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Data Predictive Control using Regression Trees and Ensemble Learning

Achin Jain1, Francesco Smarra2, Rahul Mangharam1

Abstract— Decisions on how to best operate large complex
plants such as natural gas processing, oil refineries, and
energy efficient buildings are becoming ever so complex that
model-based predictive control (MPC) algorithms must play
an important role. However, a key factor prohibiting the
widespread adoption of MPC, is the cost, time, and effort
associated with learning first-principles dynamical models of
the underlying physical system. An alternative approach is to
employ learning algorithms to build black-box models which
rely only on real-time data from the sensors. Machine learning
is widely used for regression and classification, but thus far
data-driven models have not been used for closed-loop control.
We present novel Data Predictive Control (DPC) algorithms
that use Regression Trees and Random Forests for receding
horizon control. We demonstrate the strength of our approach
with a case study on a bilinear building model identified using
real weather data and sensor measurements. In a one-to-one
comparison, we show that DPC explains 70% variation in
the MPC controller. We further apply DPC to a large scale
multi-story EnergyPlus building model to curtail total power
consumption in a Demand Response setting. In such cases,
when the model-based controllers fail due to modeling cost,
complexity and scalability, our results show that DPC curtails
the desired power usage with high confidence.

I. INTRODUCTION

Machine learning and control theory are two foundational
but disjoint communities. Machine learning requires data
to produce models, and control systems require models
to provide stability and performance guarantees to plant
operations. Machine learning is widely used for regression
or classification, but thus far data-driven models have not
been suitable for closed-loop control of physical plants. The
challenge now, with using data-driven approaches, is to close
the loop for real-time control and decision making.

Consider a multivariable dynamical system subject to
external disturbances. The first and foremost requirement
for making any decision is to obtain the underlying control-
oriented predictive model of the system. With a reasonable
forecast of the external disturbances, these models should
predict the state of the system in the future and thus a predic-
tive controller based on Model Predictive Control (MPC) can
act preemptively to provide a desired behavior. In particular,
MPC has been proven to be very powerful for multivariable
systems in the presence of input and output constraints,
and forecast of the disturbances. The caveat is that MPC
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requires a reasonably accurate physical representation of the
system. This makes MPC unsuitable for control of complex
plants such as natural gas processing, oil refineries, boilers,
manufacturing plants, and buildings where the user expertise,
time, and associated sensor costs required to develop a model
are very high [17], [18].

There are two main reasons for model complexity. (1)
The prime contributor is the change in model properties
over time. Even if the model is identified once via an
expensive route, as the model changes with time, the system
identification must be repeated to update the model. Thus,
model adaptability or adaptive control is desirable for such
systems. (2) A secondary reason is the model heterogeneity
which further prohibits the use of model-based control. For
example, unlike the automobile or the aircraft industry, each
building is designed and used in a different way. Therefore,
this modeling process must be repeated for every new build-
ing. Due to aforementioned reasons, the control strategies in
such systems are often limited to fuzzy logic rules that are
based on best practices.

The question now is, can we employ data-driven tech-
niques to reduce the cost of modeling, and still exploit
the benefits that MPC has to offer? We therefore look for
automatic and data-driven approaches to control that are also
adaptive, scalable and interpretable. We solve this problem
with Data Predictive Control (DPC) by bridging the gap
between Machine Learning and Predictive Control.

In our previous work [9], [10], we introduced the concept
of DPC for receding horizon control. This work has the
following contributions. (1) We first formally present two
underlying algorithms: (i) DPC with regression trees, and
(ii) DPC with random forests, which also ensure recursive
feasibility in receding horizon control. (2) Using a bilinear
building model whose parameters were identified using ex-
periments on a building in Switzerland, we demonstrate the
strength of DPC for receding horizon control via one-to-one
comparison against a benchmark MPC controller. We show
DPC captures 70% variance in MPC and offers a comparable
performance. (3) We present a practical application of DPC
for Demand Response, where we apply DPC to a 6 story
22 zone building model in EnergyPlus [3] for which model-
based control is not economical and practical due to extreme
complexity. We show scalability and efficiency of DPC in
providing financial incentives to the end-customers bypassing
the need for high fidelity models. We observe that DPC
provides the desired power reduction with an average error
of 3%.

II. DATA PREDICTIVE CONTROL

The central idea behind DPC is to obtain control-oriented
models using machine learning or black-box modeling, and
formulate the control problem in a way that receding horizon



control (RHC) can still be applied and the optimization
problem can be solved efficiently.

