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Amelioration of Binge Eating by Nucleus Accumbens Shell Deep Brain
Stimulation in Mice Involves D2 Receptor Modulation

Abstract

Hedonic overconsumption contributing to obesity involves altered activation within the mesolimbic
dopamine system. Dysregulation of dopamine signaling in the nucleus accumbens shell (NAS) has been
implicated in reward-seeking behaviors, such as binge eating, which contributes to treatment resistance in
obesity (Wise, 2012). Direct modulation of the NAS with deep brain stimulation (DBS), a surgical procedure
currently under investigation in humans for the treatment of major depression, obsessive—compulsive
disorder, and addiction, may also be effective in ameliorating binge eating. Therefore, we examined the ability
of DBS of the NAS to block this behavior in mice. c-Fos immunoreactivity was assessed as a marker of DBS-
mediated neuronal activation. NAS DBS was found to reduce binge eating and increased c-Fos levels in this
region. DBS of the dorsal striatum had no influence on this behavior, demonstrating anatomical specificity for
this effect. The dopamine D2 receptor antagonist, raclopride, attenuated the action of DBS, whereas the D1
receptor antagonist, SCH-23390, was ineffective, suggesting that dopamine signaling involving D2 receptors
underlies the effect of NAS DBS. To determine the potential translational relevance to the obese state, chronic
NAS DBS was also examined in diet-induced obese mice and was found to acutely reduce caloric intake and
induce weight loss. Together, these findings support the involvement of the mesolimbic dopamine pathways
in the hedonic mechanisms contributing to obesity, and the efficacy of NAS DBS to modulate this system.
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Amelioration of Binge Eating by Nucleus Accumbens
Shell Deep Brain Stimulation in Mice Involves
D2 Receptor Modulation

Casey H. Halpern,' Anand Tekriwal,? Jessica Santollo,’ Jeffrey G. Keating,* John A. Wolf,' Derek Daniels,’

and Tracy L. Bale?

Departments of 'Neurosurgery, ‘Neurology, and 2Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and *Department of
Psychology, University at Buffalo, State University of New York, Buffalo, New York 14260

Hedonic overconsumption contributing to obesity involves altered activation within the mesolimbic dopamine system. Dysregulation of
dopamine signaling in the nucleus accumbens shell (NAS) has been implicated in reward-seeking behaviors, such as binge eating, which
contributes to treatment resistance in obesity (Wise, 2012). Direct modulation of the NAS with deep brain stimulation (DBS), a surgical
procedure currently under investigation in humans for the treatment of major depression, obsessive- compulsive disorder, and addic-
tion, may also be effective in ameliorating binge eating. Therefore, we examined the ability of DBS of the NAS to block this behavior in
mice. c-Fos immunoreactivity was assessed as a marker of DBS-mediated neuronal activation. NAS DBS was found to reduce binge eating
and increased c-Fos levels in this region. DBS of the dorsal striatum had no influence on this behavior, demonstrating anatomical
specificity for this effect. The dopamine D2 receptor antagonist, raclopride, attenuated the action of DBS, whereas the D1 receptor
antagonist, SCH-23390, was ineffective, suggesting that dopamine signaling involving D2 receptors underlies the effect of NAS DBS. To
determine the potential translational relevance to the obese state, chronic NAS DBS was also examined in diet-induced obese mice and
was found to acutely reduce caloric intake and induce weight loss. Together, these findings support the involvement of the mesolimbic

dopamine pathways in the hedonic mechanisms contributing to obesity, and the efficacy of NAS DBS to modulate this system.

Introduction

The rising prevalence of obesity is a worldwide concern given
increased risk for diabetes and metabolic syndrome (Jeffery et al.,
2004; Li et al., 2005; Sturm, 2007; Finucane et al., 2011). Binge
eating affects ~30% of obese individuals, contributing to this
condition’s treatment resistance (Hsu et al., 1997; Gorin et al.,
2008). This propensity for uncontrolled eating is related to hedo-
nic properties of highly palatable, calorically dense food (Nair et
al., 2009), mediated by the mesolimbic dopamine system’s pro-
jections from the ventral tegmental area to the nucleus accum-
bens (NA) (Wise and Rompre, 1989; Teegarden and Bale, 2007;
Stoeckel et al., 2008; Teegarden et al., 2008). This circuitry has
been previously described to underlie addiction, suggesting com-
mon neural pathways (Nestler, 2005). Obesity, like addiction, has
been associated with decreased dopamine type 2 receptor (D2R)
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availability in portions of the striatum, including the NA, which
may predispose to compulsive-like binge-eating behavior (Wang
et al., 2001; Stice et al., 2008; Volkow et al., 2008; Johnson and
Kenny, 2010). It is unclear whether such changes in the D2R are a
consequence or cause of chronic exposure to a reward, such as a
high-fat diet (Stice et al., 2011).

