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Evaluating the Impacts of Sequencing Depth on Transcriptome Profiling
in Human Adipose

Abstract
Recent advances in RNA sequencing (RNA-Seq) have enabled the discovery of novel transcriptomic
variations that are not possible with traditional microarray-based methods. Tissue and cell specific
transcriptome changes during pathophysiological stress in disease cases versus controls and in response to
therapies are of particular interest to investigators studying cardiometabolic diseases. Thus, knowledge on the
relationships between sequencing depth and detection of transcriptomic variation is needed for designing
RNA-Seq experiments and for interpreting results of analyses. Using deeply sequenced Illumina HiSeq 2000
101 bp paired-end RNA-Seq data derived from adipose of a healthy individual before and after systemic
administration of endotoxin (LPS), we investigated the sequencing depths needed for studies of gene
expression and alternative splicing (AS). In order to detect expressed genes and AS events, we found that
∼100 to 150 million (M) filtered reads were needed. However, the requirement on sequencing depth for the
detection of LPS modulated differential expression (DE) and differential alternative splicing (DAS) was much
higher. To detect 80% of events, ∼300 M filtered reads were needed for DE analysis whereas at least 400 M
filtered reads were necessary for detecting DAS. Although the majority of expressed genes and AS events can
be detected with modest sequencing depths (∼100 M filtered reads), the estimated gene expression levels and
exon/intron inclusion levels were less accurate. We report the first study that evaluates the relationship
between RNA-Seq depth and the ability to detect DE and DAS in human adipose. Our results suggest that a
much higher sequencing depth is needed to reliably identify DAS events than for DE genes.
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Abstract

Recent advances in RNA sequencing (RNA-Seq) have enabled the discovery of novel transcriptomic variations that are not
possible with traditional microarray-based methods. Tissue and cell specific transcriptome changes during pathophysi-
ological stress in disease cases versus controls and in response to therapies are of particular interest to investigators
studying cardiometabolic diseases. Thus, knowledge on the relationships between sequencing depth and detection of
transcriptomic variation is needed for designing RNA-Seq experiments and for interpreting results of analyses. Using deeply
sequenced Illumina HiSeq 2000 101 bp paired-end RNA-Seq data derived from adipose of a healthy individual before and
after systemic administration of endotoxin (LPS), we investigated the sequencing depths needed for studies of gene
expression and alternative splicing (AS). In order to detect expressed genes and AS events, we found that ,100 to 150
million (M) filtered reads were needed. However, the requirement on sequencing depth for the detection of LPS modulated
differential expression (DE) and differential alternative splicing (DAS) was much higher. To detect 80% of events, ,300 M
filtered reads were needed for DE analysis whereas at least 400 M filtered reads were necessary for detecting DAS. Although
the majority of expressed genes and AS events can be detected with modest sequencing depths (,100 M filtered reads),
the estimated gene expression levels and exon/intron inclusion levels were less accurate. We report the first study that
evaluates the relationship between RNA-Seq depth and the ability to detect DE and DAS in human adipose. Our results
suggest that a much higher sequencing depth is needed to reliably identify DAS events than for DE genes.
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Introduction

A transcriptome represents a collection of all transcribed

sequences present in a given cell. Unlike a genome, which is

roughly fixed, the composition of the transcriptome can be quickly

restructured by changing the rate of synthesis or decay of

individual mRNAs in response to external environmental condi-

tions. The characterization of gene expression in cells has long

been of interest to researchers because alterations in transcriptome

profiles in response to specific biological stimuli provides valuable

insights for interpreting functional elements of the genome and

understanding disease pathogenesis. Tissue and cell specific

transcriptomic changes during stress, in disease versus health

and in response to therapies are of particular interest to

investigators studying cardiometabolic diseases.

In the past decade, microarrays have been the method of choice

for transcriptomics studies due to their ability to measure

thousands of transcripts simultaneously [1]. However, microarrays

are subject to biases in hybridization strength, and potential for

cross-hybridization to probes with similar sequences [2]. Addi-

tionally, microarrays are unable to identify novel genes and

splicing events because of their reliance on existing gene models.

RNA sequencing (RNA-Seq) is an emerging approach for

transcriptome profiling that allows an unbiased survey of the

entire transcriptome in a high-throughput manner [3]. With deep

coverage and single nucleotide resolution, RNA-Seq provides a

platform to determine differential expression of genes or isoforms

[4], alternative splicing (AS) [5], non-coding RNAs [6], post-

transcriptional modifications [7,8], and gene fusions [9].

Although RNA-Seq has revolutionized transcriptomics studies,

the expense of sequencing is still a major limiting factor to

obtaining highly informative datasets. Thus, knowledge of the

relationships between sequencing depth and transcriptomic

variation detection is critical for proper design of RNA-Seq

experiments and for understanding the characteristics of the

results. Sequencing depth represents the total number of

sequenced reads, which can be increased by using more lanes.

Despite its importance, empirical assessment of the impact of
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sequencing depth on transcriptome profiling is limited. A few

studies have examined the relationship between sequencing depth

and the detection of expressed genes and isoforms [10,11,12].

However, results from these studies cannot be extrapolated to

questions that are beyond the detection of static gene or isoform

expression. In many cardiovascular studies, it is often of interest to

compare transcriptomic profiles between different physiological

conditions, disease states and drug therapies. Therefore, it is

imperative to investigate the effect of sequencing depth on

detection of transcriptomic changes in order to properly design

and interpret these types of experiments in disease relevant tissues.