Consider a black-box model given by xk+1 =
f(xk, uk, dk), where x, u, d represent states, inputs and dis-
turbances, respectively. Depending upon the learning algo-
rithm, f is typically nonlinear, nonconvex and sometimes
nondifferentiable (as is the case with regression trees and
random forests) with no closed-form expression. Such func-
tional representations learned through black-box modeling
may not be directly suitable for control and optimization as
the optimization problem can be computationally intractable,
or due to nondifferentiabilities we may have to settle with
a sub-optimal solution using evolutionary algorithms [11].
These problems can be eliminated by decomposing

f(xk, uk, dk) = g(dk, xk, h(uk)), (1)

where both g and h are learned using the data, and h(uk) is
convex and differentiable, and thus suitable for optimization.
DPC uses this functional decomposition or separation of
variables to overcome the aforementioned challenges with
black-box optimization.

A. Separation of Variables

We distinguish between two sets of variables: control (or
manipulated) variables Xc ∈ Rc and disturbance (or non-
manipulated) variables Xd ∈ Rd. The union of the two sets
forms the full feature set for training, i.e. X ≡ Xc ∪ Xd ∈
Rc+d. Our goal is to replace a model-based controller with a
data-driven controller, where the latter depends only on the
historical sensor data. These measurements could directly
represent one or more states in the model-based control
framework. We denote these as outputs Y ∈ R for training,
i.e. a Y represents a particular output and we can have
separate models for multiple outputs. We define the number
of training samples by |(X,Y)| = n.

Using separation of variables, the training process is
divided into two steps. Step 1: The trees and the ensembles
are trained only on Xd, which eases the computational
complexity. It is important to note that besides external
disturbances, Xd also contains autoregressive terms of the
output Y which is the main reason for the state space
explosion. Step 2: Linear regression models are trained in the
leaves (or terminal nodes) of the trees which are function of
only Xc. We have validated this linear model assumption in
[10]. As we shall see in Sec. II-B and II-C, the second step
reduces the run-time control problem into a convex program.
This process is illustrated in Fig. 1.

B. DPC-RT: DPC with Regression Trees

When the data has lots of features, which interact in com-
plicated, nonlinear ways, assembling a single global model
such as linear or polynomial regression can be difficult, and
can lead to poor response predictions. An approach to non-
linear regression is to partition the data space into smaller
regions, where the interactions are more manageable. This
partition is repeated recursively until finally we get to small
chunks of the data space where we can fit simple (eg. linear
parametric) models. Therefore, in (1), the global model f
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Fig. 1: Separation of variables. Step 1: Tree T1 is trained only
on the disturbances Xd as the features. Tree T2 uses both the
disturbances Xd and the control variables Xc for splitting and is
thus not computationally suitable for control. Step 2: In the leaf Ri

of the trees, a linear regression model parametrized by βi is defined
as a function only of the control variables.

has two parts: the recursive partition g, and a linear (and
convex) model h for each cell of the partition.

Now, our goal is to predict the state Y at time k for next N
time steps, i.e. Yk+1|k, . . . ,Yk+N|k, where N is the control
horizon. Applying the separation of variables, we build N
regression trees using CART procedure [2] such that the
output Yk+j|k of the jth tree depends upon the previous N
disturbances:

Yk+j|k = ftree

(
Xdk+j−N|k, . . . ,X

d
k+j−1|k

)
, (2)

Xdk+j−l|k ∈ Rd ∀ l, j = 1, . . . , N.

Then, the linear models as functions of Xc in each leaf of
the tree Tj are defined as

Yk+j|k = βTj [1,Xck|k, . . . ,X
c
k+j−1|k]T , (3)

Xck+j−l|k ∈ Rc ∀ l, j = 1, . . . , N.

Note that the coefficients βj would be different for each leaf.
Eq. (3) implies that the prediction of output Yk+j at time k
is an affine combination of control inputs from time k to k+
j−1. Thus, we have managed to linearize the original model
dynamics via black-box modeling. This two-step training is
done offline. In run-time, given the disturbances Xdk|k at time
k, we can narrow down to a leaf of each tree in (2) to retrieve
the linear models in (3).

In run-time, when a new control action is to be determined,
each tree (prediction step) contributes to a linear constraint
in the optimization as a replacement for the state dynamics
in the case of MPC. Thus, the RHC optimization problem
with a quadratic cost (Q ≥ 0,R � 0) can be formulated as:

min
N∑

j=1

(Yk+j|k)2Q+ XcTk+j−1|kRXck+j−1|k + λεj

s. t. Yk+j|k = βT [1,Xck|k, . . . ,X
c
k+j−1|k]T

Xc ≤ Xck+j−1|k ≤ X̄c

Y − εj ≤ Yk+j|k ≤ Ȳ + εj

εj ≥ 0, j = 1, . . . , N.

(4)



Here, Q ∈ R and R ∈ Rc×c, and the slack variables
εj ensure recursive feasibility since the equality constraint
on Y is relaxed. Of course, a different cost function can
be chosen depending upon the application. In the current
formulation, the data-driven control problem is reduced to a
convex program which is much easier to solve than running
an optimization directly on a black-box model trained on
Xc as features. We solve this optimization in the same
manner as MPC to determine the optimal sequence of inputs
[Xck|k, . . . ,X

c
k+N−1|k], apply the first control input Xck|k and

proceed to the next time step k + 1. The pseudo code for
DPC-RT is given in Alg. 1.