Deep brain stimulation (DBS) of the NA is currently under
investigation as a therapy for major depression, obsessive—com-
pulsive disorder, and substance abuse (Okun et al., 2007; Schla-
epfer et al., 2008; Muller et al., 2009). DBS of the subthalamic
nucleus and thalamus has already been established as an effective
treatment for Parkinson’s disease and essential tremor, respec-
tively (Halpern et al., 2007; Toft et al., 2011). Given that multiple
studies have implicated the shell subregion of the NA (NAS) in
mediating reward sensation associated with food-seeking behav-
ior, the present study examined whether targeting the NAS with
DBS would modulate the hedonic mechanisms contributing to
obesity in mice (Tanda and Di Chiara, 1998; Georgescu et al.,
2005; Lamont et al., 2012). NAS DBS in rodent models has been
found to mitigate other reward-seeking behaviors, such as co-
caine reinstatement, and small pilot studies and case reports in
humans suffering from addiction have reported decreased crav-
ing and high rates of abstinence (Vassoler et al., 2008; Muller et
al., 2009; Valencia-Alfonso et al., 2012). One potential mecha-
nism by which DBS may ameliorate such behavior is by modu-
lating dopamine receptor-expressing neurons expressed in this
brain region (Shi and Rayport, 1994; Sesia et al., 2010).
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Elucidation of the neuroanatomic, biochemical, and molecu-
lar bases of binge eating may facilitate the development of novel
therapeutics for obesity. The present study examined the ability
of NAS DBS to attenuate this behavior in mice. To determine
whether DBS was functioning to effectively activate or inhibit
neurons in the NAS, c-Fos immunoreactivity (c-Fos-IR) was
measured. Involvement of the dopamine D1 receptor (D1R) and
D2R in DBS function was examined by pretreatment with the
receptor specific antagonists, SCH-23390 (0.075 mg/kg) and ra-
clopride (3 mg/kg), respectively. Last, to examine the ability of
NAS DBS to attenuate consumption in the obese state, chronic
DBS was administered to diet-induced obese mice.

Materials and Methods

Animals. All mice were male C57BL/6] (N = 73, 8 weeks) purchased from
The Jackson Laboratory. Mice were individually housed on a 12 h light/
dark schedule with food and water ad libitum unless otherwise noted.
House chow contained 28% protein, 60% carbohydrates, and 12% fat by
calories and 4.00 kcal/g (Purina Lab Diet). Given a previously docu-
mented macronutrient preference for fat (Teegarden and Bale, 2007), a
high-fat diet, which contained 20% protein, 20% carbohydrates, and
60% fat by calories and 5.24 kcal/g (Research Diets), was used in this
study to model binge eating and diet-induced obesity. All studies were
done according to the standards and guidelines of the University Labo-
ratory Animal Resources and were approved by the Institutional Animal
Care and Use Committee of the University of Pennsylvania.

Surgery. After 1 week of habituation to our facility, mice were anesthe-
tized with isoflurane inhalation (5% induction, 2% maintenance) and
mounted in a stereotaxic frame (Kopf Instruments). A custom bipolar
tungsten electrode (FHC) was implanted unilaterally into the left NAS,
according to the following coordinates relative to bregma: 1.34 mm an-
terior, 0.60 mm lateral, and 4.25 mm deep to brain surface. The dorsal
striatum was also targeted with DBS in a separate cohort of mice, accord-
ing to the following coordinates relative to bregma: 1.34 mm anterior,
1.50 mm lateral, and 2.20 mm deep to brain surface. Mechanical etching
using a high-speed hand drill was used to increase the surface area of the
mouse skull, to which cyanoacrylate glue was applied (Agterberg et al.,
2010). This procedure provided a bonding surface for the dental acrylic,
which fastened the base of the electrode to the skull.

Binge eating. Body weight matched mice were randomly assigned to
surgical and nonsurgical groups. Binge eating, defined here as consump-
tion of >25% of a mouse’s daily caloric intake within a 1 h period, was
observed in all mice using a limited access protocol. This protocol is
known to induce binge-like behavior in noncalorically restricted mice
because of the brevity and intermittent nature of the exposure (Pankev-
ich etal., 2010). A single, preweighed high-fat pellet was provided to the
mice in their home cage daily for 1 h (12:00 P.M. to 1:00 P.M.). Intake of
the high-fat diet within that 1 h period was measured, as was 24 h con-
sumption of house chow. This protocol continued until a stable level of
high-fat intake was obtained (defined as <<15% variation in consump-
tion over 3 consecutive days), at which point DBS was administered. In a
separate cohort of mice, intake of a standard chow pellet in the binge
paradigm was examined to ensure that binge eating was specific to the
palatable high-fat food.

