
University of Pennsylvania
ScholarlyCommons

Department of Biostatistics, Epidemiology and
Informatics Perelman School of Medicine

1-2014

mmeta: An R Package for Multivariate Meta-
Analysis
Sheng Luo
The University of Texas

Yong Chen
University of Pennsylvania, ychen123@mail.med.upenn.edu

Xiao Su
The University of Texas

Haitao Chu
University of Minnesota

Follow this and additional works at: http://repository.upenn.edu/epidemiology

Part of the Epidemiology Commons

At the time of publication, author Yong Chen was affiliated with The University of Texas. Currently, he is a faculty member at the Perelman School of
Medicine at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/epidemiology/10
For more information, please contact repository@pobox.upenn.edu.

Luo, Sheng; Chen, Yong; Su, Xiao; and Chu, Haitao, "mmeta: An R Package for Multivariate Meta-Analysis" (2014). Department of
Biostatistics, Epidemiology and Informatics. 10.
http://repository.upenn.edu/epidemiology/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/129587148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fepidemiology%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/epidemiology?utm_source=repository.upenn.edu%2Fepidemiology%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/epidemiology?utm_source=repository.upenn.edu%2Fepidemiology%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/psom?utm_source=repository.upenn.edu%2Fepidemiology%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/epidemiology?utm_source=repository.upenn.edu%2Fepidemiology%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=repository.upenn.edu%2Fepidemiology%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/epidemiology/10?utm_source=repository.upenn.edu%2Fepidemiology%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/epidemiology/10
mailto:repository@pobox.upenn.edu


mmeta: An R Package for Multivariate Meta-Analysis

Abstract
This paper describes the core features of the R package mmeta, which implements the exact posterior
inference of odds ratio, relative risk, and risk difference given either a single 2 x 2 table or multiple 2 x 2 tables
when the risks within the same study are independent or correlated.

Keywords
Appell function, Bayesian inference, bivariate beta-binomial, exact distribution, hypergeoneometric function,
Sarmanov family

Disciplines
Epidemiology | Medicine and Health Sciences | Public Health

Comments
At the time of publication, author Yong Chen was affiliated with The University of Texas. Currently, he is a
faculty member at the Perelman School of Medicine at the University of Pennsylvania.

This working paper is available at ScholarlyCommons: http://repository.upenn.edu/epidemiology/10

http://repository.upenn.edu/epidemiology/10?utm_source=repository.upenn.edu%2Fepidemiology%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages


JSS Journal of Statistical Software
January 2014, Volume 56, Issue 11. http://www.jstatsoft.org/

mmeta: An R Package for Multivariate

Meta-Analysis

Sheng Luo
The University of Texas

Health Science Center at Houston

Yong Chen
The University of Texas

Health Science Center at Houston

Xiao Su
The University of Texas

Health Science Center at Houston

Haitao Chu
University of Minnesota

Abstract

This paper describes the core features of the R package mmeta, which implements
the exact posterior inference of odds ratio, relative risk, and risk difference given either
a single 2 × 2 table or multiple 2 × 2 tables when the risks within the same study are
independent or correlated.
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1. Introduction

Epidemiological studies often involve comparisons between two populations with binary out-
comes. Data from these studies are usually summarized by a single or multiple 2× 2 tables.
To quantify the association between an exposure and a certain disease, comparative measures
between two risks, e.g., odds ratio (OR), relative risk (RR), and risk difference (RD), are
frequently used. A Bayesian approach has been widely applied to obtain the posterior distri-
butions of these comparative measures that reflect evidence from the data and available prior
knowledge. Bayesian inference on a single study based on a 2× 2 table has been investigated
by several researchers. Specifically, Nurminen and Mutanen (1987) derived the exact poste-
rior distributions of OR, RR, and RD under independent beta prior distributions with integer
hyperparameters. Marshall (1988) extended the results of OR by using hypergeometric func-

http://www.jstatsoft.org/


2 mmeta: An R Package for Multivariate Meta-Analysis

tions (Gauss 1812) to allow the hyperparameters being any positive numbers. Nadarajah
and Kotz (2007) gave a formula for RD using the Appell hypergeometric function. Chen and
Luo (2011) corrected the formula by Nadarajah and Kotz (2007) and further simplified the
formula to avoid divergence of the Appell hypergeometric function. Hora and Kelley (1983)
and Hashemi, Nandram, and Goldberg (1997) extended the results of Nurminen and Mutanen
(1987) on RR to beta prior distributions with any positive hyperparameters.

Multiple 2 × 2 tables often arise in meta-analysis which combines statistical evidence from
multiple studies. Two risks within the same study are possibly correlated because they share
some common factors such as environment and population structure. For example, in genetic
association studies, people in the same study are likely to live in the same community shar-
ing similar environmental factors or similar ancestors (Lee 1996). Riley (2009) has showed
via simulation studies that separate meta-analysis of correlated outcomes can lead to biased
estimates of variances of the summary effect sizes. In contrast, multivariate meta-analysis
summarizes simultaneously all outcomes of interest instead of conducting many separate uni-
variate meta-analysis. Multivariate meta-analysis has recently received lots of attention (e.g.,
Reitsma, Glas, Rutjes, Scholten, Bossuyt, and Zwinderman 2005; Chu and Cole 2006; Riley,
Abrams, Sutton, Lambert, and Thompson 2007; Riley, Thompson, and Abrams 2008; Hamza,
Reitsma, and Stijnen 2008). An excellent overview of multivariate meta-analysis can be found
in Jackson, Riley, and White (2011) and Mavridis and Salanti (2012). In the multivariate
meta-analysis with a binary outcome and a categorical exposure, two modeling strategies
have been commonly used: A bivariate general linear mixed-effects model on the transformed
proportions (Reitsma et al. 2005; Arends, Hamza, Houwelingen, Heijenbrok-Kal, Hunink, and
Stijnen 2008) and a bivariate generalized linear mixed-effects model on the transformed risks
(e.g., logit or probit transformations; Houwelingen, Zwinderman, and Stijnen 1993; Houwelin-
gen, Arends, and Stijnen 2002; Chu and Cole 2006; Chu, Guo, and Zhou 2010). However,
these two methods are based on the transformed proportions or the transformed risks and thus
the interpretation is transformation dependent. Multivariate meta-analysis can be conducted
using various software packages including Stata (StataCorp. 2011), SAS (SAS Institute Inc.
2011), R (R Core Team 2013). Specifically, the mvmeta command in Stata performs fixed- and
random-effects multivariate meta-regression analysis. The SAS PROC MIXED routine was the
first that popularized multivariate meta-analysis (Houwelingen et al. 2002). More recently, the
SAS macro METADAS was made available to fit bivariate meta-analysis models for diagnostic
test accuracy studies (Takwoingi, Guo, and Deeks 2008). R package metaSEM (Cheung 2012)
can be used to conduct univariate and multivariate meta-analysis using structural equation
modeling (SEM) via the OpenMx package. In addition, a new R package mvmeta (Gasparrini
2012) can perform fixed- and random-effects multivariate meta-analysis and meta-regression.

