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Bubble-Scale Model of Foam Mechanics: Melting, Nonlinear Behavior,
and Avalanches
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By focusing on entire gas bubbles, rather than soap films or vertices, a microscopic model was recently
developed for the macroscopic deformation and flow of foam in which dimensionality, energy storage, and
dissipation mechanisms, polydispersity, and the gas-liquid ratio all can be varied easily [D. J. Durian, Phys.
Rev. Lett. 75, 4780 (1995)]. Here, a more complete account of the model is presented, along with results for
linear rheological properties as a function of the latter two important physical parameters. It is shown that the
elastic character vanishes with increasing liquid content in a manner that is consistent with rigidity percolation
and that is almost independent of polydispersity. As the melting transition is approached, the bubble motion
becomes increasingly nonaffine and the relaxation time scale appears to diverge. Results are also presented for
nonlinear behavior at large applied stress, and for the sudden avalanchelike rearrangements of bubbles from
one tightly packed configuration to another at small applied strain rates. The distribution of released energy is
a power law for small events, but exhibits an exponential cutoff independent of system size. This is in accord
with multiple light scattering experiments, but not with other simulations predicting self-organized criticality.
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Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches

D. J. Durian*
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

~Received 10 September 1996!

By focusing on entire gas bubbles, rather than soap films or vertices, a microscopic model was recently
developed for the macroscopic deformation and flow of foam in which dimensionality, energy storage, and
dissipation mechanisms, polydispersity, and the gas-liquid ratio all can be varied easily@D. J. Durian, Phys.
Rev. Lett.75, 4780~1995!#. Here, a more complete account of the model is presented, along with results for
linear rheological properties as a function of the latter two important physical parameters. It is shown that the
elastic character vanishes with increasing liquid content in a manner that is consistent with rigidity percolation
and that is almost independent of polydispersity. As the melting transition is approached, the bubble motion
becomes increasingly nonaffine and the relaxation time scale appears to diverge. Results are also presented for
nonlinear behavior at large applied stress, and for the sudden avalanchelike rearrangements of bubbles from
one tightly packed configuration to another at small applied strain rates. The distribution of released energy is
a power law for small events, but exhibits an exponential cutoff independent of system size. This is in accord
with multiple light scattering experiments, but not with other simulations predicting self-organized criticality.
@S1063-651X~97!14002-8#

PACS number~s!: 82.70.Rr, 83.70.Hq, 05.40.1j

I. INTRODUCTION

Aqueous foams consist of a random dispersion of gas
bubbles in a much smaller volume of liquid@1,2#. If the
solution contains enough stabilizing surfactants, or other
surface-active agents, then the structure formed by the col-
lection of bubbles can be essentially constant over time
scales ranging from minutes to hours. One can then reason-
ably ask about the mechanical, or rheological, properties of
the foam as a material. The response of aqueous foams to
externally applied forces is striking@3–5#. Even though they
consist mainly of gas and relatively little liquid, foams can
support small shear forces like an ordinary solid. The origin
of this elasticity is in the increase in gas-liquid surface area,
and the corresponding energy cost given by the surface ten-
sion, as the tightly packed bubbles distort under application
of shear. If the applied forces are sufficiently small, then the
response is linear and the shear modulus is given by the
stress per unit strain whether the experiment is performed
under controlled stress or controlled strain conditions. As the
applied stress or the imposed strain is gradually increased,
the behavior becomes increasingly complex. In the case of
applied stress, for example, the response first changes from
linear to nonlinear. Next, the response becomes irreversible
as topological changes are induced in which a few bubbles in
a finite region suddenly change neighbors. As the applied
stress is increased further, more and more rearrangements
occur but the resulting strain remains finite. Finally, when
the applied stress exceeds a ‘‘yield’’ stress, the system flows
indefinitely at nonzero strain rate by a never-ending series of
neighbor-switching rearrangements. If the strain rate is low,
the rearrangements are discrete avalanchelike events; but if
the strain rate is high the deformation is more homogeneous
and continuous, as in a simple viscous liquid.

The purpose of this paper is to explore, via computer
simulation, the connection between the complex macro-
scopic rheological behavior of foams and the underlying mi-
croscopic structure and dynamics of the tightly packed gas
bubbles. Special attention will be paid to the role of key
structural parameters such as gas volume fraction and the
bubble size distribution. These issues are of intrinsic interest,
not only because the range of behavior is rich and unusual,
but also since foams are familiar from everyday life and are
useful as materials in a broad range of applications. Study of
foams may also shed light on related systems where tight
packing of discrete objects is crucial, such as concentrated
emulsions and colloids, as well as granular media. Further-
more, theoretical study is especially timely since the advent
of multiple-light-scattering techniques is permitting new and
as-yet unexplained experimental insights into bubble-scale
dynamics@6–11#.

Since foams are naturally disordered, and since the bubble
rearrangement dynamics are nonlinear and collective, com-
puter simulation is an important tool for theoretical study.
Analytical calculation is possible only for periodic systems
@5,12,13,37#, or for linear rheological features@14#. While
such work can provide important insights, it cannot capture
the full range of behavior. The first simulations of foam rhe-
ology were by Weaire and co-workers for two-dimensional
foams with zero liquid content, where the packing of bubbles
can be described entirely by the continuous network of thin
structureless soap films that separate adjacent bubbles
@15,16#. The geometry and topology of this network are
highly constrained, as specifically accounted for in Weaire’s
approach. For instance, the vertices at which films meet are
all three-fold coordinated; if a film shrinks to zero length,
leaving an unstable fourfold vertex, then a neighbor-
switching topological rearrangement is implemented. The
only degrees of freedom are the end points and curvature of
each film; these are adjusted to minimize total interfacial
area for the given topology subject to the constraint that the*Electronic address: durian@physics.ucla.edu
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area of each bubble be fixed and the curvature be constant
along each film. This is done in a ‘‘quasistatic’’ fashion since
dissipation mechanisms are not included; consequently, there
are no viscous stresses, and the network structure is always
in static mechanical equilibrium@17,18#.

For three-dimensional foams, this general program is only
now starting to be implemented, largely because description
of the network of soap films is significantly more difficult.
Geometrically, the soap films have two different radii of cur-
vature that are neither constant nor independent; only the
total curvature, and hence Laplace pressure across the inter-
face, is constant. Topologically, the only stable junction of
films is threefold coordinated, and these so-called Plateau
borders are curves that are not necessarily confined to a
plane; the only stable junction of Plateau borders is fourfold
coordinated. Yet another difficulty is that foams in nature
usually contain enough liquid that the vertices, Plateau bor-
ders, and films all develop further structure that cannot be
ignored. It is proving possible to account for some of this
complexity by using the surface evolver program developed
by Brakke@19#. Such efforts have concentrated on dry peri-
odic systems@20,21#, though randomness and nonzero liquid
content are being pursued@22#. As in Weaire’s original ap-
proach, this is restricted to static phenomena since dissipa-
tion effects cannot be included.

For two-dimensional foams, Weaire’s group has made
significant progress in accounting for the effects of nonzero
liquid content@23–27#. This permits study of how the strik-
ing elastic character vanishes, or melts, as the liquid content
is increased and the bubbles become able to translate, rather
than distort, in response to imposed strain. Incorporation of
liquid is achieved by decorating the Plateau borders at which
three films meet with a small amount of liquid and by using
Laplace’s law to insure that the pressure is the same through-
out all borders and uniform within each bubble. Further ap-
proximations, besides quasistatic dynamics, are~1! the soap
films are structureless and straight outside the Plateau bor-
ders, which implies that the pressure is incorrectly the same
inside each bubble, and~2! liquid is not conserved but rather
is created locally as needed in order to satisfy Laplace’s law.
Perhaps because of such approximations, this approach
breaks down for foams wetter than about 89% gas content
and precludes definitive quantitative study of the melting
transition near 84% gas content.

