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A Comprehensive Database of High-Throughput Sequencing-Based RNA
Secondary Structure Probing Data (Structure Surfer)

Abstract
Background RNA molecules fold into complex three-dimensional shapes, guided by the pattern of hydrogen
bonding between nucleotides. This pattern of base pairing, known as RNA secondary structure, is critical to
their cellular function. Recently several diverse methods have been developed to assay RNA secondary
structure on a transcriptome-wide scale using high-throughput sequencing. Each approach has its own
strengths and caveats, however there is no widely available tool for visualizing and comparing the results from
these varied methods. Methods To address this, we have developed Structure Surfer, a database and
visualization tool for inspecting RNA secondary structure in six transcriptome-wide data sets from human and
mouse (http://tesla.pcbi.upenn.edu/strucuturesurfer/). The data sets were generated using four different
high-throughput sequencing based methods. Each one was analyzed with a scoring pipeline specific to its
experimental design. Users of Structure Surfer have the ability to query individual loci as well as detect trends
across multiple sites. Results Here, we describe the included data sets and their differences. We illustrate the
database’s function by examining known structural elements and we explore example use cases in which
combined data is used to detect structural trends. Conclusions In total, Structure Surfer provides an easy-to-
use database and visualization interface for allowing users to interrogate the currently available transcriptome-
wide RNA secondary structure information for mammals.
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A comprehensive database of high-
throughput sequencing-based RNA
secondary structure probing data
(Structure Surfer)
Nathan D. Berkowitz1,2, Ian M. Silverman1,3, Daniel M. Childress4, Hilal Kazan5, Li-San Wang2,4,6,7

and Brian D. Gregory1,2,3*

Abstract

Background: RNA molecules fold into complex three-dimensional shapes, guided by the pattern of hydrogen
bonding between nucleotides. This pattern of base pairing, known as RNA secondary structure, is critical to their
cellular function. Recently several diverse methods have been developed to assay RNA secondary structure on a
transcriptome-wide scale using high-throughput sequencing. Each approach has its own strengths and caveats,
however there is no widely available tool for visualizing and comparing the results from these varied methods.

Methods: To address this, we have developed Structure Surfer, a database and visualization tool for inspecting RNA
secondary structure in six transcriptome-wide data sets from human and mouse (http://tesla.pcbi.upenn.edu/
strucuturesurfer/). The data sets were generated using four different high-throughput sequencing based methods.
Each one was analyzed with a scoring pipeline specific to its experimental design. Users of Structure Surfer have
the ability to query individual loci as well as detect trends across multiple sites.

Results: Here, we describe the included data sets and their differences. We illustrate the database’s function by
examining known structural elements and we explore example use cases in which combined data is used to detect
structural trends.

Conclusions: In total, Structure Surfer provides an easy-to-use database and visualization interface for allowing
users to interrogate the currently available transcriptome-wide RNA secondary structure information for mammals.

Background
RNA molecules serve as both conveyors of genetic infor-
mation and as molecular machines with specific structural
and catalytic functions in the cell. The function and
regulation of every RNA molecule depends on its specific
secondary structure, the intricate pattern of hydrogen
bonds between complementary ribonucleotides that forms
in its specific cellular environment. For instance, the
ribosome, the central enzymatic complex in protein
translation, is the classic example of an RNA-based
machine, and thus the structure of its RNA subunits

(ribosomal RNAs (rRNAs)) has been carefully dissected
using detailed analyses. However, thousands of other
structural RNA elements and catalytic RNAs exist in the
cell, and the resources required to study them in
more detail are mostly unavailable for large-scale use
by the broader research community.
Advances in high-throughput sequencing technologies

have allowed a significant increase in technical develop-
ment of methods for studying RNA secondary structure
on a transcriptome-wide scale. This has led to a diverse
collection of sequencing-based approaches available for
interrogating RNA secondary structure, and thus there
are a number of large-scale data sets that are currently
publicly available ([3, 5, 14, 15, 17]; see Methods). There
are important methodological differences between these
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high-throughput structure-probing techniques, but the
unifying principle is that they involve treating RNA sam-
ples with a reagent that selectively reacts with nucleotides
depending on their base pairing status and then interro-
gating the treated RNA by high-throughput sequencing.
There are two methods that take advantage of ribo-