Instead of modeling the transformed proportions or transformed risks, we use a Sarmanov
family of correlated beta prior distributions (referred to as Sarmanov beta prior distributions;
Sarmanov 1966) to model the risks directly; see for example, Chen, Chu, Luo, Nie, and Chen
(2014a). The correlation parameter can be intuitively interpreted as the correlation coefficient
between risks. In addition, the Sarmanov beta prior distribution has the following advantages
in modeling. Firstly, it allows for both positive and negative correlations; secondly, it only
needs specification of marginal distributions and the correlation parameter, which has im-
portant advantages in Bayesian inference because it is often easier to specify and interpret
an univariate prior than a bivariate prior; thirdly, it is pseudo-conjugate to binomial distri-
butions, i.e., the Sarmanov beta prior distribution can be expressed as a linear combination
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of independent bivariate beta distributions (Lee 1996), which enables us to derive closed-
form expressions of the exact posterior distributions for study-specific comparative measures.
Such closed-form expressions offer computational convenience when the exact posterior dis-
tributions of the study-specific comparative measures are also of interest. We have used
the Sarmanov beta prior distribution to make exact posterior inference of some comparative
measures (e.g., OR, RR, and RD; Chen et al. 2014a; Chen, Luo, Chu, Su, and Nie 2014b;
Chen, Luo, Chu, and Wei 2013). This paper describes the mmeta package as a collection of
a new family of models different from those in the aforementioned packages. Specifically, the
inference of the overall and study-specific comparative measures (i.e., OR, RR, and RD) are
inferred under the Sarmanov beta prior distributions. The functions of the mmeta package
have been written in the R language, with some Fortran 77 and C routines which are interfaced
through R. The package is built following the S3 formulation of R methods with dependencies
on R packages HI (Petris, Tardella, and Gilks 2013) and aod (Lesnoff and Lancelot 2012).
The mmeta package (currently version 2.2) is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=mmeta.

The paper is organized as follows. In Section 2 we outline the exact Bayesian posterior
inference approach. We describe the features of two main functions in the mmeta package
and the analysis of two real datasets in Section 3. In Section 4, we provide a brief discussion.

2. Theory of exact distributions

2.1. Models and inference on overall comparative measures

For the ith study (i = 1, . . . , I; I is the number of studies), let nji, yji and pji be the number
of subjects, number of subjects experienced a certain event, and the risk of experiencing
the event in the jth group (j = 1, . . . , J ; J is the number of groups), respectively. For
simplicity, we consider only the settings with two groups under comparison (i.e., J = 2) and
the extension to cases with more than 2 groups is straightforward. We assume the following
Bayesian hierarchical model. At the first stage, we assume that given the study-specific risks
(p1i, p2i), y1i and y2i are independently distributed binomial variables, i.e.,

(y1i, y2i)|(n1i, n2i, p1i, p2i) ∼ Binomial(y1i|n1i, p1i)× Binomial(y2i|n2i, p2i). (1)

This conditional independence assumption is reasonable because y1i and y2i are calculated
using subjects from different groups. To complete the Bayesian hierarchical model, we need to
impose a parametric prior distribution on the study-specific risks (p1i, p2i). Here we consider
a family of distributions first proposed by Sarmanov (1966), and later studied extensively by
Cole, Lee, Whitmore, and Zaslavsky (1995), Lee (1996), Shubina and Lee (2004), Danaher and
Hardie (2005), and Chen et al. (2014a). The Sarmanov beta prior distribution is constructed
such that the marginal distribution of the random-effects in the jth group pji is equal to a beta
distribution with shape parameters (aj , bj) and the correlation coefficient between p1i and p2i

is ρ (Sarmanov 1966; Lee 1996). Specifically, we denote beta(p; a, b) = {B(a, b)}−1pa−1(1 −
p)b−1 where B(a, b) is the beta function defined by

∫ 1
0 t

a−1(1− t)b−1dt, µj = aj/(aj + bj), and
δ2
j = µj(1−µj)/(aj + bj + 1). The joint prior distribution of the study-specific risks (p1i, p2i),

referred to as Sarmanov beta prior distribution, is

(p1i, p2i)|(a1, b1, a2, b2, ρ) ∼ g(p1, p2; a1, b1, a2, b2, ρ), (2)

http://CRAN.R-project.org/package=mmeta
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where g(p1, p2; a1, b1, a2, b2, ρ) = beta(p1; a1, b1)beta(p2; a2, b2){1 + ρ (p1−µ1)(p2−µ2)
δ1δ2

}.
With the Bayesian hierarchical model specified in equations (1) and (2), the log marginalized
likelihood function for the unknown hyperparameters (a1, b1, a2, b2, ρ) is

logL(a1, b1, a2, b2, ρ)

=

I∑
i=1

log

∫∫
Pr(y1i, y2i|p1i, p2i)g(p1i, p2i; a1, b1, a2, b2, ρ)dp1idp2i

=

I∑
i=1

log
[
PBB(y1i;n1i, a1, b1)PBB(y2i;n2i, a2, b2)

×
{

1 + ρ

(
y1i+a1

n1i+a1+b1
− a1

a1+b1

)(
y2i+a2

n2i+a2+b2
− a2

a2+b2

)
√

a1b1
(a1+b1)2(a1+b1+1)

√
a2b2

(a2+b2)2(a2+b2+1)

}]
, (3)

where PBB(y;n, a, b) is the probability mass function of a beta-binomial distribution, i.e.,

PBB(y;n, a, b) =

(
n

y

)
B(y + a, n− y + b)

B(a, b)
.

