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HO has published a global tuberculosis(TB) report every year since 1997. As usual, 

the 2016 global TB report is based primarily on data gathered from 202 countries and 

territories all over the world. The best estimate is that there were 1.4 million TB deaths in 

2015, and an additional 0.4 million deaths resulting from TB disease among HIV-positive 

people. 
1
 

 

uberculosis (TB) is an illness that results from infection with Mycobacterium 

tuberculosis (MTB). This aerobic bacillus have the cell wall with a high lipid contend 

which result in a high degree of lipophilicity and resistance to alcohol, acids, alkali and some 

disinfectants. 

MTB is epidemiologically characterized by high rate infectivity, so the one-third of latent 

infection population which remains a reservoir from mycobacterium is the major obstacle to 

the total control of the disease. In normal conditions, the bacteria has the ability to live in 

balance with immune response but in situations such as genetic impaired, intercurrent diseases 

(i.e. AIDS), malnutrition and medical interventions could occur an imbalance, and the MTB 

multiplies rapidly developing the disease. 
2
 

 

ultidrug-resistant tuberculosis (MDR-TB) is another important problem to control TB 

worldwide. It has been reported that include patients who have never been treated with 

any TB drug demonstrated resistance. According to WHO, (in 2015) there were an estimated 

10.4 million new (incident) TB cases worldwide (including 1.2 million (11%) among HIV-

positive people), of which 5.9 million (56%) were among men, 3.5 million (34%) among 

women and 1.0 million (10%) among children. Recent estimates show that 10% of all new TB 

infections are resistant to at least one anti-TB drug.
1 

 

ctual drug therapy for tuberculosis has involved administration of multiple drugs 

because it was clear that monotherapy led to the development of resistance 
3
 and current 

treatment takes 6–9 months. The current TB vaccine, Bacille Calmette-Guérin (BCG), 

developed almost 90 years ago, reduces the risk of severe forms of TB in early childhood but 

is not very effective in preventing pulmonary TB in adolescents and adults — the populations 

with the highest rates of TB disease. TB is changing and evolving, making new vaccines more 

crucial for controlling the pandemic. Tuberculosis is now the leading cause of death for 

people living with HIV/AIDS, particularly in Africa. Multidrug-resistant TB (MDR-TB) and 

extensively drug-resistant TB (XDR-TB) are hampering treatment and control efforts. New 

W 
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control measures, diagnostic tools and guidelines for treatment as well as development of new 

drugs and vaccines have been made a priority and the battle is now raging to restore the grip 

on the management and control of MDR/XDR TB. Winning the battle against tuberculosis 

will depend on the outcomes of the extensive research that is on-going to produce new, more 

effective and fast acting diagnostic tools, drugs and vaccines.
4
 

Since the discovery of rifampicin in 60’ there is no more drugs developed to treat 

tuberculosis. Considering the increase of resistant the discovery of new anti-tubercular drugs 

is urgent. A new anti-TB drug must possess some characteristics such as wide spectrum of 

action, adequate posology to allow the patient compliance, short duration of treatment and 

adequate pharmacokinetic properties (half-life, decreased drug-drug interaction among 

others). 

 

mong the strategies to introduce a new drug in the market, the Computer-Assisted Drug 

Design (CADD) approaches has showed to be promising. Several drugs in the market 

was developed using this strategy. This area is known by many related names, such as 

computer-aided drug design, computational chemistry, and molecular modelling, together 

with the broader in silico term. 

 Although some CADD methods may appear to some people to be less prominent and 

relevant today, the new challenges that we face now are able to build on such methods, and 

use them in ways to enable powerful new approaches to impact drug design. 

 In silico drug design have many facets, from quantitative structure–activity 

relationships (QSAR), virtual screening, protein structure modelling, and pharmacophore 

modelling, to structure-based drug design and the modelling of absorption and metabolism. 

Although quantum mechanical methods often play a part in these approaches, like for 

example for QSAR and structure-based drug design as well as the modelling of metabolism, 

they are rarely referred to as an independent approach in this context. 

 

n understanding of the many and diverse interactions of various chemicals with 

biological macromolecules as determined by their intermolecular forces, i.e., 

hydrophobic, electrostatic, polar, and steric, was critical to the formulation and development 

of the quantitative structure–activity relationship (QSAR) paradigm. The use of correlation 

analysis was useful in helping to mathematically delineate the importance of certain structural 

attributes of chemicals to their biological activities. 

A 

A 
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 It has been 49 years since the formal beginning of QSAR and great strides have been 

made in that time. The types of QSAR approaches have increased and some have undergone 

refinement, while the number of parameters and new descriptors have grown astronomically. 

QSAR is far from being a finished science; it still retains the ability to predict biological 

activities or properties as well as the susceptibility to mechanistic interpretation. Enhancing 

the predictability of a model raises the spectre of appropriate validation procedures.
5, 6

 

 

ne of the fundamental problems for molecular modelling is of course the generation of 

accurate molecular structures and conformations. Molecular mechanics methods 

achieve good structural accuracy for classical molecules, whereas their reliability for species 

with particular combinations of atoms may be questionable, particularly for molecules 

containing heteroatoms, which affect the geometry and conformation via the position of their 

lone-pairs. This structural characteristic is only accurately reproduced by high-level ab initio 

and DFT methods, and perhaps surprisingly also by semi-empirical methods like AM1 and 

PM3. 

Most molecular modelling studies can be considered to involve three basic 

components. First, the molecular system under study needs to be described. Many molecular 

descriptors are used in computational chemistry, according to the problem being addressed. 

The second component constitutes the algorithm or algorithms that use the molecular 

description to manipulate the system or to derive a mathematical model that relates the 

descriptors to some other (measurable) property. The third component is the computational 

infrastructure (hardware, operating systems, software, etc.) that enables the calculations to be 

performed. 

 

nderstanding tuberculosis and existing TB drugs are discussed first in Chapter I to cover 

a comprehensive picture of the anti-TB drug discovery, as these are the building blocks 

for the applications of all the used main CADD/in silico impact points (Chapter II) to select 

and achieve a goal of better drugs/regimen in terms of the desired properties of our anti-

tuberculosis compounds (Chapter III). 

1, 3, 4-Oxadiazole derivatives showed an interesting anti-mycobacterial activity 

against the reference strain of Mycobacterium tuberculosis H37Rv.In this context, the 

substitution effect study was done in order to deepen our understanding of the influence of 

various substituents on 1, 3, 4-oxadiazole ring. Here, we present the electronic and geometric 

structure calculations for 1, 3, 4-oxadiazole substituted by two functional groups of different 

O 

U 
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strengths using the conceptual DFT descriptors. After that various ‘multi-parameter 

optimization’ (MPO) approaches such as lipophilicity profile, rules of thumb and calculated 

metrics methods used to highlight the Structure Activity/Affinity and Property Relationships 

of our anti-tuberculosis compounds (Work published in: REVIEWS IN THEORETICAL 

SCIENCE; 2016 in press).Followed by Quantitative Structure Activity Relationship (QSAR) 

study of a series of oxazoline and oxazole benzyl esters as anti-tuberculosis agents and 

Docking-Based Virtual Screening for Lead Optimization. (Work will be published sooner) all 

these studies have been addressed in Chapter III. 

 



 

CHAPTER I 

Understanding Tuberculosis 
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1. What is tuberculosis? 

Coughing, sneezing, singing, even speaking can all make the air we share hazardous at 

times. Tuberculosis, or “consumption” if you’ve just emerged from a novel by Charles 

Dickens, is an infectious disease caused by a bacterium, Mycobacterium tuberculosis. It 

mainly affects the lungs (although can also infect other parts of your body), and is usually 

spread to other people via the coughs and sneezes of those infected. In addition to being a 

potentially serious, dramatic affliction suitable for any self-respecting 19th-century character, 

this disease continues to be a major concern worldwide to this day. Tuberculosis is often 

referred to as TB. 

2. Your healthy lungs 

Your lungs, if everything is working as it should be, resemble large pink sponges that 

expand when you inhale a mouthful of air. Their main job is to transport oxygen from the air 

into your bloodstream and release carbon dioxide from your body into the air. To do this, 

small sacs located deep inside your lungs, called alveoli, fill up like balloons, which enables 

this gas exchange to occur. The alveoli are very thin, just one cell layer thick, which allows 

very efficient transport of oxygen into your blood capillaries, and carbon dioxide out. 

 

Figure 1 Image of healthy alveoli performing gas exchange of oxygen and carbon dioxide to blood cells. 
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3. What happens if you get infected with M. tuberculosis? 

In most cases of tuberculosis, the bacteria spreads slowly and widely throughout the lungs. 

There are two distinct types, latent and active: 

Latent tuberculosis - this means you are infected with tuberculosis bacteria, but you do not 

feel sick or have any signs or symptoms of tuberculosis disease. In this case, your immune 

system limits the infection by enclosing the tuberculosis bacteria within a tough calcified 

shell, known as a granuloma. The granulomas protect your lungs from any damage the 

bacteria might do. As long as the bacteria are contained, you will not have any symptoms, and 

are not contagious, which means you can’t infect anyone else. The presence of tuberculosis 

granulomas can be seen on a chest X-ray. 

Active tuberculosis - whether or not tuberculosis remains latent, or progresses to active 

tuberculosis depends on the health of your immune system. When you are healthy and 

everything is functioning properly, your body is able to keep the bacteria contained and under 

control. Sometimes, your immune system may become weaker and is no longer able to 

control the growth of the tuberculosis bacteria; for example, if you have a disease that attacks 

your immune system, like HIV/AIDS. When this happens, the calcified shell of the granuloma 

can deteriorate and your tuberculosis infection may transition from latent to active. This can 

occur anytime from weeks, to years after you were first infected. Once the tuberculosis 

granulomas open, the bacteria are able to emerge, inhabit your lungs, and damage the 

surrounding tissue. The damage causes the spongy, balloon-like tissue of the alveoli to harden 

and become fibrous, making them useless for gas exchange. 
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Figure 2 Image of healthy alveoli blocking gas exchange to and from blood cells. 

Eventually, the lung tissue cells themselves begin to deteriorate and die. When the 

bacteria reach a part of your lungs which connects to an airway, they are expelled when you 

cough or sneeze. This releases them in an aerosol of fine droplets that may be inhaled by 

another person (droplet transmission). Like the flu, tuberculosis is an airborne disease, 

meaning that the infectious droplets can travel long distances and remain suspended in the air 

for a long time. Consequently, it is possible for the bacteria to circulate throughout entire 

buildings, and you can catch tuberculosis by entering a room that an infected person left hours 

ago. Masks that filter the air (e.g., N95 masks) are often used by healthcare professionals who 

are caring for patients with tuberculosis, and these patients are often isolated in negative 

pressure rooms that prevent the contaminated air from escaping from the room. 

Unfortunately, because your body naturally wants to eject any unwanted particles in your 

lungs, you are likely to be coughing a lot if you have active tuberculosis. As the bacteria 

continue to attack your lung tissues, the damage and inflammation becomes more extensive, 

and you may even begin to cough up blood. 

4. Symptoms 

Many of the worst symptoms of active tuberculosis arise as a direct result of the extensive 

tissue damage that the bacteria do to your lungs. Typical signs and symptoms of active 

tuberculosis include a bad dry cough lasting for more than three weeks that may cause you to 

cough up bloody sputum. You are also likely to experience night sweats, fever and weight 
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loss (the reason why historically tuberculosis was called “consumption”) as your body tries to 

fight off the infection. 

For about one in five people, the infection is so severe that cavities begin to form within 

the lung tissue. If these areas start to bleed, tuberculosis bacteria are able to enter the 

bloodstream. If this happens, they can travel to other parts of your body, causing additional 

symptoms. A tuberculosis infection outside of the lungs is called an extra-pulmonary 

tuberculosis infection and most commonly occurs in your lymphatic system, your 

genitourinary system, and/or in your bones and joints. However, in some cases extra-

pulmonary tuberculosis is disseminated, which means the infection has spread widely 

throughout your whole body. 
9
 

 

Figure 3 Image illustrating the effects of extra-pulmonary tuberculosis. 

5. What puts you at risk of catching tuberculosis? 

Tuberculosis is contagious, meaning that you can catch it from other people, especially if 

you live with someone who is infected. However, there are many other situations that can also 

increase your chances of getting tuberculosis. These include times of life when your immune 

system is weaker; for example when you are very young or very old, or when you have 

certain diseases that reduce immune function, such as HIV/AIDS, diabetes or cancer, or are 

receiving immunosuppressive medications for these or other diseases. The risk of catching 

tuberculosis is also linked to crowded, poorly ventilated living conditions. This is a common 

situation for people living in poverty, for whom malnutrition, lack access to medical care, and 
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substance abuse may all contribute to an increased risk of becoming infected. It is worth 

noting that poverty is not the only driver of crowding and inadequate living conditions. In 

many countries, prisons also make transmission of tuberculosis very efficient, for these 

reasons. Finally, drug resistant tuberculosis has been reported in 100 countries worldwide, 

including sub-Saharan Africa, India, China and Pakistan. 
10

 Around 10% of people are 

infected with this form, which is very hard to treat.
 10

 Your chances of catching tuberculosis is 

higher if you live in or travel to these regions, where it is becoming a major public health 

problem. 

6. How likely are you to get tuberculosis? 

Tuberculosis is the world’s second most deadly infectious disease after HIV/AIDS. In 

2015, around 10.4 million people got active tuberculosis and 1.4 million people died of the 

disease, mainly in low- and middle-income countries.
 11

 HIV (human immunodeficiency 

virus) attacks and weakens your immune system. This reduces your ability to fight off other 

infections including tuberculosis, making it around 30 times more likely you will become 

infected with both HIV and tuberculosis.
 12

 This type of coinfection is often very serious, and 

tuberculosis is a leading cause of death of people with HIV infection. 

 

Figure 4 Map illustrating TB prevalence around the world. 

7. How is tuberculosis treated? 

Tuberculosis is a treatable and curable disease. There are at least 10 anti-tuberculosis 

drugs available to treat tuberculosis infection. However, unlike many other bacterial 
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infections, which only require a short course of medicine, tuberculosis drugs generally need to 

be taken for at least six to nine months. This is because the bacteria can remain latent, or 

dormant in your lungs for long periods of time without making you sick. It is very important 

to get treated properly to eliminate both latent and active tuberculosis bacteria. Your 

healthcare provider will choose the antibiotics you need based on whether or not your 

infection is latent or active, where the infection is in your body (lungs or elsewhere), your 

general state of health, and whether or not you have a drug resistant strain. 

Treatment of latent tuberculosis - if you have tested positive for latent tuberculosis, your 

healthcare provider may recommend that you take either isoniazid or rifampin to prevent a 

first or recurrent episode of active tuberculosis. This approach is typically used to help people 

who are at particularly high risk of developing active tuberculosis including infants and young 

children, people with a recent infection (within the last 2 years), people infected with 

tuberculosis and HIV, and people who may have a weak immune system brought about by 

another disease, such as diabetes, or chronic kidney failure. 

Treatment of active, drug-sensitive tuberculosis - most cases of active, drug-sensitive 

tuberculosis are treated with a standard six-month course (short course) of four anti-

tuberculosis drugs. The most common ones are isoniazid, rifampin, ethambutol and 

pyrazinamide (first line drugs). These drugs are very effective; however, the infection will 

only be cured if the drugs are taken properly, and for the prescribed length of time. If you stop 

taking the drugs early, or skip doses, the tuberculosis bacteria may mutate and become 

resistant to the drugs. Drug resistant tuberculosis is much more difficult to treat, and is more 

likely to be spread from one person to the next. 

Treatment of drug resistant tuberculosis - if you are infected with a drug-resistant strain 

of tuberculosis, you will likely need a different combination of antibiotics, and you may have 

to take them for 2 years or more. 
9
  

For multidrug-resistance (MDR) and extensively drug resistance (XDR) are used the 

combination of first line drugs and seconde line drugs as aminoglycosides (amikacyn and 

kanamicyn), polypetides (capreomicyn, viomycin, envyomicin), fluoroquinolones 

(ofloxacin, levofloxacin, moxifloxacin, gatifloxacin), thioamides (ethionamide, 
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prothionmide), cycloserine, terizidone and para-aminosalicylic acid. This chemotherapy is 

less effective, longer, expensive and very toxic to your liver than the short course therapy and 

may cause serious side effects. 
13

 

Third line drugs include rifabutin, macrolides (clarithromicin), linezolid, thiacetazone, 

thioridazine, arginine, vitamin D are still being developed, have less or unproven efficacy 

and are very expensive. 
14

 

8. Intrinsic or acquired drug resistance? 

Intrinsic resistance - refers to the innate ability of a bacterium to resist the activity of a 

particular antimicrobial agent through its inherent structural or functional characteristics. 

Intrinsic drug resistance in M. tuberculosis has been attributed to its unique cell wall 

properties, including the presence of mycolic acids, which are high-molecular-weight α-alkyl, 

β-hydroxy fatty acids covalently attached to arabinogalactan, and which constitute a very 

hydrophobic barrier responsible for resistance to certain antibiotics. 
15

 In addition, M. 

tuberculosis possesses β-lactamase enzymes, which confer intrinsic resistance to β-lactam 

antibiotics, while efflux mechanisms appear to play an important role in resistance to 

antibiotics such as tetracycline and the aminoglycosides. 

Acquired drug resistance - occurs when a microorganism obtains the ability to resist the 

activity of a particular antimicrobial agent to which it was previously susceptible. Acquired 

drug resistance in M. tuberculosis is caused mainly by spontaneous mutations in chromosomal 

genes, and the selective growth of such drug-resistant mutants may be promoted during 

suboptimal drug therapy. 
16

 The rate of genetic mutations leading to resistance varies 

somewhat among anti-tuberculosis drugs, from a frequency of ~10
-5

-10
-6

 organisms for 

isoniazid to ~10
-7

-10
-8

 organisms for rifampin. 
17

 Since the bacterial burden typically present 

in pulmonary cavities does not exceed 10
12

 bacilli, 
18

 combination therapies is highly effective 

for drug-susceptible disease, and the risk for development of acquired drug resistance is 

minimized. 

9. Investigation of Anti-TB Drugs structure 

As a part of our ongoing studies in developing of new active compounds with anti-

mycobacterial activity we report here a fragment-based screening. Here, we took advantage of 

the similarity structure of small molecules bound with drug target to define new group that 
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interact with the protein and discovered several binding azoles chemotypes. Where, this will 

help us to identify lead compounds for our future work.  

Anti-tuberculosis activities of compounds possessing azoles heterocyclic. Which, 

containing a nitrogen atom and at least one other non-carbon atom (i.e. nitrogen, sulfur, 

or oxygen) as part of the ring have been reported in numerous studies.
 19-25

 

Fragment screening and target screening are complementary approaches that combine 

with structural biology to explore the binding capabilities of an active site.  

Sterol 14α-demethylation as a general part of sterol biosynthetic pathways in eukaryotes 

has been known and studied for more than 30 years. The enzyme catalysing this reaction was 

first purified from yeast in 1984 (Sacharomyces cerevisiea), and following determination of 

its primary structure the cytochrome P450 sterol 14α-demethylases were placed into the 

CYP51 family, a number reserved for fungal sequences. In 1986 the orthologous mammalian 

P450 was purified from rat liver microsomes, in 1996 the first sterol 14α-demethylase was 

found in plants (Sorghum bicolor), and in 2000 the orthologous nature of a CYP51-like gene 

from Mycobacterium tuberculosis to eukaryotic CYP51s was confirmed.  

CYP51 is also of great practical importance as a drug target. Inhibition of sterol 14α-

demethylase activity blocks sterol biosynthesis, which is lethal in unicellular organisms. The 

demands for CYP51 inhibitors are increasing continuously because of drug resistance, 

worldwide increase in the incidence of opportunistic fungal infections as a consequence of the 

rising number of immunocompromised hosts (HIV-infections, cancer chemotherapy, organ 

and bone marrow transplantation) and patients with primary infections such as tuberculosis, 

etc.  

Azoles are the most broadly known CYP51 inhibitors. They coordinate to the heme iron 

through a basic nitrogen and inhibit activity preventing substrate binding and metabolism. 

Azoles are less toxic, inexpensive and broadly available, yet have several disadvantages. 

Their long term usage can inhibit other P450 enzymes and leads to resistance allowing the 

drugs tolerance in the pathogen. It is well known that affinities of different CYP51 orthologs 

to the same azole drug may vary significantly (up to 3-4 orders of magnitude). Also, it is well 

known that the lower drug susceptibility a TB strain has, the more frequently and rapidly 

resistance develops. Besides, selecting the most powerful CYP51 inhibitors would help to 

shorten treatment time and lower the necessary doses. 
26

 

https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Sulfur
https://en.wikipedia.org/wiki/Oxygen
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hat is computer-assisted drug design (CADD), and why is it important? There is no 

clear definition, although a consensus view has emerged. Simply, CADD is the 

coalescence of information on chemical structures, their properties, and their interactions with 

biological macromolecules. Further, these data are transformed into knowledge intended to 

aid in making better decisions for drug discovery and development. 

These are representative of some questions facing the current drug-design community and 

significant applications of CADD. 

f the compounds included in our dataset, how many could be predicted to lack drug like 

properties based on similarity in properties to known orally active drugs? 

ow many would be predicted to be inactive based on the known structure–activity data 

available on M. tuberculosis H37Rv inhibitors? 

iven the structure–activity relationships (SARs) available on the inhibitors, what could one 

determine regarding the active site of M. tuberculosis H37Rv? 

hat novel classes of compounds could be suggested based on the SAR of inhibitors, or 

based on the new crystal structure of the complex? 

o the most potent compounds share a set of properties that can be identified and used to 

optimize a novel lead structure? 

an a predictive equation relating properties and affinity for the isolated enzyme be 

established? 

