arguments and returns the shortest possible travel time

between nodes using Prim's algorithm. If the path involves

an arc identified as a choke point, the path is penalized by

adding the choke point's weight (representing the mean

additional travel time) to the regular weight. Once the

best route has been determined, the routine build. route is

called to file the ordered list of arcs in the route set

- 29 -

owned by the from. node, to.node compound entity. Finally,

since the calculated travel time has been based on inter-

node transit times over arterial highways, the function

adj.time.f is called to adjust for the time it typically

takes to move from secondary and tertiary roads to major

highways and back again, and this adjusted time is returned

to the caller.

4.3.2 Trace and Reporting Procedures. A collection of

procedures named tr.XXX provides the majority of the trace

output (lines 3087 - 3344). These procedures are triggered

by filing or removing an entity from a set (see lines 383 -

411 in the preamble). They do not provide any service in

the model other than the trace, and so in theory could be

commented out in a final, validated version. However, since

trace output can be redirected to a file (or to the NUL

device), and since a trace is extremely helpful in

debugging, there should be no reason to remove these

functions.

In addition to the trace functions there are three other

reporting functions: run. report, final. report, and

pt. report. Run.report (lines 3006 - 3084) is called after

the completion of a run and writes summary information on

that run to two files: a text file called summary.res and a

formatted data file named run. res. Summary.res contains

easily read summary information for a quick impression of

the model's output, while run. res contains detailed

- 30 -

information in a record format where each run is a line, and

each field in that line is a numeric data item such as the

run number, duration, midpoint, number of accidents, etc.

This format is easily loaded by spreadsheets and statistical

software, so that more sophisticated analysis can be

performed.

4.3.3 Modeling Procedures. The following section explains

the flow of control in the model, followed by documentation

of the procedures involved in the actual execution of the

instantiated model.

4.3.3.1 Generator (lines 1591 - 1625). If this instance of

the generator process is for the first run of a series, the

process calls the function nsp.f to determine the time until

the next event occurs. It waits until that event, and then

enters a loop where it creates, initializes and activates an

accident process; generates the next inter-event time and

waits for that event; and then just prior to starting the

next event, checks to see if the run termination criteria

have been met. If they have, it cancels any scheduled

clear.reds events (because this might be the last run), but

saves the time remaining (the time.a attribute of

clear.reds) so that a clear.reds event can be scheduled at

the proper time in the following run (if any).

- 31 -

If this instance of generator is not the first run in a

series, the previous run's value of time.v is retained, and

the run will begin by activating an accident process.

4.3.3.2 Accident (lines 501 - 537). The attributes of the

process accident will already have been initialized by the

procedure init.accident (lines 2204 - 2258). These

attributes include the location, type of event (trauma or

medical), number of victims, and type of trauma (blunt or

penetrating) if traumatic. Init.accident also initializes

(by calling init.pt (lines 2261 - 2330) and activates any

patients that it has created. Once the accident process is

activated, it uses and empiric function based on average

severity to compute a probability that the victims will find

their own way to the nearest hospital (greater severity

implies lower probability of private transport). This

function is based on expressions of probability by various

domain experts; no data could be found on this topic.

If private travel is chosen, the routine pvt. travel (see

4.3.3.7) is called. If not, the dispatcher is sent an

ambulance request after a lag time. This request is updated

with more accurate information after another lag. Once the

dispatcher has been fully notified, the accident process

suspends itself. It has no further work to do, but must

remain in existence until all patients have been picked up

by an ambulance or have otherwise left the scene, since the

only way to keep from losing track of a patient is to keep

- 32 -

it filed in the acc.patient.set until an ambulance assumes

responsibility for it.

4.3.3.3 Ambulance.run (lines 561 - 728). The ambulance run

process is complex, since it must represent two different

ambulances and the interaction between them. The process

does some initialization and calls the utility routine

travel (lines 3367 - 3377) to model travel to the accident

site. It may be interrupted by the dispatcher to be

recalled during this time. Once at the scene, the process

may take one of two branches (lines 602 - 628 and lines 628

- 671) depending on whether the ambulance is an air or

ground unit. The branches are largely similar except for

their provision for inter-ambulance interaction; an air

ambulance takes a patient from a ground ambulance and

leaves, while a ground ambulance must consider if it needs

an air ambulance, wait for one to arrive if it has been

called (even if the ground unit would have been ready to

roll), obtains its patient(s) via the get.patient routine,

may give its patient to the helicopter ambulance and then

check to see if there are more patients needing care before

leaving. Ground ambulances also must handle the medical

calls, since these rarely require helicopter transportation.

Finally, as each ambulance leaves the scene, it calls the

routine check. accident which does housekeeping on the

accident process; if all the patients belonging to that

accident have been taken care of, it reactivates the

- 33 -

accident so that it may end itself. Ambulance.run then uses

the travel routine to model traveling to the hospital and

returning to base, notifying the dispatcher of its status at

appropriate points along the way.

4.3.3.4 Patient (lines 2646 - 2756). The patient process

is used to manage the continuous simulation routines. The

design is to enter a 'work continuously' statement, using

the function bleed to model the patient's physiologic

status, and the function done to determine when this

particular phase of the patient's experience is over. The

update function is used to make the continuous variables

visible to allow for reporting if desired.

The logic used to handle a patient's death requires some

explanation. The function living is called periodically to

determine if a patient meets the criteria for death. Death

before ambulance arrival ends the patient process. In any

other phase, death is recorded at the time it occurs, but

the patient process continues through the end of the initial

resuscitation. This reflects the real world system, in

which the initiation of field therapy mandates transport to

a hospital and resuscitation, even after the loss of vital

signs, before pronouncing a patient dead. This complication

is handled by using the routine pass. time (lines 2581 -

2643) to control the continuous simulation statements, and

to reexecute the 'work continuously' statement if a patient

dies during continuous simulation.

- 34 -

Finally, if the patient survives to be delivered to

definitive care, his probability of survival is calculated

from his ISS and RTS, using logistic regression coefficients

from the MTOS [Champion90].

4.3.3.5 Dispatcher (lines 1238 - 1391). The dispatcher

routine serves to coordinate the various processes in the

simulation. It consists entirely of a multiway branch

(select case) statement. Only one branch is executed each

time dispatcher is called. The branches correspond to the

various notifications that the real world dispatcher

receives, such as request for ambulance or helicopter,

updates to previous requests, and reports from ambulances on

their status (en route to scene, on scene, at hospital,

returning to base, and need assistance). The dispatcher

also manages requests that can't be satisfied by filing

requesting accidents in a pending set. When an ambulance is

placed back in service, either when it returns to its base,

or when it is recalled from a run, the dispatcher checks the

pending set to see if that ambulance can be dispatched to an

accident (if any) on the pending list. Finally, the

dispatcher receives notification when the last patient is

taken from an accident scene; it can then recall any

ambulances still en route, and reactivate the accident so it

will terminate.

- 35 -

4.3.3.6 Get.patient (lines 1944 - 1986). The get.patient

procedure updates every patients current RTS and ensures

that patients are assigned to ambulances in RTS priority.

It then chooses a destination level based on the logic

previously described, although this is overridden in the

case of helicopter ambulances who always transport back to

their own base hospitals, unless a higher level of care is

required. Get.patient does some housekeeping by moving the

patient from the accident to the ambulance's set, setting

intravenous fluid starting times and respiratory support

times for the patient, and then uses the system's rules for

deciding whether to request the helicopter or not.

Get.patient only assigns one patient, and so it is called

repeatedly to assign multiple patients to an ambulance if

their acuity levels are low enough.

4.3.3.7 Pvt.travel (lines 2892 - 2930). The routine

pvt. travel handles a patient's transportation to a hospital

outside of and unknown to the EMS system. In this setting

patients are assumed to go to the nearest hospital,

regardless of its ability to handle their injury, and

regardless of its divert status. Private transport is also

assumed to take longer that EMS transport, although the

overall time may be shorter since there is no wait for the

ambulance to arrive and no on-scene treatment.

- 36 -

4.3.4 Flow of Control. The flow of control in this

implementation, as in the real world system, is complex.

The dispatcher function is critical to understanding the

implementation, since it serves as a monitor to coordinate

communication between the independent entities in the model.

Although not specifically implemented as such, entities such

as ambulances and patients can be viewed as finite state

automata, with the dispatcher functioning to oversee state

transitions. A typical sequence is given in the following.

An episode begins when the generator function creates an

accident, and initializes it to have some number of

patients, which some constellation of injury

characteristics. Each patient process is activated and

enters a continuous simUlation phase that models the

physiologic effect of its injuries. After a brief delay,

the accident notifies the dispatcher of its existence,

location, an approximate number of patients. The dispatcher

determines the number of ambulances that should respond,

selects particular ambulances from those available, and

creates and activates ambulance run processes for each.

Finally, the dispatcher files the accident in the pending

set if more ambulances are needed, and then exits. The

dispatcher function is reinvoked upon arrival of an

ambulance at the scene, or after a lag interval, whichever

occurs first. At this point, information assumed to be

accurate about the number of victims is sent to the

- 37 -

dispatcher, which may in turn recall some of the enroute

ambulances, or may dispatch additional units as needed.

At this point, patient and ambulance run processes are

executing simultaneously. Once an ambulance run process was

worked for its designated travel time, it notifies the

dispatcher that it has arrived on scene, and after a brief

interval, picks up patients from the accident in order of

apparent severity. Once the ambulance run "owns" some

patients, it adjusts the patient's characteristics to

reflect interventions such as respiratory support and

intravenous fluid therapy. It also determines the

appropriate destination, based on the level of care needed

for the degree of injury. (One might think the dispatcher

should do this, but the real world system operates in this

manner). The ambulance run may also call for the helicopter

ambulance to come to the scene and take over, depending on

the severity of injury and distance from the appropriate

level of care. The accident process terminates when the

last patient is picked up by an ambulance.

After scene care has been rendered, the ambulance run

notifies the dispatcher that it is enroute to a hospital.

This notification also includes a request for additional

help if there is still a disparity between the number of

victims remaining and the number of ambulances on scene or

enroute to the accident. The dispatcher updates the

- 38 -

ambulance run's set membership appropriately to reflect this

new status.

After the hospital transport time has passed, the ambulance

run notifies the dispatcher of its arrival at the hospital.

The patient(s) are then transferred to the resus.set, and

undergo their resuscitative care, after which they are

transferred to definitive care and leave the system. After

a cleanup time, the dispatcher sends the ambulance back to

its base, and upon arrival there, refiles the ambulance in

the ready. set and terminates the ambulance.run process. The

cycle is now ready to begin anew.

4.4 Selection of Input Distributions

The distributional form of the input random variables was

chosen after consideration of both theoretical and practical

issues. For example, for those distributions known to be

bounded, beta distributions were chosen since they were also

bounded, and were then scaled and fit using moment matching

or maximum likelihood methods. Similarly, if a distribution

was known to be skewed to the right, or nonnegative,

candidate distributions were restricted to those having the

appropriate general characteristics.

For all distributions for which empirical data was

available, the choice among candidate distributions was made

by visually assessing probability and quantile plots

[Law91], after matching the first two moments (mean and

- 39 -

variance) to the empirical data. For each quantile

ordinate, the quantile plot graphs the abscissa of the

candidate distribution corresponding to that ordinate

against the abscissa of the empiric distribution

corresponding to that ordinate. A good fit will thus appear

as a straight line, and differences in the tails of the

candidate and empirical distributions will show up as

deviations from a straight line. In the probability plot,

for each abscissa value, the ordinate of the cumulative

distribution function of the empiric distribution is plotted

against the ordinate of the candidate distribution for the

same abscissa value. Again, good fit will appear as a

straight line, but differences in the middle of the

distributions are magnified and appear as deviations from a

straight line. In addition, the slope and intercept of the

plots (or the logged plots, for Weibull distributions) can

be used to estimate the parameters of the fitted

distributions [WilkinsOn90]. Several examples of

distributions fitted using these techniques are given in

Appendix 5.

Finally, although several of the time duration variables

were well-approximated by Weibull distributions, the final

decision was made to use gamma variates instead, since the

parameters of a gamma distribution are simple functions of

the mean, which is not the case for the Weibull. This

allows more flexibility in using the model, since mean times

- 40 -

can be easily changed in the data file. Inspection of the

probability and quantile plots in 5 shows that this is not

likely to produce large differences in the output, since

gamma distributions also fit the data very well. A listing

of all the random variables used in the model, the

distributions and arguments chosen to generate them and the

random number streams assigned is provided in Table 1.

- 41 -

module

accident
accident
accident

variable

notification lag
pvt vs ambulance
update lag

ambulance.run scene time
time to patient
cleanup time
secure time

need secure time?
del iver time

choke.time.f choke point delay

dispatcher
II

find.hosp

generator
II

get.amb

get.loc

pt count error
to hosp time
to base time

hosp proportion

inter-acc interval
prop trauma

to acc time

location

get.travel.timetravel time

get.patient iv.rate

init.accident no. victims
II blunt v pen

init.pt
II

patient
II

pvt. travel
II

severe brain inj
hem v resp i nj
iss

resus time
transfer time

hosp proportion
travel time

distribution

exponential.f
random.f
exponential.f

myganma.f
exponential.f
exponential.f
lognormal.f

random.f
lognormal.f

exponential.f

uniform.f
get. travel. time
II

random.f

nsp.f
random.f

get. travel. time

random.f

mygamma.f

log.normal. f

poisson.f
random.f

random.f
random.f
mybeta

myganma.f
exponential. f

random.f
mygamma.f

arguments

alarm. lag
n/a
info.lag

stream

15

3

t.on.scene, 3 4
t. to.pt 5
3 6
m.secure,
s.secure 18
n/a 19
m.del iver,
s.deliver 21
choke.pt.wt 23

-I, 1 7
node dependent13

II 17

n/a

n/a
n/a

12

1
22

node dependent14

n/a 8

trav time, 3 per caller

120 - sbp,
10% cof. var 27

1.5
n/a

9
28

n/a 25
n/a 26
1.390, 9.632 10

t. resus, 3 11
t.tx 24

n/a 16
1.2*trav time,
3 20

Table 1. Random variables used in the model.

- 42 -

Chapter 5

Verification and Validation

5.1 Verification

Major components of the implementation were verified against

predictable model elements wherever possible. This was done

by independent testing of "stub" routines where practical,

and by inspection of the simulation trace or outputs

elsewhere.

5.1.1 Random variate generators. Two new random number

generators were implemented and verified; the non-stationary

Poisson distribution routine nsp.f, and mygamma.f, a

replacement for SIMSCRIPT's error-prone gamma variate

generator.

5.1.1.1 Nsp.f. ~inlar's method [~inlar75] of generating

the interarrival times for a non-stationary Poisson arrival

process was implemented in the function nsp.f (lines 2545 -

2578). An example test data set is given in Table 2,

approximating the mean cumulative "arrivals" for a week.

The nsp.f routine used this data to produce the 5000 arrival

times summarized in Figure 3, Figure 4. The variation in

generated arrival times closely follows the data in Table 2;

a goodness of fit test shows no evidence of bad fit (X 2 i3 =

13.752, P = .392).

- 43 -

15
o 0
12 10
24 5
36 10
48 5
60 10
72 5
84 10
96 5
108 10
120 5
132 15
144 10
156 5
168 20

;number of entries
;first number is time,
;second is number of events
;in that time period

;assumed to "wrap around" after reaching the last
;time period

Table 2. Example data file of mean arrivals by interval for
testing the nsp.f routine.

This process was repeated for a variety of data sets to

establish acceptance of the nsp.f function.

5.1.1.2 Mygamma.f. A new gamma variate generator (lines

2442 - 2512) was implemented from two published algorithms

[Bratley87]. For shape parameter greater than one,

Tadikamalla's method was used, and for order one or less,

Ahrens' method was used. Verification examples were

produced over a wide range of arguments including those

known to return invalid results for the SIMSCRIPT generator.

An example of results for 2500 variates from mygamma.f given

arguments 1.5, 1.5 (a = 1.5, B = 1.0). This distribution

has theoretical mean and variance equal to 1.5. The sample

mean and variance of the output from mygamma.f was 1.517 and

1.529. Figure 5 presents a histogram of the output; the

- 44 -

0.20 -

0.15 - -

c
0 ,----

-+-'
L 0.10 0 -
0...
0 ~

,----
~ r--

~

L
0...

,----

0.05 -
- r-- r-- r---- r--

o 84 168

time
Figure 4. Proportion arrivals in 12 hour periods over one
week, corresponding to data in Table 2.

probability plots Figure 6 demonstrate the closeness to the

theoretical distributional shape.

5.1.2 static and Dynamic Analysis. Attributes of entities

in the implementation were checked to confirm that they

indeed matched the input parameters and distributional form

specified in the model. For example, the distribution of

observed ISS scores in the model compared reasonably well to

that described by Baker [Baker92], which it was designed to

match (Table 3). Similarly, the proportion of blunt to

penetrating injury, the spatial distribution of injuries,

the number of victims per accident, and other elements were

confirmed to approximately match their inputs.

- 45 -

0,06

0,05

0,04
c
0

...j.....J

L- 0,03 0
Q
0
L-
Q

0,02

0,01

o 2 4 6 8 10

variate

Figure 5. Histogram of 2500 variates from mygamma.f given
arguments 1.5, 1.5.

statistic
N
mean
median
std deviation
skewness

model
1082

9.86
8.00
7.30
1.26

Baker
8791

9.46
10.00
7.18
1. 71

Table 3. Characteristics of ISS scores obtained by the
model and those reported by Baker.

The dynamic behavior of the implementation were verified to

be compatible with the model by careful inspection of the

- 46 -

10

8

·
D 6
ill

-+-'
0
ill
0...
X
ill 4

2

o
o 1 2 3 4 5 6 7 8

variate

Figure 6. Probability plot of 2500 variates from mygamma.f
given arguments 1.5, 1.5.

trace output and temporal outputs such as blood pressure.

Special attention was paid to dispatching rules, such as

alternating assignments between helicopter ambulances, or

between two ambulances based in the same node. It was

possible to confirm from the trace dispatched ambulances

that were recalled had indeed not reached the scene. It was

also confirmed that ambulances treated patients in order of

- 47 -

trace (edited for clarity)

event 1 (acc) occurs in WJX at 0:42
acc 1 has pt 1
acc 1 has pt 2
acc 1 has pt 3
acc 1 has pt 4
07 enroute to acc 1 at 0:44
04 enroute to acc 1 at 0:44
09 enroute to acc 1 at 0:44
new info fr event 1 at 0:46
09 recalled at 0:46

acc 25 has pt 26
acc 25 has pt 27
028 treating pt 27. cts = 7.6 at 13:37
042 treating pt 26. cts = 7.8 at 13:42
028 enroute to UMC at 13:45 with 1 pts
042 enroute to UMC at 13:55 with 1 pts

STL went red at 12:11
030 on scene at acc 139 in SSO at 12:14
030 treating pt 165. cts = 12 at 12:16
030 diverted from STL at 12:16
042 on scene at acc 141 in JTB at 12:30
042 treating pt 167. cts = 12 at 12:31
042 diverted from STL at 12:31
013 treating pt 168. cts = 12 at 12:31
013 diverted from STL at 12:31
020 diverted from STL at 12:32
020 enroute to UMC at 12:32 with 1 pts
030 enroute to MMC at 12:37 with 1 pts
042 diverted from STL at 12:38
042 enroute to UMC at 12:38 with 1 pts
013 diverted from STL at 12:40
013 enroute to MMC at 12:40 with 1 pts
STL went green at 13:11

comments

Ambul ances are di spatched in order of
travel time to WJX. The last ambulance
that has not yet arrived (09) is
recalled when more information on
numbers of patients is available.

Ambulances begin treating sicker
patients (lower RTS) first. Both
patients meet Level 1 criteria. so they
are transported to UMC. not the nearest
hospital.

St. Luke's goes on divert at 12:11. All
subsequent runs which might routinely go
to St. Luke's are diverted to alternate
destinations until St. Luke's can began
accepting incoming ambulances again at
13: 11

Table 4. Portions of trace output demonstrating the
manifestation of specific model design items in the
implementation.

severity as manifested by the current value of the RTS. And

finally, the trace confirmed that no ambulance was

dispatched to the "wrong" node or to the "wrong" hospital,

and that no ambulance traveled to a hospital without

carrying a patient. This method of verification can never

absolutely confirm the reliability of the system, but it

does serve to increase confidence that the implementation

behaves according to the model's specifications. Table 4

- 48 -

shows a portion of the trace output that demonstrates the

appearance in the implementation of several specific model

behaviors.

5.2 Validation

Rigorous validation of a system such as this is extremely

difficult, primarily because of the inadequacy of existing

data sets useful for confirming model performance [McCoy92].

However, it was possible to compare measures of the model's

performance to locally available data elements, to establish

at least order of magnitude validity. The following items

had sufficient data available to allow such comparisons:

number of ambulance runs, number of helicopter runs,

proportion of deaths prior to definitive care, etc. The

model's predictions for these variables are compared with

item model Fire/Rescue other

mean daily ground runs 41.734 44 n/a
mean daily helo runs 5.07 5 n/a
prob dead on scene .018 .01 nfa
mean transport time

(min, Duval Co only) 22.1 20 nfa
prob death prior to

definitive care .128 .05 .085 (Baker)
mean SBP at definitive

care 93.8 100 95.4 (Baxt)

Table 5. Comparison of outcome estimates produced by the
model with those estimated by Jacksonville Fire/Rescue.

convenience sample estimates from Jacksonville Fire Rescue

and published data in Table 5. The distribution of transit

times was compared with that derived from Campbell's data.

The mean transit times were different, reflecting differing

- 49 -

geography, but quantile plots of the two data sets revealed

that they have approximately the same differing only by a

scaling factor (see Figure 7).

- 50 -

Q)
D

40

30

E 20
a::)

o

10

o
o 100 200 300

model

Figure 7. Quantile plot comparing the model's transport
times with those provided by Campbell.

- 51 -

Chapter 6

Demonstrative Experiments

6.1 Triage policy

To demonstrate the utility of the model in assessing policy

choices, three sets of runs were performed using a different

cutoff point to determine when a patient should be triaged

directly to a Levell trauma center, bypassing other

(possibly closer) hospitals. Current standard operating

procedure calls for all patients with an RTS less than or

equal to 90% of the maximum of 7.8408 (this corresponds to a

score of approximately 10-11 on the 0-12 RTS scale) to be

transported directly to a Levell center; this baseline case

and several alternative cases were simulated. The minimum

run length was set to 24 hours, and a total of 28 runs

(approximately one month) were performed. The following

outputs were used as measures of system performance under

each scenario: trauma center utilization, red time, and

reserve; proportion of accidents pended (i.e., no ambulance

immediately available), mean waiting time until ambulance is

dispatched among pended accidents; helicopter utilization;

mean probability of death prior to receiving definitive

care; unmet need (patients who met helicopter dispatch

criteria but for whom a helicopter was unavailable); and

total waiting time until EMS arrival (ta)' The classical

- 52 -

approach [Law91] was used to calculate point and interval

estimates from the results of the 28 regeneration cycles.

For this experiment, and the following one, output from the

formatted data files was more useful than that directly

reported by the program. An example of the direct output is

provided in Appendix 4.

RTS cutoff
(% of max)

trauma center
utilization
red
reserve

80

.284±.035

.0

.9998±.0003

pr acc pended .041±.017
wait (min) 28.5±11.5

helicopter
utilization .111±.015
unmet need .359±.056

pr death* .120±.021
ta 21.4±1.32

*prior to definitive care

90

.303±.031

.0

.99997±.7E-5

.054±.020
22.0±8.29

.136±.020

.319±.045

.128±.024
21. 7±1. 35

95

.302±.034

.0016±.9E-5

.9997±.0006

.040±.015
21.1±1.53

.149±.022

.319±.045

.121±.018
21.1±1.53

Table 6. System performance (mean ± 95% confidence
interval) under different trauma center triage criteria.

The results for the baseline case and two alternatives

(triage cutoffs of 80% and 95% of maximum) are summarized in

Table 6. Compared to the baseline case, the main effects of

liberalizing the triage cutoff are an increase in helicopter

utilization, and a decrease in the length of time that a

pended accident must wait to have an ambulance assigned to

it.

- 53 -

triage cutoff
convergence

time (days)
13.919
30.928

helo utilization
80 90 95

.128 .139 .163

.100.133.136

waiting time
80 90 95

34.2 21.0 16.3
28.0 28.3 212

Table 7. Convergence points including at least a full seven
day cycle.

The three alternative models converged at six points in the

simulation; results at the two convergence points spanning

at least a full week cycle are shown in Table 7. After

adjusting for multiple comparisons, the results show that

helicopter utilization is significantly different under the

80% and 95% triage cutoffs (P = .013, paired t test); the

95% confidence interval on the difference in utilization

between these two alternatives is .036 ± .0014, or about a

33% increase. Although the mean difference in waiting time

for pended accidents is large between the 80% and 95%

policies (12.3 minutes), the standard deviation of the

difference is also large (7.81 minutes), so the results are

not statistically significant. This result could be due to

inadequate power since only two point estimates were

obtained; further runs would be required to improve the

precision of the estimate to determine if a true effect on

waiting time should be expected.

- 54 -

6.2 Helicopter Dispatch Policy

currently, helicopter ambulances are dispatched for patients

needing a level 1 center whose transport time is over 19

minutes, and patients needing a level 2 center whose

transport time is over 39 minutes. The effects of reducing

these times by about 50% (to 10 and 20 minutes,

respectively) are shown in Table 8; the triage cutoff was

kept at 90% of maximum, so these results should be compared

to the center column in Table 6. It appears that the effect

of liberalizing time and distance transport criteria on

helicopter utilization is much greater than that of

liberalizing the triage cutpoint, yet the latter has

received considerably more attention.

trauma center
utilization .298 ± .037
red .000
reserve .9999 ± .0001

pr acc pended .042 ± .019
wait (min) 24.4 ± 8.86

helicopter
utilization .160 ± .021
unmet need .293 ± .037

pr death* .112 ± .020
time til

arrival 22.2 ± 1. 74

*prior to definitive care

Table 8. System performance (mean ± 95% confidence
interval) under alternate helicopter dispatch criteria.

- 55 -

6.3 Conclusion

It is interesting to note that the trauma triage cutoff,

which has been the subject of vehement debate at times, had

little effect on the overall load on the system, while a

factor that has received little attention, the retriaging of

less severely injured patients to a higher level of care if

such a center is reasonably "close" had a much greater

impact. This leads to the conclusion that the common

knowledge of domain experts may not always be helpful in

predicting the response of a complex system to change, and

that computer models of such systems may enhance the

decision makers accuracy and reliability by adding insight

into the possible responses of the system to variables that

were not previously thought important.

6.4 Further Work

Concern for the validity of current disaster planning and a

demonstration of the potential of this model has led to

community-wide interest in using a more fully validated

version of the model to assist in planning for several

events of importance in northeast Florida. The particular

areas of interest are:

a. Loss of a hospital and subsequent evacuation of its

patients to other facilities.

b. Loss of a major "choke point" such as a bridge for a

period of hours to days.

- 56 -

c. Widespread flooding of low areas eliminating multiple

transportation routes and isolating some hospitals and

nodes.

d. An area-wide disaster such as a hurricane, which might

combine all of the preceding elements.

e. Modification of the physiologic model to use the a more

detailed physiologic score such as ASCOT [Champion90),

and to estimate the covariance structure of injuries

from the American College of Surgeons National Trauma

Registry Data (TRACS).

- 57 -

References

[Baker74]
Baker, Susan P., O'Neill Brian, Haddon Jr., William,
and Long, William. "The injury severity score: a
method for describing patients with multiple injuries
and evaluating emergency care." Journal of Trauma, 26,
3 (March 1974), pp. 187-196.

[Baker92]
Baker, Susan P., O'Neill Brian, Ginsburg Marvin J., Li
Guohua. The Injury Fact Book. Oxford University
Press, Oxford, 1992.

[Baxt87]
Baxt, William G., and Moody, Peggy. "The differential
survival of trauma patients." Journal of Trauma, 27, 6
(June 1987), pp. 602-606.

[Bratley87]
Bratley, B, Fox, BL, and Schrage, LE. A Guide to
Simulation. Springer-Verlag, New York, 1987.

[CACI88]
SIMGRAPHICS: User's Guide and Casebook. CACI Products
Corporation, La Jolla, 1988.

[Campbell92]
Campbell JP. Time-to-patient interval: the hidden
component of response time [abstract]. Annals of
Emergency Medicine 1992; 21:643.

[Carter74]
Carter, Grace M. Simulation Model of Fire Department
Operations: Program Description. The New York city
Rand Institute, New York, 1974, pp. 8, 110-111.

[Champion81]
Champion, Howard R., Sacco, William J., Carnazzo,
Anthony J., Copes, Wayne, and Fouty, William J.
"Trauma score." Journal of Trauma 9, 9 (September
1984), pp. 672-676.

- 58 -

[Champion86]
Champion, Howard R., Frey C. F., Sacco, W. J., et ale
"Major trauma outcome study in quality assurance."
Presented at the 4th Annual Meeting, Committee on
Trauma, American College of Surgeons, Ft Lauderdale,
FL, 1986.

[Champion90]
Champion, Howard R., Copes, W. S., Sacco, W. J., et ale
A new characterization of injury severity. Journal of
Trauma 1990; 30:539.

[Chanpion91]
Champion, Howard R., Sacco William J., Copes,
"Trauma Scoring," in Moore, Ernest E., Mattox
L., and Feliciano David V. [editors], Trauma.
& Lange, Norwalk, Connecticut, 1991.

[<;inlar75]

Wayne S.
Kenneth
Appleton

Cinlar, E. Introduction to Stochastic Processes.
Prentice-Hall, Englewood Cliffs, NJ, 1975.

[Devroye86]
Devroye, Luc. Non-Uniform Random variate Generation.
Springer-Verlag, New York, 1986.

[Fitzsimmons82]
Fitzsimmons, James A., and Srikar, Bellur N.
"Emergency ambulance location using the contiguous zone
search routine." J operations Management 2, 4 (August
1982), pp. 225-237.

[Johnson87]
Johnson, Mark E. Multivariate statistical simulation.
John Wiley & Sons, New York, 1987.

[Law91]
Law, Averill M., and Kelton, W. David, Simulation
Modeling and Analysis. McGraw-Hill, New York, 1991.

[Lewis79]
Lewis, P. A. W., and Shedler, G. S. "Simulation of
nonhomogeneous Poisson process by thinning." Nav Res
Logist Ouart, 26, (? 1979) pp.403-413.

[Lewis86]
Lewis, Frank R. Jr. "prehospital intravenous fluid
therapy: physiologic computer modelling." Journal of
Trauma 26, 9 (September 1986), pp. 804-811.

- 59 -

[MacKenzie86]
MacKenzie, Ellen J., Shapiro, Sam, Moody, Mark, Siegel,
John H., and smith, Richard T. "Predicting posttrauma
functional disability for individuals without severe
brain injury." Medical Care, 24, 5 (May 1986), pp.
377-387.

[May90]
Adolf May. Traffic Flow Fundamentals. Englewood
Cliffs, NJ, 1990.

