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Accuracy of Diftusing-Wave Spectroscopy Theories

Abstract

Random walk computer simulations are reported for the electric field autocorrelation of photons transmitted
through multiple-scattering slabs. The results are used as a benchmark for judging the accuracy of competing
theories of diffusing-wave spectroscopy (DWS), and also for distinguishing between errors introduced from
the approximation of diffusive photon transport and from the continuum approximation that the total square
wave-vector transfer of a transmitted photon is proportional to its path length in the material. An important
conclusion is that these errors partially cancel, giving accuracies on the order of a few percent for typical
experimental situations. Detailed comparisons are made as a function of optical thickness, boundary
reflectivity, as well as scattering anisotropy; guidelines are generated for optimizing the analysis of actual DWS
data in terms of the dynamics of individual scattering sites.
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Random walk computer simulations are reported for the electric field autocorrelation of photons
transmitted through multiple-scattering slabs. The results are used as a benchmark for judging the accu-
racy of competing theories of diffusing-wave spectroscopy (DWS), and also for distinguishing between
errors introduced from the approximation of diffusive photon transport and from the continuum approx-
imation that the total square wave-vector transfer of a transmitted photon is proportional to its path
length in the material. An important conclusion is that these errors partially cancel, giving accuracies
on the order of a few percent for typical experimental situations. Detailed comparisons are made as a
function of optical thickness, boundary reflectivity, as well as scattering anisotropy; guidelines are gen-
erated for optimizing the analysis of actual DWS data in terms of the dynamics of individual scattering

sites.

PACS number(s): 82.70.—y, 05.40.+j, 42.62.Fi
I. INTRODUCTION

Quasielastic light scattering techniques have proven
extremely useful for characterizing the dynamics, and in-
directly the structure, of nearly transparent materials
such as dilute solutions of macromolecules or colloidal
particles [1-4]. For useful information to be readily ex-
tracted, samples must be sufficiently thin, dilute, or well
index matched that incident photons scatter at most once
from the random dielectric inhomogeneities before exit-
ing. Recently, the technique of diffusing-wave spectros-
copy (DWS) has been developed [5-7] to extend the ap-
plication of these traditional single-scattering techniques
to materials such as concentrated colloidal suspensions
[8-12], foams [13-15], and emulsions [16,17], which all
multiply scatter the incident light. Even though typical
experimental samples are optically thick in that they ap-
pear white and do not permit photons to pass through
without scattering many times, the scattering is “weak”
in the sense that successive events are uncorrelated and
that the contribution from photons traversing separate
paths add incoherently. While this tremendously
simplifies the theories of DWS, they are still highly com-
plex and involve several uncontrolled approximations
and adjustable parameters. The purpose of this paper
is to assess the accuracy of DWS predictions for the
normalized electric field autocorrelation function
g(T)=(E(0)E*(7)) /{|E|?), by means of computer
simulation and to generate guidelines for the analysis of
transmission experiments. Results are obtained for the
accuracy of both characteristic decay scale and function-
al form of g,(7) for a variety of experimental situations;
typically, both are on the order of a few percent. The de-
tails of such results reported here should be especially im-
portant for the experimentalist wishing to know and to
minimize the systematic error introduced during data
analysis.

Standard DWS theories

The assumptions and approximations in the theories of
DWS are first highlighted with a brief discussion of the
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statics and dynamics of multiple light scattering; points
not explicitly referenced are covered in greater detail in
published reviews [18-20]. Consider, then, the fate of a
coherent beam of photons directed toward a slab of ma-
terial containing particles that scatter light, and assume
that absorption is negligible. The intensity of the unscat-
tered portion of the incident beam will decay exponential-
ly with distance into the medium according to the
scattering mean free path /;, whose value is set by both
the number density and total scattering cross section of
the suspended particles [,=1/po. In the multiple-
scattering regime, the sample is very large in comparison
with I, so that photons scattered away from the incident
beam typically experience many more scattering events
before exiting. The transport mean free path /*, which
enters into diffusion theory treatment of this process, is
related to the scattering mean free path according to how
strongly photons are deflected from their unscattered, or
forward, direction: I*=I /(1—cosf), where 0 is the
deflection angle and the average is taken over the scatter-
ing form factor for the probability of scattering by 6.
Many materials of interest scatter light preferentially in
the forward direction, and it is not unusual for /* to be
ten or more times greater than [,. Physically, /*
represents the typical distance a photon travels before its
propagation direction is completely randomized, and can
hence be thought of as the typical step size in a random
walk. For example, consider photons that are transmit-
ted through a multiple-scattering slab of thickness L.
The typical number of completely random steps of size [ *
is O(L /1*)% and each is composed on average of [* /I,
separate scattering events.

