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Global Analysis of RNA Secondary Structure in Two Metazoans

Abstract
The secondary structure of RNA is necessary for its maturation, regulation, processing, and function.
However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput,
sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA]) and
unpaired (single-stranded RNA [ssRNA]) components of the Drosophila melanogaster and Caenorhabditis
elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in
metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific
epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that
indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated
regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is
significantly correlated between these metazoans, suggesting that their structure has some function. Overall,
our findings provide a global assessment of RNA folding in animals.
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SUMMARY

The secondary structure of RNA is necessary for its
maturation, regulation, processing, and function.
However, the global influence of RNA folding in
eukaryotes is still unclear. Here, we use a high-
throughput, sequencing-based, structure-mapping
approach to identify the paired (double-stranded
RNA [dsRNA]) and unpaired (single-stranded RNA
[ssRNA]) components of the Drosophila mela-
nogaster and Caenorhabditis elegans transcrip-
tomes,which allows us to identify conserved features
of RNA secondary structure in metazoans. From
this analysis, we find that ssRNAs and dsRNAs are
significantly correlated with specific epigenetic
modifications. Additionally, we find key structural
patterns across protein-coding transcripts that
indicate that RNA folding demarcates regions of
protein translation and likely affects microRNA-
mediated regulation of mRNAs in animals. Finally,
we identify and characterize 546 mRNAs whose
folding pattern is significantly correlated between
these metazoans, suggesting that their structure
has some function. Overall, our findings provide
a global assessment of RNA folding in animals.

INTRODUCTION

Recent findings have revealed unexpectedly pervasive tran-

scription within animal genomes (Birney et al., 2007; Celniker

et al., 2009), but only a very small proportion of these RNA

transcripts are actually predicted to encode proteins. These

observations provide further emphasis for the growing popula-

tion of functional RNA molecules, which have been implicated

in gene expression regulation (e.g., small RNAs [smRNAs];

functional, long, noncoding RNAs [lncRNAs]; and riboswitches),

RNA splicing (e.g., small nuclear RNAs [snRNAs]), RNA editing

(e.g., small nucleolar RNAs [snoRNAs]), translation (e.g., ribo-

somal RNAs [rRNAs] and transfer RNAs [tRNAs]), and catalytic

activities (e.g., group I introns and ribozymes). The functionality

of these non-protein-coding RNAs is intimately linked to their

three-dimensional structure (Brierley et al., 2007; Montange

and Batey, 2008), which is determined by specific base-pairing

interactions encoded within their primary sequences (Buratti

et al., 2004; Cooper et al., 2009; Cruz andWesthof, 2009; Sharp,

2009). These interactions can either be within (intramolecular)

or between (intermolecular [heteroduplex]) RNA molecules.

Furthermore, there is increasing evidence suggesting that

mRNA maturation processes (e.g., splicing, polyadenylation)

require that pre-mRNA molecules be folded into a precise

secondary structure in eukaryotic organisms (Buratti et al.,

2004; Cooper et al., 2009; Cruz and Westhof, 2009; Sharp,

2009). In fact, specific secondary structures within the pre-

mRNA transcript can either repress or aid splicing by masking

or organizing splice sites, respectively (Raker et al., 2009; Warf

and Berglund, 2010) and can also modulate polyadenylation

(Klasens et al., 1998; Zarudnaya et al., 2003). Thus, the

secondary structure of all RNA classes is abundantly important

for the functionality, maturation, and regulation of these

molecules.

The discovery of RNA interference (RNAi) pathways has

brought our attention to a vast, evolutionarily conserved, post-

transcriptional, regulatory network dependent on self or foreign

double-stranded RNAs (dsRNAs) (Bartel, 2004; Carthew and

Sontheimer, 2009). In animals, production of intra- and intermo-

lecularly base-paired RNAs gives rise to 20–30 nt smRNAs
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through the activity of DICER RNase III-type ribonucleases

(Bartel, 2004; Carthew and Sontheimer, 2009). These smRNAs

are the sequence-specific effectors of RNAi pathways that

direct transcriptional or posttranscriptional regulation of genes,

repetitive sequences, viruses, and transposable elements by

pairing with complementary RNAs from these sources (Almeida

and Allshire, 2005).

In most animals, smRNAs are composed of microRNAs

(miRNAs), several classes of endogenous small interfering

RNAs (esiRNAs), and Piwi-interacting RNAs (piRNAs), with the

first two classes being somatically dominant because piRNAs

are found only in the germline (Aravin and Hannon, 2008; Kim

et al., 2009). Upon incorporation into an RNA-induced silencing

complex (RISC), animal miRNAs typically inhibit translation of

their target mRNAs, but can also induce degradation of these

transcripts (Chekulaeva and Filipowicz, 2009). The regulatory

interaction of miRNA-bound RISC (miRISC) and a target mRNA

mostly involves complementary base pairing only between

nucleotides 2–8 of a miRNA (counted from its 50 end) and

a binding site in that transcript (seed region). There is usually

limited or no interaction between the miRNA and its target

transcript outside of this seed region (nucleotides 9–22 of the

miRNA). Interestingly, esiRNA-incorporated RISC complexes

(esiRISC) normally cleave their target RNAs (Okamura et al.,

2008) or direct dimethylation and trimethylation of histone H3

lysine 9 (H3K9me2 and H3K9me3, respectively), the latter

leading to heterochromatin formation and transcriptional

silencing of the target loci (Fagegaltier et al., 2009). The regula-

tory interaction of esiRISC and a target mRNA involves extensive

complementary base pairing between the entire esiRNA and

a binding site in that transcript (Girard and Hannon, 2008; Wata-

nabe et al., 2008). The difference in regulatory outcomes

directed by miRNAs and esiRNAs is thought to be a conse-

quence of the difference in complementary base-pairing

interactions between these smRNAs and their targets. In total,

base-paired RNAs are required for both the biogenesis and

function of all animal small silencing RNAs, further emphasizing

the importance of RNA secondary structure in regulating gene

expression.

Recently, we and others have developed and employed high-

throughput, sequencing-based, structure-mapping approaches

to interrogate RNA secondary structure on a genome-wide

scale (Kertesz et al., 2010; Underwood et al., 2010; Zheng

et al., 2010). These first studies focused on determination of

secondary structure for all Arabidopsis thaliana RNAs (Zheng

et al., 2010), polyadenylated RNAs of Saccharomyces cerevisae

(Kertesz et al., 2010), and known and newly discovered ncRNAs

ofmouse (Underwood et al., 2010). These initial studies validated

high-throughput, sequencing-based, structure-mapping ap-

proaches as effective and efficient methods of interrogating

RNA secondary structure on a global scale (Westhof and

Romby, 2010). However, a comprehensive, whole-genome

analysis of RNA secondary structure is still lacking for any

metazoan. Furthermore, a thorough analysis of mRNA

secondary-structure correlation between animals has never

been accomplished, even though such a study has the potential

to uncover RNAs with structures or substructures that may be

functional.