In a separate effort, important advances have also been
made recently by Kawasaki and co-workers in accounting for
the effects of realistic dissipation mechanisms in dry two-
dimensional foams@28–30#. This permits simulation of shear
at nonzero rates and of the transition from plastic to fluid
behavior as the shear rate is increased. Of the many possible
dissipation mechanisms@31–33#, the dominant one for dry
foams is shear flow of the infinitesimal amount of viscous
liquid within the Plateau borders as a film is stretched or
shrunk@34#. To incorporate this mechanism most readily, the
films are approximated as straight line segments. Equations
of motion are then generated for the Plateau borders where
three films meet by balancing dissipation forces with surface
tension forces according to Newton’s second law for a mass-
less object. These are then solved subject to the constraint
that each bubble has constant area, and with suitable rules for
topology change when a film shrinks to zero length. This is

called the ‘‘vertex’’ model@28–30#, since the Plateau bor-
ders in a two-dimensional dry foam are structureless points.
Since ‘‘vertices’’ are the fundamental structural unit in this
approach, it is not applicable either for foams with nonzero
liquid content or for foams in three dimensions.

The models described above are all either at, or are essen-
tially expansions about, the dry foam limit where gas
bubbles are nearly polyhedra separated by thin curved soap
films. All are based on different uncontrolled approximations
and have different limited ranges of applicability. This
makes it nearly impossible to reconcile conflicting predic-
tions, as, for instance, in the case of the avalanchelike rear-
rangements to be discussed later. Furthermore, none alone is
able to capture the full range of behavior seen in nature.
Perceiving the need for a simpler, more all-encompassing
framework for considering how disorder, dimensionality,
and microscopic phenomena individually influence foam
rheology, I recently introduced a ‘‘bubble’’ model based on
a physical picture of pairwise interactions between entire gas
bubbles@35#. It is essentially an expansion about the wet
foam limit, where the gas bubbles are nearlyd-dimensional
spheres that are hence simple to describe. As do the previous
models, this approach also rests upon uncontrolled approxi-
mations; however, its parameters can be varied much more
widely. In particular, it has the unique advantage of simulta-
neously incorporating interaction anddissipationeffects for
foams of arbitrarydisorder, liquid content, anddimensional-
ity. Its most serious flaw is that it does not explicitly account
for bubble shapes and liquid degrees of freedom, and hence
does not possess a dry foam limit where the osmotic pressure
diverges to maintain the gas fraction below one. Otherwise,
the bubble model successfully reproduces the known quali-
tative features of static and dynamic foam rheology, in many
instances quantitatively@35,36#. Therefore, this approach
provides an important complement to the previous models
and can serve as a basis for developing physical intuition
about the particular influence of various microscopic ingre-
dients, for exploring new phenomena, and for reconciling the
other simulations approaches with each other and with ex-
periment. Here, I will first recapitulate more fully the con-
struction and implementation of the bubble model and then
present new results for the influence of polydispersity on the
melting transition and for the nonlinear behavior at finite
stress levels and strain rates.

II. BUBBLE MODEL

In a very wet foam, the gas bubbles are all spherical and
the only structural quantities are their radii$Ri% and the time-
dependent position vectors$rW i% of their centers. The imme-
diate goal is to develop equations of motion for the$rW i% by
considering all the pairwise interactions between neighbor-
ing gas bubbles. No explicit degrees of freedom will be in-
cluded for bubble shapes or for flow within the continuous
liquid phase. Physically, then, imagine what occurs if two
actual gas bubbles are gradually brought into contact at in-
finitesimal rate in an otherwise empty sea of liquid. Both
bubbles will remain spherical and experience no forces until
essentially touching, since the ranges of the van der Waals
force~attractive, originating from the dielectric mismatch be-
tween gas and liquid! and of the electric double-layer force
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~repulsive, originating from the adsorbed surfactants! are
typically less than 100 nm, which is much less than the typi-
cal gas bubble size of more than 20mm. If pushed into
geometrical contact, such that the center-to-center distance is
less than the sum of their radii, the two gas bubbles will
distort in shape rather than coalesce. The region of contact
will then flatten out into a soap film with a thickness deter-
mined by the combination of applied, van der Waals, and
double-layer forces. This and the concomitant increase in
total surface area give rise to a mutually repulsive force pro-
portional to the gas-liquid surface tension,sgl . This repul-
sive force is nearly harmonic@25,36–39#, that is, propor-
tional to the size of the deformationj5(Ri1Rj )2urW i2rW j u.
In two dimensions this is an excellent approximation. In
three dimensions, numerical calculation of the detailed
bubble shapes shows that the interaction potential rises ap-
proximately asja, wherea ranges from 2.1 to 2.6, depending
on the bubble coordination number, which is slightly faster
than harmonic@36,39#.

For simulations of the bubble model presented earlier@35#
and to be carried further here, the repulsive force is taken to
be perfectly harmonic as follows. The effective spring force
for each bubble scales as the Laplace pressure,sgl/Ri , since
large bubbles are more easily deformed. For two mutually
repulsing bubbles,urW i2rW j u,(Ri1Rj ), the individual springs
are added in series such that the effective spring constant is
F0/(Ri1Rj ); physically, the force constantF0 plays the role
of surface tension but with units of force; for a real foam it
would be on the order ofF0>sgl^R&, where^R& is the aver-
age bubble radius.. The repulsive forceFW i j

r acting on the
center of bubblei due to bubblej is then given by the spring
constant multiplied by the compression and a unit vector:

FW i j
r 5

F0

~Ri1Rj !
@~Ri1Rj !2urW i2rW j u#

~rW i2rW j !

urW i2rW j u

5F0F 1

urW i2rW j u
2

1

~Ri1Rj !
G~rW i2rW j !. ~1!

This force is taken to be strictly repulsive; if the two bubbles

do not overlap, thenFW i j
r is set to zero.

The second key ingredient in the bubble model is dissipa-
tion. When a foam is strained at nonzero rate, energy is dis-
sipated due to shear flow of the viscous liquid within the
soap films and Plateau borders, by flow within the adsorbed
surfactants films, and by a variety of other such mechanisms
@33#. The simplest assumption, given a description of foam
structure entirely by bubble positions and radii, is that this
produces a drag force on bubblei from neighboring bubblej
in proportion to their velocity difference:

FW i j
v 52b~vW i2vW j !. ~2!

The proportionality constantb is assumed to be the same for
all pairs of bubbles. To see that this is reasonable, consider
an actual foam where the bubbles are packed together such
that their shapes are all of comparable distortion away from
spherical. The intervening soap films are similarly all of
comparable area, of order^R&2 as set by the typical bubble
size, and of comparable thicknessl as set by the liquid con-
tent and the competition of surface tension and interaction

forces. When two interacting bubbles move with speedV
relative to one another, the viscous liquid within the inter-
vening soap film remains of roughly fixed thickness and is
sheared at rateV/ l . The drag force per unit area then has
magnitudeF i j

v /^R&25hV/ l , whereh is the liquid viscosity.
This shows that Eq.~2! has the proper form if shear within
the films is the dominant dissipation mechanism, and gives
an estimate for the constant asb5h^R&2/ l .