In the photon-correlation version of dynamic light
scattering experiments, both in the single- and multiple-
scattering regimes, a portion of the scattered light com-
parable to a few speckled spots is observed with a pho-
tomultiplier tube. Relative motion of the scattering sites
then causes significant intensity fluctuations that can be
characterized by a temporal intensity autocorrelation
function (I(0)I(r)), which is an average over the time
labeled 0. The corresponding normalized electric field
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autocorrelation function g,(r)=(E(0)E*(7))/{|E[?*)
is given by the Siegert relation (I(0)I(7))/{I)?
=B +B|g,(7)|%, where the base line B is identically 1 un-
less there are slow drifts in the laser intensity, and the in-
tercept B is a number less than 1 that depends mainly on
the number of speckles observed. For the case of single
scattering from a large number of noninteracting un-
correlated particles, the field autocorrelation function
may be computed:

(E(0)E*(7)) =(|E[*)e 0" (ar’m)/6 (1)

where q=k,,;—k;, is the change in wave vector, and
(Ar*(r)) is the mean square displacement of the parti-
cles. Since the scattering sites move slowly by compar-
ison with the speed of light, the scattering is quasielastic
in that the magnitudes of the incident and scattered wave
vectors are essentially equal, |k;,|=|k,,|=k. The mag-
nitude of the change in wave vector is therefore set by the
scattering angle ¢ =2k sin(6/2). Note that the correla-
tion function in Eq. (1) thus decays on a time scale set by
how long it takes the particles to move on the order of
1/q, which is comparable to the wavelength of light.

As recognized in Ref. [S], the electric field autocorrela-
tion function can be similarly computed for an arbitrary
path a of a photon that experiences n independent
scattering events from n uncorrelated scattering sites in
an optically dense medium:

(ELOEX(T)=(|E [*Yexp | — 3 g% (Ar¥ 7)) /6 | ,

i=1
2)

where g,; is the change in wave vector for the ith
scattering event in the path a. Besides the independence
of the particle motions and of scattering events, this re-
sult assumes only that the electric fields can be treated as
complex Gaussian random variables. If one further as-
sumes that the fields due to different paths add in-
coherently, which is an excellent approximation in prac-
tice, then the total normalized electric field correlation
function is found by the weighted average of Eq. (2) over
all possible light paths:

giy(x)= [ “P(Y)e~*17dY 3)

where x =k2(Ar%(7)) is the dimensionless mean square
displacement of the particles, and P(Y) is the probability
density for any path a with any number n of scattering
events to have dimensionless total square wave-vector
transfer

(L/1*)+2z,

YEéQiz,a/Zkz'_—é(l—cosei,a) . (4)

i=1 i=1

The decay of the field correlation function with x as given
by Egs. (3) and (4) cannot be calculated analytically; it
may, however, be evaluated numerically via computer
simulation, as in Ref. [21] for the case of backscattering
from progressively thicker slabs.

To make analytical progress, note from Eq. (4) that for
paths consisting of a very large number n of scattering
events, Y can be approximated by averaging over the
scattering form factor

nlg
Y=n{1—cos@)= =l%zs, (5)

l*

where s is the total length of the light path. In this
large-n continuum limit, Y is the independent of the
scattering length /;, and its value indicates the number of
completely random steps in the path. If the experimental
geometry is such that all paths contributing to Eq. (3)
satisfy the large-n limit, then the normalized electric field
autocorrelation function can be accurately approximated
by

8i1s(x)= waP(S)e TxSA4s (6)

where P(S) is the probability density for a detected light
path to have dimensionless length S=s/I*. The great
advantage of Eq. (6) over Eqgs. (3) and (4) is that for a
given experimental geometry P(S), and hence g,¢(x), can
be evaluated analytically by using a diffusion approxima-
tion for photon transport. Equation (6) has therefore
been the basis for computing correlation functions in the
standard theory of DWS.

As an experimental probe of internal dynamics, the
most important geometry for DWS is transmission
through a multiple-scattering slab of material whose
thickness L is both significantly smaller than its width
and significantly greater than the transport mean free
path [* of light. The optical configuration is usually such
that there is no discrimination against transmitted light
paths on the basis of their lateral excursion, which is on
average O(L). Either the sample is illuminated with a
plane wave and speckle is formed with light that emerges
from a point on the opposite face [19,20], or, more simply
and efficiently, the sample is illuminated with a beam
much smaller than the sample width and speckle is
formed with light that emerges from over the entire op-
posite face [22]. The standard DWS result based on Eq.
(6) and diffusion theory is then

sinh[z,V'x ]+z,Vx cosh[z,V'x ]

g1pws(x)= z, 2,

(14+z2x)sinh[(L /I1*)V'x 1+2z,V'x cosh[(L/1*)Vx ]’