1. Predictive Quantitative Structure–Activity Relationship Modeling 

At the beginning of its over 40 years of existence as an independent area of research, 

quantitative structure–activity relationship (QSAR) modeling was viewed strictly as analytical 

physical chemical approach applicable only to small congeneric series of molecules. The 

technique was first introduced by Hanschet al.
27

on the basis of implications from linear free-

energy relationships in general and the Hammett equation in particular.
28

 

It is based upon the assumption that differences in physicochemical properties account 

for the differences in biological activities of compounds. According to this approach, the 

changes in physicochemical properties that affect the biological activities of a set of 

congeners are of three major types: electronic, steric, and hydrophobic.
29

 

The quantitative relationships between biological activity (or chemical property) and 

the structural parameters could be conventionally obtained using multiple linear regression 

(MLR) analysis. The fundamentals and applications of this method in chemistry and biology 

W 

O 
H 
G 
W 
D 
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have been summarized by Hansch and Leo.
29 

This traditional QSAR approach has generated 

many useful and, in some cases, predictive QSAR equations and led to several documented 

drug discoveries.
30–32

 

Many years of active research in QSAR have dramatically changed the breadth and the 

depth of this field in all its components including the diversity of target properties, descriptor 

types, data modeling approaches, and applications. The most important changes in QSAR deal 

with a substantial increase in the size of data sets available for the analysis and an increasing 

use of QSAR models as virtual screening tools to discover biologically active molecules in 

chemical databases and virtual chemical libraries. 

2. Key Quantitative Structure–Activity Relationship Concepts 

An inexperienced user or sometimes even an avid practitioner of QSAR could be 

easily confused by the diversity of methodologies and naming conventions used in QSAR 

studies. 2D or three-dimensional (3D) QSAR, variable selection or artificial neural network 

(ANN) methods, Comparative molecular field analysis (CoMFA), or binary QSAR present 

examples of various terms that may appear to describe totally independent approaches, which 

cannot be generalized or even compared to each other. In fact, any QSAR method can be 

generally defined as an application of mathematical and statistical methods to the problem of 

finding empirical relationships (QSAR models) of the form 𝑃𝑖 = 𝑘(𝐷1, 𝐷2, … 𝐷𝑛),where 𝑃𝑖 

are biological activities (or other properties of interest) of molecules, 𝐷1, 𝐷2, … 𝐷𝑛 are 

calculated (or, sometimes, experimentally measured) structural properties (molecular 

descriptors) of compounds, and 𝑘 is some empirically established mathematical 

transformation that should be applied to descriptors to calculate the property values for all 

molecules. 

The relationship between values of descriptors D and target properties P can be linear 

(e.g., MLR as in the Hansch QSAR approach), where target property can be predicted directly 

from the descriptor values, or nonlinear (such as ANNs or classification QSAR methods) 

where descriptor values are used in characterizing chemical similarity between molecules, 

which in turn is used to predict compound activity. 

The differences in various QSAR methodologies can be understood in terms of the 

types of target property values, descriptors, and optimization algorithms used to relate 

descriptors to the target properties and generate statistically significant models. 
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Target properties (regarded as dependent variables in statistical data modeling sense) 

can generally be of three types:  

(1) continuous, i.e., real values covering certain range, e.g., IC50, MIC values, or binding 

constants;  

(2) categorical related, classes of target properties covering certain range of values, e.g., 

active and inactive compounds, frequently encoded numerically for the purpose of the 

subsequent analysis as 1 (for active) or 0 (for inactive), or adjacent classes of metabolic 

stability such as unstable, moderately stable, stable; and  

(3) categorical unrelated, classes of target properties that do not relate to each other in any 

continuum, e.g., compounds that belong to different pharmacological classes, or compounds 

that are classified as drugs versus non drugs. 

Chemical descriptors (or independent variables in terms of statistical data modeling) 

can be typically classified into two types:  

(1) continuous (i.e., range of real values, e.g., as simple as molecular weight or many 

molecular connectivity indices); or  

(2) categorical related (i.e., classes corresponding to adjacent ranges of real values, e.g., 

counts of functional groups or binary descriptors indicating presence or absence of a chemical 

functional group or an atom in a molecule). 

Descriptors can be generated from various representations of molecules, e.g., 2D 

chemical graphs or 3D molecular geometries, giving rise to the terms of 2D or 3D QSAR, 

respectively. 

Correlation methods (which can be used either with or without variable selection) can 

be classified into two major categories: 

(1) linear (e.g., linear regression (LR), or principal component regression (PCR), or partial 

least squares (PLS)) or  

(2) nonlinear (e.g., k nearest neighbor (kNN), recursive partitioning (RP), ANNs, or support 

vector machines (SVMs). 
33

 

In some cases, the types of biological data, the choice of descriptors, and the class of 

optimization methods are closely related and mutually inclusive. For instance, MLR can only 

be applied when a relatively small number of molecular descriptors are used (at least five to 

six times less than the total number of compounds) and the target property is characterized by 

a continuous range of values. The use of multiple descriptors makes it impossible to use MLR 
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due to a high chance of spurious correlation 
34

 and requires the use of PLS or nonlinear 

optimization techniques. 

3. Molecular Descriptors 

It has been said frequently that there are three keys to the success of any QSAR model 

building exercise: descriptors, descriptors, and descriptors. Many different molecular 

representations have been proposed in literature , including Hansch-type parameters, 

topological indices,
35, 36

 quantum mechanical descriptors,
37

 molecular shapes,
38

 molecular 

fields,
39

 atomic counts,
40

 2D fragments,
41

 3D fragments,
42

 etc. 

Various descriptors have been used to represent molecular identities in our diffrentes 

studies. We discuss below all the types of molecular descriptors used. 

3.1. Molecular Size and Shape 

Molecular size can be assessed in different ways. The molecular weight is easily 

calculated from the molecular formula. Also a simple atom count can be seen as a crude 

measure of molecular size. Other descriptors often used are molecular volume and molecular 

surface. The solvent-accessible surface calculations are based on a grid method derived by 

Bodor et al., 
43

 using the atomic radii of Gavezotti. 
44

 For the molecular volume can be 

defined according to the molecular surface. 

Another size descriptor is the molar refractivity (MR), which has often been included 

as a steric parameter. Tute has aptly dubbed it as the most‘chameleon-like’ parameter 
45

 and, 

despite 40 years of usage, it still remains an elusive descriptor which defies easy 

interpretability in terms of QSAR. Pauling and Pressman first suggested that MR could be 

used to model the dispersion forces affecting hapten–antibody interactions since MR was 

directly related to molecular polarizability, α.
27 

𝑀𝑅 =
4𝜋𝑁𝛼

3
 

𝑀𝑅 =
𝑛2 − 1

𝑛2 + 2
∗

𝑀𝑊

𝑑
 

MR is usually defined by the Lorentz/Lorenz, where n is the refractive index, d is the 

density, and MW is the molecular weight of a compound. Since n of organic liquids does not 

vary much, the molar volume term constitutes from 75% to 80% of MR. Although van de 



 Computer-Assisted Drug Design 

 

 20 

 

Waterbeemd and Testa have shown a strong correlation between MR and van der Waals 

volume, 
46

 MR has been shown to provide superior correlations, particularly in ligand–

receptor interactions where it is not adequately replaced by molar volume.
47, 48

 This suggests 

that polarizability is important when dealing with interactions in polar space. This has been 

borne out in extensive molecular graphics studies by Hansch and Blaney with various ligand–

receptor systems.
49

 

Shape descriptors are also often highly correlated to molecular size. Flexibility 

measures, e.g., the number of rotatable bonds, can be interpreted as information about both 

size and variable shape of the molecule. It was suggested that less flexibility as measured by 

the number of rotatable bonds improves oral bioavailability.
48

 

Molecular size and shape descriptors are usually part of every descriptor set used in 

QSAR modeling, although they are not necessarily important in the final model. This does not 

imply that molecular size does not influence the target property in question, but rather that 

molecular size may be considered implicitly in other descriptors like lipophilicity or polar 

surface area. 

3.2. Lipophilicity and Hydrophobicity 

Lipophilicity, the ‘love of fat,’ and hydrophobicity, the ‘fear of water,’ are often taken 

as synonyms, but do not exactly describe the same property: hydrophobicity considers the 

interaction between the compound and water, whereas lipophilicity is a measure of the 

interaction with a lipid. It has been suggested that hydrophobicity may be a component of 

lipophilicity 
50, 51

: 

𝑙𝑖𝑝𝑜𝑝ℎ𝑖𝑙𝑖𝑐𝑖𝑡𝑦 = ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐𝑖𝑡𝑦 − 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 

and that lipophilicity may consist of a cavity (volume or size related) and a polarity term (the 

combination of hydrogen bonding and dipolarity/polarizability) 
52

: 

𝑙𝑜𝑔𝑃 = 𝑎𝑉 + Λ 

(𝑉 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒, Λ = 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 𝑡𝑒𝑟𝑚) 

It has long been assumed that molecular size in general and hydrogen bonding or 

polarity together are largely able to explain lipophilicity.
53, 54

 In summary, hydrophobicity can 

be seen as a (mostly) size- or cavity-related term, i.e., only dependent on the molecule itself, 
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whereas lipophilicity includes a polarity factor and depends additionally on the lipid used. 

Lipids with different polar properties will give different lipophilicity values for the same 

compound, a phenomenon that is used for assessment of hydrogen bonding.
52, 55, 56 

Lipophilicity, as the ability of a molecule to mix with an oily phase rather than with water, is 

usually measured as partition coefficient, P, between the two phases and is often expressed as 

log P. 
57

 

Due to the importance of lipophilicity, different ways to assess the value 

experimentally and to calculate log P have been developed. Since it has been found that log 

Poct, the logarithm of the partition coefficient between n-octanol and water, can be calculated 

from the sum of the contributions (π) of the molecular fragments, various fragmental 

approaches for calculating log P have been developed. 
58

 

Nowaday, both experimentally obtained and calculated log P values usually refer to 

the partitioning between n-octanol and water, if nothing else is stated. This parameter is 

sometimes also termed log KOW.
59

 However, it is important to distinguish between the pH-

independent partition coefficient, P, and the pH-dependent distribution coefficient, D.The 

former expresses the quotient of the concentrations of the neutral compound in both phases, 

whereas the latter expresses the quotient of the concentration of all ionized and unionized 

species of the compound in both phases. It is generally assumed that (almost) only the 

unionized species can partition into the lipid phase.
60

 Although ionized species are probably 

able to partition into the lipid phase, at least together with a counter ion,
61

 the partition 

coefficient of such an ionic species is usually about three orders of magnitude lower than the 

partition coefficient of the neutral species (i.e., if log Pneutral is 4, log Pion is about 1).
62

 It is, 

thus, easily understandable that log D will become lower the more of the ionized species is 

present at the investigated pH. 

However, it is likely that log D at physiological pH is actually the more interesting 

parameter, since it gives the lipophilicity at a relevant pH. The pH to consider is 7.4 if 

blood/body tissue conditions are studied and around 6.0–8.0 in order to mimic the conditions 

along the gastrointestinal tract. pH varies from very acidic in the stomach, around pH 6.0–6.5 

in the proximal small intestine to slightly basic in the colon, pH 8.0.
63

 pH varies also with 

food intake.
64
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3.3. Hydrogen Bonding 

Hydrogen bonding has been found to be an important part in structure permeation 

relationships.
65-68

 Hydrogen bonds are also important for molecular recognition and thus will 

not only determine a compound’s activity but also its metabolism or transport properties. Van 

de Waterbeemd et al., 
66

 suggested that the calculated polar surface area (PSA) might be a 

more easily accessible descriptor of hydrogen bonding ability. Since then, various different 

definitions for polar surface area have been used.
66, 69, 70

 The value for PSA will differ 

depending on what type of surface is calculated (e.g., Van der Waals surface, solvent-

accessible surface,
71

 or Connolly surface 
72, 73

) and which atoms are used to define the surface. 

Nitrogen, oxygen and attached hydrogen atoms usually define a polar surface area, although 

sulfur atoms have been suggested as well. 
65 

It has also been proposed that an indicative PSA 

can be derived from the 2D structure alone.
74

 

It has been found that simple counting descriptors may give a good enough correlation 

to interesting ADME properties, e.g., to permeability.
65

 Such counting descriptors for 

hydrogen bonding are the number of hydrogen bond donors and acceptors, which can be 

defined either as donor and acceptor atoms 
75 

or as donor hydrogen atom and acceptor 

electron pair.
76 

3.4. Quantum Chemical Descriptors 

Quantum chemically derived descriptors include also descriptors like highest occupied 

molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), hardness (LUMO-

HOMO)/2, dipole moment, atomic charges, polarizability, polarity, ionization potential, 

electrostatic potentials, molecular energy values, and others. Quantum chemical descriptors 

and their use in QSAR/QSPR studies were reviewed some time ago.
77

 

4. Quantitative Structure–Activity Relationship Modeling Approaches 

4.1. General Classification 

Many different approaches to QSAR have been developed since Hansch’s seminal 

work. As briefly discussed above, the major differences between these methods can be 

analyzed from two viewpoints:  
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(1) the types of structural parameters that are used to characterize molecular identities starting 

from different representation of molecules, from simple chemical formulas to 3D 

conformations, and  

(2) the mathematical procedure that is employed to obtain the quantitative relationship 

between these structural parameters and biological activity.  

Based on the origin of molecular descriptors used in calculations, QSAR methods can 

be divided into three groups. 

One group is based on a relatively small number (usually many times smaller than the 

number of compounds in a data set) of physicochemical properties and parameters describing 

hydrophobic, steric, electrostatic, etc. effects. Usually, these descriptors are used as 

independent variables in multiple regression approaches. In the literature, these methods are 

typically referred to as Hansch analysis. 

A more recent group of methods is based on quantitative characteristics of molecular 

graphs (molecular topological descriptors). Since molecular graphs or structural formulas are 

‘two-dimensional,’ these methods are described as 2D QSAR. Most of the 2D QSAR methods 

are based on graph theoretical indices. Although these structural indices represent different 

aspects of molecular structures, and, what is important for QSAR, different structures provide 

numerically different values of indices, their physicochemical meaning is frequently unclear. 

The third group of methods is based on descriptors derived from spatial (3D) 

representation of molecular structures. Correspondingly, these methods are referred to as 3D 

QSAR; they have become increasingly popular with the development of fast and accurate 

computational methods for generating 3D conformations and alignments of chemical 

structures. Perhaps the most popular example of 3D QSAR is CoMFA, developed by Cramer 

et al.,
78

 which has combined the power of molecular graphics and PLS technique and has 

found wide applications in medicinal chemistry and toxicity analysis.
79

 

4.2. Transforming the Bioactivities 

The main advantage of transforming data is to guarantee linearity, to achieve 

normality, or to stabilize the variance. Several simple nonlinear regression relationships can 

be made linear through the appropriate transformations. The simplest and most common 

method of transforming 
80

 bioactivity data is to take the log or negative log of the bioactivities 

to reduce the range of the data. 
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4.3. Training and Test Set Creation 

The method of creating Training and Test Sets that are representative of the population 

is to choose molecules that represent all the molecules of interest based on molecular structure 

and bioactivity. The number of molecules in the Test Set is determined (20% of the total 

molecules in this study) and then all the molecules are placed in a table and ordered based on 

bioactivities. With the table prepared, the extraction of the molecules for the Test Set can 

begin through an iterative process starting at the top of the table. 

4.4. Determination of the Best Set of Descriptors Approaches 

Both 2D and 3D QSAR studies have focused on the development of optimal QSAR 

models through variable selection.This implies that only a subset of available descriptors of 

chemical structures, which are the most meaningful and statistically significant in terms of 

correlation with biological activity, is selected. 

The Stepwise Method Search selects a model by adding or removing individual 

descriptors, a step at a time, based on their statistical significance. The end result of this 

process is a single regression model, which makes it nice and simple. 

The p-value for each term tests the null hypothesis that the coefficient is equal to zero 

(no effect). A low p-value (< 0.05) indicates that you can reject the null hypothesis. In other 

words, a descriptor that has a low p-value is likely to be a meaningful addition to your model 

because changes in the descriptor's value are related to changes in the response variable 

(bioactivity). Conversely, a larger (insignificant) p-value suggests that changes in the 

descriptor are not associated with changes in the response. 

5. Building Predictive Quantitative Structure–Activity Relationship Models: The 

Approaches to Model Validation 

5.1. The Importance of Validation 

The process of QSAR model development is divided into three key steps: (1) data 

preparation, (2) data analysis, and (3) model validation.The implementation and relative merit 

of these steps is generally determined by the researcher’s interests and experience, and the 

availability of software. The resulting models are then frequently employed, at least in theory, 

to design new molecules based on chemical features or trends found to be statistically 

significant with respect to underlying biological activity. 
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The first stage includes the selection of a data set for QSAR studies and the calculation 

of molecular descriptors. The second stage deals with the selection of a statistical data 

analysis technique, either linear or nonlinear such as MLR, PLS or ANN. A variety of 

different algorithms and computer software are available for this purpose. In all approaches, 

descriptors are considered as independent variables, and biological activities as dependent 

variables. 

Typically, the final part of QSAR model development is model validation, 
81, 82

 in 

which estimates of the predictive power of the model are calculated. This predictive power is 

one of the most important characteristics of QSAR models. 

Ideally, it should be defined as the ability of the model to predict accurately the target 

property (e.g., biological activity) of compounds that were not used in model development. 

Here, we are going to discuss about the validation parameters for the QSAR models 

which are developed by multiple linear regression (MLR). Four tools of assessing validity of 

QSAR models 
83

 are (i) cross-validation, (ii) bootstrapping, (iii) randomization of the 

response data, and (iv) external validation. Where we are using the data that created the model 

(an internal method) and using a separate data set (an external method) (Fig.5). 

The methods of least squares fit (R²), cross validation (Q²) 
84-86

, adjusted R² (R²adj), chi-

squared test (χ²), rootmean-squared error (RMSE), bootstrapping and scrambling (Y-

Randomization) 
87, 88

 are internal methods of validating a model. The best method of 

validating a model is an external method, such as evaluating the QSAR model on a test set of 

compounds. 

5.2. Internal Validation 

5.2.1. Least Squares Fit 

The most common internal method of validating the model is least squares fitting. This 

method of validation is similar to linear regression and is the R
2
 (squared correlation 

coefficient) for the comparison between the predicted and experimental activities. An 

improved method of determining R
2
 is the robust straight line fit, where data points are away 

from the central data points (essentially data points a specified standard deviation away from 

the model) are given less weight when calculating the R
2
. An alternative to this method is the 

removal of outliers (compounds from the training set) from the dataset in an attempt to 

optimize the QSAR model and is only valid if strict statistical rules are followed. The 

difference between the R
2
 and R

2
adj value is less than 0.3 indicates that the number of 
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descriptors involved in the QSAR model is acceptable. The number of descriptors is not 

acceptable if the difference is more than 0.3. 

𝑅2 = 1 −
𝑃𝑅𝐸𝑆𝑆

∑ (𝑦𝑖 − 𝑦𝑚)2𝑛
𝑖=1

 

𝑃𝑅𝐸𝑆𝑆 = ∑(𝑦̂ 𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

Where, y and ŷ are the experimental and predicted bioactivity for an individual compound in 

the training set, ym is the mean of the experimental bioactivities, and n is the number of 

molecules in the set of data being examined. PRESS is the predictive residual sum of the 

squares. 

5.2.2. Fit of the Model 

Fit of the QSAR models can be determined by the methods of chi-squared (χ
2
) and 

root-mean squared error (RMSE).These methods are used to decide if the model possesses the 

predictive quality reflected in the R
2
. The use of RMSE shows the error between the mean of 

the experimental values and predicted activities. The chi squared value exhibits the difference 

between the experimental and predicted bioactivities: 

𝜒2 = ∑ (
(𝑦𝑖 − 𝑦̂𝑖)2

𝑦̂𝑖
)

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦̂𝑖 − 𝑦𝑚)2

𝑛 − 1

𝑛

𝑖=1

 

Large chi-square or RMSE values (≥0.5 and 1.0, respectively) reflect the model’s poor 

ability to accurately predict the bioactivities even the model is having large R
2
 value (≥0.7). 

For good predictive model the chi and RMSE values should be low (<0.5 and <0.3, 

respectively). These methods of error checking can also be used to aid in creating models and 

are especially useful in creating and validating models for nonlinear data sets, such as those 

created with Artificial Neural Network (ANN) 
89

. 

However, excellent values of R
2
, χ

2
 and RMSE are not sufficient indicators of model 

validity. Thus, alternative parameters must be provided to indicate the predictive ability of 

models. In principle, two reasonable approaches of validation can be envisaged one based on 
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prediction and the other based on the fit of the predictor variables to rearranged response 

variables. 

5.3. External validation 

Several authors have suggested that the only way to estimate the true predictive power 

of a QSAR model is to compare the predicted and observed activities of an (sufficiently large) 

external test set of compounds that were not used in the model development 
90, 91, 92-94

. The 

problem in external validation is how can we select the training and test set? Roy et al. clearly 

discussed that how we can solve this problem in one of their article. 
95

 

To estimate the predictive power of a QSAR model, Golbraikh and Tropsha 

recommended use of the following statistical characteristics of the test set 
96

: (i) correlation 

coefficient R between the predicted and observed activities; (ii) coefficients of determination 

(R
2
) (predicted vs. observed activities r0

2
, and observed vs. predicted activities r0'); (iii) slopes 

k and k' of the regression lines through the origin. They consider a QSAR model is predictive, 

if the following conditions are satisfied 
96

: 

𝑅𝑡𝑒𝑠𝑡
2 > 0.6 ; 

𝑟2 −
𝑟0

2

𝑟2
< 0.1    ;    𝑟2 −

𝑟0
′2

𝑟2
< 0.1   𝑎𝑛𝑑 

0.85 ≤ 𝑘 ≤ 1.15    𝑜𝑟    0.85 ≤ 𝑘′ ≤ 1.15 

The predictive ability of the selected model was also confirmed by external R
2
test. A value of 

R
2

test is greater than 0.6 may be taken as an indicator of good external predictability. 