Here, we use our high-throughput, sequencing-based, struc-

ture-mapping approach to comprehensively identify the paired

(dsRNA) and unpaired (single-stranded RNA [ssRNA]) compo-

nents of the Drosophila melanogaster and Caenorhabditis

elegans transcriptomes, which allows us to interrogate the

structural landscape in both animals more globally. From this

analysis, we reveal that ssRNAs and dsRNAs are significantly

correlated with specific epigenetic modifications in animals.

We also uncover a sizable population of, to our knowledge,

novel, highly base-paired RNAs, many of which likely encode

lncRNAs with intricate and dynamic expression patterns. Addi-

tionally, we identify conserved features of mRNA secondary

structure that indicate that RNA folding demarcates regions

of protein translation. Our analysis also reveals that mRNA

secondary structure surrounding miRNA binding sites is strik-

ingly distinct inDrosophila andC. elegans, suggesting that target

mRNA recognition and/or regulation by miRNAs is significantly

different in various animals. Furthermore, we use a comparative

genomics approach to identify and characterize RNA secondary

structures that are correlated or anticorrelated between two

organisms that are separated by >1 billion years of evolution.

Interestingly, we find that mRNAs encoding proteins involved

in chromatin related processes are overrepresented only in

the transcripts with correlated secondary structure between

animals. These results suggest that the secondary structure of

mRNAswith highly correlated folding patterns has some function

within these molecules. In total, our findings emphasize the

importance of RNA folding and provide global evidence of

widespread mRNA secondary structure correlation and anticor-

relation between animals.

RESULTS

Genome-wide Characterization of the dsRNA
and ssRNA Components of Drosophila

and C. elegans Transcriptomes
Using a high-throughput, sequencing-based, structure-mapping

approach, we characterized the paired (dsRNA) and unpaired

(ssRNA) components of rRNA-depleted total RNA from

Drosophila DL1 culture cells and C. elegans mixed-stage

animals. As expected, we found that the majority of dsRNA

sequencing reads from both Drosophila (220,216,161 total

reads) and C. elegans (213,499,238 total reads) corresponded

to known highly structured RNA classes (e.g., rRNAs, snRNAs,

snoRNAs, etc.) and smRNA-producing loci (e.g., miRNAs)

(Figures 1A and 1B). We also identified a large proportion of

dsRNA reads that mapped to transposable elements (TEs) in

Drosophila, consistent with previous reports that demonstrated

active siRNA-mediated silencing of expressed TEs in Drosophila

culture cells (Czech et al., 2008; Ghildiyal et al., 2008; Kawamura

et al., 2008). Conversely, only an extremely small fraction

(�1.0%) of dsRNA reads corresponded to TEs in C. elegans

(Figure 1B). This is likely a consequence of highly efficient

transposable element silencing in these animals (Sijen and

Plasterk, 2003). In contrast, our ssRNA sequencing reads from

both animals (224,124,379 and 218,364,316 total ssRNA reads

for Drosophila and C. elegans, respectively) were enriched in

protein-coding mRNAs and pseudogenes (Figures 1C and 1D).
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Figure 1. Characterization of the dsRNA and ssRNA Components of the Drosophila and C. elegans Transcriptomes

(A and B) Pie charts showing functional classification of dsRNA sequencing reads for Drosophila (labeled Dmel) and C. elegans (labeled Cel), respectively.

(C and D) Pie charts showing functional classification of ssRNA sequencing reads for Drosophila (labeled Dmel) and C. elegans (labeled Cel), respectively.

(E) Classification of dsRNA, ssRNA, and smRNA hot spots for Drosophila. Values are as a percentage of total hot spots for each type (e.g., dsRNA). Purple bars

show the classification of overlapping ds- and smRNA hot spots, suggesting that these dsRNAs are the substrates for smRNA processing from these regions.

(F) Classification of dsRNA, ssRNA, and smRNA hot spots for C. elegans. Values are as a percentage of total hot spots for each type (e.g., dsRNA). Purple bars

show the classification of overlapping ds- and smRNA hot spots, suggesting that these dsRNAs are the precursors of smRNAs.
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Together, these results indicate that our approaches are interro-

gating the desired components of the transcriptome in the two

animal systems.

Next, we used a geometric distribution-based approach to

identify genomic regions that were significantly enriched in either

paired RNAs (dsRNA hot spots) or unpaired RNAs (ssRNA hot

spots) (Table S1 available online). This analysis identified

25,007 and 9,972 dsRNA hot spots and 19,464 and 7,068 ssRNA

hot spots in Drosophila and C. elegans, respectively (Figure S1;

Tables S2 and S3). As expected, the highly repetitive, trans-

poson-rich pericentromeric regions of the Drosophila genome

were found to be a rich source of dsRNA (Figure 1E; Figure S2).

This is not surprising, because cis transcriptional silencing of

these regions is likely mediated by esiRNAs that require a dsRNA

intermediate for their biogenesis (Fagegaltier et al., 2009). It is

noteworthy that we did not observe a similarly strong bias of

dsRNA hot spots in C. elegans transposable elements (Fig-

ure 1F). These findings suggest that the quantity of smRNA-

producing dsRNAs required for transposon silencing is different

between C. elegans and Drosophila, which could be because

of a more efficient regulatory pathway or reduced abundance

of repetitive elements in worms. Alternatively, differences in the

animal materials used for these experiments (DL1 culture cells

for Drosophila and mixed-stage worms for C. elegans) could

also explain these findings. Further studies are necessary to

test between these hypotheses.

This hot spot analysis also revealed that the majority of highly

paired RNAs in C. elegans, and the second most abundant class

in Drosophila, were protein-coding mRNAs. In both animals

the majority of ssRNA hot spots corresponded to mRNAs, as

expected (Figures 1E and 1F, green bars). In total, these results

substantiate that dsRNA-seq and ssRNA-seq interrogate the

desired portion of the transcriptome.

Highly Structured, Functional RNAs are Sources
of smRNAs
The biogenesis of all known functional small silencing RNAs

(e.g., miRNAs and esiRNAs) requires a dsRNA intermediate.