To find the time evolution of the center position of bubble
i , the contributions of Eqs.~1! and ~2! for the repulsive and
drag forces must simply be summed over all the neighboring
bubblesj . Since inertial effects are negligible, this total force
must add to zero according to Newton’s second law. Simpli-
fying for the velocity of bubblei gives the following equa-
tion of motion:

vW i5^vW j&1
F0

b (
j

F 1

urW i2rW j u
2

1

Ri1Rj
G~rW i2rW j !1

FW i
a

b
, ~3!

where only neighboring bubbles contribute to the average
velocity ^vW j& and the sum of repulsive forces. If bubblei is

an edge bubble, then an applied forceFW i
a may be imposed

with normal and tangential components that, respectively,
give the local pressure and shear stress, as would be trans-
mitted from a wall. Bubble motion will be generated strictly
according to Eq.~3! throughout this paper, though useful
variations can be made to details of the viscous and repulsive
@36# ingredients. This simple, physically motivated model
has several key advantages over previous approaches. First,
since Eq.~3! is a vector equation, it can be implemented
easily in any numberd of spatial dimensions keeping all
other ingredients constant. By contrast, prior simulations
were all based on dimension-specific topological features of
the bubble-packing structure. Second, the gas-liquid volume
fraction can be varied arbitrarily over the entire range
0,f,1 simply through choice of size and number of
bubbles per unit volume. By contrast, prior simulations were
all based on approximate decoration of the topological struc-
ture, and have been restricted to relatively high gas fractions,
well above the melting point. And third, stress relaxation can
be studied and the strain rate can be varied. By contrast, prior
simulations were all either quasistatic, or else intrinsically
limited to two-dimensional foams with gas fraction of iden-
tically one. The bubble model of foam rheology represented
by Eq. ~3! is the first in which the effects of randomness,
dimensionality, liquid content, and microscopic interaction
and dissipation effects can all be accounted for and system-
atically explored.

One important consequence immediately apparent from
Eq. ~3! is that bubble motion is highly overdamped. Further-
more, for a given set of bubbles, the only parameter affecting
this dynamics is a microscopic time scale,td5b^R&/F0 , set
by the average bubble size and the competition between
mechanisms for storing and dissipating energy. The indi-
vidual values ofb and F0 are not relevant. Physically,td
represents the exponential relaxation time constant for mo-
tion of a typical bubble toward equilibrium while all other
bubbles are held fixed, and thus gives the shortest time scale
for the duration of a topological rearrangement event. Of
course, as will be discussed in detail later, collective effects
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involving the simultaneous motion of many bubbles can
cause complete relaxation to last significantly longer; the ul-
timate relaxation time may even depend on system size.
Even though Eqs.~1! and ~2! merely approximate the true
effects of surface tension and viscosity, respectively, and
even though other storage and dissipation mechanisms may
be important, Eq.~3! should reasonably be expected to cap-
ture the essential behavior since there will always be a char-
acteristic microscopic time scale and since the dynamics will
always be overdamped. It is thus to be hoped that the general
approach of the bubble model has applicability beyond the
assumptions made in its derivation.

III. SIMULATION DETAILS

It is straightforward to integrate numerically the equations
of motion in Eq.~3! to find the response of a given system of
bubbles to various applied forces. Before results are pre-
sented in the next several sections, I first outline common
technical details for how systems are actually chosen, how
forces are applied, and how the numerical integration is per-
formed.

As in the previous simulations@35#, the results presented
here are all for two-dimensionalN3N systems of bubbles
confined to a square of edge lengthL. The top-N and
bottom-N edge bubbles are held at fixed height and relative
positions, as though stuck to movable plates, while periodic
boundary conditions are imposed to the left and right. The
bubble radii are taken from a triangular distribution that
peaks at̂ R& and vanishes at (16w)^R&. To investigate the
effects of polydispersity, the widthw of the distribution is set
either tow50.75, for a polydisperse size distribution similar
to that which naturally arises from coarsening by gas diffu-
sion, orw50.10, for a more monodisperse foam as may be
specially constructed. With such a distribution, the average
bubble area iŝA&5p^R&2[11w2/6] and the gas volume
fraction is given by the total bubble area, ignoring overlaps,
asf5N2^A&/L25pN2^R/L&2[11w2/6]. The value of̂ R&
is thereby chosen in units of the system edge length accord-
ing to the desired gas fraction. Bubble radii are then drawn
randomly from this distribution, and the very last one is cho-
sen such that the gas fraction is identically as specified. If
this last, required, radius lies outside the triangular distribu-
tion, or if the width of the realized set of bubbles is off by
more than 0.1%, then another set is drawn. This procedure is
employed separately for bubbles along both top and bottom
edges, as well as in the bulk.

Before rheology simulations can begin, the chosen system
of bubbles must first be equilibrated. This is done in two
separate tasks. The first is to construct rigid walls from theN
top andN bottom edge bubbles. These bubbles are initially
spread evenly along straight lines, to which they will be for-
ever confined. Their positions along the lines are then repeat-
edly updated according to the equation of motion, Eq.~3!,
until the total force on each bubble from the sum of its two
edge neighbors is zero. Both the applied force and the aver-
age neighbor velocity terms in Eq.~3! are set to zero; the
latter is required to break translational symmetry and damp
out the motion. After this is accomplished, the relative posi-
tions of the edge bubbles are held fixed in order to form rigid
walls that may be slid with respect to one another and

thereby shear the intervening bubbles. The second equilibra-
tion process is to relax theN222N bulk bubbles, initially
placed on a triangular lattice, with respect to both each other
and also the top and bottom walls. It is crucial that this be
done carefully in order to observe linear rheological behav-
ior, where the shear modulus, for example, is independent of
the sign and magnitude of the strain. At successive time
steps, the position of each bulk bubble is adjusted according
to Eq. ~3! from the repulsive spring forces it experiences
from all its neighbors, both in the bulk and within the top or
bottom walls. As in the first equilibration process, the ap-
plied force and average neighbor velocity terms are set to
zero. Also at each time step, the top and bottom edge bubbles
are slid as a rigid unit according to the parallel component of
the total repulsive spring forces exerted from all the neigh-
boring bulk bubbles. This is repeated until the total force on
each bulk bubble, and the total lateral force on the top and on
the bottom walls, are all zero.

Standard techniques are employed in order to make both
the equilibration and the subsequent rheology simulations
efficient and accurate. First, instead of comparing each
bubble with all others to determine the existence of a spring
force, only fairly close neighbors are examined by means of
a linked list @40#. This reduces the number of pairs of
bubbles to be compared at each time step from orderN2 to
order N. Second, instead of employing a forward~Euler!
finite differencing scheme to generate the change in bubble
positions in a time intervalDt, rW i(t1Dt)5rW i(t)1vW i(t)Dt,
wherevW i(t) is given explicitly by the right-hand side of Eq.
~3!, a semi-implicit scheme is used in which steps are gen-
erated from information that is more symmetrical across the
time interval~Ref. @41#, Chap. 15!. In particular, new posi-
tions are taken as rW i(t1Dt)5rW i(t)1

1
2@vW i(t)

1vW i(t1Dt)#Dt, wherevW i(t1Dt) is estimated in terms of
positions and velocities at timet from the matrix of partial
derivatives of the right-hand side of Eq.~3! with respect to
positions. This permits the time step to be made as large as
Dt50.2td without noticeably affecting the results. By con-
trast, the Euler scheme is unstable and requires thatDt be
infinitesimal in terms oftd .