The last expression in equation (3) has been derived by Danaher and Hardie (2005) and
an outline of its derivation is provided in the Appendix for interested readers. We refer to
equation (3) as Sarmanov beta-binomial model. As a benefit of using Sarmanov beta prior
distributions, the log marginalized likelihood function has a closed-form expression, which
avoids numerical approximation of integrals. Hence the Bayesian hierarchical model specified
in equations (1) and (2) has great computational advantage over commonly used multivariate
generalized linear mixed-effects models. When ρ = 0, the Sarmanov beta-binomial model
reduces to the independent beta-binomial model, i.e., the product of two beta-binomial dis-
tributions.

The hyperparameters (a1, b1, a2, b2, ρ) can be estimated by maximizing the log likelihood
logL(a1, b1, a2, b2, ρ). We implement it through R (R Core Team 2013) with the optim func-
tion, which uses a quasi-Newton method with box constraints on the ranges of parameters.
Denote (â1, b̂1, â2, b̂2, ρ̂) the maximum likelihood estimates based on the log likelihood function
in equation (3). We use the delta method to obtain the variance of the overall comparative
measures, namely the overall odds ratio estimate,

ÔR =
µ̂2/(1− µ̂2)

µ̂1/(1− µ̂1)
=
â2b̂1

â1b̂2
,

the overall relative risk estimate,

R̂R =
µ̂2

µ̂1
=
â2/(â2 + b̂2)

â1/(â1 + b̂1)
,

and the overall risk difference estimate,

R̂D = µ̂2 − µ̂1 =
â2

(â2 + b̂2)
− â1

(â1 + b̂1)
.
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2.2. Inference on study-specific comparative measures

Denote the study-specific comparative measures ORi = {p2i/(1−p2i)}/{p1i/(1−p1i)}, RRi =
p2i/p1i, and RDi = p2i − p1i. The statistical evidence of these comparative measures from
the ith study can be quantified by the posterior distributions, i.e., Pr(θi|datai, a1, b1, a2, b2, ρ)
where θi = ORi, RRi, or RDi and datai = (y1i, n1i, y2i, n2i). Note that the true values of
the hyperparameters (a1, b1, a2, b2, ρ) are often unknown. One solution is to simply replace
the hyperparameters by their estimates. Such an approach is called empirical Bayes method
(Efron and Morris 1973, 1975; Gelman, Carlin, Stern, and Rubin 2004; Carlin and Louis
2009). The coverage property of the credible intervals using the empirical Bayes method has
been investigated via simulation studies in Chen et al. (2014b). The conclusion is that the
credible interval without accounting for the uncertainty on the hyperparameters still performs
reasonably well, when the number of studies is moderate (Chen et al. 2014b).

An important property of the Sarmanov beta prior distribution for p1 and p2 is that it can
be written as a linear combination of independent bivariate beta distributions (Lee 1996),

g(p1, p2; a1, b1, a2, b2, ρ)

= v1beta(p1; a1, b1)beta(p2; a2, b2) + v2beta(p1; a1 + 1, b1)beta(p2; a2, b2)

+ v3beta(p1; a1, b1)beta(p2; a+ 1, b2) + v4beta(p1; a1 + 1, b1)beta(p2; a2 + 1, b2),

where vk (k = 1, . . . , 4) are weights defined by v1 = 1 + ργ, v2 = v3 = −ργ, v4 = ργ,
γ = (µ1µ2)/(δ1δ2). After some algebra, the posterior distribution of p1 and p2 given data is
also a linear combination of independent bivariate beta distributions,

Pr(p1, p2|datai, a1, b1, a2, b2, ρ)

= ω1beta(p1;α1, β1)beta(p2;α2, β2) + ω2beta(p1;α1 + 1, β1)beta(p2;α2, β2)

+ ω3beta(p1;α1, β1)beta(p2;α2 + 1, β2) + ω4beta(p1;α1 + 1, β1)beta(p2;α2 + 1, β2),

where αj = aj +yji, βj = bj +nji−yji (j = 1, 2) and the weights ωk (k = 1, . . . , 4) are defined
as

ω1 =
v1B(α1, β1)B(α2, β2)

CB(a1, b1)B(a2, b2)
, ω2 =

v2B(α1 + 1, β1)B(α2, β2)

CB(a1 + 1, b1)B(a2, b2)
,

ω3 =
v3B(α1, β1)B(α2 + 1, β2)

CB(a1, b1)B(a2 + 1, b2)
, ω4 =

v4B(α1 + 1, β1)B(α2 + 1, β2)

CB(a1 + 1, b1)B(a2 + 1, b2)
,

and the normalizing constant C is calculated as

C =
v1B(α1, β1)B(α2, β2)

B(a1, b1)B(a2, b2)
+
v2B(α1 + 1, β1)B(α2, β2)

B(a1 + 1, b1)B(a2, b2)

+
v3B(α1, β1)B(α2 + 1, β2)

B(a1, b1)B(a2 + 1, b2)
+
v4B(α1 + 1, β1)B(α2 + 1, β2)

B(a1 + 1, b1)B(a2 + 1, b2)
.

The exact posterior distributions of the comparative measures (i.e., OR, RR, and RD) under
the Sarmanov beta prior distribution take the following generic form

f∗(θi;α1, β1, α2, β2, ρ) = ω1f(θi;α1, β1, α2, β2) + ω2f(θi;α1 + 1, β1, α2, β2)

+ ω3f(θi;α1, β1, α2 + 1, β2) + ω4f(θi;α1 + 1, β1, α2 + 1, β2). (4)
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If θi = ORi, we have for θi > 0

f(θi;α1, β1, α2, β2) = θ−1−β2
i

{
B(α1, β1)B(α2, β2)

}−1
B(α1 + α2, β1 + β2)

× F (α2 + β2, β1 + β2;α1 + α2 + β1 + β2; 1− 1

θi
), (5)

where F (·, ·; ·; ·) denotes the hypergeometric function Gauss (1812) defined by

F (α, β; γ; z) =
1

B(β, γ − β)

∫ 1

0
tβ−1(1− t)γ−β−1(1− tz)−αdt, for γ > β > 0.

If θi = RRi, we have

f(θi;α1, β1, α2, β2) =
{
B(α1, β1)B(α2, β2)

}−1

×


θα2−1
i B(α1 + α2, β1)F (1− β2, α1 + α2;α1 + α2 + β1; θi) for θi ∈ [0, 1),

θ−α1−1
i B(α1 + α2, β2)F (1− β1, α1 + α2;α1 + α2 + β2; 1/θi) for θi ∈ [1,∞),

(6)

If θi = RDi, we have

f(θi) = Γ(α1 + β1)Γ(α2 + β2)(|θi|)β1+β2−1

×


(1+θi)

α1+β2−1

Γ(β1)Γ(α2)Γ(α1+β2)F1(β2, ζ, 1− α2, α1 + β2; 1 + θi, 1− θ2
i ) if θi ∈ [−1, 0],

(1−θi)α2+β1−1

Γ(β2)Γ(α1)Γ(α2+β1)F1(β1, ζ, 1− α1, α2 + β1; 1− θi, 1− θ2
i ) if θi ∈ (0, 1].