Therefore, we determined the propensity of highly base-paired

regions (dsRNA hot spots) to be processed into smRNAs by

using corresponding smRNA-seq data (Figures 1E and 1F;

Tables S2 and S3; see Extended Experimenatal Procedures

for smRNA data analysis). We found that for both organisms,

the highly base-paired regions within all interrogated RNA

categories, including functional RNAs (e.g., rRNAs, snRNAs,

snoRNAs, and tRNAs) and pre-mRNAs, were extremely likely

to be processed into smRNAs (Figures 1E and 1F). Although

these results were expected for transposable and repetitive

elements, which are known to be smRNA biogenesis substrates

in animals (Czech et al., 2008; Ghildiyal et al., 2008; Kawamura

et al., 2008), it was surprising that functional RNAs are often

processed into smRNAs, as intramolecular base-pairing inter-

actions are intrinsic to their function. Overall, these results

demonstrate that highly base-paired regions of animal rRNA,

snRNA, snoRNA, and tRNA molecules are ideal smRNA bio-

genesis precursors, similar to what we previously observed for

Arabidopsis (Zheng et al., 2010).

dsRNA and ssRNA Hot Spots Are Associated
with Distinct Epigenetic Modifications
Recent studies have suggested that small dsRNAs may influ-

ence diverse patterns of epigenetic histone modification along

both heterochromatic and euchromatic regions of animal

genomes (Kouzarides, 2007; Moazed, 2009; modEncode

Consortium et al., 2010). To this end, we examined the relation-

ship between genome-wide histone modifications, determined

previously with ChIP-seq (Kharchenko et al., 2010; modEncode

Consortium et al., 2010) (Table S4), and Drosophila dsRNA and

ssRNA hot spots (Figures 1E and 2A; Tables S2 and S3). We

found that dsRNA hot spots in Drosophila were significantly

enriched for the repressive, heterochromatic histone 3 lysine 9

Figure 2. dsRNA, ssRNA, and smRNAHot Spots Are Associatedwith

Specific Epigenetic Modifications in Animals

(A) The percentage of ssRNA (green), dsRNA (yellow), and smRNA-producing

dsRNA hot spots (purple), as well as bases in the entire genome (red), with

specific histonemodifications (as indicated in the figure) forDrosophila. Values

are given as a percentage of all base positions for each hot spot class or the

entire genome (control) that are associated with the given epigenetic mark.

*** denotes p value / 0.

(B) Same analysis as in (A), but for C. elegans.
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(H3K9) trimethylation modification (p value/ 0, hypergeometric

test), whereas ssRNA hot spots were enriched for the activating,

euchromatic H3K4 trimethylation and H3K9 acetylation epige-

netic marks (p value / 0, hypergeometric test) (Figure 2A).

Furthermore, smRNA-generating dsRNA hot spots were even

more highly enriched for heterochromatic H3K9 trimethylation

(p value / 0, hypergeometric test).

A similar analysis in C. elegans using previously published

ChIP-chip data (Celniker et al., 2009; Gerstein et al., 2010; Liu

et al., 2011) showed that both dsRNA and ssRNA hot spots

were significantly enriched (p value / 0, hypergeometric test)

for activating, euchromatic H3K4 dimethylation and trimethyla-

tion and H3K79 monomethylation (Table S4), which is likely

a consequence of most worm hot spots being encompassed

by protein-coding mRNAs. Additionally, our analysis revealed

an overrepresentation of the repressive H3K9 dimethylation

and trimethylation and H3K27 trimethylation in dsRNA hot spots

(p value / 0, hypergeometric test), especially those that

generate smRNAs (Figure 2B). The observation that H3K27 tri-

methylation is significantly correlated with smRNA-generating

dsRNA hot spots is similar to what was previously observed in

Tetrahymena (Liu et al., 2007). However, this correlation was

not observed for Drosophila (Figure 2), suggesting that smRNAs

could direct this epigenetic modification to specific genomic

locations, or vice versa, in C. elegans but not in flies. Overall,

these results reveal that ssRNAs and dsRNAs are significantly

correlated with specific epigenetic modifications in animals

and indicate that the well-studied smRNA-mediated chromatin

modification pathways in plants and yeast (Lister et al., 2008;

Volpe et al., 2002) are likely conserved across higher eukaryotes.

Identification of Highly Base-Paired RNAs in Two
Metazoans
Our dsRNA hot spot analysis also revealed 1,203 and 223

transcription units in Drosophila and C. elegans, respectively

(Figures 1E and 1F; Tables S2 and S3), that do not overlap

with any known or previously identified transcription units

(Gerstein et al., 2010; Graveley et al., 2011), unannotated

transposable/repetitive elements, or simple repeats. These

Drosophila and C. elegans RNAs likely have biological relevance

because when compared to the genomes of 14 other insects

and five other worm species, respectively, it was observed that

they were under purifying selection (p value < 1.5 3 10�12 and

p value < 1.1 3 10�4, respectively; see Figure S3). Additionally,

we found that 861 (in Drosophila) and four (in C. elegans) of

these transcripts overlapped with regions of the genome that

produced a significant amount of smRNAs (Figures 3B, 3C, 4B,

and 4C; Tables S2 and S3), suggesting that they could function

as esiRNA biogenesis precursors.

To validate our sequencing data and further interrogate the

newly identified transcription units, we characterized several of

these RNAs by RT-PCR in a panel of Drosophila tissues and

developmental stages (Figure 3; Figure S3). We confirmed that

all four of the RNAs tested were expressed in the culture cell

line used for the initial analysis of paired and unpaired RNAs.

Interestingly, three of the four (75%) transcripts exhibited

tissue- and developmental-stage-specific expression patterns

(Figure 3D; Figure S4), and one of the RNAs (h1529 on chromo-

some X) demonstrated differently sized RNAs in specific

Drosophila tissues and developmental stages (Figures 3C and

3D). We also used RT-PCR to confirm the expression of three

newly identified (Figures 4A, 4C, 4D, and 4F) and three previously

identified (Figures 4B and 4E; Figure S5; Gerstein et al., 2010)

highly base-paired RNAs in mixed-stage C. elegans. Further-

more, we determined the spatiotemporal expression patterns

of a number of these transcripts by using single-molecule

fluorescence in situ hybridization (FISH) (Figure 4G; Figure S6;

Raj et al., 2008). We found that one transcript displayed expres-

sion in a large subset of cells at the 41-cell stage, with two cells

harboring particularly bright spots consistent with an accumula-

tion of multiple RNAs at the site of transcription itself (Raj et al.,

2006; Vargas et al., 2005). At later stages, expression of this

transcript is restricted to a few cells (Figure 4G). We observed

similar dynamic patterns of expression in other dsRNAs (Fig-

ure S6), suggesting that the abundance of many of these RNAs

is subject to cell-specific regulation.

