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ABSTRACT 

A General Theory of Geodesics 

With Applications to Hyperbolic Geometry 

In this thesis, the geometry of curved surfaces is 

studied using the methods of differential geometry. The 

introduction of manifolds assists in the study of classical 

two-dimensional surfaces. To study the geometry of a 

surface a metric, or way to measure, is needed. By 

changing the metric on a surface, a new geometric surface 

can be obtained. On any surface, curves called geodesics 

play the role of "straight lines" in Euclidean space. These 

curves minimize distance locally but not necessarily 

globally. The curvature of a surface at each point p 

affects the behavior of geodesics and the construction of 

geometric objects such as circles and triangles. These 

fundamental ideas of manifolds, geodesics, and curvature 

are developed and applied to classical surfaces in 

Euclidean space as well as models of non-Euclidean 

geometry, specifically, two-dimensional hyperbolic space. 
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INTRODUCTION 

The geometry of curved surfaces has been studied 

throughout the history of mathematics. The development 

of the calculus enabled the theory of curves to flourish. 

It enabled a deeper study of curved surfaces that led to a 

better understanding and generalization of the whole 

subject. It was discovered that some properties of curved 

surfaces are intrinsic properties, that is, they are 

geometric properties that belong to the surface itself and 

not the surrounding space. 

To study the geometry of a surface, we need a metric, 

or a way to measure. Any property of a surface or formula 

that can be deduced from the metric alone is intrinsic. By 

changing the metric on a surface, we will obtain a new 

geometric surface. The two-dimensional plane with the 

Euclidean metric gives rise to the Euclidean plane. The 

two-dimensional.plane with the Poincare metric gives rise 

to a model of non-Euclidean geometry called the Poincare 

half-plane. This geometric surface will be studied in 

section three of chapter two. 

The methods of differential geometry are used to study 

the geometry of curved surfaces. Differential geometry 

deals with objects such as tangent vectors, tangent fields, 

tangent spaces, differentiable functions on surfaces, and 



curves. The introduction of manifolds (a generalization of 

surfaces) will assist in the study of classical two-

dimensional surfaces. 

On any manifold, there are special curves called 

geodesics. These are curves that play the role of 

"straight lines" in Euclidean space. These curves minimize 

distance locally but do not necessarily minimize distance 

globally. From this fact comes the concept of convex 

neighborhoods, that is, neighborhoods in which pairs of 

points can be joined to each other by a unique minimizing 

geodesic. 

An important property of a manifold is how the manifold 

is curving at each point P. Curvature affects the behavior 

of geodesics, the measure of angles, as well as the sum of 

the interior angles of geodesic triangles constructed on 

the manifold. 

In chapter one, the fundamental ideas of manifolds, 

geodesics, and curvature are developed. In this chapter, 

these fundamental- ideas are applied to classical surfaces 

in Euclidean space. In chapter two, a thorough study is 

done of models of non-Euclidean geometry, specifically, 

two-dimensional hyperbolic space. This study includes 

geodesics and curvature as well as geodesic triangles, 

hyperbolic circles, congruences, and similarities. 
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1. Manifolds 

CHAPTER 1 

MANIFOLDS AND GEODESIC THEORY 

1.] Definjtion. A geometric surface is an abstract surface 

M furnished with an inner product,· on each of its 

tangent planes. This inner product is required to be 

differentiable in the sense that if V and Ware 

differentiable vector fields on M, then V ·w is a 

differentiable real-valued function on M. 

Each tangent plane of M at the point P has its own inner 

product. This inner product is a function which is 

bilinear, symmetric, and positive definite. An assign-

ment of inner products to tangent planes is called a 

geometric structure or metric tensor on M. Therefore, 

the same surface -furnished with two different geometric 

structures gives rise to two different geometric surfaces. 

The two-dimensional plane, with the usual dot product 

on tangent vectors <v,w>= V1Wl + V 2W2 ' is the best-known 

geometric surface. Its geometry is two-dimensional 

Euclidean geometry. A simple way to get new geometric 

structures is to distort old ones. Let g > 0 be any 

differentiable function on the plane. 
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Define 

v ·W = 

for tangent vectors v and w to the two-dimensional plane 

at P. This is a new geometric structure on the plane. As 

long as g2(p) + 1, then the resulting geometric surface has 

properties quite different from the Euclidean plane. 

In studying the geometry of a surface, some of the most 

important geometric properties belong to the surface itself 

and not the surrounding space. These are called intrinsic 

properties. In the nineteenth century, Riemann concluded 

the following: There must exist a geometrical theory of 

surfaces completely independent of R3. The properties of a 

surface M could be discovered by the inhabitants of M 

unaware of the space outside their surface. 

At first, Riemannian geometry was a development of the 

differential geometry of two-dimensional surfaces in R3. 

From this perspec"tive, given a surface S c R3
, the inner 

product <v,w> of two vectors tangent to S at a point P of 

S is the inner product of these vectors in R3. This yields 

the measure of the lengths of vectors tangent to S. To 

compute the length of a curve, integrate the length of its 

velocity vector. 

~ Defjoitloo. A regular curve in RJ is a function 

a: (a,b)-RJ which is of class Ck for some k~l and for 
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which da/dt+ 0 for all t E (a,b). A regular curve 

segment is a function a:[a,b]-R3 together with an 

open interval (c,d), with c<a<b<d, and a regular curve 

y:(c,d)-R3 such that a(t)=y(t) for all tE [a,b]. 

~ Definition. The length of a regular curve segment 

a: [a,b]--+R 3 is Jab Ida/dtl dt. 

The definition of inner product allows us to measure 

area of domains in S, the angle between two curves, and all 

other "metric" ideas in geometry. certain special curves on 

S, called geodesics, will be a major focus in this thesis. 

These curves play the role of straight lines in Euclidean 

geometry. 

The definition of the inner product at each point PES 

yields a quadratic form I p, called the first fundamental 

~ of S at P, defined in the tangent plane TpS by 

Ip(v) = <v,v>, V E TpS. In 1827, Gauss defined a notion of 

curvature for surfaces. Curvature measures the amount that 

S deviates, at a point PES, from its tangent plane at P. 

Curvature, as Gauss defined it, depended only on the manner 

of measuring in.S, which was the first fundamental form of 

S at P. Curvature will be discussed in section four of this 

chapter. 

During Gauss' time, work was done to show that the 

fifth postulate of Euclid was independent of the other 

postulates of geometry. Euclid's fifth (parallel postulate) 

says [13]: "Given a straight line and a point not on the 
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line then there is a straight line through the point which 

does not meet the given line." It was also earlier shown 

that this postulate is equivalent to the fact that the sum 

of the interior angles of a triangle equals 180°. This led 

to a new geometry that depended on a fundamental quadratic 

form that was independent of the surrounding space. In this 

geometry, straight lines are defined as geodesics and the 

sum of the interior angles of a triangle depends on the 

curvature. 

In 1854, Riemann continued working on Gauss' ideas 

and introduced what we call today a differentiable manifold 

of arbitrary dimension n. Riemann associated to each point 

of the manifold a fundamental quadratic form and generalized 

the idea of curvature. Riemann was interested in the 

relationship between physics and geometry. This 

relationship motivated the development of non-Euclidean 

geometries. 

~ Defjnjtjon. f:R~R is of class ~k if all derivatives 

up through order k exist and are continuous. f:RA~R 

is of class ~k if all its (mixed) partial derivatives 

of order k and less exist and are continuous. A 

function f:RA~RP is of class ~k if all its components 

with respect to a given basis are of class ek
• 

The concept of a differentiable manifold is necessary for 

extending the methods of differential calculus to spaces 
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more general than Rn. An example of a manifold is a 

regular surface in R3. 

~ pefjnition. A Ck coordinate patch (regular surface) is 

a one-to-one Ck function x:U-R 3 for some k ~ 1, where 

U is an open subset of R2 with coordinates u l and u2 and 

(ax/au 1
) X (ax/au2 

) + (5 on U. 

The mapping x is called a parametrization of S at p. 

A regular surface is intuitively a union of open sets of 

R2, organized in such a way that when two such open sets 

overlap, the change from one to the other can be made in 

a differentiable manner. The problem with this definition 

is its dependence on R3. The definition of a 

differentiable manifold will be given for an arbitrary 

dimension n. Differentiable will always mean a class of C·. 

~ pefinition. A differentiable manifold Q! dimension n 

is a set M and a family of one-to-one mappings 

x..:Ua c Rn 
- M of open sets Ua of Rn into M such that: 

(1) U a xa (Ua) = M. 

(2) for any. pair ex,B with Xa(Ua ) n XB(UB) = W + 0, the 

sets XB -1 (W) and Xa -1 (W) are open sets in Rn and the 

mappings XB -1 0 Xa are differentiable. 

(3) The family {(Ua,Xa)} is maximal relative to the 

conditions (1) and (2), i.e., the family {(Ua,Xa)} 

contains all possible mappings with these 

properties. 

The pair (Ua , Xa) with P E Xa (Ua ) is called a parame-
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trization or system of coordinates of M at P. Xa(Ua) is 

then called a coordinate neighborhood at P. A family 

{(Ua,Xa)} satisfying (1) and (2) is called a differentiable 

structure on M. 

FIGURE ~ 

A differentiable structure on a set M induces a natural 

topology on M. Define A c M to be an open set in 

M if and only if Xa-1 (A n Xa (Ua» is an open set in 

Rn for all a. The topology is defined such that 

the sets Xa(Ua) are open and that the mappings Xa are 

continuous. The Euclidean space Rn is an n-manifold with 

the family of mappings generated by (R n
, identity). 

Similarly, any open set in Rn is an n-manifold. 

~ Example. Let G=GL(n,R) be the group of all non-

singular nxn matrices. We show that G is an n 2-dimensional 

manifold. G is a metric space with distance function 

d(A,B)=.jt(ajj -bjj )2 where A=(aij) and B=(bij ). If A=(aij)EG, 

let 
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Define a function V': RA2~R by 

V' (xu, .•• , xnn ) =Lo£sn (-1) ° XI,o(l) X2,o(2) ... xn,o(n) , 

where Sn is the group of permutations on n letters. 

It can be shown that V' is continuous and V'o~(A)=detA. 

Therefore ~(G)= VI(R-{O}) is open. Let M(n) be the set of 

all nxn matrices. We have identified M(n) and RA2 by the 

mapping ~. 

For surfaces in R3, a tangent vector at a point P of 

the surface is defined as the "velocity" in R3 of a curve 

in the surface passing through P. For differentiable 

manifolds, we do not have the support of the surrounding 

space. In elementary calculus, a vector v at a point 

P E Rn may be viewed as a directional derivative. If 

v = (a1 ,a2 , ••• ,an) and f:R n -R is differentiable, then the 

non-normalized directional derivative of f at P in the 

direction v is 

v (f) = ~ a i (afjaui
) (P) . 

This concept will be used to define a tangent vector as a 

real-valued operator on the set of differentiable 

functions on M which obeys the properties of a derivative. 

Let D(M) "denote the set of all local smooth (C·) 

functions at the point x in the smooth (C-) manifold M. By 

a local smooth function at the point x of M, we mean a 

smooth (C-) function f:U-R defined on an open neighborhood 

U of x in M. In the set D(M) define scalar multiplication, 

addition, and multiplication as follows. 
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For arbitrary a,b E R and any two local smooth 

functions f:U-R, g:V-R in O(M) , we have the local 

smooth functions 

defined by 

af + bg: U n V -R 

fg: U n V -R 

( a f + bg) (w) = a [ f (w)] + b [ 9 (w) ] , 

(fg) (w) = f (w) 9 (w) 

for every w E U n V. These operations fail to make O(M) 

an algebra over R. O(M) is not a linear space over R 

because f + (-f) + 9 + (-g) unless U = V. To correct 

this problem, define a relation - in the set O(M) as 

follows. For any two local smooth functions f:U-R 

and g:V-R in O(M), f - 9 if and only if there exists 

an open neighborhood W c U n V of x in M such that 

f(w) = g(w) holds for every point w in w. since this 

relation in O(M) is reflexive, symmetric, and transitive, 

it is an equivalence relation. Therefore - divides the 

members of O(M) into disjoint equivalence classes called 

the germs of local smooth functions at the point x of M. 

Let G(M)=O(M)j- denote the set of all smooth germs 

at the point x of M and let p:O(M) - G(M) denote the 

natural projection of the set O(M) onto its quotient set 

G(M). Oefine scalar multiplication, addition, and 

multiplication in G(M) for arbitrary smooth germs w,8 E 

G(M), a,b E R, fEW, and gEe as follows: 
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aw + be = p(af + bg) 

we = p(fg) 

These operations make G(M) the algebra of smooth germs 

at the point x in M of C· functions. 

~ pefinition. A tangent vector to M at P is a function 

Xp:D(M)-R whose value at f is denoted by Xp (f), such 

that for all f,g E D(M) and r E R, 

(a) Xp(f + g) = Xp(f) + Xp(g); 

(b) Xp(rf) rXp(f); and 

(c) Xp(fg) = f(P)Xp(g) + g(P)Xp(f), 

where fg is the ordinary product of functions f and g 

and f(P)Xp(g) is the product of real numbers f(P) and 

Xp(g). Xp(f) may be read as the non-normalized 

directional derivative of f in the direction Xp at P. 

Let a:(-e,e)-M be a differentiable curve in M with 

a(O) = P. Let X: be defined by X:(f) = (d(foa)jdt) (0) . 

Let D be the set of functions on M that are differentiable 

at P. The tangent vector to the curve a at t=o is a 

function Xpa :D-R .given by 

Xpa(f) = d(foa)jdtlt~O' fED. 

The tangent vector at P is the tangent vector at t=o to 

the curve a:(-e,e)-M with a(O) = P. The set of all 

tangent vectors to M at P will be indicated by TpM. 

Let x:U-Mn at P=x(O) be a parametrization where 

n indicates the dimension of M. Express the function 

f:Mn-R and the curve a in this parametrization by 
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fox(q)=f(xl ..... xn)' q= (Xl, ••• ,Xn) E U, 

and x-loa (t) = (Xl (t) , .•• , Xn (t) ) . 

Restricting f to a we obtain 

Xpo (f) = (d/dt) (foa) I teO = (d/dt) f (xdt) , .•• , Xn (t) ) I teO 

= ~ (dxddt) I t=O (Bf/Bxd = p: Xi' (0) (B/Bxd 0) f. 

FIGURE 2. 

Therefore, the vector Xpo can be expressed in the parame-

trization x by 

Xpo = ~ Xi' (0) (B/Bxdo. 

(B/Bxd 0 is the tangent vector at P of the "coordinate 

curve": Xi-X(O'.~ .. 'O'Xi'O' .•. ,O). Therefore the tangent 

vector to the curve a at P depends only on the derivative 

of a in a coordinate system. 

~ Defjnition. The tangent space ~ M ~ £, TpM, is the 

set of all tangent vectors to M at P. The set 

TpM, with the usual operations of functions, 

forms a vector space of dimension n. 

The choice of a parametrization x:U-M determines an 
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associated basis {(ajaX1)O, ••• , (ajaxn)o} in TpM. The linear 

structure in Tpm defined above does not depend on the 

parametrization x. 

~ Defjnition. Let M and N be differentiable manifolds. 

If ~:M-N is differentiable, the differential of ~ at 

P is the function 

(~ .. )p:TpM - Tcp(p)N 

defined by 

(~ .. )p(Xp) (f) 

where Xp E TpM, fED (N) . 

~ proposition. Let~: M - Nand P E M. Then 

(~ .. ) p: TpM - T~(p)N is a linear transformation. 