𝑅𝑡𝑒𝑠𝑡
2 = 1 −

∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑝𝑟𝑒𝑑)2𝑡𝑒𝑠𝑡
𝑖=1

∑ (𝑦𝑒𝑥𝑝 − 𝑦̅𝑡𝑟)2𝑡𝑒𝑠𝑡
𝑖=1

 

Where 𝑦̅𝑡𝑟 is the average value for the dependent variable for the training set. Kubinyi et al.
90

, 

Novellino et al.
92

, Norinder 
93

, and Golbraikh and Tropsha 
96

 demonstrated that all of the 

above-mentioned criteria are necessary to adequately assess the predictive ability of a QSAR 

model. Norinder suggest 
93

 that the external test set must contain at least five compounds, 

representing the whole range of both descriptor and activities of compounds included into the 

training set. 
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6. Applicability Domain 

Activity of the entire universe of chemicals can not be predicted even by a robust and 

validated QSAR model. The prediction of a modeled response using QSAR is valid only if the 

compound being predicted is within the applicability domain of the model. The applicability 

domain is a theoretical region of the chemical space, defined by the model descriptors and 

modeled response and, thus, by the nature of the training set molecules. It is possible to check 

whether a new chemical lies within applicability domain using the leverage approach. A 

compound will be considered outside the applicability domain when the leverage value is 

higher than the critical value of 3p/n, where p is the number of model variables plus 1 and n is 

the number of objects used to develop the model. 

 

7. Molecular Modeling Techniques 

A key requirement in molecular modeling is to be able to calculate the energy of an 

arrangement of atoms and/or molecules in 3D space. There exist a variety of methods that can 

be used to perform such calculations.  

The most ‘fundamental’ way to tackle this problem is to use quantum mechanics, 

where in the Schrödinger equation is solved for the distribution of electrons and atoms in the 

system in order to derive a wave function from which other properties can be derived. As will 

be described elsewhere in this chapter, a variety of different quantum mechanical methods are 

applicable to the systems and problems typically encountered in drug design. Quantum 
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mechanical methods have some clear advantages in that they are much less reliant on 

empirical parameters for the system being studied and they are also able to provide 

information on some key properties (e.g., electric multipoles, electrostatic potentials, 

ionization potentials, etc.) that are dependent upon a knowledge of the electronic distribution 

and which cannot be calculated using other techniques. However, they do have the significant 

drawback of being relatively time consuming to perform and so are rarely used for 

calculations involving large systems and/or for those on large numbers of molecules. 

Empirical force field methods 
97, 98 

(also known as molecular mechanics) ignore the 

electronic motions in the system and calculate the energy solely as a function of the positions 

of the atoms. The method uses a very simple model of the intra- and intermolecular 

interactions within a molecular system with the energy being partitioned into contributions 

from processes such as the stretching of bonds, bending of angles, rotations about single 

bonds, and steric and electrostatic interactions between pairs of no bonded atoms (Fig.6). The 

simplest type of force field encountered in drug design applications contains just these four 

contributions; a common functional form is as follows: 

𝐸 = ∑
𝑘𝑖

2
(𝑙𝑖 − 𝑙𝑖,0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑
𝑘𝑖

2
(𝜃𝑖 − 𝜃𝑖,0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
𝑉𝑛

2
(1 + cos(𝑛𝜔 − 𝛾))

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+ ∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
)

𝑁

𝑗>𝑖

𝑁

𝑖=1

 

 

 

Figure 6 An illustration of the various terms that contribute to a typical force field. 
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The greatest appeal of quantum mechanical methods is that they can, in principle, be 

used to calculate the entire range of properties that are necessary to understand the 

characteristics of a molecule which are responsible for all its properties and that allow its 

recognition by and activation of receptors. 

Quantum mechanical calculations are also able to extrapolate and predict properties of 

basically any compound without prior knowledge or parameterization, as mentioned above. 

This is in contrast to other computational methods like for example the classical force fields, 

which require extensive and complex parameterization and can only interpolated within the 

boundaries of that parameterization. However, quantum mechanics techniques are 

computationally very intensive and require significantly more specialist expertise for the 

correct and meaningful interpretation of the data they generate then do conventional 

molecular mechanics or force field methods.
98 

This significant difference inrequired expertise 

combined with a lack of understanding of the potential of quantum mechanical calculations in 

the wider chemistry community and particular in medicinal chemistry may perhaps be 

responsible for the apparent under utilization of these very powerful methods. 

8. Theoretical Background for Quantum Mechanical Calculations 

Although the purpose of this chapter is to review applications of quantum mechanical 

calculations relevant to medicinal chemistry and drug design. These introductions are 

however kept to a minimum, focus on the main differences between methods and their known 

strengths and weaknesses in relation to medicinal chemistry applications, and will contain 

only one mathematical equation, probably much to the relief of most readers. 

For a more background on quantum mechanical calculations we refer to my Master 

thesis, 
99

 such as : ab initio calculations, density functional calculations, and semiempirical as 

well as molecular mechanical methods. 

The Schrödinger equation forms the basis of quantum mechanics and has the simple 

form for an eigenvalue problem: 

𝐻𝜓 = 𝐸𝜓 

This famous equation cannot be solved explicitly for anything larger than hydrogen, 

even with modern computer power. 

Therefore, several approximations were introduced in order to enable the quantum 

mechanical treatment of molecules of more immediate interest to most chemists. These are for 
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example the Born–Oppenheimer approximation, treating the nuclei of atoms as fixed, and the 

Hartree–Fock (HF) approximation where an effective potential replaces the true electron–

electron potential description, effectively eliminating electron correlation. Another is the 

introduction of basis sets, designed to mimic the structure of orbitals, in place of actual 

electron integrals. The quality of these basis sets is essential for ab initio calculations, and as a 

general rule the larger they are and the more individual Gaussian functions they contain the 

better. Rather than discussing them here in detail we will refer to my Master thesis 
99

 for 

further reading. The usefulness and accuracy of calculations using these approximations is 

mostly confirmed by comparison with experiment, particularly for molecular geometries and 

properties like for example dipole moments, and despite the use of these simplifications, the 

results are often surprisingly accurate. 

However, some approximations are more questionable and the magnitude of error 

introduced is often unclear. Despite using a number of approximations, quantum mechanical 

calculations are generally very accurate and useful in practically answering questions and 

describing molecular structures, properties, and interactions important for medicinal 

chemistry. It also has to be emphasized that for some of these questions, for example those 

relating to chemical reactivity, molecular properties like nucleophilicity, electrophilicity, 

charge distribution, spin–orbit coupling, dipole and higher multipole moments relating to 

polarizability, infrared, Raman and NMR chemical shifts, circular dichroism, and magnetic 

susceptibility,
100

 quantum mechanical calculations are the only available option to the 

computational and medicinal chemist to obtain accurate predictions. 

As pointed out above, the focus of this chapter is to review the application of quantum 

mechanical calculations in medicinal chemistry and drug design rather than to deal in detail 

with the theory of the methods. For that, there are short summaries for the most important 

approaches below (Sections 8.1- 8.4).Then Section 9 disccuses the applications of quantum 

mechanical calculations. 

Quantum mechanical calculations, in contrast to the molecular mechanics approach, 

are directly derived from the physical principles that govern molecular structure, by solution 

of the Schrödinger equation in an approximate way. The techniques can be divided into ab 

initio, DFT methods and semiempirical methods. While ab initio and density functional 

methods do not resort to parametrization to solve the Schrödinger equation, semiempirical 

methods contain parameters that avoid the computation of some time-consuming integrals 

required in ab initio and DFT calculations. Moreover, the semiempirical techniques take into 

account only the valence electrons. Although there are far fewer parameters in semiempirical 
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methods, they are also less intuitive then those in molecular mechanics methods. All three 

methods (ab initio, DFT, and semiempirical) provide a wave function from which all 

electronic properties can be computed.
101

 

8.1. Ab Initio Methods 

This category of methods based on HF theory utilizing the self-consistent-field 

procedure (SCF), is the most widely used type of quantum mechanics calculation. It scales 

with about N
4
, which means that when doubling the number of electrons in a calculation that 

it will take 16 times as long. This of course immediately sets a limit to the scope of this type 

of approach in terms of the size of molecule that can be calculated on a reasonable time scale 

in terms of medicinal chemistry and drug design, i.e., in a matter of a couple of days at best. 

Over the last 15 years, this size limit for molecules that are amenable to ab initio calculations 

has increased from about 10–15 heavy atoms at a moderate basis set (3-21G) to about 40–50 

heavy atoms currently on even a high-end desktop computer. However, if larger time scales 

and more compute power is invested, very significant results can be achieved. Recently, a full 

geometry optimization on a 126-atom chain of 12 alanines has been performed at the HF 3-

21G level.
102

 Although it is unclear whether this level of theory provides an accurate enough 

description of the system in terms of for example hydrogen bonding geometries, it is certainly 

an important realization that calculations of this size are not only possible but also practical 

for addressing medicinal chemistry problems.It is also clear that for example the treatment of 

electron correlation, that would be provided by methods like perturbation methods like MP2 

(Møller–Plesset level 2) is ratherless practical, since they scale with N
5
, which is also the case 

for the higher level correlation methods like coupled cluster methods, scaling with N
7
.
103

 

Although these higher level methods provide excellent accuracy and agreement with 

experiment in terms of geometries and relative energies, they are rather less useful for 

applications in computational chemistry and medicinal chemistry on pharmacologically 

relevant molecular systems, and will therefore not be discussed further in this chapter. 

However, there are methods that enable the treatment of electron correlation while remaining 

fast enough to be used for larger systems. They are the DFT methods and this approach will 

be discussed in the next section. 

8.2. Density Functional Theory Methods 

DFT is the latest addition to the field of quantum chemistry. It is probably an 

understatement to state that DFT has strongly influenced the evolution of quantum chemistry 
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during the last 15 years, the term revolutionized is perhaps more appropriate.
104 

DFT is based 

on the Hohenberg–Kohn paradigm, 
105

 which states that the electrondensity and electronic 

Hamiltonian have a functional relationship, which allows the computation of all ground-state 

molecular properties without a wave function. This means that it is possible to obtain the 

properties of a molecule after determination of only three coordinates, regardless of molecular 

size. However, we do not know exactly what the nature of this functional relationship is. The 

only approach is to build trial exchange-correlation functionals and assess their relevance and 

accuracy. In its current Kohn–Sham formulation DFT is a method still very much 

underdevelopment, and although it is a long way away from its promise, the modern-day 

Kohn–Sham DFT has still massive computational advantages over ab initio methods and can 

be applied just as easily via implementations in modern day commercial software packages. 

Current implementations are for example the functionals B3LYP 
106, 107 

and BP86 
108, 109

 

which have been shown to have significant advantages over ab initio approaches since their 

performance is roughly equivalent to the electron correlation MP2 method at the cost of only 

a HF/SCF level calculation. 
103

 Another way of utilizing this advantage is to use lower-level 

density functional equivalent in performance to HF/SCF approaches and trade off advantages 

in speed against increase in quality of for example size of basis sets to allow amore accurate 

description of molecular systems. In addition to the above-mentioned advantages in speed and 

performance of DFT over traditional ab initio methods, it is also differentiated by its ability to 

accurately describe the electronic properties of transition metals and their complexes. 
110

 

8.3. Semiempirical Methods 

This category of methods has been developed in parallel with ab initio methods based 

on the realization that further simplifications were needed in order to be able to perform 

calculations on larger molecular systems and reactions. The main difference between 

semiempirical and ab initio as well as DFT is the additional use of parameters derived either 

empirically or from high-level ab initio calculations in place of the explicit calculation of 

some molecular integrals.
103

 

This has the obvious benefit of speeding up the calculations but comes at a significant 

cost in terms of accuracy of the results. Methods like AM1
111

 and PM3 
112

 perform very well 

compared to ab initio and DFT methods for properties like atomic charges, electrostatic 

potentials, dipole moments and highest occupied molecular orbit/lowest unoccupied 

molecular orbit (HOMO/LUMO) energies. However, they have significant deficits in terms of 

accuracy of molecular structures, particularly hydrogen bond geometries (AM1) as well as the 
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hybridization of for example nitrogen atoms in amide bonds and also heterocyclic aromatic 

ring systems.
113

 Nevertheless, they are a very valuable addition to the tools available to 

computational chemists, particularly when dealing with larger molecular systems. 

8.4. Molecular Mechanics or Force Field Methods 

Molecular mechanics have virtually nothing in common with any of the methods 

described so far. They describe chemical bonds as a spring between two spheres and build a 

model of a molecular system based on classical mechanics and some empirical corrections.
103

 

Parameters and parameter sets, often called ‘force fields,’ are derived based on atraining set to 

provide a best fit for specific bond types or molecular classes. Some examples for molecular 

force fields are the MM2/MM3/MM4
114

 series, which is generalized for large organic 

systems, whereas others like AMBER
115

 are specialized for certain classes of macromolecules 

like proteins. Others are the Tripos force field 
116

 and the Merck molecular force field 

(MMFF).
117

 It has to be pointed out at this stage that some if not all force fields are developed 

by using quantum mechanical calculations to derive bond and torsion parameters. As an 

example, the parameterization of the MM3 force field makes extensive use of high-level ab 

initio calculations and the results of the force field calculations are compared with high-level 

ab initio calculations to assess the quality of the results. 
118

 

9. Application of Quantum Mechanical Calculations to Medicinal Chemistry and 

Drug Design 

One of the major challenges for computer-aided drug design is that it is not governed 

by the clear-cut rules of design in engineering, and hence, these methods do not produce a 

finished product by a fully prescribed procedure. The limitations of the rational computer-

aided drug design approach arise because of the complexity of the biological processes 

involved in drug actions and metabolism at the molecular level and the level of approximation 

that must be used in describing molecular properties.
101

 However, there is clear evidence in 

the literature that molecular modeling and computer-aided drug design methods and also data 

analysis and chemoinformatics approaches have become very important tools for drug 

discovery and that they have been successfully applied to medicinal chemistry,
119

 particularly 

hit and lead generation as well as at the lead development stages.
120-122 

Accepting that 

molecular modeling and chemoinformatics are useful techniques does however not 

sufficiently explain why one needs quantum mechanical methods. This has been done by 
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Clark in a recent review, where he indicates that calculational techniques used to describe 

molecules should be able to describe the intermolecular interactions adequately. 
123

 He points 

out that this can only be achieved if the molecular electrostatics and the molecular 

polarizability are described well. The former is responsible for strong interactions and the 

latter is directly related to dispersion and other weak interactions. Therefore, following this 

argument, molecular interactions of any type can only be described adequately and accurately 

by using quantum mechanical calculations. 

We will divide the application of quantum mechanical calculations to answer 

medicinal chemistry related questions in a drug design environment into a total of four 

sections on:  

(1) the accurate calculation of molecular structure,  

(2) the calculation of quantum mechanical descriptors for prediction of molecular properties 

and QSAR, 
124, 125

 

(3) applications to chemical reactivity and the investigation of enzyme mechanisms, and  

(4) the calculation of interactions and binding energies of small molecules with proteins.  

This selection of topics is meant to reflect the main areas of interest to medicinal 

chemists working in the field of drug discovery. It is noted that although there are a great 

number of publications on the use of quantum mechanical calculations to medicinal 

chemistry, however, a large number of them are retrospective studies concerned with the 

validation of new technology rather then the prospective application to problem solving and 

design of new chemical entity (NCEs).  

10. Computational Docking 

Computational docking is used to predict the binding modes of two or more molecules. 

Building on two decades of research, many successful methods for docking of ligands to 

macromolecular targets have been developed 
126-133

. Computational docking relies on two 

methods: first, a force field to estimate the free energy of binding of the complex, typically 

estimated based on a particular bound conformation, and second, a search method to explore 

the conformational space available to the ligand and target. Often, many approximations must 

be built into the method, both in the force field and in the conformation search, to allow 

docking with a reasonable computational effort. These may include use of simplified force 

fields, restriction of the search space, or limitations to the conformational flexibility of the 

ligand and/or target. 
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AutoDock Vina, relies on a number of approximations to predict the conformation and 

free energy of binding during a docking simulation. Generally, it is assumed that much or all 

of the receptor is rigid and the ligand is treated as flexible, but unlike traditional molecular 

mechanics methods, only torsional degrees of freedom are explored, holding bond angles and 

bond lengths constant. This allows very rapid transformations of coordinates during the 

search. 

The empirical free energy force field is based on a molecular mechanics force field, which 

includes typical terms for dispersion/repulsion (Steric interaction), hydrophobic interaction, 

hydrogen bonding, and the number of active rotatable bonds between heavy atoms in the 

ligand. The force field has been calibrated against a PDBbind data set of complexes with 

known structure and binding constant, allowing the force field to predict binding free 

energies. 

Several search methods are available in Vina, including genetic algorithms, simulated 

annealing, and local search. All of these methods are stochastic, so repeated docking 

simulations are often used to validate the exhaustiveness of the search and the solution. 

11. Virtual Screening 

Today, virtual screening is widely used to predict the binding of a large database of 

ligands to a particular target, with the goal of identifying the most promising compounds from 

the database for further study 
130, 134-140

. Hundreds of thousands of compounds may evaluated 

in a virtual screen, so two aspects of the search are critical. First, we must be confident that 

the docking method will find a relevant conformation. Docking methods are typically 

validated by “redocking” experiments, where a series of known complexes are separated and 

then redocked, ensuring that the docking algorithm can reproduce the observed binding mode. 

Second, the predicted free energy of binding must be accurate enough to allow ranking of 

compounds, ensuring that compounds that are predicted to bind most strongly actually do 

bind when tested experimentally. Most computational docking techniques, including Vina, 

have an accuracy of free energy prediction of about 2–3 kcal/mol standard deviation 
141

. This 

is not sufficient, unfortunately, to provide confident ranking. Rather, we typical refer to the 

process of “enrichment,” where the set of compounds that are predicted to bind tightly are 

enriched in compounds that actually show strong binding upon testing. 
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xadiazole is a nitrogen heterocyclic nucleus that attracted a wide attention of the 

chemist in research for new therapeutic molecules. Out of its four possible isomers, 1, 

3, 4-oxadiazoles are widely exploited for various applications 
142

. Among heterocyclic 

compounds, 1, 3, 4-oxadiazoles have become an important construction motif for the 

development of new drugs. Compounds containing 1, 3, 4-oxadiazole cores have a broad 

biological activity spectrum including antibacterial, antifungal 
143, 144

, analgesic, anti-

inflammatory 
145, 146

, antiviral 
145

, anticancer 
147-149

, and anticonvulsant 
145, 150

. Therapeutic 

significance of these useful drugs as anti-tubercular encouraged the development of more 

potent and significant compounds. Extensive biochemical and pharmacological studies have 

confirmed that these molecules are effective as anti-tubercular compounds 
19, 21, 22, 24

. Earlier, 

it was reported that a number of 2, 5-disubstituted-1, 3, 4-oxadiazoles have been designed, 

synthesized, and screened for their anti-tuberculosis activity against M. tuberculosis H37Rv. 

19
  

The knowledge of the relationship between chemical structure and biological activity is an 

essential prerequisite for the effective search for biologically active compounds. For example, 

2D QSAR 
151-156

 and 2D similarity 
157-160

 methods can be applied almost immediately. As a 

part of our ongoing studies in developing new active compounds with anti-mycobacterial 

activity, we are going to study and understand the structural requirements to substituted-1,3,4-

oxadiazole derivatives that cause the anti-tuberculosis activity, which help to identify 

structural information to derive new lead compounds for our future researches. In this context, 

the substitution effect study 
161

 was done in order to deepen our understanding of the 

influence of various substituents on 1, 3, 4-oxadiazole ring. Here, we present the electronic 

and geometric structure calculations 
162-165

 for 1, 3, 4-oxadiazole substituted by two functional 

groups of different strengths using the conceptual DFT 
166

 descriptors. 

Nowadays, various approaches to simultaneously optimize many factors in drug design are 

broadly described under the term ‘multi-parameter optimization’ (MPO) 
167

. In this paper, we 

use rules of thumb and calculated metrics methods 
168

 to guide the exploration of this new 

anti-tuberculosis agent to identify new chemistries with a high probability of achieving the 

required property profile. 

Starting with rules of thumb, we use Lipinski 
169

, Veber 
170

 and Petrauskas 
171

 rules to 

study the high oral bioavailability at the target site.  The latter is often an important factor for 

the development of bioactive molecules, as therapeutic agents and any attempt to predict or 

O 



 In Silico Modeling of Substitution-Induced Effect and Structure Property/Activity Relationship 
Profile of 1, 3, 4-Oxadiazole Derivatives 

 

 40 

 

study the bioavailability would require that both properties absorption and metabolism must 

be taken into account. 

The main factor of drugs’ absorption and metabolism is the lipophilicity which offers a 

critical information that enable us to better interpret our results since it’s a major structural 

factor that influences the pharmacokinetic (permeation of physiological membranes, plasma 

protein binding and volume of distribution) and pharmacodynamic (target recognition, target 

affinity and target specificity) behavior of our anti-tuberculosis compounds. 

Afterward, we extended our study towards calculated metrics methods. In this respect, we 

applied a Per cent Efficiency Index (PEI) and Group Efficiency (GE) analysis 
172-175

 to guide 

the selection of best anti-tubercular compounds that use their atoms most efficiently. 

1. Methods validation 

Molecular geometry is determined by the quantum mechanical behavior of the electrons. 

It can be specified in terms of bond lengths, bond angles and dihedral angles. 1, 3, 4-

oxadiazole is relatively simple systems from the computational point of view, since they are 

planar, symmetric (they belong to the C2v point group symmetry), and do not contain large 

numbers of atoms. As shown from (Table.1), all the 1, 3, 4-oxadiazole geometries obtained 

from B3LYP and Hartree-Fock models are very similar and generally improved over 

geometries obtained from MP2 models. With the DFT method, the mean absolute error is 

smaller comparing to MP2 and HF methods, which mean that it is in a good agreement with 

experimental data. This demonstrates that to describe an accurate ground state configuration, 

the electron correlation effects that play an important role in such molecules should be taken 

into account. Consequently, we have chosen the DFT method to perform the substitution 

effect study of 1, 3, 4-oxadiazole ring (Fig.7). All the calculated results are performed by 

Gaussian 09 software. 
176

 

 
Figure 7 3D structure of 1, 3, 4-oxadiazole. 

http://en.wikipedia.org/wiki/Quantum_mechanics
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Table 1 Bond lengths and valence angles of 1, 3, 4-oxadiazole. 