C. DPC-En: DPC with Ensemble Methods
Regression trees obtain good predictive accuracy in many

domains. However, the models used in their leaves have some
limitations regarding the kind of functions they are able to
approximate. The problem with trees is their high variance
and that they can overfit the data easily. A small change δ
in the data can result in a different series of splits and thus
violate the acceptable accuracy ε, i.e. ∃ X̂d | ||Xd− X̂d|| < δ
& ||Y−Ytrue|| > ε. This is the price to be paid for estimating
a tree-based structure from the data.

We use ensemble methods [6] to combine the predictions
of several independent regression trees in order to improve
generalizability and robustness over a single estimator. The
essential idea is to average many noisy trees to reduce the
overall variance in prediction. We inject randomness into
the tree construction in two ways. First, we randomize the
features used to define splitting in each tree. Second, we
build each tree using a bootstrapped or sub-sampled data
set. In this way, each tree in the forest is trained on different
data, which introduces differences between the trees. More
explicitly, training features Xd ∈ Rp with p < d and the in-
bag samples (in-bag samples correspond to the data samples
on which the tree was trained) are different for each tree in
the forest i.e |(X,Y)| < n.

The goal with DPC-En is to replace each tree in Alg. 1
by a forest

Yk+j|k = fforest

(
Xdk+j−N|k, . . . ,X

d
k+j−1|k

)
, (5)

Xdk+j−l|k ∈ Rp ∀ l, j = 1, . . . , N,

which, again, is trained only on Xd, but Xd ∈ Rp ⊂ Rd for
each tree, and then fit a linear regression model using Xc

in every leaf of every tree. We build N such forests for N
prediction steps such that the leaf Ri of forest Rj uses a
linear model

Yk+j|k = ΘT
ij [1,X

c
k|k, . . . ,X

c
k+j−1|k]T , (6)

Xck+j−l|k ∈ Rc ∀ l, j = 1, . . . , N.

Here (Xc,Y) correspond to the in-bag samples for the trees.
While the offline training burden in DPC-En is slightly

increased compared to DPC-RT, in the control step we
exploit the better accuracy, and lower variance properties of
the random forest. If a forest has t number of trees, given the
forecast of disturbances, we have t sets of linear coefficients.
We simply average out all the coefficients from all the trees to
get one linear model represented by Θ̂j for each forest. Note

Algorithm 1 Data Predictive Control with Regression Trees
1: DESIGN TIME
2: procedure MODEL TRAINING USING SEPARATION OF VARS
3: Set Xc ← manipulated features
4: Set Xd ← non-manipulated features
5: Build N predictive trees with (Y,Xd) defined in (2)
6: for all trees Tj do
7: for all regions Ri at the leaves of Tj do
8: Fit Yk+j|k = βT

j

[
1,Xc

k|k, . . . ,X
c
k+j−1|k

]T as in (3)
9: end for

10: end for
11: end procedure
12: RUN TIME
13: procedure PREDICTIVE CONTROL
14: while k < kstop do
15: for all trees Tj do
16: Determine the leaf Ri using Xd as in (2)
17: Obtain the linear model at Ri trained in (3)
18: end for
19: Solve optimization in (4) to determine optimal
20: control actions [Xc

k|k, . . . ,X
c
k+N−1|k]

21: Apply the first input Xc
k|k

22: end while
23: end procedure

that the averaging step can only be done in run-time because
the leaf of each tree can be narrowed down only when the
Xd is known. Thus, for N forests, we again have exactly N
linear equality constraints in the optimization problem below:

min
N∑

j=1

(Yk+j|k)2Q+ XcTk+j−1|kRXck+j−1|k + λεj

s. t. Yk+j|k = Θ̂T
j [1,Xck|k, . . . ,X

c
k+j−1|k]T

Xc ≤ Xck+j−1|k ≤ X̄c

Y − εj ≤ Yk+j|k ≤ Ȳ + εj

εj ≥ 0, j = 1, . . . , N.

(7)

DPC-En is graphically described in Fig. 2. The ensemble
data predictive control (DPC-En) is the first such method to
bridge the gap between ensemble predictive models (such
as random forests) and receding horizon control. In the next
section, we compare DPC-RT and DPC-En to MPC for a
building model.

III. COMPARISON WITH MPC

We consider a bilinear building model developed at Auto-
matic Control Laboratory, ETH Zurich. It captures the essen-
tial dynamics governing the zone-level operation while con-
sidering the external and the internal thermal disturbances.
By Swiss standards, the model used for this study is of a
heavyweight construction with a high window area fraction
on one facade and high internal gains due to occupancy and
equipments [7].