One final point is that for all the simulation results pre-
sented here and in Ref.@35#, the average velocity term in the
right-hand side of Eq.~3! is taken aŝvW j&5ġyi x̂, whereġ is
the imposed shear strain rate,yi is the coordinate of bubblei ,
andx̂ is the unit vector in the imposed flow direction. This is
done mainly for computational simplicity, since then the
right-hand side of Eq.~3! gives the velocity of each bubblei
exclusively in terms of the bubble positions, but has other
benefits as well. TakinĝvW j& as a literal average would re-
quire that the equations of motion for all bubbles be simul-
taneously solved for the bubble velocities prior to integra-
tion; this entails the inversion of a large sparse matrix at each
time step, and also significantly complicates the use of im-
plicit finite differencing. However, note that^vW j&5ġyi x̂ is
actually a reasonable approximation if the typical bubble co-
ordination number is very large. Furthermore, it is the correct
description of the viscous interaction of an isolated bubble in
a viscous liquid undergoing shear, and is therefore superior
to a literal average in the limit of small gas area fraction.

Whatever its pros and cons, the choice adopted here for
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^vW j& cannot affect equilibrium configurations or static elastic
properties. It can, however, affect other phenomena to be
studied here such as bubble dynamics under steady shear and
stress relaxation following step strain. Work is now in
progress@42# that will examine empirically the sensitivity to
details of the interactions assumed in Eq.~3!. Until this is
completed, some insight can be gained by treatment of a
one-dimensional, periodic version of the bubble model. Con-
sider, then, a chain of massless beads connected by springs,
each with force constantk. The equations of motion for the
bead positions,xn , can be written as

05k@xn111xn2122xn#1b1@ ẋn111 ẋn2122ẋn#2b2ẋn
~4!

where two terms involving time derivatives represent two
distinct viscous interactions. In the context of foams, theb1
term represents dissipation due to relative motion of adjacent
bubbles as caused, for example, by shear of the intervening
liquid. This corresponds to a literal computation of^vW j& in
Eq. ~3!, which would not vanish during relaxation. Theb2
term represents dissipation due to absolute motion of bubbles
with respect to the continuous fluid phase, as happens, for
example, at very low gas fractions or during relaxation from
a state with more fluid on one side of the sample than the
other. This corresponds to the choice^vW j&5ġyi x̂ adopted
here for Eq.~3!, which vanishes during relaxation. For the
periodic one-dimensional model, the relaxation spectrum can
be found easily keeping both terms. Modes of wave vectork
relax exponentially as exp~2vt!, where

v~k!5k~12coska!/@b1~12coska!1 1
2b2# ~5!

anda is the equilibrium bead separation. For the special case
b250, all modes relax at the same rate,v~k!5k/b1. In gen-
eral, however, the fastest modes are at short wavelengths,
ka>p/2, and relax with ratev~k!>k/~b11

1
2b2!, whereas the

slowest modes are at long wavelengths,ka!1, and relax
with ratev~k!>k(ka)2/b2 independent ofb1. The longest
possible relaxation time thus varies with the square of the
system size. Such length-scale-dependent dynamics may be
expected for a real foam, where the collective relaxation of
bubble shapes is accompanied by the flow of liquid through-
out the entire interconnected porous geometry between the
tightly packed bubbles. Theb2 term, corresponding to the
choice ^vW j&5ġyi x̂ adopted here for simulations using Eq.
~3!, is needed to capture this behavior.

IV. STEP-STRAIN RESULTS

In this section, results are given for the linear response of
two-dimensional square samples ofN3N bubbles subjected
to a step strain. Attention will be restricted toN520 since
previous work@35# showed this to be sufficiently large that
the variance between different realizations of bubbles does
not obscure trends.

A. Stress relaxation

After thorough equilibration, the rheology simulations be-
gin with the instantaneous imposition of an affine step strain,
of sizeg, in which thex coordinate of each bubble center is
shifted tox1gy. Note that such a deformation is consistent

with Eq. ~3! for brief application of shear at a very large
shear rateġ, where the viscous forces completely dominate
the repulsive spring forces. Next, the bulk bubbles are al-
lowed to move according to Eq.~3!, with ^vW j&5ġyi x̂50,
until mechanical equilibrium is achieved, all the while keep-
ing the edge bubbles fixed. This relaxation process is moni-
tored via the total energy stored in the springs and the total
shear stress on the walls. The total energy is defined as the
sum over all pairs of interacting bubbles as one-half of the
spring constant times the square of the compression; the
shear stresss is defined as the average lateral force per edge
bubble. Typical results for a step strain ofg51025 are shown
in Fig. 1 for four configurations of bubbles with gas fractions
of f51 ~dry! and f50.84 ~wet! and with triangular size
distributions of widthsw50.75 ~polydisperse! andw50.10
~monodisperse!. The top plot in Fig. 1 displays the difference
in energy from the final value normalized so that the decay
starts at one. The data all exhibit nonexponential relaxations
that span many decades in time ranging from about 1% at
0.01td to full decay at~200–5000!td , consistent with the
presence of many length-scale-dependent relaxation times
predicted by the periodic one-dimensional version of the
model. The bottom plot in Fig. 1 displays the stress relax-
ation divided by the magnitude of the imposed step strain.
These data all exhibit nonexponential relaxations, as for the
energy, but that are not necessarily monotonic due to the
choice^vW j&5ġyi x̂50. The final value for the decay is non-
zero, since the system is strained, and gives the shear modu-
lus asG5limt→` s~t!/g. Note thatG is greater for the dry
foams and that the total relaxation time is greater for the wet
foams, independent of polydispersity. For all the examples
given here, the response is linear in thatG is independent of
strain, and no new springs are formed or existing springs
broken, for step strains up to roughlyugu,1023.

The equilibrium bubble configurations for the four par-
ticular foams just discussed are shown two ways in the next
figures. Figure 2 displays both the bubbles, as dotted circles,

FIG. 1. Energy and stress relaxation as a function of time fol-
lowing an imposed step strain ofg51025 for four 20320 systems
of bubbles. The different line codes indicate gas fractionf and the
relative width of the bubble size distribution as labeled.
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and the spring network, as solid lines between the centers of
pairs of repulsing bubbles. A spring is thus drawn only when
the circles representing two bubbles happen to overlap,
where actual bubbles would distort in shape away from
spherical and hence repel each other. The overlaps are large
enough to be visible in Fig. 2 only for the dry foams. Note
that by contrast with other studies of random spring net-
works, the springs shown in Fig. 2 are all compressed; none
is stretched. Inspection shows that the networks are sparser
for the wetter foams, as expected, since bubbles are then on
average further apart and interact with fewer nearest neigh-
bors. In fact, all bubbles are involved in the network for the
dry foams, but occasional isolated bubbles occur in the wet
foams. In both cases, the networks of compressed springs in
Fig. 2 all percolate not just from top to bottom, as required to
support static shear, but across the entire sample. Another
feature apparent in Fig. 2 is that the networks are more or-
dered for monodisperse foams, since in two dimensions iden-
tical spheres tend to crystallize when packed. The wet mono-
disperse foam is not as highly ordered as the dry since its
bubbles are only barely packed together.

The motion of bubbles that occurs during relaxation fol-
lowing sudden step strain is shown next in Fig. 3, for the
same four foams. Both the magnitude and direction of the
motion are indicated by a small line segment through the
center of each bubble given by (rW i2rW i

e)/gyi times a con-
stant; rW i is the new position of bubblei after stress relax-
ation,rW i

e is its equilibrium position before the step strain was
imposed, and the scaling constant is chosen so that the aver-

age segment size is smaller than the average bubble diam-
eter. According to this scheme, regions within the foam that
undergo affine shear deformation, (xi ,yi)→(xi1gyi ,yi),
such as in the edge bubbles of Fig. 3 or in a periodic network
free of defects, therefore all have horizontal line segments of
equal size. The response of bulk bubbles thus displayed in
Fig. 3 is evidently neither homogeneous nor affine. Never-
theless, large correlated regions in which the motion is
nearly affine exist, inside of which the line segments are all
of comparable size and direction. The trend apparent in Fig.
3 is that these uniformly elastic regions are more prevalent
for drier more monodisperse foams. The motion is least af-
fine for the wet polydisperse foam, where the size and direc-
tion of the line segments are the least spatially correlated and
can, in fact, vary wildly between neighboring bubbles.