Parameters Exp
177

 
HF 

6-31G++(d,p) 

PM2 

6-31G++(d,p) 

DFT/B3LYP 

6-31G++(d,p) 

Length of 

bond 

(Angstroms) 

O1-C2 

C2-N3 

N3-N4 

C2-H6 

1.348 

1.297 

1.399 

1.075 

1.363 

1.304 

1.404 

1.074 

1.337 

1.264 

1.383 

1.068 

1.361 

1.291 

1.403 

1.078 

mean absolute 

error 
 _ 0.007 0.0167 0.0065 

Angle of 

valence 

(Degrees) 

 

O1-C2-N3 

C2-N3-N4 

C5-O1-C2 

O1-C2-H6 

N3-C2-H6 

113.4 

105.6 

102.0 

118.1 

- 

113.5 

105.7 

101.5 

118.0 

128.5 

112.8 

106.0 

102.2 

118.7 

128.4 

113.2 

105.9 

101.7 

118.1 

128.7 

mean absolute 

error 
 _ 0.25 0.4 0.2 

Dipole 

moments µ 

(Debye) 

 3.04 3.43 3.29 3.24 

 

2. Substitution effects on 1, 3, 4-oxadiazole 

The main objective of this study is to produce two series of derivatives of 1, 3, 4-

oxadiazole (Fig.8) to explore the substitution effect on this core. Where, the substitution of 

our groups will be at one carbon atom of 1, 3, 4-oxadiazole ring because of the C2v symmetry. 

Our focus was placed on modifications of the polar or the electronic effects exerted by 

different electron donating and withdrawing groups (“series 1 & 2” analogs, Fig.8), which is a 

combination of the inductive  and the mesomeric effect.  

Several criteria have been put forward in attempts to rationalize and quantify this effect. 

These can be roughly divided into two categories: energetic and reactivity-based measures. 

Many of these properties are available through quantum chemical calculations. 

Ionization potentials and electron affinities are related in that both involve transfer of an 

electron between a molecular orbital and infinity: in one case (IP) we have removal of an 

electron from an occupied orbital and in the other (EA) addition of an electron to a virtual (or 

a half-occupied) orbital. 

The EA of a molecule is positive for all derivatives of 1, 3, 4-oxadiazole it means that the 

accepted electron is bound, i.e. it is not spontaneously ejected; if the new electron is ejected in 

microseconds or less (is unbound), the molecule has a negative EA. For, the electron 

affinity which stats that a compounds B4 and B3 with a big positive value than the other 

http://en.wikipedia.org/wiki/Inductive_effect
http://en.wikipedia.org/wiki/Mesomeric_effect
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derivatives is called an electron acceptor, and the A3, A4 and B1 are less positive and electron 

donor. In general, the EA decreases by the addition of the alkyls groups, NH2 and OH and 

increases for CN and OCH groups compared to ODZ. 

Following the ionization potential values we can see that they decreases for all the 

derivatives just for the COH group which it stay the same as for ODZ and it increase for the 

CN group. Further, the NH2 substituent shows the lower IP than the alkyl derivatives and the 

OH substituents. This suggests that the systems with these substituents contribute more 

towards electron donating character. 

Similar conclusion can be drawn from the frontier molecular orbitals (FMOs), HOMO-

LUMO gaps (HLG’s), chemical potential, softness and hardness parameters reported in 

(Table.2). 

The electronic chemical potential (μ) and the chemical hardness (η) determine the 

resistance of the chemical species to lose electrons and measure their global response to 

changes in the number of electrons since they are independent of the position. 

Thus, the chemical potential of DFT is equivalent to the negative of the concept of 

electronegativity, and the principle of electronegativity equalization follows readily from this 

identification. 

μ = −
IP + EA

2
= − 

All compounds have a negative chemical potential, which means that they have a weaker 

tendency of the electrons to escape from the system. That is, electrons flow from the regions 

with higher chemical potential to the regions with lower chemical potential, up to the point in 

which μ becomes constant throughout the space.  

The global descriptor of hardness has been an indicator of overall stability of the system. It 

has been customary to use a finite difference approximation forη using the energies of 𝑁, 

(𝑁 + 1) and (𝑁 − 1) electron systems; we get the operational definition ofηas, 

η = (IP − EA)/2 

Where, IP and EA are the first vertical ionization energy and electron affinity of the chemical 

species respectively. The inverse of the hardness is expressed as the global softness, 
178, 179

 

https://en.wikipedia.org/wiki/Electron_acceptor
https://en.wikipedia.org/wiki/Electron_donor
https://en.wikipedia.org/wiki/Electron_donor
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 =
1

2η
 

When using the Pearson's Hard and Soft, Acids and Bases theory 
180

 as a guide for 

predicting the behavior of our derivatives. On the basis of, the HSAB concept, reactive 

molecules are divide by their respective polarizability, such that electrophiles and 

nucleophiles, are classified as either soft (relatively polarizable) or hard (relatively 

nonpolarizable). 

Whereas the HSAB theory initially described hardness and softness in terms of the 

experimental ionization potential and electron affinity of the reacting molecules, these 

parameters also can be related (e.g., by Koopmans theorem) to the respective energies of the 

FMOs. 
181

 

HSAB concept stat that a hard base (nucleophile) is characterized by a low value for the 

energy of the occupied frontier orbital HOMO, a soft base by a higher value of HOMO. 

Accordingly, the hardness of a base increases with the decrease of HOMO.  

A hard acid on the contrary is characterized by a high value for the energy of the empty 

frontier orbital LUMO, and its hardness will decrease with the decrease of LUMO. 
182

 

The identification of the global hardness with the HLG of molecular orbital theory has 

been richly rewarding in terms of measuring stability. 

(Fig.9) shows an orbital energy diagram for 1, 3, 4-oxadiazole derivatives for only the 

HOMO and LUMO orbitals. Substitution of donor and acceptor functional groups affects the 

energy levels of the frontier orbitals. Where the HOMO and LUMO are going up in energy in 

compounds A1, A2, A3 and A4 where the HLG and the hardness  are little affected compared 

to ODZ ring. But for the compounds B1 and B2 the HOMO is going up in energy and the 

LUMO is little affected where the HLG is smaller than for ODZ ring so B1 and B2 are 

becoming softer with increasing the basic character in contrast to ODZ. 

As for compounds B3 and B4 the HOMO and LUMO has decrease in energy in which they 

have the smallest gaps in all compounds with the biggest values of the softness character. So, 

much more soft acidic character in contrast to ODZ. 
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In contrast to the Bronsted-Lowry definition of acids and bases, Lewis defined the 

species in terms of electron transfer rather than hydrogen cation. Hence, a Lewis base is a 

species that donates an electron pair to a Lewis acid, which accepts the donated electron pair.  

The electronic intercations involved are the donation of electrons from the highest occupied 

molecular orbital (HOMO) of the subsequently known base to the lowest unoccupied 

molecular orbital (LUMO) of the second species, then known as the acid. The interaction is 

usually governed by the relative strengths of the acid and base, which can be either hard or 

soft. 

Hard acids and bases are usually small species that are difficult to polarize, in contrast, soft 

acids and bases are usually large species that are easily polarized, e.g. soft acids: B3 and B4 ; 

soft bases: B1 and B2 this is an important distinction as hard acids tend to bind to hard bases, 

as they both exhibit high ionic character so the stability constant (K) is high, and soft acids 

tend to bind to soft bases, which both exhibit significant covalent character and, again, K is 

high. Any soft-hard interaction will have a low K as the interaction will be poor. 

 

Figure 8 1, 3, 4-oxadiazole systems. 



 In Silico Modeling of Substitution-Induced Effect and Structure Property/Activity Relationship 
Profile of 1, 3, 4-Oxadiazole Derivatives 

 

 45 

 

 
Figure 9 Changes in the energy levels of HOMO–LUMO orbital of 1, 3, 4-oxadiazole derivatives. 

 

Table 2 Density based descriptors of 1, 3, 4-oxadiazole systems. 

COMPOSE HOMO LUMO HLG’s IP EA η µ   

ODZ -0.304 -0.038 0.266 0.304 0.038 0.133 -0.171 3.759 0.171 

A1 CH3 -0.291 -0.028 0.263 0.291 0.028 0.1315 -0.1595 3.802 0.1595 

A2 C2H5 -0.289 -0.029 0.260 0.289 0.029 0.130 -0.159 3.846 0.159 

A3 Iso-C3H7 -0.287 -0.025 0.262 0.287 0.025 0.131 -0.156 3.816 0.156 

A4 Tert-C4H9 -0.286 -0.025 0.261 0.286 0.025 0.1305 -0.1555 3.831 0.1555 

B1 NH2 -0.254 -0.025 0.229 0.254 0.025 0.1145 -0.1395 4.366 0.1395 

B2 OH -0.281 -0.032 0.249 0.281 0.032 0.1245 -0.1565 4.016 0.1565 

B3 CN -0.326 -0.100 0.226 0.326 0.100 0.113 -0.213 4.424 0.213 

B4 OCH -0.303 -0.113 0.190 0.303 0.113 0.095 -0.208 5.263 0.208 

*All the density based descriptors are in u. a. of energy (Harteer), just  which is in (Harteer-1). 

 

3. Structure Activity/Property Relationships Studies 

Molecular structure properties are usually the first and the simplest calculated values to 

produce information that can be used to predict the behavior of the compounds in the body. 

For this, we have choosing these criteria to characterize the compounds of this series: 

molecular weight (MW), lipophilicity (log D and log P), number of hydrogen-bond donors 

and acceptors (NHBD and NHBA), polar surface area (PSA), number of rotatable bonds 

(nrotb) and ionization state (dissociation constant pKa). 
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3.1. Drug-like properties of rule of thumb 

The successful design of new drugs requires optimization of many parameters 

simultaneously. The absorption is predominantly a function of solubility and permeability. 

Solubility is perhaps the most basic requirement of an orally available drug. In general, it is 

desirable for a drug candidate to have high enough water solubility to dissolve in body fluids 

in adequate concentrations, and at the same time to have high enough lipophilicity to 

permeate across various biological membranes.
 

One way to screen out compounds with probable absorption problems is known as 

Lipinski’s “rule of five”. According to Lipinski and al. 
169

, these four parameters are thought 

to be associated with solubility, permeability and binding efficiency of drugs which are the 

basic requirements for any drug to have good pharmacokinetic properties. As most of the drug 

candidates are designed to be administrated to human body via oral route and thus absorbed 

from the intestine, the first barrier they meet on their way to systemic circulation is the gut 

wall. The most usual way of permeation across the gut wall is passive transcellular 

permeation through the cells, but absorption of many compounds is also affected by ATP-

driven efflux pumps (efflux transporters, e.g. P-glycoprotein, BCRP, MRD-family) or active 

cell uptake (influx) transporters, located on various cell membranes in the body. 

Generally, passive transport is governed by physicochemical properties whereas active 

transport involves specific binding of a molecule to a binding site on a transport protein. 
183

 

Lipinski used these molecular properties in formulating his rule. The rule states that most 

molecules with good membrane permeability have logP ≤ 5, MW≤ 500, NHBA ≤ 10, and 

NHBD ≤ 5.A compound that fulfils at least three out of the four criteria is said to adhere to 

Lipinski’s ‘rule of 5’. 

Veber 
170

 suggest that compounds which meet only the two criteria of (1) 10 or fewer 

rotatable bonds and (2) polar surface area equal to or less than 140 Å
2
(or 12 or fewer H-bond 

donors and acceptors) will have a high probability of good oral bioavailability in the rat. 

The above mentioned parameters were calculated for all the series of the anti-tubercular 

agents (Table.3). From the data obtained, it was observed that all the derivatives of the series 

were found to obey the Lipinski rule and Veber’s. TPSA and Volume are inversely 

proportional to %ABS. TPSA was used to calculate the percentage of absorption (%ABS) 

according to the equation: %ABS = 109 ± 0.345·TPSA. 
184

 From all these parameters, it can 
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be observed that all the title compounds exhibited a great %ABS ranging from 72.14% to 

84.30%. 

Overall permeability, both in vitro and in vivo can be considered to be the sum of passive 

(diffusion driven) and active (transporter mediated) processes. The latter can affect both 

influx and efflux. In particular P-glycoprotein (PGP) mediated efflux is widely known to have 

a significant effect on absorption and distribution potential. Considering active efflux alone, 

Petrauskas has proposed the ‘rule of four’, 
171, 185 

which states that compounds are likely to be 

efflux substrates if they have a hydrogen bond acceptor count (sum of N and O atoms) ≥8, 

MW>400 and an acid with a pKa> 4. Conversely, compounds are likely to be non-substrates 

if they have an acceptor count ≤4, MW<400 and a base with a pKa< 8. In which, all most our 

compounds are seems to satisfy the unlikely efflux substrates criteria just for compounds 14 

which is likely to be efflux substrate for the P-glycoprotein. 

Table 3 Drug-likeness parameters of anti-tuberculosis compounds. 
 

 

 3.2. Lipophilicity profile and the ionization state 

Lipophilicity is a critical information that enable us to better interpret our results since it’s 

a major structural factor that influences the pharmacokinetic (permeation of physiological 

membranes (absorption and distribution), plasma protein binding and volume of distribution) 

and pharmacodynamic (target recognition, target affinity and target specificity) behavior of 

our anti-tuberculosis compounds. LogP (also known as Kow or Pow) and logD are the most 

Comps %ABS MW Log P 
NHB

D 

NHB

A 
Nrotb PSA 

Acidic 

pKa 

Basic 

pKa 

∆ 

pKa 

Rules - <500 <5 <5 <10 <10 <140 - - - 

1(2a) 75.32 271.28 -0.14 2 7 3 97.610 11.27 1.12 10.15 

2(2b) 75.32 299.33 0.89 2 7 3 97.610 11.27 1.33 9.94 

3(2c) 75.32 285.31 0.37 2 7 3 97.610 11.27 1.29 9.98 

4(2d) 72.14 363.38 1.36 2 8 5 106.84 11.27 -1.86; 1.10 10.17 

5(2e) 75.32 305.72 0.46 2 7 3 97.610 11.27 -1.88; 0.66 10.61 

6(3a) 84.30 288.32 0.78 0 6 3 71.590 6.68 0.96 5.72 

7(3b) 84.30 316.38 1.81 0 6 3 71.590 6.70 1.18 5.52 

8(3c) 84.30 302.35 1.30 0 6 3 71.590 6.69 1.13 5.56 

9(3d) 81.12 380.42 2.28 0 7 5 80.820 6.61 0.98 5.63 

10(3e) 84.30 322.77 1.39 0 6 3 71.590 6.61 0.54 6.07 

11(4a) 80.15 347.38 2.13 1 7 5 83.620 7.62 1.30 6.32 

12(4b) 80.15 375.43 3.16 1 7 5 83.620 7.62 1.45 6.17 

13(4c) 80.15 361.40 2.64 1 7 5 83.620 7.62 1.44 6.18 

14(4d) 76.97 439.47 3.63 1 8 7 92.850 7.62 1.26 6.36 

15(4e) 80.15 381.82 2.73 1 7 5 83.620 7.62 0.92 6.7 
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descriptors of the lipophilicity. There is no constant pH in the body and it is therefore 

essential that we consider an appropriate pH when predicting the behavior of this anti-

tuberculosis compounds. For that we have decided to study the lipophilic character of this 

new series of anti-tuberculosis. Generally Log P is measured in the pH were the compound 

exist in there neutral form. From (Table.4 & Fig.10) we can see that the compounds 1-5 have 

the values of Log D equal to Log P in almost the rang of physiologically relevant pH (1-8) for 

this compounds we can predict their behavior only form examining the Log P profile. The 

predicted Log P values are -0.14, 0.89, 0.37, 1.36 and 0.46 for compounds 1-5 respectively. 

The conclusion we draw from this is that the compounds 2-5 shows a preference to be 

associated with the lipid phase, and by extension will likely permeate biological membranes 

spontaneously, unlike the compound 1, which has negative values, it would be more 

susceptible to higher aqueous solubility and for lower lipophilicity in the body. As a result, we 

would expect membrane permeability to be poor for the compound 1 and acceptable for the 

other compounds 2-5. Log D7.4 is equal to Log P for these compounds, so, all this compounds 

will exist in their neutral form and it’s often quoted to give an indication of the lipophilicity of 

a drug at the pH of blood plasma. High values of Log D7.4, the compounds will tend to be 

metabolized by P450 enzymes in the liver and increasing its value above 0 will decrease renal 

clearance and increase metabolic clearance. 

Whereas, for the compounds 6-15 the difference between the basic and the acidic pKa 

values is too small (∆pKa value about 6, Table.3) which mean that the neutral form of this 

anti-tuberculosis compounds is existent at a very small rang of the physiological relevant pH, 

we can see that, in the (Table.4 & Fig.10) of Log P and Log D values. For that, we are going 

to examine the Log D profile to better predict the behavior of our anti-tuberculosis 

compounds. Where, the Log D value for these compounds is changing within the range of 

0.06 and 3.62. Which, lead us to deduce that all the compounds preference to be associated 

with the lipid phase, and by extension will likely permeate biological membranes 

spontaneously. 
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Table 4 Log D and Log P profile of the anti-tuberculosis compounds. 

pH 
Compounds 

1(2a) 2(2b) 3(2c) 4(2d) 5(2e) 6(3a) 7(3b) 8(3c) 9(3d) 10(3e) 11(4a) 12(4b) 13(4c) 14(4d) 15(4e) 

0 -0.99 -0.20 -0.65 0.47 -0.09 -0.22 0.60 0.13 1.25 0.75 0.79 1.67 1.17 2.34 1.77 

0.5 -0.76 0.08 -0.39 0.71 0.11 0.19 1.04 0.57 1.67 1.07 1.25 2.14 1.64 2.79 2.18 

1 -0.49 0.40 -0.08 0.98 0.29 0.50 1.41 0.92 1.99 1.26 1.64 2.56 2.06 3.17 2.47 

1.5 -0.30 0.65 0.16 1.19 0.40 0.67 1.64 1.14 2.17 1.34 1.91 2.87 2.36 3.43 2.63 

2 -0.20 0.80 0.29 1.30 0.44 0.74 1.75 1.24 2.24 1.37 2.05 3.04 2.53 3.56 2.70 

2.5 -0.16 0.86 0.35 1.34 0.46 0.77 1.79 1.28 2.27 1.38 2.10 3.12 2.60 3.60 2.72 

3 -0.15 0.88 0.36 1.35 0.46 0.78 1.80 1.29 2.28 1.39 2.12 3.14 2.63 3.62 2.73 

3.5 -0.14 0.88 0.37 1.36 0.46 0.78 1.81 1.29 2.28 1.39 2.13 3.15 2.64 3.63 2.73 

4 -0.14 0.89 0.37 1.36 0.46 0.78 1.81 1.29 2.28 1.39 2.13 3.15 2.64 3.63 2.73 

4.5 -0.14 0.89 0.37 1.36 0.46 0.78 1.81 1.29 2.28 1.38 2.13 3.16 2.64 3.63 2.73 

5 -0.14 0.89 0.37 1.36 0.46 0.78 1.80 1.29 2.27 1.38 2.13 3.16 2.64 3.63 2.73 

5.5 -0.14 0.89 0.37 1.36 0.46 0.76 1.79 1.28 2.26 1.36 2.13 3.15 2.64 3.63 2.73 

6 -0.14 0.89 0.37 1.36 0.46 0.72 1.75 1.23 2.21 1.31 2.12 3.15 2.64 3.62 2.73 

6.5 -0.14 0.89 0.37 1.36 0.46 0.61 1.64 1.12 2.08 1.18 2.11 3.13 2.62 3.61 2.71 

7 -0.14 0.89 0.37 1.36 0.46 0.38 1.42 0.90 1.84 0.94 2.06 3.09 2.57 3.56 2.67 

7.4 -0.14 0.89 0.37 1.36 0.46 0.13 0.17 0.65 1.58 0.68 1.98 3.00 2.49 3.48 2.58 

7.5 -0.14 0.89 0.37 1.36 0.46 0.06 1.10 0.58 1.51 0.61 1.94 2.97 2.46 3.44 2.55 

8 -0.14 0.89 0.37 1.36 0.46 -0.26 0.78 0.27 1.20 0.31 1.71 2.74 2.22 3.21 2.31 

8.5 -0.14 0.89 0.37 1.36 0.46 -0.48 0.56 0.04 1.00 0.11 1.37 2.40 1.88 2.87 1.97 

9 -0.14 0.89 0.37 1.36 0.46 -0.58 0.45 -0.07 0.91 0.01 1.02 2.04 1.53 2.52 1.62 

9.5 -0.14 0.88 0.37 1.36 0.46 -0.62 0.40 -0.11 0.87 -0.02 0.75 1.78 1.26 2.25 1.35 

10 -0.15 0.88 0.36 1.35 0.45 -0.64 0.39 -0.12 0.86 -0.03 0.61 1.63 1.12 2.11 1.21 

10.5 -0.17 0.85 0.34 1.33 0.43 -0.64 0.39 -0.13 0.86 -0.04 0.55 1.57 1.06 2.05 1.15 

11 -0.24 0.79 0.27 1.26 0.36 -0.64 0.38 -0.13 0.86 -0.04 0.53 1.55 1.04 2.03 1.13 

11.5 -0.39 0.63 0.12 1.11 0.21 -0.64 0.38 -0.13 0.86 -0.04 0.52 1.55 1.03 2.02 1.12 

12 -0.65 0.37 -0.14 0.85 -0.05 -0.64 0.38 -0.13 0.86 -0.04 0.52 1.55 1.03 2.02 1.12 

12.5 -0.95 0.08 -0.44 0.55 -0.35 -0.64 0.38 -0.13 0.86 -0.04 0.52 1.54 1.03 2.02 1.12 

13 -1.18 -0.15 -0.66 0.32 -0.57 -0.64 0.38 -0.13 0.86 -0.04 0.52 1.54 1.03 2.02 1.12 

13.5 -1.29 -0.27 -0.78 0.21 -0.69 -0.64 0.38 -0.13 0.86 -0.04 0.52 1.54 1.03 2.02 1.12 

14 -1.34 -0.31 -0.83 0.16 -0.74 -0.64 0.38 -0.13 0.86 -0.04 0.52 1.54 1.03 2.02 1.12 

Green: physiologically relevant pH ; Yellow: Log P values, and red:  Log D at blood pH. 
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Figure 10 Lipophilicity profiles for the anti-tuberculosis compounds. 