The bilinear model is a standard building model used
for practical considerations [12], [15], [16] as it is detailed
enough and suitable for model-based control unlike the
ones obtained from simulation software like EnergyPlus. We
specifically consider this model to show a comparison against
MPC. MPC of EnergyPlus models can be cost and time
prohibitive, making them unsuitable for control. In Sec. IV,
we show how DPC scales easily to such large scale models.



A. Bilinear Model

The bilinear model has 12 internal states including the
inside zone temperature Tin, the slab temperatures Tsb, the
inner wall Tiw and the outside wall temperature Tow. The
state vector is defined as x := [Tin,T

(1:5)
sb ,T

(1:3)
ef ,T

(1:3)
in ]T .

There are 4 control inputs including the blind position B,
the gains due to electric lighting L, the evaporative cooling
usage factor C, and the heat from the radiator H such that
u := [B, L,H,C]T . B and L affect both room illuminance
and temperature due to heat transfer whereas C and H affect
only temperature.

The model is subject to 5 weather disturbances: solar
gains with fully closed blinds Qsc and with open blinds Qso,
daylight illuminance with open blinds Io, external dry-bulb
temperature Tdb and external wet-bulb temperature Twb.
The hourly weather forecast, provided by MeteoSwiss, was
updated every 12 hrs. Therefore, to improve the forecast,
an autoregressive model of the uncertainty was considered.
Other disturbances come from the internal gains due to
occupancy Qio and due to equipments Qie which were
assumed as per the Swiss standards [14]. We define d :=
[Qsc,Qso, Io,Qio,Qie,Tdb,Twb]T . For further details, we
refer the reader to [15].

The model dynamics is given below. The bilinearity is
present in both input-state, and input-disturbance.

xk+1 = Axk + (Bu +Bxu[xk] +Bdu[dk])uk +Bddk (8)

xk ∈ R12, uk ∈ R4, dk ∈ R8 ∀k = 0, . . . , T,

where, the matrices Bxu and Bdu are defined as

Bxu[xk] = [Bxu,1[xk], Bxu,2[xk], . . . , Bxu,4[xk]] ∈ R12×4,

Bdu[dk] = [Bdu,1[dk], Bdu,2[dk], . . . , Bdu,4[dk]] ∈ R12×4,

Bxu,i ∈ R12×12, Bdu,i ∈ R12×8 ∀i = 1, 2, 3, 4.

For this study, we assume that the disturbances are precisely
known to MPC as well as DPC controller. In our future work,
we will account for the uncertainties in the disturbances with
an extension to Scenario approach [1] for DPC.

B. Model Predictive Control

We use an MPC controller with a quadratic and a linear
cost for comparison. The finite RHC approach involves
optimizing a cost function subject to the dynamics of the
system and the constraints, over a finite horizon of time [13].
After an optimal sequence of control inputs are computed,
the first input is applied, then at the next step the optimization
is solved again.

The objective of the controller is to minimize the energy
usage cTu while maintaining a desired level of thermal
comfort. Therefore, at time step k, we solve a continuously
linearized MPC problem to determine the optimal sequence

min

N∑

j=1

Yk+j|kQYk+j|k + XcT
k+j−1|kRXc

k+j−1|k + λǫj

s. t. Yk+j|k = Θ̂T
j

[
1,Xc

k|k, . . . ,X
c
k+j−1|k

]T

Xc ≤ Xc
k+j−1|k ≤ X̄c

Y − ǫj ≤ Yk+j|k ≤ Ȳ + ǫj

ǫj ≥ 0, j = 1, . . . , N.

· · ·

Yk+1|k = Θ̂T
1

[
1,Xc

k|k

]T

Forest

Θ̂1 =

∑t
l=1 Θl

t

Yk+2|k = Θ̂T
2

[
1,Xc

k|k,X
c
k+1|k

]T

Forest

Yk+N|k = Θ̂T
N

[
1,Xc

k|k..X
c
k+N−1|k

]T

Forest

Xd
k|k

Xd
k+1|k+1

Fig. 2: DPC-En: At time k, the algorithm uses the forecast
of disturbances Xd

k|k to select linear models Θ1 to Θt in the
leaves of each ensemble. The linear models in each ensemble are
averaged to calculate a single model represented by Θ̂j which
act as constraints in the optimization problem. The optimal se-
quence [Xc

k|k, . . . ,X
c
k+N−1|k], of which the first one is applied, and

Xd
k+1|k+1 is calculated to proceed to k + 1.

of inputs [uk|k, . . . , uk+N−1|k]:

min
N∑

j=1

xTk+j|kQxk+j|k + cTuk+j−1 + λεj (9a)

s. t. xk+j|k = Axk|k +Buk+j−1|k +Bddk+j−1|k (9b)
B = Bu +Bxu[xk|k] +Bdu[dk+j−1|k] (9c)

u ≤ uk+j−1|k ≤ ū (9d)
x− εj ≤ xk+j|k ≤ x̄+ εj (9e)
εj ≥ 0, j = 1, . . . , N, (9f)

where Q ∈ R12×12 has all zeros except at Q(1,1) corre-
sponding to the zone temperature, c ∈ R4 is proportional
to cost of using each actuator and λ penalizes the slack
variables.