Using dsRNA and ssRNA-seq Data to Develop
Experimentally-Derived Models of mRNA Secondary
Structure on a Genome-wide Scale
The secondary structure of all eukaryotic mRNA molecules is

dictated by specific base-pairing interactions that are encoded

within their nucleotide sequence (Cooper et al., 2009; Cruz and

Westhof, 2009; Sharp, 2009). Prior to the development of

high-throughput, sequencing-based, structure-mapping ap-

proaches (Kertesz et al., 2010; Underwood et al., 2010; Zheng

et al., 2010), most RNA secondary structure models had

been predicted through sequence comparisons (e.g., Infernal:

http://infernal.janelia.org/), energy dynamics of base pairing

(e.g., the RNAfold program of the Vienna package: http://www.

tbi.univie.ac.at/�ivo/RNA/), or enzymatic and chemical experi-

ments (Cruz and Westhof, 2009; Westhof and Romby, 2010).

Here, we used the combination of dsRNA-seq (paired regions)

and ssRNA-seq (unpaired regions) data to produce experimen-

tally derived structural models of all Drosophila and C. elegans

mRNAs detected in this study (see Experimental Procedures).

As we observed previously for Arabidopsis (Zheng et al., 2010),

experimentally determined mRNA secondary structures exhibit

striking base-pairing differences in comparison to computation-

ally predicted structures. Many regions that were expected

by RNAfold to form large, single-stranded loops and open

regions were more highly paired in our models, and vice versa

(see Figure 5A, http://gregorylab.bio.upenn.edu/annoj_ce/ and

http://gregorylab.bio.upenn.edu/annoj_dm/).

To validate our structural models, we characterized highly

base-paired regions of several Drosophila mRNAs (as deter-

mined by our methodology) (Figure 5A) by RT-PCR after diges-

tion with a single-stranded or double-stranded RNase. We

expected that the selected mRNA regions would be sufficiently

intact for RT-PCR amplification after treatment with the single-

stranded RNase but not the double-stranded RNase. As pre-

dicted, the regions of mRNA molecules determined to be highly

base paired were amplified after treatment with the ssRNase

(Figure 5B). Conversely, we could not amplify these same

regions after treatment with the dsRNase, which implies that

they were degraded by this enzyme.
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It is worth noting that our methodology reveals the pairing

status of RNA molecules in the absence of cellular proteins.

This may result in models of secondary structure that do not

perfectly reflect the fully folded RNA molecule in cells. However,

the results of this study as well as a number of previous reports

(Kertesz et al., 2010; Underwood et al., 2010; Zheng et al., 2010)

have demonstrated that the models of mRNA secondary struc-

ture produced through high-throughput, structure-mapping

approaches are highly informative. Overall, our results suggest

that the sequencing data sets, models of RNA secondary

structure, and analyses that have resulted from this study will

contribute positively to future work aimed at illuminating the

numerous functions of RNA secondary structure in eukaryotes.

Identification of Structural Features in Animal mRNAs
that Potentially Affect Translation and miRNA-Mediated
Regulation
To identify specific patterns within the secondary structure of

animal mRNAs, we examined the average structure score, which

is the normalized log-ratio of dsRNA- to ssRNA-seq reads,

across the coding region (CDS) and both 50 and 30 UTRs of

detected Drosophila and C. elegans protein-coding transcripts

(Figure 6A). For both animals, we identified significant decreases

in the structure score near the start and stop codons of the CDS

(p value = 1.5e-12 and 4.8e-6 for Drosophila, p value = 3.5e-3

and 3.9e-2 forC. elegans, respectively), revealing a considerably

reduced tendency for base-pairing and increased accessibility

of the RNA at the regions where protein translation begins

and ends (Figure 6A). This was also observed for yeast mRNAs

(Kertesz et al., 2010; Kozak, 2005), indicating that it may be

a general feature of eukaryotic protein-coding transcripts.

Somewhat surprisingly, we also found that one or both UTRs

were, on average, much more highly structured than the coding

region in animal mRNAs (p value < 2.2e-16 for both 50 and 30 UTR
in Drosophila; p value = 0.54 and p value = 1.97e-06 for 50 and 30

UTR, respectively, in C. elegans). The inverse was observed for

yeast transcripts, where the CDS is more structured than UTRs

(Kertesz et al., 2010), suggesting that animal UTRs are enriched

for RNA secondary structures, which might act as regulatory

sites or interacting regions for RNA-binding proteins. Taken

Figure 3. Highly Base-Paired RNAs in Drosophila

(A–C) Three examples of intergenic, highly base-paired transcripts (screenshots from our Drosophila RNA-seq browser, http://gregorylab.bio.upenn.edu/

annoj_dm/). W (green bars) and C (red bars) indicate signal from Watson and Crick strands, respectively. (A) An intergenic dsRNA hot spot found between

CG17486 and CG17883. (B) A base-paired RNA between CG40045 and CG40452. (C) An intergenic dsRNA hot spot between CG32820 and CG14621.

(D) Random-primed RT-PCR analysis of base-paired RNAs in multiple tissues and developmental stages of Drosophila. Rps6 serves as a loading control.
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together, these results reveal that there are conserved structural

patterns within protein-coding mRNAs of animals, and suggest

that these features may affect protein translation.

We hypothesized that the significant secondary structure we

identified in the 30 UTRs of C. elegans and Drosophila protein-

coding transcripts may be a consequence of animal mRNAs

attempting to mask miRNA binding sites located in these

regions, especially given that this mechanism is active in multi-

cellular animals but not budding yeast. To test this possibility,

we examined the site-specific average structure scores at

positions within TargetScan-predicted miRNA target sites

(Ruby et al., 2006, 2007) and the 50 bp of sequence up- and

downstream of these regions (Figure 6B). This analysis revealed

significantly decreased base-pairing across the entire length of

miRNA binding sites in C. elegans target mRNAs. Further anal-

ysis confined to miRNA target sites experimentally determined

to be bound by ALG-1 (the ARGONAUTE (AGO) protein at the

core of C. elegans miRISC) (Zisoulis et al., 2010), uncovered

similarly decreased base-pairing within the seed region of

miRNA target sites. Conversely, we observed a significant

increase in secondary structure specifically within the seed-

pairing region of Drosophila target transcript miRNA binding

sites (Figure 6C). These findings suggest that miRISC complexes

encounter extremely different secondary structures during target

mRNA interaction in these two animals. It is worth noting that

we did not find significant differences in overall 30 UTR structure

for transcripts with and without miRNA target sites, indicating

that the structural constraints imposed by miRNA-mediated

silencing are local to the target site.