Fig.11 & .12 and Table.3 show the pKa values of our compounds, we see that they are 

ampholytes i.e. they have the basic and acidic character and can exist as an un-ionized form, 

or as an anion depending on the pH value, but because the difference between pKaacidic and 

pKabasic is ˃ 3, there will be no simultaneous ionization of the two groups. In contrast to other 

ionizable drugs with only an acidic or basic group, an amphoteric drug exhibits unique 

physicochemical and pharmacokinetic properties. Usually, their volume of distribution is 

lower than that of a basic drug, which suggests that the amphoteric drug tends to stay in the 

blood. Unlike normal ionizable molecules, which at some pH can be predominantly 

chargeless, many ampholyte can transition between several different charge states, without 

ever becoming chargeless; thus their lipophilicity tends to be low to moderate. These 

properties would be better suited for the drug targets located in the plasma, since the 

distribution into tissues/organs is not favorable for ampholytes. 

According to the pH-partition Hypothesis, absorption is favored for the chargeless form of the 

drug molecule. Transporters expressed in the intestinal surface, such as Pgp and OAT 

(organic anion transporter), could affect efflux/active uptake of the compound. It is thought 

that the development of amphoteric compounds into a drug is likely to be more challenging 
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than compounds of other charge types, may be partly due to the lack of understanding of the 

factors governing their membrane permeability. Given that ampholytes are expected to be 

poorly absorbed by transmembrane passive diffusion processes, absorption via the 

paracellular route may be important. In the latter route, small solvated zwitterions could 

diffuse through water-filled channels between cells. Such channels are known to be capacity-

limited, size-restricted, and cation-selective, thus attenuating free diffusion in the water phase. 

 

Figure 11 The multiprotic acid/base sites of anti-tuberculosis compounds. 

 

 
Figure 12 Changes of pKa values of anti-tuberculosis compounds; red atoms denote acidic groups, and 

blue atoms indicate basic groups. 
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 3.3. Structure Activity/Affinity Relationships (PEI and GE analysis) 

Our antitubercular activity was obtained by measurement of percentage inhibition against 

M.tuberculosis H37Rv at a single concentration (6.25 µg/ml). A simple efficiency index, PEI, 

can be introduced to guide the selection of the best compounds that use their atoms most 

efficiently. The idea of Per cent Efficiency Index is derived from Ligand Efficiency, which is 

defined as: 𝐿𝐸 = ∆𝐺/𝑁 

Where: ∆𝐺 = −𝑅𝑇 ln 𝐾, is the free energy of binding and, N, is the number of non-

hydrogen atoms which can be seen as a measure of molecular size. Hence, it is simpler and 

more straightforward to calculate MW. In addition, MW is superior in dealing with the 

contribution of different heteroatoms. Abad-Zapatero and Metz 
173

 introduced the Per cent 

Efficiency Index (PEI) defined as the fractional (0 – 1 scale) inhibition of a compound divided 

by the MW in kDa.  

As we can see in our results that our compounds divide in two groups where the first one 

have the biggest values of PEI in the range of 2.32-3.17, all these compounds are the most 

active with %in between 84-91. Moreover, the second with the low values of PEI in the range 

of 1.11-1.96 where the %in is between 45-56. 

The hall purpose of PEI is instead of considering the efficiency of the whole compound, 

the average efficiency contribution per atom is taken into account. For the compound1 with 

the biggest value of PEI 3.17. Which it is not the most potent compound but it has a 

combination between a good potency and the small size. 

The group efficiency (GE) metric introduced by Verdonk and Rees 
174

 represents the 

binding efficiency of a functional group that has been added to an existing molecule“A” to 

form molecule “B”, it is defined as 

𝐺𝐸 = −
∆∆𝐺

∆𝐻𝐴
 

∆∆𝐺 = ∆𝐺(𝐵) − ∆𝐺(𝐴) 

∆𝐻𝐴 = 𝐻𝐴(𝐵) − 𝐻𝐴(𝐴) 

Where the affinity gained by molecule “B”, through the introduction of additional non-

hydrogen atoms ∆HA to molecule “A”, is expressed as the difference of the free energies of 

binding (-∆∆G). 
175
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The PEI analysis show that compounds 1, 5, 6, 10, 11 and 15 with the highest values, are 

favored because this allows atoms to be added to modulate in vivo properties while still 

ending up with a candidate with a molecular weight that fits the Lipinski guidelines. 

(Fig.13) shows GE analysis of the efficiency of various parts of those anti-tuberculosis 

compounds where it's clear in compounds 5, 10 and 15 that the additions of 4-chloro 

substituent decrease the molecular efficiency. The addition of phenyl ring to compound 1, it 

improves potency by 5%, and raise molecular size by about 77.104 Da has a good GE equal to 

0.65. The latter has decreased to GE=0.27 by adding Cl group. Moreover, the GE of the NH2 

substitution group with SH group is the most effective addition (GE=1.17) for anti-tubercular 

activity. 

 

Figure 13 Group Efficiency analysis of the most efficient compounds of studied series. 

4. Conclusion 

It is now understood that 1, 3, 4-oxadiazole characters changes with regard to substitution 

groups. These behaviors are based on electronic and structural characteristics that constitute 

the soft and hard classifications of the HSAB theory. In this present study, we analyze the 

electronic properties of 1, 3, 4-oxadiazole ring and its derivatives, in order to deepen our 

understanding of its various therapeutic significance in general. The alkyl, amine and 

hydroxyl substitution at the 2-position of 1, 3, 4-oxadiazole ring increases the hardness of the 

system, while the cyanide and ketone one decreases it. 
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With regard to the anti-tuberculosis series, the lipophilicity balance and ionization state 

seem to play an important role. Where they reveal their ampholytes character, which lead us 

to explore the Log D profile that shows they have good permeability. 

And all compounds followed Lipinski’s rule as they have a molecular weight under 500 

Da, a limited lipophilicity (expressed by Log P < 5), far less than 5 H-bond donors (expressed 

as the sum of OHs and NHs), and also far less than 10 H-bond acceptors (expressed as the 

sum of Os and Ns) and Viber's rules also. In addition, they present a high percentage of 

absorption (%ABS), with all of the compounds being potentially able to cross biological 

membranes and to have a good oral bioavailability. 

The correlation between the size and %inhibition of this anti-tuberculosis series was 

expressed by Per cent Efficiency Index (PEI). The calculated PEI suggests that compound 1 

could be adopted as lead to locate a potential active anti-tuberculosis compound. Moreover, 

the Group Efficiency (GE) show the quality of SH and phenyl added group to maintain (or 

increase) the optimization of the anti-tubercular activity.  
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ears ago, the investigation of the idea of using deep learning to make predictions for 

ligand binding activity was developing rapidly. Where, the started basic idea was very 

simple: many known molecules and their biological activity to specific receptors. The sum of 

information of all these molecules to a specific receptor is like a negative of the receptor 

itself. Training a multilinear regression with the information of many oxazoline and oxazole 

benzyl esters derivatives to a single receptor (MT P45014DM) would make the MLR itself a 

negative of the receptor, by discovering more potent inhibitors. 

1. Biological Data 

In the present work, a group of 82 oxazoline and oxazole benzyl esters derivatives display 

growth inhibitory activity against M. tuberculosis H37Rv, 25 was investigated to predict a 

QSAR model using MLR correlation method. Activity data [MIC (µM)] for each molecule 

was converted to logarithmic scale [pMIC (M)] to guarantee linearity, and to achieve 

normality. To detect outliers that have an undue influence on the multiple regression model, a 

group of 59 representative compounds with a residual value under 0.55 was selected for the 

study. We suggest a rational approach, based on the distribution of structure diversity and the 

activity ranking, to divide our experimental SAR dataset into a training and test set, which are 

used for model development and validation, considering the ratio of 80% and 20% 

respectively. The chemical structures of studied molecules with their corresponding activity 

data were listed in (Table.5). 

Table 5 The chemical structures of studied molecules with their corresponding activity data. 

Comp. Structure pMICexp
25 pMICPred Residu 

3 

 

4.900 4.408 -0.492 

12 

 

3.928 4.033 0.105 

Y 
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15 

 

5.143 4.889 -0.253 

18 

 

4.215 4.293 0.078 

21 

 

4.583 4.565 -0.017 

22 

 

4.218 4.424 0.206 

23 

 

4.217 4.231 0.014 

24 

 

4.297 4.424 0.127 

26 

 

4.284 4.325 0.041 

28 

 

4.514 5.014 0.500 
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29 

 

5.205 4.835 -0.370 

31 

 

5.201 4.872 -0.329 

33 

 

4.886 5.050 0.164 

34 

 

4.750 4.855 0.105 

37 

 

4.640 4.344 -0.296 

39 

 

4.273 4.482 0.209 
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40 

 

4.255 4.810 0.555 

41 

 

4.213 4.815 0.602 

42 

 

4.409 4.214 -0.195 

45 

 

4.432 4.619 0.187 

50 

 

4.807 4.895 0.088 

52 

 

4.606 4.553 -0.053 

54 

 

4.616 4.761 0.145 
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56 

 

4.903 4.428 -0.475 

57 

 

4.595 5.104 0.509 

58 

 

5.747 5.944 0.197 

62 

 

3.928 3.825 -0.103 

64 

 

5.268 4.851 -0.417 

66 

 

5.959 5.838 -0.121 
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69 

 

5.620 5.544 -0.076 

72 

 

5.519 5.350 -0.169 

74 

 

5.595 5.295 -0.299 

76 

 

5.699 5.674 -0.025 

77 

 

5.418 5.480 0.062 

82 

 

5.164 5.121 -0.043 

83 

 

5.135 5.110 -0.025 
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84 

 

4.209 4.979 0.770 

85 

 

4.796 4.529 -0.267 

89 

 

6.041 5.567 -0.474 

90 

 

5.629 4.934 -0.694 

91 

 

5.542 5.112 -0.430 

92 

 

5.256 4.996 -0.260 

93 

 

5.411 5.268 -0.143 
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96 

 

5.714 5.500 -0.214 

97 

 

4.891 4.573 -0.317 

98 

 

5.458 5.531 0.073 

100 

 

5.754 5.770 0.016 

17 a 

 

4.936 4.456 -0.479 

30 a 

 

4.520 4.909 0.389 

36 a 

 

4.559 4.370 -0.189 

48 a 

 

5.565 4.834 -0.731 
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53 a 

 

4.326 3.974 -0.352 

55 a 

 

4.137 4.023 -0.114 

59 a 

 

5.903 5.376 -0.526 

61 a 

 

4.446 4.389 -0.057 

73 a 

 

5.625 5.246 -0.379 

80 a 

 

4.179 3.769 -0.410 

94 a 

 

5.219 5.233 0.014 

                       a test set 
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2. Descriptors Generation 

All the 82 investigated molecules were pre-optimized using the Molecular Mechanics 

Force Field (MM+) method. Then the resultant minimized structures were further refined 

using the semiempirical PM3 method. Both methods included in HyperChem version 8.08 

package. 186 The gradient norm limit of 0.01 kcal/Å was chosen for the geometry optimization.  

QSAR Properties module in HyperChem was used to calculate and estimate a variety of 

molecular descriptors such as: 

 Surface Area (Grid) (S), the grid calculation of solvent accessible surface areas is 

much slower than the approximate calculation, but is more accurate for a given set of 

atomic radii. The grid method used is that described by Bodor and al., 187 using the 

atomic radii of Gavezotti. 188  

 Molecular volumes (V), bounded by solvent accessible surfaces, using a grid method. 

 Refractivity (R), also using an atom-based fragment method due to Ghose and 

Crippen. 189 For a sample of organic molecules, the method yields a correlation 

coefficient (r) with experimental values of 0.995 and a standard error of 1.1.  

 Polarizability (Pol), using an atom-based method due to K. J. Miller. 190 For a sample 

of organic molecules, the method yields a correlation coefficient (r) with experimental 

values of 0.991 and a standard error of 9.3. 

 The dipole moment (µ) can be calculated from the partial atomic charges. The 

molecular dipole moment is perhaps the simplest experimental measure of charge 

density in a molecule. The accuracy of the overall distribution of electrons in a 

molecule is hard to quantify, since it involves all of the multipole moments. 

Experimental measures of accuracy are necessary to evaluate results.  

Here are some of the properties we have calculated using MarvinSketch software: 191, 192 

 Log P (the log of the octanol-water partition coefficient), a hydrophobicity indicator, 

using Log P Consensus; this  method uses a consensus model built on 

the ChemAxon and Klopman et al. models and the PhysProp database. 193 

https://docs.chemaxon.com/display/docs/logP+Plugin#logPPlugin-chemaxonmod
https://docs.chemaxon.com/display/docs/logP+Plugin#logPPlugin-refklopman
https://docs.chemaxon.com/display/docs/logP+Plugin#logPPlugin-refphysprop
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 Acceptor Count (AC) = the sum of the acceptor atoms. An acceptor atom always has a 

lone electron pair/lone electron pairs that is capable of establishing a H bond. 

 Acceptor Sites (AS)= the sum of the lone pairs on the acceptor atoms. 

 Rotatable Bond Count (RotBC) is number of rotatable bonds in the molecule. 

Unsaturated bonds, and single bonds connected to hydrogens or terminal atoms, single 

bonds of amides, sulphonamides and those connecting two hindered aromatic rings 

(having at least three ortho substituents) are considered non-rotatable. 

Table 6 Molecular descriptors used in the regression analysis. 

Comps. MW S V R Plo µ LogP AS AC RotBC 

3 387.43 606.05 1091.52 121.18 42.92 3.536 4.94 5 3 8 

12 311.34 544.44 919.24 92.43 33.26 1.391 3.21 5 3 6 

15 281.31 531.52 857.55 86.06 30.79 1.440 3.37 3 2 5 

17 315.76 553.83 900.52 90.78 32.72 1.562 3.97 3 2 5 

18 315.76 551.01 900.83 90.78 32.72 1.745 3.97 3 2 5 

21 311.34 573.66 934.20 92.43 33.26 2.127 3.21 5 3 6 

22 325.36 603.47 991.46 97.18 35.10 2.202 3.57 5 3 7 

23 345.78 590.99 971.66 97.15 35.19 .908 3.82 5 3 6 

24 329.33 579.15 942.89 92.56 33.17 .925 3.35 5 3 6 

26 333.75 557.90 907.88 90.90 32.63 2.473 4.12 3 2 5 

28 326.31 562.56 919.27 92.28 32.63 6.086 3.31 8 4 6 

29 344.30 568.96 929.27 92.41 32.54 6.095 3.45 8 4 6 

30 344.30 570.46 929.31 92.41 32.54 6.821 3.45 8 4 6 

31 421.88 670.72 1154.23 125.90 44.85 1.691 5.54 5 3 8 

33 344.30 570.54 927.16 92.41 32.54 5.385 3.45 8 4 6 

34 390.46 678.31 1121.63 119.29 42.74 .925 4.93 4 3 7 

36 361.19 556.02 905.68 90.10 32.71 2.313 2.92 4 3 5 

37 361.19 557.76 907.38 90.07 32.71 2.949 3.13 4 3 5 

39 282.30 521.81 845.00 82.56 30.08 2.113 2.15 4 3 5 

40 282.30 527.63 844.30 82.49 30.08 2.715 2.15 4 3 5 

41 283.29 523.75 834.29 80.34 29.37 1.533 1.32 5 4 5 

42 341.36 614.01 1009.88 98.81 35.73 3.424 3.05 7 4 7 

45 311.34 574.20 933.80 92.43 33.26 2.376 3.21 5 3 6 

48 353.42 668.84 1098.54 106.31 38.77 2.285 4.54 5 3 9 

50 432.43 713.17 1208.20 127.40 44.76 5.676 4.88 10 5 9 

52 311.34 574.87 935.36 92.43 92.43 1.974 3.21 5 3 6 

53 306.32 561.79 914.35 91.04 32.64 3.613 3.22 4 3 5 

54 360.21 565.37 918.17 93.59 33.41 1.615 4.14 3 2 5 

55 296.33 554.82 898.44 88.35 31.91 1.750 2.28 4 3 5 

56 358.40 633.50 1048.48 111.08 39.74 2.207 3.80 4 3 6 

57 396.33 552.70 893.28 89.61 32.14 2.750 2.54 4 3 5 

58 324.29 559.29 904.77 93.16 32.44 4.014 3.79 8 4 6 

59 313.74 548.44 884.49 91.66 32.52 1.551 4.46 3 2 5 

61 383.36 619.75 1044.79 107.86 38.10 4.691 2.75 12 6 7 
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62 372.81 609.33 1024.79 106.36 38.18 3.070 3.41 7 4 6 

64 419.86 605.41 1105.19 126.79 44.66 1.942 6.02 5 3 8 

66 342.28 565.51 913.49 93.29 32.35 4.112 3.94 8 4 6 

69 342.28 558.99 912.89 93.29 32.35 3.790 3.94 8 4 6 

72 403.41 682.90 1142.82 122.20 42.64 1.429 5.56 5 3 8 

73 359.18 549.86 889.73 90.98 32.51 .502 3.40 4 3 5 

74 359.18 555.24 893.15 90.95 32.51 .887 3.61 4 3 5 

76 280.28 521.23 832.46 84.65 29.89 2.911 3.02 4 3 5 

77 280.28 518.77 829.67 83.45 29.89 1.209 2.64 4 3 5 

80 420.44 644.71 1120.20 121.02 40.69 5.527 4.19 8 5 7 

82 372.38 653.58 1078.17 113.73 40.19 2.372 4.73 4 3 7 

83 281.27 511.85 819.66 80.23 29.18 1.836 1.80 5 4 5 

84 479.47 688.80 1262.19 153.81 50.87 2.879 6.56 5 3 8 

85 339.35 601.15 997.36 99.69 35.54 2.170 3.54 7 4 7 

86 323.35 602.59 977.64 98.07 34.90 3.571 4.05 5 3 7 

89 297.29 531.10 851.38 87.07 30.51 1.153 4.00 3 2 5 

90 343.77 587.59 960.60 98.03 35.00 2.350 4.30 5 3 6 

91 331.73 551.81 893.41 91.79 32.43 .635 4.60 3 2 5 

92 327.31 568.54 928.17 93.45 32.98 1.591 3.84 5 3 6 

93 309.32 565.46 919.37 93.32 33.07 3.660 3.70 5 3 6 

94 309.32 564.29 918.98 93.32 33.07 2.129 3.70 5 3 6 

96 358.19 558.25 903.62 94.48 33.22 1.408 4.62 3 2 5 

97 293.32 548.93 894.13 91.23 32.43 2.728 4.37 3 2 5 

98 337.38 632.09 1030.20 102.59 36.74 3.587 4.58 5 3 8 

100 351.40 664.84 1083.36 107.19 38.57 3.605 5.02 5 3 9 

17a 315.76 553.83 900.52 90.78 32.72 1.562 3.97 3 2 5 

30 a 
344.3 570.46 929.31 92.41 32.54 6.821 3.45 8 4 6 

36 a 
361.19 556.02 905.68 90.1 32.71 2.313 2.92 4 3 5 

48 a 
353.42 668.84 1098.54 106.31 38.77 2.285 4.54 5 3 9 

53 a 306.32 561.79 914.35 91.04 32.64 3.613 3.22 4 3 5 

55 a 296.33 554.82 898.44 88.35 31.91 1.75 2.28 4 3 5 

59 a 
313.74 548.44 884.49 91.66 32.52 1.551 4.46 3 2 5 

61 a 383.36 619.75 1044.79 107.86 38.1 4.691 2.75 12 6 7 

73 a 359.18 549.86 889.73 90.98 32.51 0.502 3.4 4 3 5 

80 a 
420.44 644.71 1120.2 121.02 40.69 5.527 4.19 8 5 7 

94 a 309.32 564.29 918.98 93.32 33.07 2.129 3.7 5 3 6 

a test set 

3. Regression Analysis 

Multiple linear regression analysis was carried out using the stepwise strategy in SPSS 

version 19 for Windows. 194 Our regression analysis generates an equation to describe the 
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statistical relationship between one or more predictor variables (descriptors) and the response 

variable (bioactivitie). 

The Stepwise Method Search selects a model by adding or removing individual 

descriptors, a step at a time, based on their statistical significance. The end result of this 

process is a single regression model, which makes it nice and simple. 

The p-value for each term tests the null hypothesis that the coefficient is equal to zero 

(no effect). A low p-value (< 0.05) indicates that you can reject the null hypothesis. In other 

words, a descriptor that has a low p-value is likely to be a meaningful addition to your model 

because changes in the descriptor 's value are related to changes in the bioactivitie. 

Conversely, a larger (insignificant) p-value suggests that changes in the descriptor are 

not associated with changes in the response. In our output, we found that the five descriptors 

of the equation are statistically significant because their p-values are less than 0.05. Typically, 

we use the coefficient p-values to determine which terms to keep in the regression model.  

4. QSAR model validation  

Stepwise Method Search was used to select the most appropriate descriptors. Based on 

the selected descriptors, multiple linear regression analysis was performed on the training set 

(47 comps) and then, evaluated by test set (11 comps). The five descriptors, which were 

selected, are: in which contribute to the inhibition activity. 