Acute DBS. All mice were allowed to recover for 1-week after surgery.
For the purpose of habituation, mice implanted with DBS electrodes in
the NAS (N = 12) or dorsal striatum (N = 11) were connected to external
wires 3 h before starting the limited access protocol each day (Fig. 1A).
Nonsurgical, weight-matched controls were handled in a similar manner
(N = 7). Avoltage-based stimulator with a built-in isolation circuit (SD9
Square Pulse Stimulator, Grass Technologies) was used to generate a
continuous train of monophasic pulses (60 us, 160 Hz), with the baseline
adjusted to achieve overall charge balance. The output of the stimulus
isolator was monitored using an isolated probe (CT3684, Cal Test) and a
factory-calibrated oscilloscope (TPS2000B, Tektronix). The adminis-
tered current output from this constant voltage stimulator was calculated
to be 150 wA, which remained stable from initiation to the end of each
session. DBS was administered on 2 alternate days, to ensure that caloric
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Figure 1. DBS electrode placement. A, Schematic illustration of the setup for NAS DBS. B,
End of representative electrode tract in the NAS, indicated by black arrow. C~E, Electrode place-
ments in the NAS (N = 37; filled black circles), core (N = 2; filled gray circles), and dorsal
striatum (N = 11; filled gray circles). ac, Anterior commissure.

intake from high-fat food returned to baseline in between treatments.
The stimulator was turned on immediately before access to the high-fat
pellet and turned off after this 1 h period. Mice were then disconnected
from external wires. On non-DBS days, mice were attached to the wires,
but the stimulator was not turned on. The selection of parameters (pulse
width, frequency, current intensity) was based on recent basic science
and clinical work where current intensities are varied across studies
(Benazzouz and Hallett, 2000; Chang et al., 2003; Mayberg et al., 2005;
Vassoler et al., 2008; Bewernick et al., 2012). Thus, the influence of NAS
DBS on binge eating was examined at 150 uA, an intensity previously
found to be required to attenuate cocaine priming-induced reinstate-
ment of drug seeking in rats, and 75 wA, or half of this intensity (N = 11)
(Vassoler et al., 2008).

Video monitoring of activity. Video recording was performed during
limited access to the high-fat diet to confirm that mice were not immo-
bilized by DBS. Recordings were performed without an investigator pres-
ent. All mice were video-monitored during access to the high-fat diet on
one day with DBS-on in half of the implanted cohort and DBS-off in the
second half. Recordings were initiated at the start of the 1 h period. An
investigator blinded to treatment groups measured both the latency to
initiate locomotion once access to the high-fat pellet was provided and
the latency to begin consuming this high-fat pellet.

Verification of electrode placement and c-Fos immunohistochemistry.
Immediately after 1 h of DBS, mice were killed by trans-cardial perfusion.
DBS was administered to half of the implanted mice at 12:00 P.M. A
high-fat pellet was not provided on the day of perfusion to avoid the
confound of binge eating on c-Fos-IR. Mice were anesthetized with 5%
isoflurane and perfused trans-cardially with heparinized normal saline
(0.9% NaCl/10 U heparin/ml), then with ice-cold 4% paraformaldehyde
fixative in 0.1 M PBS. Electrodes then were removed. Whole brains were
extracted from the crania, postfixed for 24 h, and submerged in 20%
sucrose in 0.1 M PBS for ~48 h. Brains were frozen and cut by microtome
into 30 wm coronal sections, which then were stored in cryoprotectant at
—20 C (Watson et al., 1986).

To assay neuronal activation in response to DBS, immunohistochem-
istry for c-Fos was performed on free-floating sections as previously de-
scribed (Goel et al., 2011). Brain sections were anatomically matched
across all mice by an investigator blinded to treatment groups. Brain
regions were identified using the Paxinos and Franklin mouse atlas (Paxi-
nos and Watson, 1986). c-Fos-IR was quantified by counting labeled cells
and taking the average across two regions of interest defined by a rectan-
gular field at 20X. These analyzed areas were of identical size and shape
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for each mouse. The approximate rostral-caudal levels relative to
bregma of the analyzed regions were as follows: NAS (+1.94 mm and
+1.34 mm), and infralimbic cortex (ILC; +1.94 mm and +1.34 mm).
The number of c-Fos-IR cells was counted and averaged across sections
containing relevant brain areas. A threshold was set to delineate c-Fos-IR
from background, and only cells above threshold were included (IPLab,
Biovision Technologies).

Pharmacologic blockade of DBS. In a separate cohort of mice, the effect
of D1R or D2R antagonism during DBS was assessed (N = 9). Mice were
provided limited access to the high-fat diet as described above. Mean
high-fat intake across 3 consecutive days of stable consumption was cal-
culated. DBS was then administered, and mice were assigned to three
separate drug groups matched for their mean decrease in high-fat intake
with DBS. After a day with DBS-off, mice were pretreated with a dopa-
mine receptor antagonist or vehicle based on their assigned group. Spe-
cifically, vehicle (sterile saline 0.9%), a DIR antagonist (0.075 mg/kg
SCH-23390; Sigma-Aldrich) or a D2R antagonist (3 mg/kg raclopride;
Sigma-Aldrich) was administered intraperitoneally 30 min before initi-
ating DBS. On a subsequent day, antagonists were administered in the
absence of DBS to examine the effect of dopamine receptor blockade on
binge eating. All comparisons of the effects of these treatments on DBS or
binge eating were made in reference to the mean decrease in high-fat
intake with DBS alone defined as the control or mean caloric intake from
high-fat, respectively. SCH-23390 and raclopride doses were selected
based on previous studies (Shaham and Stewart, 1996; Fienberg et al.,
1998; Luo et al., 2011).