The differences in secondary structure at miRNA binding sites

between Drosophila and C. elegans led us to hypothesize that

RNA folding across these regulatory regions may affect miRISC

interaction. To test this idea, we determined if increasing

secondary structure had a negative affect on C. elegans ALG-1

binding using previously published CLIP-seq data (Zisoulis

et al., 2010). This analysis revealed a significant (p = 0.03) inverse

correlation (r = �0.23) between ALG-1 binding affinity and

miRNA target site structure (Figure 6D). In total, these results

indicate that increased mRNA secondary structure at miRNA

target sites can adversely affect miRISC interaction with regula-

tory targets.

Identification and Characterization of Significantly
Correlated and Anticorrelated mRNA Secondary
Structures
Although it is well accepted that mRNA maturation and regula-

tion require that these molecules be folded into precise

secondary structures, a comprehensive study to assess RNA

folding functionality has never been done. To identify potentially

functional mRNA secondary structures, we compared levels of

sequence and structure correlation in a set of 2,223 orthologous

transcripts between Drosophila and C. elegans (Table S5) (Lyne

et al., 2007). Briefly, we calculated the correlation between struc-

ture profiles for each transcript pair at positions of homology to

determine structure correlation (see Experimental Procedures).

As expected, sequence and structure similarity were reasonably

correlated (r = 0.35) within the entire set of 2,223 orthologous

pairs (Figure 7A). Using a binomial model of RNA folding cor-

relation, we identified 736 orthologous transcript pairs that

exhibited significant correlation (546 total) or anticorrelation

(190 total) of their secondary structure profiles (hereafter referred

to as ‘‘positively correlated’’ and ‘‘negatively correlated’’ orthol-

ogous sets, respectively) (Figure 7A, red and green, respec-

tively). Interestingly, positively correlated orthologous pairs

(see Figures 7B and 7C for an example) were enriched for

mRNAs that encode proteins with functions in chromatin-related

biology (chromatin organization), but there was no specific

enrichment within the negatively correlated transcripts (Fig-

ure 7D, top two boxes). Furthermore, we also found that

transcript pairs demonstrating high sequence but not structural

similarity were not enriched for chromatin-related processes

(Figure 7D, bottom two boxes). These results indicate that the

observed functional enrichment within the 546 orthologous

transcript pairs with significantly correlated secondary structure

is not merely due to high sequence similarity. In total, these find-

ings suggest that the structure of the 546 mRNAs with positively

correlated folding patterns between these two metazoans has

some function within these RNA molecules.

DISCUSSION

Here, we report a simultaneous genome-wide study of RNA

secondary structure in two metazoans, Drosophila and

C. elegans. Our analysis revealed a large population of dsRNAs

and ssRNAs, many of which likely have distinct regulatory roles

in animals (Figures 1–4). For instance, we found significant

correlations between dsRNA hot spots, especially those that

likely generate smRNAs, and heterochromatic histone modifica-

tions in both animals (Figure 2), indicating a potential role for

these RNAs in the deposition and/or maintenance of silencing

epigenetic marks. In fact, our findings provide evidence for

a mechanism of smRNA-mediated transcriptional gene silencing

widely conserved across eukaryotes. Additionally, we identified

a strong correlation between ssRNA hot spots and activating,

euchromatic histone modifications (Figure 2), suggesting that

actively transcribed mRNAs prefer unpaired RNA structures.

This is not overly surprising given that a decrease in RNA

secondary structure in protein-coding transcripts has the

potential to allow for more efficient translation (Kozak, 2005).

We also characterized a set of highly base-paired transcripts,

many of which are evolutionarily conserved and display intricate

and dynamic expression patterns during animal development

(Figures 3 and 4; Figures S3–S6). Future experiments will be

aimed at addressing the functionality of these RNAs.

Given the ability to characterize RNA secondary structure

globally in two animals, we examined the average folding

patterns of protein-coding transcripts for both animals. This

analysis uncovered conserved mRNA structural features

(Figures 5 and 6). For example, we revealed a significant

decrease in mRNA secondary structure at both the start and

stop codons of the CDS in the two animals. These findings indi-

cate that specific folding patterns demarcate the protein-coding

region of mRNAs, suggesting that secondary structure has

a regulatory effect on protein translation (Figure 6A). Specifically,

decreased pairing at the translation start site could increase

ribosome binding efficiency, and thereby modulate translation,
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Figure 4. Highly Base-Paired RNAs in C. elegans

(A–C) Three examples of intergenic, highly base-paired transcripts (screenshots from our C. elegans RNA-seq browser, http://gregorylab.bio.upenn.edu/

annoj_ce/). W (green bars) and C (red bars) indicate signal from Watson and Crick strands, respectively. (A) Four intergenic dsRNA hot spots found between

F19F10.7 and F19F10.8. (B) A highly base-paired RNA between F47E1.4 and F47E1.1. This transcript was recently identified via high-throughput RNA profiling

(Gerstein et al., 2010). (C) Two intergenic dsRNA hot spots between R160.1b and D1079.1 or F15A8.4 and F15A8.5, respectively.
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as has been suggested in yeast (Kertesz et al., 2010). Similarly,

the secondary structure surrounding the translation termination

site could serve as a signal for the ribosome to disengage from

the transcript. Additionally, we found that on average one or

both of the 50 and 30 UTRs are more highly structured than the

coding region of animal transcripts (Figure 6A), suggesting that

these noncoding portions of animal mRNAs contain highly folded

structures that could serve as regulatory signals or interaction

sites for RNA-binding proteins. To address the secondary

structure of one class of potential regulatory regions in the 30

UTRs of animal transcripts, we analyzed miRNA target sites.

This analysis revealed significant and distinct patterns of

base-pairing across 30 UTR-localized miRNA binding sites in

Drosophila and C. elegans (Figures 6B and 6C), indicating that

miRISC complexes encounter extremely different secondary

structures during interactions with target mRNAs in these two

animals. Specifically, we found increased secondary structure

within the seed region of Drosophila miRNA binding sites, sug-

gesting that more energy is needed for miRISC:target RNA

binding, as numerous base-pairing interactions will need to be

Figure 5. A Genome-wide Approach to Experimentally Interrogate RNA Secondary Structure in Eukaryotes

(A) Model of secondary structure for the Drosophila FBtr0100406 transcript determined by default RNAfold (left, labeled RNAfold) or our high-throughput

sequencing-based, structure-mapping approach (right, labeled Structure score). The region of this RNA interrogated in (B) is shown in this figure. The heatscale

indicates the normalized log-ratio of dsRNA-seq to ssRNA-seq reads (see Experimental Procedures) at each base position. Red arrows indicate regions of the

RNA model where R7 nt are unpaired.