By utilizing deeply sequenced RNA-Seq samples obtained from

adipose of a single healthy individual before and after systemic

administration of endotoxin (LPS), we set out to evaluate the effect

that sequencing depth has on the statistical analysis of RNA-Seq

data in an evoked model of innate immune stress of direct

relevance to cardiometabolic disease [13,14,15,16]. Specifically,

we evaluated how sequencing depth relates to the identification of

expressed genes and AS as well as to the detection of LPS-

modulated differential gene expression and differential AS.

Findings from our investigation provide a practical guide for

researchers when designing RNA-Seq experiments in cells and

tissues of direct relevance to cardiometabolic disease.

Materials and Methods

Study Subject
The subject is a healthy Caucasian female individual selected

from the Genetics of Evoked responses to Niacin and Endotox-

emia (GENE) study (n= 294), a recently completed National

Institute of Health-sponsored experimental endotoxemia protocol

performed at the University of Pennsylvania (UPenn) [17]. The

GENE study was performed with the approval of UPenn’s

Institutional Review Board after written informed consent was

obtained from all research participants. All subjects underwent an

inpatient endotoxemia protocol lasting approximately 40 hours,

including a pre-LPS acclimatization phase, administration of IV

LPS bolus (1 ng/Kg), and a 30-hour post-LPS phase. As described

earlier [16,18], samples of gluteal subcutaneous fat tissue were

obtained at baseline, 4, 12 and 24 hours following LPS using a

liposuction catheter under local anesthesia and snap-frozen for

subsequent RNA extraction. Based on prior microarray mRNA

profiling in independent samples [18], we selected baseline and 4-

hr adipose samples for RNA-Seq.

RNA-Seq Library Preparation and Sequencing
The RNA was extracted using RNeasy Lipid Tissue total RNA

mini kit (Qiagen, Valencia, CA), underwent quality control using

the Agilent Bioanalyzer (Agilent, Santa Clara, CA). Poly-A library

preparation and sequencing were performed at the Penn Genome

Frontiers Institute’s High-Throughput Sequencing Facility using

Illumina’s HiSeq 2000 with four lanes per sample which generated

26101 bp paired-end reads. Technical replicate data from the

same individual were generated from independent library

preparations and sequenced using two samples per lane.

Poly-A library preparation and sequencing were performed at

the Penn Genome Frontiers Institute’s High-Throughput Se-

quencing Facility per standard protocols. Briefly, we generated

first-strand cDNA using random hexamer-primed reverse tran-

scription, followed by secondstrand cDNA synthesis using RNase

H and DNA polymerase, and ligation of sequencing adapters

using the TruSeq RNA Sample Preparation Kit (Illumina, San

Diego, CA). Fragments of ,350 bp were selected by gel

electrophoresis, followed by 15 cycles of PCR amplification. The

prepared libraries were then sequenced using Illumina’s HiSeq

2000 with four lanes per sample which generated 26101 bp

paired-end reads. Technical replicate RNA-Seq data from the

same individual were generated from independent library

preparations and sequenced using two samples per lane.

Alignment of RNA-Seq Reads
The RNA-Seq data were aligned to the hg19 reference genome

using Tophat v1.3.3 with default options [19]. In order to

eliminate mapping errors and reduce potential mapping ambiguity

due to homologous sequences, several filtering steps were applied.

Specifically, we required the mapping quality score of each read to

be $30, reads from the same pair were mapped to the same

chromosome with expected orientations and the mapping distance

between the read pair was ,500,000 bp, and each read was

uniquely mapped to the genome. All subsequent analyses were

based on filtered alignment files.

Random Sampling of Aligned RNA-Seq Reads
To investigate the effect of sequencing depth on analysis of

RNA-Seq data, after removing reads mapped to the mitochondrial

genome (based on Tophat alignment), we randomly selected reads

from the filtered alignment files (482 million (M) reads for pre-

LPS; 519 M reads for post-LPS) and created subsets with 5 M,

10 M, 15 M, 20 M, 25 M, 50 M, 75 M, 100 M, 150 M, 200 M,

300 M, 400 M reads for both the pre- and post-LPS samples.

For empirical validations, we used technical replicate RNA-Seq

data generated from independent library preparations using two

samples per lane which resulted in 67 M and 65 M reads for the

pre- and post-LPS samples, respectively, with 36 M reads and

33 M reads after filtering and removal of reads mapping to the

mitochondrial genome.

Analysis of Gene Expression
Transcripts were assembled and gene expression levels were

estimated using Cufflinks v1.3.0 [4]. A gene was declared as

expressed if the FPKM (Fragments Per Kilobase of exon per

Million fragments mapped) value was .0. For each gene, we

compared the gene expression levels between pre- and post-LPS

administration using the cuffdiff option in Cufflinks. A gene was

declared as differentially expressed if the FDR adjusted p-value

was #0.05.

Analysis of Alternative Splicing
To identify alternative splicing (AS) events, we used MATS

[20], a computational tool that detects differential AS events from

RNA-Seq data. We favored MATS over other tools (e.g., MISO

[21] and DiffSplice [22]) because of our experimental design and

the ease of use and robustness of the program. MATS tests that the

difference in the exon or intron inclusion level of a gene (defined

by refSeq in our analysis) between two conditions exceeds a user-

defined threshold (0.05 in our analysis). From RNA-Seq data,

MATS can automatically detect AS events corresponding to all

major types of AS, including exon skipping, mutually exclusive

exons, alternative 59 splice site, alternative 39 splice site, and intron

retention. An AS event was declared if the inclusion level of an

exon or an intron was between 0 and 1. A differential AS event

was declared if the FDR adjusted p-value was #0.05.