(7

where z, and z, are phenomenological parameters of order 1, respectively called the penetration depth and extrapola-

tion length ratios. The boundary conditions assumed in Eq. (7) are that the density of diffusing photons extrapolates
linearly to zero at a distance z,/* outside both faces of the sample. Diffusion theory cannot, however, adequately de-
scribe the propagation of photons close to the sample boundaries because there the velocity distribution is not isotropic;
the value of the extrapolation length ratio is chosen as z, =(2)(1—R)/(1+R), where R is an average diffuse boundary
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reflectivity, to best compensate for this shortcoming [23,24]. The source of diffusing photons assumed in Eq. (7) is lo-
cated exactly at z,/* in from the edge of the sample; in practice, the value of the penetration depth ratio is usually taken
to be z, =1 on the grounds that /* is the average distance required for the propagation direction of the incident photons
to first become completely randomized. In reality, diffusing photons are created over a continuous range of penetration
depths up to O(/*) by photons that scatter away from the incident beam and become completely randomized, either in-
stantly as in the case /* =/ of isotropic scattering, or gradually by successive scattering events as in the case /* > I of
anisotropic scattering. It is therefore more appropriate that Eq. (7) be averaged over z, according to the joint probabili-
ty exp(—z,)z,+z,)/(L /1* +2z,) for a diffusing photon to be created at z,/* and then to be transmitted through the

slab [22]
[(L/1*)+22,]1Vx /(1—x)

81(pws)(X)=

This averaging scheme is, in principle, correct only for
the case of isotropic scattering. For anisotropic scatter-
ing, diffusion theory cannot describe the gradual conver-
sion of incident photons to diffusing photons and so while
no source term can be truly satisfactory, the exponential
form assumed for Eq. (8) is properly broad and may
reasonably be expected to be an improvement over the
single-penetration depth approximation of Eq. (7). How-
ever, this need not be the case: for highly anisotropic
scattering, no diffusing photons will be created near the
incident boundary and so the source term will be peaked
and may be better described by a point source.

The functional forms of Egs. (7) and (8) both give
reasonable results when compared with experiments on
well-characterized samples [18,19]; however, their range
of validity and accuracy are difficult to quantitatively as-
sess because there are so many adjustable parameters.
For example, in using Eq. (7) on colloidal suspensions
with purely diffusive dynamics, { Ar?%(7)) =6Dr with D
being the diffusion coefficient of the particles, there are at
least eight parameters whose values can be adjusted to
improve the agreement between theory and experiment:
D, 1*, z,, and z, in Eq. (7); the baseline and intercept in
the Siegert relation; and the choices for upper and lower
limits of the fitting interval. Furthermore, choice of
weighting and the order in which parameters are adjusted
can also influence fitting results, as can the presence of a
small amount of absorption or a finite coherence length

J

(142z2x)sinh[(L /1*)V'x 1+22z,V'x cosh[(L /I*)Vx ]

(8)

]

for the incident radiation. See Refs. [20,22] for recent
comparisons of theory and experiment on known sys-
tems.

As for the trends expected on theoretical grounds, note
that the diffusion theory approximations embodied by z,
and z,, or its average, all become better in the limit that
the sample is very thick in comparison with /*, since the
photon velocity distribution is then isotropic across all
but an insignificant portion of the sample. Indeed for
sufficiently large L /1*, Egs. (7) and (8) both reduce to the
simple form g,(x)=V/(L/I*)*x /sinhV'(L/I*)*x in-
dependent of the value of z, or the treatment of z,. For
the usual experimental case of samples of intermediate
optical thickness, L /1* ~ 10, the treatment of source and
boundary terms are important issues, unfortunately, and
the ultimate accuracy of the diffusion theory results, as
well as their failure for decreasing L /I* independent of
the continuum approximation, have not previously been
determined. Even so, it is possible to circumvent the a
priori inadequacies of the diffusion approximations by ap-
plication of the radiative transfer theory of photon trans-
port, which explicitly relaxes the assumption that the
photon velocity distribution is everywhere isotropic [25].
The resulting correlation transfer equation can be solved
formally, but must be evaluated numerically; for
transmission through a slab with isotropic scattering and
no boundary reflections, an accurate analytical approxi-
mations is given by

L /1) +/E WX [(1—x/3)/(1—x) 2

8icrix)=

Apart from the last algebraic factor in the numerator,
this expression is identical to Eq. (8) if an extrapolation
length ratio of 4/ 1 is used instead of the best diffusion
theory value of z, = %; the actual numerical prefactors ap-
pearing in Eq. (9) depend, however, on an arbitrary
choice of parameters used to approximate an exponential
integral in the theory (see Egs. (46) and (47) of Ref. [25]).
Note, also, that both Egs. (8) and (9) become unphysical
near a singularity at x =1. Generalization of the correla-
tion transfer approach to anisotropic scattering with
nonzero boundary reflectivity has not yet been reported.