(B) Random-primed RT-PCR analysis of dsRNA hot spots from FBtr0072789, FBtr0100406, FBtr0078144, FBtr0082231, FBtr0088499, and FBtr0077014 after

treatment of total RNA sampleswith either a single-stranded or double-strandedRNase. Samples that were not treatedwith reverse transcriptase or either RNase

serve as controls for this experiment.

(D–F) Random-primed RT-PCR analysis of base-paired RNAs frommixed stageC. elegans that are pictured in A–C. (D), (E), and (F) correspond to (A), (B), and (C),

respectively. For (F) the two RT-PCR analyses correspond to h336 and h337 in (C), respectively.

(G) FISH images of dsRNA hot spots chrIV_1804 – 1806 taken at single molecule resolution (RNA in white, nuclei stained with DAPI in blue). Images are maximum

merges of a series of optical sections at a variety of developmental stages (41-cell stage, left panel; pretzel stage, middle panel; L1, right panel). Scale bars are

5 mm long.

Cell Reports 1, 69–82, January 26, 2012 ª2012 The Authors 77



interrupted for a functional interaction (Figure 6C). Conversely,

C. elegans miRNA binding sites are on average much more

accessible to interaction with miRISC (Figure 6C), suggesting

that less energy is needed for regulatory complex:RNA binding.

Taken together, these findings suggest that target mRNA

recognition and/or regulation by miRISC is significantly different

in C. elegans and Drosophila, and it would not be surprising if

these processes are variable between other animals.

In support of a potential negative interaction between RNA

folding at miRNA binding sites and miRISC interaction, we

identified a significant negative correlation between increasing

RNA secondary structure and C. elegans ALG-1 binding affinity

at miRNA interaction sites (Figure 6D). Specifically, we found

that ALG-1 binding affinity was increased for miRNA interaction

sites with decreased levels of secondary structure, whereas

the opposite was true for those regions that were more highly

base-paired. (Figure 6D). In total, these results indicate that

mRNA secondary structure at miRNA interaction sites has an

adverse effect on miRISC interaction with regulatory targets.

Finally, we used a comparative genomics approach to identify

RNA structures that are correlated or anticorrelated between the

two animals (Figures 7A–7D), providing global evidence of

mRNA secondary structure correlation between animals. Inter-

estingly, the identification of RNA secondary structures that

are specifically correlated (and likely functional) in protein-

coding transcripts now makes it possible to test the functions

of such sequences in mRNA maturation, stability, regulation,

and/or protein interaction. In total, our results suggest that

RNA secondary structure has effects on a myriad of cellular

processes, including epigenetic chromatin modification, protein

translation, miRNA-mediated posttranscriptional control, and

regulation of mRNA stability, processing, and/or regulation.

Additionally, we have established a useful framework for future

comparative studies of RNA secondary structure.

EXPERIMENTAL PROCEDURES

Further details on the animal materials, experimental procedures, high-

throughput sequencing, and processing, mapping, and analysis of Illumina

GA and HiSeq sequence reads are provided in the Extended Experimental

Procedures.

dsRNA-seq, ssRNA-seq, and smRNA-seq Library Preparation

Briefly, total RNA was subjected to two rounds of rRNA depletion (Ribominus,

Invitrogen, Carlsbad, CA) and then treated with a single-strand specific ribo-

nuclease (RNase One, Promega, Madison, WI) for dsRNA-seq or with

a double-strand specific ribonuclease (RNase V1, ABI, Foster City, CA) for

ssRNA-seq, all per manufacturer’s instructions. The RNA samples are then

used as the substrate for sequencing library construction using the Small

RNA Sample Prep v1.5 kit (Illumina, San Diego, CA) as per manufacturer’s

instructions. For D. melanogaster, we obtained 220,216,161 raw dsRNA reads

(118,174,585 nonredundant [NR] sequences with 1.86 clones on average) and

224,124,379 raw ssRNA reads (144,624,885 NR, 1.55 copies each). For

C. elegans, we produced 213,499,238 raw dsRNA reads (115,065,848 NR,

Figure 6. A Global View of mRNA Secondary Structure

(A) The average ‘‘structure score’’ plotted over the 50 UTR, CDS, and 30UTR of

all protein coding transcripts for Drosophila (blue line) and C. elegans (green

line). The overall average for the entire transcript is shown as a dotted line. Red

arrows highlight significant dips in secondary structure that occurred at the

junctions between the UTRs and the coding region.

(B) Model depicting our analysis of RNA secondary structure at miRNA binding

sites in target mRNAs.

(C) The average structure score across miRNA target sites and for 50 bp

up- and downstream flanking regions of each site in Drosophila (blue line),

C. elegans (green line), and experimentally identifiedC. elegans ALG-1 binding

sites (Zisoulis et al., 2010) (dark green line). The overall structure score average

for the entire �122 bp region is shown as a dotted line.

(D) The average structure score (x axis) is plotted against average ALG-1 CLIP-

seq tag density for experimentally identified miRNA binding sites that interact

with this component of miRISC (Zisoulis et al., 2010) (y axis).
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Figure 7. Highly Correlated and Anticorrelated mRNA Secondary Structures between Drosophila and C. elegans

(A) Plot of sequence similarity (x axis) versus structure correlation (y axis) for a set of 2,223 orthologous transcript pairs between Drosophila and C. elegans.

Structure correlation scores range from –1 to 1, with higher values indicating tendency of paired and unpaired nucleotides in one organism to also be the

same in the other, whereas lower values indicate an opposite trend. Red and green markers indicate significantly correlated and anticorrelated structures,

respectively.
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1.86 copies each) and 218,364,316 raw ssRNA reads (116,488,694 NR, 1.87

copies each). smRNA-seq libraries were produced using the small RNA

Sample Prep v1.5 kit (Illumina, San Diego, CA), as per manufacturer’s instruc-

tions. We obtained a total of 7,597,106 and 10,594,321 smRNA reads from the

Drosophila and C. elegans libraries, respectively. For more detailed method-

ology see Supplemental Experimental Procedures.

Identification of Hot Spots in the Drosophila and C. elegans

Genomes

To identify dsRNA and ssRNA hot spots in the two animal genomes, we utilized

a geometric distribution-based approach. smRNA hot spots were identified

using a Poisson distribution-based method as previously described (Zheng

et al., 2010). For more detailed methodology see Supplemental Experimental

Procedures.