Here our coefficients are OK so our regression equation would be:  

𝑝𝑀𝐼𝐶 = 8.549 + 0.006 ∗ 𝑀 + 0.051 ∗ 𝑆 − 0.064 ∗ 𝑉 + 0.206 ∗ 𝑅𝑀 + 0.940 ∗ 𝑅𝑜𝑡𝐵𝐶  

𝑛𝑡𝑟𝑎𝑖𝑛 = 47, 𝑅𝑡𝑟𝑎𝑖𝑛
2 = 0.722, 𝑅𝑎𝑑𝑗

2 = 0.688, 𝐹𝑡𝑟𝑎𝑖𝑛 = 21.271 

 

Table 7 Statistical results. 

Set N PRESS SSY PRESS/SSY R R² RMSE F 

Training 47 4.475 15.687 0.285 0.845 0.715 0.308 21.271 

Test 11 1.681 3.954 0.425 0.762 0.581 0.374 4.106 

 

Where N is the number of compounds in training and test set; R² is the squared 

correlation coefficient, R²adj is adjusted R² and F is Fisher F statistic. The statistical 

parameters of stepwise-MLR model are shown in (Table.6). It is obvious that, the built model 

showed better results for the training set, is referred to calculated R² values in both sets. The 
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higher R² and F values with lower root mean square error (RMSE) values (RMSEtrain=0.308, 

and RMSEtest=0.374) show the predictive capability of the built model. The predicted 

inhibitory activities for whole molecules were listed in (Table.5). The plot of predicted pMIC 

values against the experimental pMIC values was demonstrated in (Fig.14). 

We used F-tests to test the overall significance for a regression model, to compare the 

fits of different models, to test specific regression terms, and to test the equality of means. The 

F−test values (Ftraining=21.271, and Ftest=4.106) indicates that the model is useful for predicting 

the biological activity. 

R is the correlation coefficient measuring the strength of the linear relationship. So, 

what does the correlation of (Rtraining=0.845, and Rtest=0.762) between the pMIC and the five 

descriptors tell us? It tells us: 

 The relationship is positive and linear 

 The relationship is quite strong (since the value is pretty close to 1) 

R² square is the coefficient of determination, more usually expressed as a percentage. 

Here it tells us that 71.5% of the variability in pMIC can be explained by the variability in the 

five descriptors: Mass, Surface, Volume, Molar Refractivity and Rotatable Bond Count. 

 

Figure 14 The plot of predicted pMIC values against the experimental pMIC values. 

To evaluate the data set for any possible outliers, William plot (the plot of 

standardized residuals versus leverage values) was employed to visualize the applicability 

domain. The Williams plot was shown in (Fig.15). As it can be seen, all compounds were 

inside the domain of built model and have the leverage lower than warning h=3p/n value (the 

http://blog.minitab.com/blog/adventures-in-statistics/what-is-the-f-test-of-overall-significance-in-regression-analysis
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warning leverage limit is 0.55) , where p is the number of model variables plus 1 and n is the 

number of objects used to develop the model. As it is obvious from (Fig.15), all the 

compounds in the training and test sets have standardized residuals smaller than three 

standard deviation units (3δ). Therefore, there are no outliers for the developed model and 

prediction results of the developed model can be confirmed. 

 

 

Figure 15 The plot of standardized residuals versus leverage values. 

5. Interpretation of descriptors 

By interpreting the selected descriptors with their corresponding effects on inhibitory 

activities, some useful chemical insight can be provided to understand the mechanism of 

inhibitory activity, and consequently, the new drugs can be designed with higher inhibitory 

activities. Hence, an acceptable interpretation of the QSAR results is provided below. 

Firstly, at it appears, all the selected descriptors are size- and shape-based descriptors. 

There are many examples of applications of computational methods using shape.  For 

example, Ekin et al. have elucidated substrate recognition in visualizing differences in 

inhibitors for human cytochrome P450 (CYP) 51. 195 

The shape of an object located in some space refers to the part of space occupied by 

the object as determined by its external boundary. However, the definition of shape in 

molecular pharmacology does encompass structural features like depth, size and surface. the 

importance of shape comes into play when a small molecule is desired to fit into a binding site 

on a protein surface, where size and shape complementarity may be essential in addition to 
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favorable electrostatic and steric interactions, to fulfill the “lock and key” or “induced fit” 

hypotheses. 196 

All of Mass, Surface, Molar Refractivity and Rotatable Bond Count display a positive 

sign, which indicates that the pMIC is directly related to these descriptors, and increasing the 

atomic mass of some specific substituents and fragments in molecule would result in higher 

inhibitory activity. 

Volume displays a negative sign, which indicates that the pMIC value is inversely correlated 

to this descriptor. Therefore, it can be concludes that by increasing the volume of compounds 

the pMIC values will be reduced.  

This result explores the various definitions of shape generally used when describing a 

ligands or interaction between ligands-receptor and provides an example of biological systems 

(P45014DM) where the concept of shape plays a major role. Thus, the presence of structurally 

compatible regions between the receptor and its ligand is required for the functioning of these 

compounds. 

6. Conclusion 

In this work, the QSAR analyses of a series of compounds as P45014DM inhibitors were 

carried out using multiple linear regressions. The most relevant descriptors were selected 

based on stepwise method search. The performed validation methods (external validation) 

demonstrate the accuracy and strength of the built model. 

Using stepwise method as a selection tool presented five descriptors correlated with 

the inhibitory activity. By interpretation of the selected descriptors, it can be concluded that 

the activity of studied molecules increases by decreasing the molecular volume. In this study, 

the developed QSAR models can be useful to predict the activity of new compounds as 

P45014DM inhibitors, and can provide a better insight to design new potent P45014DM 

inhibitors. 



 

PART III 

Docking-Based Virtual Screening for 

Lead Optimization 



 Docking-Based Virtual Screening for Lead Optimization 

 

 73 

 

n target based screening, compounds are tested with purified macromolecules (usually a 

protein) to find lead compounds that make intended macromolecular changes. For a lead 

compound to become a drug, it needs to be able to reach a site of action in the body, bind to 

its target macromolecule, and elicit the desired biological effect. 

Compared to large biological molecule therapeutics, such as insulin or antibodies, 

which are administered through injection, small molecules can be taken orally and are better 

at reaching different sites in the body. This is why the majority of approved and experimental 

drugs are small molecules. Small molecules are also better suited for virtual molecular 

screening, which is the main subject to a target macromolecule to find compounds with the 

best binding affinity. 197  

In all cases, finding the right target is very important for virtual screening to succeed. 

When the 3D (three-dimensinal) structure of a target is available, through X-ray 

crystallography, NMR spectroscopy, or any other means, we can apply docking algorithms to 

search for the best binding mode between target macromolecule and ligand. 

In this chapter, we perform a virtual screening experiment with PyRx open source 

software. We use the 3D structure of the mycobacterial cytochrome P450-dependent sterol 

14α-demethylase in the sterol biosynthesis pathway. Importantly, the P45014DM encoded by 

the CYP51 gene of M. tuberculosis has also been shown to be highly susceptible to azole 

derivatives, suggesting the potential use of these compounds as alternative TB therapeutic 

agents. 

1. Materials 

PyRx version 0.8 198 is Virtual Screening software for Computational Drug Discovery 

that can be used to screen libraries of compounds against potential drug targets, which, is 

written in Python programming language and it can run on nearly any modern computer, from 

PC (personal computer) to supercomputer. HyperChem 186 was use for geometry optimization; 

and for LigPlot
+
 v.1.4.5 199 was used to generate schematic 2-D representations for interaction 

visualization.   

2. Input files 

To start with structure-based virtual screening, we need structures of the target 

macromolecule and small molecules as input files. Here we are using:  

I 
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1. 33 oxadiazolone-, 22 38 oxadiazole-, 19-21 and 82 oxazoline- and oxazole-related 25 

chemical compounds, all classified as azole, sharing structural similarities (nitrogen 

heterocyclic ring compounds); which showed an interesting antimycobacterial activity 

against the reference strain of Mycobacterium tuberculosis H37Rv. This approach, is 

called the fragment-based screening technique, which has the advantage of finding 

lead molecules based on a set of fragment elements derived from a specific functional 

ligand family (azoles) and; 

2.  Protein Data Bank 200 to get 3D structures of the mycobacterial protein: cytochrome 

P450-dependent sterol 14α-demethylase in the sterol biosynthesis pathway (PDB ID: 

2W0B) (Fig.16). Importantly, the MT P45014DM has also been shown to be highly 

susceptible to azole derivatives, suggesting the potential use of these compounds as 

alternative TB therapeutic agents. 

The reason for choosing these particular molecules is; that they are as mentioned 

above, all classified as azole (nitrogen heterocyclic ring compounds) with same anti-TB 

inhibitory activity. Selection of ligands depends whether virtual screening is used for lead 

discovery or lead optimization. For lead discovery, it is advised to include as many ligands 

with diverse shapes, sizes, and composition as possible. For lead optimization, our main work 

here, ligands are selected to closely match the lead compound (Azoles class). 201 One of the 

advantages of the virtual screening is that we are not limited to commercially available 

compounds; we can also use a ligand file for a novel compound not found in any of the 

databases. 

                        

                Figure 16 Cristal structure complexe (2W0B) interactions. 
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3. Methods 

1- Prepare Input Files for Docking 

Before we can use input files for virtual screening, we need to convert them to PDBQT file 

format suitable for docking with AutoDock Vina. 

1. Initially we filter of these 33 oxadiazolone derivatives good MT P45014DM inhibitory 

activity ones, by choosing 11 compounds with interesting MIC values of 4 µg/ml. 

Where these 33 oxadiazolone derivatives have been already docked with 

P45014DM.The molecular structures of all (38+82+11) ligand molecules were built and 

subjected to an initial energy minimization, using force field MM+ in HyperChem. 

The convergence criterion was set to 0.01 kcal/(mol Å); 

2. Load all the molecules to PyRx and then;  

3. Create pdbqt files, using Convert All to AutoDock Ligand. 

4. In this step, the X-ray structure of cytochrome P450 14α-sterol demethylase in 

complex with CMW (PDB ID: 2W0B) was used as the reference complex. Then it was 

prepared for molecular docking by removing off water molecules using 

UCSFCHIMERA. Then, adding the polar hydrogen atom and Gasteiger charges using 

Auto Dock Tools (pdbqt file). 

2- Run Virtual Screening Using Vina Wizard 

1. This is the last step, where the ligand is docked onto the receptor using PyRx Virtual 

Screening Tool (Vina Wizard). The grid box parameters for the active site are given 

as: centre (X= -18.3, Y= -1.9, Z= 67.0) and dimension (X= 22.8, Y= 22.5, Z= 21.0). 

2. After virtual screening is completed, PyRx automatically advances to Analyze Results 

page, where we can see results of virtual screening computation. AutoDock Vina, by 

default, outputs 10 best binding modes for each docking run. Left-click on Binding 

Affinity (kcal/mol) table header cell under Analyze Results tab to sort this table by 

predicted binding affinity. 

3. Then, the interactions are checked using LigPlot (Fig.18 & .19). From the 10 best 

binding modes generated by Vina for each compound we choose the first one with low 

binding affinity (kcal/mol). 

  



 Docking-Based Virtual Screening for Lead Optimization 

 

 76 

 

4. Docking method validation 

First, we must be confident that the docking method will find a relevant conformation. 

Docking methods are typically validated by “redocking” experiments, where the PDB 

complexe (2W0B) is separated and then redocked, ensuring that the docking algorithm can 

reproduce the observed binding mode. So the validation of molecular docking was done by 

superimposing each of the CMW docked poses (blue color) with the PDB crystal structure 

(PDB ID: 2W0B). The result of the best pose superimposition is shown in (Fig.17). 

 

Figure 17 CMW_pose1_-8.4 kcal/mol (pose1_blue).   

5. Free binding energy calculations 

The main project to be carried out is to investigate all the necessary features of our 11 

oxadiazolone, 38 oxadiazole, and 82 oxazoline and oxazole derivatives.  During docking runs, 

3D structure of the target is fixed while ligand is moved and rotated to find the best binding 

modes. 202 The binding affinity between the target and the small molecule was evaluated by 

the binding free energy approximation (ΔGb, kcal/mol) using AutoDock Vina. The best 

scored conformation of each compound predicted by AutoDock Vina was selected and further 

ranked (Table.7). The docking score was used to predict the strength of the non-covalent 

interactions between two molecules after they have been docked (also referred to as binding 

energy). The docking score is a mathematical approximation of the binding free energy 

between the ligand and its target, which includes typical terms for dispersion/repulsion (steric 

interaction), hydrophobic interaction, hydrogen bonding, and the number of active rotatable 

bonds between heavy atoms in the ligand. 

The main results from virtual screening runs are the best predicted binding modes and 

corresponding binding affinity. The negative values for binding affinity (or binding free 
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energy) indicate that all our ligands are predicted to bind to a target macromolecule. In this 

particular case of screening MT P45014DM with:  

 the most potent 11 comps of 33 oxadiazolone. Where these 33 oxadiazolone 

derivatives have been already docked with P450; and  

 38 oxadiazole, and 82 oxazoline and oxazole derivatives  

Out of (82+38) compounds, only 18 oxadiazole, and 26 oxazoline and oxazole 

derivatives were showing better binding affinity than 11 oxadiazolone and CMW (reference 

ligand). From the top 6 compounds with binding free energy more then -11kcal/mol, we have 

1 oxadiazole, and 5 oxazoline and oxazole derivatives. On the other hand, compound 72 

exhibited a relatively lowest binding energy of (-12.1 kcal/mol), therefore, the highest binding 

affinity.  

Nevertheless, small molecule virtual screening by docking is very valuable in silico 

method that can rank small molecules according to their predicted binding affinity to a target 

macromolecule. The cost of running virtual screening experiments is minuscule compared to 

real screening experiments. 

Table 8 Free binding energy calculations. 

Compounds 
Binding Free Energy 

(kcal/mol) 

MIC and KD 

(µM) 

CMW -8.4 KD=58.3-+4.6 
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 72 -12.1 3.03 

84 -11.9 61.8 

51 -11.6 0.77 

56 -11.3 12.5 

64 -11.0 5.4 
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50 -10.9 15.6 

78 -10.8 1.49 

63 -10.7 62.6 

31 -10.4 6.3 

80 -10.4 66.2 

81 -10.4 8 

34 -10.3 17.8 

99 -10.3 1.95 

33 -10.1 13 

35 -10.1 58.8 

62 -10.1 118 

67 -10.1 35.4 

70 -10.1 0.7 

82 -10.1 6.86 

95 -10.1 25.2 

3 -10.0 12.6 

26 -10.0 52 

86 -10.0 15.5 

88 -10.0 1.98 

92 -10.0 5.55 

98 -10.0 3.48 

28 -9.9 30.6 

49 -9.9 15.5 

66 -9.9 1.1 

68 -9.9 0.73 

90 -9.9 2.35 

91 -9.9 2.87 

97 -9.9 12.84 

100 -9.9 1.76 

18 -9.8 61 

24 -9.8 50.5 

61 -9.8 35.8 

69 -9.8 2.4 

89 -9.8 0.91 

12 -9.7 118 

25 -9.7 60.7 

53 -9.7 47.2 

58 -9.7 1.79 

59 -9.7 1.25 

60 -9.7 1.72 

85 -9.7 16 
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96 -9.7 1.93 

57 -9.6 25.4 

17 -9.5 11.6 

21 -9.5 26.1 

22 -9.5 60.6 

47 -9.5 3.2 

65 -9.5 0.47 

23 -9.4 60.7 

29 -9.4 6.24 

30 -9.4 30.2 

32 -9.4 30.7 

87 -9.4 18.9 

93 -9.4 3.88 

94 -9.4 6.04 

15 -9.3 7.2 

46 -9.3 2.97 

52 -9.3 24.8 

54 -9.2 24.2 

55 -9.2 73 

37 -9.1 22.9 

76 -9.1 2 

79 -9.1 1.42 

38 -9.0 110 

16 -8.9 49.9 

42 -8.9 39 

73 -8.9 2.37 

77 -8.9 3.82 

83 -8.9 7.32 

45 -8.8 37 

48 -8.8 2.72 

74 -8.8 2.54 

75 -8.8 3.01 

40 -8.7 55.6 

36 -8.6 27.6 

39 -8.5 53.3 

41 -8.1 61.2 
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6. Binding Interactions 

The active site residues of proteins are important for their functioning; therefore it is 

important to understand the interactions of these potential inhibitors with the functional amino 

acids in the protein. 
203

 LigPlot analysis was used to design a 2D interaction maps to show the 

predicted interactions of each ligand with the active site residues of the protein. 

           
  Binding free energy ≥ 11 Binding free energy ≥ 10 
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The 6 compounds (Table.7) with the best interaction affinity than endogenous ligand 

CMW and the best tow oxadiazolones (3i and 3m), were found to interact with the amino acid 

residues participated in interacting with CMW, 3i and 3m given in Table.8.  

Different binding modes were revealed for all 6 best compounds. Where, the 

hydrophobic interactions play the most important role in almost all the docked compounds. 

The Gln 72, Tyr 76, Lys 94, and Ala 256 residues interactions are the most responsible 

for the ligand-protein binding in almost our compounds (Table.8 & Fig.19). Where, they 

interact with the compounds by forming both hydrogen bond and hydrophobic interactions.  

The best interacting three compounds are:  

 Compound 72 with (-12.1) lowest binding energy formed only hydrophobic 

interactions with 48% of the active site residues shown in Fig.19 & Table.8;  

 Compound 84 scored (-11.9) formed the hydrogen bond with Lys 97 residue and 

hydrophobic interactions with 60% of all the active site residues as shown in Fig.19 & 

Table.8; and  

 Compound 51 scored (-11.6) also found to interact hydrophobically with 48% of the 

active site amino acid residues and formed H-bond with Arg 96 as shown in Fig.19 & 

Table.8.  

Computational analysis suggested that all compounds interacted in a similar manner of 

CMW within the binding pocket of P45014DM. The compounds attained similar binding 

orientation occupying the common amino acids within the binding site (Fig.18 & .19). 

All of compounds 72 & 51 are similar in structure except of oxazole & oxazoline moieties 

respectively. The compound 72 (oxazole derivative) got the best binding affinity.   

 

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929957/table/T3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929957/figure/F5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929957/figure/F5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929957/figure/F6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929957/figure/F6/
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Figure 18 Binding forces between the CMW and the protein active site residues. (A) CMW 
crystal structure. (B) CMW docked pose 1. 

(A) 

(B) 
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Figure 19 Binding forces between the 6 best binding affinity compound and the protein active site 
residues. 
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Table 9 Interaction residues of better scoring compounds. 

The active site 

residues  

Compounds  

CMWexp CMWpred 72 84 51 56 64 4d 3i 3m 

Gln 72           

Ala 73           

Tyr 76           

Phe 78           

Met 79           

Phe 83           

Pro 93           

Arg 96           

Lys 97           

Leu 100           

His 101           

Gly 248           

Met 249           

Ser 252           

Phe 255           

Ala 256           

Gly 257           

His 259           

Thr 260           

Leu 321           

Cys 394           

Met 433           

Val 434           

Hydrophobic interaction        H-bond 

4. Conclusion:  

The computational study suggested that all of (82+38) active compounds could 

interact at the active site of MT P45014DM, and the calculated free energy of binding 

are in agreement with the corresponding MIC values in almost of the cases. These 

encouraging results led us to advance in the design, synthesis and evaluation of a 

second generation of azole derivatives.  
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n this present study, the knowledge of the relationship between chemical structure and 

biological activity is an essential prerequisite for the effective search for biologically 

active compounds. For example, the substitution effect study, 2D QSAR and 2D similarity 

methods can be applied almost immediately. As a part of our ongoing studies in developing 

new active compounds with anti-mycobacterial activity, we have studied the structural 

requirements to substituted-1,3,4-oxadiazole derivatives that cause the anti-tuberculosis 

activity, which help to identify structural information to derive new lead compounds for our 

future researches. 

irst, we analyze the electronic properties of 1, 3, 4-oxadiazole ring and its derivatives, in 

order to deepen our understanding of its various therapeutic significance in general. It is 

now understood that 1, 3, 4-oxadiazole characters changes with regard to substitution groups. 

These behaviors are based on electronic and structural characteristics that constitute the soft 

and hard classifications of the HSAB theory. Where it has been found that the alkyl, amine 

and hydroxyl substitution at the 2-position of 1, 3, 4-oxadiazole ring increases the hardness of 

the system, while the cyanide and ketone one decreases it. 

ith regard to the anti-tuberculosis series, the lipophilicity balance and ionization state 

seem to play an important role. Where they reveal their ampholytes character but 

because the difference between pKa acidic and pKa basic is ˃ 3, there will be no simultaneous 

ionization of the two groups and decrease the transition between several different charge 

states. Knowing that our compound at some pH can be chargeless, lead us to explore the Log 

D profile that shows they have good permeability. We found all compounds followed 

Lipinski’s rule as they have a molecular weight under 500 Da, a limited lipophilicity 

(expressed by Log P < 5), far less than 5 H-bond donors (expressed as the sum of OHs and 

NHs), and also far less than 10 H-bond acceptors (expressed as the sum of Os and Ns) and 

Viber's rules also. In addition, they present a high percentage of absorption (%ABS), with all 

of the compounds being potentially able to cross biological membranes and to have a good 

oral bioavailability. Considering active efflux alone, Petrauskas has proposed the ‘rule of 

four’, where all most our compounds are seems to satisfy the unlikely efflux substrates criteria 

just for compounds 14 which is likely to be efflux substrate for the P-glycoprotein.  

he correlation between the size and %inhibition of this anti-tuberculosis series was 

expressed by Per-cent Efficiency Index (PEI). The calculated PEI (3.17) suggests that 

compound 1 could be adopted as lead to locate a potential active anti-tuberculosis compound. 

