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Reply to Comment by S. J. Cox and D. Weaire on "Free Drainage of
Aqueous Foams: Container Shape Effects on Capillarity and Vertical
Gradients"

Abstract
Cox and Weaire [1] rightly emphasize that our solution of the drainage equation for the “Eiffel Tower”
geometry does not treat the boundary conditions. There should be a no- flow condition at the top, and, after
leakage begins, the liquid fraction should be pegged to εc ≈ 0.36 at the bottom. They then show how
approximating the no-flow conditions at the top can improve agreement with numerical solution. But as
argued in [2], we maintain that the neglect of capillarity coming from boundary conditions at the bottom
dominates, and that this cannot explain our measurements. At short times, capillarity can delay the onset of
leakage, and at long times it can counter gravity and retain liquid in the foam indefinitely; in either case,
leakage is slower than our approximate solution, contrary to experiment. Therefore, we speculated that the
discrepancy arose from neglect of coarsening, whereby the average bubble size increases via gas diffusion from
smaller to larger bubbles. This is an important puzzle because, while the drainage equation successfully
predicts forced-drainage experiments, it fails dramatically for free-drainage experiments
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PACS. 82.70.Rr – Aerosols and foams.
PACS. 47.60.+i – Flows in ducts, channels, nozzles, and conduits.
PACS. 47.55.Mh – Flows through porous media.

Cox and Weaire [1] rightly emphasize that our solution of the drainage equation for the
“Eiffel Tower” geometry does not treat the boundary conditions. There should be a no-
flow condition at the top, and, after leakage begins, the liquid fraction should be pegged to
εc ≈ 0.36 at the bottom. They then show how approximating the no-flow conditions at the top
can improve agreement with numerical solution. But as argued in [2], we maintain that the
neglect of capillarity coming from boundary conditions at the bottom dominates, and that this
cannot explain our measurements. At short times, capillarity can delay the onset of leakage,
and at long times it can counter gravity and retain liquid in the foam indefinitely; in either
case, leakage is slower than our approximate solution, contrary to experiment. Therefore, we
speculated that the discrepancy arose from neglect of coarsening, whereby the average bubble
size increases via gas diffusion from smaller to larger bubbles. This is an important puzzle
because, while the drainage equation successfully predicts forced-drainage experiments, it fails
dramatically for free-drainage experiments [2].
While Cox and Weaire [1] consider conditions at the top of the sample, we clarify here the

role of boundary conditions at both top and bottom. Numerical results from the drainage
equation are shown in figs. 1(a)-(b) for an initial liquid fraction of ε0 = 0.36, and in fig. 1(c)
for several different ε0. In all cases the sample height is H = 70 cm, the flaring length is
z0 = 25 cm, the capillary rise scale is ξ = 5 cm, the characteristic flow speed is u0 = 0.026 cm/s,
and the dissipation exponent is m = 1. We predicted [2] that the liquid fraction profile
is ε(z, t) = ε0/(1 + t/t0), and that the normalized volume of drained liquid is V (t)/Vf =
1/(1 + t0/t), where t0 = z0/(ε0u0), i.e. that drainage is uniform and all the liquid eventually
leaks out. By contrast the full numerical solution for ε(z, t), in fig. 1(a), shows that the sample
becomes drier at the top and remains wet at the bottom. Consequently, in fig. 1(b), V (t)/Vf

does not approach 1 at long times. Also in figs. 1(a)-(b), we see that the liquid fraction at the
top, ε(0, t), is not zero as assumed in [1].
To see the role of boundary conditions, we disable them one at a time by taking ∂ε/∂z = 0.

When only the bottom conditions are correct, we find the dotted curve of fig. 1(b), in which
the volume of drained liquid is correct at short and long times. The final approach is too
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Fig. 1 – (a) Liquid fraction vs. depth; from top to bottom the times shown follow a 1-2-5-10 sequence
from 10 s to 105 s. The bottom-most curve is the equilibrium profile. (b) Volume of drained liquid
vs. time for various combinations of boundary conditions, and (c) for different initial liquid fractions.

slow because liquid enters via “flow” conditions at the top. When only the top conditions are
correct, we find the long-dashed curve of fig. 1(b), in which the volume of drained liquid is
correct only at short times. For later times the drainage is too fast, and all the liquid eventually
leaves the sample, because capillary forces do not act at the bottom boundary. When neither
boundary condition is correct, we recover our original approximation, the short-dashed curve
of fig. 1(b). The errors introduced at top and bottom act in opposite directions, extending
the agreement with the full solution to later times. However, the error due to neglect of the
bottom boundary conditions eventually dominates and all the liquid leaves the sample.
From fig. 1(b) we conclude that the bottom boundary conditions are most crucial. This

is emphasized in fig. 1(c), where numerical solutions show that, as the initial liquid fraction
deceases, the onset of leakage grows later and a smaller fraction of liquid eventually leaves.
Inspired by fig. 1(a), we model the liquid fraction profile by our original approximation except
near the bottom, where it is taken according to the equilibrium profile εc/[1 + (H − z)/2ξ]2.
These two forms intersect at a point that travels upwards until equilibrium is reached. The
resulting volume of drained liquid, shown in fig. 1(c) by the dashed curves, agrees very well
with the crucial features of the full numerical solution. This gives significant improvement
over not only our original approximation, but over that of [1] as well. Note that our modeling
approach cannot be used in a rectangular column, where the liquid fraction in the central
portion remains constant until altered by boundary effects that propagate inwards. This
shows the advantage of the “Eiffel Tower” geometry introduced in [2].
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