Quantitative RT-PCR-based TagMan. To determine the effect of binge
eating on DIR and D2R gene expression within the NAS, brains were
removed from a new cohort of nonsurgical mice (N = 7) after caloric
intake from high-fat stabilized in the limited access protocol. Mice were
killed at the time when access to this diet was routinely initiated (12:00
P.M.). Brains were immediately frozen on dry ice and stored at =80 C. A
group of age- and weight-matched controls never exposed to the high-fat
diet were included for comparison (N = 7). Brains were cut on a cryostat
at 30 wm and mounted on slides (SuperFrost Plus, Fisher Scientific).
Brain punches (0.75 mm) of the NAS were obtained by micropunch
(Harris Micro-Punch, Ted Pella) and placed into 500 ul Trizol (Invitro-
gen), frozen on dry ice, and stored at —80 C. RNA isolation was per-
formed as previously described (Morgan and Bale, 2011). Approximately
250 ng of total RNA from brain punches was reverse transcribed to cDNA
using the High-Capacity cDNA reverse transcriptase kit (Applied Biosys-
tems). qRT-PCR was performed using TagMan probes (DIR, ID
Mm02620146_s1; D2R, ID Mm00438545_m1) arranged onto a 96-well
array (Dunn and Bale, 2011; Morgan and Bale, 2011). GAPDH was used
as an endogenous loading control. Samples were run in triplicate, and
expression levels of each sample were normalized to the average expres-
sion level in controls. Analysis was performed using the comparative C,
method.

Diet-induced obesity. All mice (N = 8) were maintained on the high-fat
diet for 1620 weeks. During this time, mice were provided unrestricted,
extended access to preweighed pellets in their home cage. No house
chow was provided in this study to the surgical mice, but water was
provided ad libitum. Consumption of the high-fat diet and body
weights of obese mice were measured daily and compared with lean
mice, which were maintained on house chow and never exposed to the
high-fat diet (N = 4).

Chronic DBS. After recovery from surgery, obese mice were grouped
into four weight-matched pairs, in which one mouse was with DBS-on
and the other DBS-off. Mice were connected to external wires and mon-
itored daily until high-fat intake (defined as <15% variation in con-
sumption over 3 consecutive days) and body weight stabilized (defined as
<2% variation in body weight over 3 consecutive days). NAS DBS was
then administered continuously for 4 d. The same stimulatory parame-
ters with a current output of 150 wA were used as described above. After
4 d of DBS, mice were disconnected from external wires and allowed to
recover for 1 week. Mice were then reconnected and monitored daily
until high-fat intake and body weight stabilized. A crossover design for
DBS administration was then used. Mice were killed by trans-cardial
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perfusion, and electrode location was verified. One obese mouse was
excluded from this analysis because of malfunction of its electrode.

Glucose tolerance test (GTT). Weight-matched obese and lean mice on
house chow were fasted overnight for 12 h. A 40% sterile glucose solution
was freshly prepared. Beginning at 0800 h, baseline glucose levels from
tail snips were analyzed using the OneTouch Ultra (Johnson & Johnson).
Animals were then given an intraperitoneal injection of glucose (2 mg/g
body weight). Blood glucose measurements were obtained at 15, 30, 60,
and 120 min after the injection. GTT (Dunn and Bale, 2011) was per-
formed before initiating DBS to confirm that obese mice had impaired
glucose tolerance compared with lean mice on house chow. GTT was
repeated after the second half of the crossover design such that glucose
tolerance was measured in half of the cohort with DBS-on and half with
DBS-off.

Statistics. An investigator blind to animal treatment groups conducted
all analyses and verification of electrode placement. Parametric analyses
were used to analyze food intake, body weight, GTT, c-Fos-IR, gene
expression, and the effects of dopamine receptor subtype antagonism on
DBS and binge eating. Latency data were analyzed using nonparametric
tests. All significant differences were defined as p < 0.05. Statistical com-
parisons were performed using SPSS software (IBM SPSS Statistics).

Results

Verification of electrode placement

None of the ends of the electrode tracts intended for the NA were
found outside of this nucleus. However, in the first experiment,
eight of the 10 electrodes were localized to the NAS, whereas only
two electrodes were in the accumbens core subregion (Fig. 1B—
D). Given possible differential roles of the shell and core in binge
eating, we analyzed these mice separately (Bossert et al., 2007).
Two mice were excluded because of excessive tissue damage dur-
ing processing for immunohistochemistry. All electrodes im-
planted in the dorsal striatum were confirmed to be localized
within this region (Fig. 1E).

NAS DBS attenuates binge eating

Our initial studies examined the effect of varying the current
intensity of NAS DBS during limited access to the high-fat diet. A
repeated-measures ANOVA was used with a group (DBS, nonsurgi-
cal controls) X current intensity (75 nA, 150 wA) design (Fig. 2A).
There was a main effect for group (F, ,,) = 12.37; p < 0.003), amain
effect for current intensity (F, ,,, = 21.20; p < 0.0003), as well as an
interaction effect between group and current intensity (F(, ,,) =
12.12; p < 0.003). Subsequent between-group comparisons revealed
a significant decrease in kilocalories consumed from high-fat with
NAS DBS at 150 pA (f,7) = 4.74; p < 0.0001) but not at 75 uA
(ta7) = 1.10; not significant). Thus, for all subsequent studies, a
current intensity of 150 A was used.