Moreover, the Group Efficiency (GE=1.17 and 0.65) show the quality of SH and phenyl 

I 

F 

W 

T 
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added group to maintain (or increase) the optimization of the anti-tubercular activity 

respectively. 

uantitative structure activity relationship (QSAR) studies were performed on a series of 

oxazoline and oxazole benzyl esters as anti-tuberculosis agents, multiple linear 

regression analysis was performed to derive QSAR models which were further evaluated 

internally and externally for the prediction of activity. Where the best QSAR model (R
2

training= 

0.715, RMSE =0.308) has acceptable statistical quality and predictive potential as indicated 

by the value of external validation of a test set (R
2

test= 0.581, RMSE =0.374). Where, all the 

selected descriptors are size- and shape-based descriptors. 

 

inally, molecular docking study showed that all of (82+38) active compounds could 

interact at the active site of MT P45014DM, and the calculated free energy of binding are 

in agreement with the corresponding MIC values in almost of the cases. Where, the 

hydrophobic interactions play the most important role in almost all the docked compounds. 

And the most important interactions for the ligand-protein binding are with Gln 72, Tyr 76, 

Lys 94, and Ala 256 residues. For compound 72 with (-12.1) lowest binding energy forms 

only hydrophobic interactions with 48% of the active site residues. These encouraging results 

led us to advance in the design, synthesis and evaluation of a second generation of azole 

derivatives. 
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Nitrogen heterocycles are among the most significant structural components of pharmaceuticals. Our minimalist
design format presents opportunities to reveal the electron density profile of 1,3,4-oxadiazoles a function of the
various donating and withdrawing substituent groups using the FMOs energies and the density-based descrip-
tors such as chemical potential (�), electronegativity (�), hardness (�) and softness (�). Where the quantum
mechanical geometry optimization were performed using B3LYP function of density functional theory. We dis-
cussed the enhancement or diminution in the hardness of 1,3,4-oxadiazole derivatives. Furthermore, in silico
studies showed that, the anti-tuberculosis 1,3,4-oxadiazole derivatives have a good lipophilicity profile and fol-
lowed Lipinski and Veber rules. Thus, they are expected to have a high probability of good oral bioavailability.
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1. INTRODUCTION
Oxadiazole is a nitrogen heterocyclic nucleus that attracted
a wide attention of the chemist in research for new
therapeutic molecules. Out of its four possible iso-
mers, 1,3,4-oxadiazoles are widely exploited for various
applications.1 Among heterocyclic compounds, 1,3,4-
oxadiazoles have become an important construction motif
for the development of new drugs. Compounds con-
taining 1,3,4-oxadiazole cores have a broad biological
activity spectrum including antibacterial, antifungal,2�3

analgesic, anti-inflammatory,4�5 antiviral,4 anticancer,6–8

∗Author to whom correspondence should be addressed.
Email: prof.belaidi@gmail.com
Received: 28 July 2016
Accepted: 30 August 2016

and anticonvulsant.4�9 Therapeutic significance of these
useful drugs as anti-tubercular encouraged the develop-
ment of more potent and significant compounds. Extensive
biochemical and pharmacological studies have confirmed
that these molecules are effective as anti-tubercular
compounds.10–13 The main causative agent of tuberculo-
sis (TB) is Mycobacterium tuberculosis (M. tuberculosis).
Every year, approximately 8 million of the infected people
develop active TB, and 2 million die.
In recent years, the drug discovery/development process

has been gaining in efficiency and rationality because of
the continuous progress and application of chemoinfor-
matics methods.14 Earlier, it was reported that a number
of 2,5-disubstituted-1,3,4-oxadiazoles have been designed,
synthesized, and screened for their anti-tuberculosis activ-
ity against M. tuberculosis H37Rv.10 The knowledge of
the relationship between chemical structure and biologi-
cal activity is an essential prerequisite for the effective
search for biologically active compounds. For example, 2D
QSAR15–20 and 2D similarity21–24 methods can be applied
almost immediately. As a part of our ongoing studies in
developing new active compounds with anti-mycobacterial
activity, we are going to study and understand the struc-
tural requirements to substituted-1,3,4-oxadiazole deriva-
tives that cause the anti-tuberculosis activity, which help
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to identify structural information to derive new lead com-
pounds for our future researches. In this context, the sub-
stitution effect study25 was done in order to deepen our
understanding of the influence of various substituents on
1,3,4-oxadiazole ring. Here, we present the electronic and
geometric structure calculations26�29 for 1,3,4-oxadiazole
substituted by two functional groups of different strengths
using the conceptual DFT30 descriptors.
Nowadays, various approaches to simultaneously opti-

mize many factors in drug design are broadly described
under the term ‘multi-parameter optimization’ (MPO).31

In this paper, we use rules of thumb and calculated
metrics methods32 to guide the exploration of this new
anti-tuberculosis agent to identify new chemistries with
a high probability of achieving the required property
profile.

Imane Benbrahim is a Ph.D. student in molecular chemistry at the university of Biskra
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Starting with rules of thumb, we use Lipinski,33 Veber34

and Petrauskas35 rules to study the high oral bioavail-
ability at the target site. The latter is often an impor-
tant factor for the development of bioactive molecules,
as therapeutic agents and any attempt to predict or
study the bioavailability would require that both prop-
erties absorption and metabolism must be taken into
account.
The main factor of drugs absorption and metabolism is

the lipophilicity which offers a critical information that
enable us to better interpret our results since it’s a major
structural factor that influences the pharmacokinetic (per-
meation of physiological membranes, plasma protein bind-
ing and volume of distribution) and pharmacodynamic
(target recognition, target affinity and target specificity)
behavior of our anti-tuberculosis compounds.
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Afterward, we extended our study towards calculated
metrics methods. In this respect, we applied a Per
cent Efficiency Index (PEI) and Group Efficiency (GE)
analysis36–39 to guide the selection of best anti-tubercular
compounds that use their atoms most efficiently.

2. MATERIALS AND METHODS
The geometry of the 1,3,4-oxadiazole was initially opti-
mized at three levels of theory:
(a) using the Hartree-Fock level (HF),
(b) using Möller-Plesset second order (PM2) level and
(c) using density functional theory with the Becke’s three-
parameter exchange functional and the gradient-corrected
functional of Lee, Yang and Parr (DFT/B3LYP). With the
standard 6-31G++ (d,p) basis set, i.e., the valence double-
r basis set augmented by one set of six d- and one set of
p-polarization functions on heavy atoms and hydrogens,
respectively. Moreover, additional diffuse functions were
placed on all atoms.

In particular, large basis sets are used to calculate the
polarization effect accurately, and it is shown that the role
of polarization may be systematically underestimated if
small basis sets are employed.

In the next step, we have chosen the DFT level to
determine and analyze the equilibrium geometries of the
studied series of the donating and withdrawing groups
of the 1,3,4-oxadiazole nucleus according to the com-
parison between the experimental and calculated results.
The Gaussian 09 program package40 was used in all
quantum-mechanical calculations (HOMO and LUMO
energies). The model building was done using molec-
ular visualization software (Gaussian graphical interface
GaussView 5.0.8).

All the parameters for drug-likeness were predicted and
calculated according to the Lipinski’s rule-of-five,Veber’s
and Petrauskas’srules using Calculator Plugins41 of
MarvinSketch 6.3.0 software.42

Table I. Bond lengths and valence angles of 1,3,4-oxadiazole.

Parameters Exp43 HF 6-31G++ (d,p) PM2 6-31G++ (d,p) DFT/B3LYP 6-31G++ (d,p)

Length of bond (Angstroms)
O1–C2 1�348 1�363 1�337 1�361
C2–N3 1�297 1�304 1�264 1�291
N3–N4 1�399 1�404 1�383 1�403
C2–H6 1�075 1�074 1�068 1�078

Mean absolute error – 0�007 0�0167 0�0065

Angle of valence (Degrees)
O1–C2–N3 113�4 113�5 112�8 113�2
C2–N3–N4 105�6 105�7 106�0 105�9
C5–O1–C2 102�0 101�5 102�2 101�7
O1–C2–H6 118�1 118�0 118�7 118�1
N3–C2–H6 – 128�5 128�4 128�7

Mean absolute error – 0�25 0�4 0�2

3. RESULTS AND DISCUSSION
3.1. Methods Validation
Molecular geometry is determined by the quantum
mechanical behavior of the electrons. It can be speci-
fied in terms of bond lengths, bond angles and dihedral
angles. 1,3,4-oxadiazole is relatively simple systems from
the computational point of view, since they are planar,
symmetric (they belong to the C2v point group symmetry),
and do not contain large numbers of atoms. As shown from
(Table I), all the 1,3,4-oxadiazole geometries obtained
from B3LYP and Hartree-Fock models are very similar and
generally improved over geometries obtained from MP2
models. With the DFT method, the mean absolute error is
smaller comparing to MP2 and HF methods, which mean
that it is in a good agreement with experimental data.
This demonstrates that to describe an accurate ground state
configuration, the electron correlation effects that play an
important role in such molecules should be taken into
account. Consequently, we have chosen the DFT method
to perform the substitution effect study of 1,3,4-oxadiazole
ring (Fig. 1).

3.2. Substitution Effects on 1,3,4-Oxadiazole
The main objective of this study is to produce two series
of derivatives of 1,3,4-oxadiazole (Fig. 2) to explore the
substitution effect on this core. Where, the substitution of
our groups will be at one carbon atom of 1,3,4-oxadiazole
ring because of the C2v symmetry.
Our focus was placed on modifications of the polar or

the electronic effects exerted by different electron donating
and withdrawing groups (“series 1 and 2” analogs, Fig. 2),
which is a combination of the inductive and the mesomeric
effect.
Several criteria have been put forward in attempts to

rationalize and quantify this effect. These can be roughly
divided into two categories: energetic and reactivity-based
measures. Many of these properties are available through
quantum chemical calculations.
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Fig. 1. 3D structure of 1,3,4-oxadiazole.

Ionization potentials and electron affinities are related in
that both involve transfer of an electron between a molecu-
lar orbital and infinity: in one case (IP) we have removal of
an electron from an occupied orbital and in the other (EA)
addition of an electron to a virtual (or a half-occupied)
orbital.
The EA of a molecule is positive for all derivatives

of 1,3,4-oxadiazole it means that the accepted electron is
bound, i.e., it is not spontaneously ejected; if the new elec-
tron is ejected in microseconds or less (is unbound), the
molecule has a negative EA.
For, the electron affinity which stats that a compounds

B4 and B3 with a big positive value than the other deriva-
tives is called an electron acceptor and the A3, A4 and B1

are less positive and electron donor.
In general, the EA decreases by the addition of the

alkyls groups, NH2 and OH and increases for CN and
OCH groups compared to ODZ.
Following the ionization potential values we can see

that they decreases for all the derivatives just for the COH
group which it stay the same as for ODZ and it increase
for the CN group. Further, the NH2 substituent shows the
lower IP than the alkyl derivatives and the OH substituents.
This suggests that the systems with these substituents con-
tribute more towards electron donating character.
Similar conclusion can be drawn from the frontier

molecular orbitals (FMOs), HOMO–LUMO gaps (HLG’s),

N
N

O

R

H

Series 1

(A1) R = CH3

(A2) R = C2H5

(A3) R = Iso-C3H7

(A4) R = Tert-C4H9

Series 2

(B1) R = NH2

(B2) R = OH

(B3) R = CN

(B4) R = OCH

Fig. 2. 1,3,4-oxadiazole systems.

chemical potential, softness and hardness parameters
reported in Table II.
The electronic chemical potential (�� and the chemi-

cal hardness (�� determine the resistance of the chemical
species to lose electrons and measure their global response
to changes in the number of electrons since they are inde-
pendent of the position.
Thus, the chemical potential of DFT is equivalent to

the negative of the concept of electronegativity, and the
principle of electronegativity equalization follows readily
from this identification.

�=−�IP+EA�/2=−�

All compounds have a negative chemical potential,
which means that they have a weaker tendency of the elec-
trons to escape from the system. That is, electrons flow
from the regions with higher chemical potential to the
regions with lower chemical potential, up to the point in
which � becomes constant throughout the space.
The global descriptor of hardness has been an indicator

of overall stability of the system. It has been customary
to use a finite difference approximation for � using the
energies of N , (N + 1) and (N − 1) electron systems; we
get the operational definition of � as,

� = �IP−EA�/2

Where, IP and EA are the first vertical ionization energy
and electron affinity of the chemical species respectively.
The inverse of the hardness is expressed as the global
softness,44�45

� = 1/2�

When using the Pearson’s Hard and Soft, Acids and
Bases theory46 as a guide for predicting the behavior of
our derivatives. On the basis of, the HSAB concept, reac-
tive molecules are divide by their respective polarizabil-
ity, such that electrophiles and nucleophiles, are classified
as either soft (relatively polarizable) or hard (relatively
nonpolarizable).
Whereas the HSAB theory initially described hardness

and softness in terms of the experimental ionization poten-
tial and electron affinity of the reacting molecules, these
parameters also can be related (e.g., by Koopmans theo-
rem) to the respective energies of the FMOs.47

HSAB concept stat that a hard base (nucleophile) is
characterized by a low value for the energy of the occu-
pied frontier orbital HOMO, a soft base by a higher value
of HOMO. Accordingly, the hardness of a base increases
with the decrease of HOMO.
A hard acid on the contrary is characterized by a

high value for the energy of the empty frontier orbital
LUMO, and its hardness will decrease with the decrease
of LUMO.48

The identification of the global hardness with the HLG
of molecular orbital theory has been richly rewarding in
terms of measuring stability.
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Table II. Density based descriptors of 1,3,4-oxadiazole systems.

COMPOSE HOMO LUMO HLG’s IP EA � � � �

ODZ −0�304 −0�038 0�266 0�304 0�038 0�133 −0�171 3�759 0�171
A1 CH3 −0�291 −0�028 0�263 0�291 0�028 0�1315 −0�1595 3�802 0�1595
A2 C2H5 −0�289 −0�029 0�260 0�289 0�029 0�130 −0�159 3�846 0�159
A3 Iso-C3H7 −0�287 −0�025 0�262 0�287 0�025 0�131 −0�156 3�816 0�156
A4 Tert-C4H9 −0�286 −0�025 0�261 0�286 0�025 0�1305 −0�1555 3�831 0�1555

B1 NH2 −0�254 −0�025 0�229 0�254 0�025 0�1145 −0�1395 4�366 0�1395
B2 OH −0�281 −0�032 0�249 0�281 0�032 0�1245 −0�1565 4�016 0�1565
B3 CN −0�326 −0�100 0�226 0�326 0�100 0�113 −0�213 4�424 0�213
B4 OCH −0�303 −0�113 0�190 0�303 0�113 0�095 −0�208 5�263 0�208

Note: ∗All the density based descriptors are in u. a. of energy (Harteer), just � which is in (Harteer−1�.

Figure 3 shows an orbital energy diagram for 1,3,4-
oxadiazole derivatives for only the HOMO and LUMO
orbitals. Substitution of donor and acceptor functional
groups affects the energy levels of the frontier orbitals.
Where the HOMO and LUMO are going up in energy in
compounds A1, A2, A3 and A4 where the HLG and the
hardness � are little affected compared to ODZ ring. But
for the compounds B1 and B2 the HOMO is going up in
energy and the LUMO is little affected where the HLG is
smaller than for ODZ ring so B1 and B2 are becoming soft
in contrast to ODZ.

As for compounds B3 and B4 the HOMO and LUMO
has decrease in energy in which they have the smallest
gaps in all compounds with the biggest values of the soft-
ness character.

3.3. Structure Activity/Property Relationships Studies
Molecular structure properties of the molecule are usu-
ally the first and the simplest calculated values to produce
information that can be used to predict the behavior of
the compounds in the body. For this, we have choosing
these criteria to characterize the compounds of this series:
molecular weight (MW), lipophilicity (log D and log P),

Fig. 3. Changes in the energy levels of HOMO–LUMO orbital of 1,3,4-
oxadiazole derivatives.

number of hydrogen-bond donors and acceptors (NHBD
and NHBA), polar surface area (PSA), number of rotat-
able bonds (nrotb) and ionization state (dissociation con-
stant pKa).

3.3.1. Drug-Like Properties of Rule of Thumb
The successful design of new drugs requires optimization
of many parameters simultaneously. The absorption is pre-
dominantly a function of solubility and permeability. Sol-
ubility is perhaps the most basic requirement of an orally
available drug. In general, it is desirable for a drug can-
didate to have high enough water solubility to dissolve in
body fluids in adequate concentrations, and at the same
time to have high enough lipophilicity to permeate across
various biological membranes.
One way to screen out compounds with probable

absorption problems is known as Lipinski’s “rule of five.”
According to Lipinski et al.,33 these four parameters are
thought to be associated with solubility, permeability and
binding efficiency of drugs which are the basic require-
ments for any drug to have good pharmacokinetic prop-
erties. As most of the drug candidates are designed to
be administrated to human body via oral route and thus
absorbed from the intestine, the first barrier they meet on
their way to systemic circulation is the gut wall. The most
usual way of permeation across the gut wall is passive
transcellular permeation through the cells, but absorption
of many compounds is also affected by ATP-driven efflux
pumps (efflux transporters, e.g., P-glycoprotein, BCRP,
MRD-family) or active cell uptake (influx) transporters,
located on the cell membranes of various in the body.
Generally, passive transport is governed by physico-

chemical properties whereas active transport involves spe-
cific binding of a molecule to a binding site on a transport
protein.49

Lipinski used these molecular properties in formulat-
ing his rule. The rule states that most molecules with
good membrane permeability have log P≤ 5, MW≤ 500,
NHBA ≤ 10, and NHBD ≤ 5. A compound that fulfils
at least three out of the four criteria is said to adhere to
Lipinski’s ‘rule of 5.’
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Table III. Drug-likeness parameters of anti-tuberculosis compounds.

Comps % ABS MW Log P NHBD NHBA nrotb PSA Acidic pKa Basic pKa 	 pKa

Rules – <500 <5 <5 <10 <10 <140 – – –
1 75�32 271�28 −0�14 2 7 3 97�610 11�27 1�12 10�15
2 75�32 299�33 0�89 2 7 3 97�610 11�27 1�33 9�94
3 75�32 285�31 0�37 2 7 3 97�610 11�27 1�29 9�98
4 72�14 363�38 1�36 2 8 5 106�84 11�27 −1.86; 1.10 10�17
5 75�32 305�72 0�46 2 7 3 97�610 11�27 −1.88; 0.66 10�61
6 84�30 288�32 0�78 0 6 3 71�590 6�68 0�96 5�72
7 84�30 316�38 1�81 0 6 3 71�590 6�70 1�18 5�52
8 84�30 302�35 1�30 0 6 3 71�590 6�69 1�13 5�56
9 81�12 380�42 2�28 0 7 5 80�820 6�61 0�98 5�63
10 84�30 322�77 1�39 0 6 3 71�590 6�61 0�54 6�07
11 80�15 347�38 2�13 1 7 5 83�620 7�62 1�30 6�32
12 80�15 375�43 3�16 1 7 5 83�620 7�62 1�45 6�17
13 80�15 361�40 2�64 1 7 5 83�620 7�62 1�44 6�18
14 76�97 439�47 3�63 1 8 7 92�850 7�62 1�26 6�36
15 80�15 381�82 2�73 1 7 5 83�620 7�62 0�92 6�7

Veber34 suggest that compounds which meet only the
two criteria of
(1) 10 or fewer rotatable bonds and
(2) polar surface area equal to or less than 140 Å2 (or 12
or fewer H-bond donors and acceptors) will have a high
probability of good oral bioavailability in the rat.

The above mentioned parameters were calculated for all
the series of the anti-tubercular agents (Table III). From the
data obtained, it was observed that all the derivatives of the
series were found to obey the Lipinski rule and Veber’s.
TPSA and Volume are inversely proportional to %ABS.
TPSA was used to calculate the percentage of absorption
(%ABS) according to the equation: %ABS= 109±0�345
TPSA.50 From all these parameters, it can be observed that
all the title compounds exhibited a great %ABS ranging
from 72.14% to 84.30%.
Overall permeability, both in vitro and in vivo can be

considered to be the sum of passive (diffusion driven)
and active (transporter mediated) processes. The latter can
affect both influx and efflux. In particular P-glycoprotein
(PGP) mediated efflux is widely known to have a signif-
icant effect on absorption and distribution potential. Con-
sidering active efflux alone, Petrauskas has proposed the
‘rule of four,’35�51 which states that compounds are likely
to be efflux substrates if they have a hydrogen bond accep-
tor count (sum of N and O atoms) ≥8, MW > 400 and
an acid with a pKa> 4. Conversely, compounds are likely
to be non-substrates if they have an acceptor count ≤ 4,
MW< 400 and a base with a pKa< 8. In which, all most
our compounds are seems to satisfy the unlikely efflux
substrates criteria just for compounds 14 which is likely
to be efflux substrate for the P-glycoprotein.

3.3.2. Lipophilicity Profile and the Ionization State
Lipophilicity is a critical information that enable us to bet-
ter interpret our results since it’s a major structural factor

that influences the pharmacokinetic (permeation of physi-
ological membranes (absorption and distribution), plasma
protein binding and volume of distribution) and pharma-
codynamic (target recognition, target affinity and target
specificity) behavior of our anti-tuberculosis compounds.
Log P (also known as Kow or Pow) and log D are the most
descriptors of the lipophilicity. There is no constant pH
in the body and it is therefore essential that we consider
an appropriate pH when predicting the behavior of this
anti-tuberculosis compounds. For that we have decided to
study the lipophilic character of this new series of anti-
tuberculosis. Generally Log P is measured in the pH were
the compound exist in there neutral form. From (Table IV)
we can see that the compounds 1–5 have the values of
Log D equal to Log P in almost the rang of physiologi-
cally relevant pH (1–8) for this compounds we can predict
their behavior only form examining the Log P profile.
The predicted Log P values are −0.14, 0.89, 0.37, 1.36
and 0.46 for compounds 1–5 respectively. The conclu-
sion we draw from this is that the compounds 2–5 shows
a preference to be associated with the lipid phase, and
by extension will likely permeate biological membranes
spontaneously, unlike the compound 1, which has negative
values, it would be more susceptible to higher aqueous sol-
ubility and for lower lipophilicity in the body. As a result,
we would expect membrane permeability to be poor for
the compound 1 and acceptable for the other compounds
2–5. Log D7�4 is equal to Log P for these compounds,
we conclude that all this compounds exist in their neu-
tral form and it’s often quoted to give an indication of the
lipophilicity of a drug at the pH of blood plasma. High
values of Log D7�4, the compounds will tend to be metab-
olized by P450 enzymes in the liver and increasing its
value above 0 will decrease renal clearance and increase
metabolic clearance.
Whereas, for the compounds 6–15 the difference

between the basic and the acidic pKa values is too small
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Table IV. Log D and Log P profile of the anti-tuberculosis compounds.