nuclease (RNase)-mediated cleavage of RNA bases that
are either double- or single-stranded (ds- and ssRNase, re-
spectively). The first example is Parallel Analysis of RNA
Structures (PARS), which requires two high-throughput
sequencing libraries per sample. One library is treated
with the ssRNase-specific RNase S1, while the other in-
volves cleavage by the dsRNase-specific RNase V1. Both
RNase treatments are titrated for single hit kinetics, mean-
ing that each RNA molecule is cleaved only once by the
nuclease used for treatment and thus it is not fully
digested. The resulting singly cleaved RNA ends are im-
mediately used as the substrate for ligation of a 5′ adapter
molecule as the first step in high-throughput sequencing
library preparation. Sequencing libraries prepared in this
way produce reads whose 5′ ends directly correspond to
the site of nuclease cleavage. The structure of an RNA
molecule can then be inferred from the relative number of
RNase S1 (unpaired) and V1 (paired) cuts at each nucleo-
tide position [3].
Similar reagents are used in ds/ssRNA sequencing

(ds/ssRNA-seq) but to a different effect. As with PARS,
each RNA sample is split into two aliquots, which are then
treated with either an ssRNase (RNaseONE) or dsRNase
(RNase V1). However, instead of utilizing single hit kinet-
ics on the RNA samples, the nucleases are allowed to
proceed to full digestion. The resulting RNase-resistant re-
gions from each treatment are sequenced, and a structure
score is then computed for each detectable nucleotide
position by directly comparing the sequencing read
coverage between the dsRNA- and ssRNA-seq libraries
([6]; see Methods).
Two other approaches whose data we curated (see

Methods) have combined chemical probing of RNA
secondary structure with high-throughput sequencing
technologies. For these approaches, unpaired RNA
bases are labeled with a small molecule that inhibits
elongation by reverse transcriptase (RT) used for cDNA
synthesis during sequencing library preparation. This
block in RT elongation results in termination of the cDNA
molecules at the sites of these modified single-stranded
nucleotides. Therefore, the resulting sequencing reads
have 5′ ends at the site that was labeled by addition of the
chemical adducts.
DMS-seq is named for the labeling reagent that it

employs, dimethyl sulfate (DMS). This small molecule la-
bels unpaired adenosines and cytosines, but does not react
efficiently with these nucleotides when they are base paired
with another nucleotide [10, 11]. Unlike the nuclease-

based methods, DMS-seq does not include a reagent that
specifically labels paired nucleotides. Instead, it directly as-
sesses unpaired bases by measuring the DMS reactivity of
nucleotides in natively folded RNA molecules compared to
a control library where purified, denatured RNAs are
treated with DMS and used as substrates in sequencing li-
brary preparation [14]. Double-stranded RNA regions are
then inferred based on absence of DMS-seq signal at those
nucleotides.
The other chemical-based structure probing method is

selective 2′-hydroxyl acylation analyzed by primer exten-
sion sequencing (SHAPE-seq) [2, 8, 9], which uses any of
several reagents that selectively label the 2′ hydroxyl of
unpaired nucleotides. Like DMS, this label causes RT to
terminate due to the inhibition of its ability to elongate,
which ultimately results in sequencing reads whose 5′ ter-
minal nucleotide corresponds to the labeled position. The
5′ end read depth of each position in the treated library
can then be compared to the corresponding read depth in
an untreated DMSO control. This approach has recently
been updated to allow higher resolution of RNA secondary
structure, especially in mammalian transcriptomes. Specif-
ically, the recently developed in vivo click SHAPE
(icSHAPE) added an additional improvement to this gen-
eral approach, in which the 2′ hydroxyl-labeling reagent
also contains a biotin moiety, allowing enrichment of la-
beled RNA fragments in the final sequencing libraries [15].
Although these techniques have been used to generate

large-scale, broadly useful RNA structure probing data,
there is no available resource that provides convenient ac-
cess to these important data sets. Furthermore, there is no
easy way to directly compare the results from these dispar-
ate approaches. To address this gap, we have developed
Structure Surfer, a database for exploring and comparing
data generated by these new high-throughput structure-
probing techniques (http://tesla.pcbi.upenn.edu/strucuture-
surfer/). To do this, we have curated a comprehensive data-
base of RNA secondary structure scores produced by the
described experimental approaches. Structure Surfer allows
users to query individual genomic loci of interest and
visualize the local structural environment to directly com-
pare the various methods. Additionally, we have included a
tool for aggregating data across multiple genomic loci that
allows users to query transcriptome-wide structural trends
in a collection of regions of interest (e.g. all transcript start
codons). In total, Structure Surfer provides an important
and easy-to-use resource for querying and comparing the
high-throughput RNA secondary structure probing data
that is available for mammalian transcriptomes.