[Mazzoni88]
Mazzoni, M. C., Borgstrom, P., Arfors, K. E.,
Intaglietta, M. "Dynamic fluid redistribution in
hyperosmotic resuscitation of hypovolemic hemorrhage."
American Journal of Physiology 255, 3 (Part 2,
September 1988), pp. H629-H637.

[McCoy92]
McCoy, Lois Clark, S. Ruby, G. W. Reynolds, et ale
"The hidden disaster in emergency management: The
missing data base -- so you think there are data bases
in notebooks waiting to be input into a computer."
Abstract presented at 1992 Simulation MultiConference,
Orlando, FL, 1992.

[Morris86]
Morris, John A., Auerbach, Paul S., Marshall, Gregory
A., Bluth, Raymond F., Johnson, Lynda G., and Trunkey,
Donald D. "The trauma score as a triage tool in the
prehospital setting." Journal of the American Medical
Association 256, 10 (September 12, 1986), pp. 1319-
1325.

[Uyen084]
Uyeno, Dean H., and Seeburg, C. "A practical
methodology for ambulance location." Simulation 48, 2
(August 1984), pp. 79-87.

[Valenzuela90]
Valenzuela, Terrence D., Goldberg, Jeffery, Keeley,
Kevin T., and criss, Elizabeth A. "Computer modeling
of emergency medical system performance." Annals of
Emgergency Medicine 19, 8 (August 1990), pp. 898-901.

[Wears90]
Wears, Robert L., and Winton, Charles N. "Load and go
vs. stay and play: analysis of prehospital intravenous
fluid therapy by computer simulation." Annals of
Emergency Medicine 19, 2 (February 1990), pp. 163-168.

- 60 -

[Wilkinson90]
wilkinson, Leland. SYSTAT: The System for statistics.
SYSTAT, Inc., Evanston, IL, 1990.

[Zachariah92]
Pepe PE, Curka PA, Zachariah BS, et ale Urban trauma:
diurnal variations in the incidence, severity and
geographical distribution of various mechanisms of
injury [abstract]. Annals of Emergency Medicine 1992;
21:618.

- 61 -

module

preamble
main
accident
adj. time. f
ambulance.run
assign.amb
best.route
bleed
build.call.l ist
build.hosp.list
build. route
check.accident
check.red
choke.f
clear.reds
cts.f
dispatcher
done
final.report
find.hosp
find.loc
ftime.f
generator
get.accs
get.amb
get.ems
get. hosp
get. i v. rate
get.l evel
get.list
get. net
get. num. amb
get.patient
get.sim
get. tabl e
get. travel. time
go.green
go.off.red
go. red
init.accident
init.pt
initialize
1 in. i nt. f
living
mybeta. f
mygamma.f
no.pts
nsp.f
pass.time

Appendix 1

Program Source Code

Table of Contents

line number

- 62 -

2
418
502
541
562
732
757
836
889
980

1077
1100
1133
1166
1184
1208
1238
1395
1429
1482
1538
1575
1592
1629
1661
1744
1783
1815
1826
1854
1877
1933
1945
1990
2088
2116
2142
2160
2186
2205
2262
2334
2389
2414
2427
2443
2516
2546
2582

patient
print.net
pt. report
pvt. travel
read.call.1 ist
read.hosp.1ist
reca 11
resp.support
run. report
tr.check.in.acc
tr.check.in.amb
tr.check.in.pt
tr. check .out. acc
tr.check.out.pt
tr.de1iver.pt
tr.enroute.hosp
tr.go.green
tr.go.red
tr.on.scene
tr.pickup.pt
tr.pvt. tr.pt
tr.resus.pt
tr.send.amb
tr.stack.acc
tr.to.home
tr.unstack.acc
travel
update
write.call.1 i st
write.hosp.1ist

- 63 -

2647
2760
2869
2893
2934
2955
2977
3014
3027
3108
3126
3138
3149
3167
3179
3192
3212
3223
3234
3254
3274
3286
3300
3320
3338
3350
3368
3381
3405
3426
3443

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Source Code

preamble II <t> Prehospital Trauma Care Model
I I <s> preamble

normally, mode is undefined

I I

I I

functions and globals

define nsp.f, lin.int.f, adj.time.f, ftime.f, get.iv.rate
as double functions
define laplace.f, mygamma.f, mybeta.f, choke.f as double functions
define get.table, get.accs as pointer functions

define done, get.num.amb, get.level, find.loc, find.hosp, get.amb,
go. red, go.green, living as integer functions

define best.route, get.travel.time as double functions

define cum. events as a double, 2-dim array
define prop.accs as a double, 2-dim array

define min. length, pts.per.acc, alarm. lag, info. lag, start.time,
t.to.pt, t.on.scene, m.secure, s.secure, p.secure, t.resus, t.tx,
m.deliver, s.deliver, tr.prop, tmp.dur, tmp.ambs, tmp.mn.pend
as double variables

define no. runs, run, num.helo, tmp.pts, tmp.accs, tmp.mx.pend,
no.deaths, no.blunt, no.pended as integer variables

define patient. counter, t.patient.counter, m.patient.counter,
tot.counter, acc.counter, med.counter, divert.counter,
override.counter, run.counter, red. limit, green.limit,
max.red.hosp, min. red, max. red, reds.per.day as integer variables

define TCRUISE, atol, htol, airspeed, range, clear.time, est.deaths,
r.est.deaths, ll.time, major.cutoff, minor.cutoff
as double variables

define min.amb, minor.time, major.time as integer variables
define nsp.tprime, nsp.last.time as double variables

entities and sets

permanent entities

every node has
a node.id,
a node.name,
a lat,
a long, and

owns an edge.set, a call.list, a hosp.list, a node.amb.set, and
may own a hosp.set, and
may belong to a node.set, an amb.base.set, a hosp.base.set,

a temp. set and an assignment.set
define node.id as an integer variable
define node.name as a text variable
define lat, long as double variables

I I could modify this to node, node, time.period to allow for
known changes in travel times by time of day

every node, node has
a transit.time,
a flight.time, and

owns a route

- 64 -

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

define transit.time, flight. time as double variables
define route as a lifo set

every hospital has
a hosp.id,
a hosp.name,
a no.pts,
a capacity,
a full,
a red,
a can.divert,
a red. today,
a red.start,
a clear.notice,
an r.max.pts,
an s.max.pts,
a gr.max.pts,
an update.time,
an r.accum.pts,
a g.accum.pts,
a g.ssq.pts,
an r.accum.cap,
a g.accum.cap,
a g.ssq.cap,
a hosp.base,
a hosp.volume, "ann ED visits in 1000s
a level and

owns a resus.patient.set and
belongs to a hosp.set
may belong to the green.set and the red.set
define hosp.name as a text variable
define hosp.id, hosp.base, capacity, full, level, r.max.pts,

s.max.pts, gr.max.pts, red, can.divert, red. today
as integer variables

define hosp.volume, red.start, update.time, r.accum.pts,
g.accum.pts, r.accum.cap, g.accum.cap, r.ssq.pts, r.ssq.cap,
g.ssq.pts, g.ssq.cap as double variables

define no.pts as an integer variable monitored on the left
define clear.notice as a pointer variable

every ambulance has
a type,
an ambo id,
an amb.name,
an amb.run,
an amb.base,
a cur. location,
a travel.time and

may belong to the ready.set, the h.ready.set,
the out.of.service.set, the to.scene.set, the on.scene.set,
the to.hosp.set, the at.hosp.set, the to.base.set,
the at.base.set, the node.amb.set and the amb.set

define amb.name as a text variable
define type, amb.id, amb.base, cur.location as integer variables
define amb.run as a pointer variable
define travel.time as a double variable

temporary entities

every arc has
a source,
a sink,
a weight,

- 65 -

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

a choke.pt.wt,
a ch.cum.weight,
a cum.weight,
an arc.status, and

may belong to a route, a v.set, an mdt and an edge.set
define source, sink, arc.status as integer variables
define weight, choke.pt.wt, ch.cum.weight, cum.weight
as double variables

every call.item has
an ambulance.id,

and belongs to a call.list
define ambulance.id as an integer variable

every go. item has
a hospital.id,
a hosp.level

and belongs to a hosp.list
define hospital.id, hosp.level as integer variables

processes include generator

every ambulance.run has
a kind,
an ambulance.id,
a run.id,
a acc,
a src,
a destination,
a hosp,

"destination is a node
"which is distinct fr a hospital

a dest.level,
a helo.coming,
a status,
a scene.time and

owns an amb.patient.set

, 'fl ag

and may belong to an h.waiting.set
define kind, run.id, src, destination,

helo.coming as integer variables
define acc as a pointer variable
define scene.time as a double variable

every patient has
an pt. id,
a condition,
a phase,
a change. fl ag,
a transp.mode,
an acc,
a hosp,
an injury.loc,
an injury. time,
a wait.time,
a scene. time,
an iv.start.time,
a transp.time,
a resus.time,
a trf.start.time,
a trf.rate,
a resp.time,
a tx.time,
a tad,
a pvt.tr.arrive,

- 66 -

dest.level, hosp, status,

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

I I

II

a rescue.bp, a hosp.bp, a def.bp,
a r.cts, I I Champion trauma score components
a h.cts,
a n.cts,
a cts.f function,
acts,
an iss,
a prob. surv,
a bleeding.rate, a br.O,

I I

I I
revise tr score
injury severity score

a blood.volume, an sbp, an 02.sat,
an rbc.mass, a hct, an 02.delivery,
an iv.start.time, an iv.rate,
a blunt, I I blunt v penetrating flag
a need.helo, a got.helo I I flags
and

belongs to the patient.set and
may belong to the pvt.tr.set, an acc.patient.set,

a resus.patient.set, and an amb.patient.set
define pt.id, condition, phase, transp.mode, r.cts, h.cts, n.cts,

iss, change.flag, blunt, injury.loc, need.helo,
got.helo as integer variables

define pvt.tr.arrive, injury. time, wait. time, resus.time, tx.time,
transp.time, br.O, iv.start.time, prob.surv, iv.rate,
trf.start.time, trf.rate, rescue.bp, hosp.bp, def.bp, tod,
resp.time, 02.sat, cts as double variables

define cts.f as a double function
define blood.volume, rbc.mass, sbp, bleeding.rate, hct, 02.delivery

as continuous double variables

I I note that accident is used for medical calls as well
every accident has

a kind,
an acc. id,
a site,
a no.victims,
a needed,
a sent,
an updated,
a pended,
an acc.start.time,
an acc.arrive.time and
an acc.end.time,
a blunt and

II

I I
flag
flag

owns an acc.patient.set, an h.waiting.set and an amb.set, and
may belong to the pending.set and
may belong to the active.set
define acc.id, site, no.victims, needed, sent, updated, pended

as integer variables
define acc.start.time, acc.arrive.time, acc.end.time

as double variables
define acc.patient.set as a set ranked by low cts

events

event notices include clear.reds
every go.off.red has a gor.hsp
define gor.hsp as an integer variable
every resp.support has an r.pt
define r.pt as a pointer variable

the system owns
the amb.base.set, the hosp.base.set, the temp.set,

the assignment.set,

- 67 -

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

"

the node.set, the v.set, the mdt,
the patient.set, the pvt.tr.set,
the ready.set, the h.ready.set, the out.of.service.set,

the to.scene.set, the on.scene.set, the to.hosp.set,
the at.hosp.set, the to.base.set, the at.base.set,
the pending.set, the active.set,
the green.set and the red.set

define h.ready.set as a fifo set "helos alternate response

convenient defines

1 = 2

define
define
define
define
define
define
define
define
define

TRUE to mean 1
FALSE to mean 0
NULL to mean 0
FOREVER to mean until
calls.pending to mean
FREE to mean 0
IN.USE to mean 1
A.DUPLICATE to mean 2

n.pending.set > 0

NMPD to mean 60

define DEBUG to mean 1 = 1
, , process status for sta.a

define WRK to mean 1
define SSPND to mean 2
define NTRPT to mean 3

define ground to mean 1
define air to mean 2
define private to mean 3

define trauma to mean 1
define medical to mean 2

define alive to mean 0
define dead to mean 1
define sbp.O to mean 120.0
define bv.O to mean 4900.0
define hct.O to mean 42.0
define 02.sat.0 to mean 1.0

"nautical miles / deg latitude

"change to eliminate some output

define croak to mean sbp.O * hct.O * 02.sat.0 / 4
define OPS to mean 1.6 "Lewis constants
define PSTF to mean .625
define TCONST to mean 25.0
define is.to.iv to mean 2.3 "interstitial:intravascular ratio
define MAXRTS to mean 7.8408

" messages
define req.amb to mean 1
define req.car to mean 2
define to.scene to mean 3
define at.scene to mean 4
define to.hosp to mean 5
define at.hosp to mean 6
define to.base to mean 7
define at.base to mean 8
define req.help to mean 10
define new. info to mean 11
define no.pts.left to mean 12
define req.helo to mean 13

- 68 -

"private conveyance

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

, ,

" ambulance run status
define working to mean 1
define not.working to mean 2

pt phase
define waiting to mean 1
define scene.rx to mean 2
define en. route to mean 3
define resus to mean 4
define pvt.trav to mean 5
define done.resus to mean 6

" hospital capabilities
define leve11 to mean 1
define leve12 to mean 2
define leve12a to mean 3 "level 2 hosp that doesn't req tc stat
define leve13 to mean 4

statistical counters
, , run duration

tally g.mean.dur as the mean,

"

g.var.dur as the variance. and
g.max.dur as the maximum of tmp.dur

pts and accidents

" only trauma pts are tracked
tally r.no.t.pts as the runwise number of t.patient.counter
tally r.no.m.pts as the runwise number of m.patient.counter
tally r.no.accs as the runwise number of acc.counter
tally r.no.meds as the runwise number of med.counter
tally r.no.deaths as the runwise number of no.deaths
tally r.no.blunt as the runwise number of no.blunt

tally g.mean.pts as the mean.
g.var.pts as the variance. and
g.max.pts as the maximum of tmp.pts

tally g.mean.accs as the mean.
g.var.accs as the variance, and
g.max.accs as the maximum of tmp.accs

, , ambulance utilization and capacity

accumulate r.idle.amb as the runwise mean of n.ready.set
accumulate r.idle.helo as the runwise mean of n.h.ready.set

tally g.mean.amb as the mean. and
g.var.amb as the variance of tmp.ambs

, , queue for ambulance service

accumulate r.mean.pending as the runwise mean and
r.max.pending as the runwise maximum of n.pending.set

tally g.mean.pend as the mean, and
g.var.pend as the variance of tmp.mn.pend

tally g.mean.maxpend as the mean,
g.max.maxpend as the maximum. and

- 69 -

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

I I

g.var.maxpend as the variance of tmp.mx.pend

I I hospitals
accumulate r.mean.red as the runwise mean of red

tally r.no.divert as the runwise number of divert.counter
tally r.no.override as the runwise number of override. counter
tally r.no.pended as the runwise number of no.pended

trace routines
II ambulances
after filing in the ready.set, call tr.check.in.amb
after filing in the h.ready.set, call tr.check.in.amb
before filing in the to.scene.set, call tr.send.amb
before filing in the on.scene.set, call tr.on.scene
before filing in the to.hosp.set, call tr.enroute.hosp
before filing in the at.hosp.set, call tr.deliver.pt
before filing in the to.base.set, call tr.to.home

I I accidents
before filing in the active.set, call tr.check.in.acc
before filing in the pending.set, call tr.stack.acc
after removing from the pending.set,call tr.unstack.acc
after removing from the active.set, call tr.check.out.acc

I I patients
before filing in the acc.patient.set, call tr.check.in.pt
after removing from the patient.set, call tr.check.out.pt
before filing in the amb.patient.set, call tr.pickup.pt
before filing in the pvt.tr.set, call tr.pvt.tr.pt
before filing in the resus.patient.set, call tr.resus.pt

I I hospitals
after filing in the red.set,
after filing in the green.set,

call tr.go.red
call tr.go.green

end I I of preamble

main
I I

I I <f>
<s> main

define mn as a double variable

open 4 for output, name is "summary. res"
use 4 for output
lines.v = 0

I I output data for statistical analysis
open 7 for output, name is "run.res"
use 7 for output
lines.v = 0

open 8 for output, name is "pt. res"
use 8 for output
lines.v = 0

use 6 for output
lines.v = 0

call initialize

- 70 -

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

, ,
, ,

outer loop to set up each arm of an experiment goes here

restore random number seeds

time.v = 0
nsp.tprime = 0
nsp.last.time = 0

for run = 1 to no. runs
do

loop

reset runwise totals of t.patient.counter, m.patient.counter,
acc.counter, med.counter, divert.counter, override.counter,
n.ready.set, n.h.ready.set, n.pending.set, no.blunt,
no.deaths and no.pended

r.est.deaths = O.
for each hospital
do

loop

reset runwise totals of red(hospital)
r.accum.pts(hospital) 0
r.accum.cap(hospital) 0
r.max.pts(hospital) = 0

start. time = time.v
schedule a clear.reds in clear.time hours
activate a generator now
start simulation

record runwise means here to ensure independence
tmp.dur = time.v - start.time
tmp.pts = r.no.t.pts
tmp.accs = r.no.accs
tmp.ambs = 1.0 - r.idle.amb / n.ambulance "utilization
tmp.mn.pend = r.mean.pending
tmp.mx.pend = r.max.pending
for each hospital
do

loop

mn = r.accum.pts(hospital) / tmp.dur
add mn to g.accum.pts(hospital)
add mn * mn to g.ssq.pts(hospital)
mn = r.accum.cap(hospital) / tmp.dur
add mn to g.accum.cap(hospital)
add mn * mn to g.ssq.cap(hospital)
add r.max.pts(hospital) to s.max.pts(hospital)
gr.max.pts(hospital) = max.f(gr.max.pts(hospital),

r.max.pts(hospital))

call run. report

call final.report , , for thi s arm
, , end of outer loop

close unit 4
close unit 7
close unit 8

end" of main

process accident
" <s> accident

<f:>18

- 71 -

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

I I create patients, assign their characteristics, and activate the ems system

define self, pt as pointer variables
define avg.cts, limit as double variables

self = accident

I I check pts to see if pvt tsp -- send them on
for each pt in acc.patient.set,

compute avg.cts as the avg of cts.f(pt)

I I empiric function for private transport
limit = .29 * «avg.cts/7.8408)**6) + .01
wait 1 + exponential.f(alarm.lag - I, 15) minutes

if random.f(2) >= limit or kind(self) = medical

else

call dispatcher giving NULL, req.amb, self
II

II

wait til accurate info is sent -- if ambulance arrives 1st,
it will force accurate info to be sent then

wait 1 + exponential.f(info.lag - I, 3) minutes
call dispatcher giving NULL, new. info, self
updated(self) = TRUE

I I wait until all patients
suspend

have been picked up
I I go by pvt transport

call pvt.travel(self)
endif

remove self from the active.set
acc.end.time(self) time.v

end I I of accident

II <f>12 function adj.time.f(t)
D I <s> adj.time.f
• I transit times for nodes assume crulslng speed. This function adjusts
• I total travel time after Carter74 (taken from Kolesar and Walker 1974).

Their model assumes that a units speed gradually increases as it moves
progressively onto larger and larger roads, and then decreases as it

D I moves off thoroughfares to the accident scene, or the hospital.

define t as a double variable

if t <= 2 * TCRUISE I I never made it to cruising speed
t 2 * sqrt.f(t * TCRUISE)

else
t t + TCRUISE

end if

return with t

end I I of adj.time.f

process ambulance.run
I I <s> ambulance.run

I I <f>

define this.ambulance as an integer variable
define self, this.accident, victim, other. run as pointer variables

- 72 -

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

define secure.time, null.time, cleanup.time, temp
as double variables

self = ambulance.run
this.ambulance = ambulance.id(self)
this.accident = acc(self)
status(self) = working
src(self) = cur.location(this.ambulance)
" assign random variates here to preserve synchronization
if type(this.ambulance) = air

temp = t.on.scene / 2.0
else

temp = t.on.scene
endif
" critical times adjusted to keep them above minimum step size in the
" integrator routine -- shape parameter adjusted to make final returned
" value approx a gamma(3)
scene.time(self) = 1 + mygamma.f(temp - I, 3 * «temp - 1) / temp)**2, 4)
null.time = exponential.f(t.to.pt, 5) " Campbells time-to-pt
cleanup.time = exponential.f(3, 6)
secure.time = log.normal.f(m.secure, s.secure, 18)

" travel to accident
call travel(cur.location(this.ambulance),

destination(self), this.ambulance)
if status(self) = working "check if recalled

call dispatcher giving this.ambulance, at.scene, this.accident

" check if scene is secure
if kind(this.accident) = trauma

if random.f(19) < p.secure
work secure.time minutes

end if
end if

" work on scene
if acc.patient.set(this.accident) is not empty or

type(this.ambulance) = air or kind(this.accident) = medical
if type(this.ambulance) = air

remove the first other. run from
the h.waiting.set(this.accident)

if sta.a(other.run) = WRK
interrupt the ambulance.run called other. run
add time.a(other.run) to scene.time(self)
let time.a(other.run) = 0

endif
for each victim in amb.patient.set(other.run)
do

loop

remove this victim from amb.patient.set(other.run)
iv.rate(victim) = get.iv.rate(victim)
transp.mode(victim) = type(this.ambulance)
file this victim in amb.patient.set(self)
dest.level(self) = min.f(dest.level(self),

get.level(victim»

dest.level(other.run) = leve13
helo.coming(other.run) = FALSE
resume the ambulance.run called other. run
work scene.time(self) minutes

else "ground

- 73 -

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
6BB
6B9
690
691

if kind(this.accident) = medical
dest.level(self) = leve13 "no categories for med pts

else
work scene.time(self) minutes

work null.time minutes

FOREVER
do

loop

if acc.patient.set(this.accident) is not empty
call get.patient(this.accident, self)

if helo.coming = FALSE and
cts(f.amb.patient.set(self» > minor.cutoff *

MAXRTS and
acc.patient.set(this.accident) is not empty

call get.patient(this.accident, self)
endif

if helo.coming(self) = FALSE
work scene.time(self) minutes
leave

endif

" compiler chokes id *endif-if* is changes to *els
if helo.coming(self) = TRUE

work scene.time(self) minutes
if helo.coming(self) = TRUE "if still wait

suspend
end if
" after helo arrival, its pt is gone so
" it loops around for another

endif
endif
" need second if statement because acc.patient.set
" might have changed by now
if acc.patient.set(this.accident) is empty

leave "no more pts
endif

endif
endif

call check.accident(this.accident, self)

" be sure you still have apt, helo might have taken the last
if amb.patient.set(self) is not empty or kind(self) = medical

call dispatcher giving this.ambulance, to.hosp, this.accident

" travel to hosp
if kind(self) = trauma

for every victim in amb.patient.set(self)
do

loop
endif

phase(victim) = en. route
hosp(victim) = hosp(self)
iv.rate(victim) = get.iv.rate(victim)
change.flag(victim) = TRUE

call travel (cur.location(this.ambulance),
destination(self), this.ambulance)

- 74 -

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

call dispatcher giving this.ambulance, at.hosp, this.accident

" at hospital

work log.normal.f(m.deliver, s.deliver, 21) minutes
if kind(self) = trauma

for each victim in amb.patient.set(self)
do

phase(victim) = resus
iv.rate(victim) = get.iv.rate(victim)
remove this victim from amb.patient.set(self)
file this victim in the resus.patient.set(hosp(victim))
change.flag(victim) = TRUE

loop
endif

" cleanup
work cleanup. time minutes
remove this.ambulance from the at.hosp.set

endif
else

work null.time minutes "look around to be sure
call check.accident(this.accident, self)

endif
end if
, , after all that, return to base

call dispatcher giving this.ambulance, to.base, NULL
call travel(cur.location(this.ambulance),

destination(self), this.ambulance)

" back at base
call dispatcher giving this.ambulance, at.base, NULL

end" of ambulance.run

routine assign.amb(amb, accd)
" <s> assign.amb

, , <f>12

define amb as an integer variable
define accd as a pOinter variable

create an ambulance.run
kind(ambulance.run) = kind(accd)
ambulance.id(ambulance.run) = amb
amb.run(amb) = ambulance.run
acc(ambulance.run) = accd
destination(ambulance.run) = site(accd)
if type(amb) = air

dest.level(ambulance.run) leve12
else

dest.level(ambulance.run) leve13
endif
add 1 to run.counter
file amb in amb.set(accd)
remove amb from the at.base.set
file amb in the to.scene.set
activate this ambulance.run now

end of assign.amb

- 75 -

, 'any hospital

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

function best.route given from.node, to.node
" <s> best. route

" <f>18

" Uses Prim's algorithm to find shortest route from 'from' to 'to'.
uses choke pt weights as a penalty in deciding best route

define from.node, to.node as integer variables

define arc, best.arc, current.arc, check as pointer variables

" drain working sets
for each arc in mdt " minimal distance tree

remove arc from mdt
for each node in node.set

remove node from node.set
" nodes in tree so far

for each arc in v.set
remove arc from v.set

" candidate edges to add to tree

" initialize v.set
for each arc in edge.set(from.node)
do

file arc in v.set
cum.weight(arc) = weight(arc)
ch.cum.weight(arc) = weight(arc) + choke.pt.wt(arc)

loop

file from.node in node.set

" process the graph to produce the minimal distance spanning tree
FOREVER
do

loop

for each arc in v.set
compute best.arc as the min(arc) of ch.cum.weight(arc)

file best.arc in mdt

if sink(best.arc) = to.node
leave

endif

file sink(best.arc) in node.set
remove best.arc from v.set

for each arc in edge.set(sink(best.arc)),
when sink(arc) is not in node. set do

loop

cum.weight(arc) = weight(arc) + cum.weight(best.arc)
ch.cum.weight(arc) = weight(arc) + choke.pt.wt(arc) +

ch.cum.weight(best.arc)

for each check in v.set, "check of new candidates for v.set
with sink(check) = sink(arc)
find the first case " at most 1 case

if found" then sink(arc) is already a v.set destination
if ch.cum.weight(arc) < ch.cum.weight(check)

remove check from v.set " arc is better than check
file arc in v.set " for this destination

endif
else" arc gives a destination not already in v.set

file arc in v.set
endif

- 76 -

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

current.arc = best.arc
until source(current.arc) = from.node
do

call build.route{current.arc, from.node, to.node)
for each arc in mdt,

with sink{arc) = source{current.arc)
find the first case

current.arc = arc
loop
call build.route(current.arc, from.node, to.node)

return with adj.time.f(cum.weight(best.arc»

end" of best. route

routine bleed{patient)
" <s> bleed

" <f>12

define patient as a pointer variable
define x, n, d, rel.loss as double variables

if condition(patient) = dead "mark time

else

d.blood.volume(patient) = 0
d.sbp(patient) = 0
d.bleeding.rate(patient) = 0
d.rbc.mass(patient) = 0
d.hct(patient) = 0
d.02.delivery{patient) = 0

x = 2**OPS

if iv.start.time(patient) > time.v
d.blood.volume(patient) = -bleeding.rate(patient) +

iv.rate(patient) *

else

(1 / (1 + is.to.iv) * (1.0 + is.to.iv *
exp.f(-(time.v - iv.start.time(patient» * hours.v * minutes.v /
TCONST»)

d.blood.volume(patient) = -bleeding.rate(patient)
endif

" derivative of the Lewis equation
rel.loss = 1 - blood.volume(patient) / bv.O
n = (x * abs.f(rel.loss)**0.6)
if rel.loss >= .5

list pt.id(patient), blood.volume(patient),
d.blood.volume(patient), bleeding.rate(patient),
d.bleeding.rate(patient), sbp(patient), d.sbp(patient)
trace

end if
d = (1 - sign.f(rel.loss) * x * abs.f(rel.loss)**1.6) ** .375
d.sbp(patient) = (sbp.O / bv.O) * (n / d) * d.blood.volume(patient)

d.bleeding.rate(patient) = br.O / sbp.O * d.sbp(patient)
d.rbc.mass(patient) = -bleeding.rate(patient) * .01 * hct(patient)

d.hct(patient) = 100 * (blood.volume(patient) * d.rbc.mass(patient) -
rbc.mass(patient) * d.blood.volume(patient» /
(blood.volume(patient)**2)

d.02.delivery(patient) = 02.sat(patient) *

- 77 -

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

(sbp(patient) * d.hct(patient) + hct(patient) * d.sbp(patient»

endif

end I I of bleed

routine build.call.list
I I <s> build.call.list

, , <f>12

" builds a default call list from the network structure based on
" closest travel times -- each call list will contain at least min.amb
" entries, and may contain more if they are within atol travel time of
" the shortest travel time
I I assumes all helos go to all nodes

define i, there, here, count, ncount, amb as integer variables
define limit, tt as double variables

for each node called here
do

count = 0
for each node in the amb.base.set

file this node in the temp.set

FOREVER
do

"copy the amb.base.set

for each node called i, with i in the temp.set
do

compute there as the minimum (i) of transit.time(here, i)
loop
remove there from the temp. set
file there in the assignment.set
tt = transit.time(here, there)
"get all other nodes same distance away
for each node called i, with i in the temp.set and

transit.time(here, i) = tt
do

remove i from the temp.set
file i in the assignment.set

loop

ncount = 0
if count = 0

limit = (1 + atol) * tt
endif
for each node called i, with i in the assignment.set
do

loop

for each amb in the node.amb.set(i) with
type(amb) = ground

do
add 1 to count
add 1 to ncount

loop

if t t > 1 i mi t
if count - min.amb >= ncount

leave
endif

end if
for each node called i, with i in the assignment.set
do

remove i from the assignment.set
for each amb in node.amb.set(i) with type(amb) = ground