Proof: Let r E R, Xp, Yp E TpM. We need to show that 

(~ .. )p(rxp + Yp) = r(~ .. )pXp + (~")pYp. For any f E D(N): 

«~ .. ) p(rXp + Yp» (f) = (rXp + Yp) (fo~) 

= rXp(fo~) + Yp(fo~) = r(~")p(Xp)f + (~")p(Yp)f 

= (r(~ .. )pXp + (~")pYp) (f) QED 

~ Defjnition. Let Mn and Nffi be differentiable manifolds 

of dimension~ nand m, respectively. M is an 

embedded sllbmapjfold of N is there is a differenti-

able function ~:M - N such that ~ is one-to-one and 

(~.)p is one-to-one for each P E M. 

If M is a submanifold of N, then dim M ~ dim N. The 

tangent space to M can be viewed as a subspace of the 

tangent space to N. 

1.13. Defjpjtiop. A vector field X on a differentiable 
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manifold M is a correspondence that associates to each 

point P E M a vector Xp E TpM. 

~ Definitjon. A vector field X on a differentiable 

manifold M is differentjabJe in the following sense: 

if f is a differentiable function on M, then the 

mapping P-Xpf is differentiable. 

Let X(M) represent the set of all vector fields on M. If 

X,Y E X(M), r E R, and f E D(M), then: 

(X + Yh = Xp + Yp , (rX)p = r"Xp, and 

( fX h = f (P) Xp • 

~ pefjnition. If X, Y E X(M), then the Lie Bracket of 

X and Y, [X,Y], is the vector field defined by 

[X,Y]pf = Xp(Yf) - Yp(Xf) for f E D(M) and P E M. 

~ Lemma. [X,Y] is vector field on M. 

(See Millman and Parker,[9]) 

~ Propositjon. If X,Y,Z E X(M) and r E R, then 

(a) [X,Y] = -[Y,X] and [rX,Y] = r[X,Y] 

(anticommutativity) 

[X,Y] = XY -. YX = -[YX - XY] = -[Y,X] 

[rX,Y] = rXY - YrX = r[XY-YX] = r[X,Y]. 

(b) [X + Y,Z]' ~ [X,Z] + [Y,Z] and [Z,X + Y] 

[Z,X] + [Z,Y] (linearity). 

(c) [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 

(Jacobi's Identity) 
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2. Riemannian Manifolds 

Riemannian geometry is a generalization of metric 

differential geometry of surfaces. Instead of surfaces, one 

considers n-dimensional Riemannian manifolds. These are 

obtained from differentiable manifolds by introducing a 

Riemannian metric. The corresponding geometry is called 

Riemannian geometry. Surfaces are two-dimensional 

Riemannian manifolds. These concepts will be discussed in 

this section. 

2.1 Defjnjtjon. A Riemannjan metric (or Riemannian 

structure) on a differentiable manifold M is a 

correspondence which associates to each point P of M 

an inner product <,>p (that is, a symmetric, bilinear, 

positive definite function) on the tangent space TpM 

which varies differentiably in the following sense. 

If x:UcR n 
- M is a system of coordinates around 

P, with X(X1 ,X2 , ••• x
ll
)= q E X(U), then 

a a <-,-> = gij(X1,···,x) 
ax.1 aX:J q 11 

is a differentiable function on U. 

This definition does not depend on the choice of coordinate 

system. The function gij(Xl, ... ,Xn ) is called the local 

representation of the Riemannian metric in the coordinate 

system x:UcRn 
- M. A differentiable manifold with a given 

Riemannian metric is called a Riemannian manifold. 

When are two Riemannian manifolds M and N the same? 

2.2 Definitjon. Let M and N be Riemannian manifolds. 
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A diffeomorphism f:M - N (that is, f is a 

differentiable bijection with a differentiable inverse) 

is called an isometry if: 

(*) <il,V>p=«f.)p(il) , (f.)p(v»r{p) ' 

for all P E M, il,v E TpM. 

2.3 Defjnition. Let M and N be Riemannian manifolds. A 

differentiable mapping f:M - N is a local isometry at 

P E M if there is a neighborhood U c M of P such that 

f:U - f(U) is a diffeomorphism satisfying (*). 

Commonly, it is said that a Riemannian manifold M is 

locally isometric to a Riemannian manifold N if for 

every P in M there exists a neighborhood U of P in M 

and a local isometry f:U - f(U) c N. 

Some examples of the notion of Riemannian manifold are 

as follows. 

2.4 Example. Let M = an with a/axi identified with 

ei=(O, ••• ,1, ... ,0). The metric is given by <eil ej> = Oij. 

an is called Euclidean space of dimension n and the 

Riemannian geometry of this space is metric Euclidean 

geometry. 

2.5 Example. "The product metric. Let Ml and Mz be 

Riemannian manifolds and consider the cartesian product 

Ml X Mz with the product structure. 

Let ~:~~ .. ~ and ~:~~ .. ~ be the natural 

projections. (See Do Carmo, [3]) Introduce on Ml X Mz a 

Riemannian metric as follows: 
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<il, V> (pq) =< (~) ;il, (~) ;V>p + < (~) ;il, (~) ;V> q , 

for all (p, q) E Ml X M2, il, vET (pq) (Ml X Mz) • 

The torus S1X ••• XS1 = Tn has a Riemannian structure obtained 

by choosing the induced Riemannian metric from R2 on the 

circle S1 c R2 and then taking the product metric. The 

torus Tn with this metric is called the flat torus. 

A differentiable mapping a:I-M of an open interval 

I c R into a differentiable manifold M is called a 

(parametrized) curve. A parametrized curve can self-

intersect as well as have "corners". 

I 

FIGURE 3 

2.6 Definitj on. 'A vector field V along a curve a: I-M is 

a differentiable mapping that associates to every t E I 

a tangent vector vet) E Ta(t)M. The vector field 

a+(d/dt), denoted by da/dt, is called the velocity 

field (or tangent vector field) of a. 

I is a one-dimensional manifold with tangent vector d/dt 

as a basis. The restriction of a curve a to a closed 

interval [a,b] c I is called a segment. If M is a 
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Riemannian manifold, the length of a segment is defined 

by 

1 b = Ib < da, da >112 dt. 
• • dt dt 

Let X(M) be the set of all vector fields of class c· 
on M and let G(M) be the algebra of germs of C· (smooth) 

functions. In order to study the change in a vector field 

with respect to a direction, we introduce the notion of 

differentiation of vector fields. 

2.7 Definjtion. A linear connection ~ on a differentiable 

manifold M is a mapping ~: X(M) X X(M) - X(M) which 

is denoted by <X, Y> 'V_ ~xY and which satisfies the 

following properties: 

3) ~xfY = (Xf)Y + f~xY; X,Y,Z E X(M) and f,g E O(M). 

~xY should be read as the covariant derivative of Y in the 

direction of X. 

Since many developments in the geometry of manifolds 

are local, we specify a connection by its local coordinates 

as follows. 

2.8 pefinitjon.· Let ~ be a connection on M and let 

X:OCRA~M be a system of coordinates about P. The 

Chrjstoffel symbols of ~ with respect to the system of 

coordinates are the functions r i / E O(x(U» defined by 

V
ZI

Xj = Va/&x
1 

(O/OXj ) = Lk r i / (a/axk) = Lk r i / Xk • 

This shows that there are infinitely many connections on 
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a manifold which can be obtained by prescribing the 

Christoffel symbols (subject to symmetry conditions). 

2.9 Example. (Flat Euclidean space). 

Let M=Rn. If Y E X(lln) , then Y = Lfiei for some fi E D(Rn). 

Define the flat conncection on Rn by VxY = LdXfi) ei. 

By definition, this defines a linear connection on the 

manifold :an. 

VX1Xj= a for all i and j so that r i/ = a for all i,j,k. 

VxY is the usual directional derivative of a vector-valued 

function. 

2.10 Example. Let M be flat Euclidean 2-space, 

ex(t) = (cos t, sin t) for a < t < 2n and Y = yel - xe2. 

Since T = -sintel + coste2, let X = -yel + xe2 so that 

Xa(t) = Ta(t). If follows that 'ilTY = 'ilxY = Xyel - Xxe2 

= xel + ye2 and 'ilTY = costel + sinte2. 

Other connections will be discussed in section three of 

this chapter. 

In the Euclidean plane, two lines are parallel if 

they have the same slope. Two curves ex,B:I-R 3 are parallel 

if their tangent vectors exl(s) and BI(S) are parallel for 

each s in I, which implies that their tangent vectors have 

the same slope for each s in I. 

2.11 Definition. Let M be a differentiable manifold with 

a linear connection 'il. Let ex:I-M be a differentiable 

curve in M. A vector field V along a curve ex:I-M is 

called paraJJel when 'ilTV = DV/dt = 0, for all t E I. 
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2.12 Proposition. Let M be a differentiable manifold 

with a linear connection V. Let a:I-M be a differentiable 

curve in M and let Vo be a vector tangent to M at aCto), 

to E I. Then there exists a unique parallel vector 

field vet) along a, such that Veto) = vo' vet) is called 

the parallel transport of veto) along a. 

(See Do Carmo, [3]) 

As a consequence of this proposition, if there exists a 

vector field V in X(U) which is parallel along a with 

veto) = Vo, then 

o = ~~ = Lj (dvjjdt)Xj + L,j(dxjdt)vj V
X1

Xj 

where V = Lj v j Xj and Vo = Lj voj Xj . setting 'V
X1

X j =Lk fi/ Xk 

and replacing j with k in the first sum, we obtain 
DV 
dt 

k . k = Lk {(dv jdt) + Lij v J (dxjdt) r ij }Xk = o. 
The system of n differential equations in Vk(t) , 

k k . o = dv jdt + L,j r ij v J (dxjdt), k=l, ... ,n, 

possesses a unique solution satisfying the initial 

2.13 Definition. A linear connection V on a smooth 

manifold Mis said to be symmetric when 

[X,Y] for all X,Y E X(M). 

Local Riemannian geometry is concerned only with the 

differential geometric properties of a part of a 

differentiable manifold which can be covered by one 

system of coordinates. The fundamental theorem of local 
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Riemannian geometry states that with a given Riemannian 

metric there is uniquely associated a symmetric linear 

connection with the property that parallel transport 

preserves inner products. This unique linear connection 

is called the Riemannian connection of the Riemannian 

manifold. 

2.14 Definition. Let V be a vector field along a curve a, 

and let T be its tangent vector. V is parallel along a 

if V'T V = DV / dt = o. 

2.15 Definition. Let M be a differentiable manifold with a 

linear connection V' and a Riemannian metric <,>. A 

connection is said to be cornpatjble with the metric 

<,>, when for any smooth curve a and any pair of 

parallel vector fields V and V' along a, then <V, V'> = 

constant. 

2.16 proposjtion. Let M be a Riemannian manifold. A 

connection V' on M is compatible with a metric <,> if and 

only if for any vector fields V and W along the differenti-

able curve a:I-M we have 
d -<V,w> = 
dt 

<V'TV, W> + <V'V'TW> = < DV W> + <V DW> , tEl. 
dt ' , dt 

This implies that if V' is compatible with a Riemannian 

metric <,>, then we are able to differentiate the inner 

product using the "product rule". (See Do Carmo,[3]) 

2.17 Corollary. A connection V' on a Riemannian manifold 

M is compatible with the metric if and only if 

X<Y,Z> = <V'xY,Z> + <Y,V'xZ>, for all X,Y,Z E X(M). 
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Proof. If X<Y,Z> = <V'xY,Z> + <Y,V'xZ> for X,Y,Z E X(M), 

then V' is compatible with the metric by Proposition 

2.16. Suppose that V' is compatible with the metric. 

Let P E M and let a:I-M be a differentiable curve with 

acto) = P, to E I. Let dCi It t: = X(P). Then 
dt - .. 

X(P)<Y,Z> = ~<y,z>1 = <V'X(P)Y,Z>p + <Y,V'X(P)Z>p. dt t-t: .. 

P is arbitrary. Therefore, 

X<Y,Z> = <V'xY,Z> + <Y,V'xZ>, X,Y,Z E X(M). QED 

2.18 Theorem. (The Fundamental Theorem of Local 

Riemannian geometry.) Given a Riemannian manifold M, there 

exists a unique linear connection V' on M satisfying the 

conditions: 

a) V' is symmetric. 

b) V' is compatible with the Riemannian metric. 

This connection is called the Riemannian connection on M. 

(See Do Carmo[3]) 

Let x: U c an - M be a system of coordinates and let 

VX1Xj=E,kri/ Xk where r i / are called the coefficients of the 

unique linear con~ection on U or the Christoffel symbols of 

the connection. As a consequence of Theorem 2.18, it 

follows that 

Ll r i / glk = 1/2{ (a/axdgik + (a/aXj)gki - (a/aXk)gij} 

where gij = <Xu Xj>. Since the gij are the coefficients of 

a positive definite quadratic form, the matrix (g~) has an 

inverse (g~). 

Therefore, 
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rit = 1/2 Lk {(a/axdgjk + (a/aXj)gki - (a/aXk)gij}glan 

yields the Christoffel symbols of the unique linear 

connection. This equation is a classical expression for 

the Christoffel symbols of the Riemannian connection in 

terms of the gij given by the metric. In terms of the 

Christoffel symbols, ~TV = DV has the classical 
dt 

expression 
DV k k . 
dt = Lk {(dv /dt) + Li,j r ij v J (dxjdt)} Xk· 
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3. Geodesics 

"straight line" and "point" are two of the undefined 

terms in plane geometry upon which the axioms of plane 

geometry are built. Straight lines play an important role 

in the construction and formation of many figures that are 

studied. What types of curves play the role of "lines" on a 

Riemannian manifold. These "lines" should be curves whose 

tangent vectors are all parallel. These "lines" should also 

be curves of shortest length joining two points on a 

Riemannian manifold. A geometric surface is considered to 

be a two-dimensional Riemannian manifold. These "lines" on 

a surface are referred to as geodesics. 

3.1 Defjnitjon. A parametrized curve a:I - M is a geodesjc 

at to E I if Vr, T =...E... ( cia) =0 at the point to; if a is a 
.. a dt dt 

geodesic for all t E I, we say that a is a geodesic. 

If [a,b] c I and a:I - M is a geodesic, the restriction 

of a to [a,b] is called a geodesic segment joining a to 

a(a) to a(b) . 

If a: I - M is a g.eodesic, then 
d dCi. dCi. D dCi. dCi. -<-, ->=2<--, ->=0 .. 
dt dt dt dt dt dt 

This implies that the length of the tangent vector 

constant and the tangent vectors are all parallel. 

dCi is 
dt 

Let x:U c an - M be a system of coordinates about 

a(to)' We need to determine the local equations satisfied 

by a geodesic a. By proposition 2.12, in U a curve 

aCt) = (x1(t), ••• ,xa(t» will be a geodesic if and only if 
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D dCX ° = -(-) 
dt dt 

Therefore, 

a 
DX

k
' 

dX1 dX j • 
= 0, k=l, ••. ,n (Equat1on 3A) 

dt dt 

and this second order system yields the local equations 

satisfied by a geodesic a. By the usual existence and 

uniqueness theorem for ordinary Differential Equations, we 

see that for every point P and every tangent vector Vo at 

P there exists (locally) a unique geodesic through P with 

tangent vector VOl 

3,2 Example Let x:U c R2 - R3 and let x(r,s) = (r,s,O) 

represent the two-dimensional plane in R3. This system 

of coordinates represents a two-dimensional manifold in 

a3 known as a simple surface. The standard classical 

notation for a Riemannian metric is given by 

ds2 = Edx{+2Fdxl dX2 +Gdx; where 

E = gIl =<Xl,Xl> , F = gl2 =<Xl ,X2>, 
D and G = g22 =<X2, X2>' where Xi = -. 