Construction and content
ds/ssRNA-seq
HEK293T cells were seeded in 15 cm standard Corning tis-
sue culture treated culture dishes (Sigma, St Louis, MO),
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and grown to 90 % confluence (approximately 18 million
cells) in DMEM media (Life Technologies, San Diego, CA)
supplemented with L-glutamine, 4.5 g/L D-glucose, 10 %
fetal bovine serum (FBS (Atlanta Biologics, Atlanta, GA)),
and Pen/Strep (Fisher Scientific, Waltham, MA).
RNA was isolated using the Qiagen miRNeasy RNA iso-

lation kit following the manufacturer’s protocol (Qiagen,
Valencia, CA). Two aliquots of 50 μg were used to make
two replicates each of dsRNA-seq and ssRNA-seq librar-
ies. These two types of structure-specific libraries were
constructed as previously described [5, 6].

Data resources
We curated RNA secondary structure data from two
published studies of the human transcriptome: DMS-seq
[14] and PARS [17], as well as previously unpublished
structure scores from our ds/ssRNA-seq data set for hu-
man HEK293T cells. Additionally, we compiled the scores
from both in vitro and in vivo icSHAPE experiments in
mouse [15]. The icSHAPE scores were reformatted and
loaded directly into a mySQL database. For the other
methods, we obtained the raw high-throughput sequen-
cing reads and calculated the structure scores similarly to
the published method specific to each one. All scoring
functions are summarized below.

Genome coverage
For DMS-seq, PARS, and ds/ssRNA-seq data sets, raw
reads were trimmed using cutadapt [7]. This step
removes any contaminating 3′ adapter sequences
caused by inserts shorter than the sequencing read
length. Trimmed and untrimmed reads were combined
and mapped to the human genome using TopHat [16].
Reads that could not be trimmed or mapped were dis-
carded. We allowed up to two mismatches per read and
a maximum edit distance of two. We discarded reads
that mapped to more than five locations. For DMS-seq
and PARS data, we computed the read coverage at each
position in the genome with bedtools [12] using only
the 5′ most nucleotide of each read. When calculating
coverage for ds/ssRNA-seq, the entire read was used.

DMS-seq scores
DMS labeling of a nucleotide causes RT to stall during
the cDNA synthesis step of RNA-seq library construc-
tion. Unstructured nucleotides, those that are not in-
volved in base pairing, are more highly reactive with
DMS and thus they are more likely to be the site of such
a stall. Thus, the resulting RNA-seq reads from this type
of high-throughput structure probing technique have 5′
ends corresponding to the reactive, unpaired position.
However, DMS labeling is not the only possible explan-
ation for positions with a high tendency to cause RT
stalls. For this reason, DMS-seq scores are expressed as

nucleotide reactivity compared to a denatured control.
The signal at each position is calculated based on the
normalized number of 5′ read ends mapping to that
position in the native structure library compared to the
control [14].

Ri ¼ Di=Dmax

Ci=Cmax

The reactivity R for position i is computed by first div-
iding the 5′ read end coverage at that position, Di by the
maximum 5′ read end coverage in the library, Dmax. The
resulting ratio is divided by Ci, the 5′ end read coverage
at position i in the denatured control library normalized
to the maximum 5′ end read coverage of the control
library, Cmax. This reactivity score represents the degree of
over-representation of RT stops in the DMS treated library
compared with the control. High scores indicate positions
where RT stops were frequent suggesting an unpaired nu-
cleotide labeled by DMS.

icSHAPE scores
As with DMS-seq, icSHAPE scoring reflects the higher
reactivity of unpaired nucleotides compared to nucleo-
tides involved in pairing. Reactivity is calculated from
the count of 5′ read ends covering each position. These
counts are normalized to counts from a no-reagent
background library and adjusted according to a back-
ground base density [15].

Ri ¼ Di−Cið Þ= Bð Þ
Reactivity R for position i is based on the 5′ read end

coverage at that position, Di, minus the coverage in the
DMSO treated control library, Ci. The background base
density profile for each transcript, B, is defined as the se-
quencing depth of each base in the DMSO library.