Compounds

pH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 −0�99 −0�20 −0�65 0�47 −0�09 −0�22 0�60 0�13 1�25 0�75 0�79 1�67 1�17 2�34 1�77
0.5 −0�76 0�08 −0�39 0�71 0�11 0�19 1�04 0�57 1�67 1�07 1�25 2�14 1�64 2�79 2�18
1 −0�49 0�40 −0�08 0�98 0�29 0�50 1�41 0�92 1�99 1�26 1�64 2�56 2�06 3�17 2�47
1.5 −0�30 0�65 0�16 1�19 0�40 0�67 1�64 1�14 2�17 1�34 1�91 2�87 2�36 3�43 2�63
2 −0�20 0�80 0�29 1�30 0�44 0�74 1�75 1�24 2�24 1�37 2�05 3�04 2�53 3�56 2�70
2.5 −0�16 0�86 0�35 1�34 0�46 0�77 1�79 1�28 2�27 1�38 2�10 3�12 2�60 3�60 2�72
3 −0�15 0�88 0�36 1�35 0�46 0�78 1�80 1�29 2�28 1�39 2�12 3�14 2�63 3�62 2�73
3.5 −0�14 0�88 0�37 1�36 0�46 0�78 1�81 1�29 2�28 1�39 2�13 3�15 2�64 3�63 2�73
4 −0�14 0�89 0�37 1�36 0�46 0�78 1�81 1�29 2�28 1�39 2�13 3�15 2�64 3�63 2�73
4.5 −0�14 0�89 0�37 1�36 0�46 0�78 1�81 1�29 2�28 1�38 2�13 3�16 2�64 3�63 2�73
5 −0�14 0�89 0�37 1�36 0�46 0�78 1�80 1�29 2�27 1�38 2�13 3�16 2�64 3�63 2�73
5.5 −0�14 0�89 0�37 1�36 0�46 0�76 1�79 1�28 2�26 1�36 2�13 3�15 2�64 3�63 2�73
6 −0�14 0�89 0�37 1�36 0�46 0�72 1�75 1�23 2�21 1�31 2�12 3�15 2�64 3�62 2�73
6.5 −0�14 0�89 0�37 1�36 0�46 0�61 1�64 1�12 2�08 1�18 2�11 3�13 2�62 3�61 2�71
7 −0�14 0�89 0�37 1�36 0�46 0�38 1�42 0�90 1�84 0�94 2�06 3�09 2�57 3�56 2�67
7.4 −0�14 0�89 0�37 1�36 0�46 0�13 0�17 0�65 1�58 0�68 1�98 3�00 2�49 3�48 2�58
7.5 −0�14 0�89 0�37 1�36 0�46 0�06 1�10 0�58 1�51 0�61 1�94 2�97 2�46 3�44 2�55
8 −0�14 0�89 0�37 1�36 0�46 −0�26 0�78 0�27 1�20 0�31 1�71 2�74 2�22 3�21 2�31
8.5 −0�14 0�89 0�37 1�36 0�46 −0�48 0�56 0�04 1�00 0�11 1�37 2�40 1�88 2�87 1�97
9 −0�14 0�89 0�37 1�36 0�46 −0�58 0�45 −0�07 0�91 0�01 1�02 2�04 1�53 2�52 1�62
9.5 −0�14 0�88 0�37 1�36 0�46 −0�62 0�40 −0�11 0�87 −0�02 0�75 1�78 1�26 2�25 1�35
10 −0�15 0�88 0�36 1�35 0�45 −0�64 0�39 −0�12 0�86 −0�03 0�61 1�63 1�12 2�11 1�21
10.5 −0�17 0�85 0�34 1�33 0�43 −0�64 0�39 −0�13 0�86 −0�04 0�55 1�57 1�06 2�05 1�15
11 −0�24 0�79 0�27 1�26 0�36 −0�64 0�38 −0�13 0�86 −0�04 0�53 1�55 1�04 2�03 1�13
11.5 −0�39 0�63 0�12 1�11 0�21 −0�64 0�38 −0�13 0�86 −0�04 0�52 1�55 1�03 2�02 1�12
12 −0�65 0�37 −0�14 0�85 −0�05 −0�64 0�38 −0�13 0�86 −0�04 0�52 1�55 1�03 2�02 1�12
12.5 −0�95 0�08 −0�44 0�55 −0�35 −0�64 0�38 −0�13 0�86 −0�04 0�52 1�54 1�03 2�02 1�12
13 −1�18 −0�15 −0�66 0�32 −0�57 −0�64 0�38 −0�13 0�86 −0�04 0�52 1�54 1�03 2�02 1�12
13.5 −1�29 −0�27 −0�78 0�21 −0�69 −0�64 0�38 −0�13 0�86 −0�04 0�52 1�54 1�03 2�02 1�12
14 −1�34 −0�31 −0�83 0�16 −0�74 −0�64 0�38 −0�13 0�86 −0�04 0�52 1�54 1�03 2�02 1�12

Notes: Green: physiologically relevant pH; Yellow: Log P values and Orange: Log D at blood pH.

(	pKa value about 6, Table III and Fig. 4) which mean
that the neutral form of this anti-tuberculosis compounds is
existent at a very small rang of the physiological relevant
pH, we can see that, in the Table IV of Log P and Log D
values. For that, we are going to examine the Log D pro-
file to better predict the behavior of our anti-tuberculosis
compounds. Where, the Log D value for these compounds
is changing within the range of 0.06 and 3.62. Which, lead
us to deduce that all the compounds preference to be asso-
ciated with the lipid phase, and by extension will likely
permeate biological membranes spontaneously.

Figure 4 and Table III show the pKa values of our
compounds, we see that they are ampholytes i.e., they
have the basic and acidic character and can exist as an
un-ionized form, or as an anion depending on the pH
value, but because the difference between pKa acidic and
pKa basic is >3, there will be no simultaneous ioniza-
tion of the two groups. In contrast to other ionizable
drugs with only an acidic or basic group, an amphoteric
drug exhibits unique physicochemical and pharmacoki-
netic properties. Usually, their volume of distribution is
lower than that of a basic drug, which suggests that
the amphoteric drug tends to stay in the blood. Unlike

normal ionizable molecules, which at some pH can be
predominantly chargeless, many ampholyte can transi-
tion between several different charge states, without ever
becoming chargeless; thus their lipophilicity tends to
be low to moderate. These properties would be better
suited for the drug targets located in the plasma, since
the distribution into tissues/organs is not favorable for
ampholytes.
According to the pH-partition Hypothesis, absorption

is favored for the chargeless form of the drug molecule.
Transporters expressed in the intestinal surface, such as
Pgp and OAT (organic anion transporter), could affect
efflux/active uptake of the compound. It is thought that
the development of amphoteric compounds into a drug is
likely to be more challenging than compounds of other
charge types, may be partly due to the lack of under-
standing of the factors governing their membrane perme-
ability. Given that ampholytes are expected to be poorly
absorbed by transmembrane passive diffusion processes,
absorption via the paracellular route may be important.
In the latter route, small solvated zwitter ions could diffuse
through water-filled channels between cells. Such chan-
nels are known to be capacity-limited, size-restricted, and
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Fig. 4. The multiprotic acid/base sites of anti-tuberculosis compounds.

cation-selective, thus attenuating free diffusion in the water
phase.

3.3.3. Structure Activity/Affinity Relationships
(PEI and GE Analysis)

Our antitubercular activity was obtained by measurement
of percentage inhibition against M. tuberculosis H37Rv at
a single concentration (6.25 �g/ml). A simple efficiency
index, PEI, can be introduced to guide the selection of the
best compounds that use their atoms most efficiently. The
idea of Per cent Efficiency Index is derived from Ligand
Efficiency, which is defined as: LE = 	G/N .
Where: 	G = −RT lnK, is the free energy of binding

and, N , is the number of non-hydrogen atoms which can
be seen as a measure of molecular size. Hence, it is simpler
and more straightforward to calculate MW. In addition,
MW is superior in dealing with the contribution of differ-
ent heteroatoms. Abad-Zapatero and Metz37 introduced the
Per cent Efficiency Index (PEI) defined as the fractional
(0–1 scale) inhibition of a compound divided by the MW
in kDa.

As we can see in our results that our compounds divide
in two groups where the first one have the biggest values
of PEI in the range of 2.32–3.17, all these compounds
are the most active with % in between 84–91. Moreover,
the second with the low values of PEI in the range of
1.11–1.96 where the % in is between 45–56.
The hall purpose of PEI is instead of considering the

efficiency of the whole compound, the average efficiency
contribution per atom is taken into account. For the com-
pound 1 with the biggest value of PEI 3.17. Which it is
not the most potent compound but it has a combination
between a good potency and the small size.
The group efficiency (GE) metric introduced by

Verdonk and Rees38 represents the binding efficiency of
a functional group that has been added to an existing
molecule “A” to form molecule “B”, it is defined as

GE=−		G

	HA

		G= 	G�B�−	G�A�

	HA= HA�B�−HA�A�

8 Rev. Theor. Sci., 5, 1–10, 2017
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Fig. 5. Group Efficiency analysis of the most efficient compounds of studied series.

Where the affinity gained by molecule “B”, through the
introduction of additional non-hydrogen atoms 	HA to
molecule “A”, is expressed as the difference of the free
energies of binding (−		G).39

The PEI analysis show that compounds 1, 5, 6, 10, 11
and 15 with the highest values, are favored because this
allows atoms to be added to modulate in vivo properties
while still ending up with a candidate with a molecular
weight that fits the Lipinski guidelines.

Figure 5 shows GE analysis of the efficiency of various
parts of those anti-tuberculosis compounds where it’s clear
in compounds 5, 10 and 15 that the additions of 4-chloro
substituent decrease the molecular efficiency. The addition
of phenyl ring to compound 1 it improves potency by 5%
and raise molecular size by about 77.104 Da has a good
GE equal to 0.65. The latter has decreased to GE = 0�27
by adding Cl group. Moreover, the GE of the NH2 substi-
tution group with SH group is the most effective addition
(GE= 1�17) for anti-tubercular activity.

4. CONCLUSION
It is now understood that 1,3,4-oxadiazole characters
changes with regard to substitution groups. These behav-
iors are based on electronic and structural characteris-
tics that constitute the soft and hard classifications of the
HSAB theory. In this present study, we analyze the elec-
tronic properties of 1,3,4-oxadiazole ring and its deriva-
tives, in order to deepen our understanding of its various
therapeutic significance in general. The alkyls, amine and
hydroxyl substitution at the 2-position of 1,3,4-oxadiazole
ring increases the hardness of the system, while the
cyanide and ketone one decreases it.

With regard to the anti-tuberculosis series, the
lipophilicity balance and ionization state seem to play an

important role. Where they reveal their ampholytes charac-
ter, which lead us to explore the Log D profile that shows
they have good permeability.
And all compounds followed Lipinski’s rule as they

have a molecular weight under 500 Da, a limited
lipophilicity (expressed by Log P < 5), far less than 5 H-
bond donors (expressed as the sum of OHs and NHs), and
also far less than 10 H-bond acceptors (expressed as the
sum of Os and Ns) and Viber’s rules also. In addition, they
present a high percentage of absorption (%ABS), with all
of the compounds being potentially able to cross biological
membranes and to have a good oral bioavailability.
The correlation between the size and % inhibition of

this anti-tuberculosis series was expressed by Per cent Effi-
ciency Index (PEI). The calculated PEI suggests that com-
pound 1 could be adopted as lead to locate a potential
active anti-tuberculosis compound. Moreover, the Group
Efficiency (GE) show the quality of SH and phenyl added
group to maintain (or increase) the optimization of the
anti-tubercular activity.
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uberculosis (TB) remains the number one killer infectious disease affecting adults in 

developing countries. Earlier, it was reported that a number of 2, 5-disubstituted-1, 3, 4-

oxadiazoles have been designed, synthesized, and screened for their anti-tuberculosis activity 

against M. tuberculosis H37Rv. Our minimalist design format presents opportunities to reveal 

the soft and hard characters (HSAB theory) of 1, 3, 4-oxadiazole as a function of the various 

donating and withdrawing substituent groups using the FMOs energies and the density-based 

descriptors. Where the quantum mechanical geometry optimization were performed using 

B3LYP functional of density functional theory (DFT). With regard to the2, 5-disubstituted-1, 

3, 4-oxadiazoles anti-tuberculosis series, the lipophilicity balance and ionization state seem to 

play an important role to reveal their pharmacokinetic and pharmacodynamics behavior. The 

multi-parameter optimization (MPO) process of these anti-tuberculosis compounds was 

expressed by various approaches such as Per cent Efficiency Index (PEI), Group Efficiency 

(GE) analysis, Lipinski, Veber rules, Molecular Docking and QSAR model to guide the 

exploration of this new anti-tuberculosis agent with a high probability of achieving the 

required property/activity profile. 

Keywords: anti-tuberculosis, descriptor, PEI, GE, Log P, Log D, SAR/SPR, Docking and 

QSAR. 
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a tuberculose (TB) demeure la première maladie infectieuse mortelle chez les adultes des 

pays en développement. Plus tôt, il a été rapporté qu'un certain nombre de 2, 5-

disubstitués-1, 3, 4-oxadiazoles ont été conçus, synthétisés et criblés pour leur activité anti-

tuberculose contre M. tuberculosis H37Rv. Notre conception minimaliste présente des 

opportunités de révéler les caractères mous et durs (théorie HSAB) de 1, 3, 4-oxadiazole en 

fonction des différents groupes de substituants (donneur et accepteur) en utilisant les énergies 

des orbitales frontières et des descripteurs basés sur la densité. Où l'optimisation de la 

géométrie moléculaire a été réalisée en utilisant la fonctionnelle B3LYP de la théorie de la 

fonctionnelle de la densité (DFT). En ce qui concerne les séries 2, 5-disubstituée-1, 3, 4-

oxadiazoles antituberculeux, l'équilibre de la lipophilie et l'état d'ionisation semblent jouer un 

rôle important pour révéler leur comportement pharmacocinétique et pharmacodynamique. 

L'optimisation multi-paramétrique (MPO) de ces composés antituberculeux a été exprimé par 

diverses approches telles que l'indice d'efficacité en pourcentage (PEI), l'analyse d'efficacité 

de groupe (GE), les règles de Lipinski, Veber, Docking moléculaire et l’étude QSAR pour 

guider l'exploration de ce nouvel agent antituberculeux avec une forte probabilité d'atteindre 

le profil requis de la propriété / activité . 

Mots clés : antituberculeux, descripteur, GE, PEI, Log P, Log D, SAR/SPR, Docking et 

QSAR. 
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 (TB لا يزال رقم واحد )لأمراض المعدية القاتلة التي تؤثر على البالغين في ل

-4 ،3، 1) عدد من مشتقات إنبعدة دراسات  أفادتوقد  البلدان النامية.

oxadiazoles) شتقاتتكشف لنا قائمة من م .ذات نشاط ضد السل (4 ،3، 1-oxadiazoles)  عن

بدلالة مجموعة مستبدلات مختلفة )المانحة  (HSAB)حسب نظرية الطابع اللين والصلب 

حيث تم  مشتقة من الكثافة.الصفات الوالمستقبلة( باستخدام طاقات المدارات الحدودية و

 (.DFT) الوظيفية الكثافة ةلنظري (B3LYP) الوظيفة باستخدامالجزيئية  بنيةلا قليل لطاقةتإجراء 

خاصية المحبة للدهون  فان المضادة للسل، (oxadiazoles-4 ،3، 1)وفيما يتعلق بالسلسلة 

 لتحسيناقمنا بو .الدوائية ديناميكيتهاوكشف حركيتها دورا هاما في  انحالة التأين تلعبو

طرق مختلفة مثل مؤشر  لباستعما( لهذه المركبات المضادة للسل MPOمتعدد العوامل )ال

 ،Veber قواعد ،Lipinskiقواعد (، GE(، وتحليل فعالية المجموعة )PEIالفعالية لنسبة المئوية )

Docking ودراسةQSAR  مع وجود احتمال كبير  ةالسل الجديد اتمضادلتوجيه استكشاف هذه

 .(لبيولوجيةخاصية / النشاط ا)لتحقيق النسبة المطلوبة 

  GE ،PEI ،Log P ،Log D ،SAR/SPR ، Dockingواصفات،  ،السل تمضادا الدالة: الكلمات

 .QSARو
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uberculosis (TB) remains the number one killer infectious disease affecting adults in developing countries. 

Earlier, it was reported that a number of 2, 5-disubstituted-1, 3, 4-oxadiazoles have been designed, 

synthesized, and screened for their anti-tuberculosis activity against M. tuberculosis H37Rv. Our 

minimalist design format presents opportunities to reveal the soft and hard characters (HSAB theory) of 1, 3, 4-

oxadiazole as a function of the various donating and withdrawing substituent groups using the FMOs energies 

and the density-based descriptors. Where the quantum mechanical geometry optimization were performed using 

B3LYP functional of density functional theory (DFT). With regard to the2, 5-disubstituted-1, 3, 4-oxadiazoles 

anti-tuberculosis series, the lipophilicity balance and ionization state seem to play an important role to reveal 

their pharmacokinetic and pharmacodynamics behavior. The multi-parameter optimization (MPO) process of 

these anti-tuberculosis compounds was expressed by various approaches such as Per cent Efficiency Index (PEI), 

Group Efficiency (GE) analysis, Lipinski, Veber rules, Molecular Docking and QSAR model to guide the 

exploration of this new anti-tuberculosis agent with a high probability of achieving the required property/activity 

profile. 

Keywords: anti-tuberculosis, descriptor, PEI, GE, Log P, Log D, SAR/SPR, Docking and QSAR. 

 

a tuberculose (TB) demeure la première maladie infectieuse mortelle chez les adultes des pays en 

développement. Plus tôt, il a été rapporté qu'un certain nombre de 2, 5-disubstitués-1, 3, 4-oxadiazoles ont été 

conçus, synthétisés et criblés pour leur activité anti-tuberculose contre M. tuberculosis H37Rv. Notre conception 

minimaliste présente des opportunités de révéler les caractères mous et durs (théorie HSAB) de 1, 3, 4-

oxadiazole en fonction des différents groupes de substituants (donneur et accepteur) en utilisant les énergies des 

orbitales frontières et des descripteurs basés sur la densité. Où l'optimisation de la géométrie moléculaire a été 

réalisée en utilisant la fonctionnelle B3LYP de la théorie de la fonctionnelle de la densité (DFT). En ce qui 

concerne les séries 2, 5-disubstituée-1, 3, 4-oxadiazoles antituberculeux, l'équilibre de la lipophilie et l'état 

d'ionisation semblent jouer un rôle important pour révéler leur comportement pharmacocinétique et 

pharmacodynamique. L'optimisation multi-paramétrique (MPO) de ces composés antituberculeux a été exprimé 

par diverses approches telles que l'indice d'efficacité en pourcentage (PEI), l'analyse d'efficacité de groupe (GE), 

les règles de Lipinski, Veber, Docking moléculaire et l’étude QSAR pour guider l'exploration de ce nouvel agent 

antituberculeux avec une forte probabilité d'atteindre le profil requis de la propriété / activité . 

Mots clés : antituberculeux, descripteur, GE, PEI, Log P, Log D, SAR/SPR, Docking et QSAR. 

 

 

T 

 

L 

 

وقد  لأمراض المعدية القاتلة التي تؤثر على البالغين في البلدان النامية.ل( لا يزال رقم واحد TB) السل  

تكشف لنا قائمة من  .( ذات نشاط ضد السلoxadiazoles-4 ،3، 1بإن عدد من مشتقات )أفادت عدة دراسات 

بدلالة مجموعة مستبدلات  (HSAB)حسب نظرية عن الطابع اللين والصلب  (oxadiazoles-4 ،3، 1) مشتقات

حيث تم  مشتقة من الكثافة.الصفات المختلفة )المانحة والمستقبلة( باستخدام طاقات المدارات الحدودية و
وفيما يتعلق  (.DFTالوظيفية ) الكثافة ةلنظري (B3LYP)باستخدام الوظيفة بنية الجزيئية قليل لطاقة الإجراء ت

دورا هاما  انخاصية المحبة للدهون وحالة التأين تلعب فان المضادة للسل، (oxadiazoles-4 ،3، 1)بالسلسلة 
( لهذه المركبات المضادة MPOمتعدد العوامل )التحسين القمنا بو الدوائية. وديناميكيتهافي كشف حركيتها 

(، GE(، وتحليل فعالية المجموعة )PEIطرق مختلفة مثل مؤشر الفعالية لنسبة المئوية ) لباستعماللسل 
مع وجود  ةالسل الجديد اتلتوجيه استكشاف هذه مضاد QSARودراسة Veber، Docking قواعد ،Lipinskiقواعد 

 .(خاصية / النشاط البيولوجية)احتمال كبير لتحقيق النسبة المطلوبة 

 .QSARو  GE ،PEI ،Log P ،Log D ،SAR/SPR ، Dockingواصفات،  ،السل تمضادا الكلمات الدالة:

 