(3x1 
For the two-dimensional plane, Xl =(1,0,0) and 

X2 = (0,1,0) with E=l, F=O, and G=l. Therefore, 

the Riemannian metric of the two-dimensional plane 

will be the Euclidean metric given by 

ds2 = dX/ + dX/. 

1 0 .. 1 0 
with (gij) = (0 1) and (g~J) = (0 1) , the Riemannian 

connection is r ij k = ° for all i, j , k. The differential 
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d 2x 
equations (Equation 3A) reduce to -_k=0,.t=1,2. It 

dt 2 

follows that 
d 2r 
dt 2 

= 0, dr ds = 0, with -=il, -=il. dt 1 dt 2 

Therefore, r = il1 t+U2 and s u3 t+U, and the geodesics 

of the Euclidean plane are straight lines. 

3,3 Example, 

x(u,v)=(cosu COSy, cosu sinv, sinu) , 

(u,v) E 
-0 0 (-,-) X R. 
2 2 

The image of x is the unit sphere S2 minus the north pole 

and south pole: S2 - {0,0,±1}. 

Xl = (-sinu COSY, -sinu sinv, casu) 

X2 = (-cosu sinv, cosu COSY, 0) 

with the usual Euclidean metric, 

and 

The unique Riemannian connection is f122 = f212 = -sinu 
cosu 

f2/ = casu sinu, all other fi/ = O. The differential 

equations (Equation 3A) reduce to 

(1) d 2 u dv dv --+cosusinu- -=0 
dt 2 dt dt 

(2) d 2v sinu du dv 
- 2 ------ =0 

dt 2 cosu dt dt 

A meridian of the sphere is given by vet) = constant. 
dv d 2v It follows that -=0 and --=0 and equation (2) is 
dt dt 2 

satisfied. Along a meridian u(t) = t so that dU=l and 
dt 

Therefore equation (1) is satisfied. It 
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follows that every meridian of the sphere is a 

geodesic. The meridian of a sphere is a great circle. 

The sphere is symmetrical and there is nothing 

geometrically special about this great circle. There-

fore every great circle of the Riemannian manifold 

52 is a geodesic. 

3.4 Example. Consider a curve in the (r,z) plane given by 

r=r(t) > 0, z=z(t). If this curve is rotated about the 

z-axis, we obtain a surface of revolution. Let M be 

a surface of revolution generated by the unit speed 

curve (r(t),z(t». M may be parametrized by 

x(t,6) = (r(t)cos6, r(t)sin6, z(t». 

t measures position on the curve and 6 measures how far the 

curve has been rotated. The t-curves are called meridians 

and the 6-curves are called circles of latitude. The 

z-axis is called the axis of revolution. 

FIGURE 4 

with the usual Euclidean metric, 
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o 
1 

---:--
X 2 (t) 

) . 
The Riemannian connection is r 1/ = rz/ = ,r'(t) 

,r (t) 

r 2/ = -ret) r' (t), and all other r i / = o. The 

differential equations (Equation 3A) reduce to 

(1) d
2
t_,r{t),r'{t) d6 d6=O 

ds 2 ds ds 

(2) d 2e + 2 ( x' (t) dt d6 = 0 
ds 2 r(t) ds ds 

(Note: Comparison of this example with that of the 

unit sphere S2 shows clearly that the sphere is a 

surface of revolution.) A meridian is given by 8(s) = 
de d 2e constant. Then - and -- are zero and equation (2) 
ds ds 2 

is satisfied. 
d 2 t 

dt Along a meridian t(s) = s, so that -=1 
ds 

and --=0 and 
ds 2 

equation (1) is satisfied. Therefore 

every meridian of the surface of revolution is a 

geodesic. 

A circle of latitude is given by t(s) constant. 

Then dt d d 2 t - an -- are both zero. 
ds ds 2 

since ?(s)=x(t(s),e(s))has unit speed, 

l=I?'(s) 12=1 ax dt+ax de 12=g (de)2. 
at ds ae ds 22 ds 

This implies that 1 = x 2 ( de) 2 and 0 + d6 =±.!. It 
ds ds r 

d 2e follows that r is constant if t is. Therefore --=0 
ds 2 

and a circle of latitude satisfies equation (2). Since 

de+o and r>O, a circle of latitude satisfies equation 
ds 

(1) if and only if r'(t)=O. This happens if and only 

if 
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ax = (r' (t) cose, r' (t) sine, z' (t) ) at 
is parallel to the axis of rotation (0,0,1). This 

implies that a circle of latitude is a geodesic if and 

only if the tangent ax to the meridians is parallel to at 
the axis of revolution at all points on the circle of 

latitude. 

In a later chapter we will study examples in which the 

metric is not induced by the Euclidean metric. 

3.5 Definition. The curvature of a unit speed curve a(s) 

is given by K(s) = IT' (s) I = la"(s) I. 

3.6 Definition. The prjncipal normal vector field of a(s) 
.. . - cit (s ) . 11 th 1S a un1t vector-f1eld N(s)- Wh1Ch te s e 

K(s) 

direction in which a(s) is turning at each point. 

3.7 Defjnjtion. The unjt normal to the surface at a point 
X1XX2 8 

P=x(u,v) =a(s) is n- withX =- . I XtXX21 1 8x1 
If x:DCR2~R3 is a two-dimensional manifold (called a 

simple surface) and ~(s) is a unit speed curve in the image 

of X, then §=nxT=~ is called the intrinsic normal of ~ 

§ is well defined on a surface M up to 

sign. 

If P EM,' iet NpM ={rii IrE R}. NpM is the set of all 

vectors perpendicular to M at P and is called the normal 

space of M at P. The tangent space of a surface M at P 

E M is the set TpM of all vectors tangent to M at P. 

R3=T MeN M and any vector in R3 can be decomposed uniquely 
p p 

as a sum of a vector tangent to M at P and a vector normal 
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to M at P. If this is done for V"(s) , then V"(s) =X(s) +V(s) 

where Xes) is tangent to M and V(s) is normal to M. 

Since T{S) =V' (s) is tangent to M, <v, T>=O • <V", T>=O 

and therefore <X{s),T>=O. But <X{s),fi>=O and therefore 

Xes) is perpendicular to both nand T and is thus a 

multiple of S=fiXT. Define two functions kn(s) and kg(s) 

by 

k 11 (s) =<V" ( s) , it (yl (s) ,y2 (s) ) > and 

kg(s)=<V"(s),S(s». 

Therefore, 

K (s) iJ (s) = T' (s) =V" (s) =k 11 (s) it (s) +kg (s) S (s) • 

kn(s) is the normal curvature of a unit speed curve? and 

measures how the surface M is curving in R3. kg(s) is the 

geodesic curvature of a unit speed curve ? and measures how 

? is curving in M. 

3.8 Proposition. (Gauss's formulas) Let X:~R3 be a 

simple surface. Then for any unit speed curve, 

k S=~ g ~k 

(See Millman and Parker, [9]) 

3.9 Definition. A curve a on a manifold M is a geodesic 

(wi th respect to V') if V'T Ta = o. 
For a geodesic a, 
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Therefore if a is a geodesic then kgS = 0 and kg = o. 
This implies that a geodesic a on M has geodesic 

curvature equal to 0 everywhere. Since geodesic 

curvature measures how a is curving in a surface M, kg = 0 

everywhere means that a is not turning, i.e., is the 

"straight line" of the surface. 

3.10 Proposition. A unit speed curve ~(s) on a two-

dimensional manifold M is a geodesic of M if and only if 

~"(s) is everywhere normal to the surface (i.e. is a 

multiple of the normal to M) . 

Proof: !!i'=KN=kgS+knti. If kg=O, then !!i' (8) =KN=k/f 

and !!i' is everywhere normal to the surface. If!!i' 

is everywhere normal to the surface, then 

!!i'=KN=k n=O +k ti and k = O. QED n n 9 

This proposition implies that along all curved geodesics, 

the principal normal to the curve coincides with the surface 

normal. Since!!i' is normal to the surface, the inhabitants 

of M perceive rto acceleration at all. For them the geodesic 

is a "straight line". 

3.11 Example. Let x: UcR2 ... R3 and 

x(t,v)= (r cost, r sint,v). 

The image of x is a surface of revolution known as a 

cylinder of revolution or right circular cylinder whose 
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radius is r and whose axis of revolution is the z-axis. 

Let ~:R~R3 be given by ~(t)=(r cost, r sint, bt), 

r,b constants + 0. This is called the right helix on 

the cylinder of radius r of pitch 2nb. 

The principal normal to the curve is 

N ... ( t) (!j' (t) (-xcost, -xsint, 0) (- t - itO) - - - cos, s n, • 
K( t) x 

A normal to the surface is 
xt xx2 (xv'cost, xv'sint, 0) n- - (cost,sint,O) I X1XX2 I xv' 

where X1=(-rsint,rcost,O) and X2=(O,O,v'). 

Therefore, n=±N and circular helices on the cylinder 

are geodesics of the circular cylinder. Since the 

cylinder is a surface of revolution, other geodesics of 

the cylinder would be the generators of the cylinder 

(meridians) and the circles of latitude for which the 

vector tangent to the meridians is parallel to the 

axis of revolution at all points on the circle of 

latitude. 

FIGURE 5 
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3.12 Example. Let x: UcR2 ... R3 be given by 

x(u,v)=«a+bcosu)cosv, (a+bcosu)sinv, bsinu) 

O<b<a, (u,v) E R X R. 

The image of x is a surface of revolution known as 

a torus. (a+bcosu) represents the distance from the 

z-axis. (bsinu) represents the distance along the 

z-axis. Since the torus is a surface of revolution, 

the geodesics of the torus include the meridians 

and the circles of latitude where the tangents to 

the meridians are parallel to the axis of revolution 

at all points on the circles of latitude. These 

circles of latitude would be the outer equator and 

the inner equator of the torus. 

3.13 Definition. A geodesic segment ~ from P to Q 

locally minimjzes arc length from P to Q provided 

there exists an e>O such that for any ~ which is 

sufficiently close (e-close) to ~ then the length 

of ~ is greater than or equal to the length of 

Y': L (~) ~L (~) •. 

3.14 Theorem. Let ~ be a unit speed curve in a surface M 

between points P=~(a) and Q = ~(b). If ~ is the shortest 

curve between P and Q, then Y' is a geodesic. 

The proof will proceed along the following lines. 

Start with a length minimizing curve ~ and assume that the 

geodesic curvature is not zero. Then "wiggle" the curve 

to form a family of curves with the same endpoints as ~ 
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with ~Q=~. Let L(t) be the function that gives the length 

of ~t and it must have a minimum at t=o (~Q=~). Therefore 

L'(O)=O. Using this fact and integrating by parts leads 

to a contradiction. 

Proof: Let a<xo<b and let kg be the geodesic 

curvature of~. To prove that ~ is a geodesic, show 

that kg (so)=O. 

Suppose that kg(so) + o. There exist numbers c and d 

with a<c<so<d<b, kg + 0 on [c,d]. The image of [c,d] 

under ~ is contained in a coordinate patch x. The 

segment of ~ from ?(e) to ~(d) must be the shortest 

curve joining ~(e) to~(d) or there must be a piece-

wise regular curve from ?(a) to Vee) to ~(d) to ~(b) 

that is shorter than ~. 

But ~ is the shortest curve from ~(a) to ?(b) • 

Let ~(s) be a C2 function defined for c~s~d such that 

~(c)=~(d)=O, ~(so)+O, and ~(s)kg(s)~O for c~s~d. 

S=nxT=~ and in the coordinate patch x we have 

~(s) s=r.Vi(S)X1 for some Vi: [c,d]-R. ~(s) moves in and 

out with endpoints fixed. 

Let ~(s) . be given by ~(s) =x (r (s) , ~ (s) ) • 

Define a family of curves by 

~t(s)=x(r(s)+tvl(S),~(S)+tv2(S)) 

with It I small enough (e-close). at is a curve from 

~(e) to ~(d) for each choice of t with ~ =~ or 
Q 

~t(s)=~(s;t). The length of ~(s;t) is 
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1 

L(t)=fd<~, ~>2dS • 
c as as 

L(t) has a minimum for t=o. ~(s;O)=?(s) yields the 

shortest path. 

FIGURE 6 

L' (t) 

2< (j2~ I act> 
fd.,!. atas as ds 

c 2 1 
<act, act>2 

as as 

(Chain Rule) 

< O{t, ~>=< d?, d? >=1 (? is unit speed.) 
as as ds ds 

Therefore, 

L ' (0) = fd< cJ2~ ~>I d 
c osot I as t-o S 
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= Id[ d < act act> I _< act ~ct>1 ] ds 
c ds at' as t-O at' as 2 t-o 

act I t-o=Ev j (s) Xj=A(S) S. "- was constructed so that at 
"-(c) = "-(d) = o. 
Therefore, 

= - J""(s) kg(s) ds<O. (?"=k S+k if ) g II 

This contradiction implies that the geodesic curvature 

is everywhere 0 and ? is a geodesic. QED 

The converse of the previous theorem is false: 

If ~ is a geodesic, then ? is the shortest curve 

between P and Q. A geodesic need not minimize distance. 

Let P and Q be two points on the unit sphere S2 with 

P + ±Q. There are two geodesics of different lengths 

joining P to Q. They correspond to the two arcs of the 

great circle through P and Q. The longer geodesic does 

not minimize distance. However, geodesics locally 

minimize length .. 
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4. Curvature. 

An (n - 1) submanifold of an n-manifold is called a 

hypersurface. Let M be a hypersurface of Rn, and let V be 

the natural connection on Rn, and assume N is a unit normal 

vector field that is C· on M. Thus <NpM,NpM> = 1 and 

<NpM,X> = 0 for all P in M and X in TpM. Such an N always 

exists locally. 

For any P in M and any vector X in TpM, define the 

linear map L: TpM - TpM by L(X) = VxN. The vector L(X) lies 

in TpM. L is called the Weingarten map and in the case of 

Rn, it has the geometric interpretation of the Jacobian of 

the sphere map (Gauss map). 

Let N=(al' ••• '~)' so the a i are real-valued C· functions 

on M and L(ad 2 = 1. Then the mapping of g:M - Sn-1 in Rn is 

a C- map of M into the unit (n-l) -sphere Sn-1. g is called 

the sphere map (or Gauss map). If X is in TpM and act) is a 

curve fitting X with a(O)=P and To(O)=X, then 

g-(X) Tgoa(O) (xal , ••• ,xa
ll

) VII L (X) • 

FIGURE 7 

37 



The map L is c· on M in the sense that if X is c· on the 

subset A of M, then L(X) (Xa l , ••• ,Xan ) is also C- on A 

since each ai is C-on M. The Weingarten Map is the 

derivative of the normal and therefore gives the change in 

the normal. 

In order to study how a two-dimensional manifold M 

(simple surface) is curving at a point P, without reference 

to a direction, find the eigenvalues of the matrix 

(Lkl) = L (the Weingarten map). These eigenvalues at a 

point P will tell us how M curves at that point. 

4.1 Defjnjtjon. Let n be a unit normal vector on U. 

The coeffjcjents of the second fundamental form of 

a simple surface x :UcR2_R3 are the functions Lij 

defined on U by Lij = <Xij ' n>. 