PARS scores
PARS scores reflect the differential cleavage of paired
and unpaired regions by ribonucleases. Unpaired regions
are more cleaved by RNase S1 while paired regions are
more cleaved by RNase V1. Both enzymes create RNA
fragments with 5′ phosphate groups by cleaving in their
respective preferred regions. These ends are directly
ligated onto sequencing primers. After cDNA synthesis
and sequencing, each read has a 5′ end corresponding
to a cleavage site. Scores were calculated from the count
of 5′ read ends covering each position in the two nucle-
ase treated libraries. Each score is based on the log ratio
of the two coverage scores. The generalized log ratio is
calculated by adding one count per position to both the
numerator and the denominator before calculating the
log ratio. This allows scoring of positions with positive
counts in one of the two input libraries but no counts in
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the other library. Such positions are of interest because
there is evidence that they are in a particular structural
state, but the standard log ratio for them is undefined. A
5′ nucleotide (nt) rolling average is applied for smooth-
ing. Positions with no coverage in either library were
omitted [17].

Si ¼ log2
Xj¼iþ2

j¼i−2

V1j þ 5

5

 !
− log2

Xj¼iþ2

j¼i−2

S1j þ 5

5

 !

PARS structure score S for position i is the generalized
log ratio of the normalized 5′ end coverage for that pos-
ition in the RNase V1 library and the corresponding
coverage in the RNase S1 library. For each position, this
value is calculated across the surrounding 5 nt window.

Ds/ssRNA-seq scores
Unlike scores from the other methods, ds/ssRNA-seq
scoring takes into account all positions from each read
rather than the 5′ end coverage only. It employs similar
reagents to PARS, but uses a longer enzyme treatment
resulting in more complete digestion of each enzyme’s
preferred structure type. After cDNA synthesis and se-
quencing, reads represent regions that were protected
from structure specific digestion. For each position the
score is the generalized log ratio of the normalized
counts in the two libraries [6].

Si ¼ log2 ONEi þ 1=V1i þ 1ð Þ

Visualization
The database’s plotting tool is implemented using the
Python package PyGal. For plotting purposes, scores are
scaled and re-centered to reveal local structural patterns
and to make the data sets visually comparable. For the
same reason, DMS and icSHAPE scores, which represent
nucleotide reactivity as opposed to degree of structure,
are inverted when displayed such that high scores indi-
cate evidence of paired nucleotides in all data sets. Raw
scores are available for download alongside the plots.

Availability of data and materials
All ssRNA- and dsRNA-seq data generated for this study
from HEK293T cells were deposited in GEO under the ac-
cession GSE72681. The PARS, DMS-seq, and icSHAPE
data were downloaded from GEO using the accession
numbers GSE50676, GSE45803, and GSE60034, respect-
ively. The complete Structure Surfer database is available
as a MySQL dump file at PennBox, https://upenn.app.box.-
com/s/1kj2f1w994sp3jmaakqhy9cw2w11vajk. The Python
search tool and database schema can be found at GitHub,
https://github.com/nberkow/StructureSurfer. The structure
score profiles for ~100 RBPs (as shown in Fig. 3) calculated

by Structure Surfer are available for download at http://
tesla.pcbi.upenn.edu/structuresurfer. No login is required
to access these resources.

Utility and discussion
Database content
The database contains structure scores from four
methods including six individual experiments across hu-
man and mouse (Additional file 1: Table S1). The score
coverage varies greatly between methods. Despite having
the lowest sequencing depth, the ds/ssRNA-seq experi-
ment produces the greatest score density. However this
is not surprising given that the method uses all nucleo-
tides covered by each read to generate scores while all of
the other methods use only a single nucleotide per read
when calculating scores. The most sparse scores come
from the human PARS data set which covers only ~1
megabase of the transcriptome.
PARS, DMS-seq, and icSHAPE all use a single base pair