In this limited access protocol, mice exposed to high-fat food
exhibited an incremental increase in consumption of this diet
until caloric intake from high-fat stabilized, and met our criteria
for binge eating. This was specific to the palatable high-fat food,
as when mice were provided a pellet of standard chow during this
1 h period, negligible amounts were consumed (Fig. 2B). Thus,
before initiating DBS, criteria for stabilized binge eating of the
high-fat diet were reached during the 3 d before administering
DBS (Figs. 2C,D). To detect a difference in intake of the high-fat
diet induced by NAS DBS (150 nA), which was administered on
2 alternate days, a repeated-measures ANOVA was used with a
group (DBS, nonsurgical controls) X day (days 0-3) design.
There was a main effect for group (F(, ;3) = 5.88; p < 0.03), an
interaction effect between group and day (F; o) = 10.01; p <
0.0001), and a main effect for day (F; 59, = 8.14; p < 0.0001).
Subsequent between group comparisons revealed a significant
decrease in kilocalories consumed on days 0 (¢35, = 3.80; p <
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Figure 2.  NAS DBS attenuates binge eating. A, Initial studies revealed that NAS DBS (N =

11) significantly attenuated mean daily high-fat intake at 150 A but not at 75 A compared
with nonsurgical controls (N = 9). B, Mice exposed to the high-fat diet exhibited an incremen-
tal increase in consumption until reaching stable levels (V = 7). Intake of a standard chow
pellet in this same binge paradigm was negligible (V = 7). , Once caloric intake from the
high-fat diet stabilized for 3 d before starting DBS, NAS DBS (150 w.A) was administered on two
alternate days (N = 8) and significantly decreased binge eating compared with nonsurgical
controls (V= 7). D, DBS administered to the dorsal striatum (N = 7) had noimpact on high-fat
intake compared with controls (V = 8). E, Within-group comparisons revealed a significant
decrease in mean daily intake of high-fat food with NAS DBS-on compared with DBS-off. F,
Twenty-four-hour caloric intake from house chow decreased as binge eating developed, but
this intake of chow did not return to baseline when caloric intake from high fat was suppressed
by DBS. G, NAS DBS did not alter total caloric intake. H, Analysis of video recordings did not
reveal a DBS-mediated difference in latency to locomotion once access to the high-fat diet was
provided compared with mice with DBS-off. /, Although DBS appeared to increase latency to
consume high-fat food, any apparent difference was not statistically significant. Data are mean
per group == SEM. *p << 0.05.

0.002) and day 2 (t,5, = 2.59; p < 0.02) with DBS turned on (Fig.
2C). These differences were not apparent in the two mice under-
going DBS of the accumbens core compared with controls with a
lack of a main effect for group (F; ;, = 0.002; not significant), day
(F(3,21) = 1.20; not significant), or an interaction effect between
group and day (F(5,,, = 0.77; not significant). In addition, DBS
administered to the dorsal striatum did not appear to impact
binge eating with a lack of main effect for group (F, ,,, = 2.82;
not significant), day (F; 5,, = 1.14; not significant), or an inter-
action effect between group and day (F(; 5,, = 0.40; not signifi-
cant) (Fig. 2D).

Within-subject comparisons using paired ¢ tests of NAS
DBS-on and DBS-off revealed a significant decrease in mean ki-
localories consumed from the high-fat food (t,, = 3.08; p < 0.02;
Fig. 2E). Although DBS was turned off after the 1 h access period,
comparisons of 24 h caloric intake from house chow were also
made. As expected, caloric intake from chow significantly de-
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creased as binge eating of the high-fat food developed (¢, = 3.58;
p < 0.006). Despite amelioration of binge eating with NAS DBS,
there was no change in caloric intake from chow on those days
(t(;y = 1.74; not significant; Fig. 2F). There was also no difference
in total daily kilocalories consumed (high-fat and house chow
combined) (t,y = 1.49; not significant; Fig. 2G). A repeated-
measures ANOVA was used to analyze body weight as a factor of
binge eating and NAS DBS. A main effect for body weight was
found after 1 week of binge eating (F(, ,¢, = 8.35; p < 0.002), but
there was no interaction detected between body weight and NAS
DBS.

Video monitoring of activity

A Kruskal-Wallis ANOVA by ranks was used to examine the
latency to initiate locomotion in 3 groups (nonsurgical controls,
NAS DBS-off, NAS DBS-on). No significant difference between
these groups was found (x°,) = 1.65; not significant; Fig. 2H). A
Kruskal-Wallis ANOVA was again used to examine the latency to
initiate consumption of the high-fat diet. Again, there was no
significant difference between these groups (x°, = 4.01; not
significant; Fig. 2I'). No abnormal behaviors, including freezing,
body turning, or pivoting, were observed in mice undergoing
NAS DBS.