- 78 -

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006

do
create a call.item
ambulance.id(call.item) = amb
" be sure local ambulance always called first
if here = i

file call.item first in the call.list(here)
else

file call.item last in the call.list(here)
endif

loop
loop
if n.temp.set = 0

leave
endif
for each node in the assignment.set

remove this node from the assignment.set
loop
for each node in the temp.set

remove this node from the temp.set
for each node in the assignment.set

remove this node from the assignment.set

loop

" add helo to every call list (default)
for each amb in the h.ready.set
do

create a call.item
ambulance.id(call.item) = amb
file call.item in the call.list(here)

loop

end" of build.call.list

" <f>12 routine build.hosp.list
" <s> build.hosp.list
" builds a default hospital list from the network structure based on
" closest travel times -- each call list will contain at least one entry
" for each level of care, and may contain multiple entries at the same level
" if they are within atol travel time of the shortest travel time for that
" level

define i, j, lvl, there, here, hosp, tot as integer variables
define count, first, finished as integer I-dim arrays
define t as a double I-dim array
define tt as a double variable
define NUMLEVELS to mean 3

reserve count, t, first, finished as NUMLEVELS

for each node called here
do

for i = 1 to NUMLEVELS
do

loop

count(;) = 0
t(;) = 0.0
fi rst (i) = TRUE
finished(i) = FALSE

for each node in the hosp.base.set
file this node in the temp. set

- 79 -

"copy the amb.base.set

1007 FOREVER
1008 do
1009 for each node called j, with j in the temp.set
1010 do
1011 compute there as the minimum (j) of transit.time(here, j)
1012 loop
1013 remove there from the temp.set
1014 if first(3) = TRUE
1015 first(3) = FALSE
1016 " set max time to go to any leve13
1017 t(3) = transit.time(here, there) * (1 + htol)
1018 finished(3) = TRUE "dont care if we get any leve13s
1019 endif
1020 for each hosp in the hosp.set(there)
1021 do
1022 tt = transit.time(here, there)
1023 if level (hosp) >= leve12a "treat 2a like leve12
1024 lvl=level(hosp) - 1
1025 else
1026 lvl=level(hosp)
1027 endif
1028 if first(lvl) = TRUE
1029 first(lvl) = FALSE
1030 t(lvl) = tt * (1 + htol)
1031 add 1 to count(lvl)
1032 create a go. item
1033 hospital.id(go.item) = hosp
1034 hosp.level(go.item) = level (hosp)
1035 if here = there
1036 file go.item first in the hosp.list(here)
1037 else
1038 file go.item last in the hosp.list(here)
1039 endif
1040 else
1041 if tt > t(lvl)
1042 finished(lvl) = TRUE
1043 else
1044 add 1 to count(lvl)
1045 create a go. item
1046 hospital.id(go.item) = hosp
1047 hosp.level(go.item) = level (hosp)
1048 if here = there
1049 file go.item first in the hosp.list(here)
1050 else
1051 file go.item last in the hosp.list(here)
1052 endif
1053 endif
1054 endif
1055 loop
1056
1057 for i = 1 to NUMLEVELS
1058 compute tot as the sum of finished(i)
1059 if tot = NUMLEVELS
1060 leave" found at least 1 hosp for level 1 & 2
1061 endif
1062 if n.temp.set = 0 "no more candidate hospitals
1063 leave
1064 endif
1065 loop
1066
1067 for each node in the temp. set
1068 remove this node from the temp.set
1069 loop

- 80 -

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

release first, finished, t, count

end I I of build.hosp.list

routine build.route given arc.id, from.node, to.node
I I <s> build. route
I I an arc can appear in at most 1 set named route

I I

define arc.id, from.node, to.node as integer variables

<f>18

if arc.status(arc.id) = FREE II if arc.id is already in

else

arc.status(arc.id) = IN.USE II a route, a duplicate
file arc.id in route(from.node, to.node) II is created

create an arc
source(arc) = source(arc.id)
sink(arc) = sink(arc.id)
weight(arc) = weight(arc.id)
choke.pt.wt(arc) = choke.pt.wt(arc.id)
arc.status(arc) = A.DUPLICATE I I marks arc as a duplicate
file arc in route(from.node, to.node)

endif

I I do we need to mark duplicates anymore?
end I I of build. route

routine check.accident(this.acc, this.run) II <f>12
I I <s> check.accident
I I this function ensures that only the last ambulance to leave the
I I scene destroys the accident process

define this.acc as a pointer variable
define this. run as a pointer variable

define amb as an integer variable

amb = ambulance.id(this.run)

remove amb from the on.scene.set
remove amb from the amb.set(this.acc)

if acc.patient.set(this.acc) is empty
if h.waiting.set(this.acc) is empty

acc(this.run) = NULL
call dispatcher giving ambulance.id(this.run), no.pts.left,

this.acc)
end if

else I I more pts left
if n.amb.set(this.acc) = 0

I I if no one else is coming, call for help
call dispatcher giving ambulance.id(this.run), req.help, this.acc
I I this unit leaves now -- unmodelled engine co., police, etc
I I

end if
endif

remain on scene

end I I of check.accident

routine check. red given hsp and n I I <f>15

- 81 -

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

II <s> check.red
logic to place or remove hsp on divert status

define hsp, n as integer variables
define cn as a pOinter variable

if hsp is in the green.set
if go.red(hsp, n) = TRUE

else

remove hsp from the green.set
file hsp in the red.set
red(hsp) = TRUE
add 1 to red.today(hsp)
red.start(hsp) = time.v
create a go.off.red called cn
clear.notice(hsp) = cn
schedule the go.off.red called cn giving hsp in min. red hours

endif

if (time.v - red.start(hsp» * hours.v > min. red
if go.green(hsp, n) = TRUE

cancel the go.off.red called clear.notice(hsp)
clear.notice(hsp) = NULL
remove hsp from the red.set
file hsp in the green.set
red(hsp) = FALSE

end if
endif

endif

end I I of check. red

function choke.f(here, there)
I I <s> choke.f

I I <f>12

define here, there as integer variables

define result as a double variable
define a as a pointer variable

result = 0.0

for each a in route(here, there), with choke.pt.wt(a) > 0.0
add exponential.f(choke.pt.wt(a), 23) to result

return with result

end I I of choke.f

event clear.reds II <f>12
I I <s> clear.reds
I I clears all red status hospitals unconditionally

define i as an integer variable

for i = 1 to n.hospital
red.today(;) = FALSE

for each i in the red.set
do

remove i from the red.set
file i in the green.set
red(;) = FALSE

- 82 -

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

if clear.notice(i) <> NULL
cancel the go.off.red called clear.notice(i)
clear.notice(i) = NULL

endif
loop
schedule a clear.reds in 24.0 hours
return

end I I of clear.reds

function cts.f(pt)
I I <s> cts.f

I I <f>12

define pt as a pointer variable

if sbp(pt) > 89
h.cts(pt) = 4

else
if sbp(pt) > 75

h.cts(pt) = 3
else

if sbp(pt) > 49
h.cts(pt) = 2

else
if sbp(pt) > 30

h.cts(pt) 1
else

h.cts(pt) = 0
endif

endif
endif

endif

I I coeff from Champion HR, et al. J Trauma 89; 29:623
cts(pt) = 0.2908 * r.cts(pt) + .7326 * h.cts(pt) + .9368 * n.cts(pt)
return with cts(pt)

end I I of cts.f

routine dispatcher given caller, message, this.accident
I I <s> dispatcher
I I serves as a monitor in this program

define res, caller and message as integer variables
define this.accident, pt as pointer variables

define hsp, num as integer variables

II

select case message
case req.amb I I caller is not an ambulance

if kind(this.accident) = medical
needed(this.accident) = 1

else

<f>

num = int.f(no.victims(this.accident) + uniform.f(-l, 1, 7)
+ .5)

needed(this.accident) = get.num.amb(num)
endif

I I find nearest ambulance(s)
res = get.amb(this.accident. needed(this.accident). ground)

- 83 -

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321

case req.help
if DEBUG

, , caller is ambulance requesting more units

write amb.name(caller), acc.id(this.accident),
hour.f(time.v), minute.f(time.v) as
" ", t 3, " req assist at acc ", i 5, "

i 2, ":", i 2, I
end if

at "

needed(this.accident) =
get.num.amb(n.acc.patient.set(this.accident»

res = get.amb(this.accident, needed(this.accident), ground)

case req.helo
if DEBUG

write amb.name(caller), acc.id(this.accident),
hour.f(time.v), minute.f(time.v) as
" ", t 3, " req helo at acc ", i 5, " at ",

i 2, ":", i 2, I
endif
res = get.amb(this.accident, I, air)
if res = air

else

helo.coming(amb.run(caller» = TRUE
for each pt in amb.patient.set(amb.run(caller»

got.helo(pt) = TRUE
file amb.run(caller) in the h.waiting.set(this.accident)
" do not check to see if can recall a ground unit now
" 1st unit will be tied up til helo arrives, and addl units
" may be used to remove lower level pts

" mark these pts as wanting a helo but cant get one
for each pt in amb.patient.set(amb.run(caller»

got.helo(pt) = FALSE
endif

case new. info
if DEBUG

" 1st responder is updating wi accurate info

write acc.id(this.accident), hour.f(time.v), minute.f(time.v)
as

"new info fr event" is" at ", i 2, ":", i 2, I
endif ' ,
if kind(this.accident) = medical

needed(this.accident) = 1
else

needed(this.accident) =
get.num.amb(n.acc.patient.set(this.accident»

endif

" if too many ambulances have been sent
if needed(this.accident) < sent(this.accident)

call recall(sent(this.accident) - needed(this.accident),
this.accident)

endif

" didn't send enough to begin with
if needed(this.accident) > sent(this.accident)

res = get.amb(this.accident,
needed(this.accident) - sent(this.accident), ground)

endif

" if just right, be sure acc isn't in pending set
if needed(this.accident) = sent(this.accident) and

this.accident is in the pending.set
remove this.accident from the pending.set

endif

- 84 -

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

case aLscene
remove caller from the to.scene.set
file caller in the on.scene.set

" if this ambulance is the first to arrive
if acc.arrive.time(this.accident) = 0

acc.arrive.time(this.accident) = time.v
" if update hasn't been sent yet, force it to be
" sent now
if updated(this.accident) = FALSE

interrupt the accident called this.accident
time.a(this.accident) = 0
resume the accident called this.accident

endif
endif

case no.pts.left
" reactivate the accident, allowing it to end
" a DESTROY may not free allocated memory, per CACl
if this.accident is in the pending.set

remove this.accident from the pending.set
end if
if amb.set(this.accident) is not empty

call recall(n.amb.set(this.accident), this.accident)
endif
" cant use an else here, because the recall function might
" cause the amb.set to become empty
if amb.set(this.accident) is empty

resume the accident called this.accident
endif

case to.hosp
" fi nd recel Vl ng hosp
hsp = find.hosp(caller)
travel.time(caller) = get.travel.time(cur.location(caller),

hosp.base(hsp), type(caller), 13)
hosp(amb.run(caller» = hsp
file caller in the to.hosp.set

case aLhosp
remove caller from the to.hosp.set
file caller in the at.hosp.set

case to.base
file caller in the to.base.set
destination(amb.run(caller» = amb.base(caller)
travel.time(caller) = get.travel.time(cur.location(caller),

amb.base(caller). type(caller). 17)

case aLbase
remove caller from the to.base.set
file caller in the at.base.set
if type(caller) = ground

else

file caller in the ready.set
if calls.pending

remove the first accident from the
res = get.amb(accident, 1, ground)

endif

file caller in the h.ready.set
end if

- 85 -

pending.set
" should be only 1 in

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

default
print 1 line with message thus
Invalid message ***

endselect

end " of dispatcher

function done(patient)
" <s> done

, , <f>12

define patient as a pointer variable

if condition(patient) = alive
if living(patient) = FALSE

return with TRUE
endif

endif

if phase(patient) = pvt.trav
if time.v > pvt.tr.arrive

return with TRUE
end if

endif

"if just now died

if phase(patient) = resus
if time.v >= injury.time(patient) + (wait.time(patient) +

transp.time(patient) + scene.time(patient) +
resus.time(patient» I hours.v I minutes.v
return with TRUE

endif
endif

if change.flag(patient) TRUE
return with TRUE

endif

return with FALSE

end " of done

routine final.report
" <s> final.report

" <f>18

define correction as a double variable

use 4 for output
correction = no. runs I (no.runs - 1)

print 8 lines with nO.runs, min. length,
g.mean.dur, sqrt.f(g.var.dur * correction), g.max.dur,
g.mean.accs, sqrt.f(g.var.accs * correction), g.max.accs,
100 * no.blunt I (no.runs * g.mean.accs),
g.mean.pts, sqrt.f(g.var.pts * correction), g.max.pts,
no.deaths I no. runs and est.deaths I no. runs
thus

Results after ** runs of at least **.** days per run

duration
no. accidents
% blunt

average sd (of runwise means) max
.** ***. *** **
***.*
***.*

***.**

- 86 -

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

no. tr. patients
no. deaths
no. est deaths

***.*
***.*
***.*

***.** ***

print 4 lines with g.mean.amb, sqrt.f(g.var.amb * correction),
g.mean.pend, sqrt.f(g.var.pend * correction), g.mean.maxpend,
g.max.maxpend thus

ambo util *.**
ambo queue

print 3 lines thus
hospital utilization

*.***
*.***
*.**** mean

glob
***.*

name load max reserve
avg sd avg global avg sd

for each hospital
do

loop

print 1 line with hosp.name(hospital),
g.accum.pts(hospital) / no. runs,
sqrt.f«g.ssq.pts(hospital) - (g.accum.pts(hospital) *

g.accum.pts(hospital) / no.runs» / (no.runs - 1»,
s.max.pts(hospital) / no.runs, gr.max.pts(hospital),
1 - g.accum.cap(hospital) / no. runs,
sqrt.f«g.ssq.cap(hospital) - (g.accum.cap(hospital) *

g.accum.cap(hospital) / no. runs» / (no.runs - 1»
thus
. **.*** *** *** *.*** *.****

use 6 for output

end I I of final.report

function find.hosp(caller) II <f>12
I I <s> find.hosp
I I chooses a destination hospital for the ambulance caller

define caller as an integer variable

define item as a pointer variable
define limit as a double variable
define hsp, got.it, cumtot, rtot, first.choice as integer variables

limit; random.f(12)
got.it ; FALSE
first.choice = NULL
for each item in hosp.list(cur.location(caller»,

with hosp.level(item) <= dest.level(amb.run(caller» and
hospital.id(item) in the green.set
compute cumtot as the sum of hosp.volume(hospital.id(item»

for each item in hosp.list(cur.location(caller»,
with hosp.level(item) <= dest.level(amb.run(caller»

do
if first.choice = NULL

first.choice = hospital.id(item)
endif
if hospital.id(item) is in the red.set

add 1 to divert.counter
if DEBUG

write amb.name(caller), hosp.name(hospital.id(item»,
hour.f(time.v), minute.f(time.v) as

- 87 -

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573

loop

t 3. " diverted from ". t 3. " at ". i 2.
endif
cycle "look for another

endif
hsp = hospital.id(item)
add hosp.volume(hsp) to rtot
if rtot / cumtot >= limit

got. it = TRUE
leave

endif

11.11 . .

if got.it = FALSE "appr hsp is red & no alternate. so override
add 1 to override.counter
hsp = first.choice
if DEBUG

2. /

write amb.name(caller). hour.f(time.v). minute.f(time.v) as
t 3. " overrides divert at ". i 2. ":". i 2. /

endif
endif

return with hsp

end " of find.hosp

function find.loc(amb)
" <s> find.loc

" <f>12

define amb as an integer variable

define prop. dist. x. y as double variables
define link as a pointer variable
define ans as an integer variable

prop = 1.0 - time.a(amb.run(amb)) / travel.time(amb)
dist = 0.0
x = 0.0
for every link in route(src(amb.run(amb)).

destination(amb.run(amb)))
add weight(link) to dist

let dist = dist * prop " distance traveled so far
for every link in route(src(amb.run(amb)).

destination(amb.run(amb)))
do

loop

y = weight(link) / 2.0
add y to x
if x > dist

ans = src(amb.run(amb))
leave

end if
add y to x
ifx>dist

ans = destination(amb.run(amb))
leave

endif

return with ans

end " of fi nd. 1 oc

- 88 -

1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636

function ftime.f(f, t)
"<s> ftime.f

" <f>12

define f, t as integer variables

define tempI, temp2, av.lat as double variables

temp1 = (lat(f) - lat(t)) * NMPD
av.lat = (lat(f) + lat(f)) I 2
temp2 = (long(f) - long(t)) * cos.f(av.lat) * NMPD

return with ll.time +
sqrt.f(templ*templ + temp2*temp2) I airspeed * minutes.v)

end" of ftime.f

" <f>15 process generator
" <s> generator
" system starts empty and idle, runs min.length days and stops when it
" is next empty and idle

note use of weekday.f instead of day.f -- if desire to model
seasonality, etc, must call origin.r with a starting date, and

" then use day.f throughout
write run, weekday.f(time.v), hour.f(time.v), minute.f(time.v) as

" ru n ", i 5 , " s tart sat day ", i 1, " at", i 2, ":", i 2, I

if run = 1
wait nsp.f(cum.events(*, *), 1) hours

endif

FOREVER
do

if (time.v - start.time) > min.length and
r.no.accs > 0 and
the patient.set is empty and
n.ambulance = n.ready.set + n.h.ready.set and
the red.set is empty
leave

endif
create an accident
add 1 to tot.counter
acc.id(accident) = tot.counter
call init.accident(accident)
activate accident now
wait nsp.f(cum.events(*, *), 1) hours

loop
clear.time = (time.a(clear.reds) - time.v) * hours.v
cancel clear.reds

end " of generator

function get.accs
" <s> get.accs

" <f>12
creates table representing the proportion of
accidents occuring at each node , ,

define table as a double, 2-dim array
define num, cum as double variables
define i as an integer variable

reserve table(*, *) as n.node by 2

- 89 -

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699

open 3 for input, name is "space.dat"
use 3 for input
cum = 0.0

for i = 1 to n.node
do

read num
add num to cum
table(i, 2) = cum

" number of events in that node
" per some unit of time
" as a cumulative distribution

loop
close unit 3

for i = 1 to n.node
do

" normalize the table

table(i, 2) = table(i, 2) / cum
loop

return with table(*, *)

end " of get.accs

function get.amb given acc, num, and knd
" <s> get.amb

, , <f>18

" finds nearest ambulance(s)
" if can't dispatch no. of ground ambulances requested, the accident is
" placed on the pending list.
" returns type of ambulance sent for notification of caller

define acc as a pointer variable
define num, knd, amb, amb1 as integer variables

define item, iteml as pointer variables
define result, target, b, found.count as integer variables

target = site(acc)

for each item in call.list(target), with
(ambulance.id(item) in the ready.set or
ambulance.id(item) in the h.ready.set)
and type(ambulance.id(item)) = knd

do
amb = ambulance.id(item)
select case knd

case ground
"handle the rare case of two ambs based at one node
if n.node.amb.set > 1

b = amb.base(amb)
for each amb1 in the ready.set,

with amb.base(amb1) = b

do
and type(ambl) = knd "guaranteed to have 1

"first amb in the ready set that is in the call list
"is the next up for a run
for each iteml in call.list(target), with

ambulance.id(item1) = amb1
find the first case
if found

leave
endif

loop
item = iteml

- 90 -

1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762

amb = amb1
endif
remove amb from the ready.set

case air "helos alternate call. but are available to all nodes
if ambulance.id(item) = f.h.ready.set

remove ambulance.id(item) from the h.ready.set
else

cycle
endif

endselect
travel.time(amb) = get.travel.time(target. cur.location(amb).

type(amb). 14)
call assign.amb(amb. acc)
add 1 to sent(acc)
add 1 to found.count
if found.count = num

leave
endif

loop

if found.count < num
result = NULL

else
result = knd

endif

if knd = ground
if result = NULL and acc is not in the pending.set

file ace in the pending.set
if pended(acc) = FALSE

pended(acc) = TRUE
add 1 to no.pended

endif
endif

endif

return with result

end " of get.amb

" <f>12 routine get.ems
I '<s> get. ems
" ambulance capability ignored -- no explicit modeling of
" first responders -- amb's are assumed to be ACLS-paramedic level

define i as an integer variable

open 3 for input. name is "amb.dat"
use 3 for input
read n.ambulance
start new record
create each ambulance
i = 1
for each ambulance
do

amb.id(ambulance) = i
read type(ambulance). amb.base(ambulance). amb.name(ambulance)
start new record
cur.location(ambulance) = amb.base(ambulance)
file this ambulance in the node.amb.set(amb.base(ambulance»

- 91 -

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825

loop

if amb.base{ambulance) is not in the amb.base.set
file amb.base{ambulance) in the amb.base.set

endif
if type{ambulance) : ground

file this ambulance in the ready.set
endif
if type{ambulance) : air

file this ambulance in the h.ready.set
add 1 to num.helo

endif
file this ambulance in the at.base.set
add 1 to i

close unit 3

end I I of get.ems

routine get.hosp
I I <s> get.hosp

I I <f>12

define i as an integer variable

open 3 for input. name is "hosp.dat"
use 3 for input
read n.hospital
start new record
create each hospital
i : 1
for each hospital
do

loop

hosp.id{hospital) : i
read hosp.name{hospital). hosp.base{hospital). hosp.volume{hospital).

level{hospital). capacity{hospital). can.divert{hospital)
start new record
file this hospital in the green.set
file this hospital in hosp.set{hosp.base{hospital»
if hosp.base{hospital) is not in the hosp.base.set

file hosp.base{hospital) in the hosp.base.set
endif
full{hospital) : FALSE
red{hospital) : FALSE
red.today(hospital) : FALSE
add 1 to i

close unit 3

end I I of get.hosp

function get.iv.rate{pt)
II <s> get.iv.rate

I I <f>12

define pt as a pointer variable

return with (10 + log.normal.f{2.0 * max.f{.5, sbp.O - sbp{pt».
.2 * max.f{.5. sbp.O - sbp{pt». 27» * hours.v * minutes.v

end I I of get.iv.rate

function get.level{pt) I I <f>12

- 92 -

1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

"
"
"
"

<s> get.level
logic to assign patient to a level of care based SOLELY on pt
characteristics. dispatcher may choose to modify based on travel
time, load, availability, etc.

define pt as a pointer variable

define lvl as an integer variable

" this logic may (should) be modified later, and should be
" modifiable at runtime w/o recompilation

if cts(pt) <= major.cutoff
lvl = levell

else
if cts(pt) > minor.cutoff

lvl = leve13
else

lvl = leve12a
endif

endif

return with 1 vl

end" of get.level

routine get.list given fname, readprog, buildprog, writeprog "<f>12
" <s> get.list
" if no call list is provided from a file, builds a default call list for
" ground ambulance based on transit times, and writes results to a file
" for subsequent editing as needed

define fname as a text variable
define readprog, bUildprog, writeprog as subprogram variables

"if call list file exists, read it in
open unit 3 for input, name is fname, noerror
use 3 for input
if ropenerr.v eq FALSE

call readprog
else "else build default call list of at least min.amb

close unit 3
ca 11 buil dprog
call writeprog

endif

end" of get.call.list

rout i ne get. net
" <s> get.net

" <f>12

define from.node, to.node as integer variables
define temp as a double variable

open 3 for input, name is "net.dat"
use 3 for input
read n.node
start new record
create each node

for each node

- 93 -

"transportation network

1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951

do
read node.id(node), node.name(node), lat(node), long(node)
start new record

loop

read airspeed. range
start new record

while data is not ended
do

create an arc
read source(arc). sink(arc), weight(arc). choke.pt.wt(arc)
file arc in the edge.set(source(arc»

loop

close unit 3

I I calculate transit times
for each node called from.node
do

for each node called to.node
do

II calc intranode transit time if from. node = to.node
temp = 0.0
for each arc in edge.set(from.node)

loop
loop

else

do
add weight(arc) to temp

loop
temp = 0.5 * temp I n.edge.set(from.node)
transit.time(from.node. from.node) = adj.time.f(temp)
flight.time(from.node. from.node) = ll.time +

(temp I airspeed * minutes.v)

transit.time(from.node. to.node) =
best.route(from.node. to.node)

flight.time(from.node. to.node) = ftime.f(from.node. to.node)
end if

end I I of get.net

function get.num.amb(n) I I <f>12
I I <s> get.num.amb
I I logic to determine the no. of ambulances to be dispatched
I I based on est no. of patients. their severity. number dispatched already

define n as an integer variable

return with (max.f(l. int.f(n I 2 + .5»)

end I I of get.num.amb

routine get.patient(acc. amb.run) I I <f>12
a I <s> get.patient

define acc. amb.run as pointer variables

define v, victim as a pointer variable
define temp. poss.dest as integer variables
define t as a double variable

- 94 -

1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014

for each v in the acc.patient.set(acc)
do

compute victim as the min(v) of cts.f(v)
" this should update every pts cts

loop
remove victim from acc.patient.set(acc)
phase(victim) = scene.rx
transp.mode(victim) = type(ambulance.id(amb.run»
file victim in amb.patient.set(amb.run)
temp = get.level(victim)
dest.level(amb.run) = min.f(dest.level(amb.run), temp)
iv.start.time(victim) = time.v + (scene.time(amb.run) I

hours.v I minutes.v) I 2
resp.time(victim) = scene.time(amb.run) I 3
schedule a resp.support(victim) in resp.time(victim) minutes
iv.rate(victim) = get.iv.rate(victim)

" should helo be requested? if so, pt is still assigned to
" amb for scene rx, but flag is set to make him wait for helo arrival
poss.dest = find.hosp(ambulance.id(amb.run»
if temp < leve13

if temp = levell
t = major. time

else
t = minor. time

endif
if transit.time(site(acc), hosp.base(poss.dest» > t

need.helo(victim) = TRUE
call dispatcher giving ambulance.id(amb.run), req.helo. acc

endif
endif
change.flag(victim) = TRUE

end " of get.patient

routine get.sim
" <5> get.sim

, , <f>12

define i. no.streams as integer variables

open 3 for input. name is "ems.dat"
use 3 for input

read no. runs
start new record
read min.length "min run length in days
start new record
read tr.prop "trauma proportion
start new record
read pts.per.acc
start new record
read alarm. lag "initial alarm latency in minutes
start new record
read info. lag "delay til first responder reports
start new record
read m.secure. s.secure "mean & sd secure time
start new record
read p.secure "prob of needing secure time
start new record
read t.to.pt "time til patient
start new record

- 95 -

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

read t.on.scene "scene treatment
start new record
read m.deliver. s.deliver "meand & sd deliver time
start new record
read t.resus "mean resus time in minutes
start new record
read t.tx "tx to def care time
start new record
read TCRUISE "time in minutes til reach cruising speed
start new record
read min.amb "minimum # of amb's on a call list
start new record
read atol "proportional tolerance in dist to ambs
start new record
read htol "proportional tolerance in dist to hospitals
start new record

read minor.cutoff
minor.cutoff = MAXRTS
start new record
read major.cutoff
major.cutoff = MAXRTS
start new record
read minor.time
start new record
read major. time
start new record
read ll.time
start new record

"cts >= minor.cutoff will ride double
* minor.cutoff

"cts <= major goes to level 1
* major.cutoff

"> minor.time. call helo

"> major. time. call helo

"mean launch + land time for helo

"no. over (under) cap to go red (green). and
"max no. hosps that can be red simultaneously

read red. limit. green. limit. max.red.hosp
start new record
read min. red. max. red.
start new record

reds.per.day "min & max red. time. no. of reds/day
, 'allowed

read clear.time "time of day for clearing red.status

close unit 3

open 3 for input. name is "cont.dat"
use 3 for input
read max.step.v
start new record
read min.step.v
start new record
read abs.err.v
start new record
read rel.err.v

close unit 3

integrator.v = 'runge.kutta.r'

open 3 for input. name is "seed.dat"
use 3 for input

release seed.v(*)
read no.streams
start new record
reserve seed.v(*) as no.streams
for i = 1 to no.streams
do

- 96 -

"continous simulation control

"entries to seed.v

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

read seed. v (1)
start new record

loop

close unit 3

end I I of get.sim

function get.table I I <f>18
I I <s> get.table
I I reads table of average arrivals in interval into an array
I I of cumulative arrivals by interval

define table as a double. 2-dim array
define temp. cum as double variables
define i. n as integer variables

open unit 3 for input. name is "wkrate.dat"
use 3 for input

read n
reserve table{*.*) as n by 2
for i = 1 to n
do

loop

start new record
read table{i. 1). temp
add temp to cum
table{i. 2) = cum

close unit 3

return with table(*.*)

end I I get.table

II <f>12 function get.travel.time(here. there. type. stream)
I I <s> get.travel.time
I I returns travel time from here to there. constrained to be > 1 minute.
I I with shape paramenter adjusted to make final result approx gamma(3)

define here. there. type. stream as integer variables
define t. temp as double variables

select case type

case ground
temp = transit.time(here. there)
t = 1 + mygamma.f(temp - 1. 3 * «temp - 1) I temp)**2. stream) +

choke.f(here. there)

case air
temp = flight.time(here. there)
t = 1 + mygamma.f(temp - 1. 3 * «temp - 1) I temp)**2. stream)

endselect

return with t

end I I of get.travel.time

- 97 -

2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203

function go.green(h, n)
" <s> go.green

" <f>12

define h, n as integer variables

define result as an integer variable

if n <= capacity{h) - green.limit
result = TRUE

else
result = FALSE

endif

return with result

end " of go.green

event go.off.red given hsp
" <s> go.off.red

" <f>12

define hsp as an integer variable
define cn as a pointer variable

if (time.v - red.start{hsp» * hours.v <= max. red
if go.green(hsp. no.pts(hsp» = FALSE

" schedule another check
create a go.off.red called cn
clear.notice(hsp) = cn
schedule the go.off.red called cn giving hsp in min. red hours
return

endif
endif
"max red time up, or load has decreased now
clear.notice(hsp) = NULL
red(hsp) :: FALSE
remove hsp from the red.set
file hsp in the green.set
return

end" of go.off.red

function go.red(h, n)
D' <s> go. red

" <f>12

define h. n as integer variables

define result as an integer variable

if can.divert(h) = TRUE and n.red.set < max.red.hosp and
red.today(h) < reds.per.day and n >= capacity(h) + red.limit
result = TRUE

else
result = FALSE

endif

return with result

end" of go. red

- 98 -

2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
225B
2259
2260
2261
2262
2263
2264
2265
2266

routine init.accident(accd)
" <s> init.accident

" <f>lB

define accd as a pointer variable

define this.patient as a pointer variable
define i as an integer variables
define x as a double variable

acc.start.time(accd) = time.v
pended(accd) = FALSE
if random.f(22) <= tr.prop

add 1 to acc.counter
kind(accd) = trauma

else
add 1 to med.counter
kind(accd) = medical

endif
if random.f(28) > .3

blunt(accd) = TRUE

else

if kind(accd) = trauma
add 1 to no.blunt

endif

blunt(accd) = FALSE
endif

x = random.f(B)
for each node with prop.accs(node, 2) > x
find the first case
site(accd) = node
file accd in the active.set

" create victims for this accident
if kind(accd) = medical ' 'dont model medical patients

else

add 1 to m.patient.counter
add 1 to patient.counter
no.victims(accd) = 1

no.victims(accd) = poisson.f(1.5, 9)
for i = 1 to no.victims(accd)
do

add 1 to patient.counter
add 1 to t.patient.counter
create a patient called this.patient
pt.id(this.patient) = patient.counter
acc(this.patient) = accd
call init.pt giving this.patient
file this.patient in the patient.set
file this.patient in the acc.patient.set
activate the patient called this.patient now

loop
endif

end" of init.accident

routine init.pt given pt
" <s> init.pt

" <f>12

define pt as a pointer variable

define rem. iss, rem.iss.l, tl, t2 as double variables

- 99 -

2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329

phase(pt) = waiting
blunt(pt) = blunt(acc(pt»
injury.loc(pt) = site(acc(pt»
t1 = random.f(25)
t2 = random.f(26)