per read to calculate scores but the libraries used in the
DMS experiment were sequenced to a higher depth which
likely explains its greater score density (Additional file 2:
Table S2). The two icSHAPE experiments, which were se-
quenced to the highest depth of all the data sets included,
produced an intermediate number of scored positions in-
dicating that each scored position represents a greater
number of reads on average. Each of the different method-
ologies produces scores that follow a distinct distribution
(Additional file 3: Figure S1) making it difficult to draw
direct comparisons between them. These differences are
likely due in part to differences in reagent kinetics. PARS
and ds/ssRNA-seq, for example, employ similar reagents
but PARS digests RNA very mildly resulting in single hit
kinetics while ds/ssRNA-seq involves digesting regions of
RNA to near completion. Other differences may arise
from normalization strategy, as with the two nucleotide la-
beling techniques. DMS uses, as a normalization control,
a denatured RNA sample, which is more highly reactive to
DMS. In contrast, icSHAPE uses an RNA sample treated
with solvent only, which reflects absence of icSHAPE re-
activity. Structure Surfer addresses this by allowing users
to focus on local structure patterns and transcriptome-
wide structure trends.

Structure examples
In order to develop our visualization of RNA secondary
structure scores, we inspected a well-characterized class
of highly structured elements, the iron response element
(IRE). IREs are short stem-loops that act as binding sites
for the RNA-binding protein (RBP) IRE-BP. They are
found within the 5′ untranslated regions (UTRs) of sev-
eral mRNAs including two that encode the heavy and
light chains of Ferritin in mouse, Fth1 and Ftl1, respect-
ively. We visualized these two specific IREs using the

Berkowitz et al. BMC Bioinformatics  (2016) 17:215 Page 4 of 9

https://upenn.app.box.com/s/1kj2f1w994sp3jmaakqhy9cw2w11vajk
https://upenn.app.box.com/s/1kj2f1w994sp3jmaakqhy9cw2w11vajk
https://github.com/nberkow/StructureSurfer
http://tesla.pcbi.upenn.edu/structuresurfer
http://tesla.pcbi.upenn.edu/structuresurfer


database’s icSHAPE structure scores (Fig. 1a and c). In
both structure score profiles, we see a five nucleotide
stretch of low structure scores indicating an unpaired re-
gion. Indeed, each of these corresponds to the position
of the unstructured loop region of the IRE. Also as ex-
pected, the structured stem region of the IRE has com-
paratively high scores. The 5′ and 3′ ends of the feature,
which are not predicted to participate in the stem, have
intermediate scores (Fig. 1a and c).
In both score profiles, there are several single nucleo-

tide positions along the stem region with sharply low

structure scores. We used the RNA annotation tool
SAVoR [4] to superimpose icSHAPE reactivity scores
onto RNAfold structures for the two loops (Fig. 1b, d,
and Additional file 4: Figure S2). Because Ftl1 is on the
negative strand with respect to the genome, its scores
were reversed in order before they were superimposed.
Strikingly, the two most reactive positions outside of the
loop region in Ftl1 correspond to single nucleotide
bulges in the stem at positions 5 and 11. This is not as
clear in Fth1. While bulges in the predicted structure do
generally correspond to peaks, as in the highly reactive

Fig. 1 icSHAPE score profiles for the iron response element (IRE) hairpins of murine Ftl1 (a) and Fth1 (c) visualized using Structure Surfer’s standardized
data output. The Ftl1 IRE is located at position 76 to 110 in the transcript and, in the genome, is located on chromosome seven from
position 45459777 to 45459811 on the non-reference strand. Fth1’s IRE is located at position 83 to 117 in transcript variant 1. In the genome its
coordinates are from 9982728 to 9982762 on the reference strand of chromosome 19. In vitro reactivity scores from the database are
superimposed on in silico predicted structures for Ftl1 (b) and Fth1 (d) using SAVoR [4]. Red indicates positions with higher reactivity,
showing evidence of low secondary structure. Positions colored in yellow have lower reactivity and are more likely paired
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bulge at position 11, there are two highly reactive nucle-
otides at positions 4 and 5, which are predicted to be
paired. This provides evidence for the importance of
structure probing techniques to define regions that differ
in structure in vivo and in silico. One explanation for
the differences is that in silico techniques do not always
generate true RNA secondary structure. This may be a
limitation of the algorithm used or it may be the result
of nucleotide modification affecting structure in a way
not reflected by the input sequence. For icSHAPE in
particular, very high structure scores sometimes repre-
sent bases that are highly constrained, but in a way that
makes them more rather than less reactive. More de-
tailed experiments are needed to understand the exact
source of disagreements between annotated structures
and icSHAPE scores. Structure Surfer allows such differ-
ences to be detected easily and visually.
The human homologs of the mouse IRE features have no

