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Technical Report on: Towards Reactive Control of
Simplified Legged Robotics Maneuvers

Jeffrey Duperret and Daniel E. Koditschek

Department of Electrical and Systems Engineering, University of Pennsylvania, 200 South 33rd
Street, Philadelphia, PA 19104
jdup@seas.upenn.edu

This technical report provides proofs and calculations for the paper [1], as well as
implementation notes and a discussion on robustness.

1 Proposition and theorem proofs

Proposition 1 A candidate K-step navigation plan (4,9) = ({qo,-..,qx }, {wo, ...,ug—1})
is admissible if and only if for every i € {0,...,K — 1} it holds that q; € Rg_; and
F(Qi,w;) € Rg_iq1)-

Proof. First assume ({, @) is an admissible K-step navigation plan. We show that q; €
Rk i and then use this to show f(q;,u;) € Rg_(iy1).

Let j = K —i and consider the change of variables q; = qx—_;, i; = ug_;. The propo-
sition q; € Rg_; fori € {0,...,K— 1} is then equivalent to q; € R for j € {1,...,K}. Call
P(j) the proposition q; € R over the well-ordered index set j € = {1, ...,K}. We show
P(j),j € J is true using the principle of transfinite induction [2, p. 195]. Assume for the
inductive hypothesis that P(I) is true for all / < j,I € J. First consider j = 1. By admissi-
bility of (, &) we have that qx € = Ro. Thenqx_1 = f ! (qx,ug_1) € £~ (Ro,ugx_1)
and because qx—1 ¢ (GUO) we have qx—1 € R;. So q; € Ry, or equivalently, P(1)
is true. Next consider j > 1,j € J. If K < 2 then P(j),j > 1 is vacuously true since
Jd ={1}. Assume K > 2. By hypothesis P(j — 1) is true for j > 1, or equivalently that
qj—1 € Rj_1. We have q;—1 = f(q;,@;) and so q; = fﬁl((_lj;l,l_lj) € fﬁl(fRJ;],l—lj).
By assumption of admissibility q; ¢ (SUO), so we have q; € R; and P(j) is true for
J>1,j € J. This completes the successor step. We have shown that the assumption P()
is true for all [ < j,I € J implies P(j),j € J is true, thus by the principle of transfinite
induction P(j) is true for all j € J, or equivalently, that q; € Rg_; fori € {0,...,K —1}.
Since qx € § =Ro and q; € R foralli € {0,...,K — 1} we have q;41 € Rg_(j41) and
50 f(qi, ;) € Rx—(i41)-

Now assume that for every i € {0,...,K — 1} it holds that q; € Rg_; and q;+1 =
flgi,w) € R _(i+1)- Since Rg—;i N (GUO) =0itholds that q; ¢ OUSG. Since Ry =G it
holds that qx = f(qg—1,ux—1) € G. Then the K-step navigation plan
({qo,---, 9k}, {uo,...,ug_1}) = (q, &) is admissible.

|

Corollary 1. There exists an admissible K-step navigation plan from q if and only if
K € Jq. If a solution to the discrete navigation problem exists, the minimum number of
steps that it can be completed in from q is min(Jq).
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Proof. We first prove the equivalence between K € Jq and the existence of an admissible
K-step navigation plan from starting state q.

First assume there exists an admissible K-step navigation plan from q that will com-
plete the task. Then, by Proposition 1, q € Rk and so by the definition of J4 we have
K €lq.

Now assume K € Jq. Then q € Rk and so by Proposition 1 there exists an admissible
K-step navigation plan from q that will complete the task.

Finally, we prove that if a solution to the task exists, the minimum number of steps
the task can be completed in from q is min(Jq). Assume a solution to the task exists
starting from q. By the previously proved equivalence Jq # 0, where Jq contains set
of step numbers that any admissible navigation plan to the task can take. Then the
minimum number of steps the task from q can be completed in is min(Jq).

O

We also note that — by Bellman’s Optimality Principle — any path using the min-
imum number of possible steps to the goal has the property that all sub-paths to the
goal also use the minimum number of possible steps. If this were not true and a quicker
sub-path existed then we would get the contradiction that this quicker sub-path could be
substituted into the minimum path to yield a path with fewer steps than the minimum
path.

Theorem 1. If a solution to the discrete navigation problem exists then the discrete
navigation problem is solved in the minimum number of possible steps if and only if the
following reactive control relation is observed at every step:

ue {Eq,min(ﬁq) jq 7& 0, )

else,

where q is the state at any given iteration and W is the chosen control action at that
iteration.