(7)

where ζ = α1 + α2 + β1 + β2 − 2 and F1(·, ·, ·, ·; ·, ·) denotes the Appell function of the first
kind defined by

F1(a, b, b′, c;x, y) =

∞∑
m=0

∞∑
n=0

(a)m+n(b)m(b′)nx
myn

(c)m+nm!n!
, for |x| < 1, |y| < 1,

and (c)k = c(c+ 1) · · · (c+ k − 1) denotes the ascending factorial.

3. Using package mmeta

3.1. Package overview

The mmeta package has two major functions, i.e., multipletables() and singletable().
The function multipletables() is to conduct inference based on multiple 2×2 tables. Specif-
ically, the hyperparameters’ maximum likelihood estimates (â1, b̂1, â2, b̂2, ρ̂) and the inference
on the overall comparative measures are obtained as described in Section 2.1. The posterior
distributions of the study-specific comparative measures can be obtained either by the exact
method as stated in Section 2.2 or by the samples obtained from adaptive rejection Metropo-
lis sampling (ARMS, Gilks, Best, and Tan 1995) implemented in the R package HI, which is
an interface to the C code originally developed by Wally Gilks. The argument method can
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be either "exact" or "sampling" to control if either the exact posterior distributions or the
ARMS samples of the posterior distributions are used. The sampling method is set as default
in this package because the current version of Gauss hypergeometric and Appell functions
may diverge for some studies with extremely large numbers of subjects. The posterior means
of the study-specific comparative measures, the corresponding 95% equal tail credible inter-
vals (the interval between the 2.5% and 97.5% quantiles, referred to as 95% ET CI), and the
95% highest posterior density regions (referred to as 95% HDR) are obtained based on ARMS
samples of the posterior distribution. To ensure reproducibility when the sampling method is
used, a random seed can be set (using set.seed command) before calling multipletables()

and singletable() functions. Various plots can be generated by multipletables(), which
will be illustrated in the rest of this section. In contrast, the function singletable() is to
conduct exact posterior inference based on a single 2×2 table for the given prior distributions
of risks. This function can be used as a sensitivity analysis tool to investigate the posterior
distributions of the comparative measures under various pre-specified prior distributions. The
details of the function singletable() will be given in Section 3.5.

The arguments used in a call to the function multipletables() are

multipletables(data = NULL, measure = NULL, model = "Sarmanov",

method = "sampling", nsam = 10000, alpha = 0.05)

In the following we summarize the main arguments of multipletables().

data: A data frame that contains y1, n1, y2, n2, and studynames. The details of the data
structure is described in Section 3.2.

measure: A character string specifying a comparative measure. Options are "OR" (odds ratio),
"RR" (relative risk), and "RD" (risk difference).

model: A character string specifying the model. Options are "Independent" and "Sarmanov"

(default). "Independent" is the independent beta-binomial model; "Sarmanov" is the
Sarmanov beta-binomial model.

method: A character string specifying the method. Options are "exact" and "sampling".
"exact" denotes the exact method; "sampling" (default) is the method based on ARMS
samples of the posterior distribution obtained with the R package HI.

alpha: A numeric value specifying the significance level. Default value is set to 0.05.

nsam: A numeric value specifying the number of samples if method = "sampling". Default
value is set to 10000.

3.2. Data structure

The structure of data in multipletables() requires the input of a data frame with five
columns, y1, n1, y2, n2, and studynames. The meanings of y1, n1, y2, and n2 can vary for dif-
ferent study designs. Users can define their own data frame to be used in multipletables().
For example, a data frame named Bellamy based on a meta-analysis of the association be-
tween gestational diabetes mellitus and type 2 diabetes mellitus (Bellamy, Casas, Hingorani,
and Williams 2009) can be defined as follows.
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R> y1 <- c(6628, 22, 0, 150, 1, 16, 7, 8, 0, 0, 0, 1, 0, 1, 7, 0, 0, 3,

+ 18, 0)

R> n1 <- c(637341, 868, 39, 2242, 111, 783, 108, 489, 11, 435, 70, 61,

+ 52, 39, 431, 35, 57, 47, 328, 41)

R> y2 <- c(2874, 71, 21, 43, 53, 405, 6, 13, 7, 23, 44, 21, 10, 15, 105,

+ 10, 33, 14, 224, 5)

R> n2 <- c(21823, 620, 68, 166, 295, 5470, 70, 35, 23, 435, 696, 229, 28,

+ 45, 801, 15, 241, 47, 615, 145)

R> studynames <- c("Feig 2008", "Lee H 2008", "Madarasz 2008",

+ "Gunderson 2007", "Vambergue 2008", "Lee 2007","Ferraz",

+ "Krishnaveni 2007", "Morimitsu 2007", "Jarvel 2006", "Albareda 2003",

+ "Aberg 2002", "Linne 2002", "Bian 2000", "Ko 1999", "Osei 1998",

+ "Damm 1994", "Benjamin 1993", "O'Sullivan 1964 and 1984",

+ "Persson 1991")

R> Bellamy <- data.frame(y1, n1, y2, n2, studynames = studynames,

+ stringsAsFactors = FALSE)

There are two kinds of study designs, i.e., retrospective (or case-control) studies and prospec-
tive studies (or clinical trials). In a case-control study, n1 and n2 are the numbers of subjects
in the control and case groups, respectively, while y1 and y2 are the numbers of subjects with
exposure in the control and case groups, respectively. measure = "OR", measure = "RR",
and measure = "RD" correspond to the odds ratio, relative risk, and risk difference of expo-
sure comparing the case group with the control group, respectively. In a prospective study,
n1 and n2 are the numbers of subjects in the unexposed and exposed groups, respectively,
while y1 and y2 are the numbers of subjects who experienced a certain event in the unexposed
and exposed groups, respectively. measure = "OR", measure = "RR", and measure = "RD"

correspond to the odds ratio, relative risk, and risk difference of events comparing the exposed
group with the unexposed group, respectively.

We have provided two example datasets, i.e., colorectal based on a meta-analysis of case-
control studies and withdrawal based on a meta-analysis of clinical trials. In Sections 3.3
and 3.4, we illustrate the working of the package with the help of these two example datasets.