" beta args from fit to Bakers data wi percentile matching checked
" on Baker and on Mackenzie

r.cts(pt) = 4
h.cts(pt) = 4
n.cts(pt) = 4
iss(pt) = int.f(.5 + 75.0 * mybeta.f(1.390, 9.632, 10»
rem.iss = iss(pt)

if iss(pt) >= 10 "severely injured
" calculate eNS component -- data from Baxt
if t1 < .40 "40% of these have eNS injury

add -2 to r.cts(pt)
if iss(pt) < 15

add -2 to n.cts(pt)
rem. iss = iss(pt) I 2

else
if iss(pt) < 32

add -3 to n.cts(pt)
rem. iss = iss(pt) I 3

else
add -4 to n.cts(pt)
rem. iss = iss(pt) I 5

endif
endif

endif

else "not severely injured
if t1 < .20 "only 20% have eNS component

add -1 to n.cts(pt)
add -1 to r.cts(pt)
rem. iss = iss(pt) I 2

endif
endif

" now partition hemorrhage and respiratory injury
if t2 < .90 "almost all injuries have some bleeding

if t2 < .09 "10% will have some resp injury also
rem.iss.1 = .9 * rem.iss

else
rem.iss.1 = rem. iss

endif
" scale bleeding rate from 4 to 225 ml I min, wi 50% < 34
br.O(pt) = 4 + 3 * rem.iss.1 "br in ml/min

br.O(pt) = br.O(pt) * hours.v * minutes.v
rem. iss = rem.iss - rem.iss.1

endif

" what remains is respiratory component
r.cts(pt) = max.f(O, r.cts(pt) - int.f(.5 + sqrt.f(rem.iss»)
02.sat(pt) = .80 + .05 * r.cts(pt)

cts(pt) = cts.f(pt)

- 100 -

2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392

end I I of init.pt

routine initialize
" <s> initialize

, , <f>18

" get time series of runs
cum.events(*, *) = get.tab1e

" get general simulation data
call get.sim

" get transportation network
ca 11 get. net

" get hospitals
ca 11 get. hosp

" get ambulances
call get. ems

" get ambulance call list
call get.1ist("ca1l.dat", 'read.ca11.list', 'bui1d.ca11.list',

'write.ca11.1ist')

" get hospital preference list
call get.1ist("go.dat", 'read.hosp.1ist', 'build.hosp.1ist',

'write.hosp.1ist')

" output net, call list, etc for confirmation
call print.net

" initialize distribution of accidents across nodes
prop.accs(*, *) = get.accs

end" of initialize

function lap1ace.f(location, scale, stream)
" returns a laplace variate -- for use in the gamma function

define location, scale as double variables
define stream as an integer variable

define y, u as double variables

let u = random.f(stream)
if u < .5

let y = log.e.f(2 * u) * scale
else

let y = -log.e.f(2.0 - 2 * u) * scale
endif

return with location + y

end "1 aplace. f

function 1in.int.f(index, table)
" <s> lin.int.f

" <f>18

" performs linear interpolation as follows:
" given a value b=B and a tab1e(a, b), where b is a cumulative value,
" returns an interpolated value for a

- 101 -

2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455

define index as a double variable
define table as a double. 2-dim array
define x. slope. intercept as double variables
define i. maxi as integer variables

maxi = dim.f(table(*.*»

for i = 1 to maxi
with table(i. 2) >= index

find the first case
x = table(i. 2)
slope = (x - table(i - 1. 2» / (table(i. 1) - table(i - 1. 1»
intercept = x - table{i. 1) * slope

return «index - intercept) / slope)

end I I lin.int.f

function living{pt)
I I <s> 1 i vi ng

II <f>12

define pt as a pointer variable

if 02.delivery(pt) le croak
return with FALSE

endif
return with TRUE

end I I of living

function mybeta.f{a. b, stream)
I I <s> mybeta. f

I I <f>12

define a. b as double variables
define stream as an integer variable

define x as a double variable

let x = mygamma.f{a. a. stream)
let x = x / (x + mygamma.f(b. b. stream»

return with x

end I 'mybeta. f

function mygamma.f{mean. a. stream)
I I <s> mygamma.f

I I <f>12

II

I I

II

II

II

function to replace error prone gamma.f function

for order> 1
taken from Tadikamalla as reported in Bratley B. Fox BL. Schrage LE:

A Guide to Simulation. New York. Springer-Verlag. 1987.

for order <= 1. taken from Ahrens. reported in same source

define mean. a as double variables
define stream as an integer variable

- 102 -

2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518

define b, temp, y, u, g, scale, u1, u2, p, q as double variables
define .terminated. to mean 1 = 2

" check for bad arg's
if mean <= 0.0

let err.f =145
endif
if a <= 0.0

let err.f = 146
endif

let b = mean I a
let temp = a - 1.0
" first generate gamma variate for order a, mean a (b==l)
if a <= 1.0

until .terminated.
do

loop

let u1 = random.f(stream)
let 9 = (exp.c + a) I exp.c
let p = u1 * 9
let u2 = random.f(stream)
if p > 1.0

y = -log.e.f«g - p) I a)
q = temp * log.e.f(y)

else
y = exp.f(log.e.f(p) I a)
q = - y

endif
if 10g.e.f(u2) <= q

leave
endif

else "a > 1.0
until • termi nated.
do

loop
endif

until • terminated.
do

let scale = 1.0 + sqrt.f(4.0 * a - 3.0) I 2.0
let y = laplace.f(temp, scale, stream)
if y >= 0.0

1 eave " inner loop
endif

loop
let u = random.f(stream)
let 9 = ««scale - 1.0) * y) I (scale * temp» ** temp) *

exp.f(-y + (abs.f(y - temp) + temp * (scale + 1.0» I scale)
if u <= 9

1 eave " outer loop
end if

I I now y is gamma a=a, b=l, so scale to a=a, b=b
return with y * b

end "mygamma. f

left routine no.pts given hospital " <f>12
" <s> no.pts
" used to ACCUMULATE pt stats by hospital -- could have been done
" by compiler, but now used to check red status dynamically

- 103 -

2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581

define hospital as an integer variable

define n as an integer variable
define inc as a double variable

enter with n ' 'new value for no.pts
inc = time.v - update.time(hospital)

add (no.pts(hospital) * inc) to r.accum.pts(hospital)
add (full(hospital) * inc) to r.accum.cap(hospital)
if n >= capacity(hospital)

full(hospital) = TRUE
else

full(hospital) = FALSE
endif
call check.red giving hospital and n
r.max.pts(hospital) = max.f(r.max.pts(hospital), n)
update.time(hospital) = time.v

move from n
return

end " of no.pts

function nsp.f(table. stream) "<f>24

, ,
"

" <s> nsp.f
" returns time til the next event for a non-stationary Poisson arrival
" process. given a table of times and cumulative mean arrivals
" The arrival times are assumed to wrap around when the end of the
" table is reached. Caller is responsible for ensuring that start of
" simulation is at the time represented by the first entry in the table.

algorithm from ~inlar. E. "Introduction to Stochastic Processes."
Prentice-Hall, Englewood Cliffs, NJ, 1975, pp 94-101 "

"

define table as a double. 2-dim array
define stream as an integer variable

define maxi, x as integer variables
define index, max.arr. y, z as double variables

define tprime, last.time as saved. double variables
these made global to allow full reset

maxi = dim.f(table(*,*»
max.arr = table(maxi, 2)

nsp.tprime = nsp.tprime - log.e.f(random.f(stream»

x = trunc.f(nsp.tprime I max.arr) "number of wraps around end of table
index = mod.f(nsp.tprime. max.arr) "offset into table

y = lin.int.f(index, table(*,*» + x * table(maxi, 1) "time of next event
z = y - nsp.last.time
nsp.last.time = y
return (z)

end" nsp.f

routine pass.time given pt " <f>12

- 104 -

2582 " <s> pass.time
2583 " models passage of time for alive patients, and for pts who have
2584 " become terminal but will still receive an attempt at resuscitation
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642

define pt as a pointer variable

define next.phase as an integer variable

select case phase(pt)
case pvt.trav

next.phase = resus

case scene.rx
next.phase = en. route

case en. route
next.phase = resus

case resus
next.phase = done.resus

endselect

until phase(pt) = next.phase
do

work continuously evaluating 'bleed'. testing 'done'.
updating 'update'

" if pt dies in the work continuously statement. record
" appropriate info and continue until the next phase change
if condition(pt) = alive "if just now died

if living(pt) = FALSE
if DEBUG

write pt.id(pt). hour.f(time.v). minute.f(time.v).
phase(pt) as
Opt ". i 4. " arrests at ", i 2. ":". i 2.
" in phase". i 2, I

endif
tod(pt) = (time.v - injury.time(pt» * hours.v * minutes.v
add 1 to no.deaths
condition(pt) = dead

endif
endif
if phase(pt) = pvt.trav

" NB -- this condition must agree with termination condition in
" the done function
if time.v > pvt.tr.arrive

phase(pt) = next.phase
endif

endif
if phase(pt) = resus

" same type problem as above
if time.v > injury.time(pt) + (wait.time(pt) + scene.time(pt) +

transp.time(pt) + resus.time(pt» I hours.v I minutes.v
phase(pt) = next.phase

endif
endif

loop

cts(pt) = cts.f(pt)
change.flag(pt) = FALSE

2643 end" of pass.time
2644

- 105 -

2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707

process patient
" <s> patient

" <f>18

define self as a pOinter variable

define t as a double variable

self = patient
change.flag(self) = FALSE
injury.time(self) = time.v
sbp(self) = sbp.O
blood.volume(self) = bv.O
hct(self) = hct.O
rbc.mass(self) = .01 * hct(self) * blood.volume(self)
02.delivery(self) = sbp(self) * hct(self) * 02.sat(self)

bleeding.rate(self) = br.O(self)
condition(self) = alive

resus.time(self) = 1 + mygamma.f(t.resus - 1.
3 * «t.resus - 1) / t.resus)**2. 11)

tx.time(self) = exponential.f(t.tx. 24)
t = time.v

" bleed till arrival
work continuously evaluating 'bleed'. testing 'done'. updating 'update'
change.flag(self) = FALSE
cts(self) = cts.f(self)

if living(self) = FALSE
condition(self) = dead
tod(self) = (time.v - injury.time(self) * hours.v * minutes.v
call pt. report giving self
remove self from acc.patient.set(acc(self)
remove self from the patient.set
add 1 to no.deaths
if DEBUG

write pt.id(self). hour.f(time.v). minute.f(time.v). phase(self) as
"pt ". i 4. " arrests at ". i 2. ":". i 2. " in phase". i 2. /

endif
return

endif
wait.time(self) = (time.v - t) * hours.v * minutes.v
t = time.v

if phase(self) = pvt.trav
call pass.time giving self
remove self from the pvt.tr.set

else

file self in resus.patient.set(hosp(self»
phase(self) = resus
transp.time(self) = (time.v - t) * hours.v * minutes.v
t = time.v

" ambulance arrival
rescue.bp(self) = sbp(self)
call pass.time giving self
scene.time(self) = (time.v - t) * hours.v * minutes.v
t = time.v

" enroute
call pass.time giving self
transp.time(self) = (time.v - t) * hours.v * minutes.v

- 106 -

2708 t = time.v
2709 endif
2710
2711 "hospital arrival
2712 hosp.bp(self) = sbp(self)
2713 trf.start.time(self) = time.v + resus.time(self) / hours.v / minutes.v / 2
2714 schedule a resp.support(self) in resus.time(self) / 3 minutes
2715 trf.rate(self) = .5 * iv.rate(self)
2716 no.pts(hosp(self» = no.pts(hosp(self» + 1
2717 call pass.time giving self
2718
2719
2720 if condition(self) = alive " if didn't die earlier
2721 if living(self) = FALSE
2722 condition(self) = dead
2723 add 1 to no.deaths
2724 if DEBUG
2725 write pt.id(self). hour.f(time.v). minute.f(time.v) as
2726 "pt ". i 4. " arrests at ". i 2. ":". i 2. " after resus". /
2727 endif
2728 else
2729 " transfer to definitive care
2730 work tx.time(self) minutes
2731 def.bp(self) = sbp(self)
2732 cts(self) = cts.f(self)
2733 endif
2734 endif
2735
2736 "done with this patient. for purposes of this model
2737
2738 remove self from the patient.set
2739 remove self from the resus.patient.set(hosp(self»
2740 add -1 to no.pts(hosp(self»
2741
2742 "coefficients from MTOS. assuming age < 55
2743 if blunt(self) = TRUE
2744 prob.surv(self) = 1 /
2745 (1 + exp.f(-(-1.247 + .9544 * cts(self) -.0768 * iss(self»»
2746 else
2747 prob.surv(self) = 1 /
2748 (1 + exp.f(-(-.6029 + 1.1430 * cts(self) -.1516 * iss(self»»
2749 endif
2750
2751 add (1 - prob.surv) to est.deaths
2752 add (1 - prob.surv) to r.est.deaths
2753
2754 call pt. report giving self
2755
2756 end " patient
2757
2758
2759 routine print.net "<f>12
2760 a, <s> print.net
2761 " prints system information as defined by the data files for confirmation
2762
2763 define i as an integer variable
2764 define lvl as a text variable
2765 define item as a pOinter variable
2766 define temp as a double variable
2767
2768 use 4 for output
2769 skip 1 line
2770 print 2 lines thus

- 107 -

2771 network structure
2772 weights represent arterial route travel time between node centers
2773 for i = 1 to n.node
2774 do
2775 print 1 line with i, node.name(i), n.edge.set(i) thus
2776 node *** (***) has outdegree ***
2777 for each arc in edge.set(i)
2778 do
2779 print 1 line with sink(arc), node.name(sink(arc», weight{arc) thus
2780 arc to *** (***) of weight ****.**
2781 loop
2782 loop
2783 skip 1 line
2784
2785 print 1 line thus
2786 hospital locations
2787 for i = 1 to n.hospital
2788 do
2789 select case level{i)
2790 case level1
2791 lvl = "level 1"
2792 case leve12
2793 lvl = "level 2"
2794 case leve12a
2795 lvl = "level 2a"
2796 case leve13
2797 lvl = "level 3"
2798 endselect
2799 print 1 line with hosp.name{i), lvl, capacity{i),
2800 node.name{hosp.base{i» thus
2801 ***, ********, *** beds, in ***
2802 loop
2803 skip 1 line
2804
2805 print 1 line thus
2806 ambulance call list
2807 for each node
2808 do
2809 print 1 line with node.name{node) thus
2810 *** will request these ambulances
2811 for each item in call.list{node)
2812 do
2813 if type{ambulance.id{item» = ground
2814 temp = transit.time{amb.base{ambulance.id{item», node)
2815 else
2816 temp = flight.time(amb.base(ambulance.id(item», node)
2817 endif
2818 print 1 line with amb.name(ambulance.id(item»,
2819 node.name{amb.base{ambulance.id{item»), temp
2820 thus
2821 **** from *** with mean travel time ****.** min
2822 loop
2823 loop
2824 skip 1 line
2825
2826 print 1 line thus
2827 hospital dispatch list
2828 for each node
2829 do
2830 print 1 line with node.name{node) thus
2831 *** victims will go to these hospitals
2832 for each item in hosp.list(node)
2833 do

- 108 -

2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896

loop
loop

select case level{hospital.id{item))
case level1

lvl = "level I"
case leve12

lvl = "level 2"
case leve12a

lvl = "level 2a"
case leve13

lvl = "level 3"
endselect

print 1 line with hosp.name{hospital.id{item)).
lvl. node.name{hosp.base{hospital.id{item))).
transit.time{node. hosp.base(hospital.id(item)))
thus

. *****. in ***. with mean travel time ****.** min

skip 1 line

print 7 lines with major.cutoff. minor.cutoff. htol*100. atol*100 thus
Triage rule:

Champ TS <= *.* goes to level 1. > *.* may go to level 3

Travel times exceeding minimum time by less than tolerance included in
routine dispatch lists

hospital choice tolerance **%
ambulance choice tolerance **%
skip 1 line
use 6 for output

end I I of print.net

routine pt. report given pt
I I <s> pt. report

I I <f>12

define pt as a pointer variable

use 8 for output

write run. pt.id(pt). blunt(pt). transp.mode(pt). iss(pt).
injury.time(pt). wait.time(pt). scene.time(pt). transp.time(pt).
resus.time(pt). tx.time(pt). tod(pt). rescue.bp(pt).
hosp.bp(pt). def.bp(pt) as
i 3. s 1. i 5. 2 i 3. i 5. d(22. 15). 9 d(10. 3). +

write
prob.surv(pt). br.O(pt) / hours.v / minutes.v. cts(pt).

condition(pt). injury.loc(pt). hosp(pt). need.helo(pt),
got.helo(pt) as
3 d(10, 3), 5 i 4, /

use 6 for output

end I I of pt. report

routine pvt.travel(acc)
I I <s> pvt.travel

I I <f>12

define acc as a pointer variable

- 109 -

2897 define pt, item as pointer variables
2898 define temp, t, limit as double variables
2899 define hsp, rtot, cumtot as integer variables
2900
2901 I I find nearest hospital, regardless of status
2902 limit = random.f(16)
2903 rtot = 0
2904 for each item in hosp.list(site(acc»
2905 compute cumtot as the sum of hosp.volume(hospital.id(item»
2906 for each item in hosp.list(site(acc»
2907 do
2908 add hosp.volume(hospital.id(item» to rtot
2909 if rtot / cumtot >= limit
2910 hsp = hospital.id(item)
2911 leave
2912 endif
2913 loop
2914
2915 until acc.patient.set(acc) is empty
2916 do
2917 remove first pt from acc.patient.set(acc)
2918 t = 1.2 * transit.time(site(acc), hosp.base(hsp»
2919 temp = 1 + mygamma.f(t - I, 3 * «t - 1) / t)**2, 20) +
2920 choke.f(site(acc), hosp.base(hsp»
2921 I I pvt travel time 20% more than ambulance
2922 pvt.tr.arrive{pt) = time.v + temp / minutes.v / hours.v
2923 phase{pt) = pvt.trav
2924 change.flag(pt) = TRUE
2925 hosp{pt) = hsp
2926 transp.mode(pt) = private
2927 file pt in the pvt.tr.set
2928 loop
2929
2930 end I I of pvt.travel
2931
2932
2933 routine read.call.list I I <f>18
2934 II <s>read.call.list
2935 I I unit 3 is already open on entry
2936
2937 define here as an integer variable
2938
2939 while data is not ended
2940 do
2941 read here
2942 while card is not new
2943 do
2944 create a call.item
2945 read ambulance.id{call.item)
2946 file this call.item in call.list(here)
2947 loop
2948 loop
2949 close unit 3
2950
2951 end I I of read.call.list
2952
2953
2954 routine read.hosp.list I I <f>12
2955 I I <s> read.hosp.list
2956 I I unit 3 is already open on entry
2957
2958 define here as an integer variable
2959

- 110 -

2960 while data is not ended
2961 do
2962 read here
2963 while card is not new
2964 do
2965 create a go. item
2966 read hospital.id(go.item)
2967 read hosp.level(go.item)
2968 file this go.item in hosp.list(here)
2969 loop
2970 loop
2971 close unit 3
2972
2973 end" of read.call.list
2974
2975
2976 routine recall given num, acc "<f>18
2977 "<s> recall
2978 " recall num ambulances starting from the end of the
2979 " amb.set (farthest from acc)
2980
2981 define num as an integer variable
2982 define acc as a pointer variable
2983
2984 define i, amb as integer variables
2985 define arun as a pointer variable
2986
2987 i = 0
2988 for each amb in the amb.set(acc) in reverse order, with type(amb)=ground
2989 do
2990 if amb is in the to.scene.set
2991 add 1 to i
2992 remove amb from the amb.set(acc)
2993 remove amb from the to.scene.set
2994 arun = amb.run(amb)
2995 interrupt the ambulance.run called arun
2996 status(arun) = not.working
2997 cur.location(amb) = find.loc(amb)
2998 time.a(arun) = 0
2999 resume the ambulance.run called arun
3000 if DEBUG
3001 write amb.name(amb), hour.f(time.v), minute.f(time.v) as
3002 t 3, " recalled at ", i 2, ":", i 2, /
3003 endif
3004 endif
3005 if i = num
3006 leave
3007 endif
3008 loop
3009
3010 end" of recall
3011
3012
3013 event resp.support given pt "<f>12
3014 " <s> resp.support
3015 " event to represent provision of 02, intubations, chest decompression, etc
3016
3017 define pt as a pOinter variable
3018
3019 r.cts(pt) = 4.0 - r.cts(pt) / 2
3020 02.sat(pt) = .80 + .05 * r.cts(pt)
3021 cts(pt) = cts.f(pt)
3022

- 111 -

3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085

end " of resp.support

routine run. report
" <s> run. report

" <f>12

define p as a double variable

if r.no.pended > 0
p = r.mean.pending * tmp.dur * hours.v * minutes.v I r.no.pended

else
p = 0

endif

use 4 for output
print 10 lines with run, tmp.dur * hours.v,

r.no.accs, r.no.t.pts, 100 * r.no.blunt I r.no.accs,
1.0 - r.idle.amb I (n.ambulance - num.helo),

run **

1.0 - r.idle.helo I num.helo,
r.no.divert, r.no.override, r.no.deaths,
r.est.deaths thus

duration ***.** hours no.accs *** no. tr. pts ***
% blunt **.**
ambo utilization ***.***
helo utilization ***.***
diverts ***
overrides ***
deaths ***
est deaths ***.**

print 4 lines with
thus

r.mean.pending, r.max.pending, r.no.pended, p

queue for amb mean
no.accs pended:
av pending time:

print 2 lines thus
hospital utilization
name avg tr load
for each hospital
do

. max ***

. minutes

max tr load reserve % red time

print 1 line with hosp.name(hospital), r.accum.pts(hospital) I tmp.dur,
r.max.pts(hospital), 1 - r.accum.cap(hospital) I tmp.dur,
r.mean.red(hospital) * 100 thus

*** ***.*** *** *.*** ***.*
loop
skip 1 line

use 7 for output
"run, duration, midpoint, no.accs, no.blunt, no.pts, amb utilization, hosp
"utilization, reserve, diverts, overrides, deaths, est.deaths
write run, tmp.dur, time.v - tmp.dur I 2.0, r.no.accs, r.no.meds,

r.no.blunt, r.no.t.pts. 1.0 - r.idle.amb I (n.ambulance - num.helo),
1.0 - r.idle.helo I num.helo, r.no.divert, r.no.override, r.no.deaths
as
i 5. 2 d(12, 5). 4 i 7, 2 d(10, 5), 3 i 5, +

write r.est.deaths. r.no.pended. p as
d(8. 3). i 7. d(8, 3), +

" repeat the loop so variables are grouped (easier to read in SYSTAT)
for each hospital

- 112 -

3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148

do
write r.accum.pts(hospital) I tmp.dur as

d(12, 5), +
loop
for each hospital
do

write 1 - r.accum.cap(hospital) I tmp.dur as
d(10, 5), +

loop
for each hospital
do

loop

write r.mean.red(hospital) as
d(10, 5), +

write as I

use 6 for output

end I I run. report

routine tr.check.in.acc given acc
I I <s> tr.check.in.acc

define acc as a pointer variable
define t as a text variable

if kind(acc) = trauma
t = "acc"

else
t = "med"

endif

II <f>12

write acc.id(acc), t, node.name(site(acc»,
hour.f(time.v), minute.f(time.v) as
"event ", i 5, " (", t 3, ") occurs in" t 3, " at", 2, ":",

end I I of tr.check.in.acc

routine tr.check.in.amb given amb
I I <s> tr.check.in.amb

define amb as an integer variable

II <f>12

write amb.name(amb), node.name(amb.base(amb», hour.f(time.v),
minute.f(time.v) as
", t 3, " at base (", t 3, ") at ", i 2, ":", i 2, I

end I I of tr.eheek.in.amb

routine tr.check.in.pt given pt and acc
I I <s> tr.check.in.pt

define pt, acc as pointer variables

write aec.id(ace), pt.id(pt) as
"acc ", i 5, " has pt ", i 5, I

end I I tr.check.in.pt

routine tr.cheek.out.acc given ace II

- 113 -

II <f>12

<f>12

2, I

3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211

I I <s> tr.check.out.acc

define acc as a pointer variable
define t as a text variable

if kind(acc) = trauma
t = "acc"

else
t = "med"

endif
write acc.id(acc), t, hour.f(time.v), minute.f(time.v) as

"event ", i 5, II (", t 3, ") done at ", i 2, ":", i 2, /

end I I of tr.check.out.acc

routine tr.check.out.pt given pt
I I <s> tr.check.out.pt

define pt as a pointer variable

II <f>12

write pt.id(pt), hour.f(time.v), minute.f(time.v), n.patient.set as
II pt ", i 5, II finished at ", i 2, ":", i 2,
II leaving ", i 3, II in system", /

end I I of tr.check.out.pt

routine tr.deliver.pt given amb
I I <s> tr.deliver.pt

II

define amb as an integer variable

<f>12

write amb.name(amb), hosp.name(hosp(amb.run(amb»),
hour.f(time.v), minute.f(time.v)
as II ", t 3, II at ", t 3, II at II

i 2, ":", i 2, /

end I I of tr.deliver.pt

routine tr.enroute.hosp(amb)
I I <s> tr.enroute.hosp

II

define amb as an integer variable
define n as an integer variable

<f>12

if kind(amb.run(amb» = trauma
n = n.amb.patient.set(amb.run(amb»

else
n = 1

endif

write amb.name(amb), hosp.name(hosp(amb.run(amb»), hour.f(time.v),
minute.f(time.v). n as
II ", t 3. II enroute to ". t 3, II at II

i 2, ":", i 2. II with ". i 2. II pts". /

end I I of tr.enroute.hosp

routine tr.go.green(hsp) II <f>12

- 114 -

3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274

II <s> tr.go.green

define hsp as an integer variable

write hosp.name(hsp), hour.f(time.v), minute.f(time.v) as
t 3, " went green at ", i 2, ":", i 2, I

end I I of tr.go.green

routine tr.go.red(hsp)
• I <s> tr.go.red

II <f>12

define hsp as an integer variable

write hosp.name(hsp), hour.f(time.v), minute.f(time.v) as
t 3, " went red at ", i 2, ":", i 2, I

end I I of tr.go.red

routine tr.on.scene given amb
I I <s> tr.on.scene

II

define amb as an integer variable
define t as a text variable

if kind(amb.run(amb» = trauma
t = "acc"

else
t = "med"

endif

<f>12

write amb.name(amb), t, acc.id(acc(amb.run(amb»),
node.name(cur.location(amb», hour.f(time.v), minute.f(time.v) as
" ", t 3, " on scene at ", t 3, s I, i 5,
II in ", t 3, " at ", i 2, ":", i 2, I

end I I of tr.on.scene

routine tr.pickup.pt given pt and amb.run
I I <s> tr.pickup.pt

define pt, amb.run as pointer variables

I I <f>12

if kind(amb.run) = trauma
write amb.name(ambulance.id(amb.run», pt.id(pt),

cts(pt), hour.f(time.v), minute.f(time.v) as
" ", t 3, II treating pt ", i 5, ", cts " d(3, I),
" at ", i 2, ":", i 2, I

else
write amb.name(ambulance.id(amb.run»,

hour.f(time.v), minute.f(time.v) as
" ", t 3, " treating med pt at II

i 2, ":", i 2, I
endif

end I I of tr.pickup.pt

routine tr.pvt.tr.pt given pt
I I <s> tr.pvt.tr.pt

II <f>12

- 115 -

3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337

define pt as a pointer variable

write pt.id{pt), hosp.name{hosp{pt»,
hour.f(time.v), minute.f(time.v) as
" pt ", i 5, " heading to ", t 3. " at ", i 2, ":", i 2, /

end I I of tr.pvt.tr.pt

routine tr.resus.pt given pt and hosp
I I <s> tr.resus.pt

define pt as a pointer variable
define hosp as an integer variable

II <f>12

write pt.id(pt), hosp.name(hosp), weekday.f(time.v), hour.f(time.v) and
minute.f(time.v) as
" p t ", i 5 , " at", t 3, " 0 n day", i 2, " at",
i 2, ":", i 2, /

end I I of tr.resus.pt

routine tr.send.amb given amb
I I <s> tr.send.amb

II

define amb as an integer variable
define t as a text variable

if kind(amb.run(amb» = trauma
t = "ace"

else
t = "med"

endif

<f>12

write amb.name(amb), t, aee.id(aec(amb.run(amb»),
hour.f(time.v), minute.f(time.v)
as" ", t 3, " enroute to ", t 3, s I, i 5, " at ",
i 2, ":", i 2, /

end I I of tr.send.amb

routine tr.staek.aee given ace
I I <s> tr.staek.aee

II

define ace as a pointer variable
define t as a text variable

if kind(aee) = trauma
t "ace"

else
t = "med"

endif

<f>12

write t, aee.id(aee) as
t 3, s I, i 5, " awaiting service", /

end I I tr.stack.acc

routine tr.to.home given amb II <f>12

- 116 -

3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400

01 <s> tr.to.home

define amb as an integer variable

write amb.name(amb), hour.f(time.v), minute.f(time.v)
as" ", t 3, " heading home at ",
i 2, ":", i 2, /

end I I of tr.to.home

routine tr.unstack.acc given acc
I I <s> tr.unstack.acc

define acc as a pointer variable
define t as a text variable

if kind(acc) = trauma
t = "acc"

else
t = "med"

endif

I I <f>12

write t, acc.id(acc), hour.f(time.v), minute.f(time.v)
as "pending ", t 3, s I, i 5, " served at ", i 2, ":",

end I I of tr.unstack.acc

routine travel (from, to, amb)
I I <s> travel

I I <f>12

define from, to, amb as integer variables

remove amb from node.amb.set(from)
work travel.time(amb) minutes
file amb in node.amb.set(to)
cur.location(amb) = to

end I I of travel

routine update(patient) II <f>12

2, /

I I <s> update
I I these statements are required for changes in continuous simulation
I I variables to be visible outside the integrator routine

define patient as a pointer variable

blood.volume(patient) = blood.volume(patient)
d.blood.volume(patient) = d.blood.volume(patient)

rbc.mass(patient) = rbc.mass(patient)
d.rbc.mass(patient) = d.rbc.mass(patient)
sbp(patient) = sbp(patient)
d.sbp(patient} = d.sbp(patient}
bleeding.rate(patient) = bleeding.rate(patient}
d.bleeding.rate(patient) = d.bleeding.rate(patient)
hct(patient} = hct(patient}
d.hct(patient) = d.hct(patient)
02.delivery(patient) = 02.delivery(patient)
d.02.delivery(patient) = d.02.delivery(patient)

- 117 -

3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443

end I I of update

routine write.call.list II <f>12
I I <s> write.call.list

define item as a pOinter variable

open unit 3 for output, name is "call.dat"
use 3 for output
for each node
do

write node as i 3, s 2, +
for each item in call.list(node)
do

write ambulance.id(item) as i 3, s 2, +
loop
write as I

loop
close unit 3

end I I of write.call.list

routine write.hosp.list I I <f>12
I I <s> write.hosp.list

define item as a pOinter variable

open unit 3 for output, name is "go.dat"
use 3 for output
for each node
do

loop

write node as i 3, s 2, +
for each item in hosp.list(node)
do

write hospital.id(item), hosp.level(item) as
loop
write as I

close unit 3

end I I of write.call.list

- 118 -

3, s 2, 3, s 2, +

Appendix 2

Data Cross-Reference

NAME TYPE MODE ROUTINE REFERENCES
(+ distinct usage) (= assigned)

A.DUPLICATE Define to mean PREAMBLE 1
BUILD.ROUTE 1

ABS.ERR.V Permanent attribute Real GET.SIM 1

ABS.F Library routine BLEED 2
MYGAMMA.F 1

ACC Temporary attribute Pointer PREAMBLE 3
AMBULANCE. RUN 1
ASSIGN.AMB 1 =
CHECK.ACCIDENT 1 =
INIT .ACCIDENT 1 =
INIT. PT 2
PATIENT 1
TR.ON.SCENE 1
TR.SEND.AMB 1