scores in any of the four human data sets, which illustrates
a key issue to consider when dealing with RNA secondary
structure. Structure measurement depends on RNA ex-
pression, sequencing depth, and technique specific biases.
Many regions of potential interest have no scores or low
score density. Fortunately, it is still possible to interrogate
regions with low score density to detect overarching struc-
ture trends using a data aggregation approach.
Structure Surfer’s interface provides such an approach

by allowing users to input multiple regions aggregated
into a single bed file and find the average structure score
for all of the incorporated data sets across this collection

of regions. This is useful for investigating overall struc-
tural patterns across functionally related regions. For ex-
ample, it has been noted that there are local decreases in
RNA secondary structure at the start and stop of the
coding sequence (CDS) [1, 5, 6, 17]. To test Structure
Surfer’s aggregation mode, we queried the database with
a set of sites containing every annotated CDS start
codon in the human genome centered in a window of 9
nucleotides up- and downstream of these elements.
Similarly, another file was entered using every CDS stop
codon and their 9 nt up- and downstream surrounding
sequences. When averaged across all of the input fea-
tures, every human data set shows a dip in secondary
structure around both the CDS start and stop codons
(Fig. 2a and b, respectively). Individual CDS start and
stop sites may have very low score densities, but taken
together, their average scores indicate broad agree-
ment between the data sets and agreement with this
previously described structural trend in numerous
eukaryotic organisms [1, 5, 6, 17]. This example shows
how Structure Surfer can be used to reveal trends in RNA
secondary structure across biologically related regions.

Example use case: RNA-binding protein interaction motifs
As an example application of Structure Surfer, we also
used it to query the structural patterns at and around
RBP interacting motif sites. Many RBPs bind their target
transcripts according to sequence specificity, however it
is likely that the structural environment around these se-
quences is also important. A recent high-throughput

Fig. 2 a-b Structure scores from the Structure Surfer database aggregated across all annotated human start codons (a) and stop codons (b). The
three nucleotides of the start (ATG) and stop codons (e.g. TAA) occupy nucleotide positions 9–11 on each of the plots respectively. The score at
each position is calculated as the average score across all nucleotides at that position relative to the codon. At both starts and stops, we note a
dip in secondary structure consistent across experiments indicating that these positions, on average, have lower structure than the nucleotides
surrounding them
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Fig. 3 (See legend on next page.)

Berkowitz et al. BMC Bioinformatics  (2016) 17:215 Page 7 of 9



study applied the RNAcompete protocol to identify se-
quence motifs for 244 RBPs across multiple organisms
[13]. We selected the RBPs from human and mouse that
were interrogated by this study, and scanned both ge-
nomes for matches to RNAcompete-derived motifs. For
each selected RBP, we computed an average structure
score across all matching sites (all data from these ana-
lyses can be downloaded from http://tesla.pcbi.upen-
n.edu/strucuturesurfer/RBP_motif_structure.pdf ).
We found several examples of RBPs whose predicted

binding sites show a consensus structural environment
across experiments. For example, motif matches for cyto-
plasmic polyadenine (polyA) binding protein 5 (PABPC5)
show a strong unstructured trend when structure scores
of all sites are averaged (Fig. 3a). We observe the same re-
sult when we search for PABPC5 sites in the mouse gen-
ome and average their icSHAPE scores (Fig. 3b). The
opposite trend is found for motifs recognized by SNRPA,
a component of the splicing machinery. All experiments
report a local peak in structure at SNRPA motif sites in
both human and mouse (Fig. 3c-d).
Unlike the examples above where we consistently find

the same pattern across the different structure data sets,
we also observe sites where there is not a consensus. For
instance, the collection of predicted interaction sites of
SRSF7 appear to be structured according to PARS, but un-
structured according to DMS and ds/ssRNA-seq (Fig. 3e).
Interestingly, the icSHAPE experiments report an average
structural environment with some highly reactive posi-
tions and some positions that appear protected (Fig. 3f).
One possible explanation for the icSHAPE result is that
highly reactive sites compete for reagent with their slightly
less reactive neighbors even if the entire region is unstruc-
tured. If this is the case it may also explain the difference
in signal between the other methods. While it is difficult
to interpret non-consensus sites, they may provide some
insight into the types of features that are differentially de-
tectable between the four methods.