~ (1+x/3)sinh[(L /1*)Vx 1+2Vx /3cosh[(L /I*)Vx |

II. RANDOM WALK SIMULATIONS

The accuracy of the approximate diffusion theory and
correlation transfer solutions of Eq. (6) for the case of
transmission through a slab geometry, as well as the con-
tinuum approximation of Eq. (5) on which Eq. (6) is
based, can be directly tested by computer simulation.
Since in transmission the vector nature of photons and
the interference of different paths can be neglected, as in
the above theories, photon propagation can be modeled
by random walks. The general procedure adopted here is
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therefore, as in previous computer simulation tests of
diffusion theory predictions for multiple light scattering
processes [21,24], to collect statistics for a series of walk-
ers, or photons, which are launched one at a time in the
+z direction and allowed to wander by a series of steps,
or scattering events, until exiting the slab at either z =0
or z=L. For typical experimental systems, the scatter-
ing is anisotropic and the reflectivity of the boundary is
nonzero; it is important, therefore, to explicitly include
these effects. When a simulated scattering event happens
to land outside the sample, there is thus assumed to be an
angle-independent probability R for the photon to specu-
larly reflect from the boundary such that the current step
length is unchanged; for optically thin slabs, this includes
the possibility of multiple reflections from opposite faces.
The rules for generating random steps are such that the
scattering can be either isotropic or peaked in the for-
ward direction. For the case of isotropic scattering in
three dimensions, the change in z coordinates is simply
Az = Aspu, where step size and direction are, respectively,

As=—1*InN_.4, H,=cos0,=2N_ ,—1, (10)

both N_,.4 are random numbers generated uniformly be-
tween zero and 1, but by different algorithms, and 6, is
the angle between the propagation and +:z directions.
For each such step, the total dimensionless square wave-
vector transfer is increased by

Ay=1—cosf=1—pu,o—V (1—pu2)(1 —p2y)sing, |
(11D

where u,, is the +2z direction cosine of the previous step,
and @, =27N_,4 is an azimuthal angle around the +z
direction. For the more general case of anisotropic
scattering, the random steps are generated more directly
using the Henyey-Greenstein scattering form factor [26]:

As=—[InN

rand *
1 1—(u)? 2
=—— [(1+{u)H)— 1 »
E=20w) [( {u)®) [1—(#)+2(y)de ] "
¢:277Nrand ’ (12)

where p=cosf is the cosine of the scattering angle,
whose average is input as (u)=1—(I,/I*) according to
the desired degree of anisotropy, and ¢ is an azimuthal
angle about the unscattered direction. The Henyey-
Greenstein form factor is often used to model the charac-
teristics of actual scattering media, and represents an ap-
proximation of the true scattering form factor by a
Legendre polynomial expansion that sums up to
Fp)=11—(u))(1+{u)?>—2{uduw) 732 It is easily
verified that [ F(u)dp=1, [' F(up)udp={pu), and
that the rule in Eq. (12) reproduces F(u) if N ,,4 is uni-
formly drawn between zero and 1. For all simulations,
lengths are measured in terms of the scattering length so
that the prefactor of the logarithms in Eqgs. (10) and (12)
is —1, thus saving one multiplication per scattering
event.
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A. Path length vs total square wave-vector transfer

The simplest quantities to collect statistics on are the
path lengths and the total square wave-vector transfers.
According to the continuum approximation of Eq. (5),
the dimensionless path length S=37_,As; /I* should be
equal to the dimensionless total square wave-vector
transfer Y=37_,(1—cosf;) for paths consisting of a
sufficiently large number n of scattering events. To
directly test this assertion, and in particular to demon-
strate the nature of it failure for small n, Fig. 1 shows
scatter plots of S/Y vs S for 1000 transmitted walks and
4 combinations of boundary reflectivity and scattering
anisotropy at a fixed optical thickness of L /I*=10. In
all cases, the average values of S and Y are on the order
of (L /1*)*=100, and the ratio S/Y clusters around an
average value noticeably greater than 1. While the con-
tinuum approximation is therefore not strictly valid,
there is a certain statistical agreement between S and Y
that improves for longer S and for increasing degrees of
scattering anisotropy and boundary reflectivity, all of
which give rise to a larger number of scattering events.
The discrepancy between S and Y is most pronounced for
shorter paths, as expected, because they consist of a
smaller number of scattering events. Note for example
that the shortest paths occur for photons that snake their
way across the slab by scattering only a few times close to
the forward direction; while the path length can never be
less than the slab thickness, the value of Y can be arbi-
trarily small and the ratio S/Y can be arbitrarily large.
Such snakelike photon paths must be made statistically
insignificant, through increased slab thickness, level of
anisotropy, or boundary reflectivity, for the continuum
approximation to be valid.