ACC.ARRIVE. TIME Temporary attribute Double PREAMBLE 2
DISPATCHER 2 =

ACC.COUNTER Global variable Integer PREAMBLE 2
MAIN 1
INIT .ACCIDENT 1 =

ACC.END. TIME Temporary attribute Double PREAMBLE 2
ACCIDENT 1 =

ACC.ID Temporary attribute Integer PREAMBLE 2
DISPATCHER 3
GENERATOR 1 =
TR.CHECK.IN.ACC 1
TR.CHECK.IN.PT 1
TR.CHECK.OUT.ACC 1
TR.ON.SCENE 1
TR.SEND.AMB 1
TR.STACK.ACC 1
TR.UNSTACK.ACC 1

ACC. PATI ENT.SET Set PREAMBLE 3
ACCIDENT 1
AMBULANCE. RUN 4
CHECK.ACCIDENT 1
GET • PATIENT 2
INIT .ACCIDENT 1
PATIENT 1
PVT. TRAVEL 2

- 119 -

ACC.START. TIME Temporary attribute Double PREAMBLE 2
INIT .ACCIDENT 1

ACCIDENT Process notice PREAMBLE 1
ACCIDENT 1
DISPATCHER 3
GENERATOR 2

+ Global variable Pointer ACCIDENT 1
DISPATCHER 2 =
GENERATOR 4 =
INIT .ACCIDENT 1

+ Implied subscript ACCIDENT 1

ACTIVE.SET Set PREAMBLE 4
ACCIDENT 1
INIT .ACCIDENT 1

ADJ. TIME.F Routine Double PREAMBLE 1
ADJ. TIME. F 1
BEST.ROUTE 1
GET .NET 1

AIR Define to mean PREAMBLE 1
AMBULANCE. RUN 3
ASSIGN.AMB 1
DISPATCHER 2
GET .AMB 1
GET .EMS 1
GET. TRAVEL. TIME 1

AIRSPEED Global variable Double PREAMBLE 1
FTIME. F 1
GET.NET 2 =

ALARM. LAG Global variable Double PREAMBLE 1
ACCIDENT 1
GET.SIM 1 =

ALIVE Define to mean PREAMBLE 1
DONE 1
PASS. TIME 1
PATIENT 2

AMB.BASE Permanent attribute Integer PREAMBLE 2
DISPATCHER 2
GET .AMB 2
GET. EMS 5 =
PRINT.NET 3
TR.CHECK.IN.AMB 1

AMB.BASE.SET Set PREAMBLE 2
BUI LD.CALL. LIST 1
GET.EMS 2

AMB.ID Permanent attribute Integer PREAMBLE 2
GET • EMS 1 =

AMB.NAME Permanent attribute Text PREAMBLE 2
DISPATCHER 2
FIND.HOSP 2
GET. EMS 1 =
PRINT.NET 1
RECALL 1

- 120 -

TR.CHECK.IN.AMB 1
TR.DELIVER.PT 1
TR. ENROUTE. HOSP 1
TR.ON.SCENE 1
TR.PICKUP.PT 2
TR.SEND.AMB 1
TR.TO.HOME 1

AMB. PATIENT.SET Set PREAMBLE 3
AMBULANCE. RUN 7
DISPATCHER 2
GET • PATIENT 1

AMB.RUN Permanent attribute Pointer PREAMBLE 2
ASSIGN.AMB 1 =
DISPATCHER 6
FIND.HOSP 2
FIND.LOC 5
RECALL 1
TR.DELIVER.PT 1
TR. ENROUTE.HOSP 3
TR.ON.SCENE 2
TR.SEND.AMB 2

AMB.SET Set PREAMBLE 2
ASSIGN.AMB 1
CHECK.ACCIDENT 1
DISPATCHER 2
RECALL 2

AMBULANCE Permanent entity PREAMBLE 1
GET. EMS 1

+ Global variable Integer2 GET. EMS 12 =

AMBULANCE. ID Temporary attribute Integer PREAMBLE 3
AMBULANCE. RUN 1
ASSIGN.AMB 1 =
BUILD.CALL. LIST 2 =
CHECK.ACCIDENT 3
GET .AMB 5
GET • PATIENT 3
PRINT.NET 4
READ.CALL. LIST 1 =
TR.PICKUP.PT 2
WRITE. CALL. LI ST 1

AMBULANCE. RUN Process notice PREAMBLE 1
AMBULANCE. RUN 3
ASSIGN.AMB 2
RECALL 2

+ Global variable Pointer AMBULANCE. RUN 1
ASSIGN.AMB 9 =

+ Implied subscript AMBULANCE. RUN 1

ARC Temporary entity PREAMBLE 1
BUILD.ROUTE 1
GET.NET 1

+ Global variable Pointer BUILD.ROUTE 7 =
GET .NET 5 =
PRINT.NET 2 =

ARC.STATUS Temporary attribute Integer PREAMBLE 2
BUILD.ROUTE 3 =

- 121 -

ASSIGN.AMB Routine ASSIGN.AMB 1
GET.AMB 1

ASSIGNMENT.SET Set PREAMBLE 2
BUILD.CALL. LIST 9

AT.BASE Define to mean PREAMBLE 1
AMBULANCE. RUN 1
DISPATCHER 1

AT.BASE.SET Set PREAMBLE 2
ASSIGN.AMB 1
DISPATCHER 1
GET. EMS 1

AT.HOSP Define to mean PREAMBLE 1
AMBULANCE. RUN 1
DISPATCHER 1

AT.HOSP.SET Set PREAMBLE 3
AMBULANCE. RUN 1
DISPATCHER 1

AT.SCENE Define to mean PREAMBLE 1
AMBULANCE. RUN 1
DISPATCHER 1

ATOL Global variable Double PREAMBLE 1
BUI LD.CALL. LIST 1
GET.SIM 1 =
PRINT.NET 1

BEST. ROUTE Routine Double PREAMBLE 1
BEST. ROUTE 1
GET .NET 1

BLEED Routine BLEED 1
PASS. TIME 1
PATIENT 1

BLEEDING. RATE Temporary attribute Double PREAMBLE 2
BLEED 4
PATIENT 1 =
UPDATE 1 =

BLOOD. VOLUME Temporary attribute Double PREAMBLE 2
BLEED 4
PATIENT 2 =
UPDATE 1 =

BLUNT Temporary attribute Integer PREAMBLE 3
INIT.ACCIDENT 2 =
INIT.PT 1 =
PATIENT 1
PT. REPORT 1

BR.O Temporary attribute Double PREAMBLE 2
BLEED 1
INIT.PT 2 =
PATIENT 1
PT.REPORT 1

BUI LD.CALL. LIST Routine BUI LD.CALL. LIST 1

- 122 -

INITIALIZE 1

BUI LD.HOSP. LIST Routine BUI LD.HOSP. LIST 1
INITIALIZE 1

BUILD.ROUTE Routine BEST. ROUTE 2
BUILD. ROUTE 1

BV.O Define to mean PREAMBLE 1
BLEED 2
PATIENT 1

CALL. ITEM Temporary entity PREAMBLE 1
BUI LD.CALL. LIST 2
READ.CALL. LIST 1

+ Global variable Pointer BUI LD.CALL. LIST 7 =
READ.CALL. LIST 3 =

CALL. LIST Set PREAMBLE 2
BUI LD.CALL. LIST 3
GET.AMB 2
PRINT.NET 1
READ.CALL. LIST 1
WRITE. CALL. LIST 1

CALLS. PENDING Define to mean PREAMBLE 1
DISPATCHER 1

CAN.DIVERT Permanent attribute Integer PREAMBLE 2
GET.HOSP 1 =
GO. RED 1

CAPACITY Permanent attribute Integer PREAMBLE 2
GET.HOSP 1 =
GO.GREEN 1
GO. RED 1
LEFT NO.PTS 1
PRINT.NET 1

CH.CUM.WEIGHT Temporary attribute Double PREAMBLE 2
BEST. ROUTE 5 =

CHANGE. FLAG Temporary attribute Integer PREAMBLE 2
AMBULANCE. RUN 2 =
DONE 1
GET. PATI ENT 1 =
PASS. TIME 1 =
PATIENT 2 =
PVT.TRAVEL 1 =

CHECK.ACCIDENT Routine AMBULANCE. RUN 2
CHECK.ACCIDENT 1

CHECK. RED Routine CHECK. RED 1
LEFT NO.PTS 1

CHOKE.F Routine Double PREAMBLE 1
CHOKE. F 1
GET. TRAVEL. TIME 1
PVT.TRAVEL 1

CHOKE.PT.WT Temporary attribute Double PREAMBLE 2
BEST.ROUTE 2

- 123 -

BUILD.ROUTE 1 =
CHOKE. F 2
GET .NET 1 =

CLEAR. NOTICE Permanent attribute Pointer PREAMBLE 2
CHECK. RED 3 =
CLEAR. REDS 3 =
GO.OFF.RED 2 =

CLEAR. REDS Event notice PREAMBLE 1
MAIN 1
CLEAR. REDS 2
GENERATOR 1

+ Global variable Pointer MAIN 1 =
CLEAR. REDS 2 =
GENERATOR 2

CLEAR. TIME Global variable Double PREAMBLE 1
MAIN 1
GENERATOR 1 =
GET.SIM 1 =

CONDITION Temporary attribute Integer PREAMBLE 2
BLEED 1
DONE 1
PASS. TIME 2 =
PATIENT 4 =
PT. REPORT 1

COS.F Library routine FTIME.F 1

CROAK Define to mean PREAMBLE 1
LIVING 1

CTS Temporary attribute Double PREAMBLE 2
AMBULANCE. RUN 1
CTS.F 2 =
GET.LEVEL 2
INIT. PT 1 =
PASS. TIME 1 =
PATIENT 4 =
PT.REPORT 1
RESP.SUPPORT 1
TR.PICKUP.PT 1

CTS.F Routine Double PREAMBLE 2
ACCIDENT 1
CTS.F 1
GET • PATIENT 1
INIT. PT 1
PASS. TIME 1
PATIENT 2
RESP.SUPPORT 1

CUM. EVENTS Global variable Double PREAMBLE 1
GENERATOR 2
INITIALIZE 1 =

CUM.WEIGHT Temporary attribute Double PREAMBLE 2
BEST. ROUTE 3 =

CUR. LOCATION Permanent attribute Integer PREAMBLE 2
AMBULANCE. RUN 4

- 124 -

DISPATCHER 2
FIND.HOSP 2
GET.AMB 1
GET. EMS 1 =
RECALL 1 =
TR.ON.SCENE 1
TRAVEL 1 =

D.BLEEDING.RATE Temporary attribute Double BLEED 2 =
UPDATE 1 =

D.BLOOD.VOLUME Temporary attribute Double BLEED 5 =
UPDATE 1 =

D.HCT Temporary attribute Double BLEED 3 =
UPDATE 1 =

D.02.DELIVERY Temporary attribute Double BLEED 2 =
UPDATE 1 =

D.RBC.MASS Temporary attribute Double BLEED 3 =
UPDATE 1 =

D.SBP Temporary attribute Double BLEED 4 =
UPDATE 1 =

DEAD Define to mean PREAMBLE 1
BLEED 1
PASS. TIME 1
PATIENT 2

DEBUG Define to mean PREAMBLE 1
DISPATCHER 3
FIND.HOSP 2
PASS. TIME 1
PATIENT 2
RECALL 1

DEF.BP Temporary attribute Double PREAMBLE 2
PATIENT 1 =
PT. REPORT 1

DEST.LEVEL Temporary attribute Integer PREAMBLE 2
AMBULANCE. RUN 3 =
ASSIGN.AMB 2 =
FIND.HOSP 2
GET • PATIENT 1 =

DESTI NATION Temporary attribute Integer PREAMBLE 2
AMBULANCE. RUN 3
ASSIGN.AMB 1 =
DISPATCHER 1 =
FIND.LOC 3

DIM.F Library routine LlN.INT.F 1
NSP.F 1

DISPATCHER Routine ACCIDENT 2
AMBULANCE. RUN 5
CHECK.ACCIDENT 2
DISPATCHER 1
GET. PATIENT 1

- 125 -

DIVERT.COUNTER Global variable Integer PREAMBLE 2
MAIN 1
FIND.HOSP 1 =

DONE Routine Integer PREAMBLE 1
DONE 1
PASS. TIME 1
PATIENT 1

DONE.RESUS Define to mean PREAMBLE 1
PASS. TIME 1

EDGE. SET Set PREAMBLE 2
BEST. ROUTE 2
GET.NET 2
PRINT.NET 1

EN. ROUTE Define to mean PREAMBLE 1
AMBULANCE. RUN 1
PASS. TIME 2

ERR.F Library routine MYGAMMA.F 2

EST. DEATHS Global variable Double PREAMBLE 1
FI NAL. REPORT 1
PATIENT 1

EXP.C Permanent attribute Double MYGAMMA.F 1

EXP.F Li brary routi ne BLEED 1
MYGAMMA.F 2
PATIENT 2

EXPONENTIAL. F Library routine ACCIDENT 2
AMBULANCE. RUN 2
CHOKE.F 1
PATIENT 1

F.AMB.PATIENT.SET Temporary attribute Pointer AMBULANCE. RUN 1

F.H.READY.SET Permanent attribute Integer2 GET.AMB 1

FALSE Define to mean PREAMBLE 1
AMBULANCE. RUN 3
BUILD. HOSP. LI ST 3
CHECK. RED 1
CLEAR. REDS 2
DISPATCHER 2
DONE 2
FIND.HOSP 2
GET.AMB 1
GET.HOSP 3
GET. LIST 1
GO.GREEN 1
GO.OFF.RED 2
GO.RED 1
INIT .ACCIDENT 2
LIVING 1
LEFT NO.PTS 1
PASS. TIME 2
PATIENT 4

FINAL. REPORT Routine MAIN 1

- 126 -

FINAL. REPORT 1

FIND.HOSP Routine Integer PREAMBLE 1
DISPATCHER 1
FIND.HOSP 1
GET. PATI ENT 1

FIND.LOC Routine Integer PREAMBLE 1
FIND.LOC 1
RECALL 1

FLIGHT. TIME Permanent attribute Double PREAMBLE 2
GET.NET 2 =
GET. TRAVEL. TIME 1
PRINT.NET 1

FOREVER Define to mean PREAMBLE 1
AMBULANCE. RUN 1
BEST. ROUTE 1
BUI LD.CALL.LIST 1
BUI LD. HOSP .LIST 1
GENERATOR 1

FREE Define to mean PREAMBLE 1
BUILD.ROUTE 1

FTIME. F Routine Double PREAMBLE 1
FTIME. F 1
GET .NET 1

FULL Permanent attribute Integer PREAMBLE 2
GET.HOSP 1 =
LEFT NO.PTS 3 =

G.ACCUM.CAP Permanent attribute Double PREAMBLE 2
MAIN 1 =
FINAL. REPORT 1

G.ACCUM.PTS Permanent attribute Double PREAMBLE 2
MAIN 1 =
FINAL. REPORT 1

G.MAX.ACCS Global variable Double PREAMBLE 1
FINAL. REPORT 1

G.MAX.DUR Global variable Double PREAMBLE 1
FI NAL. REPORT 1

G.MAX.MAXPEND Global variable Double PREAMBLE 1
FINAL. REPORT 1

G.MAX.PTS Global variable Double PREAMBLE 1
FINAL. REPORT 1

G.MEAN.ACCS Routine Double PREAMBLE 1
FINAL. REPORT 1

G.MEAN.AMB Routine Double PREAMBLE 1
FINAL. REPORT 1

G.MEAN.DUR Routine Double PREAMBLE 1
FINAL. REPORT 1

- 127 -

G.MEAN.MAXPEND Routine Double PREAMBLE 1
FINAL. REPORT 1

G.MEAN.PEND Routine Double PREAMBLE 1
FINAL. REPORT 1

G.MEAN.PTS Routine Double PREAMBLE 1
FINAL. REPORT 1

G.SSQ.CAP Permanent attribute Double PREAMBLE 2
MAIN 1 =
FINAL. REPORT 1

G.SSQ.PTS Permanent attribute Double PREAMBLE 2
MAIN 1 =
FINAL. REPORT 1

G.VAR.ACCS Routine Double PREAMBLE 1
FINAL. REPORT 1

G.VAR.AMB Routine Double PREAMBLE 1
FINAL.REPORT 1

G.VAR.DUR Routine Double PREAMBLE 1
FINAL. REPORT 1

G.VAR.MAXPEND Routine Double PREAMBLE 1

G.VAR.PEND Routine Double PREAMBLE 1
FINAL. REPORT 1

G.VAR.PTS Routine Double PREAMBLE 1
FINAL. REPORT 1

GENERATOR Process notice PREAMBLE 1
MAIN 1
GENERATOR 1

+ Global variable Pointer MAIN 1 =

GET.ACCS Routine Pointer PREAMBLE 1
GET.ACCS 1
INITIALIZE 1

GET .AMB Routine Integer PREAMBLE 1
DISPATCHER 5
GET.AMB 1

GET. EMS Routine GET. EMS 1
INITIALIZE 1

GET.HOSP Routine GET.HOSP 1
INITIALIZE 1

GET. IV.RATE Routine Double PREAMBLE 1
AMBULANCLRUN 3
GET. IV.RATE 1
GET • PATIENT 1

GET.LEVEL Routine Integer PREAMBLE 1
AMBULANCE. RUN 1
GET • LEVEL 1
GET. PATI ENT 1

- 128 -

GET. LIST Routine GET. LIST 1
INITIALIZE 2

GET. NET Routine GET.NET 1
INITIALIZE 1

GET .NUM.AMB Routine Integer PREAMBLE 1
DISPATCHER 3
GET.NUM.AMB 1

GET. PATIENT Routine AMBULANCE. RUN 2
GET. PATIENT 1

GET.SIM Routine GET .SIM 1
INITIALIZE 1

GET.TABLE Routine Pointer PREAMBLE 1
GET.TABLE 1
INITIALIZE 1

GET. TRAVEL. TIME Routine Double PREAMBLE 1
DISPATCHER 2
GET.AMB 1
GET. TRAVEL. TIME 1

GO.GREEN Routine Integer PREAMBLE 1
CHECK. RED 1
GO. GREEN 1
GO.OFF.RED 1

GO. ITEM Temporary entity PREAMBLE 1
BUILD.HOSP. LIST 2
READ.HOSP.LIST 1

+ Global variable Pointer BUI LD. HOSP. LIST 10 =
READ. HOSP. LI ST 4 =

GO.OFF.RED Event notice PREAMBLE 1
CHECK. RED 3
CLEAR. REDS 1
GO.OFF.RED 3

+ Global variable Pointer GO.OFF.RED 1

GO. RED Routine Integer PREAMBLE 1
CHECK. RED 1
GO.RED 1

GOR.HSP Temporary attribute Integer PREAMBLE 2
CHECK. RED 1 =
GO.OFF.RED 1 =

GOT.HELO Temporary attribute Integer PREAMBLE 2
DISPATCHER 2 =
PT.REPORT 1

GR.MAX.PTS Permanent attribute Integer PREAMBLE 2
MAIN 1
FI NAL. REPORT 1

GREEN. LIMIT Global variable Integer PREAMBLE 1
GET. SIM 1 =
GO.GREEN 1

GREEN.SET Set PREAMBLE 3

- 129 -

CHECK. RED 3
CLEAR. REDS 1
FIND.HOSP 1
GET.HOSP 1
GO.OFF.RED 1

GROUND Define to mean PREAMBLE 1
BUI LD.CALL. LIST 2
DISPATCHER 5
GET.AMB 2
GET. EMS 1
GET. TRAVEL. TIME 1
PRINT.NET 1
RECALL 1

H.CTS Temporary attribute Integer PREAMBLE 2
CTS.F 6 =
INIT. PT 1 =

H.READY.SET Set PREAMBLE 4
BUI LD.CALL. LIST 1
DISPATCHER 1
GET.AMB 2
GET. EMS 1

H.WAITING.SET Set PREAMBLE 2
AMBULANCE. RUN 1
CHECK.ACCIDENT 1
DISPATCHER 1

HCT Temporary attribute Double PREAMBLE 2
BLEED 2
PATIENT 3 =
UPDATE 1 =

HCT.O Define to mean PREAMBLE 2
PATIENT 1

HELO.COMING Temporary attribute Integer PREAMBLE 2
AMBULANCE. RUN 5 =
DISPATCHER 1 =

HOSP Temporary attribute Integer PREAMBLE 3
AMBULANCE. RUN 2 =
DISPATCHER 1 =
PATIENT 4
PT.REPORT 1
PVT. TRAVEL 1 =
TR. DELIVER. PT 1
TR. ENROUTE. HOSP 1
TR.PVT.TR.PT 1

HOSP.BASE Permanent attribute Integer PREAMBLE 2
DISPATCHER 1
GET.HOSP 4 =
GET • PATIENT 1
PRINT.NET 2
PVT. TRAVEL 2

HOSP. BASE. SET Set PREAMBLE 2
BUI LD. HOSP. LIST 1
GET.HOSP 2

- 130 -

HOSP.BP Temporary attribute Double PREAMBLE 2
PATIENT 1
PT. REPORT 1

HOSP.ID Permanent attribute Integer PREAMBLE 2
GET.HOSP 1 =

HOSP.LEVEL Temporary attribute Integer PREAMBLE 2
BUI LD. HOSP. LIST 2 =
FIND.HOSP 2
READ.HOSP.LIST 1 =
WRITE. HOSP • LIST 1

HOSP.LIST Set PREAMBLE 2
BUI LD.HOSP. LIST 4
FIND.HOSP 2
PRINT.NET 1
PVT.TRAVEL 2
READ. HOSP. LIST 1
WRITE. HOSP. LIST 1

HOSP.NAME Permanent attribute Text PREAMBLE 2
FINAL. REPORT 1
FIND.HOSP 1
GET.HOSP 1 =
PRINT.NET 2
RUN. REPORT 1
TR.DELIVER.PT 1
TR.ENROUTE.HOSP 1
TR.GO.GREEN 1
TR.GO.RED 1
TR.PVT.TR.PT 1
TR.RESUS.PT 1

HOSP.SET Set PREAMBLE 2
BUI LD. HOSP. LIST 1
GET.HOSP 1

HOSP.VOLUME Permanent attribute Double PREAMBLE 2
FIND.HOSP 2
GET.HOSP 1 =
PVT. TRAVEL 2

HOSPITAL Permanent entity PREAMBLE 1
GET.HOSP 1

+ Global variable Integer2 MAIN 15 =
FI NAL. REPORT 2 =
GET.HOSP 10 =
RUN. REPORT 8 =

HOSPITAL. 10 Temporary attribute Integer PREAMBLE 2
BUILD.HOSP.LIST 2 =
FIND.HOSP 6
PRINT.NET 2
PVT.TRAVEL 3
READ.HOSP. LIST 1
WR ITE. HOS P • LI ST 1

HOUR.F Library routine DISPATCHER 3
FIND.HOSP 2
GENERATOR 1
PASS. TIME 1
PATIENT 2

- 131 -

RECALL 1
TR.CHECK.IN.ACC 1
TR.CHECK.IN.AMB 1
TR.CHECK.OUT.ACC 1
TR.CHECK.OUT.PT 1
TR.DELIVER.PT 1
TR.ENROUTE.HOSP 1
TR.GO.GREEN 1
TR.GO.RED 1
TR.ON.SCENE 1
TR.PICKUP.PT 2
TR.PVT.TR.PT 1
TR.RESUS.PT 1
TR.SEND.AMB 1
TR.TO.HOME 1
TR.UNSTACK.ACC 1

HOURS.V Permanent attribute Double BLEED 1
CHECK. RED 1
DONE 1
GENERATOR 1
GET. IV. RATE 1
GET. PATI ENT 1
GO.OFF.RED 1
INIT .PT 1
PASS. TIME 2
PATIENT 6
PT.REPORT 1
PVT. TRAVEL 1
RUN.REPORT 2

HTOL Global variable Double PREAMBLE 1
BUILD.HOSP.LIST 2
GET .SIM 1 =
PRINT.NET 1

IN.USE Define to mean PREAMBLE 1
BUILD.ROUTE 1

INFO. LAG Global variable Double PREAMBLE 1
ACCIDENT 1
GET.SIM 1 =

INIT .ACCIDENT Routine GENERATOR 1
INIT.ACCIDENT 1

INIT. PT Routine INIT .ACCIDENT 1
INIT. PT 1

INITIALIZE Routine MAIN 1
INITIALIZE 1

INJURY.LOC Temporary attribute Integer PREAMBLE 2
INIT .PT 1 =
PT. REPORT 1

INJURY. TIME Temporary attribute Double PREAMBLE 2
DONE 1
PASS. TIME 2
PATIENT 2 =
PT.REPORT 1

INT.F Library routine DISPATCHER 1

- 132 -

GET.NUM.AMB 1
INIT .PT 2

INTEGRATOR. V Permanent attribute Integer GET.SIM 1 =

IS. TO. IV Define to mean PREAMBLE 1
BLEED 1

ISS Temporary attribute Integer PREAMBLE 2
INIT .PT 9 =
PATIENT 2
PT. REPORT 1

IV.RATE Temporary attribute Double PREAMBLE 2
AMBULANCE. RUN 3 =
BLEED 1
GET. PATI ENT 1 =
PATIENT 1

IV. START. TIME Temporary attribute Double PREAMBLE 3
BLEED 2
GET • PATIENT 1 =

KIND Temporary attribute Integer PREAMBLE 3
ACCIDENT 1
AMBULANCE. RUN 6
ASSIGN.AMB 1 =
DISPATCHER 2
INIT .ACCIDENT 4 =
TR.CHECK. IN .ACC 1
TR.CHECK.OUT.ACC 1
TR.ENROUTE.HOSP 1
TR.ON.SCENE 1
TR.PICKUP.PT 1
TR.SEND.AMB 1
TR.STACK.ACC 1
TR.UNSTACK.ACC 1

LAPLACE. F Routine Double PREAMBLE 1
LAPLACE. F 1
MYGAMMA.F 1

LAT Permanent attribute Double PREAMBLE 2
FTIME.F 2
GET.NET 1

LEVEL Permanent attribute Integer PREAMBLE 2
BUI LD. HOSP. LIST 5
GET.HOSP 1 =
PRINT.NET 2

LEVELl Define to mean PREAMBLE 1
GET.LEVEL 1
GET • PATIENT 1
PRINT.NET 2

LEVEL2 Define to mean PREAMBLE 1
ASSIGN.AMB 1
PRINT.NET 2

LEVEL2A Define to mean PREAMBLE 1
BUI LD.HOSP. LIST 1
GET.LEVEL 1

- 133 -

PRINT.NET 2

LEVEL3 Define to mean PREAMBLE 1
AMBULANCE. RUN 2
ASSIGN.AMB 1
GET. LEVEL 1
GET. PATIENT 1
PRINT.NET 2

LIN. INT. F Routine Double PREAMBLE 1
LIN. I NT. F 1
NSP.F 1

LINES. V Temporary attribute Integer MAIN 4 =

LIVING Routine Integer PREAMBLE 1
DONE 1
LIVING 1
PASS. TIME 1
PATIENT 2

LL. TIME Global variable Double PREAMBLE 1
FTIMLF 1
GET .NET 1
GET .SIM 1 =

LOG.L F Library routine LAPLACLF 2
MYGAMMA.F 4
NSP.F 1

LOG. NORMAL. F Library routine AMBULANCE. RUN
GET.IV.RATE

2
1

LONG Permanent attribute Double PREAMBLE 2
FTIML F 1
GET .NET 1 =

M.DELIVER Global variable Double PREAMBLE 1
AMBULANCE. RUN 1
GET .SIM 1 =

M.PATIENT.COUNTER Global variable Integer PREAMBLE 2
MAIN 1
INIT .ACCIDENT 1 =

M.SECURE Global variable Double PREAMBLE 1
AMBULANCE. RUN 1
GET.SIM 1

MAJOR.CUTOFF Global variable Double PREAMBLE 1
GET. LEVEL 1
GET .SIM 2 =
PRINT.NET 1

MAJOR. TIME Global variable Integer PREAMBLE 1
GET. PATIENT 1
GET.SIM 1 =

MAX.F Library routine MAIN 1
GET.IV.RATE 2
GET.NUM.AMB 1
INIT. PT 1
LEFT NO.PTS 1

- 134 -

MAX. RED Global variable Integer PREAMBLE 1
GET.SIM 1 =
GO.OFF.RED 1

MAX. RED. HaSP Global variable Integer PREAMBLE 1
GET.SIM 1 =
GO. RED 1

MAX.STEP.V Permanent attribute Real GET .SIM 1 =

MAXRTS Define to mean PREAMBLE 1
AMBULANCE. RUN 1
GET .SIM 2

MDT Set PREAMBLE 2
BEST.ROUTE 4

MED.COUNTER Gl oba 1 variable Integer PREAMBLE 2
MAIN 1
INIT .ACCIDENT 1 =

MEDICAL Define to mean PREAMBLE 1
ACCIDENT 1
AMBULANCE. RUN 3
DISPATCHER 2
INIT .ACCIDENT 2

MIN.AMB Global variable Integer PREAMBLE 1
BUI LD.CALL. LIST 1
GET.SIM 1 =

MIN.F Library routine AMBULANCE. RUN 1
GET. PATI ENT 1

MIN. LENGTH Global variable Double PREAMBLE 1
FI NAL. REPORT 1
GENERATOR 1
GET .SIM 1 =

MIN. RED Global variable Integer PREAMBLE 1
CHECK. RED 2
GET .SIM 1 =
GO.OFF.RED 1

MIN.STEP.V Permanent attribute Real GET .SIM 1 =
MINOR. CUTOFF Global variable Double PREAMBLE 1

AMBULANCE. RUN 1
GET. LEVEL 1
GET.SIM 2 =
PRINT.NET 1

MINOR. TIME Global variable Integer PREAMBLE 1
GET • PATIENT 1
GET .SIM 1 =

MINUTE.F Library routine DISPATCHER 3
FIND.HOSP 2
GENERATOR 1
PASS. TIME 1
PATIENT 2
RECAll 1
TR.CHECK.IN.ACC 1

- 135 -

TR.CHECK.IN.AMB 1
TR.CHECK.OUT.ACC 1
TR.CHECK.OUT.PT 1
TR.DELIVER.PT 1
TR. ENROUTE. HOSP 1
TR.GO.GREEN 1
TR.GO.RED 1
TR.ON.SCENE 1
TR.PICKUP.PT 2
TR. PVT. TR. PT 1
TR.RESUS.PT 1
TR.SEND.AMB 1
TR.TO.HOME 1
TR.UNSTACK.ACC 1

MINUTES.V Permanent attribute Double BLEED 1
DONE 1
FTIME.F 1
GET. IV. RATE 1
GET .NET 1
GET • PATIENT 1
INIT .PT 1
PASS. TIME 2
PATIENT 6
PT.REPORT 1
PVT.TRAVEL 1
RUN.REPORT 1