C. Data Predictive Control
In this section, we explain how DPC can be applied to

this case study. We begin with a description of features X
and output Y used for training.

1) Training Data: The fundamental reason why DPC is
suitable for such a problem is that when the complexity rises,
there is a huge cost to model all the states given by the
dynamical system (8). For example, states in the bilinear
model also include slab temperatures which require modeling
of structural and material properties in detail and often we
also need to install new sensors to capture additional states.
Thus, DPC is based solely on one state of the model i.e.
the zone temperature that can be easily measured with a
thermostat. This serves as the output variable Y of interest
for which we build N trees and N forests as described in
Sec. II-B and II-C, respectively. Therefore, Yk+j|k := x1k+j|k,



TABLE I: Quantitative comparison of root mean square error
(RMSE), R2 score, and explained variance (EV) for trees and
forests for different predictions steps.

RMSE R2 score EV

tree-Yk+1|k 0.42 0.75 0.76
tree-Yk+6|k 0.64 0.41 0.42

forest-Yk+1|k 0.29 0.87 0.88
forest-Yk+6|k 0.38 0.78 0.80

where x1 is the first component of x. Next, we define the
non-manipulated features Xdk|k. At time k, for the tree Tj
and the forest Rj , we base these features to include weather
disturbances, external disturbances due to occupancy and
equipments, and autoregressive terms of the room tempera-
ture, i.e. Xdk|k := [dk+j−N|k, . . . , dk+j−1|k, x1k|k, . . . , x

1
k−δ|k],

where δ is the order of autoregression. Finally, the inputs in
DPC are exactly same as in MPC. i.e. Xck+j−1|k := uk+j−1|k.

The training data in the above format was generated by
simulating the bilinear model with rule-based strategies for
10 months in 2007. January and May were deliberately
excluded for testing the DPC implementation.

2) Optimization: For a fair comparison with MPC, we
cast DPC optimization problem as follows:

min
N∑

j=1

Yk+j|kQ(1,1)Yk+j|k + cTXck+j−1|k + λεj (10a)

s. t. Yk+j|k = αTj

[
1,Xck|k, . . . ,X

c
k+j−1|k

]T
(10b)

Xc ≤ Xck+j−1|k ≤ X̄c (10c)

Y − εj ≤ Yk+j|k ≤ Ȳ + εj (10d)
εj ≥ 0, j = 1, . . . , N. (10e)

Here α = β for DPC-RT and α = Θ̂ for DPC-En. Note
that, (10) is DPC analog of (9). The only difference is the
state dynamics (9b) and (9c) are now replaced with (10b).

3) Validation: We compare the prediction for the first time
step Yk+1|k and the 6-hour ahead prediction Yk+6|k for a
week in the month of May in Fig. 3. It is visible how trees
have a high variance, and the forests are more accurate. Note
that data from January and May was not used for training.
The quantitative summary of the accuracy is given in Tab. I.
We can see that the random forests are better in all respects.

D. Comparison
We compare the performance of DPC (10) against an

equivalent MPC formulation (9). The solution obtained from
MPC sets the benchmark that we compare to. Note that the
MPC implementation uses the exact knowledge of the plant
dynamics. Therefore, the associated control strategy is indeed
the optimal strategy for the plant.

The performance is compared for 3 days in winter, i.e.
January 28-31 and 3 days in summer, i.e. May 1-3. These
are shown on the same plots in Fig. 4. The sampling time
in the simulations is 1 hr. The control horizon N and the
order of autoregression are both 6 hrs. The training procedure
required a few minutes in the case of trees and 2 hrs for
forests on a Win 10 machine with an i7 processor and 8GB
memory. The cooling usage factor C is constrained in [0, 1],
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Fig. 3: Temperature predictions from a tree and a forest for first step
prediction (top) and the 6-hour ahead prediction (bottom). Ensemble
method shows a relatively higher accuracy.

the heat input in [0, 23] W/m2, and the room temperature
in [19, 25] oC during the winters and [20, 26] oC during the
summers. The optimization is solved using CPLEX [8].