Effects of DBS on c-Fos-IR in the NAS and ILC

To investigate the effects of NAS DBS on neuronal activation
both in the NAS and ILC (Fig. 3A), the number of c-Fos-IR cells
in these regions was analyzed from brain tissue taken from mice
1 h after onset of DBS. This time point was selected to detect an
effect on neuronal activation during the same time frame that
DBS was administered for binge eating. Multivariate ANOVA
with a group (DBS-off, DBS-on) X laterality design with respect
to the DBS electrode (ipsilateral, contralateral) was performed to
analyze c-Fos-IR in the NAS and ILC. Increased c-Fos-IR was
found in the NAS ipsilateral (F, 5, = 6.66; p < 0.04) and con-
tralateral (F, ) = 2.73; not significant) to the DBS electrode,
although this difference was only significant ipsilaterally (Fig.
3B, C). There was no increase in c-Fos-IR in the ILC ipsilateral
(F1,6) = 0.11; not significant) or contralateral (F, 5y = 0.89; not
significant) to the electrode.

Pharmacological blockade of DBS

To examine the effect of DIR and D2R antagonism on DBS, a
separate group of mice implanted in the NAS with electrodes was
exposed to the limited access protocol. Criteria for stabilized
binge eating were reached, as previously described, and DBS was
administered. The effect of DBS alone on binge eating was de-
fined as the control for this study, to which we would compare
high-fat intake when mice were pretreated with vehicle, SCH-
23390, or raclopride. A repeated-measures ANOVA with a
between-subject factor (no DBS, DBS, DBS X vehicle, DBS X
SCH-23390, DBS X raclopride, vehicle, SCH-23390, raclopride)
was performed to examine the mean intake of the high-fat diet
during these various treatment conditions. There was significant
attenuation of binge eating with DBS (F(, 4, = 150.15; p < 0.0001;
Fig. 4A). DBS amelioration of binge eating was not altered by
pretreating with SCH-23390 (F, ¢, = 1.43; not significant); how-
ever, raclopride significantly blunted the effect of DBS (F, 4, =
12.02; p < 0.002; Fig. 4B). When antagonists were administered
alone without DBS, there was no apparent effect on binge eating
by SCH-23390 (F, ¢, = 0.03; not significant) or raclopride (F, 4,
= 2.60; not significant) (Fig. 4C).
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controls in expression of the DIR (¢,,, = é
1.18; not significant) or D2R (#,,, = 1.29; Kis 3
not significant) (Fig. 4D). O
Chronic NAS DBS in obesity

After chronic access to the high-fat diet, ~ Figure3.

diet-induced, obese mice exhibited both
significant increases (50.23 * 0.65 g) in
body weight (t,, = 17.96; p < 0.0001)
compared with lean mice on chow
(31.33 £ 0.60 g) and impaired glucose clearance (F; 45y = 28.58;
p < 0.0001). Criteria for stabilized consumption of the high-fat
diet and body weight were reached 3 d before administering DBS.
To detect a difference in intake of the high-fat diet induced by 4 d
of continuously administered NAS DBS, a repeated-measures
ANOVA was used with a group (DBS-off, DBS-on) X day (days
—1,0,1,2,3) design (Fig. 5A). There was a significant main effect
for group (F(, ¢) = 6.90; p < 0.04), an interaction effect between
group and day (F, 54, = 3.79; p < 0.02), but no main effect for
day (F,4) = 1.50; not significant). Between-group compari-
sons of mice receiving DBS to those with no DBS revealed a
significant decrease in kilocalories consumed on the first day
of DBS (day 0: #(,,) = 4.25; p < 0.001). No differences were
detected on the subsequent 3 d of DBS. An analysis of total
intake on days when DBS was administered revealed a signif-
icant decrease in total kilocalories consumed compared with
days without DBS (¢(,,, = 2.65; p < 0.02) (Fig. 5B). After this
4 day administration of continuous NAS DBS, a significant
decrease from baseline body weight was detected (£,,, = 2.48;
p < 0.03) (Fig. 5C). However, an analysis of the impact of DBS
on daily weight measurements revealed no significant differ-
ences (Fig. 5D).

Chronic NAS DBS improves glucose tolerance

To examine a difference in glucose tolerance after chronic NAS
DBS, a repeated-measures ANOVA was used with a group (chow,
obese DBS-off, obese DBS-on) X time (0, 15, 30, 60, 120 min)
design. There was a main effect for group (F, 5, = 4.66; p < 0.04),
a main effect for time (F(, 3,, = 53.11; p < 0.0001), but no inter-
action effect (F(4 55, = 1.92; not significant). All obese mice were
found to have impaired glucose tolerance, according to subse-
quent between group comparisons (Fig. 5E): Mice with DBS
turned off were different from lean mice on chowat 0 (p < 0.01),
30 (p < 0.002), 60 (p < 0.002), and 120 min (p < 0.04); mice
with DBS turned on were different from chowat 0 (p < 0.003), 30
(p <0.03), and 120 min (p < 0.03). According to an area under
the curve (AUC) analysis, there was a main effect for group using
a univariate ANOVA (F(,5, = 4.39; p < 0.05; Fig. 5F). This
difference was primarily the result of increased AUC in mice with
DBS-off compared with lean mice (t5, = 4.89; p < 0.004), as
there was no difference between mice, which received DBS, and
lean mice (5, = 1.98; not significant).