MOD.F Library routine NSP.F 1

MYBETA.F Routine Double PREAMBLE 1
INIT .PT 1
MYBETA.F 1

MYGAMMA.F Routine Double PREAMBLE 1
AMBULANCE. RUN 1
GET. TRAVEL. TIME 2
MYBETA.F 2
MYGAMMA.F 1
PATIENT 1
PVT. TRAVEL 1

N.ACC.PATIENT.SET Temporary attribute Integer2 DISPATCHER 2

N.AMB.PATIENT.SET Temporary attribute Integer2 TR.ENROUTE.HOSP 1

N.AMB.SET Temporary attribute Integer2 CHECK.ACCIDENT 1
DISPATCHER 1

N.AMBULANCE Global variable Integer2 MAIN 1
GENERATOR 1

N.CTS Temporary attribute Integer PREAMBLE 2
CTS.F 1
INIT .PT 5 =

N.EDGE.SET Permanent attribute Integer2 GET .NET 1

N.H.READY.SET Permanent attribute Integer2 PREAMBLE 1
MAIN 1
GENERATOR 1

N.NODE.AMB.SET Permanent attribute Integer2 GET.AMB 1

- 136 -

N.PENDING.SET Permanent attribute Integer2 PREAMBLE 1
MAIN 1
DISPATCHER 1

N.READY.SET Permanent attribute Integer2 PREAMBLE 1
MAIN 1
GENERATOR 1

N.RED.SET Permanent attribute Integer2 GO. RED 1

N.TEMP.SET Permanent attribute Integer2 BUI LD.CALL. LIST 1
BUI LD .HOSP. LIST 1

NEED.HELO Temporary attribute Integer PREAMBLE 2
GET. PATI ENT 1 =
PT. REPORT 1

NEEDED Temporary attribute Integer PREAMBLE 2
DISPATCHER 12 =

NEW. INFO Define to mean PREAMBLE 1
ACCIDENT 1
DISPATCHER 1

NMPD Define to mean PREAMBLE 1
FTIMLF 2

NO.BLUNT Global variable Integer PREAMBLE 2
MAIN 1
FINAL. REPORT 1
INIT .ACCIDENT 1 =

NO. DEATHS Global variable Integer PREAMBLE 2
MAIN 1
FINAL. REPORT 1
PASS. TIME 1 =
PATIENT 2 =

NO.PENDED Global variable Integer PREAMBLE 2
MAIN 1
GET.AMB 1 =

NO.PTS Permanent attribute Integer PREAMBLE 2
GO.OFF.RED 1
LEFT NO.PTS 1
LEFT NO.PTS 2 =
PATIENT 2 =

NO.PTS.LEFT Define to mean PREAMBLE 1
CHECK.ACCIDENT 1
DISPATCHER 1

NO. RUNS Global variable Integer PREAMBLE 1
MAIN 1
FI NAL. REPORT 3
GET .SIM 1 =

NO. VICTIMS Temporary attribute Integer PREAMBLE 2
DISPATCHER 1
INIT.ACCIDENT 3 =

NODE Permanent entity PREAMBLE 2
BUI LD.CALL. LIST 5

- 137 -

BUI LD. HOSP. LIST 2
GET .NET 3

+ Global variable Integer2 BEST.ROUTE 2 =
BUI LD.CALL. LIST 8 =
BUI LD.HOSP. LIST 4 =
GET .NET 2 =
INIT .ACCIDENT 2 =
PRINT.NET 9 =
WRITE. CALL. LIST 3 =
WRITE. HOSP. LIST 3 =

+ Implied subscript GET.AMB 1

NODE.AMB.SET Set PREAMBLE 2
BUILD.CALL. LIST 2
GET. EMS 1
TRAVEL 2

NODE. ID Permanent attribute Integer PREAMBLE 2
GET.NET 1 =

NODE. NAME Permanent attribute Text PREAMBLE 2
GET .NET 1
PRINT.NET 7
TR.CHECK.IN.ACC 1
TR.CHECK.IN.AMB 1
TR.ON.SCENE 1

NODE. SET Set PREAMBLE 2
BEST. ROUTE 5

NOT.WORKING Define to mean PREAMBLE 1
RECALL 1

NSP.F Routine Double PREAMBLE 1
GENERATOR 2
NSP.F 1

NSP. LAST. TIME Global variable Double PREAMBLE 1
MAIN 1 =
NSP.F 2 =

NSP.TPRIME Global variable Double PREAMBLE 1
MAIN 1 =
NSP.F 3 =

NTRPT Define to mean PREAMBLE 1

NULL Define to mean PREAMBLE 1
ACCIDENT 2
AMBULANCE. RUN 2
CHECK.ACCIDENT 1
CHECK. RED 1
CLEAR. REDS 2
FIND.HOSP 2
GET.AMB 2
GO.OFF.RED 1

NUM.HELO Global variable Integer PREAMBLE 1
GET. EMS 1 =
RUN.REPORT 2

02. DELI VERY Temporary attribute Double PREAMBLE 2
LIVING 1

- 138 -

PATIENT 1 =
UPDATE 1 =

02.SAT Temporary attribute Double PREAMBLE 2
BLEED 1
INn .PT 1 =
PATIENT 1
RESP.SUPPORT 1 =

02.SAT.O Define to mean PREAMBLE 2

ON.SCENE.SET Set PREAMBLE 3
CHECK.ACCIDENT 1
DISPATCHER 1

OPS Define to mean PREAMBLE 1
BLEED 1

OUT.OF.SERVICE.SET Set PREAMBLE 2

OVERRIDE.COUNTER Global variable Integer PREAMBLE 2
MAIN 1
FIND.HOSP 1

P.SECURE Global variable Double PREAMBLE 1
AMBULANCE. RUN 1
GET.SIM 1 =

PASS. TIME Routine PASS. TIME 1
PATIENT 4

PATIENT Process notice PREAMBLE 1
INn.ACCIDENT 2
PATIENT 1

+ Implied subscript BLEED 1
DONE 1
PASS. TIME 1
PATIENT 2

+ Global variable Pointer PATIENT 1

PATIENT .COUNTER Global variable Integer PREAMBLE 1
INn.ACCIDENT 3 =

PATIENT .SET Set PREAMBLE 3
GENERATOR 1
INn .ACCIDENT 1
PATIENT 2

PENDED Temporary attribute Integer PREAMBLE 2
GET.AMB 2 =
INn.ACCIDENT 1 =

PENDING.SET Set PREAMBLE 4
DISPATCHER 5
GET.AMB 2

PHASE Temporary attribute Integer PREAMBLE 2
AMBULANCE. RUN 2 =
DONE 2
GET. PATIENT 1 =
INn. PT 1 =
PASS. TIME 7 =
PATIENT 3 =

- 139 -

PVT.TRAVEL 1 =

POISSON.F Li brary routi ne INIT .ACCIDENT 1

PRINT.NET Routine INITIALIZE 1
PRINT.NET 1

PRIVATE Define to mean PREAMBLE 1
PVT. TRAVEL 1

PROB.SURV Temporary attribute Double PREAMBLE 2
PATIENT 4 =
PT.REPORT 1

PROP.ACCS Global variable Double PREAMBLE 1
INIT.ACCIDENT 1
INITIALIZE 1 =

PSTF Define to mean PREAMBLE 1

PT.ID Temporary attribute Integer PREAMBLE 2
BLEED 1
INIT.ACCIDENT 1 =
PASS. TIME 1
PATIENT 2
PT.REPORT 1
TR.CHECK.IN.PT 1
TR.CHECK.OUT.PT 1
TR.PICKUP.PT 1
TR. PVT. TR. PT 1
TR.RESUS.PT 1

PT.REPORT Routine PATIENT 2
PT. REPORT 1

PTS.PER.ACC Global variable Double PREAMBLE 1
GET.SIM 1

PVT.TR.ARRIVE Temporary attribute Double PREAMBLE 2
DONE 1
PASS. TIME 1
PVT. TRAVEL 1 =

PVT. TR.SET Set PREAMBLE 3
PATIENT 1
PVT. TRAVEL 1

PVT.TRAV Define to mean PREAMBLE 1
DONE 1
PASS. TIME 2
PATIENT 1
PVT. TRAVEL 1

PVT.TRAVEL Routine ACCIDENT 1
PVT.TRAVEL 1

R.ACCUM.CAP Permanent attribute Double PREAMBLE 2
MAIN 2 =
LEFT NO.PTS 1 =
RUN. REPORT 2

R.ACCUM.PTS Permanent attribute Double PREAMBLE 2
MAIN 2 =

- 140 -

LEFT NO.PTS 1 =
RUN.REPORT 2

R.CTS Temporary attribute Integer PREAMBLE 2
CTS.F 1
INIT .PT 5 =
RESP.SUPPORT 2 =

R.EST.DEATHS Global variable Double PREAMBLE 1
MAIN 1 =
PATIENT 1 =
RUN. REPORT 2

R.IDLLAMB Routine Double PREAMBLE 1
MAIN 1
RUN.REPORT 2

R.IDLE.HELO Routine Double PREAMBLE 1
RUN. REPORT 2

R.MAX.PENDING Global variable Double PREAMBLE 1
MAIN 1
RUN. REPORT 1

R.MAX.PTS Permanent attribute Integer PREAMBLE 2
MAIN 3 =
LEFT NO.PTS 1 =
RUN.REPORT 1

R.MEAN.PENDING Routine Double PREAMBLE 1
MAIN 1
RUN. REPORT 2

R.MEAN.RED Routine Double PREAMBLE 1
RUN. REPORT 2

R.NO.ACCS Global variable Double PREAMBLE 1
MAIN 1
GENERATOR 1
RUN. REPORT 2

R.NO.BLUNT Global variable Double PREAMBLE 1
RUN. REPORT 2

R.NO.DEATHS Global variable Double PREAMBLE 1
RUN.REPORT 2

R.NO.DIVERT Global variable Double PREAMBLE 1
RUN. REPORT 2

R.NO.M.PTS Global variable Double PREAMBLE 1

R.NO.MEDS Global variable Double PREAMBLE 1
RUN. REPORT 1

R.NO.OVERRIDE Global variable Double PREAMBLE 1
RUN. REPORT 2

R.NO.PENDED Global variable Double PREAMBLE 1
RUN. REPORT 4

R.NO.T.PTS Global variable Double PREAMBLE 1
MAIN 1

- 141 -

RUN. REPORT 2

R.PT Temporary attribute Pointer PREAMBLE 2
GET. PATIENT 1
PATIENT 1

R.SSQ.CAP Global variable Double PREAMBLE 1

R.SSQ.PTS Global variable Double PREAMBLE 1

RANDOM. F Library routine ACCIDENT 1
AMBULANCE. RUN 1
FIND.HOSP 1
INIT .ACCIDENT 3
INIT .PT 2
LAPLACE.F 1
MYGAMMA.F 3
NSP.F 1
PVT.TRAVEL 1

RANGE Global variable Double PREAMBLE 1
GET .NET 1 =

RBC.MASS Temporary attribute Double PREAMBLE 2
BLEED 1
PATIENT 1 =
UPDATE 1 =

READ.CALL. LIST Routine INITIALIZE 1
READ.CALL. LIST 1

READ.HOSP. LIST Routine INITIALIZE 1
READ.HOSP. LIST 1

READY. SET Set PREAMBLE 3
DISPATCHER 1
GET.AMB 3
GET.EMS 1

RECALL Routine DISPATCHER 2
RECALL 1

RED Permanent attribute Integer PREAMBLE 3
MAIN 1
CHECK. RED 2 =
CLEAR. REDS 1 =
GET .HOSP 1
GO.OFF.RED 1 =

RED. LIMIT Global variable Integer PREAMBLE 1
GET .SIM 1 =
GO. RED 1

RED.SET Set PREAMBLE 3
CHECK.RED 2
CLEAR. REDS 2
FIND.HOSP 1
GENERATOR 1
GO.OFF.RED 1

RED.START Permanent attribute Double PREAMBLE 2
CHECK. RED 2 =
GO.OFF.RED 1

- 142 -

RED. TODAY Permanent attribute Integer PREAMBLE 2
CHECK. RED 1 =
CLEAR. REDS 1 =
GET .HOSP 1 =
GO. RED 1

REDS.PER.DAY Global variable Integer PREAMBLE 1
GET.SIM 1 =
GO. RED 1

REL.ERR.V Permanent attribute Real GET .SIM 1

REQ.AMB Define to mean PREAMBLE 1
ACCIDENT 1
DISPATCHER 1

REQ.CAR Define to mean PREAMBLE 1

REQ.HELO Define to mean PREAMBLE 1
DISPATCHER 1
GET • PATIENT 1

REQ.HELP Define to mean PREAMBLE 1
CHECK.ACCIDENT 1
DISPATCHER 1

RESCUE.BP Temporary attribute Double PREAMBLE 2
PATIENT 1 =
PT. REPORT 1

RESP.SUPPORT Event notice PREAMBLE 1
GET • PATIENT 1
PATIENT 1
RESP.SUPPORT 1

+ Global variable Pointer GET • PATIENT 1 =
PATIENT 1 =
RESP.SUPPORT 1

RESP. TIME Temporary attribute Double PREAMBLE 2
GET • PATIENT 2 =

RESUS Define to mean PREAMBLE 1
AMBULANCE. RUN 1
DONE 1
PASS. TIME 4
PATIENT 1

RESUS.PATIENT.SET Set PREAMBLE 3
AMBULANCE. RUN 1
PATIENT 2

RESUS. TIME Temporary attribute Double PREAMBLE 2
DONE 1
PASS. TIME 1
PATIENT 3 =
PT. REPORT 1

ROPENERR.V Temporary attribute Integer GET .LIST 1

ROUTE Set PREAMBLE 3
BUILD.ROUTE 2
CHOKE.F 1
FIND.LOC 2

- 143 -

RUN Global variable Integer PREAMBLE 1
MAIN 1
GENERATOR 2
PT.REPORT 1
RUN. REPORT 2

RUN.COUNTER Global variable Integer PREAMBLE 1
ASSIGN.AMB 1 =

RUN. I D Temporary attribute Integer PREAMBLE 2

RUN. REPORT Routine MAIN 1
RUN. REPORT 1

RUNGE. KUTTA.R Library routine GET.SIM 1

S.DELIVER Global variable Double PREAMBLE 1
AMBULANCE. RUN 1
GET.SIM 1 =

S.MAX.PTS Permanent attribute Integer PREAMBLE 2
MAIN 1 =
FINAL. REPORT 1

S.SECURE Global variable Double PREAMBLE 1
AMBULANCE. RUN 1
GET .SIM 1 =

SBP Temporary attribute Double PREAMBLE 2
BLEED 2
CTS.F 4
GET.IV.RATE 2
PATIENT 5 =
UPDATE 1 =

SBP.O Define to mean PREAMBLE 2
BLEED 2
GET. IV. RATE 2
PATIENT 1

SCENE.RX Define to mean PREAMBLE 1
GET • PATIENT 1
PASS. TIME 1

SCENE. TIME Temporary attribute Double PREAMBLE 3
AMBULANCE. RUN 6 =
DONE 1
GET • PATIENT 2
PASS. TIME 1
PATIENT 1 =
PT. REPORT 1

SEED.V Permanent attribute Integer GET.SIM 3 =
SENT Temporary attribute Integer PREAMBLE 2

DISPATCHER 5
GET .AMB 1 =

SIGN.F Library routine BLEED 1

SINK Temporary attribute Integer PREAMBLE 2
BEST. ROUTE 6
BUILD.ROUTE 1 =

- 144 -

GET .NET 1
PRINT.NET 1

SITE Temporary attribute Integer PREAMBLE 2
ASSIGN.AMB 1
GET.AMB 1
GET. PATIENT 1
INIT .ACCIDENT 1 =
INIT .PT 1
PVT.TRAVEL 4
TR.CHECK.IN.ACC 1

SOURCE Temporary attribute Integer PREAMBLE 2
BEST. ROUTE 2
BUILD.ROUTE 1 =
GET .NET 2 =

SQRT.F Library routine ADJ.TIME.F 1
FINAL. REPORT 3
FTIME.F 1
INIT .PT 1
MYGAMMA.F 1

SRC Temporary attribute Integer PREAMBLE 2
AMBULANCE. RUN 1 =
FIND.LOC 3

SSPND Define to mean PREAMBLE 1

STA.A Temporary attribute Integer2 AMBULANCE. RUN 1

START. TIME Global variable Double PREAMBLE 1
MAIN 2 =
GENERATOR 1

STATUS Temporary attribute Integer PREAMBLE 2
AMBULANCE. RUN 2 =
RECALL 1 =

T.ON.SCENE Global variable Double PREAMBLE 1
AMBULANCE. RUN 2
GET.SIM 1 =

T.PATIENT.COUNTER Global variable Integer PREAMBLE 2
MAIN 1
INIT .ACCIDENT 1 =

T.RESUS Global variable Double PREAMBLE 1
GET.SIM 1 =
PATIENT 2

T. TO. PT Global variable Double PREAMBLE 1
AMBULANCE. RUN 1
GET .SIM 1 =

T.TX Global variable Double PREAMBLE 1
GET.SIM 1
PATIENT 1

TCONST Define to mean PREAMBLE 1
BLEED 1

TCRUISE Global variable Double PREAMBLE 1

- 145 -

ADJ. TIME. F 3
GET .SIM 1 =

TEMP.SET Set PREAMBLE 2
BUILD.CALL.LIST 7
BUI LD.HOSP. LIST 5

TIME.A Temporary attribute Double AMBULANCE. RUN 3 =
DISPATCHER 3 =
FIND.LOC 1
GENERATOR 1
RECALL 2 =

TIME. V Permanent attribute Double MAIN 3 =
ACCIDENT 1
AMBULANCE. RUN 1
BLEED 2
CHECK.RED 2
DISPATCHER 6
DONE 2
FIND.HOSP 2
GENERATOR 3
GET • PATIENT 1
GO.OFF.RED 1
INIT .ACCIDENT 1
LEFT NO.PTS 2
PASS. TIME 4
PATIENT 14
PVT. TRAVEL 1
RECALL 2
RUN. REPORT 1
TR.CHECK.IN.ACC 1
TR.CHECK.IN.AMB 1
TR.CHECK.OUT.ACC 1
TR.CHECK.OUT. PT 1
TR.DELIVER.PT 1
TR. ENROUTE. HOSP 1
TR.GO.GREEN 1
TR.GO.RED 1
TR.ON.SCENE 1
TR.PICKUP.PT 2
TR.PVT.TR.PT 1
TR.RESUS.PT 1
TR.SEND.AMB 1
TR.TO.HOME 1
TR.UNSTACK.ACC 1

TMP.ACCS Global variable Integer PREAMBLE 2
MAIN 1 =

TMP.AMBS Global variable Double PREAMBLE 2
MAIN 1 =

TMP.DUR Global variable Double PREAMBLE 2
MAIN 3 =
RUN.REPORT 6

TMP.MN.PEND Gl oba 1 variable Double PREAMBLE 2
MAIN 1 =

TMP.MX.PEND Global variable Integer PREAMBLE 2
MAIN 1 =

- 146 -

TMP.PTS Global variable Integer PREAMBLE 2
MAIN 1

TO. BASE Define to mean PREAMBLE 1
AMBULANCE. RUN 1
DISPATCHER 1

TO.BASLSET Set PREAMBLE 3
DISPATCHER 2

TO.HOSP Define to mean PREAMBLE 1
AMBULANCE. RUN 1
DISPATCHER 1

TO.HOSP.SET Set PREAMBLE 3
DISPATCHER 2

TO.SCENE Define to mean PREAMBLE 1

TO.SCENLSET Set PREAMBLE 3
ASSIGN.AMB 1
DISPATCHER 1
RECALL 2

TOO Temporary attribute Double PREAMBLE 2
PASS. TIME 1 =
PATIENT 1 =
PT. REPORT 1

TOT.COUNTER Global variable Integer PREAMBLE 1
GENERATOR 2 =

TR.CHECK.IN.ACC Routine PREAMBLE 1
INIT.ACCIDENT 1
TR.CHECK.IN.ACC 1

TR.CHECK.IN.AMB Routine PREAMBLE 2
DISPATCHER 2
GET. EMS 2
TR.CHECK.IN.AMB 1

TR.CHECK.IN.PT Routine PREAMBLE 1
INIT.ACCIDENT 1
TR.CHECK.IN.PT 1

TR.CHECK.OUT.ACC Routine PREAMBLE 1
ACCIDENT 1
TR.CHECK.OUT.ACC 1

TR.CHECK.OUT. PT Routine PREAMBLE 1
PATIENT 2
TR.CHECK.OUT.PT 1

TR. DELIVER. PT Routine PREAMBLE 1
DISPATCHER 1
TR.DELIVER.PT 1

TR. ENROUTL HOSP Routine PREAMBLE 1
DISPATCHER 1
TR. ENROUTL HOSP 1

TR.GO.GREEN Routine PREAMBLE 1
CHECK. RED 1

- 147 -

CLEAR. REDS 1
GET.HOSP 1
GO.OFF.RED 1
TR.GO.GREEN 1

TR.GO.RED Routine PREAMBLE 1
CHECK. RED 1
TR.GO.RED 1

TR.ON.SCENE Routine PREAMBLE 1
DISPATCHER 1
TR.ON.SCENE 1

TR.PICKUP.PT Routine PREAMBLE 1
AMBULANCE. RUN 1
GET • PATIENT 1
TR.PICKUP.PT 1

TR.PROP Global variable Double PREAMBLE 1
GET.SIM 1 =
INIT .ACCIDENT 1

TR.PVT.TR.PT Routine PREAMBLE 1
PVT.TRAVEL 1
TR.PVT.TR.PT 1

TR.RESUS.PT Routine PREAMBLE 1
AMBULANCE. RUN 1
PATIENT 1
TR.RESUS.PT 1

TR.SEND.AMB Routine PREAMBLE 1
ASSIGN.AMB 1
TR.SEND.AMB 1

TR.STACK.ACC Routine PREAMBLE 1
GET .AMB 1
TR.STACK.ACC 1

TR.TO.HOME Routine PREAMBLE 1
DISPATCHER 1
TR.TO.HOME 1

TR.UNSTACK.ACC Routine PREAMBLE 1
DISPATCHER 3
TR.UNSTACK.ACC 1

TRANSIT. TIME Permanent attribute Double PREAMBLE 2
BUILD.CALL. LIST 3
BUILD.HOSP. LIST 3
GET.NET 2 =
GET • PATIENT 1
GET. TRAVEL. TIME 1
PRINT.NET 2
PVT.TRAVEL 1

TRANSP.MODE Temporary attribute Integer PREAMBLE 2
AMBULANCE. RUN 1 =
GET. PATIENT 1 =
PT.REPORT 1
PVT. TRAVEL 1 =

TRANSP. TIME Temporary attribute Double PREAMBLE 2

- 148 -

DONE 1
PASS. TIME 1
PATIENT 2 =
PT.REPORT 1

TRAUMA Define to mean PREAMBLE 1
AMBULANCE. RUN 3
INIT .ACCIDENT 2
TR.CHECK.IN.ACC 1
TR.CHECK.OUT.ACC 1
TR.ENROUTE.HOSP 1
TR.ON.SCENE 1
TR.PICKUP.PT 1
TR.SEND.AMB 1
TR.STACK.ACC 1
TR.UNSTACK.ACC 1

TRAVEL Routine AMBULANCE. RUN 3
TRAVEL 1

TRAVEL. TIME Permanent attribute Double PREAMBLE 2
DISPATCHER 2 =
FIND.LOC 1
GET.AMB 1 =
TRAVEL 1

TRF.RATE Temporary attribute Double PREAMBLE 2
PATIENT 1 =

TRF .START. TIME Temporary attribute Double PREAMBLE 2
PATIENT 1 =

TRUE Define to mean PREAMBLE 1
ACCIDENT 1
AMBULANCE. RUN 4
BUILD.HOSP.LIST 5
CHECK. RED 3
DISPATCHER 2
DONE 5
FIND.HOSP 1
GET.AMB 1
GET. PATI ENT 2
GO.GREEN 1
GO. RED 2
INIT .ACCIDENT 1
LIVING 1
LEFT NO.PTS 1
PATIENT 1
PVT. TRAVEL 1

TRUNC.F Library routine NSP.F 1

TX. TIME Temporary attribute Double PREAMBLE 2
PATIENT 2 =
PT. REPORT 1

TYPE Permanent attribute Integer PREAMBLE 2
AMBULANCE. RUN 4
ASSIGN.AMB 1
BUI LD.CALL. LIST 2
DISPATCHER 3
GET.AMB 3
GET. EMS 3 =

- 149 -

GET • PATIENT 1
PRINT.NET 1
RECALL 1

UIB.R Implied subscript GET .LIST 1

UIB.W Implied subscript MAIN 4
PRINT.NET 6
RUN. REPORT 1

UNIFORM.F Library routine DISPATCHER 1

UPDATE Routine PASS. TIME 1
PATIENT 1
UPDATE 1

UPDATE. TIME Permanent attribute Double PREAMBLE 2
LEFT NO.PTS 2 =

UPDATED Temporary attribute Integer PREAMBLE 2
ACCIDENT 1 =
DISPATCHER 1

V.SET Set PREAMBLE 2
BEST.ROUTE 9

WAIT. TIME Temporary attribute Double PREAMBLE 2
DONE 1
PASS. TIME 1
PATIENT 1
PT.REPORT 1

WAITING Define to mean PREAMBLE 1
INIT. PT 1

WEEKDAY.F Library routine GENERATOR 1
TR.RESUS.PT 1

WEIGHT Temporary attribute Double PREAMBLE 2
BEST.ROUTE 4
BUILD. ROUTE 1 =
FIND.LOC 2
GET .NET 2 =
PRINT.NET 1

WORKING Define to mean PREAMBLE 1
AMBULANCE. RUN 2

WRITE. CALL. LIST Routine INITIALIZE 1
WRITE. CALL. LI ST 1

WRITE. HOSP • LIST Routine INITIALIZE 1
WRITE.HOSP.LIST 1

WRK Define to mean PREAMBLE 1
AMBULANCE. RUN 1

- 150 -

ems.dat

4
.25
.5
.5
3.0
3.0
6.15
.097
2.22
10.4
2.60
15.0
5.0
5
3
.35
.30
.95
.90
39
19
4.0
1 1
1 4
8.00

Appendix 3

Data Files

-- general simulation control information

;number of runs -- must be at least 2 for valid summary stats
;min number of days in a run

;trauma proportion
;average no. pts I accident
;minutes before alarm turned in
;minutes til 1st responder calls disp wI accurate info
6.82 ;mean & sd secure time
;prob of needing secure time
;minutes til pt found
;minutes on scene
1.95 ;mean & sd deliver time
;resus time
;transfer time
;TCRUISE -- time in minutes to attain crulslng speed
;min.amb -- minimum no. of ambulance's on a call list
;atol -- proportional diff in times deemed negligible
;htol -- same

;% of cts cutoff for minor trauma--note rts range of 0 to 7.8408
;cts <= this value goes to level 1 center

;minor.time
;major. time
;mean launch+land time for helo
2 ;red.limit, green.limit, max.red.hosp
1 ;min and max red time in hours, no.reds per day

time of day to clear red status (assume sim starts at MN)

cont.dat
.0003472
.00001157
.1

-- continuous simulation control
;max.step NO.5 minute
;min.step N1.0 second

;abs.error
.01

amb.dat
41
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

4 01
1 04
1 09
3 07
6 010
2 013
10 019
14 020
19 022
5 023
8 024
18 025
7 026
15 028
11 030
20 032
9 035

;rel.error

ambulances
;no. ambulances
;type (l=ground, 2=air), node of base, name

;letter = county, # = unit 10

- 151 -

1 12 041
1 17 042
1 16 050
1 13 071
1 26 N1
1 26 N2
1 25 N3
1 24 N4
1 23 N5
1 22 N6
1 21 B32
1 29 C70
1 27 C72
1 30 C74
1 28 C76
1 31 P1
1 34 S80
1 34 S83
1 32 S81
1 33 S82
1 36 S88
1 37 G1
2 1 H1
2 2 H2

hosp.dat -- hospital information
12 ;no. hospitals -- must agree wi no. of lines following!
UMC 1 95 1 5 1 ;University Iname, base, vol in 1000's, level, tcenter
BAP 2 35 2 3 1 ;Baptist capacity, can.divert (l=yes, O=no)
MMC 14 30 3 2 1 ;Memorial watch coding! 4 => level 3!
MTH 1 15 4 1 1 ;Methodist
STl 15 15 3 1 1 ;St luke's
BCH 13 15 3 1 1 ;Beaches
STV 6 35 3 2 1 ;St Vincent's
RVS 6 12 4 1 1 ; Ri vers i de
HUM 28 18 3 1 0 ;Humana (Orange Park Community)
NGH 26 15 4 1 0 ;Nassau General
FlG 34 18 4 1 0 ;Flagler
PCH 31 18 4 1 0 ;Putnam Community

net.dat
37

1 SPF
2 SBK
3 WJX
4 EJX
5 AVO
6 RVS
7 PKV
8 lMT
9 OWY

10 ARl
11 RGY
12 ATB
13 JXB
14 SSO
15 JTB
16 SPl
17 MNO
18 TMQ
19 WSO
20 MWH
21 MCl

nodes and arcs

30.347
30.317
30.347
30.347
30.319
30.308
30.364
30.415
30.466
30.338
30.323
30.33

30.289
30.29
30.25

30.289
30.17
30.25
30.25

30.321
30.289

n.node
81.639
81. 623
81. 665
81.623
81.672
81. 663
81.718
81.67

81.619
81.585
81.551
81.408
81.405
81.579
81.575
81.449
81. 609
81.704
81.734
81.773
82.148

-- centered around Rescue stations
;Springfield Inode, name, lat, long
;Southbank
;West Jacksonville
;East Jacksonville
;Avondale
;Riverside
;Pickettville
;lem Turner
;Oceanway
;Arlington
;Regency
;Atlantic Beach
;Jacksonville Beach
;Southside
;J Turner Butler
;San Pablo
;Mandarin
;Timuquana
;Westside
;Marietta-Whitehouse
;McClenny

- 152 -

22 BRY 30.398
23 CAL 30.56
24 Hll 30.687
25 VUl 30.628
26 FOB 30.67
27 OPE 30.163
28 OPW 30.178
29 GCS 30
30 MBG 30.064
31 PLK 29.648
32 PVB 30.238
33 SWZ 30.102
34 STA 29.867
35 CRB 29.83
36 HST 29.79
37 KGB 30.79

150 600 iairspeed, range
1 2 10 5.0
1 3 5 0.0
1 4 5 0.0
1 5 10 0.0
1 6 10 0.0
1 8 10 0.0
1 9 10 0.0
2 1 10 5.0
2 4 10 5.0
2 10 10 0.0
2 14 15 0.0
2 15 10 0.0
2 17 20 0.0
2 5 10 5.0
3 1 5 0.0
3 19 20 0.0
3 20 20 0.0
3 7 5 0.0
3 23 20 0.0
3 8 10 0.0
4 1 5 0.0
4 10 5 5.0
4 2 10 5.0
5 1 10 0.0
5 2 10 0.0
5 6 5 0.0
5 18 10 0.0
5 19 10 0.0
5 20 10 0.0
6 1 10 0.0
6 5 5 0.0
7 3 5 0.0
7 19 15 0.0
7 20 15 0.0
7 8 10 0.0
8 1 10 0.0
8 3 10 0.0
8 7 10 0.0
8 23 20 0.0
8 9 10 0.0
9 1 10 0.0
9 8 10 0.0
9 25 20 0.0
9 11 15 0.0
10 4 5 5.0
10 11 5 0.0