The external disturbances - solar gains, internal gain due
to equipment and dry-bulb temperature during the chosen
periods are shown in Fig. 4(a). The internal gain due to
occupancy was proportional to the gain due to equipment.
The reference temperature is chosen to be 22 oC. Due to cold
weather, which is evident from the dry-bulb temperature, the
heater is switched on during the night to maintain the thermal
comfort requirements. When the building is occupied during
the day, due to excessive internal gains, the building requires
cooling. The lighting in the building is adjusted to meet
the minimum light requirements. The optimal cooling usage
factor and the radiator power for MPC, DPC-En and DPC-
RT are shown in Fig. 4(b) and Fig. 4(c), respectively. The
control strategy with DPC-En shows a remarkable similarity
to MPC, switching on/off the equipments at the same time
with similar usage. However, the performance with DPC-RT
is much different and worse. DPC-RT inherently suffers from
high variance which is also evident in the control strategy,
thus making it unsuitable for practical purposes. Although it
seems like that adding the rate constraints to DPC-En would
smoothen its behavior, this was avoided because the sampling
time of the system is 1 hr which is already too high. The
room temperature profile in Fig. 4(d) is close to the reference
in the case of DPC-En as well as MPC. Fig. 4(e) shows that
the cumulative cost of the objective function is, as expected,
minimum for MPC, and a bit higher for DPC-En. The cost
for DPC-RT blows up around 12 noon on 30th January as
one of the slack variables is non-zero, which happens due to
high model inaccuracy.

The quantitative performance comparison is shown in
Tab. II. MPC tracks the reference more closely at the expense
of higher input costs in comparison to DPC-En. The higher
cost of the inputs in MPC is also due to lighting. DPC-En
explains 70.1% variation in the optimal control strategies
obtained from MPC while DPC-RT explains only 1.8%. The
mean optimal cost of DPC-En is more than MPC, and is
maximum for DPC-RT due to a constraint violation.

Thus, we have shown that DPC-En provides a comparable



TABLE II: Quantitative comparison of explained variance, mean
value of objective function, mean input cost cTu and mean deviance
from the reference temperature |T− Tref |.

explained mean objective mean input mean
variance[−] value [−] cost [−] deviance [oC]

MPC − 22.60 17.16 0.26
DPC-En 70.1% 39.26 15.12 0.48
DPC-RT 1.8% 204.55 16.84 0.57

performance to MPC without using the physical model.
However, one major limitation of the bilinear model is that
the information about the building power consumption is
not available. Much nonlinearities in the system are due
to equipment efficiencies which are not considered in the
bilinear case but are very important for practical purposes.

Therefore, our next goal is to apply DPC-En on even more
complex and realistic EnergyPlus model for which building a
model predictive controller is time and cost prohibitive [17].
This is because we would need to model intricate details
like the geometry and construction layouts, the equipment
design and layout plans, material properties, equipment and
operational schedules etc.

IV. APPLICATION: DEMAND RESPONSE

In January 2014, the east coast (PJM) electricity grid
experienced an 86x increase in the price of electricity from
$31/MWh to $2,680/MWh in a matter of 10 minutes. Sim-
ilarly, the price spiked 32x from an average of $25/MWh
to $800/MWh in July of 2015. This extreme price volatility
has become the new norm in our electric grids. Building
additional peak generation capacity is not environmentally or
economically sustainable. Furthermore, the traditional view
of energy efficiency does not address this need for Energy
Flexibility. The solution lies with Demand Response (DR)
from the customer side - curtailing demand during peak
capacity for financial incentives. However, this is a very hard
problem for commercial, industrial and institutional plants,
the largest electricity consumers.

Thus, the problem of energy management during a DR
event makes an ideal case for DPC. In the following sections,
we apply DPC-En to a large scale EnergyPlus model to
show how effectively DPC can provide a desired power
curtailment as well as a desired thermal comfort. DPC builds
predictive models of a building based on historical weather,
schedule, set-points and electricity consumption data, while
also learning from the actions of the building operator. These
models are then used for synthesizing recommendations
about the control actions that the operator needs to take,
during a DR event, to obtain a given load curtailment while
providing guarantees on occupant comfort and operations.

A. EnergyPlus Model

We use the DoE Commercial Reference Building (DoE
CRB) simulated in EnergyPlus [5] as the virtual test-bed
building. This is a large 6 story hotel building consisting of
22 zones with a total area of 122,120 sq.ft. During peak load
conditions the building can consume up to 400 kW of power.
For the simulation of the DoE CRB building we use actual
meteorological year data from Chicago for the years 2012
and 2013.
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(a) External disturances: solar gains, internal gain due to equipment and
dry-bulb temperature.

01/29 01/30 01/31 05/01 05/02 05/03 05/04
0

0.5

1

1.5

co
o
li
n
g
fa
ct
o
r
[−

]

MPC DPC-En DPC-RT

(b) Optimal control input: cooling usage factor C with 0 ≤ C ≤ 1. DPC-En
generates a control strategy very simular to MPC.
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(c) Optimal control input: radiator heat H with 0 ≤ H ≤ 23 W/m2. Again,
DPC-En generates a control strategy very simular to MPC.
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(d) Room temperature has time varying bounds. When the building is
occuped the constraints are relaxed, else 19(20) ≤ Tin ≤ 25(26) oC in
January(May). MPC and DPC-En are able to track the reference temperature
(22 oC) closely.
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(e) Cumulative optimal cost after solving optimization. MPC serves as the
benchmark with the minimum cost, followed by DPC-En and then DPC-RT.