Since Xij = Xjif then Lij = Lji . The Lij are called the 

coefficients of the second fundamental form because the 

assignment II (X, Y) = Li,j Lij xiyj is a symmetric bilinear 

form on T~, as is the first fundamental form I(X,Y) = 

<X, Y> = L xiyj <Xii Xj> = L xiyj gij. 

4.2 Theorem. Let M be a surface. Then L is a linear 

transformation from TpM to T~. 

(See Millman and Parker, [9]) 

~ Theorem. Let M be a surface. If L(Xk) = L L/X1i 

L/ = 1: Lik gil where (L/) is the matrix representing L with 

respect to the basis {Xl 'X2 }. 

Proof: Since Xi is tangent to M, <n,Xi> = o. This 
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implies that 

o = < an X> <niX, .. > 
::I ' 1 ..LA 
IIXJc 

= -<L(Xk) ,Xi> + Lik = Lik - <L Lkj Xj,Xi> 

= Lik - L Lkj <Xj,Xi> = Lik - L Lkj gji· 

Therefore Lik = L Lkj gji and 

L Lik gil = L Lkj gji gil = L Lkj 0/ = L/. QED 

The normal curvature kn of a at P depends only on the 

unit tangent of a at P. If we know all the possible values 

that kn takes on at P, we would know how M curves at that 

point. One way to find this information would be to find 

the maximum and minimum values that kn obtains called 

kl and k2' respectively. The following results are from 

elementary linear algebra. (See ortega,[ll]) To find 

these values, we determine the maximum and minimum of 

II(X,X) as X runs over all unit vectors in TpM. This means 

we are maximizing and minimizing II(X,X) subject to the 

constraints <X,X> = 1. 

Find the cri.tical values of 

f(X,A) = II(X,X) - A«X,X> - 1) 

= <L(X) ,X>' - A<X,X> + A = <L(X)-AX,X> + A at P. 

The problem has a solution since II(X,X) does have a maximum 

and minimum: the set of unit vectors in TpM is closed and 

bounded, i.e., compact. The eigenvalues are the roots of 

o = det(L - AI) = A2 - (trace L)A + det L. 

Denotes these roots by kl and k2' with kl ~ k2• 

39 



4.4 Proposition. At each point of a surface M there 

are two orthogonal directions such that the normal curvature 

takes its maximum value in one direction and its minimum 

value along the other. (See Ortega, [11]) 

4.5 Definition. The principal curvatures of a surface M 

at a point P are the eigenvalues of L (k1 and k2) at 

the point P. Corresponding unit eigenvectors are 

called principal directions at P. 

4.6 Definition. The Gaussian curvature of M at P is 

K klk2 = det L. The mean curvature of M at P is 

H = 1/2 (k1 + k 2 ) = 1/2 trace (L) . 

In the previous examples of two-dimensional manifolds, 

the geodesics of these surfaces were discussed. In each 

case, the Weingarten map L and the curvature of these 

surfaces can be computed. 

4.7 Example. For the Euclidean plane x(r,s) = (r,s,O), 

the metric coefficients were found to be 

Therefore Lij = <Xij , Ii> = < (5, Ii> 0 for all i and j and 

L = 

The det L = ° and 1/2 trace(L) = 0. This implies that the 

Gaussian and mean curvatures of the Euclidean plane at any 

point P is 0. 

4.8 Example. The unit sphere S2 - {0,0,±1} was given by 

x(u,v) = (casu cosv,cosu sinv, sinu) , (u,v) E 
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The metric coefficients were given by 

1 0 1 0 
(gij) = ) with inverse (gij) = (0 1 (0 cos2u 

cos2u 

if = -(cosu cosv, cosu sinv, sinu} , 

Lll = 1, Ll2 = ~l = 0, and ~2 = cos2 u. 

Therefore 

1 0 
L = (0 1) with det L = 1 and 1/2 trace(L) = 1. 

The Gaussian and mean curvatures af the unit sphere 52 at 

any point P is 1. 

4.9 Example. 

Let x(u,v) = (r casv casu, r casv sinu, rsinv) be 

the sphere af radius r. 

Xl = (-r casv sinu, r casv casu, 0) 

X2 = (-r sinv casu, -r sinv sinu, r casv) 

1 

o 

XII (-r cosv cosu, -r casv sinu, 0) 

Xl2 = (r sinv sinu, -r sinv casu, 0) 

X22 = (-r casv cosu, -r cosv sinu, -r sinv) 
X1xX2 if = (cosv cosu, cosv sinu, sinv) 

IX1XX21 

Lll = -r(cos2v), L12 = ~l = 0 , ~2 = -r 
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1 

L = (L/) = L Likgil and L = 
r 

o 
r 

Therefore, det L = 1 and 1/2 trace (L) = -.! which yield r2 r 
the Gaussian and mean curvatures, respectively, of the 

sphere at a given point p. 

4.10 Example. For the circular cylinder 

x(t,v) = (r cost, r sint, v) the metric coefficients are 

1/r2 0 
) with inverse (gij ) = ( 

o 
o v' 2 o 

) . 
1/v'2 

Let Ii = (cos t, sin t,O) with Lll -r, L12 = L2I =0, and 

L22 = O. Therefore, 

L = 
1/r 0 1 o 0) with det L = 0 and 1/2 trace (L) = 2r' 

It follows that the Gaussian curvature of the cylinder is 

0, while the mean curvature is -.! . 
2r 

The above examples all had constant curvature ~ O. 

Now we turn to an example with variable curvature: 

positive, negati~e, and O. 

4.11 Example. In studying the torus, we find that the 

Gaussian curvature of a point P depends upon the point's 

position on the surface. Let 

x(u,v) =«a + b cosu)cosv,(a + b cosu)sinv, bsinu) 

O<b<a, (u,v) E R X R. The metric coefficients are 

o 
(a bcosu) 2 

) 
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with inverse 
1 0 

(gij) b 2 

1 
) . 

0 
(a bcosu) 2 

n = -(cosu cosv, cosu sinv, sinu) and 

Lll = b, L12 = L21 = 0, L22 = (a + bcosu) cosu. 

Therefore 
1 0 
b 

L = ) with 
0 cosu 

(a bcosu) 

Det L = cosu which is 
b (a bcosu) 

a) > 0 for ~<u< n 
2 2 

b) = o for u = ± n 
2 

n 3n c) < 0 for -<u<- . 
2 2 

These three cases represent the outside, the top and 

bottom circle, and the inside respectively. 

One of Gauss's deepest and most surprising observa-

tions in his investigation of curved surfaces is that the 

curvature of a surface can be expressed in terms of its 

metric and the derivatives of its component functions. 

This metric is expressed in the form 

Edx2 + 2 Fdxdy + Gdy2 where 

E = <a/ax, a/ax>, F = <a/ax,a/ay>, G = <a/aY,a/ay>. 

Gauss called this theorem "egregium" because it is so 

remarkable. K is defined very extrinsically, in terms of 
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n or L, none of which are intrinsic. Yet K is intrinsic. 

4.12 Theorem. Gauss's Theorema Egregium 

The Gaussian curvature K of a surface is intrinsic. 

(See McCleary, [8]) 

Stahl,[13], gives a version of the formula for finding 

K as follows, where E.! = aE/ax, E2 = aE/ay, Ell = a2E/ax2, 

etc. 

4 (EG - F2) 2 K 

= E[E2G2 2F1G2 (G1) 2] + F[E1G2 E2G1 2E2F2 4F1F2 2F1G1] 

+ G [E1G1 2E1F2 (E2) 2] 2 (EG F2) [E22 2F 12' Gll]. 

This formula will be used to compute the Gaussian 

curvature for some of the models of non-Euclidean 

geometry discussed in chapter two. 
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5. cut Locus 

Take two points P and Q of a connected Riemannian 

manifold M and join them by a continuous piecewise 

differentiable curve. We can measure the arc length of 

this curve using the Riemannian metric. All possible 

piecewise differentiable curves joining P and Q will be 

considered. Define the distance d(P,Q) between P and Q 

as the infimum of their arc lengths. The distance function 

d satisfies the usual three axioms of a metric space: 

(1) d(P,Q) = d(Q,P). 

(2) For all points P and Q in S, d(P,Q) ~ 0 

and d(P,Q) = 0 if and only if P = Q. 

(3) (The triangle inequality). For all P, Q, and 

R in the metric space d(P,Q) + d(Q,R) ~ d(P,R). 

This allows us to talk about cauchy sequences of points of 

M and also the completeness of M. A metric space is 

complete if every Cauchy sequence of points in the space 

converges to a point in the space. 

Assume that M is a complete Riemannian manifold. 

Since a compact. metric space is complete, a compact 

Riemannian manifold is always complete. A geodesic get) 

can be parametrized by arclength. A geodesic 

get) defined on the interval astsb, is said to be 

infinitely extendable if it can be extended to a 

geodesic get) defined for th~ whole interval, -~<t<~. 

5,1 Definition. A surface S is said to be geodesjcaJJy 
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complete if every geodesic g:[a,b]-S can be extended 

to a geodesic g:R-S. 

Take the Euclidean plane and delete the origin. This 

yields an incomplete Riemannian manifold because the 

positive x-axis is not infinitely extendable. The 

following important theorem relates metric complete-

ness and geodesic completeness. 

5.2 Theorem. (Hopf-Rinow) On a complete Riemannian 

manifold, every geodesic is infinitely extendable and any 

two points can be joined by a minimizing geodesic. 

(see Mccleary, [8]) 

At each point P of a complete Riemannian manifold M, 

define a mapping of the tangent space T~ at Ponto M as 

follows. If X is a tangent vector at P, draw a geodesic 

g(t) starting at P in the direction of X parametrized by 

arclength. Parametrize the geodesic in such a way that 

g(O)=P. If X has length a, then we map X onto the point 

g(a) of the geodesic. Denote this mapping by expp:TpM-M. 
p 

FIGURE 8 

This mapping is called the exponentjal map at P. Expp maps 

a line in the tangent space TpM through its origin onto the 
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geodesic of M through P in the direction of the line. Since 

every point Q of M can be joined by a geodesic to P, expp 

maps TpM onto M. 

5.3 Definitjon. Fix a point P of a complete Riemannian 

manifold M and a geodesic get) starting at P. 

A cut point of P along get) is the first point Q 

on get) such that, for any point R on get) beyond Q, 

there is a geodesic from P to R shorter than g(t). 

This implies that Q is the first point where get) 

ceases to minimize distance (or arclength) . 

Let A be the set of positive real numbers s such that 

the geodesic g(t), o~t~s, is minimizing where s=d(P,g(s». 

Either A=(O,oo) or A=(O,r) where r is some positive number. 

If A=(O,r), then g(r) is the cut point of P along the 

geodesic get). If A=(O,oo), then we say that P has no cut 

point along the geodesic get). Therefore, if Q is a point 

on get) which comes after the cut point pl=g(r), such that 

Q=g(s) with s>r, then we can find a geodesic from P to Q 

which is shorter .than get). If Q is a point which comes 

before the cut point pi, then we cannot find a shorter 

geodesic from"P"to Q and there is not another geodesic from 

P to Q of the same length. 

5.4 Theorem. If Q comes before pi, then get) is the 

unique minimizing geodesic joining P and Q. 

Proof: Let h(t) be another minimizing geodesic from 

p to Q. By moving from P to Q along h(t) and 
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continuing from Q to pI along get), we obtain a 

nongeodesic curve a from P to pI with an arclength 

equal to the distance d(P,P'). 

Choose a point M on h(t) before Q and also a point 

W on get) after Q. Taking M and W sufficiently close 

to Q, replace the portion of a from M to W by the 

minimizing geodesic from M to W. We obtain a curve 

from P to pI with an arclength less than the distance 

d(P,PI) which is impossible. QED 

FIGURE 9 

5.5 pefinition. The set of cut points of P is called the 

cut locus of P and is denoted by C(P). 

If M is a compact Riemannian manifold, then on each 

geodesic starting from a point P, there is a cut point of P. 

Let M be an n-dimensional unit sphere. As in the unit 

sphere S2, the geodesics are the great circles. If P is the 

north pole, then the cut locus C(P) reduces to the south 

pole. The cut locus of a point P of a cylinder in R3 is 

the opposite generator to that which passes through P. 

However, there is a geodesic, namely, the generator through 

P, that extends infinitely far. 
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6. Geodesic Circles, Normal Neighborhoods, and Conjugate 
Points 

6.1 Pefinition. A region D is convex if any two points of 

it can be joined by a geodesic arc lying wholly in D. 

A convex region is called simple if there is not more 

than one such geodesic arc. In the Euclidean plane, 

every convex region is simple, but this is not so for 

a surface in general. The surface of a sphere is 

convex but not simple. 

6,2 Theorem. (J.H.C. Whitehead (1932» 

Every point P of a surface has a neighborhood which is 

convex and simple and every point can be joined uniquely to 

every other point. 

A particular form of Whitehead's theorem is concerned 

with a geodesic circle of given center P and radius r. This 

geodesic circle (or geodesic disk) is defined as the set of 

points Q such that there is a geodesic arc PQ of length not 

greater than r. This geodesic circle and normal 

neighborhood will be discussed in this section. 

In this section, it will be shown that short enough 

geodesic segments behave as well in an arbitrary geometric 

surface as they do in R3. In the Euclidean plane, if we 

are interested in the distance to the origin, we use polar 

coordinates as a convenience. The distance from the origin 

to the point l(u,v) = (u cosv, u sinv) is simply u. In R2, 

the u-parameter curves are geodesics radiating out from some 
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fixed point P of M. 

Such geodesics may be described as follows: If W is a 

unit tangent vector at P, let Q'w be the unique geodesic 

which starts at P with initial velocity W. Assembling all 

these geodesics into a single mapping yields the following. 

6.3 Definition. Let l,k be orthogonal unit vectors tangent 

to M at P. Then x(u,v) = Q'cosvi + sinvk (u) is the geodesic 

polar mapping of M with pole P. 

The domain of x is the largest region of R2 on which 

the formula makes sense. A choice of v fixes a unit tangent 

vector W = cosvl + sinvk at P. Then the u-parameter curve 

u-x(u,v) = Q'w(u) is the radial geodesic with initial 

velocity W. Since Ilwl! = 1, this geodesic has unit speed, so 

that the length of Q'w from P=Q'w(O) to Q'w(u) is just u. At 

the origin of R2, the geodesic polar mapping becomes 

x (u, v) = Q'cosvi + sinvk (u) = (5 + u (cosv 1 + sinv k) 

= (u cosv,u sinv). 

Therefore x is a generalization of polar coordinates in the 

plane. 

The pole P is a trouble spot for a geodesic polar 

mapping. To clarify the situation near P, define a new 

mapping 

y(u,v) = Q'ui + vk (1). 

Y is differentiable and regular at the origin. By the 

inverse function theorem, y is a diffeomorphism of some 

disc De: u2 + v2 < e:2 onto a neighborhood Ne of P. Ne is 
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called a normal neighborhood of P. In the special case M = 

R2, Y is just the identity map y(u,v) = (u,v). Therefore 

for arbitrary M, y is a generalization of the rectangular 

coordinates of R2. 

6.4 Lemma. For a sufficiently small number e: > 0, let 

Ss be the strip O<u<e: in R2. Then a geodesic polar mapping 

x:Ss - M with pole P parametrizes a normal neighborhood Ns 

of P - omitting P itself. 

:2. 

1R 

FIGURE 10 

Proof: Note that x bears to y the usual relationship 

of polar coordinates to rectangular coordinates. This 

implies that 

x (u,v) = CXcosvi + sinvk (u) = cxucosvi + usinvk(l) 

= y(u cosv,u sinv). 