Results

Clinical Characteristics of the Study Subject
Clinical and biochemical responses to LPS in all European

Ancestry participants in the GENE study as well as for the study

Impact of Sequencing Depth in RNA-Seq Studies
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subject are shown in Table S1. Compared to GENE participants,

the selected study subject had similar baseline characteristics with

normal blood pressure, blood glucose, and plasma lipoproteins.

We selected this subject due to their high biochemical inflamma-

tory response (84 percentile peak IL-6, 64 percentile peak TNFa,
and 87 percentile peak temperature in the 24 hours post-LPS)

(Table S1), supporting a robust modulation of the transcriptome.

RNA-Seq Data Alignment
We obtained 912 million (M) and 1,040 M reads for the pre-

and post-LPS samples, respectively, with a high mapping rate,

85% and 82% of the reads mapped to the reference genome for

the pre- and post-LPS samples, respectively, and 72% and 69% of

the reads uniquely mapped and properly filtered (Table 1). In our

analysis, we only considered reads from autosomal and sex

chromosomes, and this left 482 M filtered reads pre-LPS and

519 M filtered reads post-LPS. For ease of notation, we denote the

482 M and 519 M filtered datasets both as 500 M, and assume

results from the analyses of these two datasets provide a

comprehensive catalogue of transcriptomic variation.

Impact of Sequencing Depth on Analysis of Gene
Expression

Detection of gene expression. To assess the relationship

between sequencing depth and gene expression, we divided our

500 M datasets into smaller subsets randomly and analyzed how

the detection of a gene varies with sequencing depth. For the pre-

LPS sample, we found that with 5 M reads, only 16% of the

expressed genes were detected. The detection rate quickly

increased to 79% when the sequencing depth increased to

100 M (Figure 1(A); Table S2). After the sequencing depth

reached 150 M, the percentage of additionally detected genes

became less pronounced and each additional 100 M reads only

offered 3% to 5% more genes, suggesting that the improvement of

sequencing depth after 150 M had relatively less impact on

detecting low abundance genes. We observed an almost identical

pattern for the detection rate for the post-LPS sample, although

the numbers of detected genes were different from the pre-LPS

sample (Table S2).
Detection of differential gene expression. Because detec-

tion of differentially expressed (DE) genes is a key focus for many

cardiometabolic studies, we investigated the sequencing depth

needed to identify LPS-modulated genes. The pattern for detected

pre- and post-LPS DE genes was different from expressed genes.

Only a small number of the DE genes were detected at low depths;

for the 5 M-read dataset, less than 2% of the DE genes were

detected, in contrast to 16% for the expressed genes detected at

the same sequencing depth. The detection rate was increased to

45% when the sequencing depth increased to 100 M. Unlike

expressed genes, which reached a plateau, for DE genes, the

detection rate increased steadily as sequencing depth increased,

and in order to detect 80% of the DE genes, 300 M reads were

necessary (Figure 1(A); Table S2). We note that the curves for

pre-LPS and post-LPS samples are overlapping, although the

numbers of detected genes were different (Table S2). Our results

suggest that although expressed genes can be detected at relatively

low sequencing depth, the accuracy of the estimated gene

expression levels may not be sufficient to determine modest gene

expression changes modulated by LPS or in other experimental or

disease settings.

Correlations of gene expression and differential gene

expression across datasets. We next evaluated how accurate

the estimated FPKM values and the corresponding fold change of

the FPKMs were in all sub-datasets as compared to those obtained

from the 500 M-read datasets. For each subset, we calculated the

Spearman correlations of the FPKM values with the 500 M-read

datasets for both the pre- and post-LPS samples. The spearman

correlations were relatively high even for low sequencing depths

(Figure 1(B)); for the 5 M-read datasets, the correlations with the

500 M-read dataset were 0.88 and 0.74, for the pre- and post-LPS

samples, respectively. The correlations were above 0.9 for both

pre-LPS and post-LPS samples when the read depths increased to

100 M (Figure 1(B); Figures S1–S3). At the same sequencing

depth, the correlation for fold-change in gene expression (post-LPS

vs. pre-LPS) was always smaller than the corresponding correla-

tions for the FPKM values, and the degree of discrepancy was

more pronounced at lower sequencing depth (Figure 1(B)). For
example, with 10 M reads, the correlations for the pre-LPS and

post-LPS FPKM values were 0.88 and 0.75, respectively, whereas

the correlation for the fold change of gene expression was only

0.63. This suggests that at lower sequencing depth, one would not

only miss a large portion of the DE genes, but would also suffer

from a less accurate estimation of the magnitude of gene

expression changes.