Fig. 4: Comparison of optimal performance obtained with MPC,
DPC-En and DPC-RT for 3 days in January and 3 days in May.

B. Model training for DPC

In the following simulations, we consider a long DR
event from 7am - 2pm when the end-users are expected to
follow/track the reference power signal sent by the utility.
This is indeed common in Demand Tracking Control. During
offline training, we sample data every 15 min to learn 2
kinds of forests. (1) Power forests are built using output as



the total building power consumption, and (2) Temperature
forests with output as temperature of one of the 22 zones.

The training data set contains the following types of
features. (1) The weather data which includes measurements
of the outside air temperature and relative humidity. Since
we are interested in predicting the power consumption or the
zone temperature for a finite horizon, we include the weather
forecast of the complete horizon in the training features. (2)
The schedule data includes the proxy variables which cor-
relate with repeated patterns of electricity consumption e.g.,
due to occupancy or equipment schedules. Day of Week is a
categorical predictor which takes values from 1-7 depending
on the day of the week. This variable can capture any power
consumption patterns which occur on specific days of the
week. Likewise, Time of Day is quite an important predictor
of power consumption as it can adequately capture daily
patterns of occupancy, lighting and appliance use without
directly measuring any one of them. Besides using proxy
schedule predictors, actual building equipment schedules can
also be used as training data for building the trees. (3) The
building data include (i) cooling set points for the guest
rooms, kitchen and corridors, (ii) supply air temperature, and
(iii) chilled water temperature.

For the following simulations, we use five control variables
(i) cooling set point for corridors ClgSP, (ii) cooling set point
for guest rooms GuestSP, (iii) cooling set point for kitchen
KitchenSP, (iv) chilled water supply temperature ChwSP,
and (v) supply air temperature SupplyAirSP, so Xc =
[ClgSP,GuestClgSP,KitchenClgSP,SupplyAirSP,ChwSP].
The power forest Rp is built using the total building
power consumption P. Its features Xd include the weather
variables, their lag terms and their forecast over the horizon,
the schedule variables, and finally the lag terms of the
power consumption. The temperature forest Rt is built
with zone temperature T as the output. Except for the lag
terms corresponding to the same zone temperature, all other
features are same in Xd.

Fig. 5 shows the prediction accuracy for the power forest,
and also explains the two level training approach introduced
in Sec. II-A. During S1, the forests are trained using only
disturbances as the features. Then in S2, the local effects of
the control variables are accounted for by the linear models
in the leaves. We observe how the accuracy is drastically
improved after including the linear models in the predictions.
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Fig. 5: Model accuracy during training: The prediction made by
forest using only Xd (red) captures the effect due to disturbances.
The linear models in the leaves capture the local effects (green) due
to the control inputs Xc and improve the model accuracy.
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(a) Optimal inputs calculated by DPC-En. At first, the inputs are changed rapidly
because of a significant difference between the desired and the actual power
consumption. Then gradual adjustments are made to follow the desired reference.
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(b) Power tracking by DPC-En at 1.1 MW: The difference in closed-loop simulation
and prediction is due to model mismatch.

Fig. 6: Power management using DPC. The controller is active
between 7am - 2pm. This region is marked in dashed red lines.

C. Power Management
Typically, the end customer receives a notification to

curtail the power by some fraction. In this example on
power management, we show how DPC can generate
optimal inputs to track a desired power signal within a
small allowance while maintaining the zone level thermal
comfort. It may not be possible to have the same thermal
comfort level in all the zones due to power curtailment,
so we choose one zone (for example CEO’s office) where
the constraints must be met. This is done by solving the
following optimization problem with control variables Xc =
[ClgSP,GuestClgSP,KitchenClgSP,SupplyAirSP,ChwSP]
as defined before:

min
N∑

j=1

(Pk+j|k − Pref)
2 + λεj + νδj

s. t. Pk+j|k = Θ̂T
Pj

[1,Xck|k, . . . ,X
c
k+j−1|k]T

Tk+j|k = Θ̂T
Tj

[1,Xck|k, . . . ,X
c
k+j−1|k]T

P− εj ≤ Pk+j|k ≤ P̄ + εj

T− δj ≤ Tk+j|k ≤ T̄ + δj

Xc ≤ Xck+j−1|k ≤ X̄c

εj ≥ 0, δj ≥ 0, j = 1, . . . , N.