Conclusions
Structure Surfer is a database of RNA secondary structure
information compiled from six different experiments
across four distinct methods from human and mouse. The

web interface allows users to visualize secondary structure
patterns at any genomic region of interest. For instance,
we visualized a known feature type, the IREs of murine
Ferritin heavy and light chain mRNAs, and revealed a pat-
tern of structure scores that match the in silico RNAfold-
predicted secondary structure for these elements. When
the scores provided by the structure probing methods are
sparse, we find that a data aggregation approach reveals
broad overall structural trends in a collection of transcript
regions (i.e. the area around all transcript start codons).
Therefore, we have also implemented a data aggregation
option in the web interface to interrogate files containing
a collection of such regions. Using this interface, we dem-
onstrate the ability to visualize a known structural trend,
specifically the dips in secondary structure at translation
start and stop sites. Also using aggregation, we see intri-
guing patterns of secondary structure at predicted binding
sites of specific RBPs. However, these are only two of the
many possible use cases of Structure Surfer. Specifically,
we hypothesize that there will be structural patterns corre-
sponding to nuances in splicing, translation, and many
other important processes.

Declarations
Ethics approval and consent to participate
Structure Surfer includes new and previously published
data from mouse and human cell lines. Thus, this state-
ment is not applicable to our study.

Consent for publication
This is not applicable to this study.

Availability and requirements
All ssRNA- and dsRNA-seq data generated for this study
from HEK293T cells were deposited in GEO under the ac-
cession GSE72681. The PARS, DMS-seq, and icSHAPE
data were downloaded from GEO using the accession
numbers GSE50676, GSE45803, and GSE60034, respect-
ively. The complete Structure Surfer database is available
as a MySQL dump file at PennBox, https://upenn.app.box.-
com/s/1kj2f1w994sp3jmaakqhy9cw2w11vajk. The Python
search tool and database schema can be found at GitHub,
https://github.com/nberkow/StructureSurfer. The structure

(See figure on previous page.)
Fig. 3 Examples of structure score aggregation using the data from Structure Surfer across RBP motif match sites for three RBPs, PABPC5 (a-b),
SNRPA (c-d), and SRSF7 (e-f). Human structure scores are aggregated at match sites in the human exome (a, c, and e), and mouse scores are
aggregated at match sites in the mouse exome (b, d, and f). In all examples, the RBP interacting motif sequence is a heptamer occupying
nucleotide positions 21–27. The score at each position is calculated as the average score across all nucleotides at that position relative to the RBP
motif. PABPC5 shows a consistent dip in secondary indicating that sites matching its motif have, on average, less secondary structure than
surrounding nucleotides. The SNRPA motif shows the opposite trend. Specifically, the average structure scores at sites containing this motif are
higher than the surrounding nucleotides indicating that these sites tend to be double stranded. Sites for SRSF7 show a more complex pattern in
which the different experiments do not form a consensus. PARS demonstrates evidence for a peak in average secondary structure at SRSF7
motifs, while ds/ssRNA-seq and DMS display evidence for a dip in average secondary structure. The icSHAPE experiments both show a region
where some positions appear to be involved in base pairing and others appear unpaired
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score profiles for ~100 RBPs (as shown in Fig. 3) calculated
by Structure Surfer are available for download at http://
tesla.pcbi.upenn.edu/structuresurfer. No login is required
to access these resources.

Additional files

Additional file 1: Table S1. The number of informative nucleotides in
the data sets included in Structure Surfer. (DOCX 39 kb)

Additional file 2: Table S2. The number of total reads in each data set
analyzed for inclusion in Structure Surfer. (DOCX 59 kb)

Additional file 3: Figure S1. Distinct score counts for the various data
types of curated data from the high-throughput structure mapping
approaches now available in Structure Surfer. Differences in method result
in very different score distributions. (A) DMS scores show a distribution
where low scores are common and extreme scores are rare. (B) The scores
for ds/ssRNA-seq follow a broader distribution centered at zero. (C) Scores
for icSHAPE show a more uniform distribution between zero and one. (D)
PARS data sets are highly enriched for scores near zero, but more extreme
scores are also present. (JPG 269 kb)

Additional file 4: Figure S2. In vivo reactivity scores superimposed onto
the IREs of mouse Ftl1 (A) and Fth1 (B). Red indicates positions with higher
reactivity showing evidence of low secondary structure. Positions colored in
yellow have lower reactivity and are more likely to be paired. (JPG 115 kb)
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