Impact of gene expression levels. Despite overall good

correlations between replicates, in one of the first large RNA-Seq

studies with technical replicates, Mortazavi et al. [23] observed

reduced precision for lower expressed transcripts. In order to

assess the impact of gene expression levels on our results, we

looked at highly-expressed genes and lowly-expressed genes

separately based on their FPKM values in the 500 M-read

datasets. ‘‘Highly-expressed genes’’ were defined as those with

FPKM values .75th percentile for both the pre-LPS (75th

percentile FPKM=11.46) and post-LPS (75th percentile

FPKM=9.09) samples, and ‘‘lowly-expressed genes’’ were defined

as those with the FPKM values ,25th percentile (25th percentile

FPKM=1.51 pre-LPS, 0.85 post-LPS).

Table 1. Mapping statistics.

Sample Time Reads Reads mapped (%) Reads after filtering (%)
Autosomal and sex chromosome
reads after filtering (%)

Original Pre-LPS 911,584,508 771,290,702 (85%) 655,529,906 (72%) 481,769,060 (53%)

Post-LPS 1,039,937,222 856,379,122 (82%) 718,792,994 (69%) 518,576,050 (50%)

Technical
replicate

Pre-LPS 66,603,980 57,113,510 (86%) 49,217,950 (74%) 36,253,892 (54%)

Post-LPS 64,824,708 53,726,630 (83%) 45,005,478 (69%) 32,587,354 (50%)

Data were aligned to the hg19 reference genome using Tophat v1.3.3.
doi:10.1371/journal.pone.0066883.t001

Impact of Sequencing Depth in RNA-Seq Studies
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As expected, the expression level affects how readily a gene was

detected. Figure 1(C) shows that the detection rate for lowly-

expressed genes was significantly lower than that for highly-

expressed genes. For highly-expressed genes, 10 M reads could

detect 80% (pre-LPS) and 73% (post-LPS) of the genes that were

expressed. With the same number of reads, less than 2% of the

lowly-expressed genes were detected for both the pre- and post-

LPS samples. The gene expression also affected the detection of

DE genes. For example, with 100 M reads, among highly-

expressed genes, 38% of the DE genes were detected as compared

to 20% DE genes detected among lowly-expressed ones

(Figure 1(C); Table S3). The discrepancy became more

pronounced as sequencing depths decreased; with read depths

,75 M, none of the DE genes among those lowly-expressed genes

were detected, whereas about one third of the DE genes among

highly-expressed ones were detected at 75 M. Our results

confirmed that read depths have a much larger impact on the

detection of expression and especially DE for low abundance

genes.

Sensitivity and specificity. We also characterized the

sensitivity and specificity for DE genes at various sequencing

depths. This is an important question because some DE genes

detected in datasets with lower sequencing depths were not

detected in the 500 M-read datasets, suggesting false positives.

Assuming the 500 M-read datasets as the gold standard, we

classified DE genes detected in datasets with lower sequencing

depths into four categories. A gene was classified as ‘‘false positive’’

(FP) if it was detected in a subset but not in the 500 M datasets; a

gene was classified as ‘‘false negative’’ (FN) if it was missed in a

subset but detected as DE in the 500 M-read datasets. Similarly,

we defined ‘‘true positive’’ (TP) and ‘‘true negative’’ (TN) genes.

Based on these definitions, we calculated the numbers of genes in

each category, and this allowed us to estimate the sensitivity (i.e.,

TP/(TP+FN)), specificity (i.e., TN/(FP+TN)), and false discovery

rate (FDR) (i.e., FP/(FP+TP)) for DE genes detected at each

sequencing depth. As shown in Figure 1(D) (and Table S4),
overall the specificity was high e.g., 97% even when the

sequencing depth was as low as 5 M. However, the sensitivity

was strongly dependent on the sequencing depths; with 10 M

reads, the sensitivity was only 16%. To achieve 80% sensitivity,

300 M reads were necessary. The FDR was close to 40% with

Figure 1. Analysis results for differentially expressed (DE) genes in adipose. (A) Percentage of detected expressed genes and
differentially expressed (DE) genes for datasets with various sequencing depths. PreLPS: detection rate for expressed genes in the pre-LPS
sample; post-PLS: detection rate for expressed genes in the post-LPS sample; DE: detection rate for DE genes. The curves for pre-LPS and post-LPS
samples overlap, although the numbers of detected genes were different (Table S1). (B) Spearman correlation between FPKM values in
datasets with various sequencing depths and FPKM values in the 500 M-read datasets. PreLPS: correlation of FPKM values in the pre-LPS
sample; postLPS: correlation of FPKM values in the post-LPS sample; fold-change: correlation of the fold change of FPKM values. (C) Percentage of
detected DE genes according to gene expression levels. PreLPS_high: detection rate for gene expression in highly expressed genes in the pre-
LPS sample; preLPS_low: detection rate for gene expression in lowly expressed genes in the pre-LPS sample; postLPS_high: detection rate for gene
expression in highly expressed genes in the post-LPS sample; postLPS_low: detection rate for gene expression in lowly expressed genes in the post-
LPS sample; DE_high: detection rate for DE genes in highly expressed genes; DE_low: detection rate for DE genes in lowly expressed genes. (D)
Performance of DE genes detected in datasets with various sequencing depths.
doi:10.1371/journal.pone.0066883.g001

Impact of Sequencing Depth in RNA-Seq Studies
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5 M reads but fell quickly when the sequencing depth increased

e.g., to 12% at 100 M reads and to 5% at 300 M reads.