81.985
81.889
81.966
81.569
81.443
81.685

81.7
81.587
81.875
81.636
81.398

81.5
81.347
81.219

81.5
81.545

; Brycevill e
iCall ahan
iHilliard
iVulee
;Fernandina Beach
;Orange Park East
;Orange Park West
;Green Cove Springs
;Middleburg
; Palatka
;Ponte Vedra Beach
; Switzerl and
;St Augustine
;Crescent Beach
;Hastings
;King's Bay

- 153 -

10 14 10 0.0
10 2 10 0.0
11 10 5 0.0
11 9 15 0.0
11 12 20 0.0
11 15 15 0.0
11 14 10 0.0
12 11 20 0.0
12 16 10 0.0
12 13 10 0.0
13 12 10 0.0
13 16 5 0.0
13 32 10 0.0
13 15 15 0.0
14 2 15 0.0
14 10 10 0.0
14 11 10 0.0
14 16 15 0.0
14 15 7.5 0.0
15 2 10 0.0
15 14 7.5 0.0
15 11 15 0.0
15 17 10 0.0
15 13 15 0.0
16 14 15 0.0
16 12 10 0.0
16 13 5 0.0
17 2 20 0.0
17 15 10 0.0
17 33 20 0.0
17 27 20 5.0
18 19 10 0.0
18 5 10 0.0
18 27 15 0.0
19 28 15 0.0
19 20 15 0.0
19 7 15 0.0
19 3 20 0.0
19 5 10 0.0
19 18 10 0.0
20 19 15 0.0
20 5 10 0.0
20 3 20 0.0
20 7 15 0.0
20 22 15 0.0
20 21 20 0.0
21 20 20 0.0
22 20 15 0.0
22 23 20 0.0
23 22 20 0.0
23 24 15 0.0
23 25 20 0.0
23 8 20 0.0
23 3 20 0.0
24 23 15 0.0
25 23 20 0.0
25 9 20 0.0
25 26 20 0.0
25 37 25 0.0
26 25 20 0.0
27 17 20 5.0
27 18 15 0.0
27 29 15 0.0

- 154 -

27 28 10 0.0
28 19 15 0.0
28 27 10 0.0
28 30 20 0.0
29 27 15 0.0
29 30 20 0.0
29 31 30 0.0
29 33 20 0.0
30 28 20 0.0
30 29 20 0.0
31 29 30 0.0
31 36 20 0.0
32 13 10 0.0
32 34 35 0.0
33 17 20 0.0
33 29 20 0.0
33 34 35 0.0
33 36 30 0.0
34 33 35 0.0
34 32 35 0.0
34 35 20 0.0
34 36 25 0.0
35 34 20 0.0
35 36 20 0.0
36 35 20 0.0
36 33 30 0.0
37 25 25 0.0

space.dat -- relative incidents per node in node order
5
5
5
5
4
2
2
4
2
3
2
2
4
4
2
2
3
3
4
2
2
1
2
1
1
4
4
4
3
2
4
3
1
4

- 155 -

2
1
1

wkrate.dat -- time distribution of incidents
84 inumber of entries o 0 ifirst number is time,
2 4.77
4 3.81 isecond is number of events
6 1.14
8 2.07 iin that time period
10 2.55
12 3.18 iassumed to "wrap around" after reaching the last
14 3.86
16 4.55 itime period
18 5.66
20 5.34
22 5.28
24 5.78
26 3.88
28 3.09
30 .93
32 1.68
34 2.07
36 2.59
38 3.14
40 3.69
42 4.60
44 4.34
46 4.29
48 4.70
50 3.88
52 3.09
54 .93
56 1. 68
58 2.07
60 2.59
62 3.14
64 3.69
66 4.60
68 4.34
70 4.29
72 4.70
74 4.03
76 3.21
78 .96
80 1.75
82 2.15
84 2.68
86 3.26
88 3.83
90 4.78
92 4.51
94 4.46
96 4.88
98 4.03
100 3.21
102 .96
104 1.75
106 2.15
108 2.68
110 3.26
112 3.83

- 156 -

114 4.78
116 4.51
118 4.46
120 4.88
122 4.17
124 3.33
126 1.00
128 1.81
130 2.23
132 2.78
134 3.38
136 3.98
138 4.96
140 4.67
142 4.62
144 5.06
146 5.07
148 4.04
150 1.21
152 2.20
154 2.71
156 3.38
158 4.11
160 4.83
162 6.02
164 5.68
166 5.61
168 6.14

seed.dat -- random number stream seeds
28 ;no.streams -- must agree wi no. lines -- these are 1M apart
683743814
604901985
726466604
622401386
1645973084
1901633463
67784357
2026948561
1545929719
547070247
1110948479
1400311458
1471803249
1232207518
195239450
281826375
416426318
380841429
1055454678
711617330
1416275180
788018608
1357689651
2130853749
152149214
550317865
32645035
871378447

- 157 -

The following two files are produced by the best.route routine

call.dat -- node, ambulances to be called in order
1 3 2 4 1 40 41
2 6 2 3 1 10 7 14 40 41
3 4 2 3 13 40 41
4 1 2 3 7 40 41
5 10 5 2 3 6 12 9 16 40 41
6 5 10 2 3 40 41
7 13 4 2 3 11 40 41
8 11 2 3 4 13 17 40 41
9 17 2 3 11 40 41

10 7 1 15 40 41
11 15 7 1 8 40 41
12 18 21 20 40 41
13 21 20 18 36 40 41
14 8 14 7 15 40 41
15 14 8 6 19 40 41
16 20 21 18 40 41
17 19 14 8 40 41
18 12 10 9 40 41
19 9 10 12 40 41
20 16 10 5 13 9 27 40 41
21 28 16 10 40 41
22 27 16 26 40 41
23 26 25 4 11 27 24 40 41
24 25 26 4 11 27 24 40 41
25 24 17 26 22 23 40 41
26 23 22 24 40 41
27 30 32 12 29 40 41
28 32 30 9 40 41
29 29 30 31 37 40 41
30 31 32 29 40 41
31 33 38 29 40 41
32 36 21 20 40 41
33 37 19 29 40 41
34 35 34 38 40 41
35 34 35 38 40 41
36 38 37 34 35 40 41
37 39 24 17 26 22 23 40 41

go.dat -- node, hospital id, hosp 1 evel, •
1 4 4 1 1 2 2 7 3
2 2 2 1 1 4 4 5 3
3 1 1 4 4 2 2 7 3
4 1 1 4 4 2 2
5 7 3 8 4 1 1
6 8 4 7 3 1 1
7 1 1 4 4 2 2 7 3
8 1 1 4 4 2 2 7 3
9 1 1 4 4 2 2 7 3 3 3

10 1 1 4 4 2 2 3 3
11 3 3 1 1
12 6 3 1 1
13 6 3 1 1
14 3 3 5 3 1 1
15 5 3 3 3 1 1
16 6 3 1 1
17 5 3 1 1
18 7 3 8 4 1 1 4 4 2 2
19 7 3 8 4 9 3 1 1 4 4 2 2
20 7 3 8 4 1 1 4 4 2 2
21 7 3 8 4 1 1 4 4 2 2

- 158 -

22 7 3 8 4 1 1 4 4 2 2
23 1 1 4 4 2 2 7 3 3 3 5 3
24 1 1 4 4 2 2 7 3 B 4 3 3 5 3
25 10 4 1 1 2 2 7 3 3 3 5 3
26 10 4 1 1 2 2 7 3 3 3 5 3
27 9 3 1 1
28 9 3 1 1
29 9 3 12 4 1 1
30 9 3 1 1
31 12 4 9 3 1 1
32 6 3 1 1
33 5 3 11 4 3 3 2 2 1 1
34 11 4 6 3 5 3 1 1
35 11 4 6 3 5 3 3 3 1 1
36 11 4 5 3 3 3 2 2 6 3 9 3 1 1
37 10 4 1 1 4 4 2 2 7 3 3 3 5 3

- 159 -

Appendix 4

Sample output

network structure
weights represent arterial route travel time between node centers
node 1 (SPF) has outdegree 7

arc to 2 (SBK) of weight 10.00
arc to 3 (WJX) of weight 5.00
arc to 4 (EJX) of weight 5.00
arc to 5 (AVO) of weight 10.00
arc to 6 (RVS) of weight 10.00
arc to 8 (LMT) of weight 10.00
arc to 9 (OWY) of weight 10.00

node 2 (SBK) has outdegree 7
arc to 1 (SPF) of weight 10.00
arc to 4 (EJX) of weight 10.00
arc to 10 (ARL) of weight 10.00
arc to 14 (SSO) of weight 15.00
arc to 15 (JTB) of weight 10.00
arc to 17 (MNO) of weight 20.00
arc to 5 (AVO) of weight 10.00

node 3 (WJX) has outdegree 6
arc to 1 (SPF) of weight 5.00
arc to 19 (WSO) of weight 20.00
arc to 20 (MWH) of weight 20.00
arc to 7 (PKV) of weight 5.00
arc to 23 (CAL) of weight 20.00
arc to 8 (LMT) of weight 10.00

node 4 (EJX) has outdegree 3
arc to 1 (SPF) of weight 5.00
arc to 10 (ARL) of weight 5.00
arc to 2 (SBK) of weight 10.00

node 5 (AVO) has outdegree 6
arc to 1 (SPF) of weight 10.00
arc to 2 (SBK) of weight 10.00
arc to 6 (RVS) of weight 5.00
arc to 18 (TMQ) of weight 10.00
arc to 19 (WSO) of weight 10.00
arc to 20 (MWH) of weight 10.00

node 6 (RVS) has outdegree 2
arc to 1 (SPF) of weight 10.00
arc to 5 (AVO) of weight 5.00

node 7 (PKV) has outdegree 4
arc to 3 (WJX) of weight 5.00
arc to 19 (WSO) of weight 15.00
arc to 20 (MWH) of weight 15.00
arc to 8 (LMT) of weight 10.00

node 8 (LMT) has outdegree 5
arc to 1 (SPF) of weight 10.00
arc to 3 (WJX) of weight 10.00
arc to 7 (PKV) of weight 10.00
arc to 23 (CAL) of weight 20.00
arc to 9 (OWY) of weight 10.00

node 9 (OWY) has outdegree 4
arc to 1 (SPF) of weight 10.00

- 160 -

arc to 8 (lMT) of weight 10.00
arc to 25 (YUl) of weight 20.00
arc to 11 (RGY) of weight 15.00

node 10 (ARL) has outdegree 4
arc to 4 (EJX) of weight 5.00
arc to 11 (RGY) of weight 5.00
arc to 14 (SSO) of weight 10.00
arc to 2 (SBK) of weight 10.00

node 11 (RGY) has outdegree 5
arc to 10 (ARl) of weight 5.00
arc to 9 (OWY) of weight 15.00
arc to 12 (ATB) of weight 20.00
arc to 15 (JTB) of weight 15.00
arc to 14 (SSO) of weight 10.00

node 12 (ATB) has outdegree 3
arc to 11 (RGY) of weight 20.00
arc to 16 (SPl) of weight 10.00
arc to 13 (JXB) of weight 10.00

node 13 (JXB) has outdegree 4
arc to 12 (ATB) of weight 10.00
arc to 16 (SPl) of weight 5.00
arc to 32 (PVB) of weight 10.00
arc to 15 (JTB) of weight 15.00

node 14 (SSO) has outdegree 5
arc to 2 (SBK) of weight 15.00
arc to 10 (ARl) of weight 10.00
arc to 11 (RGY) of weight 10.00
arc to 16 (SPl) of weight 15.00
arc to 15 (JTB) of weight 7.50

node 15 (JTB) has outdegree 5
arc to 2 (SBK) of weight 10.00
arc to 14 (SSO) of weight 7.50
arc to 11 (RGY) of weight 15.00
arc to 17 (MNO) of weight 10.00
arc to 13 (JXB) of weight 15.00

node 16 (SPl) has outdegree 3
arc to 14 (SSO) of weight 15.00
arc to 12 (ATB) of weight 10.00
arc to 13 (JXB) of weight 5.00

node 17 (MNO) has outdegree 4
arc to 2 (SBK) of weight 20.00
arc to 15 (JTB) of weight 10.00
arc to 33 (SWZ) of weight 20.00
arc to 27 (OPE) of weight 20.00

node 18 (TMQ) has outdegree 3
arc to 19 (WSO) of weight 10.00
arc to 5 (AVO) of weight 10.00
arc to 27 (OPE) of weight 15.00

node 19 (WSO) has outdegree 6
arc to 28 (OPW) of weight 15.00
arc to 20 (MWH) of weight 15.00
arc to 7 (PKV) of weight 15.00
arc to 3 (WJX) of weight 20.00
arc to 5 (AVO) of weight 10.00
arc to 18 (TMQ) of weight 10.00

node 20 (MWH) has outdegree 6
arc to 19 (WSO) of weight 15.00
arc to 5 (AVO) of weight 10.00
arc to 3 (WJX) of weight 20.00
arc to 7 (PKV) of weight 15.00
arc to 22 (BRY) of weight 15.00
arc to 21 (MCl) of weight 20.00

node 21 (MCl) has outdegree 1

- 161 -

arc to 20 (MWH) of weight 20.00
node 22 (BRY) has outdegree 2

arc to 20 (MWH) of weight 15.00
arc to 23 (CAL) of weight 20.00

node 23 (CAL) has outdegree 5
arc to 22 (BRY) of weight 20.00
arc to 24 (HIL) of weight 15.00
arc to 25 (YUL) of weight 20.00
arc to 8 (LMT) of weight 20.00
arc to 3 (WJX) of weight 20.00

node 24 (HIL) has outdegree 1
arc to 23 (CAL) of weight 15.00

node 25 (YUL) has outdegree 4
arc to 23 (CAL) of weight 20.00
arc to 9 (OWY) of weight 20.00
arc to 26 (FOB) of weight 20.00
arc to 37 (KGB) of weight 25.00

node 26 (FOB) has outdegree 1
arc to 25 (YUL) of weight 20.00

node 27 (OPE) has outdegree 4
arc to 17 (MND) of weight 20.00
arc to 18 (TMQ) of weight 15.00
arc to 29 (GCS) of weight 15.00
arc to 28 (OPW) of weight 10.00

node 28 (OPW) has outdegree 3
arc to 19 (WSD) of weight 15.00
arc to 27 (OPE) of weight 10.00
arc to 30 (MBG) of weight 20.00

node 29 (GCS) has outdegree 4
arc to 27 (OPE) of weight 15.00
arc to 30 (MBG) of weight 20.00
arc to 31 (PLK) of weight 30.00
arc to 33 (SWZ) of weight 20.00

node 30 (MBG) has outdegree 2
arc to 28 (OPW) of weight 20.00
arc to 29 (GCS) of weight 20.00

node 31 (PLK) has outdegree 2
arc to 29 (GCS) of weight 30.00
arc to 36 (HST) of weight 20.00

node 32 (PVB) has outdegree 2
arc to 13 (JXB) of weight 10.00
arc to 34 (STA) of weight 35.00

node 33 (SWZ) has outdegree 4
arc to 17 (MND) of weight 20.00
arc to 29 (GCS) of weight 20.00
arc to 34 (STA) of weight 35.00
arc to 36 (HST) of weight 30.00

node 34 (STA) has outdegree 4
arc to 33 (SWZ) of weight 35.00
arc to 32 (PVB) of weight 35.00
arc to 35 (CRB) of weight 20.00
arc to 36 (HST) of weight 25.00

node 35 (CRB) has outdegree 2
arc to 34 (STA) of weight 20.00
arc to 36 (HST) of weight 20.00

node 36 (HST) has outdegree 2
arc to 35 (CRB) of weight 20.00
arc to 33 (SWZ) of weight 30.00

node 37 (KGB) has outdegree 1
arc to 25 (YUL) of weight 25.00

hospital locations
UMC, levell, 5 beds, in SPF

- 162 -

BAP, 1 evel 2 , 3 beds, in SBK
MMC, 1 evel 2a, 2 beds, in SSO
MTH, 1 evel 3 , 1 beds, in SPF
STL, 1 evel 2a, 1 beds, in JTB
BCH, 1 evel 2a, 1 beds, in JXB
STY, 1 evel 2a, 2 beds, in RVS
RVS, 1 evel 3 , 1 beds, in RVS
HUM, level 2a, 1 beds, in OPW
NGH, 1 evel 3 , 1 beds, in FOB
FLG, 1 evel 3 , 1 beds, in STA
PCH, 1 evel 3 , 1 beds, in PLK

ambulance call list
SPF wi 11 request these ambulances

09 from SPF with mean travel time 9.26 min
04 from SPF with mean travel time 9.26 min
07 from WJX with mean travel time 10.00 min
01 from EJX with mean travel time 10.00 min
HI from SPF with mean travel time 5.71 mi n
H2 from SBK with mean travel time 4.74 min

SBK will request these ambulances
013 from SBK with mean travel time 11.02 mi n
04 from SPF with mean travel time 14.14 min
09 from SPF with mean travel time 14.14 min
01 from EJX with mean travel time 14.14 min
023 from AVO with mean travel time 14.14 min
019 from ARL with mean travel time 14.14 min
028 from JTB with mean travel time 14.14 min
HI from SPF with mean travel time 4.74 min
H2 from SBK with mean travel time 6.43 min

WJX will request these ambulances
07 from WJX with mean travel time 11.55 min
04 from SPF with mean travel time 10.00 min
09 from SPF with mean travel time 10.00 min
026 from PKV with mean travel time 10.00 min
HI from SPF with mean travel time 4.30 min
H2 from SBK with mean travel time 4.85 min

EJX wi 11 request these ambulances
01 from EJX with mean travel time 8.16 min
04 from SPF with mean travel time 10.00 min
09 from SPF with mean travel time 10.00 min
019 from ARL with mean travel time 10.00 min
HI from SPF with mean travel time 4.18 min
H2 from SBK with mean travel time 4.72 min

AVO wi 11 request these ambulances
023 from AVO with mean travel time 9.57 min
010 from RVS with mean travel time 10.00 min
04 from SPF with mean travel time 14.14 min
09 from SPF with mean travel time 14.14 min
013 from SBK with mean travel time 14.14 min
025 from TMQ with mean travel time 14.14 min
022 from WSO with mean travel time 14.14 min
032 from MWH with mean travel time 14.14 min
HI from SPF with mean travel time 4.77 min
H2 from SBK with mean travel time 4.54 min

RVS will request these ambulances
010 from RVS with mean travel time 8.66 min
023 from AVO with mean travel time 10.00 min
04 from SPF with mean travel time 14.14 min
09 from SPF with mean travel time 14.14 min
HI from SPF with mean travel time 4.98 min
H2 from SBK with mean travel time 4.49 min

PKV will request these ambulances

- 163 -

026 from PKV with mean travel time 10.61 min
07 from WJX with mean travel time 10.00 min
04 from SPF with mean travel time 14.14 min
09 from SPF with mean travel time 14.14 min
024 from LMT with mean travel time 14.14 min
HI from SPF with mean travel time 5.00 min
H2 from SBK with mean travel time 5.53 min

LMT wi 11 request these ambulances
024 from LMT with mean travel time 10.95 min
04 from SPF with mean travel time 14.14 min
09 from SPF with mean travel time 14.14 min
07 from WJX with mean travel time 14.14 min
026 from PKV with mean travel time 14.14 min
035 from OWY with mean travel time 14.14 min
HI from SPF with mean travel time 5.67 min
H2 from SBK with mean travel time 6.41 min

OWY wi 11 request these ambulances
035 from OWY with mean travel time 11.73 min
04 from SPF with mean travel time 14.14 min
09 from SPF with mean travel time 14.14 min
024 from LMT with mean travel time 14.14 min
HI from SPF with mean travel time 6.87 min
H2 from SBK with mean travel time 7.58 min

ARL wi 11 request these ambulances
019 from ARL with mean travel time 8.66 min
01 from EJX with mean travel time 10.00 min
030 from RGY with mean travel time 10.00 min
HI from SPF with mean travel time 4.66 min
H2 from SBK with mean travel time 4.65 min

RGY wi 11 request these ambulances
030 from RGY with mean travel time 11.40 mi n
019 from ARL with mean travel time 10.00 min
01 from EJX with mean travel time 14.14 min
020 from SSO with mean travel time 14.14 min
HI from SPF with mean travel time 5.17 min
H2 from SBK with mean travel time 4.80 min

ATB wi 11 request these ambulances
041 from ATB with mean travel time 11.55 min
071 from JXB with mean travel time 14.14 min
050 from SPL with mean travel time 14.14 min
HI from SPF with mean travel time 6.70 min
H2 from SBK with mean travel time 6.37 min

JXB wi 11 request these ambulances
071 from JXB with mean travel time 10.00 min
050 from SPL with mean travel time 10.00 min
041 from ATB with mean travel time 14.14 min
S81 from PVB with mean travel time 14.14 min
HI from SPF with mean travel time 7.04 min
H2 from SBK with mean travel time 6.47 min

SSO will request these ambulances
020 from SSO with mean travel time 10.72 min
028 from JTB with mean travel time 12.25 min
019 from ARL with mean travel time 14.14 min
030 from RGY with mean travel time 14.14 min
HI from SPF with mean travel time 5.53 min
H2 from SBK with mean travel time 4.81 min

JTB will request these ambulances
028 from JTB with mean travel time 10.72 min
020 from SSO with mean travel time 12.25 min
013 from SBK with mean travel time 14.14 min
042 from MNO with mean travel time 14.14 min
HI from SPF with mean travel time 6.44 min
H2 from SBK with mean travel time 5.69 min

- 164 -

SPl will request these ambulances
050 from SPl with mean travel time 10.00 min
07l from JXB with mean travel time 10.00 min
041 from ATB with mean travel time 14.14 min
HI from SPF with mean travel time 6.60 min
H2 from SBK with mean travel time 6.01 min

MNO will request these ambulances
042 from MNO with mean travel time 13.23 min
028 from JTB with mean travel time 14.14 min
020 from SSO with mean travel time 22.50 min
HI from SPF with mean travel time 8.26 min
H2 from SBK with mean travel time 7.53 min

TMQ will request these ambulances
025 from TMQ with mean travel time 10.80 min
023 from AVO with mean travel time 14.14 min
022 from WSO with mean travel time 14.14 min
HI from SPF with mean travel time 6.45 min
H2 from SBK with mean travel time 5.83 min

WSO wi 11 request these ambulances
022 from WSO with mean travel time 11. 90 mi n
023 from AVO with mean travel time 14.14 min
025 from TMQ with mean travel time 14.14 min
HI from SPF with mean travel time 6.57 min
H2 from SBK with mean travel time 6.01 min

MWH will request these ambulances
032 from MWH with mean travel time 12.58 min
023 from AVO with mean travel time 14.14 min
010 from RVS with mean travel time 20.00 min
026 from PKV with mean travel time 20.00 min
022 from WSO with mean travel time 20.00 min
N6 from BRY with mean travel time 20.00 min
HI from SPF with mean travel time 5.67 min
H2 from SBK with mean travel time 5.64 min

MCl wi 11 request these ambulances
B32 from MCl with mean travel time 14.14 min
032 from MWH with mean travel time 25.00 min
023 from AVO with mean travel time 35.00 min
HI from SPF with mean travel time 10.04 min
H2 from SBK with mean travel time 9.77 min

BRY wi 11 request these ambulances
N6 from BRY with mean travel time 13.23 min
032 from MWH with mean travel time 20.00 min
N5 from CAL with mean travel time 25.00 min
HI from SPF with mean travel time 8.18 min
H2 from SBK with mean travel time 8.40 min

CAL will request these ambulances
N5 from CAL with mean travel time 13.78 min
N4 from HIl with mean travel time 20.00 min
07 from WJX with mean travel time 25.00 min
024 from lMT with mean travel time 25.00 min
N6 from BRY with mean travel time 25.00 min
N3 from YUl with mean travel time 25.00 min
HI from SPF with mean travel time 9.87 min
H2 from SBK with mean travel time 10.51 min

HIl will request these ambulances
N4 from HIl with mean travel time 12.25 min
N5 from CAL with mean travel time 20.00 min
07 from WJX with mean travel time 40.00 min
024 from lMT with mean travel time 40.00 min
N6 from BRY with mean travel time 40.00 min
N3 from YUl with mean travel time 40.00 min
HI from SPF with mean travel time 12.99 min
H2 from SBK with mean travel time 13.64 min

- 165 -

YUL will request these ambulances
N3 from YUL with mean travel time 15.62 min
035 from OWY with mean travel time 25.00 min
N5 from CAL with mean travel time 25.00 min
N1 from FOB with mean travel time 25.00 min
N2 from FOB with mean travel time 25.00 min
H1 from SPF with mean travel time 10.79 min
H2 from SBK with mean travel time 11.49 min

FOB wi 11 request these ambulances
N2 from FOB with mean travel time 14.14 min
N1 from FOB with mean travel time 14.14 min
N3 from YUL with mean travel time 25.00 min
H1 from SPF with mean travel time 12.08 min
H2 from SBK with mean travel time 12.70 min

OPE will request these ambulances
C72 from OPE with mean travel time 12.25 min
C76 from OPW with mean travel time 14.14 min
025 from TMQ with mean travel time 20.00 min
C70 from GCS with mean travel time 20.00 min
HI from SPF with mean travel time 8.45 min
H2 from SBK with mean travel time 7.76 min

OPW wi 11 request these ambulances
C76 from OPW with mean travel time 12.25 min
C72 from OPE with mean travel time 14.14 min
022 from WSO with mean travel time 20.00 min
HI from SPF with mean travel time 8.12 min
H2 from SBK with mean travel time 7.44 min

GCS wi 11 request these ambulances
C70 from GCS with mean travel time 15.62 min
C72 from OPE with mean travel time 20.00 min
C74 from MBG with mean travel time 25.00 min
S82 from SWZ with mean travel time 25.00 min
H1 from SPF with mean travel time 12.35 min
H2 from SBK with mean travel time 11.62 mi n

MBG wi 11 request these ambulances
C74 from MBG with mean travel time 14.14 min
C76 from OPW with mean travel time 25.00 min
C70 from GCS with mean travel time 25.00 min
H1 from SPF with mean travel time 11.32 mi n
H2 from SBK with mean travel time 10.67 min

PLK wi 11 request these ambulances
P1 from PLK with mean travel time 17.50 min
S88 from HST with mean travel time 85.00 min
C70 from GCS with mean travel time 35.00 min
H1 from SPF with mean travel time 20.78 min
H2 from SBK with mean travel time 20.06 min

PVB wi 11 request these ambulances
S81 from PVB with mean travel time 16.25 min
071 from JXB with mean travel time 14.14 min
050 from SPL with mean travel time 20.00 min
HI from SPF with mean travel time 7.82 min
H2 from SBK with mean travel time 7.10 min

SWZ wi 11 request these ambulances
S82 from SWZ with mean travel time 18.12 min
042 from MNO with mean travel time 25.00 min
C70 from GCS with mean travel time 25.00 min
H1 from SPF with mean travel time 10.10 min
H2 from SBK with mean travel time 9.33 min

STA wi 11 request these ambulances
S83 from STA with mean travel time 19.37 min
S80 from STA with mean travel time 19.37 min
S88 from HST with mean travel time 45.00 min
H1 from SPF with mean travel time 16.00 min

- 166 -

H2 from SBK with mean travel time 15.21 min
CRB wi 11 request these ambulances

S80 from STA with mean travel time 25.00 min
S83 from STA with mean travel time 25.00 min
S88 from HST with mean travel time 25.00 min
HI from SPF with mean travel time 17.32 min
H2 from SBK with mean travel time 16.49 min

HST wi 11 request these ambulances
S88 from HST with mean travel time 17.50 min
S82 from SWZ with mean travel time 35.00 min
S80 from STA with mean travel time 30.00 min
S83 from STA with mean travel time 30.00 min
HI from SPF with mean travel time 17.46 min
H2 from SBK with mean travel time 16.72 min

KGB will request these ambulances
G1 from KGB with mean travel time 17.50 min
N3 from YUL with mean travel time 30.00 min
035 from OWY with mean travel time 50.00 min
N5 from CAL with mean travel time 50.00 min
Nl from FOB with mean travel time 50.00 min
N2 from FOB with mean travel time 50.00 min
HI from SPF with mean travel time 14.69 min
H2 from SBK with mean travel time 15.38 min

hospital dispatch list
SPF victims will go to these hospitals

MTH, level 3 , in SPF, with mean travel time 9.26 min
UMC, levell, in SPF, with mean travel time 9.26 min
BAP, level 2 , in SBK, with mean travel time 14.14 min
STV, level 2a, in RVS, with mean travel time 14.14 min

SBK victims will go to these hospitals
BAP, level 2 , in SBK, with mean travel time 11.02 min
UMC, levell, in SPF, with mean travel time 14.14 min
MTH, level 3 , in SPF, with mean travel time 14.14 min
STL, level 2a, in JTB, with mean travel time 14.14 min

WJX victims will go to these hospitals
UMC, levell, in SPF, with mean travel time 10.00 min
MTH, level 3 , in SPF, with mean travel time 10.00 min
BAP, level 2 , in SBK, with mean travel time 20.00 min
STV, level 2a, in RVS. with mean travel time 20.00 min

EJX victims will go to these hospitals
UMC. level 1 • in SPF. with mean travel time 10.00 min
MTH. level 3 • in SPF. with mean travel time 10.00 min
BAP, level 2 • in SBK. with mean travel time 14.14 min

AVO victims will go to these hospitals
STV, level 2a, in RVS. with mean travel time 10.00 min
RVS. level 3 • in RVS. with mean travel time 10.00 min
UMC, level 1 • in SPF. with mean travel time 14.14 min

RVS victims will go to these hospitals
RVS. level 3 • in RVS, with mean travel time 8.66 min
STV. level 2a. in RVS. with mean travel time 8.66 min
UMC, levell, in SPF, with mean travel time 14.14 min

PKV victims will go to these hospitals
UMC, level 1 • in SPF. with mean travel time 14.14 min
MTH, level 3 • in SPF, with mean travel time 14.14 min
BAP, level 2 , in SBK, with mean travel time 25.00 min
STV, level 2a, in RVS, with mean travel time 25.00 min

LMT victims will go to these hospitals
UMC, levell, in SPF, with mean travel time 14.14 min
MTH, level 3 , in SPF, with mean travel time 14.14 min
BAP, level 2 , in SBK, with mean travel time 25.00 min
STV. level 2a, in RVS, with mean travel time 25.00 min

OWY victims will go to these hospitals

- 167 -

UMC. level 1 • in SPF. with mean travel time
MTH. level 3 • in SPF. with mean travel time
BAP. level 2 • in SBK. with mean travel time
STV. level 2a. in RVS. with mean travel time
MMC. level 2a. in SSD. with mean travel time

ARl victims will go to these hospitals
UMC. level 1 • in SPF. with mean travel time
MTH. level 3 • in SPF. with mean travel time
BAP. level 2 • in SBK. with mean travel time
MMC. level 2a. in SSD. with mean travel time