Eo R=0 ] | R=1/2
30 <pU>=0 - =

FIG. 1. Scatter plots comparing path length (S X[ *) with to-
tal square wave-vector transfer (Y X2k2) for 1000 random
walks transmitted through slabs of fixed optical thickness
L/I1*=10; results are labeled according to the boundary
reflectivity R, and the average cosine of the scattering angle
(p). In the limit of a large number of scattering events per
path, S and Y should be equal; this continuum approximation
holds on average except for short, snakelike, paths.
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In order to gauge the prevalence of snakelike photon
paths and their effect on the continuum approximation,
the average path length can be compared with the aver-
age total square wave-vector transfer. The fractional
difference of (S) from (Y) as a function of increasing
optical thickness is thus shown in Fig. 2 for two values of
boundary reflectivity and several degrees of scattering an-
isotropy: {(u)>=0 wusing Egs. (9) and (10), and
(p)»=1075 2, 2 and Z using Eq. (12). The agreement
between the isotropic and nearly isotropic results serves
as a check on the simulation algorithms and codes. The
data in Fig. 2 are based on as many as 4 000 000 transmis-
sion events, or as few as 6250, depending on the optical
thickness and the scattering anisotropy. The magnitude
of the difference of {S) and { Y) simulation data is seen
never to exceed 10%, even for slabs as thin as L /I*=3,
and to vanish rapidly with increasing optical thickness.
A constant improvement factor of roughly 2 is obtained
by increasing the boundary reflectivity from zero to 1.
Also, a modest amount of scattering anisotropy
significantly improves the agreement of (S) and (Y);
however, the benefit of increasing anisotropy saturates at
a factor of roughly 2 for anisotropies greater than about
1*/I;=10. The simulations in the next section will there-
fore focus on the two cases of /*/I;=1 and I*/I,=10.
Note in Fig. 2 that for at least 1% agreement between
(S) and (Y), the minimum optical thickness is never
more than L /I*=14, in the case of isotropic scattering
and no boundary reflections, but can be as small as
L /1*=7, as in the typical experimental situation of
R~} and [*/I;=10, and could be smaller for even
higher boundary reflectivities. Significant error due to

0.1
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(=]
o H %
VY 0.01 S - Sk -
T __E_ Do E“O. 9
¢ 3
R=0 oCe 4
(a) R= oo *
0.001 go
A — . —
0 : 3
_ ]
A AS Te Yo'
Q S h e ??“0-
V. o0.01 g —
- VYl & ey 3
/\ E ° Og 3
¢ % e‘f%m
o
Ce
(b) R=1/2 ¥ Cacn,
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FIG. 2. Fractional difference of the average dimensionless
path length (S) from the average dimensionless total square
wave-vector transfer (Y) for random walks transmitted
through slabs of optical thickness L /I*. Open circles, solid cir-
cles, squares, diamonds, and triangles are for walks where the
average cosine of the scattering angle is () =0, 107¢, %, >,
and Z, respectively; this corresponds to /* /I, =1, 1/(1—107¢),
3, 10, and 30.
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the continuum approximation will therefore be present in
the analysis of actual data on slabs thinner than these op-
tical thicknesses.

B. Temporal autocorrelations

Even if (S) and (Y ) happen to agree to 1% for a
given system, the normalized electric field autocorrela-
tion functions computed from Egs. (3) and (6) can differ
by substantially more. Since for transmission through a
slab, the distribution functions are peaked and (Y ) and
(S) are well defined, the short-time small-x limiting
form of the -correlation functions can be found
by expansion of the exponential factors in Egs. (3)
and (6), giving g;y(x)=1—x{Y)/3+ --- and g;5(x)
=1—x{(S)/3+ - -, respectively. At sufficiently short
times, where all paths contribute equally according to a
simple average, g,5(x) will therefore have the same initial
functional form as g,y(x), but will decay faster since (S)
always exceeds (Y ). At longer times, by contrast, the
exponential factors cannot be expanded and will weight
the smaller-S and smaller-Y paths more heavily. This
will cause the functional forms of g;y(x) and g;5(x) to
differ because, as seen in the scatter plots of Fig. 1, paths
with small values of S tend to have even smaller values of
Y. In short, g,y(x) should begin its decay more slowly
than would be predicted by the small-n approximation of
g1s(x) according to the difference between (S ) and (Y ),
while at longer times g,y(x) should decay progressively
more slowly than g;4(x) because of the presence of
snakelike photon paths. This is confirmed by the simula-
tion results shown in Fig. 3 for g,y(x) and g,¢(x), com-
puted by simulation directly from Egs. (3) and (6), at fixed
L /1*=10 and four combinations of scattering anisotropy
and boundary reflectivity. The plots consist of three to
five runs each having 10° transmission events; since the
separate runs are indistinguishable, the plotted curve
widths are an upper limit on error due to insufficient sam-
pling of the § and Y distributions. As expected, the
correlation functions are roughly exponential in x with
decay constants set by (S) 2 (Y )=(L/I*)? and g,y(x)
has a more slowly decaying functional form than g¢(x).
As further expected from Fig. 1, agreement between
g1y(x) and g,¢(x) improves with increasing boundary
reflectivity and scattering anisotropy. Note that 11 de-
cades of decay of the field autocorrelation, as shown in
Fig. 3, corresponds to three decades in the intensity auto-
correlation and is the limit of ordinary experiments.
Even though (S ) and {(Y) differ by no more than 2%
for the cases shown, the correlation functions can differ
by up to factor of 2 over the experimentally measurable
range, and would differ by even more could the measure-
ment range be extended.