Proof. Assume a solution to the discrete navigation problem exists.

First assume the task is completed in the minimum number of possible steps. With-
out loss of generality assume this number of steps is K € NT! so that the task is com-
pleted with some admissible K-step navigation plan (§, @) = ({uo, ...,ux—1}, {qo, ---,qx })-
By Proposition 1 we have that q; € Rx—; and f(q;,u;) € Rg_ ;4 ) forevery i € {0, ..., K —
1}. Since q; € Rx—; we have that Jq, # 0 at every iteration before reaching the goal. Fur-
thermore, because q; € Rg—; and f(q;,u;) € fRK,(iH) we have that u; € Ug, x—;. The
task is completed in the minimum number of steps K, so — by Corollary 1 — at each
iteration i leading up to the goal the minimum number of steps to complete the task is
K —i=min(Jq,) and thus u; € Ugy,min (9,)-

Now assume that the reactive control relation given in Equation 1 is observed such
that (§,4) = ({qo,...},{uo,...}) is the resulting state and control sequence, where qq
is the starting state. Since a solution to the task exists Jq, 7 @ and qq € mein(gqo) by

definition of Jg,. Call min (Jg,) the number K € N* such that qg € Rg. The controller

IN* denotes the positive integers.
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then chooses an action ug such that ¢; € Rg_;. Now assume that q; € Rg_; for some
i €{0,...,K —1}. The controller chooses a control such that f(q;,u;) € Rx_(;;1) and
so by Proposition 1 the task is completed in K steps. The number of steps taken was
K = min (Jq,) and so by Corollary 1 the task was completed in the minimum number
of steps.

O

2 Reactive Control Relation with Linear Dynamics

We give an algorithmic specification of the reactive control relation introduced in [1,
Theorem 1] for a linear apex map with polyhedron control constraints and polyhedra
forms of O and G as was proposed in [I, Section 4] . Note that we will write all set
boundaries as closed to avoid the cumbersome notation of keeping track of which set
boundaries are open and closed.

We assume the linear iterated dynamics

qni+1 = f(Qn,lln) :Aqn +Bun,

where q, € D =R", u, € U C R, A € R™™ det(A) #0, B€ R™P, and that U is a
polyhedron embedded in R? described by:

U= {ll € RP|Aull > I_)u}

Note that the computations presented in this section directly extend to affine iterated
dynamics. We also assume that the goal set G is a polyhedron” and that the obstacle set
is a finite union of polyhedra O = O U...UQ,, for p € N3, where

§={aeD|Agq>bg}, 0;={q€D|Av,q>bo,}.

Note that as a convention we use an over-line over matrices and vectors to denote poly-
hedra constraints.

We show the computation of [I, Theorem 1] in three steps. Recall that Ry =
F R, W)\ (GUO) for k > 0and Ry = G. We first show the computation of £~ (R, U)
and then the set difference computation f~!(R;,U)\ (GUO), allowing the recursive
computation of the set R = |J; Ry. Finally, we use this show the control relation com-
putation uqm(gq).

2.1 Computation of f~!(R;,U)

Assume Ry = Ry 1 U...URy , consists of the finite union of r polyhedra with represen-
tation Ry; = {q € D|A, ,q > bx,,}. Then f (R, U) = 1 (Re1 U URg -, U) =

2This formulation can be generalized to work with a goal set consisting of a finite union of
polyhedra.
3N denotes the nonnegative integers.
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F (R, WU UfH( Ry, U). Bach £71(Ry;,U) is computed as follows:

N (R W) ={g € DIf(gu) € Ry A wel}
={qeD|Ag, . f(q,u) >bg,, N Ayu>by}
={q€ D|Ax,,(Aq+Bu) > bg,, A Ayu> by}
={qeD|Ag, Aq+Ax Bu>bg, A Ayu>by}

Ayk A Ayka q by, .
— X PNki > Tk
{q € D‘ |: 0 Au u| - bu ’

This can be made more compact by explicitly projecting out the u coordinates of the
polyhedron via Fourier-Motzkin elimination [3]. Redundant constraints introduced by
Fourier-Motzkin elimination can then be eliminated using linear programming. Specif-
ically, let S(Ry ;) denote the polyhedron:

Ag, AAg B [q b, .
14 ki Rii > | “Rei
{awevxpe fAdnb] 4] > Pao) |

and I1q(S) the polyhedron given by the projection of the polyhedron S onto its coordi-
nates q. Then:

FH R W) = {q € Dq € My (S(Rye)) } - 2

2.2 Computation of the set difference in /! (R, W)\ (GUO)

The form of the goal and obstacle sets given in [I, Section 4] has the property that
the complement of the set U O forms (for a fixed y) a polyhedron. Specifically, the
complement of GU O is comprised of all apex states ¢ whose (if ¢ = +1) epigraph
of g, and gr contain the obstacle endpoints or (if ¢ = —1) hypograph of g, and g;
contain the obstacle endpoints. This is given by:

~0 —0\/2(y=yio1)
\/ﬁ —0X;,01
—0 04/30—Yio1 e
(GUO)E = (x,4) eRVie {1,...,p}: o . H o
—0 =0,/ (Vo) | L 0X;,02
*GX"OZ
—0 6\/2(v—yi02) l

so that the set-difference computation f~! (R, U)\ (SUO) = f~1(Re, W) N (SUO)Ccan
be done simply by appending the (GU O)C constraints to the polyhedra f~!(R;,U).
Hence in practice each of the the R, sets consist of a single polyhedron and the set
difference computation is quite fast.

The more general problem of taking the set difference between a polyhedron and
the union of polyhedra has been documented in the literature (for example in [4]). We
have omitted the general computation since it wasn’t used in the experiments.

2.3 Computation of uqmin(gq)

Finally, we show the computation of the control relation of [, Theorem 1], in particular
the set uq,min (Jq) — {ll € U|f(q,u) € Ruin (Jq)—1 }
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Let Rmin(gq>,1 be given by the union of polyhedra U;R ;. (34)—1.i» Where each poly-

hedron is represented by the set of states {q € D|Ax .} Let the

mm(Jq)—l_.iq Z E_jzmin(Jq)—l‘
control space be given by the polyhedron set U = {u € R”|Aqu > by }.

Then Ugq min () is given by the set of controls from state g that can reach Rumin (Jq)-1
on the next iteration, or equivalently, the set of controls u € U for which Ag+ Bu €
.'Rmin(gq),l. This is equivalent to:

A:Rmin — iB E:Rmin —1,i _A:kaL,'Aq
Uq.min (3) ZU{HER”l [ ;ﬁ‘l{) b ]uz [ (q) ‘Zu : ),

1

2.4 Implementation Notes

In the experimental implementation we artificially bound all unbounded polyhedra “far”
away from the local region of interest around the robot and obstacle, allowing us to swap
between representing the sets R, and as both polyhedra and the convex hull of vertices.
This has the practical benefit of allowing us to compute the projection in Equation 2
simply by projecting the vertices of S(Ry ;) onto the first m coordinates.

The control function used in the experiments was derived from the control relation
of Theorem 1 by the following process. From an apex state g in any Ry, k € N, the
reachable set on the next iteration forms some line segment, part of which is contained
in Ry_1. The line resulting from extending this line segment will generically intersect
the edges of the polyhedra R;_; at two points, the average of which must be a point
somewhere in the interior of R;_. This interior point serves as a target point (being,
in some sense, an intuitively “robust” target to aim for since it is the furthest from the
two edge points of the polyhedra), and the control selected from uq,min@q) is equal to
the control that achieves the closest next state to this target point. So if the target point
is within the reachable line segment then the control is selected which causes the next
state to be the target point, else if the target point is outside the reachable line segment
then the control is selected which causes the next state to be the line segment endpoint
nearest to the target point. We consider this strategy to be an implementation detail. In
principle any control input satisfying Theorem 1 will work, however some points can
be considered to be more robust to errors in anchoring than others but work remains
to rigorously characterize the nature of these errors in an experimental setting so as to
make informed strategies to maximize robustness.

3 Discussion on robustness

We should note that implementing a minimum-step strategy can lead to otherwise avoid-
able robustness issues and is not always the correct strategy for implementation. For
example, the case when the state is contained in a set Ry but very close to a corner can
lead to cases where only a small range of control inputs satisfy the control relation of
Theorem 1. We observed that in some of these cases, normal experimental error can all-
but-guarantee that the next state will “miss” the set R;_1. In this case it may be wiser
to spend a step leaping into a more interior point of R; before initializing the algorithm
so as to trade robustness for the property of taking the minimum steps to complete the
task, a topic which will be the focus of future work.
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