Impact of Sequencing Depth on Analysis of Alternative
Splicing

Detection of AS. An exciting feature of RNA-Seq lies in its

ability to study AS, a regulated process during gene expression in

which particular exons of a gene may be included or excluded

from the final processed mRNAs. In humans, it is estimated that

more than 90% of the multiexonic genes are alternatively spliced

[5]. An exon was declared to have undergone AS if the exon

inclusion level was between zero and one. This type of AS is

defined as exon skipping, which is the most common type of AS

[5]. Similar inclusion levels were calculated for other types of AS

in MATS [20] including mutually exclusive exons, alternative 59

splice site, alternative 39 splice site, and intron retention. Since the

patterns were consistent across all types of AS events, in our

analysis, we considered all AS events together. The patterns of

detected AS events were broadly similar to that for expressed

genes. AS events could be detected at low sequencing depths e.g.,

for the pre-LPS sample, 30% of the AS events were detected with

10 M reads and the detection rate quickly reached to 83% when

the read depth increased to 150 M (Figure 2(A); Table S5).
Detection of differential AS. Next, we investigated the

sequencing depth needed to study differential AS (DAS) events.

Strikingly, none of the DAS events were detected in datasets with

sequencing depth below 50 M reads, and only 9% of the DAS

events were detected with 100 M reads, in sharp contrast to 76%

detection rates for AS events at this depth. In order to detect

,80% of the DAS events, at least 400 M reads were needed.

Since the curve for detection rate did not hit a plateau

(Figure 2(A), this suggests that even at higher sequencing depths

many DAS events are difficult to identify with current RNA-Seq

protocols.

Correlations of AS and DAS across datasets. In the

analysis of AS, it is important to quantify exon/intron inclusion

level as it reflects the relative abundance of different isoforms. For

AS and DAS events detected in datasets with various sequencing

depths, we calculated the Spearman correlations of the inclusion

levels and fold-change in inclusion levels with that in the 500 M-

read datasets. As expected, the spearman correlations for inclusion

levels were relatively high even at low sequencing depths

(Figure 2(B); Figures S4–S6); for the 5 M-read datasets, the

correlations were 0.69 and 0.74 for the pre- and post-LPS samples,

respectively, and quickly reached to 0.9 when the sequencing

depths increased to 75 M. At the same sequencing depth, the

correlation for fold change of inclusion level was always smaller

than the corresponding correlations for the inclusion levels, and

further, it was smaller than the fold change for the corresponding

gene expression results. For example, with 10 M reads, the

correlation for fold change of gene expression was 0.63, whereas

the correlation for fold change of inclusion level was only 0.54.

This reduced correlation is likely because in datasets with lower

sequencing depths, the numbers of junction reads are small which

result in more variability in the estimation of inclusion levels.

Impact of gene expression levels. The gene expression

levels are likely to have an impact on the AS analysis because

lowly-expressed genes generally have less junction reads, which are

crucial for the analysis of AS. We considered the impact of highly-

expressed genes and lowly-expressed genes separately

(Figure 2(C)). As expected, we detected more AS and DAS

events for highly-expressed genes than for lowly-expressed genes

(Table S6). At the same sequencing depth, about three time more

AS events were detected for highly-expressed genes than for lowly-

expressed genes. A similar pattern was observed for the detection

of DAS. Sensitivity and Specificity. Next, we estimated the

sensitivity, specificity, FDR, and accuracy for the detected DAS

events at various sequencing depths. We calculated the numbers of

‘‘false positive’’, ‘‘false negative’’, ‘‘true positive’’, and ‘‘true

negative’’ DAS events by treating results from the 500 M-read

datasets as the gold standard. As shown in Figure 2(D) (Table
S7), the specificity was high across all sequencing depths but the

sensitivity was low when sequencing depth was less than 200 M

reads. In order to get non-zero sensitivity, 50 M reads were

necessary and even with 200 M reads, the sensitivity was only

around 30%. Overall in order to achieve 80% sensitivity, at least

400 M reads were needed. The overall FDR was low; however,

FDR should be interpreted with caution because the low FDR as

well as the noticeable increase at 25 M were driven by the small

number of detected DAS events when sequencing depths were low

(Table S7).

Impact of Sampling Variations
In our primary analysis, we sampled once for each sequencing

depth when creating subsets with various numbers of reads. This

sampling scheme reflects what happens in real studies because

most investigators can only afford to sequence a sample once.

However, in experiments with low sequencing depth, it is crucial

to evaluate whether the sequenced reads are representative. To

evaluate sampling variations, we randomly sampled 100 M reads

and 10 M reads from the 500 M-read datasets 10 times for both

the pre- and post-LPS samples, and repeated our analyses for gene

expression and AS. We observed high correlations for the FPKM

values and the fold change of the FPKMs among the 10 samplings

(Figure 3(A)). As expected, the sampling variation was smaller for

the 100 M-read datasets than for the 10 M-read datasets.

However, the corresponding correlations for the exon/intron

inclusion levels (AS) and the fold change of inclusion levels (DAS)

were lower (Figure 3(B)), especially when the sequencing depth

was as low as 10 M reads. This result suggests that sampling

variations has little effect on the analysis of gene expression, but its

impact on the analysis of AS is substantial.