Apart from the above comparison of g,;y(x) with
g15(x) as a test of the large-n continuum approximation,
it is important also to judge the accuracy of the analytic
predictions of Eqgs. (7)—(9) since they are used in analysis
of experimental data and are all based on further approxi-
mations. Toward this end, Fig. 4 shows the difference
Ag(x) of the correlation function predictions from simu-
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FIG. 3. The normalized electric field autocorrelation func-
tion g,(x) as a function of the dimensionless dynamical variable
x=k*(Ar?*(7)) for transmission through four slabs of optical
thickness L/I*=10. Solid curves are for the benchmark
g1y(x), computed by simulation directly from Egs. (3) and (4),
and the dashed curves are for the continuum approximation
g15(x) computed by simulation directly from Eq. (6); the dotted
lines represent the small-x behavior In[g,y(x)]=~—T;x. Note
that the decays are nearly exponential in x with a decay con-
stant set by (L /I*)?, the typical number of completely random
steps in an average transmission event. Also, g,y(x) has more
upward curvature than g,5(x) since, as seen in Fig. 1, there are
more small-Y paths than small-S paths. Plots are labeled ac-
cording to the boundary reflectivity R and the average cosine of
the scattering angle {u).
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FIG. 4. Difference between the approximate and benchmark
correlation functions Ag, =g, —g,y as a function of the dimen-
sionless dynamical variable x =k2{(Ar%(7)) for transmission
through four slabs of optical thickness L/I*=10. The solid
curves are for g,g(x) of Eq. (6); the dashed curves are for
g1pws(x) of Eq. (7); the dash-dotted curves are for g,(pws)(x) of
Eq. (8); and the dotted curve is for g, cr(x) of Eq. (9). Plots are
labeled according to the boundary reflectivity R, and the aver-
age cosine of the scattering angle {u).
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lation results of the benchmark g;y(x) for the same four
special cases of L /I*=10 considered previously in Figs.
1 and 3. Since the correlation functions all start at 1 and
decay toward zero, the differences vanish for both large
and small (L /I*)?>x, and in Fig. 4 reach a maximum of
Ag,(7)=0.02 near (L /I*)’x =~ 10, where g,y(7)=0.2 is
still easily measurable. To compare functional forms,
note that for the two cases of isotropic scattering shown,
g1(pws) of Eq. (8) agrees better with g,y than g,pws of
Eq. (7), whereas the opposite holds for the other two
cases of anisotropic scattering. Furthermore, g, pws and
g1(pws) are both superior to g; o1 of Eq. (8) for isotropic
scattering and no boundary reflections, the only case for
which it is currently available.

Errors arising from the continuum approximations can
be distinguished from errors arising from transport ap-
proximations using the same figure. Since g3 —g,y mea-
sures only the former, any deviation of Ag,(x) from
g1s —&y in Fig. 4 is entirely due to the latter. It is curi-
ous that g, pwg agrees with g g better than both g (pws)
and g, ¢, since their transport approximations are not as
severe. Furthermore, it is fortuitous that errors from the
continuum and transport approximations are comparable
in size and opposite in direction, at least for L /I* =10,
giving analytic predictions closer to g,y(x) than could
have been expected.