RGY victims will go to these hospitals
MMC. level 2a. in SSD. with mean travel time
UMC. level 1 • in SPF. with mean travel time

ATB victims will go to these hospitals
BCH. level 2a. in JXB. with mean travel time
UMC. level 1 • in SPF. with mean travel time

JXB victims will go to these hospitals
BCH. level 2a. in JXB. with mean travel time
UMC. level 1 • in SPF. with mean travel time

SSD victims will go to these hospitals
MMC. level 2a. in SSD. with mean travel time
STl. level 2a. in JTB. with mean travel time
UMC. level 1 • in SPF. with mean travel time

JTB victims will go to these hospitals
STl. level 2a. in JTB. with mean travel time
MMC. level 2a. in SSD. with mean travel time
UMC. level 1 • in SPF. with mean travel time

SPl victims will go to these hospitals
BCH. level 2a. in JXB. with mean travel time
UMC. level 1 • in SPF. with mean travel time

MND victims will go to these hospitals
STl. level 2a. in JTB. with mean travel time
UMC. level 1 • in SPF. with mean travel time

TMQ victims will go to these hospitals
STV. level 2a. in RVS. with mean travel time
RVS. level 3 • in RVS. with mean travel time
UMC. level 1 • in SPF. with mean travel time
MTH. level 3 • in SPF. with mean travel time
BAP. level 2 • in SBK. with mean travel time

WSD victims will go to these hospitals
STV, level 2a, in RVS, with mean travel time
RVS. level 3 • in RVS. with mean travel time
HUM. level 2a. in OPW. with mean travel time
UMC. level 1 • in SPF. with mean travel time
MTH. level 3 • in SPF. with mean travel time
BAP, level 2 • in SBK. with mean travel time

MWH victims will go to these hospitals
STV. level 2a. in RVS. with mean travel time
RVS. level 3 • in RVS. with mean travel time
UMC. level 1 • in SPF. with mean travel time
MTH. level 3 • in SPF. with mean travel time
BAP. level 2 • in SBK. with mean travel time

MCl victims will go to these hospitals
STV. level 2a. in RVS. with mean travel time
RVS. level 3 • in RVS. with mean travel time
UMC. levell, in SPF, with mean travel time
MTH. level 3 • in SPF. with mean travel time
BAP. level 2 • in SBK. with mean travel time

BRY victims will go to these hospitals
STV. level 2a. in RVS. with mean travel time
RVS. level 3 • in RVS. with mean travel time
UMC. level 1 • in SPF. with mean travel time
MTH. level 3 • in SPF. with mean travel time

- 168 -

14.14 min
14.14 min
25.00 min
25.00 min
30.00 min

14.14 min
14.14 min
14.14 min
14.14 min

14.14 min
20.00 min

14.14 min
40.00 min

10.00 min
40.00 min

10.72 min
12.25 min
25.00 min

10.72 min
12.25 min
25.00 min

10.00 min
40.00 min

14.14 min
35.00 min

20.00 min
20.00 min
25.00 min
25.00 min
25.00 min

20.00 min
20.00 min
20.00 min
25.00 min
25.00 min
25.00 min

20.00 min
20.00 min
25.00 min
25.00 min
25.00 min

40.00 min
40.00 min
45.00 min
45.00 min
45.00 min

35.00 min
35.00 min
40.00 min
40.00 min

BAP, level 2 , in SBK, with mean travel time
CAL victims will go to these hospitals

UMC, levell, in SPF, with mean travel time
MTH, level 3 , in SPF, with mean travel time
BAP, level 2 , in SBK, with mean travel time
STY, level 2a, in RVS, with mean travel time
MMC, level 2a, in SSO, with mean travel time
STL, level 2a, in JTB, with mean travel time

HIL victims will go to these hospitals
UMC, levell, in SPF, with mean travel time
MTH, level 3 , in SPF, with mean travel time
BAP, level 2 , in SBK, with mean travel time
STY, level 2a, in RVS, with mean travel time
RVS, level 3 , in RVS, with mean travel time
MMC, level 2a, in SSO, with mean travel time
STL, level 2a, in JTB, with mean travel time

YUL victims will go to these hospitals
NGH, level 3 , in FOB, with mean travel time
UMC, levell, in SPF, with mean travel time
BAP, level 2 , in SBK, with mean travel time
STY, level 2a, in RVS, with mean travel time
MMC, level 2a, in SSO, with mean travel time
STL, level 2a, in JTB, with mean travel time

FOB victims will go to these hospitals
NGH, level 3 , in FOB, with mean travel time
UMC, levell, in SPF, with mean travel time
BAP, level 2 , in SBK, with mean travel time
STY, level 2a, in RVS, with mean travel time
MMC, level 2a, in SSO, with mean travel time
STL, level 2a, in JTB, with mean travel time

OPE victims will go to these hospitals
HUM, level 2a, in OPW, with mean travel time
UMC, levell, in SPF, with mean travel time

OPW victims will go to these hospitals
HUM, level 2a, in OPW, with mean travel time
UMC, levell, in SPF, with mean travel time

GCS victims will go to these hospitals
HUM, level 2a, in OPW, with mean travel time
PCH, level 3 , in PLK, with mean travel time
UMC, levell, in SPF, with mean travel time

MBG victims will go to these hospitals
HUM, level 2a, in OPW, with mean travel time
UMC, levell, in SPF, with mean travel time

PLK victims will go to these hospitals
PCH, level 3 , in PLK, with mean travel time
HUM, level 2a, in OPW, with mean travel time
UMC, levell, in SPF, with mean travel time

PVB victims will go to these hospitals
BCH, level 2a, in JXB, with mean travel time
UMC, levell, in SPF, with mean travel time

SWZ victims will go to these hospitals
STL, level 2a, in JTB, with mean travel time
FLG, level 3 , in STA, with mean travel time
MMC, level 2a, in SSO, with mean travel time
BAP, level 2 , in SBK, with mean travel time
UMC, levell, in SPF, with mean travel time

STA victims will go to these hospitals
FLG, level 3 , in STA, with mean travel time
BCH, level 2a, in JXB, with mean travel time
STL, level 2a, in JTB, with mean travel time
UMC, levell, in SPF, with mean travel time

CRB victims will go to these hospitals
FLG, level 3 , in STA, with mean travel time

- 169 -

40.00 min

30.00 min
30.00 min
40.00 min
40.00 min
50.00 min
50.00 min

45.00 min
45.00 min
55.00 min
55.00 min
55.00 min
65.00 min
65.00 min

25.00 min
35.00 min
45.00 min
45.00 min
50.00 min
55.00 min

14.14 min
55.00 min
65.00 min
65.00 min
70.00 min
75.00 min

14.14 min
40.00 min

12.25 min
40.00 min

30.00 min
35.00 min
55.00 min

25.00 min
60.00 min

17 .50 mi n
60.00 min
85.00 min

14.14 min
50.00 min

35.00 min
40.00 min
42.50 min
45.00 min
55.00 min

19.37 min
50.00 min
65.00 min
85.00 min

25.00 min

run

run

BCH, level 2a, in JXB, with mean travel time
STL, level 2a, in JTB, with mean travel time
MMC, level 2a, in SSO, with mean travel time
UMC, levell, in SPF, with mean travel time

HST victims will go to these hospitals
FLG, level 3 , in STA, with mean travel time
STL, level 2a, in JTB, with mean travel time
MMC, level 2a, in SSO, with mean travel time
BAP, level 2 , in SBK, with mean travel time
BCH, level 2a, in JXB, with mean travel time
HUM, level 2a, in OPW, with mean travel time
UMC, levell, in SPF, with mean travel time

KGB victims will go to these hospitals
NGH, level 3 , in FOB, with mean travel time
UMC, levell, in SPF, with mean travel time
MTH, level 3 , in SPF, with mean travel time
BAP, level 2 , in SBK, with mean travel time
STV, level 2a, in RVS, with mean travel time
MMC, level 2a, in SSO, with mean travel time
STL, level 2a, in JTB, with mean travel time

Triage rule:
Champ TS <= 7.1 goes to level I, > 7.4 may go to

70.00 min
85.00 min
90.00 min

105.00 min

45.00 min
65.00 min
72.50 mi n
75.00 min
80.00 min
80.00 min
85.00 min

50.00 min
60.00 min
60.00 min
70.00 min
70.00 min
75.00 min
80.00 min

1 evel 3

Travel times exceeding minimum time by less than tolerance included
routine dispatch lists

hospital choice tolerance 30%
ambulance choice tolerance 35%

1
duration 12.20 hours no.accs 9 no. tr. pts 12
% blunt 55.56
ambo utilization .041
helo utilization .045
diverts 0
overrides 0
deaths 2
est deaths .59
queue for amb mean o. max 0
no.accs pended: 0
av pending time: O. minutes

hospital utilization
name avg tr load max tr load reserve % red time
UMC .258 3 1.000 o.
BAP o. 0 1.000 O.
MMC o. 0 1.000 o .
MTH • 023 1 .977 O.
STL o. 0 1.000 o.
BCH o. 0 1.000 o.
STV O. 0 1.000 O.
RVS o. 0 1.000 o.
HUM .025 1 .975 o.
NGH o. 0 1.000 o.
FLG o. 0 1.000 o.
PCH o. 0 1.000 o.

2
duration 18.58 hours no.accs 21 no. tr. pts 31
% blunt 52.38
ambo utilization .090

- 170 -

in

helo util ization .156
diverts 0
overrides 0
deaths 6
est deaths 2.15
queue for amb mean O. max 0
no.accs pended: 0
av pending time: O. minutes

hospital utilization
name avg tr load max tr load reserve % red time
UMC .270 4 1.000 O.
BAP .038 1 1.000 O.
MMC O. 0 1.000 O.
MTH O. 0 1.000 O •
STL .031 1 • 969 O.
BCH .023 1 .977 O •
STV • 038 2 .989 O.
RVS • 025 1 .975 O •
HUM O. 0 1.000 O.
NGH O. 0 1.000 O.
FLG • 024 1 .976 O •
PCH O. 0 1.000 O.

run 3
duration 13.50 hours nO.accs 12 no. tr. pts 20
% blunt 83.33
ambo utilization .067
helo util izat10n .087
diverts 0
overrides 0
deaths 4
est deaths 1.20
queue for amb mean .079 max 1
nO.accs pended: 1
av pending time: 64.258 minutes

hospital util i zati on
name avg tr load max tr load reserve % red time
UMC • 355 4 1.000 O •
BAP O. 0 1.000 O.
MMC O. 0 1.000 O.
MTH .024 1 .976 O.
STL .079 2 .952 7.4
BCH O. 0 1.000 O •
STV • 086 1 1.000 O.
RVS O. 0 1.000 O.
HUM O. 0 1.000 O.
NGH O. 0 1.000 O.
FLG O. 0 1.000 O.
PCH O. 0 1.000 O.

run 4
duration 9.81 hours nO.accs 4 no. tr. pts 3
% blunt 50.00
ambo utilization .018
helo util ization O.
diverts 0
overrides 0
deaths 0
est deaths .01

- 171 -

queue for amb mean O. max 0
nO.accs pended: 0
av pending time: O. minutes

hospital utilization
name avg tr load max tr load reserve % red time
UMC .091 2 1.000 O.
BAP O. 0 1.000 O.
MMC O. 0 1.000 O.
MTH O. 0 1.000 O.
STL O. 0 1.000 O.
BCH O. 0 1.000 O.
STY O. 0 1.000 O.
RVS O. 0 1.000 O.
HUM O. 0 1.000 O.
NGH O. 0 1.000 O.
FLG O. 0 1.000 O.
PCH O. 0 1.000 O.

Results after 4 runs of at 1 east .25 days per run
average sd (of runwise means) max

duration .56 .154 .77
no. accidents 11.5 7.14 21
% blunt 60.9
no. tr. patients 16.5 11.90 31
no. deaths 3.0
no. est deaths 1.0
amb. util .10 .030
ambo queue .020 .0397 mean .3

glob 1

hospital utilization
name load max reserve

avg sd avg global avg sd
UMC .24 .110 3 4 1.000 O.
BAP .01 • 019 0 1 1.000 O •
MMC O. O. 0 0 1.000 O.
MTH .01 .014 0 1 .988 .0135
STL .03 .037 1 2 .980 .0241
BCH .01 .011 0 1 .994 .0114
STY .03 .041 1 2 .997 .0054
RVS .01 .012 0 1 .994 .0123
HUM .01 .013 0 1 .994 .0127
NGH O. O. 0 0 1.000 O.
FLG .01 .012 0 1 .994 .0122
PCH O. O. 0 0 1.000 O.

- 172 -

Appendix 5

Fitting Input Distributions

Time to secure

20 of 215 needed securing:
model by beta(21, 196)

N OF CASE
MINIMUM
MAXIMUM
RANGE
MEAN
VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS (G1)
KURTOSIS (G2)
SUM
C.V.
MEDIAN

20
0.830

32.770
31. 940

6.150
46.505

6.819
1.525
3.141
9.933

123.000
1.109
4.230

40~---.----.-----.----.

30

10

...
o "-"' __ ---'-____ ...J.-____ -'--__ --'

o 2 3

expected

Figure 9. Probability
plot: exponential.

4

0.7
-

0.6

~ 0.5

~ OA
z
Q
f- 0.3 a:
0 a. B! 0.2
a.

0.1

r-=l
° 15 30 45

time to secure

Figure 8. Distribution
given need to secure.

15

10

5

2.0 ,------,------,,--------,----,

15 I ~ i 1.0
"-
ij

0.5 I
I 00 '-----'-----'-------'----'

o 10 20 30 40
time to secure

Figure 10. Quantile plot:
exponential.

- 173 -

o o c
~

3

~ 1
OJ
.Q

o

-1 ~~~~ __ ~ __ ~ __ -L __ ~

-4 -3 -2 -1 o
log expected

Figure 11. Probability
plot: Weibull
distribution.

2

100,0 ,--------,r---------r----,-----,

10,0
~
0 ., .,
$
Q)

E .,
1,0

01
-2 -1 0 2

log expected

Figure 13. Probability
plot: lognormal.

20

5

o ~ __ ~ ____ -J ____ ~ ____ ~

o 10 20 30 40
time to secure

Figure 12. Quantile plot:
Weibull(6.686, 1.412).

2

I
.Q

0
0 10 20 30 40

time to seOU'a

Figure 14. Quantile plot:
lognormal.

- 174 -

Time to patient found

li
.£

'" E
~

N
MINIMUM
MAXIMUM
RANGE
MEAN
VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS (G1)
KURTOSIS (G2)
SUM
C.V.
MEDIAN

15

10

-,...
5 ...,

!"

2 3

expected

215
0.050

12.920
12.870
2.220
5.818
2.412
0.165
1.696
2.697

477.380
1. 086
1.120

4 5

Figure 16. Probability
plot: exponential.

6

Exponential fits very well.

0.5
100

04
a: 80 « en
ffi 0.3 a. 60 0 z
2 g

z g 02 40 --I

g::
0.1

~
20

0 11 22

time to pt

Figure 15. Distribution of
time to patient.

5

4

:in 3

~ c:
0
"-ill 2 ..

,I"
,.~ ,

5 10 15

time to pt

Figure 17. Quantile plot:
exponential.

- 175 -

Time on scene

Total scene time for those
needing extrication and those
not were not significantly
different (Mann-Whitney P =
.15, Komolgorov-Smirnov P =
.11) .

OJ

N
MINIMUM
MAXIMUM
RANGE
MEAN
VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS (G1)
KURTOSIS (G2)
SUM
c.v.
MEDIAN

3

:§ 2
Q)
c
Q)
u en
0) 1
.Q

o .

185
1. 000

30.830
29.830
10.404
34.368
5.862
0.431
1.149
1. 394

1924.780
0.563
9.070

-1 L--L_-'--L_-'--L_-'--L~
-6 -5 -4 -3 -2 -1 0

log expected

Figure 19. Probability
plot: Weibull.

2

0.20

~ 015
m

~
is 0.10

~ [0.05

r
o 14 2B 42

scene rx

40

30

o
20 e

~

10

Figure 18. Distribution of
scene treatment time
(includes extrication if
needed) .

30 r------,,---,.---r--7----,

.1 , .

I'
r.A ..

....

.'! 0'-'----1----1-----'------1 o 10 20 30 40

scene time

Figure 20. Quantile plot:
Weibull(11.023, 1.892).

- 176 -

40 ,.----,-----,---"-7-----, 1O,.---,----,-----,---~

8
30

10
2

5 10 15 10
expected

Figure 21. Probability
plot: gamma(3).

Figure 22.
gamma(3).

0.20 ,----,-----,.--------,

0.15

>- 0.10

20 30

x

Figure 23. Weibull (dashed
line) and gamma pdf's.

- 177 -

20 30 40

scene time

Quantile plot:

Time to hospital

N
MINIMUM
MAXIMUM
RANGE
MEAN
VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS (G 1)
KURTOSIS (G2)
SUM
C.V.
MEDIAN

4

3

.s
'0.
'" 0 .c
.9 2
§
C>
.Q .. ,

184
1. 370

37.230
35.860
10.295
29.925

5.470
0.403
1.072
2.268

1894.250
0.531
9.775

.-!

oL-."-L--~_..L---'----lL-..--'----L----'

-6 -5 -4 -3 -2 -1 0 2

log expected

Figure 25. Probability
plot: Weibull.

Q20

~ 015
CD

ffi a.
~ 0.10
I-

~ 0.05

r
o

40

30

o
20 ~

-i

10

n-n. .-.
14 28 42

time to hospital

Figure 24. Distribution of
time to hospital.

20

15 : N
'<t
N
N
..f 10 0> g
B
~

5

OL-..-~---'----'-------'
o 10 20 30 40

tima to hospital

Figure 26. Quantile plot:
Weibull(9.974, 2.242).

- 178 -

1 00 .----~-,_-_,_-_,_-___.-__,

]!
-6.
~ .<:: 10
.8
(]) ,g

1'--_-'--_..L-_-'-_-L._-'-_-'
-3 -2 -1 o 2

log expected

Figure 27. Probability
plot: lognormal.

40

30

m
li
'" 2 20 --.8
m
§

10

8

expected

Figure 29. Probability
plot: gamma(3).

3

10

10

8

m 6
E
(;
6,
51 4 .,..-

:
i

2 j/';

0
0 10 20 30 40

Figure 28.
lognormal.

10

8

M 6
m
E
E
'" '" 4

2

Figure 30.
gamma(3) .

- 179 -

~rne to hospital

Quantile plot:

--

20 30 40

Urne to hospital

Quantile plot:

Time to release of pt

~
ttl
]l e
E
Q)

~
OJ

52

N
MINIMUM
MAXIMUM
RANGE
MEAN
VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS (G1)
KURTOSIS (G2)
SUM
C.V.
MEDIAN

3

2

1

0

-1

177
0.270

12.000
11. 730
2.598
3.788
1.946
0.146
2.366
7.257

459.880
0.749
2.070

,.
,

!

-2 ~~~--~~--~~~~
-6 -5 -4 -3 -2 -1 0

log expected

Figure 32. Probability
plot: Weibull.

2

0.4

!if 03
<Il

IS 02
i= a:
1(

~ 0.1

o
b I"1~

4 8 12 16 20

flme to release

60

50

40
o

30 g

20

10

Z
--1

Figure 31. Distribution of
time to release of patient.

7

6

§ 5
<Il :

4 I'

~ i r-
N 3
~ I,
~ !-:;: 2

O~----~-------'---------' o 5 10 15

time to release

Figure 33. Quantile plot:
Weibull(2.718, 1.810).

- 180 -

100,0 ,..----r---.---,---r-----,---,

~ 10,0

'" ~
~

E

1.0

0,1 '--_.l--_-'---_--'-_-'--_----'--_--'
-3 -2 -1 ° 2

log expected

Figure 34. probability
plot: lognormal.

15

~
10

'" ~
~

E
(!)
E
"" 5

2 3 4 5 6 7

expected

Figure 36. Probability
plot: gamma.

3

10

8

<ii 6
E g
'" .Q 4

2

Figure 35.
lognormal.

6

5

4

lQ
m
E 3
E
~ r"

2 ,;

time to release

Quantile plot:

I' " ,

5 10 15

time to release

Figure 37. Quantile plot:
gamma (1. 5) •

- 181 -

15

~
10

(I)

~
.s
0)
E
"" 5

expected

Figure 38. Probability
plot: exponential.

- 182 -

5

4

:!9 3
c
'" c:
0 c.
~ 2 .-

.'
" ;.

5 10 15

time to release

Figure 39. Quantile plot:
exponential.

Appendix 6

Log of Model Assumptions

6.1 Distribution of Accidents

It is assumed that the average number of accidents per unit

time is unchanging; i.e., there is no long term growth or

decline in the level of demand. Only the number of injuring

incidents is assumed to vary with time and location;

severity of injury and type of injury are assumed to be

independent. Similarly, it is assumed that there is no

interaction or synergism between time and location.

6.2 Definitive Care Survival

There is no assumption that patients receiving definitive

care in a Level 1 center have increased survival compared to

those in other centers (after adjusting for severity of

injury). There are published reports that this may not be

true (that Levell patients do better), so this assumption

may need to be examined critically.

6.3 Private Travel

The function expressing the probability of private travel as

inversely proportional to severity and between .30 and .01

is entirely empiric, based on experience, plausibility, and

scant data suggesting that overall about one-fifth of non-

- 183 -

trivial trauma patients find their own way to medical care.

In addition, the model currently assumes that all patients

involved in an accident make the same decision. This

clearly plays a role in the real world model but is not

completely valid. other considerations, including proximity

to a hospital and the actual activity producing the injury

are also involved in as yet unspecified ways.

- 184 -

Appendix 7

Log of Improvements and Enhancements

7.1 Improvements

The following items (in no particular order) will enable the

existing model to run more efficiently, more realistically,

or be more be easily maintained, but do not add additional

function.

7.1.1 Transit time. The permanent entity ambulance

currently maintains the attribute of transit time. This is

more realistically an attribute of an ambulance run process

than it is of an ambulance, and in keeping with the second

principle of section 4.2 should be moved to the process.

7.1.2 Choke points. Routines for building call and

dispatch lists should take better account of the choke point

variable than they do presently.

7.1.3 Events. coding the respiratory support therapeutic

interventions as events, rather than inserting them directly

into either (or both) of the patient or ambulance run

process routines allowed produced much cleaner, more easily

maintained code. Other critical therapeutic maneuvers such

as IV starting or blood transfusion should be recoded into

this form.

- 185 -

7.1.4 End-of-run. The process of cancelling and then

rescheduling the clear.reds event if another run follows the

current should be changed to leave the event scheduled

unless no runs are to follow.

7.1.5 Memory management. The duplicate representation of

arcs in the current implementation requires large amounts of

memory, leading to disk swapping and poor performance in

large models. since much of this information is redundant,

and since it is infrequently referenced once the actual

simulation begins, a more efficient representation should

produce disproportionate benefits in run times.

7.2 Enhancements

The following items are additional (new) capabilities that

would increase the utility of the model, but will be

deferred at this time as they are not critical to the proof

of concept.

7.2.1 Non-trauma patients. Information on medical patients

handled by the system should be added to the model. In

particular, some method of representing the "walk-in"

medical load on emergency departments should be added as

this is a major reason for a hospital's going on divert.

For example, this could be done quite simply as a random

external event, without having to explicitly model large

numbers of "walk-in" patients.

- 186 -

7.2.2 Injury model. Better and more detailed models of

injury such as ASCOT [Champion90] are now available.

Modification of the model to use ASCOT or a similar measure

of injury severity might allow better prediction of outcome

and identification of subsets of patients for whom special

policies may be beneficial. The use of ASCOT, however,

would require far more detailed epidemiologic information

about injury patterns than is currently available, although

it is being collected in the national Trauma Registry

program of the American College of Surgeons (TRACS).

7.2.3 Transfers. While they are only a small fraction of

the total volume of trauma patients, inter-hospital

transfers are frequently a considerable source of

contention. It would be desirable to model the transfer of

patients among hospitals as representing an important aspect

of the system, but it has proven extremely difficult to

obtain reliable information, and what data is available is

highly suspect as misleading at best.

7.2.4 Data editor. There is currently no support for

creating the data files used to drive the simulation, nor is

there any error checking for illogical or impossible

conditions, e.g., a node with efferent but no afferent arcs.

For complex models, creating the data files with a text can

be tedious and prone to error; modification may be even more

difficult. A data editor, particularly if it were able to

graphically represent the transportation network, would make

- 187 -

the model much easier to use. Error checking could be

provided along with the editing function to ensure that the

files finally submitted to the model did not contain logical

errors.

7.2.5 Graphical output. Although it may restrict

portability somewhat, a graphical display of system activity

may be useful in establishing face validity of the model.

7.2.6 Trace control. currently, the trace output is "all

or nothing," making it unwieldy when the region of interest

lies deep in a long run or series of runs. The ability to

turn the trace on or off from within the program would

enhance the usefulness of the trace.

7.2.7 Interruption. Direct (paired) comparison of

regenerative method simulation data must be done at

comparable points in each experimental arm. The number and

location of such points is unpredictable, and they become

fewer and are spread farther apart as the number of arms in

an experiment increases. It would therefore be advantageous

to make model runs interruptible, so that if there were not

sufficient convergence points for analysis after some period

of simulated time, the model could be restarted at that

point and run further forward. Since the simulation

mechanism is regenerative, this can in principle be done

manually simply by preserving the random number seeds (or

choosing different random number generators altogether) and

- 188 -

starting another series of runs with the RNG's reset and

time.v set to its value at the end of the previous

corresponding run.

7.2.8 Non-regenerative simulation. The difficulties of

statistical analysis of the regenerative method data suggest

that it might be advantageous to abandon this method in

favor of traditional non-terminating simulation analysis of

steady-state cycle parameters. This would require analysis

of the startup transients which has not been performed for

this model. It is not clear whether this would increase or

decrease the required length of the simulation.

- 189 -

Appendix 8

Log of Program Bugs

8.1 Discrete-continuous Interaction

A variety of hard-to-diagnose problems sometimes appear when

the discrete simulation portions of the program interact

with the continuous simulation portions. For example, if

the minimum step size for the integrator routine in the

continuous simulation modules is too large, it is at least

theoretically possible for the two sections to become

unsynchronized. While it is felt that most of the areas at

risk have been protected by a combination of local code and

by a policy of keeping the maximum step size small,

confidence in the model's reliability would be significantly

enhanced by systematically eliminating potential areas of

interaction.

8.2 Pended Accidents

The dispatcher currently only checks the first accident in

the pending set when a new ambulance becomes available; the

entire set should be checked. Since, under the conditions

modeled for northeast Florida, the pending set virtually

never contains more than one accident, this error was not

initially apparent.

- 190 -

Vita

Robert L. Wears has BA and MD degrees from the Johns Hopkins

University (1969 and 1973, respectively). He is currently

Associate Professor in the Department of Surgery, Division

of Emergency Medicine at the University of Florida Health

Science Center in Jacksonville, and expects to receive an MS

in Computer and Information Sciences from the university of

North Florida on April 30, 1993.

Robert has extensive interests in the application of

computer-based modeling and analysis techniques to clinical

and health policy problems, and has published several

examples of their use in the medical literature with Dr.

Charles N. Winton, his thesis advisor. His work includes

statistical and connectionist approaches to computer

modeling, with extensive experience in C, SYSTAT, and

SIMSCRIPT. He has developed a fellowship in medical

informatics for graduate physicians, installed the first LAN

at UFHSC-Jax, and is active in promoting the application of

modern information methods in the clinical setting.

Dr. Wears has been married to his first wife for 21 years,

and has two teenage children, a dog, a fish, and is a raving

windsurfer.

- 191 -

	UNF Digital Commons
	1993

	Simulation Modeling of Prehospital Trauma Care
	Robert L. Wears
	Suggested Citation

	Title Page
	Table of contents
	Abstract
	Chapter 1: Introduction
	1.1 statement of the Problem
	1.2 Historical Perspective

	Chapter 2: Description of the System
	2.1 Definition
	2.2 System Elements
	2.2.1 Patients
	2.2.2 Vehicles
	2.2.3 Receiving Facilities
	2.2.4 Transportation Network

	2.3 System operation
	2.3.1 Temporal Sequence
	2.3.2 Physiologic Sequence

	2.4 Goals of the Model
	2.5 Potential Enhancements

	Chapter 3: Model Design
	3.1 General Design Issues
	3.1.1 simulation Environment
	3.1.2 Verification and Validation
	3.1.3 statistical Issues

	3.2 Specific Design Issues
	3.2.1 Patterns of Injury
	3.2.2 Transportation Network
	3.2.3 Edge Effects
	3.2.4 Ambulance Routing
	3.2.5 Physiologic Model
	3.2.6 Injury Pattern
	3.2.7 critical Outputs

	Chapter 4: Implementation
	4.1 Overview
	4.2 Data structures
	4.2.1 Permanent Entities
	4.2.2 Nodes
	4.2.2.1 Paths
	4.2.2.2 Hospitals
	4.2.2.3 Ambulances

	4.2.3 Temporary Entities
	4.2.3.1 Arcs
	4.2.3.2 Dispatch lists
	4.2.3.3 Ambulance runs
	4.2.3.4 Patients
	4.2.3.5 Accidents
	4.2.3.6 Events

	4.3 Procedures
	4.3.1 Initialization Procedures
	4.3.1.1 Main
	4.3.1.2 Initialize
	4.3.1.3 Build.call.list
	4.3.1.4 Build.hosp.list
	4.3.1.5 Best.route

	4.3.2 Trace and Reporting Procedures
	4.3.3 Modeling Procedures
	4.3.3.1 Generator
	4.3.3.2 Accident
	4.3.3.3 Ambulance.run
	4.3.3.4 Patient
	4.3.3.5 Dispatcher
	4.3.3.6 Get.patient
	4.3.3.7 Pvt.travel

	4.3.4 Flow of Control

	4.4 Selection of Input Distributions

	Chapter 5: Verification and Validation
	5.1 Verification
	5.1.1 Random variate generators
	5.1.2 static and Dynamic Analysis

	5.2 Validation

	Chapter 6: Demonstrative Experiments
	6.1 Triage policy
	6.2 Helicopter Dispatch Policy
	6.3 Conclusion
	6.4 Further Work

	References
	Appendix 1: Program Source Code
	Appendix 2: Data Cross-Reference
	Appendix 3: Data Files
	Appendix 4: Sample output
	Appendix 5: Fitting Input Distributions
	Appendix 6: Log of Model Assumptions
	6.1 Distribution of Accidents
	6.2 Definitive Care Survival
	6.3 Private Travel

	Appendix 7: Log of Improvements and Enhancements
	7.1 Improvements
	7.1.1 Transit time
	7.1.2 Choke points
	7.1.3 Events
	7.1.4 End-of-run
	7.1.5 Memory management

	7.2 Enhancements
	7.2.1 Non-trauma patients
	7.2.2 Injury model
	7.2.3 Transfers
	7.2.4 Data editor
	7.2.5 Graphical output
	7.2.6 Trace control
	7.2.7 Interruption
	7.2.8 Non-regenerative simulation

	Appendix 8: Log of Program Bugs
	8.1 Discrete-continuous Interaction
	8.2 Pended Accidents