The line segments displayed in Fig. 3, depicting how
stress is relaxed following step strain, allow visualization of
the motion that would occur in linear response to oscillatory
strain. If sinusoidal strain is imposed at a frequencyv that is
small in comparison with the reciprocal of the longest relax-
ation time, tr , as seen Fig. 1, then viscous forces can be
neglected and the spring forces on each bubble will sum to
zero throughout the entire strain cycle. The motion is hence
quasistatic, and each bubble will move sinusoidally with am-
plitude and direction prescribed by the line segments in Fig.
3. As the oscillation frequency increases, however, the vis-
cous forces will become more important, and the bubble mo-
tion will eventually become affine in the limitv@t r

21.
The line segments in Fig. 3 also support a recent model

for the anomalous viscous dissipation observed in three-
dimensional, random, monodisperse emulsions@14#. There,
an extraAiv contribution to the complex dynamic shear
modulus,G* ~v!, was observed and attributed to a distribu-
tion of ‘‘weak’’ regions in which bubbles can shift their rela-

FIG. 2. Equilibrium bubble configurations for the four systems
examined in Fig. 1. The top two and bottom two have gas fractions
of f51.0 and 0.84, respectively; the left two and right two have
distribution widths ofw50.75 and 0.10, respectively. Note that the
top and bottom edge bubbles are fixed to a horizontal plate, while
periodic boundary conditions are imposed to the left and right. A
solid line is drawn between the centers of adjacent bubbles if they
overlap and hence, physically, repel one another by a spring force.
These repulsive spring networks percolate across the system and
give the foam shear rigidity.

FIG. 3. The same configuration of bubbles shown in Fig. 2, now
with lines through the centers that depict the direction and magni-
tude of motion during relaxation after an imposed step strain as
described in the text. This motion becomes increasingly nonaffine
for greater liquid content and polydispersity.
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tive positions rather than distort elastically. These shifts are
proposed to occur where several bubbles are packed together
in such a way that they can be sheared in certain ‘‘easy’’
directions with a smaller elastic penalty than in others. The
Aiv contribution then arises, in both two and three dimen-
sions, from the fact that mechanical energy is dissipated,
rather than stored, in regions where bubbles shift and from
the assumption that the sample is isotropic on average, even
though it is locally anisotropic due to the presence of easy
directions. The simulation data in Fig. 3 are consistent with
this picture. Areas in which the deformation is roughly affine
can be identified as the ‘‘strong’’ regions, where energy is
predominantly stored; and areas where the deformation is
especially inhomogeneous can be identified as the ‘‘weak’’
regions, where energy is predominantly dissipated. Further-
more, the relaxation results in Fig. 1 may also be consistent
with this model and the emulsion experiments. Since the
complex dynamic shear modulus and the stress relaxation
modulus are related by Fourier transform, aAiv contribution
to G* ~v! corresponds to 1/At behavior in the stress relax-
ation. This is consistent with the gradual relaxation observed
in Fig. 1, and the fact that the exponential cutoff moves out
for larger systems@35#. Further simulations are required both
to test decisively the model of Liuet al. and to distinguish
the relative importance of the random packing geometry
from the choice of viscous dynamics in Eq.~3! on the
gradual stress relaxation.

B. Melting transition

Consider now the trends in linear rheological properties as
a function of liquid content. In particular, consider the nature
of the melting transition as the liquid content is increased
and the bubbles become free to move around one another
without any elastic distortion. This transition is tracked four
ways in Fig. 4 for sequences of polydisperse~widthw50.75!
and monodisperse~w50.10! foams subjected to instanta-
neous step strains of magnitudeg51025. The four quantities
displayed as a function of gas fractionf are the shear modu-
lusG, the average normal force per edge bubble or pressure
P, the coordination number, or mean number of spring
forces per bulk bubbleZ, and the relaxation timetr , defined
here as the time constant for the final exponential relaxation
of the total spring energy following step strain, as seen, for
example, in Fig. 1. Before examining the meaning of these
data, first note that an entirely new realization of bubbles is
constructed for each gas fraction. The scatter in the four
quantities shown in Fig. 4 is therefore purely statistical, and
is much greater than the accuracy with which any of these
quantities is determined for a given realization; indeed, the
results in Ref.@35# showed how the scatter from realization
to realization decreases as a function of system size. This
approach is more time consuming, but avoids introducing
systematic artifacts in the quantitativef dependence of rheo-
logical parameters that would result if, instead, the gas frac-
tion were adjusted more simply by scaling the radii of all the
bubbles in a single configuration. Also, note that there is no
dry foam limit as the gas fraction approaches 1. There, in a
real foam, the pressure should diverge@43,26,39# and the
shear modulus should reach its limiting value with zero slope
@24,25,27#. The behavior of the bubble model nearf51 is

therefore not indicative of very dry foams, but rather of more
typical ones with greater, nonzero liquid content.

Outside the dry foam regime, consider the results in Fig. 4
for the static quantities,G, P, and Z as a function off.
These all decrease as the liquid content is increased, and
simultaneously vanish below a critical gas fraction that de-
pends slightly on polydispersity,fc50.83560.005 for
w50.75, andfc50.84560.005 forw50.10. The simulation
approach based on approximate decoration of Plateau bor-
ders gives roughly the same critical gas fraction,fc50.84 in
Refs. @23, 25, 27# and most recentlyfc50.82 in Ref.@26#,
by extrapolation from data forf.fc10.05. Here, since data
are obtained on both sides of the transition, extrapolation is
unnecessary and the uncertainty infc is set only by statisti-
cal scatter from different bubble configurations. Dense ran-
dom packings of hard disks with a wide variety of size dis-
tributions @44# also give the same critical fraction,
fc50.8460.01; furthermore, they give a mean coordination
number ofZc53.7560.10 that is identical to the simulation
results displayed in Fig. 4. Note that this coordination num-
ber is defined by bubble-bubble contacts, not by a Voronoi
construction of nearest neighbors.

Empirically, the increase ofG above the melting transi-
tion can be described as a power law,G}(f2fc)

u, where

FIG. 4. The melting of polydisperse~widthw50.75! and mono-
disperse~w50.10! foams vs gas fractionf. The static shear modu-
lus G, pressureP, and coordination number~average number of
spring contacts per bubble! Z, all vanish, while the stress relaxation
time tr diverges, at aboutf50.84. Each point represents an entirely
different 20320 realization of bubbles.
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the exponent is less than 1 but depends noticeably on poly-
dispersity, u50.560.1 for w50.75, and u50.760.2 for
w50.10. These power-law fits are shown as the solid and
dashed curves, respectively, and are based on data spanning
one decade in~f2fc!. This contrasts with experiments on
three-dimensional, random, monodisperse emulsions@38#,
whereG rises almost linearly in~f2fc!. Based on a varia-
tion of the repulsive force law in Eq.~3! according to nu-
merical calculation of bubble shapes, such behavior was at-
tributed in Ref. @36# to disorder plus anharmonicity.
However, the increase ofu found here for decreasing poly-
dispersity suggests that details of the narrow size distribution
in the emulsion experiments may also play a role.