This formula expresses x as the composition of two 

regular mappings: 

(1) The Euclidean polar mapping 

(u,v) - (u cosv,u sinv) 

which wraps the strip Sa around the disc Os, and 
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(2) The one-to-one mapping y of Os onto Ns • 

Therefore x is regular and carries 5s in usual polar-

coordinate fashion onto the neighborhood Ns - omitting 

only the pole. QED 

A fundamental consequence of the previous lemma is that 

if Q = x(uo,vo) is any point in a normal neighborhood Ns of 

P, then there is only one unit speed geodesic from P to Q 

which lies entirely in N, namely, the radial geodesic 

cx(u) = x(u,vo), O~u~uo. 

6,5 Example, Given the unit sphere 52, let P be the 

north pole (0,0,1), The geographical parametrization 

x(u,v) = (sinu cosv, sinu sinv, cos u) 

yields the geodesics radiating out from P. 

Each u-parameter curve is a unit-speed parametrization 

of a great circle and is therefore a geodesic. 

Xl = (cosu cosv, casu sinv,-sinu) and for u = 0, 

Xl (O,v) = (cosv, sinv, 0) = cosvi + sinvk 

with i=(l,O,O)P and k=(O,l,O)P. 

By the uniqueness of geodesics, 

x (u, v) = cxcosvi + sinvk (u) which shows that x as defined 

above is the geodesic polar mapping of 52 with pole P. 

Therefore the largest possible normal neighborhood Ns of P 

occurs when e = IT, for on the strip 5n , X is a polar 

parametrization of all the sphere except the north and south 

poles. 

6,6 Theorem, For each point Q in a normal neighborhood 
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Ng of P the radial geodesic segment in Ng from P to Q 

uniquely minimizes arclength. (See O'Neill,[lO]) 

FIGURE 11 

As a result of this theorem, if points P and Q are 

close enough together, then as in Euclidean space, there is 

a unique geodesic segment from P to Q which is shorter than 

any other curve from P to Q. Unlike the Euclidean case, 

there may be many other nonshortest geodesics from P to Q. 

If x is a geodesic polar parametrization at P, we shall 

call the v-parameter curve u=e, the geodesic circle of 

radius e whose center is P. Cg consists of all points at a 

distance e from P. 

6.7 Example. ·On a sphere of radius r the geographical 

parametrization would be 

x(u,v) = (rsinu cosv, rsinu sinv, rcosu) with 

P=(O,O,I) • 

Xl = (rcosu cosv, rcosu sinv, -rsinu) and 

XI(O,V) = (rcosv, rsin v, 0) = cosrvI + sinrvk. 
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Therefore it (u, v) =Q'cosrvi + sinrvk (u) and each point P of the 

sphere of radius r has a normal neighborhood Ns when 

e = rrr. This is all of the sphere except the point, -P, 

antipodal to the pole P. Therefore, if two points P and 

Q are not antipodal (Q + -P) then there is a unique shortest 

curve a from P to Q. Intrinsic distance on the sphere is 

given by the formula d(P,Q) = r8 where 8 (os8sn) is the 

angle from P to Q in R3. If P and Q are not antipodal, 

then d(P,Q) = L(a) = reo As Q moves toward the antipodal 

point -P of P, by continuity d(P,-P) = rrr. Therefore no 

geodesic segment a of length L(a) > rn can minimize arc 

length between its endpoints. 

The Gaussian curvature K=(det L) of a geometric 

surface M affects the geodesics of the surface. 

(See section four for Gaussian curvature.) 

6.8 Definition. A geodesic segment a from P to Q locally 

minimizes arclength from P to Q provided that for any 

curve segment B from P to Q which is sufficiently near 

(e-close) to a, then L(B) ~ L(a) where L(B) = d(P,Q) • 

This local minimization is strict (or unique) provided 

we get strictly inequality L(B) > L(a) unless B is a 

reparametrization of a. 

Think of Q' as an elastic string or rubber band which 

is constrained to lie in M, is under tension, and has its 

endpoints pinned down at P and Q. Because a is a geodesic, 

it is in equilibrium. If it were not a geodesic, its 
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tension would pull it into a new shorter position. If 

Q is pulled aside slightly to a new curve B and released, 

will it return to its original position Q? If B is longer 

than Q, then its tension will pull it back to Q. 

The study of local minimization on two-dimensional 

manifolds depends on the notion of conjugate points. If 

Q is a unit-speed geodesic starting at P, then Q is a u-

parameter curve, v=vo' of a geodesic polar mapping x with 

pole P. 

x (u, v) = Qcosvi + sinvk (u) = (u cosv, u sinv). 

G=<X2, X2>=U2 where X2 = (-u sinv, u COSY) 

Therefore at u=O, G is zero but is nonzero immediately 

thereafter. 

6.9 Definition. A point Q(s) =x(s,vo)=(s cosvo's sinvo) 

with s > 0 is a conjugate point of Q(O) = P on Q 

prov ided G (s , v 0) = 0 where G=<X2, X2>=S2 . 

mayor may not exist.) 

(Such points 

The geometric meaning of conjugacy rests on the 

interpretion of iG = II x211 as the rate at which the radial 

geodesic u-parameter curves are spreading apart. For fixed 

e > 0, if JG is large, then the distance from x(u,v) to 

x(u,v+e) is large. This means that the radial geodesics 

are spreading rapidly. When JG is small, then the distance 

from x(u,v) to x(u,v+e) is small. Therefore the radial 

geodesics are pulling back together again. It follows that 

when G vanishes at a conjugate point Q(Sl) = X(Sl,Vo), for 
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v near Yo, the u-parameter curves have all reached this same 

point after traveling at unit speed the same distance Sl. 

However, this meeting may not occur. 

6.10 Example. The Euclidean plane gives the standard 

rate at which radial geodesics spread apart. For 

x(u,v) = (u COSy, u sinv) with X2=(-U sinv, u cosv) , 

then G=<X2, X2>= u2 and ,fG = u. Therefore G does not vanish 

and there are no conjugate points in the Euclidean plane. 

6.11 Example. The unit sphere S2 with P=(O,O,l), the 

north pole, has parametrization 

x(u,v) = (sinu COSY, sinu sinv, cos u). 

Therefore, X2 = (-sinu sinv, sinu COSY, 0) and ,fG = sinu. 

Since sinu < u for u > 0, the radial geodesics starting at 

the north pole P of S2 spread less rapidly than in R2. 

Since vG(n,r)=sinn=O, the radial geodesics all have their 

first conjugate point after traveling a distance of n. 

6.12 Example. Let x be a geodesic polar mapping defined 

on a region where G > 0. Then y'G;;:;lIx2 11 satisfies the Jacobi 

differential equation 

(,fG)11 + K ,fG = 0 subject to the initial conditions 

,fG(O,v) = 0, (y'G)tCo,v) = 1 for all v, where 

(,fG) 1 = (ajG/au) and (,fG ) 11 = ca2,fG/au2) and 

K = Gaussian curvature. The restriction G > ° is 

needed to ensure that ,fG is differentiable. y'GCu,v) is 

well-defined for u=o since .jGco,v) = IIX2(O,v) II = 0. 

jG need not be differentiable at u = 0, so interpret 
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({Gh (O,v) and ({G )l1(O,V) as limits such as 

({G ) 1 ( ° , v) = lim u-o (fG ) d u , v) . 

For the Euclidean plane fG = u, {G(O,v) = ° and 

({G)l(O,V) = 1 for all v. Therefore the initial conditions 

show that as the radial geodesics leave the pole P in any 

geometric surface, they are spreading at the same rate as 

in the Euclidean plane. But the Jacobi equation shows that 

immediately thereafter the rate of spreading depends on the 

Gaussian curvature of the surface. For K < 0, radial 

geodesics spread apart faster than in R2. For K > 0, the 

rate of spreading is less than in R2. 

In the Euclidean plane, we found the Gaussian curvature 

to be zero. By measuring a short distance e in all 

directions from P, we obtain the polar geodesic circle Cg 

of radius e. The circumference of Cs is L(Cs ) = 2rre. For 

K > 0, the radial geodesics from P are not spreading as 

rapidly as in the Euclidean plane, so Cs will be shorter 

than 2rre. This implies that geodesic circles on a surface 

of positive curvature are always "too small". For K < ° 
the radial geodesics from P are spreading more rapidly than 

in the Euclidean plane, and Cs will be longer than 2rre. 

Therefore geodesic circles on a surface of negative 

curvature are always "too large". 

As a consequence of the theorem, we can find {G on a 

geodesic a by solving the Jacobi equation on a, subject 

to the given initial conditions. Let a be a unit-speed 
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geodesic starting at the point P in M. Let g(u) = (G(u,Vo ) 

be the unique solution of the Jacobi equation on a, 

gil + K(a)g = 0 such that g(O) = 0, gl(O) = 1. Then the 

first conjugate point of a(O) = P on a (if it exists) is 

a(sl)' where Sl is the smallest positive number such that 

6.13. Example. Let a be a unit speed geodesic starting 

at any point P of the sphere of radius r. The Gaussian 

curvature along this geodesic (great circle) is 1/r2. The 

Jacobi equation for a is given 

gl I + g/r2 = 0 which has the general solution 

g(s) = A sin (sir) + B cos (sir). 

The initial conditions g(O) = 0, gl(O) = 1, yield the 

equation g(s) = r sin (sir). The first zero of this 

function with Sl > 0 occurs at Sl = rrr. Therefore the 

first conjugate point of a(O) =P on a is at the antipodal 

point of P. 

6.14 Example. Let a be a unit-speed parametrization 

of the outer equa~or of a torus of revolution T. On a 

the Gaussian curvature is 

cos u with u = o. 
b(a+bcosu) 

It follows that a has constant positive Gaussian curvature 

1 The Jacobi equation for a is 
b(a+b) 

gil + g o which has the general solution 
b(a+b) 
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g(s) = A sin s + B cos s 
./b(a+b) /b (a+b) 

Therefore the first conjugate point a(s1) of a(O) = P on 

a will occur at exactly the same distance S1 along a as if 

a were on a sphere with this curvature. The initial 

conditions g(O)=O, gl(O)=l, yield the equation 

g(s) = v'b(a+b)sin( s ). 
v'b (a+b) 

The first zero of this function with S1 > 0 occurs at 

S1 = IT Vb (a+b) • 

6.]5 Corollary. There are no conjugate points on any 

geodesic in a surface with curvature K s O. Hence every 

geodesic segment on such a surface is locally minimizing. 

Proof: Let a be a geodesic in M. since g(O)=O 

and gl(O)=l, we have g(s) ~ 0 for s ~ 0 at least up to 

the first conjugate point (if it exists). But KsO 

implies that gl I = -Kg ~ 0, so gl is an increasing 

function with gl~l. Therefore g(s) ~ s up to the first 

conjugate point which can never occur. QED 

FIGURE ]2 

If a is a geodesic segment from P to Q such that there 
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are no conjugate points of P = aCe) on a, then a locally 

minimizes arc length from P to Q. On the circular cylinder 

with K=O, the helical geodesic a from P to Q, with Q 

directly above P, is locally minimizing, but it is certainly 

not minimizing. The straight line segment cr provides a much 

shorter way to get from P to Q. 

In Ordinary Differential Equations, we say that y(x) 

oscjllates on the interval [c,~) if y is nonconstant and 

has infinitely many zeros on [c,~). Equations of the 

form y" + p(x)y = 0 are oscillatory. The Jacobi equation 

is of this form. Therefore all solutions of the Jacobi 

equation are oscillatory. (See Derrick and GrosSman,[2]) 

This implies that if K~e>o, i.e., if K is positive and 

bounded away from 0, then there must be conjugate points. 
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7. Gauss-Bonnet Theorem. 

A triangle in the plane is determined by three line 

segments and the region they enclose. A triangle on a 

surface is determined by three geodesic segments that 

enclose a region and is called a geodesic triangle. Gauss 

deduced some of the basic properties of geodesic triangles 

including a general relation between area and angle sum. 

If a region D is simply connected in a surface S, then 

any closed curve in D can be contracted to a point without 

leaving the region. From H. Hopf we know that the tangent 

along a closed piecewise differentiable curve enclosing a 

simply connected region turns through 2rr. L f ajkg(s)ds 

represents the total geodesic curvature along a, the 

boundary of the region D. fJD K dA represents the total 

Gaussian curvature of D with dA the element of area of D. 

7.1 Theorem. (Gauss-Bonnet) If D is a simply connected 

region in a regular surface S bounded by a piecewise 

differentiable c~rve a making exterior angles el, ... ,en at 

the vertices of a, then 

L Jaj kg(s)ds + ffD K dA = 2rr - L ejo 

(See McCleary, [8]) This formula contains geodesic 

curvature, Gaussian curvature, and exterior angles, mixing 

up curves, angles, and areas into a remarkable relation. 

Gauss's version of the Gauss-Bonnet theorem is 

concerned with geodesic triangles. Let R = ~Bc be such a 

61 



triangle with sides given by geodesic segments. The 

interior angles are given by L-A=n - eA, LB = n - ee, and 

LC = n - ee' Therefore 2n - eA - ee - ee 

= 2n + LA - n + LB - n + LC - n = LA + LB + LC - n. 

Since geodesic curvature vanishes on geodesics, then: 

7.2 CoroJJary. (Gauss) For a geodesic triangle ~BC 

on a surface, ff~ K dA = <A + <B + <C - n. 

(See McCleary, [8]) 

In the Euclidean plane, the Gaussian curvature (K) is 

zero. Therefore <A + <B + <C = n, and the interior angle 

sum of a triangle in the Euclidean plane is n. 

On a surface of constant positive curvature, such as 

the sphere, let C = JfAABC K dA = K -area (~BC) > o. 

Therefore c = <A + <B + <C - n, and <A + <B + <C = n + c 

with c > 0, and the interior angle sum of a triangle on a 

surface of constant positive curvature is greater than n. 

On a surface of constant negative curvature, let 

d = J fAABC K dA = K -area (t.ABC) < O. Then d = <A + <B +<C 

- n, <A + <B + <C = n + d with d < 0, and the interior angle 

sum of a triangle on a surface of constant negative 

curvature is less than n. 

There are many generalizations of the Gauss-Bonnet 

Theorem. In its simplest form it states that positive 

curvature everywhere implies positive Euler characteristic. 

The Euler characteristic of a surface M is the integer 

X = F - E + V. Let M be a compact surface in R3. Suppose 
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M can be broken into regions bounded by polygons, each 

region contained in a simply connected geodesic coordinate 

patch, with the segments of the polygon being geodesics. V 

equals the number of vertices, E the number of edges, and F 

the number of faces or number of polygonally bounded 

regions. This version of the Gauss-Bonnet Theorem relates 

two seemingly unrelated quantities, curvature (a 

differential geometric quantity) with the Euler 

characteristic X (a topological or combinatorial quantity). 

7.3 Theorem. (Gauss-Bonnet) If M is compact then 

JJM K dA = 2rrx. (See Millman and Parker, [9]) 
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1. BELTRAMI DI5K 

CHAPTER 2 

NON-EUCLIDEAN PLANE 

The notion of an abstract surface frees us to seek 

models of non-Euclidean geometry without the restriction of 

finding a subset of a Euclidean space. A set with a system 

of coordinates and a Riemannian metric determines a 

geometric surface. The models of non-Euclidean geometry in 

this chapter are due to E. Beltrami (1835-1906) and 

J. Henri Poincare (1854-1912). 

1.1 Definjtjon A function f:51-52 between surfaces 51 and 

52 is a diffeomorphism if it is differentiable, one-to-

one, and onto, and has a differentiable inverse 

function. Two surfaces 51 and 52 are said to be 

diffeomorph~c if there is a diffeomorphism f:51-52. 