Until now, our analyses have been restricted to randomly

sampled sequence reads from data generated in a single

sequencing run. These selected reads may have less variation

than data obtained from different sequencing runs. In order to

evaluate this further, we analyzed technical replicate RNA-Seq

data generated from the same study subject, where the numbers of

reads after filtering were 36 M and 33 M for pre-LPS and post-

LPS, respectively (Table 1). Based on these data, we examined

the numbers of expressed and DE genes, and AS and DAS events

and compared these findings to those from data subsets sampled at

36 M and 33 M reads from the 500 M-read datasets. Table 2
shows that the results are broadly similar, confirming that results

obtained from resampled data are representative of empiric data;

however, the low overlap in DAS events underscores the lack of

sensitivity of low sequence depth for DAS analysis.

Discussion

Tissue and cell-specific transcriptomic modulation in disease

and during experimental interventions are an emerging interest in

the study of cardiometabolic diseases [24]. In this study, using

deeply sequenced RNA-Seq data derived from adipose of a

healthy individual before and after systemic administration of LPS,

we investigated the sequencing depths needed for studies of

various types of transcriptomic variations. In particular, we

examined what sequencing depths were needed for studying gene

Impact of Sequencing Depth in RNA-Seq Studies
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expression and AS. We found that to detect expressed genes,

,100 M reads (after filtering and removal of mitochondrial reads)

were needed. However, in order to detect DE genes, the

requirement on sequencing depth was much higher. In general,

,300 M reads were needed to detect 80% of the identified DE

genes. We also investigated the sequencing depth needed for the

analysis of AS. To detect AS events, ,150 M reads were

necessary; however, to detect DAS events, a much higher

sequencing depth was needed; at least 400 M reads were necessary

to achieve an 80% detection rate. These findings provide a

practical guide and cautionary note for researchers when

designing RNA-Seq experiments in cells and tissues of direct

relevance to cardiometabolic disease.

The sequencing depth needed for a given study depends on

several factors including genome size, transcriptome complexity

and objectives of the study. Depending on the purpose of the

analysis, the requirement of sequencing depth varies. In most

transcriptomics studies, quantifying gene expression is the major

objective. As shown by several groups [10,11,12] and confirmed

by us, there is a certain sequencing depth that is sufficient for

detection of expressed genes, implying that increasing sequencing

depth after reaching a certain threshold has little impact on gene

detection. For example, our data suggest that after the sequencing

depth reached 150 M filtered reads, the percentage of additionally

detected genes became less pronounced. This indicates that

,300 M raw sequence reads were needed, equivalent to 1.5 lanes

per sample if sequencing is performed using Illumina’s HiSeq

2000. However, our analysis demonstrates for the first time that

reliable detection of DE genes, at least in adipose, requires much

deeper sequencing than has been applied typically. Further, by

separating genes by expression levels, we observed substantial

difference between highly-expressed genes and lowly-expressed

genes in terms of the detection of expressed genes and DE genes.

Detection of low abundance genes and of DE of such genes was

greatly impacted by sequencing depth. This finding is particularly

relevant to study design when the goal is to detect DE genes that

are novel and of low expression.

A unique strength of RNA-Seq is its capacity to identify AS and

DAS in an unbiased manner. Detection of AS in our adipose

RNA-Seq data had a similar pattern to that for gene expression

except that greater sequencing depth was required to detect AS

events; for example, to achieve 80% detection rate, 100 M filtered

Figure 2. Analysis results for alternative splicing (AS) and differential AS (DAS) in adipose. (A) Percentage of detected alterantive
splicing (AS) and differential AS (DAS) events for datasets with various sequencing depths. PreLPS: detection rate for AS events in the
pre-LPS sample; postLPS: detection rate for AS events in the post-LPS sample; DAS: detection rate for DAS events. (B) Spearman correlation
between exon or intron inclusion levels in datasets with various sequencing depths and inclusion levels in the 500 M-read
datasets. PreLPS: correlation of inclusion levels in the pre-LPS sample; postLPS: correlation of inclusion levels in the post-LPS sample; fold-change:
correlation of the fold change of isoform ratios. (C) Percentage of detected AS and DAS events according to gene expression levels.
preLPS_high: detection rate for AS in highly expressed genes in the pre-LPS sample; preLPS_low: detection rate for AS in lowly expressed genes in the
pre-LPS sample; postLPS_high: detection rate for AS in highly expressed genes in the post-LPS sample; postLPS_low: detection rate for AS in lowly
expressed genes in the post-LPS sample; DAS_high: detection rate for DAS in highly expressed genes; DAS_low: detection rate for DAS in lowly
expressed genes. (D) Performance of DAS events detected in datasets with various sequencing depths.
doi:10.1371/journal.pone.0066883.g002
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Figure 3. Spearman correlation boxplot for randomly simulated datasets. (A) Boxplot of Spearman correlations for FPKM values
and fold change of FPKM values among 10 randomly sampled datasets. For each sequencing depth (10 M or 100 M), the correlation was
calculated for each of the 45 pair-wise comparisons. (B) Boxplot of Spearman correlations for exon/intron inclusion levels and fold change
of inclusion levels among 10 randomly sampled datasets. For each sequencing depth (10 M or 100 M), the correlation was calculated for
each of the 45 pair-wise comparisons.
doi:10.1371/journal.pone.0066883.g003

Table 2. Numbers of expressed genes, differentially expressed (DE) genes, alternative splicing (AS) events and differential AS (DAS)
events detected in the technical replicate samples and the resampled data with the same sequencing depth* as the technical
replicate.