The quantitative increase of bothG andP abovefc can
be understood in terms of thef dependence of the coordina-
tion number. Physically, the pressure must be proportional to
both the average number of spring contacts per bubble and
their average compression, and must thus scale as
P}Z(f2fc). Indeed, this form provides an excellent de-
scription, independent of polydispersity, as shown by the
solid and dashed curves through the pressure data in Fig. 4.
This gives a linear increase withf2fc , in agreement with
exact calculation for periodic systems@43,39#. The behavior
of the shear modulus cannot be explained by a similarly
simple argument. The crucial observation, shown in Fig. 5, is
that to within statistical uncertaintyG is proportional to
Z2Zc over the entire range. Such behavior is observed in
two-dimensional percolation phenomena@45#, and supports
the contention first made in Ref.@23# that the melting of
foams is an example of rigidity percolation. In the usual
percolation problem, springs in a random network are pro-
gressively cut until rigidity is lost. Here, by contrast, springs
are effectively lost with increasing liquid content as pairs of
bubbles are given room to push each other apart. The differ-
ence is that the topology of the usual random spring network
is fixed and the springs may be stretched as well as com-
pressed, whereas here, the springs represent bubble-bubble
repulsion, and so cannot be stretched. Furthermore, the net-
work of compressed springs is not fixed but is rather deter-
mined by minimizing the total spring energies according to
the equation of motion of Eq.~3!. If the percolation picture
holds, then the repulsive spring networks should become in-
creasingly fractal on approach to the melting transition.

While the networks shown in Fig. 2 certainly become sparser
nearfc , the system sizes are far too small for a serious test
of fractal character. In any case, the simulation results pre-
sented here show that the coordination number plays a cen-
tral role in determining the static elastic properties of foams,
independent of polydispersity.

Now that statics have been addressed, consider the results
in Fig. 4 for the stress relaxation timetr as a function of
volume fraction. While the shear modulus and pressure both
vanish atfc , the relaxation time reaches a maximum, rising
sharply as the transition is approached from either above or
below. This behavior is seen for both the polydisperse and
monodisperse systems. Presumably,tr would actually di-
verge atfc for arbitrarily large samples. This suggests the
presence of a diverging length scale, and is thus further con-
sistent with the rigidity percolation picture where the corre-
lation length, beyond which the spring network is homoge-
neous and below which it is fractal, grows as the transition is
approached. This also shows how the transition may be dif-
ficult to observe experimentally, both because the time scales
become long and because the nature of the rheology is not
markedly different on the two sides of the transition. Above,
it is a viscoplastic solid with infinitesimal shear modulus;
below, it is a viscoelastic liquid with zero shear modulus; on
both sides, the transient storage of elastic energy is very long
lived and dominates the behavior.

V. CONSTANT STRESS RESULTS

While Sec. IV dealt with linear response as a function of
liquid content, this section and the next deal, respectively,
with nonlinear behavior at large strain amplitudes and during
flow. An alternative approach to static rheology is to con-
sider the strain produced by a given applied stress, as op-
posed earlier to finding the stress required to support a given
imposed step strain. After thorough equilibration, the simu-
lations now begin with the application of a very small shear
stress to the bubbles within the top and bottom edge plates.
The bulk bubbles are then allowed to move according to Eq.
~3! with ^nW j&50, and the edge plates are allowed to move
independently as a rigid unit according to the sum of applied
and spring forces from neighboring bulk bubbles. Eventu-
ally, the resulting strain becomes large enough that the total
applied force is balanced by the shear elasticity of the sys-
tem; when all motion stops, the final strain is recorded. The
applied stress is then increased slightly and the process is
repeated. Simulation results for two such runs are displayed
in Fig. 6, both for the same 12312 system of bubbles with
gas fractionf51, but with shear forces applied in opposite
directions. Raw data are displayed in the inset, and the ap-
plied stress divided by resulting strain,s/g, are displayed in
the main plot. Figure 6, first of all, demonstrates thats/g is
constant at sufficiently small applied stress, independent of
sign. This is the regime of linear response characterized by a
shear modulus,G5lims→0s/g.

As the applied stress is steadily incremented, the response
eventually becomes nonlinear, and then irreversible but still
static; for even greater applied stress, continuous flow can
occur. Figure 6 shows that the linear regime lasts up to about
ugu'1023, beyond whichs/g rises above the value ofG. In
spite of this nonlinearity, mechanical equilibrium at all

FIG. 5. Shear modulus vs coordination number. The data of Fig.
4, thus replotted, show a linear relationship supporting the rigidity
percolation picture of melting.
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strains throughout the range 0,ugu,0.03 can be achieved by
suitable choice of applied stress, and the motion is fully re-
versible; for example, if the applied stress is set to zero then
the system will relax back to a strain of zero. Beyond this
point, however, a small increment in stress can produce a
dramatically large, irreversible, increase in strain. As the ap-
plied stress passes a threshold, the strain in some region of
the foam becomes so large that a pair, or pairs, of bubbles are
pushed past one another; when this occurs, their repulsive
interactions no longer counteract the applied shear but in fact
aid it. Flow thus ensues, and the spring network rearranges
until a stiffer bubble configuration arises that is able to sup-
port the higher level of applied stress. The strain thus ad-
vances considerably at nearly the same stress, as shown by
the dashed lines in Fig. 6 between points of static mechanical
equilibrium. Note that once flow has occurred, the motion
can no longer be reversed: cessation of applied shear will not
result in a return to zero strain. New configurations of me-
chanical stability, in turn, eventually give way as the applied
stress is further increased. Finally, the applied stress becomes
too great to support any bubble arrangement, and the system
flows indefinitely. For the example foam studied in Fig. 6,
the largest static strains observed are between 1 and 1.5 in
magnitude; the simulation was stopped when the flow ex-
ceeded a strain of 10 under the assumption that static me-
chanical equilibrium would never again be achieved. The
corresponding yield stress required to produce indefinite flow
is slightly less than 0.013, comparable to the shear modulus.
It is worth emphasizing that the onset of irreversibility,
where topological rearrangements first occur, is nearly two
orders of magnitude below this point.

The behavior during indefinite flow can be studied under
conditions of constant applied stress, but not easily since the
strain rate is fairly constant only when the stress is much
greater than the yield stress. As the yield stress is approached
from above, the motion becomes increasingly nonuniform,
slowing down as stiff bubble arrangements arise and speed-
ing up as they are broken. Very long runs are then needed to
ascertain the average strain rate, which will vary dramati-

cally very close to the yield stress. This can be seen clearly
in the following simple physical picture of the dynamics.
Suppose in static mechanical equilibrium that the stress in-
creases linearly with strain all the way up to the yield point,
drops immediately to zero, and then repeats periodically. The
shear modulus is then given by the yield stress and yield
strain asG5sy/gy . The equation of motion for the strain as
a function of time in response to a given applied stresssy is
then

05sA2Gg2mdg/dt, ~6!

wherem is the so-called plastic viscosity of the system, since
the applied, elastic, and viscous forces must sum to zero.
This equation can be transformed into the empirical Bing-
ham plastic relation found for actual foams@4,5# simply by
replacing the elasticGg term by the yield stress, as though in
a random foam the elastic stress is always at the yield point,
and by assuming that the strain rate is constant in time. For a
periodic foam, Eq.~6! can be integrated over one strain cycle
to obtain the period, which in turn gives the average strain
rate as

^ġ&52
sy

m ln@12sy /sA#
. ~7!

In the limit of very large applied stress,sA@sy , the elastic
Gg term in Eq.~6! is negligible and Eq.~7! predicts a vis-
cous response at nearly uniform rate,^ġ&→sA/m. As the
stress is lowered, the average strain rate decreases and an
increasingly greater fraction of the strain cycle is spent
creeping up to the yield strain. To produce arbitrarily small
strain rates, the applied stress must be made infinitesimally
greater than the yield stress. In constant-stress computer
simulations this is difficult because the yield stress is not
known in advance and is difficult to locate accurately, as
seen in Fig. 6. A practical solution might be to simulate a
system with large enough aspect ratio that the strain rate
becomes uniform, never deviating far from the average
value.