3.3. Example: colorectal dataset

The dataset colorectal consists of data from twenty published case-control studies of the
N-acetyltransferase 2 (NAT2) acetylation status and colorectal cancer risk. NAT2 is a low-
penetrance gene that regulates metabolizing enzymes. The activity of the enzymes is classified
as rapid and slow acetylators. Ye and Parry (2002) investigated the association between rapid
NAT2 acetylator status (event) and colorectal cancer (case) by conducting a meta-analysis
based on twenty published case-control studies from January 1985 to October 2001. The
data are summarized in Table 1. We define the odds ratio as the ratio of odds of having
rapid NAT2 acetylator status comparing those with colorectal cancer to those without. The
colorectal dataset example takes around 3 minutes and 1 minute to run using "exact" and
"sampling" methods (10,000 samples), respectively.

To start analyzing the dataset, we first load the mmeta package and the colorectal dataset.

R> library("mmeta")
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Author
Cases Controls

No. events No. individuals No. events No. individuals

Ilett 27 49 10 41
Ilett 27 49 19 45
Wohlleb 23 43 13 41
Ladero 49 109 40 96
Rodriguez 20 44 13 28
Lang 14 34 92 205
Oda 33 36 33 36
Shibuta 112 234 151 329
Bell 96 202 50 112
Spurr 32 103 34 96
Hubbard 100 275 140 343
Welfare 73 174 74 174
Gil 44 114 68 201
Chen 81 212 96 221
Lee 156 216 134 187
Yoshika 99 106 95 100
Potter 228 527 88 200
Slattery 931 1624 807 1963
Agundez 60 120 119 258
Butler 156 200 162 209

Table 1: Data from a meta-analysis (Ye and Parry 2002) of case-control studies on the asso-
ciation between rapid N-acetyltransferase 2 (NAT2) acetylator status (event) and colorectal
cancer risk (cases).

R> data("colorectal", package = "mmeta")

The colorectal dataset has the following structure:

R> str(colorectal)

'data.frame': 20 obs. of 5 variables:

$ y1 : num 10 19 13 40 13 92 33 151 50 34 ...

$ y2 : num 27 27 23 49 20 14 33 112 96 32 ...

$ n1 : num 41 45 41 96 28 205 36 329 112 96 ...

$ n2 : num 49 49 43 109 44 34 36 234 202 103 ...

$ studynames: chr "Ilett" "Ilett1" "Wohlleb" "Ladero" ...

The function multipletables() is called to conduct exact posterior inference of the odds
ratios.

R> set.seed(1234)

R> multiple.OR <- multipletables(data = colorectal, measure = "OR",

+ model = "Sarmanov", method = "exact")

R> summary(multiple.OR)



10 mmeta: An R Package for Multivariate Meta-Analysis

Model: Sarmanov Beta-Binomial Model

Overall Odds ratio

Estimate: 1.1

95% CI:[0.704,1.718]

Maximum likelihood estimates of hyperparameters:

a1 =3.108, b1 =2.914, a2 =3.942, b2 =3.361, rho =0.125

Likelihood ratio test for within-group correlation (H0: rho=0):

chi2: 3.152; p-value: 0.08

Study-SpecifcOdds ratio:

Mean Lower Bound Upper Bound

Ilett 3.555 1.417 7.585

Ilett1 1.730 0.748 3.408

Wohlleb 2.429 0.993 5.152

Ladero 1.186 0.674 1.925

Rodriguez 1.074 0.387 2.376

Lang 0.990 0.474 1.791

Oda 1.166 0.274 3.285

Shibuta 1.105 0.790 1.501

Bell 1.141 0.708 1.723

Spurr 0.884 0.477 1.492

Hubbard 0.845 0.597 1.150

Welfare 1.008 0.641 1.515

Gil 1.279 0.779 1.968

Chen 0.827 0.556 1.189

Lee 1.048 0.662 1.562

Yoshika 0.884 0.287 2.061

Potter 0.983 0.704 1.345

Slattery 1.923 1.674 2.185

Agundez 1.201 0.767 1.788

Butler 1.054 0.649 1.627

Overall 1.100 0.704 1.718

The likelihood ratio test of H0 : ρ = 0 yields a p value of 0.08 with χ2 test statistic being
3.152. The estimates of the hyperparameters, the estimated mean and the 95% confidence
interval (CI) of the overall odds ratio are provided. In addition, the posterior means and
the 95% credible intervals (CI) of all study-specific odds ratios are given. If the argument
model = "Independent", the independent Beta-Binomial model is fitted to the dataset. If
the argument method = "sampling", adaptive rejection Metropolis sampling implemented in
R package HI is used to obtain the posterior inference.

The forest plot with the 95% CI of the overall odds ratio and the 95% CIs of the study-specific
odds ratios as shown in Figure 1 can be obtained using the plot function with the argument
type = "forest".

R> plot(multiple.OR, type = "forest", addline = 1, xlabel=c(0.3,0.5,2,4))

The argument addline is to add a blue dotted reference line to the plot. If the argument
file is specified, (e.g., file = "multiple_OR_forest"), the plot will be saved as
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Figure 1: Forest plot of 20 study-specific and the overall odds ratios with 95% CIs.

"./mmeta/multiple_OR_forest.eps", where "./" denotes the current working directory and
the directory mmeta is created automatically if it does not exist. The argument select (e.g.,
select = 1:4) can be set to select multiple target studies to be displayed. If the argument
ciShow = TRUE (by default), the numbers of the posterior means and the CIs will be displayed
at the right side of the forest plot. Many standard R plotting arguments (e.g., xlabel,

ylabel, ylim, xlim) can be set in the plot function. See the help file for more details.

The posterior density functions of some target studies can be overlaid as shown in Figure 2
with the argument type = "overlap".

R> plot(multiple.OR, type = "overlap", select = c(4, 14, 16, 20))

Figure 2 displays the overlaid posterior density functions of odds ratios for four selected
studies, i.e., studies 4 (Ladero et al. 1991), 14 (Chen et al. 1998), 16 (Yoshioka, Katoh, Nakano,
Takasawa, Nagata, and Itoh 1999), and 20 (Butler, Ryan, and Roberts-Thomson 2001). Such
a plot provides a useful visualization of statistical evidence on association contributed from
individual studies. Figure 2 shows that while in Chen et al. (1998), most of the density of the
odds ratio is between 0.5 and 1.2 (mean: 0.827, 95% CI: [0.556, 1.189]), the density shifts to
the right in Butler et al. (2001) with the majority of the density laying between 0.6 and 1.5
(mean: 1.054, 95% CI: [0.649, 1.627]). In the studies of Ladero et al. (1991) and Yoshioka
et al. (1999), the density curves are more spread out because of their relatively smaller study
sample sizes (mean: 1.186, 95% CI: [0.674, 1.925], and mean: 0.884, 95% CI: [0.287, 2.061],
respectively).