NAS DBS increases c-Fos-IR. A, Diagram of a coronal brain hemisection with representative images demonstrating the
two regions of interest selected to analyze c-Fos-IR in the NAS (black square) and ILC (gray square). B, c-Fos-IR was increased
bilaterally with DBS-on (N = 3) compared with DBS-off (N = 5), although the effect was only significant ipsilateral to DBS. Data
in graph are mean per group = SEM. *p << 0.05. IPSI, Ipsilateral; CONTRA, contralateral.
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Figure4. Pretreatment with raclopride attenuates the action of NAS DBS on binge eating. 4,

After 3 d of stable caloric intake from the high-fat diet, NAS DBS was administered to all mice
and significantly decreased binge eating (N = 9). Only pretreatment with raclopride signifi-
cantly blunted this effect of DBS. B, Percentage change from daily mean caloric intake from
high-fat resulting from DBS (control) was significantly decreased in mice pretreated with raclo-
pride (N = 3), but not SCH-23390 (N = 3) or vehicle (V = 3). C, Neither raclopride nor
SCH-23390 affected binge eating in the absence of DBS. D, There was nossignificant difference in
relative DR (N = 7) or D2R (N = 7) expression in the NAS after short-term limited access to the
high-fat diet. Mean per group == SEM. *p < 0.05.

Discussion

The growing prevalence of obesity worldwide and its associated
medical comorbidities, including impaired quality of life and
decreased life expectancy, demand the development of novel
treatments (Fontaine et al., 2003). Addressing the hedonic mech-
anisms of overconsumption in obesity by performing NAS DBS
may provide therapeutic relief to certain individuals who are re-
fractory to current approaches (Jeffery et al., 2004; Li et al., 2005;
Gracia-Solanas et al., 2011). The NA is critical in mediating
reward-seeking behaviors, including binge eating (Avena et al.,
2008). DBS of this brain region, in particular the NAS, has been
shown to attenuate cocaine priming-induced reinstatement,
morphine reinforcement, and alcohol intake (Liu et al., 2008;
Vassoler et al., 2008; Knapp et al., 2009; Henderson et al., 2010).
Amelioration of binge eating with NAS DBS would support com-
mon neural circuitry underlying addiction and obesity, and may
have broad translational potential (Nestler, 2004, 2005; Halpern
et al.,, 2008; Halpern et al., 2011).
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Figure 5.  Chronic NAS DBS suppresses intake of high-fat food and body weight in diet-
induced obese mice. A, After 3 d of diet intake stabilization, chronic NAS DBS was administered
for4d (N = 4) starting on day 0. DBS decreased daily intake compared with obese mice without
DBS (N = 4). B, NAS DBS significantly decreased total caloricintake of the high-fat diet. ¢, There
was a significant decrease in body weight after 4 d of chronic NAS DBS. D, This difference
appeared largely the result of the initial weight loss with DBS on day 0. £, Obese mice exhibited
impaired glucose tolerance compared with lean mice. F, An area under the curve analysis re-
vealed that obese mice without DBS were significantly different from lean mice. Data are mean
per group == SEM. *p << 0.05, significant differences between obese mice without DBS and lean
mice. f < 0.05, significant differences between obese mice with DBS and lean mice.

We used a limited access model of binge eating in which mice
were allowed 1 h to consume a highly palatable and calorically
dense high-fat diet (60% fat) (Teegarden and Bale, 2008; Pankev-
ichetal., 2010). As we hypothesized, NAS DBS at 150 nA, admin-
istered only during the 1 h access, significantly blunted high-fat
consumption. DBS was administered on alternating days to as-
sess potential lingering effects when the stimulator was turned
off; however, binge eating returned to baseline, prestimulation
levels in the absence of DBS. In addition, on days when DBS
attenuated binge eating, total caloric intake from house chow was
unchanged, suggesting that mice did not compensate for the loss
of calories after DBS exposure. The effect of NAS DBS on this
behavior was anatomically specific, as targeting the dorsal stria-
tum had no influence on binge eating. DBS did not appear to
impair locomotor activity, as the latency for the mice to move
after placement of the high-fat pellet in the cage did not differ
between treatment groups. Of note, the latency to initiate con-
sumption of high-fat did increase with DBS as expected, although
this measure did not reach significance, probably because of the
high variability.

In our examination of neuronal activation in association with
unilateral NAS DBS, c-Fos-IR was increased bilaterally, although
the effect was only significant ipsilateral to DBS. c-Fos-IR was
measured in the NAS and ILC (an aspect of the medial prefrontal
cortex) as these two structures have a well-described functional
relationship and role in food-seeking behavior (Sesack et al.,
1989; Mitchell and Gratton, 1992; Wolf et al., 2009; Bossert et al.,
2012; Cifanietal., 2012). The effects on neuronal activation in the
NAS in this study echo previous reports of interhemispheric
communication between limbic structures (Carr and Sesack,
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2000; Yano et al., 2006). For example, unilateral blockade
of dopamine receptors within the striatum has altered
methylphenidate-induced gene expression in the NA contralat-
erally (Yano et al., 2006). Clinically, unilateral DBS of the NA has
provided relief to patients with obsessive—compulsive disorder
(Huff et al., 2010), and subthalamic nucleus DBS increases con-
tralateral brain activity in movement disorder patients (Walker et
al., 2009; Walker et al., 2011). Bilateral neuronal activation in
response to unilateral DBS provides further support for these
preclinical and clinical findings and suggests that output from the
NAS can modulate the contralateral NAS via crossed connec-
tions. A unilateral procedure would be important to consider for
human translation resulting from the reduced morbidity risk
compared with bilateral DBS (Alberts et al., 2008).