Functional Analysis of Drosophila and C. elegans Hot Spots

Existing gene annotations were downloaded from FlyBase (r5.22) and Worm-

Base (WS205). Propensity of smRNA processing was assayed by overlapping

dsRNA hot spots with our identified smRNA hot spots. Histone modification

data (ChIP-seq for D. melanogaster and ChIP-chip for C. elegans) were

downloaded from modENCODE (http://www.modencode.org/) (Celniker

et al., 2009; modEncode Consortium et al., 2010). All of the comparative

genomics data, including the multiple alignment files for ‘‘insects-15-way’’

and ‘‘worm-6-way,’’ as well as the pre-calculated conservation scores from

the ‘‘phastCons’’ program (Siepel et al., 2005) were downloaded from

the UCSC Genome Browser (release dm3 and ce6 for Drosophila and

C. elegans, respectively). For more detailed methodology, see Supplemental

Experimental Procedures.

Identification of Base-Paired Transcripts

dsRNA hot spots were first classified as intergenic if they did not overlap

with any known annotations from FlyBase (r5.22) and Wormbase (WS205),

for Drosophila and C. elegans, respectively. These transcripts were then

filtered for transcription units identified in a series of recent RNA-seq profiling

experiments (Gerstein et al., 2010; Graveley et al., 2011). For a more detailed

methodology, see Supplemental Experimental Procedures.

RNA Secondary Structure Prediction and Analysis of mRNA

Secondary Structure Patterns

The dsRNA- and ssRNA-seq read coverages were separately normalized to

the total number of reads for each transcript. Then, the log-ratio of dsRNA-

to ssRNA-seq normalized read coverage was calculated at each base position

to derive a ‘‘structure score,’’ a normalized log-ratio of dsRNA- to ssRNA-seq

reads. Positions with a structure score greater than 1.1 were constrained as

paired (‘‘j’’ in the structural constraint input), positions with a structure score

less than �1.1 were constrained as unpaired (‘‘x’’ in the structural constraint

input), and all other positions were left unconstrained (‘‘.’’ in the structural

constraint input). These thresholds were motivated by the distribution of

structure scores under the null model where both dsRNA- and ssRNA-seq

reads are uniformly distributed. In this case, 5% of all base positions are

called as either paired or unpaired, even though the data are uninformative

for secondary structure, and our threshold of 1.1 can therefore be loosely

interpreted as a 5% FDR control. For all analyses involving an average struc-

ture score, positions with a score of 0 were ignored. Significance tests were

performed using R under an assumed Student’s T distribution. TargetScan

predictions were downloaded from TargetScanFly (http://www.targetscan.

org/fly_12/) and TargetScanWorm (http://www.targetscan.org/worm_12/)

using Predicted Conserved Targets.

Correlated and Anticorrelated Secondary Structure in Pre-mRNAs

For 2,223 orthologous pairs, the EMBOSS package’s water programwas used

to generate sequence alignments and determine sequence similarity scores

for each transcript pair. To compute the structure correlation, we used a score

based on the number of positions constrained as paired or unpaired by our

structure-mapping approach. Significance was assessed using a binomial

model to call paired or unpaired positions. For more detailed methodology,

see Supplemental Experimental Procedures.

ACCESSION NUMBERS

All dsRNA-seq, ssRNA-seq, and smRNA-seq data (Drosophila andC. elegans)

from our analyses were deposited into the GEO database under the accession

number GSE29571.
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Supplemental Information

EXTENDED RESULTS

The smRNA Component of the Drosophila and C. elegans Transcriptomes
We utilized smRNA-seq to characterize the populations of smRNA molecules from Drosophila melanogaster culture cells and

Caenorhabditis elegansmixed stage N2 worms. Using this approach, we obtained a total of 7,597,106 and 10,594,321 smRNA reads

from the Drosophila and C. elegans libraries, respectively. We found that a majority of smRNA sequencing reads map to miRNAs,

consistent with previous findings that miRNAs are abundant and functionally important in these animals (Ambros, 2004; Bushati

and Cohen, 2007; Carthew and Sontheimer, 2009). We also found that the TE-mapping reads are very abundant in the Drosophila

smRNA-seq library, in contrast to the C. elegans smRNA-seq library (Figures 1E and 1F), again suggesting that transposons in

Drosophila S2 cells are very active for producing smRNAs.

To obtain highly confident subsets of smRNA components, we also systematically identified smRNA hot spots of both Drosophila

andC. elegans genomes using amodified version of a Poisson distribution-based statistical approach (Heisel et al., 2008). As a result,

we revealed 13,983 and 2,099 smRNA hot spots within theDrosophila andC. elegans genomes, respectively. Interestingly, we found

that the majority of smRNA hot spots in Drosophila are located in TEs, whereas inC. elegansmany smRNA hot spots also come from

protein-coding transcripts and all classes of noncoding RNAs (Figures 1E and 1F). These findings are in complete correspondence

with our dsRNA hot spot analysis (Figures 1E and 1F), and provide further support for the hypothesis that TE-derived dsRNA precur-

sors and their corresponding smRNA products are critical effectors of RNA silencing pathways directed at silencing transposons and

repetitive elements in Drosophila.

EXTENDED EXPERIMENTAL PROCEDURES

Animal Materials
Drosophila DL1 culture cells and C. elegans mixed stage N2 worms were used for all experiments in this study.

dsRNA-seq Library Preparation
40 mg of total RNA (13.33 mg from each of three biological replicates) was subjected to two rounds (1X Ribominus) of rRNA depletion

as per manufacturer’s instructions (Ribominus, Invitrogen (Carlsbad, CA)). Next, these rRNA-depleted RNA samples were treated

with a single-strand specific ribonuclease as per manufacturer’s instructions (RNase One, Promega (Madison,WI)) in structure buffer

(10mM Tris pH7, 100mM KCl, 10mM MgCl2). dsRNA was then purified using a phenol:chloroform extraction. The purified dsRNA

sample was subjected to a fragmentation reaction (Fragmentation Reagents, Applied Biosystems (Foster City, CA)) as per manufac-

turer’s instructions. To resolve the dsRNAs after single-stranded RNase treatment and fragmentation, they were treated with T4 poly-

nucleotide kinase (T4 PNK, New England Biolabs (Cambridge, MA)) as previously described(Wang and Shuman, 2002). The frag-

mented RNA sample was then used as the substrate for sequencing library construction using the Small RNA Sample Prep v1.5

kit (Illumina, San Diego, CA) as per manufacturer’s instructions.

ssRNA-seq Library Preparation
40 mg of total RNA (13.33 mg from each of three biological replicates) was subjected to two rounds (1X Ribominus) of rRNA depletion

as per manufacturer’s instructions (Ribominus, Invitrogen (Carlsbad, CA)). Next, these rRNA-depleted RNA samples were treated

with a double-strand specific ribonuclease as per manufacturer’s instructions (RNase V1, Applied Biosystems, Foster City, CA) in

structure buffer (10 mM Tris [pH 7], 100 mM KCl, 10 mM MgCl2). ssRNA was then purified using a phenol:chloroform extraction.