The posterior density functions of these target studies can be viewed in a side-by-side manner
as in Figure 3 if the argument type = "sidebyside", where both the prior and posterior
distributions are displayed.

R> plot(multiple.OR, type = "sidebyside", select = c(4, 14, 16, 20),

+ ylim = c(0, 2.7), xlim = c(0.5, 1.5))
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Figure 2: Posterior distributions of study-specific odds ratios for four selected studies in one
plot.

Figure 3 displays the prior and posterior distributions of the study-specific odds ratios for
these four target studies. Such a plot is useful to investigate the difference between the prior
and posterior distributions, hence the strength of contribution from individual studies.

3.4. Example: withdrawal dataset

Tricyclic antidepressants are effective in preventing headaches and have become a standard
modality in headache prevention. To investigate the efficacy and related adverse effects of
tricyclic antidepressants in the treatment of headaches, Jackson et al. (2010) reported a meta-
analysis based on multiple clinical trials from year 1964 to year 2009. Among several outcomes
of interest, proportion of withdrawal during a trial is paid special attention because it is a very
important measure of adverse effects and it plays a critical role in drug safety. One question
of interest is whether the probability of withdrawing due to adverse effects is increased by
the tricyclic treatment compared with the placebo. This can be measured by relative risk
(defined as the ratio of risks of withdrawal comparing those in the tricyclic treatment group
to those in the placebo group). The numbers of withdrawals due to adverse effects in sixteen
clinical trials are summarized in Table 2. The withdrawal dataset example takes around 2
minutes and 1 minute to run using the "exact" and the "sampling" method (with 10,000
samples), respectively.

To start analyzing the dataset, we first load the withdrawal dataset.

R> data("withdrawal", package = "mmeta")

The available data have the following structure

R> str(withdrawal)
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Figure 3: Posterior distributions of study-specific odds ratios for four studies in four separate
plots.

'data.frame': 16 obs. of 5 variables:

$ y1 : num 0 9 8 13 10 22 2 8 4 4 ...

$ n1 : num 40 27 53 29 34 48 18 21 49 38 ...

$ y2 : num 1 4 8 14 15 9 3 12 7 10 ...

$ n2 : num 40 16 47 56 44 53 18 26 105 36 ...

$ studynames: chr "Bendtsen 1996" "Canepari 1985" "Couch 1976"

+ "Diamond 1971" ...

The function multipletables() is called to conduct exact posterior inference of relative risks.

R> set.seed(1234)

R> multiple.RR <- multipletables(data = withdrawal, measure = "RR",

+ model = "Sarmanov", method = "exact")

R> summary(multiple.RR)

Model: Sarmanov Beta-Binomial Model

Overall Relative risk

Estimate: 1.263

95% CI:[0.82,1.943]
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Author
Treatment Control

No. events No. individuals No. events No. individuals

Bendtsen 1996 1 40 0 40
Canepari 1985 4 16 9 27
Couch 1976 8 47 8 53
Diamond 1971 14 56 13 29
Gobel 1994 15 44 10 34
Holroyd 2001 9 53 22 48
Indaco 1988 3 18 2 18
Jacobs 1972 12 26 8 21
Lance 1964 7 105 4 49
Langemark 1990 10 36 4 38
Loldrup 1989 222 306 11 98
Mathew 1981 23 86 26 94
Morland 1979 4 23 3 23
Noone 1980 6 16 5 15
Pfaffenrath 1994 35 133 26 128
Vernon 2009 2 7 0 5

Table 2: Data from a meta-analysis of sixteen studies on the association between withdrawal
due to the adverse effects and the tricyclic treatment in Jackson et al. (2010). No. events:
Number of individuals who withdrew from the study. No. individuals: Number of individuals
who started the study.

Maximum likelihood estimates of hyperparameters:

a1 =2.042, b1 =7.408, a2 =1.943, b2 =5.179, rho =0.093

Likelihood ratio test for within-group correlation (H0: rho=0):

chi2: 0.207; p-value: 0.65

Study-SpecifcRelative risk:

Mean Lower Bound Upper Bound

Bendtsen 1996 2.976 0.247 14.039

Canepari 1985 0.906 0.318 1.897

Couch 1976 1.235 0.503 2.570

Diamond 1971 0.673 0.356 1.139

Gobel 1994 1.275 0.653 2.289

Holroyd 2001 0.446 0.217 0.755

Indaco 1988 1.671 0.393 4.975

Jacobs 1972 1.365 0.683 2.558

Lance 1964 0.913 0.294 2.249

Landemark 1990 2.555 0.979 6.069

Loldrup 1989 6.325 3.749 10.782

Mathew 1981 1.016 0.619 1.579

Morland 1979 1.548 0.414 4.270

Noone 1980 1.348 0.510 2.991

Pfaffenrath 1994 1.326 0.838 2.022

Vernon 2009 3.448 0.473 15.038

Overall 1.263 0.820 1.943
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Figure 4: Forest plot of 16 study-specific and the overall relative risks with 95% CIs.

The likelihood ratio test of H0 : ρ = 0 yields a p value of 0.65 with χ2 test statistic being
0.207. The estimates of the hyperparameters, the estimated mean and the 95% CI of the
overall relative risk are provided. In addition, the posterior mean and 95% CI of each study-
specific relative risk are given. The forest plot with the confidence interval of the overall
relative risk and the credible intervals of the study-specific relative risks as shown in Figure 4
can be obtained using the plot function with the argument type = "forest".

R> plot(multiple.RR, type = "forest", addline = 1, mar=c(4, 7, 3, 6),

+ xlabel=c(0.2,0.5,3,6.5))

The posterior density functions of some target studies can be overlaid as shown in Figure 5
with the argument type = "overlap".