To determine dopamine receptor involvement in the effects of
NAS DBS on inhibition of binge eating, blockade of D1Rs and
D2Rs was carried out by administration of receptor-specific an-
tagonists before DBS onset. D2R, but not D1R, antagonism sig-
nificantly blunted the effect of NAS DBS, supporting an
involvement for dopamine signaling at the D2R that mediates
inhibition of binge eating by DBS. The anatomical specificity of
this effect remains unclear, however, as the antagonists were ad-
ministered peripherally. Increased dopamine release in the NAS
has been previously associated with regulation of intake of highly
palatable foods and chronically may lead to the reported down-
regulation of the D2R in obesity (Wise and Rompre, 1989; John-
son and Kenny, 2010; Stice et al., 2011). Accordingly, it is
tempting to speculate that the effect of the antagonist may involve
actions in the NAS. In contrast to the growing literature on do-
pamine release in the NAS, much less is known about the effect of
relatively short-term exposure of a highly palatable diet on D2R
expression. Therefore, we examined gene expression levels of
D1Rs and D2Rs within the NAS after short-term access to the
high-fat food. There were no significant changes in expression of
either receptor, suggesting that the effects of the D2 antagonist on
DBS were likely not a function of differences in receptor levels.
Together, DBS in the NAS may lead to local release of dopamine,
which in turn is binding to D2Rs, and blocking some of the he-
donic valence of this high-fat diet (Sesia et al., 2010). Given neu-
ronal activation using c-Fos-IR as a surrogate marker was seen in
the NAS, the finding that D2R antagonism inhibited the action of
DBS on binge eating may seem paradoxical. The D2R is known to
signal through distinct G; « proteins to inhibit adenylyl cyclase
(Senogles, 1994). This paradox may speak to the nonspecificity of
c-Fos-IR given that the expression of the D2R has been reported
not only on medium spiny neurons, but also on cholinergic neu-
rons in the NA (Le Moine et al., 1990). However, inhibition of
neurons expressing the D2R may lead to disinhibition of intra-
accumbens projections, which would be consistent with in-
creased c-Fos-IR with DBS (van Dongen et al., 2005).

Our results indicate that acute administration of NAS DBS
may provide a novel therapeutic approach for certain obese hu-
man subjects with binge eating. Acute effects of DBS have been
reported in humans, including intraoperative tremor suppres-
sion in Parkinson’s and mood changes in psychiatric patients
(Haqetal., 2011). These acute effects greatly impact localizations
of the neural target for electrode implantation in humans
(Kramer et al., 2010). In addition, as more real-time, adaptive
(closed-loop), neuromodulatory devices are developed that are
capable of delivering current in response to neural oscillatory
activity (Rosin et al., 2011), animal studies will need to continue
to examine the acute effects of DBS on aberrant behaviors asso-
ciated with obesity and other diseases. Moreover, NAS DBS does
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appear to attenuate caloric intake and induce body weight loss in
mice in the obese state. However, the duration and magnitude of
these effects suggest a more robust, acute response to chronic
DBS. Effects on glucose tolerance were not robust likely because
of the limited 4 d DBS examination.

Although these studies demonstrate robust effects of NAS
DBS on the hedonic aspects of feeding behavior, there are noted
limitations related to the lack of mechanistic specificity with this
methodology, as it is not clear which cells are being modulated by
DBS. Whereas 90% of the neurons in the accumbens are medium
spiny neurons modulated by dopamine, other cell types include
GABAergic interneurons and cholinergic neurons (Wilson,
1993). The importance of anatomic specificity can also not be
overlooked. The present studies provide substantial evidence for
anatomical specificity of NAS DBS, given that DBS of the dorsal
striatum did not influence binge eating, and two mice implanted
in the NA core were not responsive to DBS. Our model precluded
examining the effects of DBS on consumption of standard chow
in this binge paradigm as mice consumed negligible amounts of
the chow during the 1 h limited access period. Last, the potential
lack of effect of the D1R antagonist may have been the result of an
unbalanced repeated measure design, in which the pharmaco-
logic agents or DBS were administered on a single day, rather
than balancing them across multiple days of testing. Future work
applying optogenetic techniques will allow us to dissect this cir-
cuit to further our understanding of both the anatomic and cel-
lular bases of the mechanisms underlying amelioration of binge
eating with NAS DBS.

In conclusion, the current results indicate that binge eating
was ameliorated by acute administration of unilateral NAS DBS,
and this effect was mediated in part by activation of the D2R.
Collectively, these findings further implicate the mesolimbic do-
pamine system in the overconsumption of calorically dense food,
a behavior known to contribute to obesity. This study provides
preclinical support for the potential utilization of DBS in control-
ling aberrant eating behaviors associated with obesity.
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