VI. STEADY STRAIN-RATE RESULTS

Rather than simulate flow behavior under conditions of
constant applied stress, it is simpler to impose constant
strain-rate conditions and then characterize the resulting
time-dependent stresses. The behavior under steady strain-
rate flow is the subject of the remainder of this paper. After
thorough equilibration, the simulations thus proceed by a se-
ries of small time steps in which the top and bottom edge
walls are translated according to the desired strain rate while
the bulk bubbles are simultaneously allowed to move accord-
ing to Eq.~3!, with ^vW j&5ġyi x̂.

A. Bingham-plastic behavior

Results for a 636 system were shown previously in Ref.
@35#. Here, analogous results for a single 12312 system with
gas fractionf51 are shown in Fig. 7, always for the same
initial equilibrated bubble configuration. The inset depicts
raw data for the shear stress on the walls as a function of
strain for several different strain rates, labeled according to

FIG. 6. The straing at which mechanical equilibrium is
achieved with the imposed stresss, for a 12312 system of bubbles
with gas fractionf51 and distribution widthw50.75. Data points
were obtained by successively increasings from zero, in both posi-
tive and negative directions, and recording the strain once static
equilibrium was reestablished. Irreversible slips, where a large mo-
tion was caused by a small stress increment, are denoted by dashed
lines.

55 1747BUBBLE-SCALE MODEL OF FOAM MECHANICS: . . .



Deborah number,ġtd , where td5b^R&/F0 is the micro-
scopic relaxation time constant defined earlier. In all cases,
the stress initially increases and then undergoes a series of
fluctuations about some well-defined average. As the strain
rate is increased, the inset shows how the average level of
shear stress also increases while the frequency and relative
size of the stress fluctuations decrease. Such behavior is sum-
marized in the main plot by the average and maximum stress,
tabulated over the range 0,g,10, versus Deborah number;
error bars denote the rms size of fluctuations about the aver-
age, not statistical uncertainty. As the strain rate increases,
the relative size of the fluctuations is clearly seen to shrink
while the maximum eventually becomes indistinguishable
from the average. In the opposite direction, as the strain rate
decreases, the stress versus strain and strain rate approach a
limiting behavior, as seen both in the inset and in the level-
ing off of the maximum and average in the main plot.

Physically, the simulated stress versus strain and strain
rate behavior depicted in Fig. 7 can be understood as fol-
lows. First, at high strain rates, the viscous dissipation term
^vW j&5ġyi x̂ in Eq. ~3! is much larger than the repulsive
spring interactions. Accordingly, the instantaneous velocity
of each bulk bubble approaches the average value of all its
neighbors,vW i→^vW j&5ġyi x̂, and the deformation of the sys-
tem becomes affine. In this limit, where the source of elas-
ticity is negligible, the response of the foam is exactly like
that for a purely viscous liquid undergoing shear. In the op-
posite limit, of very small strain rates, the viscous interac-
tions in Eq.~3! are essentially negligible and the bubble con-
figuration is therefore almost always in mechanical
equilibrium with the applied shear forces. Thus, the stress
versus strain rate approaches a limiting behavior that is in-
dependent of strain rate. The source of fluctuations is, of
course, the irreversible rearrangement of bubbles from one
tightly packed configuration to another. As seen in the inset
of Fig. 7, and also in the constant-stress simulation results of
Fig. 6, this first occurs at a strain of around 3%. An example
of such a rearrangement is shown in Fig. 8 and will be dis-
cussed in detail later; for now, note only that viscous inter-
actions cannot be ignored during rearrangement, even though

they are otherwise negligible at low strain rates, and that the
fastest time scale in the rearrangement motion is set bytd .
The characteristic time scale that separates the low strain rate
behavior from the viscous high strain rate behavior is ulti-
mately also set by this microscopic time,td . The former
regime is achieved only when rearrangements are discrete
and come to completion before noticeable macroscopic shear
occurs, and the latter regime is achieved only when rear-
rangements are induced at such a high rate that they merge
together into continuous uniform motion.

The simulation results shown in Fig. 7 can be compared
quantitatively with expectations for real foams. Experience
@3–5# shows that the typical stress versus strain rate relation-
ship is roughly that of a Bingham plastic,s5sy1mpġ. A
reasonably good fit of this form to the maximum stress data
is shown in Fig. 7, where the yield stress issy50.01 and
plastic viscosity ismp510td . As found previously@35#, the
plastic viscosity is set by the stress relaxation time and con-
firms the above expectation regarding the crossover time
scale. Note that the rise of the maximum stress data away
from the low strain rate limit is slightly more gradual than
the Bingham plastic form, and is significantly more gradual
for the average stress data. The prediction of Eq.~7! is even
worse in this respect. This is not a crucial issue, however,
since real foams are nonequilibrium systems that are able to
relax elastic stresses via time evolution, causing the stress to
drop to zero for very small strain rates. The important point
is that the model presented here for bubble dynamics in a
flowing foam successfully reproduces the apparent Bingham-
plastic behavior seen for real foams at strain rates large in
comparison with evolution time scales. The only other simu-
lations that include dissipation effects to achieve finite rates
of shear are of Kawasaki’s vertex model, in which the vis-
cous force between two vertices scales as their relative ve-
locity raised to the power of23 @28–30#. This model also
produces results consistent with Bingham-plastic behavior
for stresses slightly larger than the yield stress. However, for

FIG. 7. Average and maximum shear stress vs imposed strain
rate, ġtd , for a 12312 system of bubbles with gas fractionf51
and distribution widthw50.75. Error bars denote rms fluctuations
about the average, and the solid curve is a fit of the maximum to
Bingham-plastic behavior. Raw stress vs strain data are shown in
the inset for several dimensionless strain rates as labeled.

FIG. 8. Bubble configurations before~dotted circles! and after
~solid circles! a sudden topological rearrangement that occurred at
an infinitesimal strain rate ofġtd51025; bubble-center trajectories
are also shown. This particular event released more elastic energy
from the spring network than any other observed in the 12312
simulation run; nevertheless, the topology change involved only a
few bubbles.
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very large strain rates where viscous forces completely domi-
nate, it is hard to see how stress could be proportional to
strain rate when the viscous force between neighbors is as-
sumed not to be proportional to their velocity difference.

B. Avalanches

Attention is finally turned to the nature of the sudden
avalanchelike topological rearrangements that occur when a
foam is sheared slowly. This has been simulated previously
by Okuzono and Kawasaki using their vertex model for a
perfectly dry, two-dimensional system of over 1000 bubbles
contained in a square cell and subjected to shear at dimen-
sionless rate of 1024 @30#. They measure the size of each
rearrangement event by the drop in total elastic energy trig-
gered unexpectedly by a small increment in strain. A broad
spectrum of events is found, such that the probability of oc-
currence decreases as a power law of size with an exponent
of 23

2. This was based on almost 10 000 events spread over
a total strain increase of 20, giving an average of about 0.5
event per bubble per unit strain. Such behavior is claimed to
be a deterministic example of self-organized criticality in
which events, or avalanches, occur in all sizes ranging from
a few bubbles to all in the system. This is supported by
figures showing large-scale circulatory flows that suddenly
start then stop. Avalanche statistics have also been reported
by Hutzler, Weaire, and Bolton for a two-dimensional sys-
tem of 50 bubbles subjected to quasistatic extension@27#.
Rather than tabulate energy drops, they measure avalanche
size by the number of changes in nearest-neighbor contacts
that must be performed simultaneously in order to restore
mechanical equilibrium. Histograms for this number are
sharply peaked for dry foams, but become broader and ap-
pear to develop a power-law tail with exponent of21 as the
liquid content increases toward the melting point. It is not
clear how to reconcile these two sets of observations given
the significant differences in the models, in the quantities
tabulated, and in system sizes and the level of statistics. A
consistent qualitative feature, however, is that the flow of
foam is accomplished intermittently by a series of sudden
avalanchelike topological rearrangement events with a broad
distribution of sizes, seemingly consistent with self-
organized criticality.