R> plot(multiple.RR, type = "overlap", select = c(3, 8, 14, 16))

Figure 5 shows that while Couch, Ziegler, and Hassanein (1976) and Noone (1980) have most
of the mass of the density of relative risk for values less than 3 (mean: 1.235, 95% CI: [0.503,
2.570], and mean: 1.348, 95% CI: [0.510, 2.991], respectively), the density shifts to the right
in Jacobs (1972) (mean: 1.365, 95% CI: [0.683, 2.558]). The density curve of the study of
Vernon, Jansz, Goldsmith, and McDermaid (2009) (mean: 3.448, 95% CI: [0.473, 15.038]) is
more spread out because of the relatively small study sample size.

Moreover, the posterior density function of each target study can be viewed in a side-by-side
manner as in Figure 6 if the argument type = "sidebyside", where both the prior and
posterior distributions are displayed.

R> plot(multiple.RR, type = "sidebyside", select = c(3, 8, 14, 16),

+ ylim = c(0, 1.2), xlim = c(0.4, 3))
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Figure 5: Posterior distributions of study-specific relative risk for four studies in one plot.
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Figure 6: Posterior distributions of study-specific relative risks for four studies in four separate
plots.

Figure 6 displays that the study specific odds ratios have very different posterior distributions
under the same prior distributions.

Because the estimated relative risk for the study of Loldrup, Langemark, Hansen, Olesen, and
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Bech (1989) (mean: 6.325, 95% CI: [3.749, 10.782]) is much larger than those for the other
studies, it can be potentially influential to the analysis results. To evaluate the influence of
this study, we remove it and reanalyze the dataset by calling the function multipletables().
The results can be investigated using summary() (not shown).

R> multiple.RR.sens <- multipletables(data = withdrawal[-11, ],

+ measure = "RR", model = "Sarmanov")

R> summary(multiple.RR.sens)

The likelihood ratio test of zero correlation coefficient results in a p value of 0.40 with the
χ2 test statistics being equal to 0.707. Although the study of Loldrup et al. (1989) slightly
changes the overall and study-specific relative risk estimates, it is not influential because the
overall relative risk estimates are not significant regardless of it being included or not.

If the risk difference is of interest, we define it as the difference of risks of withdrawal comparing
those in the treatment group to those in the placebo group. The function multipletables()

is called to conduct posterior inference of the risk differences.

R> set.seed(1234)

R> multiple.RD <- multipletables(data = withdrawal, measure = "RD",

+ model = "Sarmanov")

R> summary(multiple.RD)

Model: Sarmanov Beta-Binomial Model

Overall Risk difference

Estimate: 0.057

95% CI:[-0.049,0.162]

Maximum likelihood estimates of hyperparameters:

a1 =2.042, b1 =7.408, a2 =1.943, b2 =5.179, rho =0.093

Likelihood ratio test for within-group correlation (H0: rho=0):

chi2: 0.207; p-value: 0.65

Study-SpecifcRisk difference:

Mean Lower Bound Upper Bound

Bendtsen 1996 0.022 -0.065 0.119

Canepari 1985 -0.046 -0.270 0.187

Couch 1976 0.021 -0.114 0.162

Diamond 1971 -0.138 -0.327 0.040

Gobel 1994 0.055 -0.127 0.230

Holroyd 2001 -0.236 -0.395 -0.082

Indaco 1988 0.047 -0.149 0.253

Jacobs 1972 0.090 -0.143 0.323

Lance 1964 -0.023 -0.124 0.063

Landemark 1990 0.151 -0.004 0.313

Loldrup 1989 0.593 0.509 0.668

Mathew 1981 -0.003 -0.124 0.121

Morland 1979 0.043 -0.143 0.237

Noone 1980 0.059 -0.205 0.311



18 mmeta: An R Package for Multivariate Meta-Analysis

Pfaffenrath 1994 0.059 -0.042 0.159

Vernon 2009 0.138 -0.139 0.433

Overall 0.057 -0.049 0.162

The forest plot, the overlaid, and side-by-side plots of the posterior density functions for
risk difference can also be obtained by using the plot function with the argument type =

"forest", type = "overlap", and type = "sidebyside", respectively.

Note that the study of Loldrup et al. (1989) can be influential on the analysis results because
the estimated risk difference (mean: 0.593, 95% CI: [0.509, 0.668]) is much larger than those
in other studies. To evaluate the sensitivity of the inference on this study, we remove it
and reanalyze the dataset by calling the function multipletables(). The results can be
investigated using summary() (not shown).

R> multiple.RD.sens <- multipletables(data = withdrawal[-11, ],

+ measure = "RD", model = "Sarmanov")

R> summary(multiple.RD.sens)

The likelihood ratio test of zero correlation coefficient results in a p value of 0.40. Although
the study of Loldrup et al. (1989) slightly changes the overall and study-specific risk difference
estimates, it is not influential because the overall risk difference estimates are not significant
regardless of it being included or not.

3.5. Using the singletable() function

When the inference on a specific study based on a single 2×2 table is of interest, the function
singletable() can be used as a sensitivity analysis tool to conduct the exact posterior
inference on comparative measures under various prior distributions. The arguments used in
a call to the function singletable() are

singletable <- function(y1, n1, y2, n2, measure, model = "Sarmanov",

method = "sampling", alpha = 0.05, nsam = 10000)

In the following we summarize the main arguments of singletable().

y1, n1: Integers indicating the number of events and the total number of subjects in group 1.

y2, n2: Integers indicating the number of events and the total number of subjects in group 2.

measure: A character string specifying a comparative measure. Options are "OR" (odds ratio),
"RR" (relative risk), and "RD" (risk difference).

model: A character string specifying the model. Options are "Independent" and "Sarmanov"

(default). "Independent" is the independent beta-binomial model; "Sarmanov" is the
Sarmanov beta-binomial model.

method: A character string specifying the method. Options are "exact" and "sampling".
"exact" denotes the exact method; "sampling" (default) is the method based on ARMS
samples of the posterior distribution obtained with the R package HI.
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a1, b1, a2, b2: Numeric values specifying the hyperparameters of the beta prior distribu-
tions for groups 1 and 2.

rho: A numeric value specifying the correlation coefficient for the Sarmanov beta prior dis-
tribution. Default value is set to 0.

alpha: A numeric value specifying the significance level. Default value is set to 0.05.

nsam: A numeric value specifying the number of samples if method is sampling. Default
value is set to 10,000.