The remaining plots show different measures of the
transmission correlation function differences as a func-
tion of the optical thickness L /I* of the slab, and should
be useful for optimizing the accuracy of data analysis and
estimating the remaining level of systematic error. The
first, shown in Fig. 5 for four combinations of scattering
anisotropy and boundary reflectivity, is an average abso-
lute difference defined by

(lagi )= [lg,—g1yld logyox . (13)

When g(pws) and g;cy reach a minimum and then in-
crease near the singularity at x =1, and are hence un-
physical, their values are set to zero in computing the
above integral. Equation (13) is a useful average because
the differences, as in Fig. 4 but irrespective of the value of
L /1*, are most significant over about one decade in x
around (L /I*)%x =10, so that {|Ag,|) is a robust indica-
tor of the typical maximum difference. The results
displayed in Fig. 5 all decrease rapidly with increasing
L /1*, and show that g, pws is the best functional form
for very thin slabs and anisotropic scattering, while
g1(pws) is better for moderate to thick slabs and isotro-
pic scattering. Whichever form is ultimately used for
data analysis, systematic errors will be significant if ex-
perimental values of g,(7) are not all much greater than
(|Ag,|). Since experiments are usually performed on
slabs of intermediate thickness, 7 <L /I* <20, and g,(7)
can easily be measured down to 0.03, systematic errors
will be present according to Fig. 5 and care must there-
fore be taken.

Another measure of the accuracy of the predicted
correlation functions is how well their small-x behavior
agrees with that of g, y(x) and can be judged in terms of a
cumulant expansion In[g;(x)]=—T x+1T,x*+ ---.
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FIG. 5. Average absolute deviation between the approximate
and benchmark correlation functions (|Ag,|) defined by Eq.
(13) vs optical thickness L /I*. The solid curves are for g,5(x) of
Eq. (6); the dashed curves are for g, pws(x) of Eq. (7); the dash-
dotted curves are for g(pws)(x) of Eq. (8); and the dotted curve
is for g,cr(x) of Eq. (9). Plots are labeled according to the
boundary reflectivity R and the average cosine of the scattering
angle {u).

The value of the first cumulant I'; not only determines
the small-x behavior, but also sets the scale for the full
decay since g;(x) is nearly exponential in x. Figure 6
shows results for the decrease of the fractional deviation
AT, /T, of the approximate cumulants from the bench-
mark cumulant of g;y(x) as a function of increasing
L /1* for the same four combinations of scattering anisot-

FIG. 6. Fractional difference in the approximate and bench-
mark correlation function cumulants vs optical thickness. The
solid curves are for g,s(x) of Eq. (6); the dashed curves are for
g1pws(x) of Eq. (7); the dash-dotted curves are for g, (pws)(x) of
Eq. (8); the dotted curve is for g, cr(x) of Eq. (9); and symbols
are for previous (S)/(Y)—1 data shown in Fig. 2. Plots are
labeled according to the boundary reflectivity R and the average
cosine of the scattering angle (u ).
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ropy and boundary reflectivity considered previously.
Since g,y(x)=~1—x(Y)/3 and g;5(x)~1—x(S)/3
hold for small x, the fractional cumulant difference of
g1s(x) from g,y(x) is AT,/T;=(S)/{Y)—1; the re-
sults from Fig. 2 for the fractional difference in the aver-
age dimensionless path length and total square wave-
vector transfer are therefore included in Fig. 6 as a check.
In all cases shown, the cumulant of g, pwg gives better
agreement with the benchmark than that of either
g1(pws) Or &icr, but the degree of accuracy depends
significantly on the scattering characteristics; the slab
thickness must be greater than L /I* =20 for 1% accura-
cy if the scattering is highly anisotropic, but greater than
only L /I* =5 if the scattering is isotropic. Such high ac-
curacy in the first cumulant of g, pws is the fortuitous re-
sult of the partial cancellation of continuum and diffusive
transport approximation errors.

If the functional form of the scatterer’s dynamics
(Ar%(1)) is to be determined by inversion of g,(7) data,
then the quantitative shape assumed for the correlation
function is an important issue and is distinct from the
overall rate of decay set by the first cumulant. For exam-
ple, consider the case of perfectly diffusive dynamics
(Ar*(t))=6Dr. Inversion results for (Ar?(r)) based on
any of the theoretical forms of g,(x) in Eqgs. (7)-(9) will
show the correct behavior at short times (Ar2(7)) <7,
and the constant of proportionality will simply be wrong
by the cumulant difference shown in Fig. 5. At longer
times, however, the inversion results for {Ar%(r)) will
not be proportional to 7 because of inaccuracies in the
theoretical shape assumed for g,(x). The following frac-
tional difference corrects for the cumulant error and
therefore serves to quantify the accuracy of the shape of
g(x):

(x) g1(xTy/T)—gy(x)
x =
X g1y(x)[1—gy(x)]

(14)

The difference is scaled in such a way as to emphasize
that the accuracy of the theoretical form of g;(x) with
respect to its distance from both 1 and zero are equally
important; therefore, y(x) also gives the level of sys-
tematic error present in inversion results for the function-
al form of the time dependence of (Ar%(7)). Examples
of the monotonic increase of y(x) away from zero at
small x are shown in Fig. 7 for fixed L /I*=10 and four
combinations of boundary reflectivity and scattering an-
isotropy; without the cumulant correction in Eq. (14),
X(x) would begin at AT", /T';.