Sample
Expressed genes
(pre-LPS)

Expressed genes
(post-LPS) DE genes

AS events
(pre-LPS)

AS events
(post-LPS) DAS events

Technical replicate 15,962 15,324 732 7,506 7,347 12

Resampled data 16,064 15,375 748 8,805 8,586 8

Overlap 15,400 14,756 598 5,562 5,510 1

*67 M and 65 M reads for the pre-LPS and post-LPS samples, respectively, with 36 M reads and 33 M reads after filtering and removal of reads mapped to mitochondria.
doi:10.1371/journal.pone.0066883.t002
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reads were needed for gene expression but 150 M filtered reads

were necessary for AS. In a manner that parallels that for the

impact of gene expression level on the analysis of gene expression,

low number of junction reads (i.e., low expression) greatly

impacted the detection of AS and required much higher

sequencing depth.

Detection of tissue or cell-specific disease or drug-related DAS

may provide novel insight into specific genes and proteins that

modulate cardiometabolic disease and therapeutic responses.

Therefore, it is of great interest to identify DAS under different

disease and experimental conditions. Strikingly, the curves for

DAS detection rate did not reach a plateau suggesting that

increasing sequencing depth even beyond 500 M filtered reads

would provide more reliable detection of DAS in our adipose data.

Since RNA-Seq remains expensive and most investigations cannot

afford to sequence even to 500 M reads, results reported from

most experiments with lower sequencing depth likely represent a

very incomplete picture for DAS. For example, our data suggest

that a sequencing depth of 200 M reads would detect only ,30%

of DAS and even less for those AS events with relatively low

numbers of junctions reads.

The coverage we report here represents the number of reads

after filtering of inappropriate alignment and removal of reads

mapped to the mitochondrial genome. This may vary by

alignment programs and filtering criteria, and thus may vary

from study to study. Further, our reported coverage represents a

lower bound of the required depth since we were stringent in our

filtering. As better algorithms are developed to improve read

mapping, we anticipate that more reads will be used in gene

expression quantification and AS analysis, and thus reduce the

numbers of reads needed to obtain robust analysis results.

Our study has several unique strengths but also limitations. To

our knowledge, this is the first analysis of sequencing depth on

transcriptomic profiling of differential gene expression and DAS in

human adipose. We applied very deep RNA-Seq, paired tissue

sampling, resampling of sequence reads, and empirical technical

replication of RNA-Seq data in our approach. Our analysis was

restricted, however, to a single individual and it is possible that

findings could vary across individuals and with increasing numbers

of individuals studied. Although experimental endotoxemia is not

a disease model or study design typically used in the study of

cardiometabolic disease, several lines of evidence suggest that

controlled activation of innate immunity in healthy humans may

be informative in cardiometabolic disease [14,15]. We and others

have shown that experimental endotoxemia induces insulin

resistance [14] and atherogenic lipoprotein changes [25] while

observational studies show that sepsis and chronic infection

[26,27] induce metabolic derangements resembling those observed

in obesity, type 2 diabetes and atherosclerosis. Furthermore, LPS

activation of TLR-4 signaling has a well established and robust

impact on regulation of gene expression and AS, thus providing a

highly informative model for our analysis of the sequencing depth

required to detect LPS-modulated DE and DAS in humans. While

we acknowledge that our focus was restricted to adipose tissue and

that findings could vary across distinct cells and tissues, we note

that analysis of adipose tissue transcripts has established its utility

in informing our understanding of complex cardiometabolic

disorders [28,29,30]. Finally, we acknowledge that our findings

might be sensitive to methods used in alignment, filtering, and

analyses as well as the assumption that the 500 M-read datasets

represent a gold standard in our analyses.

Our analysis was restricted to a single individual. Although not

typical (i.e., without biological replicates), our results are partic-

ularly relevant to the design of the GENE study and studies that

involve paired samples (e.g., pre vs. post treatment). In the GENE

study, each participant was administrated low-dose LPS, and we

are interested in identifying transcriptomic variations induced by

LPS in each individual. This is important as our clinical

investigations revealed substantial phenotypic variations among

individuals despite their similar baseline characteristics LPS [17].

The typical differential expression/splicing analyses with biological

replicates will miss signals that are present only in a small number

of individuals. We note that the analysis of single individuals is also

relevant to cancer transcriptomics studies when comparing paired

tumor and normal tissues in which the analysis is typically done at

the individual level.

To assess the generalizability of our findings in other tissues, we

also analyzed the deeply sequenced RNA-Seq data obtained from

blood of the same individual. We analyzed the blood RNA-Seq

data using the same pipeline as employed for adipose. The

patterns for gene expression and AS results are broadly similar to

adipose (Figures S7 and S8), suggesting that our conclusions on

required sequencing depths might be generalized to other tissue

types.

In summary, recent development in sequencing technologies

has allowed us to obtain deep coverage of the human

transcriptome at single-base resolution. We report the first study

that evaluates the appropriate sequencing depth for studying

differential gene expression and differential AS in human adipose

using RNA-Seq. Our results show that a much higher sequencing

depth is needed to reliably identify DAS events and even DE genes

compared to that needed to detect gene expression or AS. While

contemporary sequencing depths in RNA-Seq studies of human

diseases may provide novel and important findings, it is likely that

most lack coverage to reliably detect the full spectrum of disease

relevant differential gene expression and AS. The knowledge

generated from this study provides a realistic foundation for

applications of RNA-Seq in the study of tissue and cell-specific

transcriptomic modulation within cardiometabolic disorders.