1.2a Defjnjtion. An isometry f:M-N of surfaces is a 

diffeomorphism such that 

<v,w> = <f.(v),f.(ii) > 

for any pair of tangent vectors v,ii to M. 

l,2h Defjnjtjon, A mapping of surfaces f:M-N is conformal 

provided there exists a real-valued function g>O 

on M such that 
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<iI,v> = g(P)<I.(il),f.(v) > 

for all tangent vectors il,v to M. The function g is 

called the scale factor of f. 

If f is a conformal mapping for which g has constant value 

1, then f is a local isometry. A local isometry preserves 

lengths of tangent vectors. Therefore distances and angles 

are preserved. Otherwise a conformal mapping is a 

generalized isometry in which angles are preserved but 

in which lengths of tangent vectors need not be preserved. 

At each point P of M the tangent vectors at P all have their 

lengths stretched by the same factor. 

Beltrami studied and sought local conditions on a pair 

of surfaces, Sl and S2' that guarantee that there is a local 

diffeomorphism of Sl-S2 such that geodesics on 8 1 are taken 

to geodesics on S20 Beltrami solved the problem when one of 

the surfaces is the Euclidean plane. He found conditions 

for the existence of a mapping taking geodesics on a surface 

S to straight lines in the plane. Such a mapping is called 

a geodesic mappi~g. 

~ Theorem (Beltrami 1865). If there is a geodesic mapping 

from a surface S to the Euclidean plane, then the Gaussian 

curvature of the surface S is constant. (See McCleary,[8]) 

In the case of the sphere, central projection takes 

great circles to straight lines. To construct the 

projection, fix the tangent plane at a point R on the sphere 

and join a point P in the adjacent hemisphere to the center 
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of the sphere. Extend this segment to the tangent plane and 

this is the image of the point P. Central projection is 

defined on the open hemisphere with R as the center. 

If R is taken to be the south pole, then 

i(A,~) = (-COSA cot~, -sinA cot~, -1). 

FIGURE 13 

A great circle is determined by the intersection of the 

sphere and a plane through the center of the sphere. The 

image of the great circle under central projection is the 

intersection of this plane with the tangent plane, and 

therefore determines a line. This projection will be 

important for models of non-Euclidean geometry, so consider 

the inverse of central projection. 

1.4 Proposjtj6n The inverse of central projection of the 

lower hemisphere of a sphere of radius R centered at the 

origin to the plane tangent to the south pole (O,O,-R) has 

the form 
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FIGURE 14 

Proof: Let Q=(u,v,-R) denote a point in the plane 

tangent to the south pole and consider the line segment 

in ]i3 joining Q to the origin. This line segment 

passes through a point P on the sphere. write the 

coordinates of the point x(u,v) = P = (r,s,t). The 

linear dependence of OP and OQ implies that 

(0,0,0) = OP X OQ = (-Rs-tv, Rr+tu, rv-su). 

It follows that r tu tv =-ands=-. 
-R -R 

R It follows that x(u,v)=(r,s,t) (U,V,-R). QED 
VR2+U 2+V 2 

From the inyerse of the central projection we can endow 

the plane with the geometry of the sphere by inducing a 

Riemannian metric on ]i2 via the mapping X:R2~S2. since 

the sphere is a surface in ]i3, compute directly X1=X
Q 

and 

X =X • 2 v 

XI---------R-------3 (R 2 +V 2 ,-Uv,Ru) and 
(R2+u2+v2) "2 



As in Example 3.2 of Chapter 1, the standard classical 

notation for the Riemannian metric of a Riemannian manifold 

is given by: 

ds2 = Edu2 + 2Fdudv + Gdv2 

the element of arc length or the line element on S. The 

coordinate vectors Xl' X2 determine the following line 

element on the sphere and thus on the plane in the induced 

metric: 
ds2 R2 (R2+V2)du 2-2uvdudv+(R2+u 2)dv2 

(R2+U2+V2) 2 

computing the curvature associated with the metric induced 

by the central projection yields K(P) = for all P. This 

was computed by using Gauss's Theorema Egregium, stahl's 

formula for curvature, and many tedious calculations. 

Beltrami observed that the above calculation depends 

on R2 and not on R. He therefore replaced R with J=IR to 

develop a model of non-Euclidean geometry. The 

abstract surface is the interior of the disk of 

radius R in R2 centered at (0,0) and given by 

D={ (u, v) ER21 U2+v2<R2}. 

The ljne element, or element of arc length, becomes 

ds2 = _R2 (v 2-R2) du 2-2uvdudv+ (u 2-R2) dv2 

(_R2+U2+v2) 2 
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(R2_V2)du2+2uvdudv+(R2_U2)dv2 
(R2-U2-V2) 2 

(Formula 1) 

This formula determines a Riemannian metric on the given 

abstract surface. Since R=J=iR, the curvature is 
-1 constant and equal to --. The local differential equations R2 

satisfied by the geodesic mapping in Theorem 1.1 will 

continue to hold since we have only changed the constant 

R2. It follows that the geodesics on this abstract surface 

are Euclidean line segments. 

Now fix the value of R as 1. Our abstract surface is 

the interior of the unit disk, denoted by 

DB = {(u, v) E R21 u 2+v2<1 } . 

This disk is called the Beltrami disk. Let R = 1 in 

Formula 1. The metric for the Beltrami disk is then given by 

dSB
2 = (1-v 2 ) du 2 +2uvdudv+(1-u 2 ) dv 2 

(1-u 2-v 2 }2 

where B represents Beltrami. The curvature which is 

constant becomes 2;:;2;:;-l. 
R2 1 

Choose a convenient point in the Beltrami disk. When 

u=O or v=o the middle term of dSB
2 vanishes and so the 

geodesics u-(u,vo) and v-(uo,v) are perpendicular to the 

v-axis or u-axis, respectively. At the center of the disk 

the axes themselves are perpendicular geodesics. Our 

convenient point is the origin (0,0). To discuss distance 

from (0,0) and Euclidean circles centered at (0,0) polar 

coordinates on the Beltrami disk are convenient. Let 

u=rcos8, v=rsin8, du=cos8dr-rsin8d8, dv=sin8dr+rcos8d8. 
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Rewriting dsB
2 as 

dsB
2 = (1-u 2 -v 2 ) (du 2+dv2) + (udu+vdv) 2 

(1-u 2-v 2 )2 

and substituting yields 

= 
(1-x 2 ) (dX2+X2d~)+X2dx2 = 

(1-x2) 2 

A Euclidean line segment through the origin in the Beltrami 

model, which is a geodesic, has polar equation 6=60, a 

constant. If 0=(0,0) and P=(rcos60,rsin60), then 

d:r 2 
dsa

2 = 
(1-x2) 2 

and the distance in the Beltrami model, denoted by dB(O,P), 

is given by 

As r approaches 1 the distance goes to infinity. Therefore 

Euclidean lines through the origin have infinite length. 

70 



2. Poincare Disk 

One problem with the Beltrami disk is the 

representation of angles - the rays may be Euclidean line 

segments, but the angles can be far from their Euclidean 

appearance in measure. Fix a Euclidean angle, say n 
2 

between two line segments and place this Euclidean figure at 

different points in the Beltrami disk. The angle measure 

depends on the position of the vertex. For example, away 

from the u- and v-axes, the line segments u~(u,vo) and 

v-(uo,v) cross at (uo,vo) in an angle determined by the 
<XI ,X2> 

(1-u2-v2) 2 

This next model of non-Euclidean geometry again has the 

interior of a Euclidean disk as the underlying abstract 

surface. In this model, angle measurement agrees with its 

Euclidean measure. An orthographic projection is a mapping 

for which all lines of projection are orthogonal to the 

plane of projection. 

2.1 Proposition .. Orthographic projection of the Beltrami 

model to the lower hemisphere of the sphere of radius one 

centered at (0', d, 1) is a conformal mapping. 

Proof: Orthographic projection is given by mapping 

the Beltrami disk into s2+(0,0,1), 

(u,v) ~(U,V,1-Jl-u2-v2). 
- u - V Xl = (1, 0, ) and X2 = (O , 1, ) 

J1-U 2_V 2 ~1-u2-v2 

ds2 = Edu2 + 2Fdudv + Gdv2 
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= (1-v 2 ) du 2 +2uvdudv+(1-u 2 ) dv 2 

l-u 2-v2 

Comparing this equation with the line element on the 

Beltrami disk yields ds2 = (1-u 2-v 2 )ds; and the mapping 

is conformal. QED 

Orthographic projection takes the geodesics in the Beltrami 

disk, Euclidean line segments, to semicircles on the sphere 

that meet the equator at right angles. 

Follow this mapping by stereographic projection from 

the north pole to the plane that is tangent to the south 

pole, which is a conformal mapping of a sphere. The image 

point p* of a point P on the sphere is the point of 

intersection of the straight line through the north pole and 

P and the tangent plane at the south pole. In this way, the 

whole sphere, except the north pole, is mapped onto the open 

plane in a one-to-one fashion. The images of the circles 

parallel to the equator are concentric circles with their 

common center at the south pole. The images of the 

meridians are straight lines through the south pole. The 

projection of the north pole is the point at infinity. 

The mapping is represented by 

p* where 

rand R are the distances from P and P*, respectively, to 

the z-axis. By using the similar triangles in Figure 15, 

R 
2 

r and R 2r 
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p* 
FIGURE 15 

As a result of the two mappings, the lower hemisphere 

of the unit sphere maps to the disk of radius 2, centered 

at the origin, 

O2 = {( x , y) I X2 + y2 < 4}. 

A Riemannian metric is induced on this disk O2 , called the 

Poincare disk, by transfering the Beltrami 

metric from the Beltrami disk via the diffeo-

morphism given by. the composite of orthographic and 

stereographic projection: 

(u, v) ~ (u, v, l-Jl-u 2-v2 ) ~ (x, y, 0) 

2u 2v where x- and y = 
1+Jl-u 2-v2 1+Jl-u 2-v2 

Let w = -Jl-u 2-v2 , then 

(udu+vdv) 2 

(1-u 2-v 2 )2 
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y = 2v 
1-w 

, dx = 2 (1-w)du+2udw 
I dy = 

(1-w) 2 

This allows us to write 

ds 2 _ (1-u 2-v 2 ) (du 2+dv2 ) + (udu+vdv) 2 = 
B (1-u 2-v 2 ) 2 

and -wdw=udu+vdv, we obtain 

2 (1-w)dv+2vdw 
(1-W)2 

since X2+y2_1 __ U
2 +V 2 -1-- 2w(1-w) _ 2w th t' . d d , e me rlC ln uce 

4 (1-w)2 (1-w)2 1-w 

by the mapping on D2 takes the form 
dx 2+dy2 ds 2= __ ---:---::;.-:--_ 

R 2 2 
(1- x +y ) 2 

4 
It can be shown that the Poincare disk has constant 

Gaussian curvature K=-l as does the Beltrami disk. 

(See McCleary, [8]) 

As a point (u,v) approaches the rim of the Poincare 
. X 2+y2 

disk, that is, the circle u2 + v2 = 4, then (1 - 4) 

approaches zero. Therefore rulers must shrink as they 

approach the rim, so that the disk is bigger than 

our Euclidean intuition may suggest. Let 0 be a 

constant polar angle and compute the arc-length function 

set) of the Euclidean line segment aCt) = (t coso,t sino), 

o~t<2, which runs from the origin almost to the rim. 

a'(t)=(coso,sino) and with the given Riemannian metric, 
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<al{t),al{t»~ = 1 Therefore, aCt) has hyperbolic 

speed 

J<cI ( t) ,cI ( t) > ~ = Iia I (t) II = 1 

It follows that 

s (t) = It dt =2tanh-1.!=log 2+t • 
o t 2 2 2-t 
1--

4 

As t approaches 2, arclength set) from the origin a(o) to 

aCt) approaches infinity. This "short" segment ex actually 

has infinite hyperbolic length. 

When working in the Poincare disk, polar coordinates 

are a natural choice. This allows the metric to depend only 

on the distance to the origin. Let 

x(u,v)=(u COSY, usinv), 0<u<2, with du 2+dv 2 

2 

X1=(cosv,sinv) and x2 =(-u sinv, u 

It follows that 

E = 1 
2 

F = 0, G = 
2 

(1-~)2 
4 

(1-~)2 
4 

COSY) • 

(1-~)2 
4 

2.2 Definition. A Clairaut parametrizatjon x:UcR2-M 

is a parametrization in which F=<Xl ,X2>=0 and 

E=<Xl' Xl> and G=<X2' X2> depend only on Xl (the u-

parameter curves). 

2.3 Lemma. If x is a Clairaut parametrization, then all 

the xl=u-parameter curves of x are geodesics. 

Proof: A regular curve ex in M is a geodesic if and 

only if ex has constant speed and geodesic curvature 
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~=O. a has geodesic curvature 0 if and only if a' 

and a" are always collinear. For a Clairaut 
.. -+ cPx parametrization we need to show that Xl and Xll=--ou 2 

are collinear. Since Xl and X2 are orthogonal, this 

is equivalent to ~"Xll=O. 

0=g2= (Xl"Xl ) =2Xl'X12 and O=Fl = (Xl "X2 ) l=Xll"X2+Xl"X2l • 

Therefore, X2"Xll=O and all the u-parameter curves of 

X are geodesics. QED 

The polar coordinate parametrization of the Poincare 

disk, x(u,v)=(u COSY, u sinv), O<u<2, is a Clairaut 

parametrization, by Definition 2.2. Therefore the 

u-parameter curves, Euclidean lines through the origin, 

are geodesics of the disk. 

2.4 Theorem. A curve B(u)=x(u,v(u)), where x is a 

Clairaut parametrization, is a geodesic if and only if 
dv tolE 
du [G./G-C2 

The constant c is then the slant of B, i.e., in 

combination with G it determines the angle L 

at which the geodesic B is cutting across the 

u-parameter streamlines of x. (See O'Neill,[lO]) 

pi 

FIGURE 16 
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since x is a Clairaut parametrization, E and G depend only 

on u. Therefore the formula for dv depends only on u. 
du 

By the fundamental theorem of calculus, it can be written 

in integral form as 

Therefore, in our given parametrization of the Poincare 

disk, S(u) = x(u, v(u» is a geodesic provided 

dv 
du 

= ta{i 
fG./G-C 2 

= ± 

To carry out the required the integration, set 
a u 2 a w = - (1 + -), where a = 
u 4 ~ 

It follows that dv = ± dw/du 
du ~1-,,2 

Therefore v-vo=±cos-1 w, or 

a u 2 
= w = - (1+-). 

u 4 
Also 

(*) 4u cos (v-vo) = o. 
a 

FIGURE 17 

using the law of cosines in the diagram yields the polar 

equation of a circle of radius r, centered at x (u , v ) : 
Q Q 
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comparing this equation with (*) above shows that B is a 

Euclidean circle with u;-r 2=4. since Uo > 2, the center 

of the circle lies outside the Poincare disk: X2+y2<4. 

Orthographic projection is a conformal mapping that takes 

the geodesics in the Beltrami disk, Euclidean line segments, 

to semicircles on the sphere that meet the equator at right 

angles. Then stereographic projection, which is a conformal 

mapping, takes the equator to the rim of the Poincare disk. 

It follows that the semicircles on the sphere that meet the 

equator at right angles are taken to arcs on the disk that 

are orthogonal to the rim of the Poincare disk. Therefore 

the Euclidean circle C is orthogonal to the rim of the 

disk. 