Presuming that at least 1% accuracy is desired in the
theoretical shape assumed for g,(x), it is useful to define
81,min as the value of g y(x) where x(x)=0.01. If data
analysis is then restricted to times 7 small enough to
satisfy g,(7)> g in, the functional form of inversion re-
sults for (Ar%(r)) will be accurate to 1%; the overall
proportionality factor will of course still be in error ac-
cording to the cumulant difference plots of Fig. 6. Simu-
lation results for g; .;, so defined are shown vs L/I* in
Fig. 8 for the usual four cases of boundary reflectivity
and scattering anisotropy; note that as L /I* increases,
the value of g ., decreases, and therefore the range of
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FIG. 7. Fractional error x(x) defined by Eq. (14) in the shape
of the approximate correlation functions in comparison with
simulation results for the benchmark, as a function of the di-
mensionless dynamical variable x =k2{Ar%r)) for transmis-
sion through four slabs of optical thickness L /I*=10. The
solid curves are for g,5(x) of Eq. (6); the dashed curves are for
g1pws(x) of Eq. (7); the dash-dotted curves are for g,(pws)(x) of
Eq. (8); and the dotted curve is for g; cr(x) of Eq. (9). Plots are
labeled according to the boundary reflectivity R and the average
cosine of the scattering angle ().

validity of the theories increases. Furthermore, since the
values of g; .;, are not typically small in comparison
with what can easily be measured, systematic errors in in-
version results for the functional form of (Ar%(r)) will
be greater than 1% unless g,(7) data smaller than g, ;.
are rejected. Caution should further be employed since
81,min €an have a dramatic L /I* dependence. As for a
comparison of theoretical forms for g,(x), note that
while g, pws predicts the cumulant more accurately than
g1(pws)> the shape of the correlation function is generally
more accurately predicted by g;(pws). For isotropic
scattering with no boundary reflections, g ¢ has the best
shape even though it is inferior by the previous compar-
isons.

The choice of 1% as the required accuracy for the pre-
dicted shape of g;(x) is, of course, arbitrary. If only
10% accuracy is desired, restrict attention to g,(7)>0.2
and L /1* > 10.

III. CONCLUSIONS

The accuracy and range of validity of diffusing-wave
spectroscopy theory predictions for the normalized elec-
tric field correlation function for photons transmitted
through a slab have been determined by random walk
computer simulations. For thin slabs, errors arise be-
cause of the presence of snakelike photon paths whose to-
tal square momentum transfer is significantly smaller
than the continuum approximation proportionality to
path length. Errors also arise for thin slabs because
diffusive transport approximations cannot accurately ac-
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FIG. 8. Value of the correlation function above which the
functional form of the predicted x dependence is accurate to
1%, i.e., g1y(x) evaluated where y(x)=0.01 vs optical thickness
L/I*. The solid curves are for g;s(x) of Eq. (6); the dashed
curves are for g,pws(x) of Eq. (7); the dash-dotted curves are
for g(pws)(x) of Eq. (8); and the dotted curve is for g; cp(x) of
Eq. (9). Plots are labeled according to the boundary reflectivity
R and the average cosine of the scattering angle {u).

count for the behavior of photons as they enter and leave
the sample. The accuracy of the DWS theories is gauged
by AT';/T"|, how well they predict the initial decay scale
of the correlation functions; the simulation results of Fig.
6 indicate that in typical experimental situations the level
of systematic error will be a few percent. The range of
validity of the DWS theories is gauged by g p;,,the value
of the benchmark correlation function below which the
shape of the predicted correlation function deviates by
more than 1%; the simulation results of Fig. 8 indicate
than in typical experimental situations g, ;, is not small
in comparison with what can be easily measured.
Analysis of experimental g,(7) data should then be re-
stricted to g,(7)>g mi, to avoid artifacts from fitting to
an incorrect functional form; the fitting constants should
then be accurate to a few percent according to the value
of AT /T"|. The trends found by simulation are that both
g1,min and AT, /T"; decrease rapidly with increasing slab
thickness, boundary reflectivity, and scattering anisotro-
py. Also, errors introduced by the continuum and
diffusive transport approximations are found to partially
cancel one another; therefore, both must be addressed
simultaneously by any future analytic theory if it is to at-
tain significantly greater accuracy. Alternatively, ran-
dom walk simulation results for g, y(x) can be used to an-
alyze experimental data if higher precision is required.
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