(11)

Here, the temperature forests are used to enforce thermal
constraints in the zone of interest. The setup of optimization
problem is flexible to include even other variables in the cost
or the constraints. For example, we are currently looking
at including the dynamic pricing of electricity in the cost
since the customers can more directly relate to the financial
incentives.

The results are shown in Fig. 6. The DPC controller is
active between 7am - 2pm. Before 7am and after 2pm, the



building is using a predefined rule-based control strategy. The
optimal control inputs from DPC-En are shown in Fig. 6(a).
It is observed that, with the optimal inputs generated by DPC,
we can track the reference power consumption signal closely.
In fact, the average tracking error between 7am - 2pm is 3%.
The difference between the predicted power consumption and
that in the closed-loop simulation in Fig. 6(b) is due to model
mismatch between the EnergyPlus model and the power
forest used in the optimization (11). Due to this inaccuracy,
the actual power consumption is on an average 7 kW higher.

Thus, DPC-En successfully tracks a given power reference
signal with an average ∼ 3% error for such a complex
building which would require several years of efforts to
develop a physics based model.

D. Practical Challenges and Future Work

Data Availability: The main practical challenge for DPC
lies in the availability of data for training and we require
answers to questions like how much data (functional testing)
is required, and how should the sampling be done? Therefore,
the procedure for optimal experiment design, and model
improvement with estimation of variance in predictions is
one of the main focus of our ongoing work.

Stability: While the buildings are inherently stable, many
other applications require stability guarantees. In our ongoing
work, we are working towards proving asymptotic stability
to origin with DPC-RT and DPC-En by using concept
of switched LTI systems. This will make DPC useful for
systems with faster dynamics.

Robustness: Another direction of work is on handling
uncertainties in the DPC framework, namely an extension
to Scenario DPC to account for the disturbance uncertainty.
This will help us in quantifying the robustness of DPC.

V. CONCLUSION

We present two algorithms based on trees and random
forests for receding horizon control with data-driven models.
We compare the performance of our Data Predictive Control
to MPC on a multivariable bilinear building model. We
establish that DPC with random forests shows a remarkable
similarity to MPC in the optimal control strategies explaining
70% variance. On the other hand, DPC with regression trees
suffers from practical limitations due to model overfitting.
We further apply DPC with random forests to a large scale
6 story EnergyPlus model with 22 zones for which the
traditional model-based control is largely unsuitable due
to complex dynamics and the cost of model identification.
We show that DPC, relying only on the sensor data, can
provide significant energy savings while maintaining thermal
comfort. Our results demonstrate that even for such complex
system, DPC tracks a reference signal with a mean error of
3%.

DPC has applications which go beyond buildings and
energy systems, to industrial process control, and controlling
large critical infrastructures like water networks, district
heating & cooling. DPC is immensely valuable in situations
where first principles based modeling cost is extremely high.

ACKNOWLEDGMENT
The authors would like to thank Xiaojing Zhang, a Post-

Doctoral Researcher at the University of California, Berkeley
for providing the building model, and Manfred Morari for his
feedback on DPC.

REFERENCES

[1] D. Bernardini and A. Bemporad. Scenario-based model predictive con-
trol of stochastic constrained linear systems. In Decision and Control,
2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pages
6333–6338. IEEE, 2009.

[2] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification
and regression trees. CRC press, 1984.

[3] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J.
Huang, C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J.
Witte, et al. Energyplus: Creating a new-generation building energy
simulation program. Energy and buildings, 33(4):319–331, 2001.

[4] D. Davis. Lighting the Way to Demand Response Lighting the Way
to Demand Response. Technical report, CEC, 2011.

[5] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini,
B. Liu, M. Halverson, D. Winiarski, M. Rosenberg, et al. Us
department of energy commercial reference building models of the
national building stock. 2011.

[6] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[7] D. Gyalistras and M. Gwerder. Use of weather and occupancy
forecasts for optimal building climate control (opticontrol): Two
years progress report main report. Terrestrial Systems Ecology ETH
Zurich R&D HVAC Products, Building Technologies Division, Siemens
Switzerland Ltd, Zug, Switzerland, 2010.

[8] I. ILOG. IBM ILOG CPLEX Optimizer-Highperformance mathe-
matical programming solver for linear programming, mixed integer
programming, and quadratic programming, 2012.

[9] A. Jain, M. Behl, and R. Mangharam. Data Predictive Control for
building energy management. In Proceedings of the 2017 American
Control Conference. IEEE, 2017.

[10] A. Jain, R. Mangharam, and M. Behl. Data Predictive Control for
peak power reduction. In Proceedings of the 3rd ACM International
Conference on Systems for Energy-Efficient Built Environments, pages
109–118. ACM, 2016.

[11] A. Kusiak, Z. Song, and H. Zheng. Anticipatory control of wind
turbines with data-driven predictive models. IEEE Transactions on
Energy Conversion, 24(3):766–774, 2009.
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