To illustrate the use of the function singletable(), we consider the study by Ladero et al.
(1991) in the colorectal dataset with y1 = 40, n1 = 96, y2 = 49, and n2 = 109. The
function singletable() is called to conduct exact posterior inference of the odds ratio under
four different prior distributions, i.e., Jeffreys prior distribution (a1 = b1 = a2 = b2 = 0.5),
Laplace prior distribution (a1 = b1 = a2 = b2 = 1), and two Sarmanov correlated prior
distributions with strong positive and negative prior correlations (a1 = b1 = a2 = b2 = 0.5,
ρ = 0.5, −0.5). The results are listed below.

R> set.seed(1234)

R> single.OR.Jeffreys <- singletable(a1 = 0.5, b1 = 0.5, a2 = 0.5,

+ b2 = 0.5, y1 = 40, n1 = 96, y2 = 49, n2 = 109, model = "Independent",

+ measure = "OR", method = "exact")

R> summary(single.OR.Jeffreys)

Measure: Odds ratio

Model: Independent Beta-Binomial Model

Mean: 1.183

Median: 1.134

95% ET CI: [0.659,1.967]

95% HDR CI: [0.603,1.862]

R> set.seed(1234)

R> single.OR.Laplace <- singletable(a1 = 1, b1 = 1, a2 = 1, b2 = 1, y1 = 40,

+ n1 = 96, y2 = 49, n2 = 109, model = "Independent", measure = "OR",

+ method = "exact")

R> summary(single.OR.Laplace)

Measure: Odds ratio

Model: Independent Beta-Binomial Model

Mean: 1.18

Median: 1.133

95% ET CI: [0.66,1.957]

95% HDR CI: [0.586,1.85]

R> set.seed(1234)

R> single.OR.Sar1 <- singletable(a1 = 0.5, b1 = 0.5, a2 = 0.5, b2 = 0.5,

+ rho = 0.5, y1 = 40, n1 = 96, y2 = 49, n2 = 109, model = "Sarmanov",

+ measure = "OR", method = "exact")

R> summary(single.OR.Sar1)
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Measure: Odds ratio

Model: Sarmanov Beta-Binomial Model

Prior: Sarmanov

Mean: 1.187

Median: 1.145

95% ET CI: [0.668,1.968]

95% HDR CI: [0.604,1.845]

R> set.seed(1234)

R> single.OR.Sar2 <- singletable(a1 = 0.5, b1 = 0.5, a2 = 0.5, b2 = 0.5,

+ rho = -0.5, y1 = 40, n1 = 96, y2 = 49, n2 = 109, model = "Sarmanov",

+ measure = "OR", method = "exact")

R> summary(single.OR.Sar2)

Measure: Odds ratio

Model: Sarmanov Beta-Binomial Model

Prior: Sarmanov

Mean: 1.187

Median: 1.145

95% ET CI: [0.668,1.968]

95% HDR CI: [0.604,1.845]

The corresponding prior and posterior distributions of the odds ratio under four prior distri-
butions are shown in Figure 7 using the plot function with the argument type = "overlap".

R> par(mfrow = c(2,2))

R> plot(single.OR.Jeffreys, type = "overlap", xlim = c(0.04, 0.3),

+ ylim = c(0, 15), main = "Jeffreys Prior")

R> plot(single.OR.Laplace, type = "overlap", xlim = c(0.04, 0.3),

+ ylim = c(0, 15), main = "Laplace Prior")

R> plot(single.OR.Sar1, type = "overlap", xlim = c(0.04, 0.3),

+ ylim = c(0, 15),

+ main = expression(paste("Sarmanov Prior ", rho, " = 0.5")))

R> plot(single.OR.Sar2, type = "overlap", xlim = c(0.04, 0.3),

+ ylim = c(0, 15),

+ main = expression(paste("Sarmanov Prior ", rho, " = -0.5")))

As shown in Figure 7, the posterior distributions under all prior distributions share the similar
pattern of having most of their weight on odds ratios between 0.5 and 2. This leads to similar
credible intervals under all prior distributions although the Sarmanov beta prior distributions
impose relatively strong prior correlations between p1 and p2 (ρ = −0.5 or 0.5).

4. Conclusion

In this paper, we present an overview of the mmeta package to conduct exact posterior
inference of the odds ratio, relative risk, and risk difference based on multiple studies or a
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Figure 7: Prior and posterior distributions of odds ratio under Jeffreys prior distribution,
Laplace prior distribution, and Sarmanov prior distributions (ρ = 0.5 and ρ = −0.5).

single study of two populations with binary outcomes. The theory used for model fitting is
summarized briefly, and the two major functions (multipletables() and singletable())
of the package are described in details. Practical use of the mmeta package is illustrated with
two examples of meta-analysis based on multiple 2×2 tables and one example of a single 2×2
table. As a future research direction, we would like to expand the functionality of this package
to conduct meta-regression analysis using the Sarmanov beta prior distributions as illustrated
in Chen et al. (2014a) and Chen et al. (2014b). Moreover, we have investigated many available
non-commercial algorithms and software packages to compute the hypergeometric function
and the Appell function. To the best of our knowledge, we cannot find one that provides
stable computation for studies with extremely large numbers of subjects. Developing a robust
algorithm for computation of these two functions are also part of our future research.
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A. Derivation of Equation 3

For simplicity of notation, we suppress the index i. After some algebra, we can show∫
Binomial(y|n; p)beta(p; a, b){1 + c(p− µ)}dp = PBB(y|n; a, b)

{
1 + c

( y + a

n+ a+ b
− µ

)}
.

Denote µj = aj/(aj + bj) and σ2
j = µj(1− µj)/(aj + bj + 1) for j = 1, 2. We have

∫∫
Pr(y1|n1; p1)Pr(y2|n2; p2)beta(p1; a1, b1)beta(p2; a2, b2)

{
1 +

ρ

σ1σ2
(p1 − µ1)(p2 − µ2)

}
dp1dp2

=

∫
Pr(y2|n2; p2)beta(p2; a2, b2)

∫
Pr(y1|n1; p1)beta(p1; a1, b1)

{
1 +

ρ

σ1σ2
(p1 − µ1)(p2 − µ2)

}
dp1dp2

=

∫
Pr(y2|n2; p2)beta(p2; a2, b2)PBB(y1|n1; a1, b1)

{
1 +

ρ

σ1σ2

( y1i + a1

n1i + a1 + b1
− µ1

)
(p2 − µ2)

}
dp2

=
[
PBB(y1i;n1i, a1, b1)PBB(y2i;n2i, a2, b2)

{
1 +

ρ

σ1σ2

( y1i + a1

n1i + a1 + b1
− µ1

)( y2i + a2

n2i + a2 + b2
− µ2

)}]
.
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