Accession Numbers
RNA-seq data have been deposited in the Gene Expression

Omnibus (GEO) database (accession number GSE46323).

Supporting Information

Figure S1 FPKM values estimated from datasets with
various sequencing depths for the pre-LPS sample.
Shown are the values of –log10(FPKM +1). X-axis is for the

500 M-read dataset and Y-axis is for datasets of lower sequencing

depths.

(TIF)

Figure S2 FPKM values estimated from datasets with
various sequencing depths for the post-LPS sample.
Shown are the values of –log10(FPKM +1). X-axis is for the

500 M-read dataset and Y-axis is for datasets of lower sequencing

depths.

(TIF)

Figure S3 Fold change of FPKM values estimated from
datasets with various sequencing depths. Shown are the

values of –log10(fold change +0.01). X-axis is for the 500 M-read

dataset and Y-axis is for datasets of lower sequencing depths.

(TIF)

Figure S4 Exon/intron inclusion levels estimated from
datasets with various sequencing depths for the pre-LPS
sample. X-axis is for the 500 M-read dataset and Y-axis is for

datasets of lower sequencing depths.
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(TIF)

Figure S5 Exon/intron inclusion levels estimated from
datasets with various sequencing depths for the post-
LPS sample. X-axis is for the 500 M-read dataset and Y-axis is

for datasets of lower sequencing depths.

(TIF)

Figure S6 Fold change of inclusion levels estimated
from datasets with various sequencing depths. Shown are

the values of –log10(fold change +0.01). X-axis is for the 500 M-

read dataset and Y-axis is for datasets of lower sequencing depths.

(TIF)

Figure S7 Analysis results for differentially expressed
(DE) genes in blood (A) Percentage of detected expressed
genes and differentially expressed (DE) genes for
datasets with various sequencing depths in blood.
PreLPS: detection rate for expressed genes in the pre-LPS sample;

post-PLS: detection rate for expressed genes in the post-LPS

sample; DE: detection rate for DE genes. The curves for pre-LPS

and post-LPS samples overlap, although the numbers of detected

genes were different (Table S1). (B) Spearman correlation
between FPKM values in datasets with various sequenc-
ing depths and FPKM values in the 500 M-read datasets
in blood. PreLPS: correlation of FPKM values in the pre-LPS

sample; postLPS: correlation of FPKM values in the post-LPS

sample; fold-change: correlation of the fold change of FPKM

values. (C) Percentage of detected DE genes according to
gene expression levels in blood. PreLPS_high: detection rate

for gene expression in highly expressed genes in the pre-LPS

sample; preLPS_low: detection rate for gene expression in lowly

expressed genes in the pre-LPS sample; postLPS_high: detection

rate for gene expression in highly expressed genes in the post-LPS

sample; postLPS_low: detection rate for gene expression in lowly

expressed genes in the post-LPS sample; DE_high: detection rate

for DE genes in highly expressed genes; DE_low: detection rate for

DE genes in lowly expressed genes. (D) Performance of DE
genes detected in datasets with various sequencing
depths in blood.
(TIF)

Figure S8 Analysis results for alternative splicing (AS)
and differential AS (DAS) in blood. (A) Percentage of
detected alterantive splicing (AS) and differential AS
(DAS) events for datasets with various sequencing
depths in blood. PreLPS: detection rate for AS events in the

pre-LPS sample; postLPS: detection rate for AS events in the post-

LPS sample; DAS: detection rate for DAS events. (B) Spearman
correlation between exon or intron inclusion levels in
datasets with various sequencing depths and inclusion
levels in the 500 M-read datasets in blood. PreLPS:

correlation of inclusion levels in the pre-LPS sample; postLPS:

correlation of inclusion levels in the post-LPS sample; fold-change:

correlation of the fold change of isoform ratios. (C) Percentage
of detected AS and DAS events according to gene
expression levels in blood. preLPS_high: detection rate for

AS in highly expressed genes in the pre-LPS sample; preLPS_low:

detection rate for AS in lowly expressed genes in the pre-LPS

sample; postLPS_high: detection rate for AS in highly expressed

genes in the post-LPS sample; postLPS_low: detection rate for AS

in lowly expressed genes in the post-LPS sample; DAS_high:

detection rate for DAS in highly expressed genes; DAS_low:

detection rate for DAS in lowly expressed genes. (D) Perfor-
mance of DAS events detected in datasets with various
sequencing depths in blood.

(TIF)

Table S1 Characteristics of GENE European ancestry
participants at (A) baseline and (B) during endotoxemia.

(DOCX)

Table S2 The numbers and percentages of detected
expressed genes and DE genes in datasets with various
sequencing depths.

(XLSX)

Table S3 The numbers and percentages of detected
expressed genes and DE genes at each sequencing depth
for genes defined as "highly expressed" or "lowly
expressed".

(XLSX)

Table S4 Sensitivity, specificity, and FDR for detected
DE genes in datasets of various sequencing depths.

(XLSX)

Table S5 The numbers and percentages of detected AS
and DAS events in datasets with various sequencing
depths.

(XLSX)

Table S6 The numbers and percentages of detected AS
and DAS events at each sequencing depth for genes
defined as "highly expressed" or "lowly expressed".

(XLSX)

Table S7 Sensitivity, specificity, and FDR for detected
DAS events in datasets of various sequencing depths.

(XLSX)

Methods S1 Supplementary methods.

(DOC)
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