Experimentally, the sudden rearrangement events induced
in a slowly sheared three-dimensional foam with gas fraction
0.92 have been observed recently by Gopal and myself using
diffusing-wave spectroscopy, a noninvasive multiple-light-
scattering technique@9#. We find that macroscopically homo-
geneous shear deformation is accomplished by sudden local-

ized rearrangement events, without noticeable accumulation
of affine shear strain. We also find that the distribution for
the number of bubbles involved per avalanche must be
peaked, with no power-law tail; it has a well-defined average
corresponding to a small region roughly four bubbles across,
and is independent of system size. This is completely incon-
sistent with the picture of self-organized criticality suggested
in Refs.@27, 30#.

To begin reconciling theory and experiment, it is useful to
examine the nature of rearrangements predicted by the
bubble model for foam mechanics. This is simply a matter of
extending and analyzing the simulations used to produce Fig.
7. Like Kawasaki’s vertex model, the bubble model has the
virtue of including dissipation effects to produce rearrange-
ments with realistic dynamics and finite duration. But, since
bubble motion occurs entirely according to Eq.~3!, it has an
advantage over both the Kawasaki and Weaire approaches in
that topology need not be separately monitored and updated
‘‘by hand’’ when a film shrinks to zero length. Simulations
are thus performed as above for several square systems of
bubbles, each with gas fractionf51, subjected to shear at a
constant rate ofġtd51025. As seen from Fig. 7, this is slow
enough to obtain the low strain rate limiting behavior. There,
rearrangement events are evident as the sudden drops in
stress that come after a gradual rise. The motion involved in
such an event is depicted in Fig. 8 by the bubble locations
both before and after the stress drop, along with the center
positions at all times in between. The sudden avalanchelike
nature of this event is apparent from the large scale of mo-
tion in the interior, ranging up to about one bubble diameter,
and the infinitesimal motion of the edge walls throughout its
duration. Note that the event in Fig. 8 involves two compact
clusters of bubbles undergoing topology change, in the upper
left and upper middle right. Surrounding these two clusters is
a large swath of bubbles that shift without neighbor change
more or less coherently, though with gradually decreasing
amplitude.

Following Okuzono and Kawasaki@30#, avalanches can
usefully be described by the elastic energy drop per event.
The extent of the runs and the resulting event statistics are
given in Table I. In comparison with Okuzono and Ka-
wasaki, the system sizes range from significantly to slightly
smaller, but the runs are typically longer. Results for the
average event rate decrease somewhat with system size, and
extrapolate linearly to about 0.15 per bulk bubble per unit
strain as 1/N goes to zero. Note that since the largest system
simulated here is significantly closer to this limit than the
smallest, the effects of the finite sample size do not dominate

TABLE I. Rearrangement event statistics at a uniform imposed strain rateġtd51025 and gas fractionf51. The number of bubbles is
N3N, with the top and bottomN bubbles fixed to the edge plates, and the total shear strain suffered during the run isgm . The resulting
number of events isNe ; the event rate expressed as the number per bulk bubble per unit strain isRe5Ne/(N

222N)gm ; the average energy
release in units of the average bubble energy is^DE&/Eb , with standard deviation as given; and the median energy release in units of the
average bubble energy isDEm/Eb .

N gm Ne Re ^DE&/Eb Standard dev. DEm/Eb

6 116 1510 0.542 1.77 2.49 0.469
12 40.0 1763 0.376 2.22 3.45 0.510
18 22.8 1953 0.297 2.36 3.89 0.554
30 11.2 2050 0.218 2.41 4.22 0.550
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behavior; this can also be seen in the other event statistics in
Table I. The average rearrangement rate is only slightly
larger in the Okuzono-Kawasaki simulations, 0.50 per
bubble per unit strain.

While event rates may be comparable, the nature of the
flows and the quantitative details of the probability density,
P(DE), for events with energy dropDE, are entirely differ-
ent for the bubble and vertex models. Figure 9 shows this
distribution based on the simulation runs summarized in
Table I. Results for the four system sizes are nearly indistin-
guishable, as seen already in Table I, and adequately repre-
sent the infinite-sample limit. Evidently, the range of energy
drops produced by the bubble model spans an enormous
range, from 1027 to 50 times the average bubble energy,Eb .
The preponderance of events is small, with the median size
being about 0.6Eb and the average being about 2.5Eb . For
small events, below this average, the distribution is a power
law with exponent20.7060.05; for large events, it decays
as exp~20.2DE/Eb!. Without this exponential cutoff, the av-
erage and width of the distribution reported in Table I would
not be well defined. This contrasts with the Okuzono-
Kawasaki vertex model simulations@30#, where energy
drops occur over only two decades, in spite of the larger
system, and where the distribution is a power law,
P(DE)}DE23/2. Not only is their exponent different, but
they find no sign of an exponential cutoff for large events. A
related difference is that the largest events in the vertex
model presumably depend on system size, but do not in the
bubble model.

The avalanche statistics of the bubble model, though in
conflict with those of the vertex model, are actually in good
accord with the experiments by Gopal and myself@9#. Both
show lack of a power-law tail in the distribution of large
events, which leads to a well-defined average event size. And
both show that the average event is relatively small, only a
few bubbles across. For the bubble model, this can be seen
two ways. First, most events are smaller than the average
bubble energyEb and are exponentially rare above 5Eb .
Second, and perhaps more significantly, the extent of bubble
motion is not very large. For example, the event motion
shown in Fig. 8 is actually atypical; it is for thelargest
energy drop seen in the 12312 system. Even for this largest
of events, the clusters of bubbles undergoing topology
change only involve a few bubbles, and the individual mo-
tions are not more than a typical bubble size. Work is now in
progress@42# to determine whether the choice of dissipative
dynamics in Eq.~3! plays a role in forcing the typical event
size to be commensurate with the bubble size.

Physically, the cause for better agreement with experi-
ment may be that the bubbles are less constrained and hence
can rearrange before being significantly distorted. In both
experiment and bubble model, rearrangements can be in-
duced by strains of only a few percent; as more strain is
imposed, the bubbles simply rearrange to maintain shapes
fairly close to equilibrium. Accordingly, the elastic energy is
never much higher than in unstrained equilibrium and the
magnitude of the stress fluctuations is comparable to the av-
erage, as seen in Fig. 7. In the vertex model, by contrast,
rearrangements are not induced until the bubbles are very
highly distorted and the strains exceed 1; as more strain is
imposed, rearrangements occur but only relieve a small por-
tion of the extra energy, leaving the bubbles still highly dis-
torted. Accordingly, the elastic energy is significantly higher
than in unstrained equilibrium and the stress fluctuations are
small compared to the average, as seen in Figs. 3 and 4 of
Ref. @30#. This ‘‘loading’’ produced in the vertex model may
be the crucial difference. It does not occur in the bubble
model, presumably because the bubbles are always spherical
and the corresponding repulsive springs cannot be signifi-
cantly compressed via shear. It does not occur in experiment
either, presumably because bubbles are harder to constrain
for a foam which is fairly wet and which exists in three
dimensions.
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