If follows that the geodesics of the Poincare disk 

x2 + y2 < 4 are all Euclidean lines through the 

origin, and all Euclidean circles orthogonal to the rim 

of the disk. 

The geodesic~ of the Poincare disk should be 

compared to those of the Euclidean plane. Around 300 B.C. 

Euclid established a set of axioms for the straight lines 

of his plane. The goal was to derive its geometry from 

axioms so reasonable as to be "self-evident". The most 

famous of these is equivalent to the parallel postUlate: 

If P is a point not on a line a, then there is a unique 

line B through P which does not meet a. 
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Over time, this postulate began to seem less self-evident 

than the others. The axiom that two points determine a 

unique straight line can be checked by laying down a long 

but finite straight edge touching both points. But to 

check the parallel postulate, also called Euclid's V, one 

would have to travel the whole infinite length of B to be 

sure it never touches a. 

Much effort was given to trying to deduce the parallel 

postulate from the other axioms. The Poincare disk 

offers convincing proof that this cannot be done. 

If we replace "line" by "route of geodesic", then every 

Euclidean axiom holds in the Poincare disk except the 

parallel postulate. 

FIGURE 18 

Given two points one and only one geodesic route runs 

through them. But, as Figure 18 shows, in the 

Poincare disk there are always an infinite number of 

geodesic routes through P that do not meet a. When the 

implications of this discovery were worked out, the hope 

of deducing the parallel postulate was destroyed. The 

whole idea that R2 is, in some sense, an Absolute whose 
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properties are "self-evident" was also destroyed. ]l2 

became but one geometric surface among infinitely many 

others discovered by Riemann. 
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3. Poincare Half-Plane 

A. Geodesics and Curvature 

In 1882, Poincare used the methods of stereographic 

and orthographic projection to provide another conformal 

model of the non-Euclidean plane, the Poincare half-plane. 

The Poincare half-plane can be constructed by projecting the 

Beltrami disk orthographically to the lower hemisphere of 

the sphere of radius one centered at (0,0,1). This 

orthographic projection is a mapping DcR2 to the lower 

hemisphere of S2 for which all lines of projection are 

perpendicular to the plane containing DB (Beltrami disk). 

This is accomplished by the mapping 

(u,v) ~- (u,v,1-V1-u2-v2). 

The sphere is then rotated around the axis through the 

center parallel to the x-axis through a right angle to 

move the lower hemisphere to the half-space y>o. The 

lower hemisphere is now the "right hemisphere." This is 

represented by the mapping 

(u,v,1-Vl-u 2-v2) ~- (u,Jl-u 2-v 2 ,V+1). 

Now stereographically project from the north pole. This 

takes the new "right hemisphere" of the sphere to the 

upper half-plane in a2 given by H ={(u,v) Iv>o}. This 

stereographic projection is represented by the mapping 
2u 2Jl-u 2 -v2 

(u,y'1-u 2-v2,v+l) ~- ( , ) 
2- {v+l) 2- (v+l) 
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The composite mapping of the Beltrami disk into the Poincare 

half-plane is 
1_ 2u 2.Jl-u 2-v 2 

(u,v) r (--, ). 
l-v l-v 

NP 

FIGURE 19 

To find the metric on the half-plane induced by this mapping 

let 
1 -2udu-2vdv 
2 w -wdw=udu+vdv, 

x = 

dy = 

2u --, l-v 
y = 2w --, l-v 

2 (l-v) dw+2wdv 
(l-v) 2 

dx = 2 (1-v)du+2udv and 
(l-v) 2 

The Beltrami metr-ic can again be expressed as 

dSs
2 = J:... (du 2 +dv 2 +dw 2 ) and 

w2 -- 4 
dx2 + dy2 = (du 2 +dv 2 +dw 2 ) = 

(l-v) 2 

This equation yields the induced metric (called the Poincare 

metric) 

ds 2 = 
P 

The Poincare half-plane represents the abstract surface with 
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the given induced Riemannian metric. 

3.1 Proposition Let h be a Euclidean circle with center 

C(c,O) and radius r. If P and Q are points of h such that 

the radii CP and CQ make angles Q and B (Q<B), respectively, 

with the positive x-axis, then the hyperbolic length of 

arc PQ = In csc~-cot13 

cscct-cotct 
Proof: Let t be the angle from the positive x-axis to 

the radius through an arbitrary point (x,y) on h, then 

x=c+rcost, y=rsint, dx=-rsintdt, and dy=rcostdt. 

'I 

(c.) 0) 

FIGURE 20 

Hyperbolic length of arc PQ = 

Jdx 2 +dy 2 = I i (-rsintdt) 2+ (rcostdt) 2 

I y. rsint 

= I rdt 
~sint 

I · tdt-l cse~-eot13 = Mese - n • 
a cscct-cotct 

QED 

3.2 proposition. The hyperbolic length of the Euclidean 

line segment joining the points P(a,Yl) and Q(a,Y2), 

Proof: x=a constant and dx=O. The hyperbolic length 
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of PQ = 

A geodesic segment in the Poincare half-plane is a 

curve whose hyperbolic length is the shortest among all the 

curves that join a given pair of points in the hyperbolic 

plane. 

3.3 Theorem The geodesic segments of the Poincare half-

plane are either 

a) segments of Euclidean straight lines that are 

perpendicular to the x-axis or 

b) arcs of Euclidean semicircles that are centered on 

the x-axis. 

Proof: Let P(Xl,Yl) and Q(X2,Y2) be any two points of 

the Poincare half-plane, and let h be a curve joining 

them. 

a) Case I: Xl = X2 

In this case, the Euclidean line segment PQ is 

perpendicular to the x-axis. Let the geodesic segment 

h have equation x=f(y) and dxjdy is given by f' so 

that dx=f'dy. The hyperbolic length of h is 

I ..; (£/) 2dy 2Tdy2 
Y 

Y2 In Proposition 3.2, In -- was shown to be the 
Yl 

hyperbolic length of the Euclidean line segment PQ 
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joining points P(a'Yl) and Q(a'Y2). This implies that 

segments of Euclidean straight lines perpendicular to 

the x-axis are geodesics of the Poincare half-plane. 

b) Case II: x1 + x2 

't 

----->----~----S....-~----x 
C FIGURE 21 

In this case, the Euclidean line segment PQ is not 

perpendicular to the x-axis. Let C(c,O) be the x-

intercept of the perpendicular bisector to PQ. Place 

a polar coordinate system so that its origin coincides 

with C and its initial ray points in the same direction 

as the positive x-axis. Let the geodesic segment h be 

a part of the curve whose equation is r=f(e). Let 

the coordinates of P and Q be (rp,a) and (rQ,B), 

respectively. The hyperbolic length of h is 

Relate these polar coordinates to the defining 

Cartesian coordinates by the equations: 

x = c + rcose, y = rsine. 

It follows that 
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dx= dx cos6+r dcose -x'cos6-rsln6 and 
de de de 

dy dx . 6 dslne ,. 6 6 -=-Sl.n +r -x Sl.n +rcos • 
de de de 

dx2 + dy2 = 

(r' cose - rsine) 2 de2 + (r' sine + rcose) 2 de2 

= (r,2 + r2) de2• 

It follows that 

h idx2 +d y2 fh 
I (Xl) 2+X2 de 

y rsln9 

h R de f! csce de = In csci3-coti3 
<: 

xsin9 cscct-cotct 

In Proposition 3.1 this expression was shown to be 

the hyperbolic length of the arc of the Euclidean 

circle with center C(c,O) and radii CP=CQ. It follows 

that this arc is the geodesic segment joining P and Q 

and that arcs of Euclidean semicircles with centers on 

the x-axis are geodesic segments of the Poincare half-

plane. QED 

3.4 Example Find the hyperbolic length of the geodesic 

segment joining the points A(S,4) and B(O,S). 

x 
S6 



Find the intersection of the perpendicular bisector to 

the Euclidean line segment AB with the x-axis. This gives 

point C which is the center of the geodesic joining A and 

B. The Euclidean straight line joining A and B has slope 

4-8_~ and the midpoint M of the Euclidean line segment AB 
8-0 2 

has coordinates (0+8, 8+4)=(4,6). Therefore the 
2 2 

perpendicular bisector has equation y-6=2(x-4) and the 

x-intercept is (1,0). CA=CB=J(8-1)2+(4-0)2=yb5. It follows 

that the hyperbolic length of the geodesic segment from A 

to B is 

In csci3-coti3 = In 
csca-cota 

Consider the 

E-2 
4 4 

Poincare metric 

:::; 1. 45. 

dx 2+dy2 
y2 

Using stahl's 

formula for Gaussian curvature yields the following: 
1 E=-

2 ' Y 

-2 
F2=0, G2= -3 ' 

Y 

4 (~-O) 2K = 
y4 

1 4 1 4 1 6 - (-) +- (-) -2 (-) (-» ; 
y2 y6 y2 y6 y4 y4 

4K -4 4K=-4 i and K=-1. 

Therefore the Poincare half-plane with the given Poincare 

metric has constant curvature K=-l. By Corollary 6.15, 

there are no conjugate points an any geodesic in a surface 

with Gaussian curvature K~O. Hence every geodesic segment 

on such a surface is locally minimizing and the circum-

ference of the polar geodesic circle will be longer than 

2rre for a given e>O, e small. 
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B. Relationship Between Euclidean Circles 
and Hyperbolic Circles 

Given any point C, a positive real number r, and any 

ray (half-geodesic) h emanating from C, there is a 

point Ph on h that is at a hyperbolic distance of r from C. 

The locus of all such points Ph is the hyperbolic circle 

with center C and hyperbolic radius r. 

3,5 Proposition If a Euclidean circle has Euclidean center 

(h,k) and a Euclidean radius r, then it has the hyperbolic 

center (H,K), and the hyperbolic radius R, with 

H=h, K=·lk 2-r 2 R= lIn k+r and 
Y , 2 k-r' 

h=H, k=K cosh(R), r=K sinh(R). 

Proof: Let Band C be, respectively, the points of 

the circle that lie directly above and below (h,k). 

Their coordinates are B(h,k+r) and C(h,k-r). 

The hyperbolic length of BC (dx=O) 

= f JX+X dy = In k+r 
x-x y k-r 

~-..::::e> Ch) k+r) 

FIGURE 23 

This is the hyperbolic diameter of the circle and the 
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h b 1 · d' 11 k+r h' h th yper 0 1C ra 1US R = - n---. H= S1nce x= on e 2 k-r 
Euclidean line segment perpendicular to the x-axis at 

h. (H,K) should be the hyperbolic midpoint of segment 

BC. By Proposition 3.2 of chapter 2, the hyperbolic 

length of the Euclidean line segment joining points 

(h,k+r) and (h,K)=(H,K) is In k+r and the hyperbolic 
K 

length of the Euclidean line segment joining the points 
K (h,K)=(H,K) and (h,k-r) is In---. For (H,K)=(h,K) to k-r 

be the hyperbolic midpoint of segment BC, then 

k+r K ,....--;::--,.. In ---=In--- and K2;k2-r2,K;';k2-r2 • 
K k-r 

When R= .!In k+r is inverted it yields 
2 k-r 

equations simultaneously, then 
K2 

r2_ _K2sinh2 (R) and r;Ksinb (R) • 
coth2 (R) -1 

and k=Kcosh(R). QED 

3,6 coroJJary .Every Euclidean circle in the upper half-

plane is a hyperbolic circle. Every hyperbolic circle is 

also a Euclidean circle. 

C. Rigid Motions 

3,7 Definition A mapping f:R4~R4 is an isometry if, for 
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The notion of isometry makes precise the ideas of 

rigid motions and congruence. We define a congruence to 

be a self-isometry of a surface, ~:S-S. Two figures, that 

is subsets of S, are congruent if there is an isometry with 

~(figurel) = figure2 • A figure made up of segments of 

curves on a surface may be thought of as rods in a 

configuration and the term rigid motion is synonymous with 

congruence. Therefore, a rigid motion is considered to be 

a transformation of a surface that does not distort its 

configurations. 

In Euclidean plane geometry, two triangles are 

congruent if there is a rigid motion of the plane which 

carries one triangle exactly onto the other. For these 

congruent triangles, corresponding angles and corresponding 

sides are congruent and the areas enclosed are equal. Any 

geometric property of a given triangle is shared by every 

congruent triangle. 

3,8 Example A translation of R3 is an isometry. Fix a 

point A in R3 and let T be the mapping that adds A to every 

point of R3. Therefore, T(P)=P+A for all points P. T is 

called transla.tion by A. T is an isometry since 

~T(P)-T(Q)~=~(P+A)-(Q+A)~=~P-Q~. 

3.9 Example In R2 the rotations given by 

cose -sine 
La (v) = (sine cose) 

in the standard basis are isometries. 
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II Lav11 2 =11 (COsev1-sinev2 , sinev1 +COSeV2 ) 112 

= cos2 ev;-2 cos6sin6v 1 V2 +sin26v;+sin26v; +2 cosesinev 1 V2 +COS2eV2
2 

= v;+v;=11 VIj2 • 
3.10 Thegrem If F and G are isometries of RA , then the 

composite mapping GF is also an isometry of RA. 

Proof: Since G is an isometry, IIG(F(P) )-G(F(Q» II 
= II F (P) -F (Q) II. Since F is an isometry II F (P) -F (Q) II 
= II P-Q II • Therefore GF is also an isometry. QED 

The rigid motions (isometries) of Euclidean and 

hyperbolic space have formulations in terms of complex 

numbers. The Poincare metric brought to light the role 

played by complex numbers in this and other geometries. 

Many mathematicians have come to think of the points of 

the Poincare half-plane as complex numbers z=x+yi with a 

positive imaginary part. 

If c is any fixed complex number, then the function 

f(z)=z+c is a translation of the Euclidean plane and every 

translation of the plane is expressible in this manner. 

For any angle Q and any complex number c, the function 

f(z)=eiCl(z-c)+c = eiClz + (l-eiCl )c 

is the rotation· about c, Rc,Cl where e iCl = COSQ +isinQ. 

The 90° counterclockwise rotation of the plane about the 

point (0,1) has the expression 

Ri ,nl2 = e i 
(nIZ) (z-i) +i = i (z-i) +i = iz+1+i 

in terms of complex numbers. If m is any line with 

inclination Q to the positive x-axis, and c is a point on 
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m, then the function f(z)=e2ia z-c + c is the reflection 

in the line m where z=x-yi is the conjugate of z=x+yi. 

3,11 Theorem The rigid motions of the Euclidean plane 

all have the form 

f (z) =eiaz+c or f (z) =eia z+c 

where a is an arbitrary real number and c is an arbitrary 

complex number. Conversely, every function of either of 

these forms is a rigid motion of the Euclidean plane. 

(See Stahl, [13]) 

This leads us to the complex description of the rigid 

motions of the hyperbolic half-plane. Horizontal transla-

tions and reflections in vertical lines, which are 

geodesics, are also Euclidean rigid motions. They can be 

expressed as f(z)=z+r or f(z)=-z + r, respectively, where 

r is an arbitrary real number. A hyperbolic reflection is 

either a Euclidean reflection in vertical lines, which are 

geodesics, or an inversion centered at some point on the 

x-axis. 

3,12 Theorem The following transformations of the 

hyperbolic plane preserve both hyperbolic lengths and 

measures of angles: 

a) inversions Ic,k where C is the center of a circle 

on the x-axis and k is the radius; 

b) reflections am where m is perpendicular to the 

x-axis; 

c) translations LM where AB is a Euclidean segment 
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parallel to the x-axis. 

Proof: Inversions of the form Ie, k are conformal 

transformations of the plane. Therefore Euclidean 

measures of angles are preserved. The hyperbolic 

measure of an angle coincides with its Euclidean 

measure, and inversions of the form Ic,k preserve 

hyperbolic measures of angles. Place a 

polar coordinate system with its origin at C and 

its initial ray along the positive x-axis. Let 

h denote the curve r=f(e), C(~e~B. The inversion Ic,k 
k 2 

maps h to h I given by r=F (e) = --, C(~e~B. fee) 
As in the proof of Theorem 3.3, the hyperbolic length 

of hi is 
i (Xl) 2+X2 h. - de = xsine 

"(x!) 2+X2 de = 
xsine 

de 

hyperbolic length of h. 

It follows "that the given inversion does preserve 

hyperbolic lengths and hyperbolic measures of angles. 

For the proofs of parts b & c, see stahl, [13]. QED 

I C • k represents an inversion whose fixed points are 

exactly those that makeup the circle centered at C with 

radius k. Euclidean reflections are defined so that their 
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axes are perpendicular bisectors of the line segment joining 

any point to its image. 

M 
FIGURE 24 

Consider the reflection om whose axis is the vertical 

line m, a geodesic, which is above the point M on the x-

axis. If P is any point of the upper half-plane, let h be 

the geodesic through P that is an arc of a semicircle 

centered at M. Since hand m are orthogonal at their 

intersection A, it follows that om(h)=h and so P'=om(P) is 

also on h. am is a hyperbolic rigid motion (as well as a 

Euclidean rigid motion), and so the geodesic segments PA and 

PiA have equal hyperbolic lengths. Therefore, m is the 

hyperbolic perpendicular bisector of the geodesic segment h 

joining P to its image P'=om(P). 

Next look at the hyperbolic reflection that consists 

of the inversion Ic,k where C is some point on the x-axis. 

This inversion fixes every point on the geodesic n through 

B which is an arc of a semicircle centered at C with radius 

k. Therefore think of the geodesic n as the axis of Ic,k. 
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For any point Q between the x-axis and the geodesic n, let 

Q' =Ic,k (Q) and let w be the geodesic that contains Q and is 

orthogonal to n at their intersection B. 

( 
FIGlffiE 25 

It follows that Ie, k (w) =W and so Q' too is on w. Ie, k is a 

hyperbolic rigid motion and so the geodesic segments QB and 

Q'B have equal hyperbolic lengths. Thus n is the hyperbolic 

perpendicular bisector of the geodesic segment joining Q to 

its image Q'=Ie,dQ). Therefore hyperbolic reflections 

satisfy the definition of reflections for Euclidean motions. 

3,13 Proposition 

FIGURE 26 

Let m and n be two Euclidean lines 
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(geodesics) that intersect at a point A, and let a be the 

counterclockwise angle from m to n at A. Then (In°(Jm = RA,2a' 

(See Stahl, [13], and Figure 26) 

Since hyperbolic reflections satisfy the definition 

of reflections for Euclidean motions, this proposition 

implies that the composition of two hyperbolic reflections 

with intersecting axes is a hyperbolic rotation. The center 

of this rotation is the intersection of the axes and the 

angle of the rotation is twice the angle between the axes. 

3.14 Theorem Every Euclidean rigid motion is the 

composition of at most three reflections. (See Stahl, [13]) 

Since hyperbolic reflections satisfy the definition of 

reflections for Euclidean motions, the following theorem 

is implied. 

3.15 Theorem Every hyperbolic rigid motion is the 

composition of at most three hyperbolic reflections. 

3.16 Example In the geodesic which is the arc of a 

semicircle with center A=(a,O) on the x-axis and radius k, 

the inversion IA,k(z) is given by 
. k 2 

lA, k (z) = -=-- +a • z-a 

k 2 
If A=(O, 0), then Io,k(z)= -=-. The inversion Io,2 has the 

z 
expression ~ and so it maps the point l+i to the point 

2 z 
2 4 . ( . ) ~:---= 2+21. See F1gure 27 

l+i 1-i 

42 3z+7 If A={3, 0), then I A,4 has the expression --+3 = 
%"-3 %"-3 

-17+16i and so it maps l+i to the point (See Figure 
5 

96 



27) The inversions given are hyperbolic reflections whose 

axes intersect. Therefore the composition R=IA,4 0 IO,2 is a 

hyperbolic rotation • 

• 

• I+i 
o 
FIGURE 27 

3.17 Theorem The rigid motions of the hyperbolic plane 

coincide with the complex functions that have the 

following forms: 

i) f ( ) - ctz+13 
z - yz+<S 

or ii) f(z) = ct(-Z) +13 
y( -Z) +<5 

where a, B, V, 0 are real numbers and ao-Bv>O. 

Proof: Horizontal translations have the form lz+,r --, 
Oz+l 

and the reflections in vertical lines (geodesics), 

have the form 

have the form 

1(-Z)+,r 
O(-Z)+l' 

Reflections in geodesic arcs 

k 2 aZ+k2-a 2 -=-+a---=,.---
-a (-Z) + (k 2 -a 2) 

z-a z-a - (-Z)-a 

with ao-Bv>O. If f and g are two functions that have 

this format, then so does their composition. since 

every hyperbolic rigid motion is the composition of 

some hyperbolic reflections, it follows that all 

97 



hyperbolic rigid motions have either form i) or 

form ii). QED 
az+b Transformations of the type f(z)=---- where a,b,c,d 
cz+d 

are allowed to be any complex numbers as long as ad-bc+O, 

are called Moebius transformations. If zo=a+bi is any 

point of the half-plane, then the Moebius transformation 
z-a . f (z) = --- ~s a hyperbolic translation that carries Zo to 
b 

i, and its inverse f-1(z)=bz+a carries i to zoo Therefore, 

given any other point zl=c+di of the half-plane, the 

composition 
z-a dz+(bc-ad) d( -- )+c = 
b Oz+b 

is a hyperbolic rigid motion that carries Zo onto Zl. If 

b=d, then this is a horizontal Euclidean translation. If 

Zo=2-3i and zl=3+4i, then 4z+ (-3-3-2'4) _ 4z+17 is a 
--~--~3~--- -3 

hyperbolic rigid motion that carries Zo onto Zl. Hyperbolic 

rotations are characterized by a single fixed point in the 

half-plane. To find the rotation, find the center and 

locate the image of one other point . 

3.18 Example 

. 
l.. 

~/~ 

o 
FIGURE 28 

Let f(Z)=2=Oz-1. 
z 1z+0 

and this rotation is pivoted at i. 
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1 
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follows that the angle of rotation is 180°. Therefore 

fez) is a Moebius transformation that is the hyperbolic 

rotation by 180° about the point i. (See Figure 28) 

D. Geodesic Triangles 

3.]9 Definition A hyperboljc triangle ABC consists of 

three points A,B,C (vertices) that do not lie on a 

single geodesic and the three geodesic segments (sides) 

that join each pair of vertices. A hyperbolic triangle 

is said to be in standard position if the vertices 

A,B,C have coordinates (O,k), (s,t), (0,1), 

respectively, where k>l and s>O. 

3.20 Proposjtjon Every hyperbolic triangle can be 

brought into standard position by a hyperbolic rigid 

motion. 

Proof: Let the hyperbolic triangle ABC have its 

vertices C at (0,1) and B at (s,t) with s>O, but 

A is at (O,k) with k<l. Let z=ci with c<l. The 

reflection I a,l= k~ = 1_=_1_=..!>1 will transform 
Z ci -ci c 

triangle ABC into triangle A'B'C' that is in 

standard position. (See Figure 29) 

If the hyperbolic triangle ABC has both of its 

vertices A(O,a) and C(O,c) on the y-axis, then by 

reflecting this triangle in the y-axis, if necessary, 

then B (s, t) has s>o. The reflection Io,.;c transforms 

triangle ABC into a triangle in standard position 
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where 

E 
FIGURE 29 

If the hyperbolic triangle ABC is in an arbitrary 

position, assume that its side AC is a segment of 

a geodesic arc g that joins two points D and E on the 

x-axis. Horizontal translations are hyperbolic rigid 

motions. This allows us to assume that E is at the 

origin. If D=(d,O) then the inversion ID,d transforms 

g onto the y-axis where 

k 2 
ID,d = -=--+D = 

z-D 
d 2 

-=--+D 
z-D 

The given triangle is transformed into triangle A'B'C' 

which has one of its sides on the y-axis. By the 

previous steps in this proof, triangle A'B'C' can be 

brought into standard position. (See Figure 29) QED 

3,21 Proposition At any given point P, let g be a 

vertical geodesic ray and let gl' g2' g3 be geodesic arcs 

centered at el , e2 , e3 respectively. Then 

L (g, gl) ;LDC1P, L (gl' g2) =LC1PC2 , and L (g3' gl) =n-cl Pc3 • 
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D 

" D FIGURE 30 

I 

x 

Proof: Let 0' be a point of g such that P is between 

o and 0'. Let PT1 and PT2 be the Euclidean tangent 

lines to gl and g2, respectively, at P. since the 

tangent to a circle is perpendicular to the radius at 

the point of contact, then 

B = L (gl,g2) = LT1PT2 = LT1PC1-LT2PC1 

II = 2'-Li'2PCl = LT2PC2 -LT2PC1 = LC1PC2; 

ex = L(g,gIl = LO'PT1 = II - LT1PC1 - LC1PO 
II = --LC PD = LDC1P; 2 1 

Y = L (g3,gd = L (g),g) + L (g,gl) 

The Poincare half-plane has constant curvature 

K=-1. By the Gauss-Bonnet Theorem and its corollaries, 

the interior angle sum of a triangle in the Poincare half-

plane is less than II. This is the only constraint on the 

angles of the hyperbolic triangle. The next theorem's proof 

contains a blueprint for the construction of hyperbolic 

triangles with specified angles such that ex+B+Y<II. 
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3.22 Theorem Given any three angles whose sum is less 

than rr, they are indeed the angles of some hyperbolic 

triangle. 

Proof: Let a, B, y be three arbitrary positive angles 

such that a+B+y<rr. Let triangle ABC be a hyperbolic 

triangle in standard position such that LCAB=a, 

LABC=B, and LBCA=y. 

o 
FIGURE 31 

o.(u,o) x 

Let G(u,O) and H(-v,O) be the Euclidean centers of 

the geodesic arcs BC and AB, respectively. Let r 

and s be their respective Euclidean radii. LCGO=y, 

LOHA=a, LHBG~B by proposition 3.21. The trigonometry 

of the Euclidean triangles GCO, AHO, and BGH yields 

the constraints: 

(1) u rcosy 

(2) v = scosa 

(3) (U+V)2 = r2 + S2 - 2rscosB. 

By the Pythagorean Theorem r 2=u2+1. Along with (1) 
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it follows that 

r = cscy and u = coty. 

Substitute u, r, and v in (3) to get 

(cotY+SCOS~)2 = csc2y + S2 - 2scosBcscy 

which simplifies to the quadratic equation 

(4) s2sin2~ - 2s(cos~coty + cosBcscy) + 1 = o. 
It follows that if triangle ABC is a hyperbolic 

triangle in standard position that satisfies these 

constraints, then its angles are indeed ~,B,y. The 

quadratic equation (4) has discriminant 

4(cos~coty + cosBcscy)2 - 4sin2~. 

If this discriminant is necessarily positive, this 

guarantees that the quadratic equation (4) does have 

solution in s. Since ~+B+y<rr, then ~+y<rr-B. The 

cosine function is monotone decreasing in the first 

two quadrants. Therefore we have the following 

sequence of equivalent statements: 

cos(~+y) > cos (rr-B) = -cosB, 

cos~cosy - sin~siny > -cosS, 

cos~cosy + cosB > sin~siny > 0, 

cos~coty + cosBcscy > sin~ > 0, 

(cos~coty + cosBcscy)2 > sin2~. 

The last inequality establishes the positivity of 

the discriminant of (4). It follows that this 

quadratic has two real solutions for any given 

positive angles ~,S,y such that ~+B+y<rr. If 
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v=scosa, then s, v, u=coty, and r=cscy satisfy 

equations (1), (2), and (3) and so the given 

hyperbolic triangle does exist. QED 

3,23 Example 

1) Construct a hyperbolic triangle in standard position 

with given angles: a=30°, B=50°, y=60°. 

r=cscy=1.1547, u=rcosy=0.57735; 

s2sin2a-2s(cosacoty+cosBcscy)+1=0 yields 

s2(.25)-2s(1.2422)+1=0 and s= 2.4844±t5.1702. 
0.5 

sz9.52 or szO.421. Let sz9.52, then 

v=scosa=8.244 and k=ssina=4.76. 

FIGURE 32 

2) Construct a hyperbolic triangle in standard position 

with the given angles: a=60°, B=50°, y=30°, 

u=rcosy=1.73 , r=cscy=2, s2(.75)-2s(2.152)+1=0, 

and S = 4.304±t15.52 . 
1.5 

sz5.5 or szO.24. 

Let sz5.5, then v=scosa=2.75 and k=ssina=4.76. 
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FIGURE 33 

3) Construct a hyperbolic triangle in standard position 

with the given angles: a=B=y=SO°. 

r=cscy=1.30S, u=rcosy=0.839, s2(0.S87)-2S(1.378)+1=0, 

and S= 2.756±~ • ----- s~4.3 or s~0.396. 
1.174 

Let s~4.3, then v=scosa=2.76 and k=ssina=3.29 

FIGURE 34 

In each of the three constructions, the hyperbolic 

lengths of the sides of the triangles were found using 

Propositon 3.1, Proposition 3.2, and Example 3.4 of this 

chapter as well as the hyperbolic trigonometric formula~ 
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sincx _ sin.B = siny 
sinha sinhb sinha 

Let triangle ABC be any hyperbolic triangle with angles 

a, S, and y with LCAB=a, LABC=S, and LBCA=y. Place this 

triangle in standard positon, and let rand s be as in the 

previous constructions. C and A have coordinates (0,1) and 

(O,s sinal respectively. By Proposition 3.2 of this 

chapter, the hyperbolic length of the side AC is 

Iln(s sinal I. s was found by solving the quadratic 

equation as in the previous constructions. It would seem 

possible that there would be two triangles in standard 

position determined by these angles. But there is only 

one. Let Sl and S2 denote the two possible values of s. 

since these are the roots of the quadratic equation (4) 

in Theorem 3.22, it follows that 

s s - 1 and therefore s2sinct= ~ . 
1 2 sin2ct sl s~net 

However, Iln~1 = lIn xl and so the length of side AC as 
X 

given by lIn (s sina) I is completely determined by the 

angles a, S, and y. This argument could have been applied 

to any side of the hyperbolic triangle ABC. It follows 

that every hyperbolic triangle is completely determined 

by its angles. 

3.24. Theorem. If two hyperbolic triangles have their 

respective angles equal, then they are hyperbolically 

congruent. 

Generally speaking, a Euclidean triangle is completely 
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determined by any of its three sides and three angles. An 

exception to this rule is the fact that a Euclidean triangle 

is determined only up to similarity when only its three 

angles are given. In the hyperbolic plane, this exception 

does not occur and a triangle is completely determined 

by its angles. In construction (3), a=B=y=50°. The 

hyperbolic length of each side of the hyperbolic triangle 

was found to be approximately 1.19. This will be true for 

every hyperbolic triangle with a=B=y=50°. Therefore, in 

the hyperbolic plane, similar triangles are congruent! 

So if you lived in a 30°-30°-30° triangular house in 

hyperbolic space, you could buy carpet and furniture 

custom made to fit. 
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