The purified ssRNA sample was subjected to a fragmentation reaction (Fragmentation Reagents, Applied Biosystems (Foster

City, CA)) as per manufacturer’s instructions. To resolve the ssRNAs after double-stranded RNase treatment and fragmentation,

they were treated with T4 polynucleotide kinase (T4 PNK, New England Biolabs (Cambridge, MA)) as previously described (Wang

and Shuman, 2002). The fragmented RNA sample was then used as the substrate for sequencing library construction using the Small

RNA Sample Prep v1.5 kit (Illumina, San Diego, CA) as per manufacturer’s instructions.

High-Throughput Sequencing and Sequence Read Processing and Mapping
dsRNA-, ssRNA-, and smRNA-seq libraries were sequenced using the Illumina Genome Analyzer IIx (GAIIx) and HiSeq2000 as per

manufacturer’s instructions (Illumina Inc., San Diego, CA). Sequence information was extracted from the image files with the Illumina

(SanDiego, CA.) base calling software package. Prior to alignment, the sequencing readswere reduced to a list of nonredundant (NR)

sequences to minimize the computational requirement in all following procedures. Then, NR-sequences for which a 30 adaptor
sequence was observed were truncated up to the junction with the adaptor sequence. The dsRNA-seq, ssRNA-seq, and smRNA-

seq reads were then aligned to the corresponding Drosophila (UCSC dm3 assembly) or C. elegans (UCSC ce6 assembly) genome.

Balanced Preprocessing Pipeline for Mapping dsRNA-seq/ssRNA-seq/smRNA-seq Reads
Our sequencing libraries contained a significant portion of reads in which no 30-adaptor sequences can be found. To maintain

sequence reads that both had discernible 30-adaptor sequences (short reads), as well as reads without 30-adapters, a balanced
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pipeline was developed by dividing reads into ‘‘trimmed’’ and ‘‘untrimmed’’ categories according to whether they have detectable 30-
adaptor sequences or not, respectively. To begin, all reads were reduced to nonredundant (NR) sequences to minimize the compu-

tational requirement for subsequent analysis steps. Then, in order to detect 30-adaptor sequences, all NR-sequences were aligned to

the Illumina 30-adaptor version 1.5 sequence using the ‘‘cross-match’’ program from the Phrap/Cross_match/Swat package (http://

www.phrap.org/phredphrapconsed.html). The alignment parameters for cross-match were carefully tuned tomaintain all alignments

with less than 6% mismatches. The cross-match alignment results were parsed using in-house Perl scripts. All NR-sequences that

aligned toR 6 bp of the 30-adaptor sequence at their 30 endwere defined as short reads (with ‘‘detectable’’ 30-adaptor sequence) and
were subsequently trimmed at the adaptor-sequence boundary. The remaining NR-sequences (without detectable 30-adapters) re-
mained ‘‘untrimmed.’’

All trimmed and untrimmed NR-sequences were then aligned to their respective genomes (dm3 for D. melanogaster and ce6 for

C. elegans) using cross-match, again with the parameters set to maintain all alignments at% 6%mismatches. Alignment results for

trimmed or untrimmed inputs were then parsed independently using in-house Perl scripts. More specifically, alignments for trimmed

sequences were required to extend to the ends of the query sequences, whereas alignments for untrimmed sequences were only

required to extend to the imaginary positions of undetectable 30-adapters (<6 bp from the 30 end of the sequence). The true lengths

of the untrimmed sequences were also determined in this step by computing the most-frequent aligned length of all possible align-

ments to the respective genome. As an additional alignment step, unmapped untrimmed sequences were forcibly trimmed to 60nt

and then realigned to the respective genome; this last step was motivated by the empirical observation that a large population of

cloned inserts was present at approximately 60nt. Finally, all trimmed and untrimmed NR-sequences as well as their genomic loci

information were combined to form the final dataset using in-house Perl scripts. The dsRNA-, ssRNA-, and smRNA-seq libraries

were all independently processed using this balanced pipeline.

Evaluation of Sequencing Coverage by dsRNA-seq and ssRNA-seq
To evaluate the genome-wide coverage of structured and unstructured regions by the dsRNA-seq and ssRNA-seq methodologies,

respectively, we randomly sampled 19 subsets containing 95% to 5% of total mapped dsRNA-seq or ssRNA-seq reads (merged

between GAIIx and HiSeq2000 runs) in 5% increments. The genomic locations of these subsets of mapped reads were also filtered

from the complete set of reference loci. Finally, the base coverage (unit: bp) for all random subsets, as well as the reference total

dataset, was calculated for each class of RNA molecule (e.g., rRNA, tRNA, etc.) and for the overall genome. The relative base

coverage was defined as the fraction of bases covered in each subset compared to the total covered bases of the reference whole

dataset (Figures S1A, S1C, S1E, and S1G). The relative base coverage of all dsRNA and ssRNA hot spots was calculated by the same

method, with the exception that only reads located in hot spots were used in the analysis (Figures S1B, S1D, S1F, and S1H).

Estimating the False Discovery Rate of dsRNA-seq and ssRNA-seq
The actual false discovery rates (FDRs) of dsRNA-seq and ssRNA-seq are determined by the enzyme efficiency of the RNases used

(here we used RNaseONE and RNase V1). However, we could get an estimate of the upper bound of the FDR values by evaluating the

proportion of dsRNA reads that have complementary reads in the same library (and ssRNA reads that do not have complementary

reads in the same library). To begin, we aligned all the genome-mapped reads back to themselves using the NCBI-BLASTN program;

the word-size parameter was set to 6 to improve the searching sensitivity of short Illumina reads. By seeking reads with complemen-

tary reads (align-lengthR 50% of the read, identityR 85%, mismatches% 10%, and gaps% 5%), we then defined the true dsRNA

sequences as those with one or more complementary reads in the same library. Conversely, true ssRNA sequences were defined as

thosewith no complementary reads in the same library. It is noteworthy that the FDR values calculated by thismethod are very likely to

be an overestimate, since the random fragmentation step in the dsRNA-seq assay can often result in the inability to obtain a comple-

mentary readwithR 50%overlap even if both reads of the complementary pair are present in the sequencing library. Furthermore, for

the lowly expressed dsRNA molecules we could easily sequence only one member of the complementary pair by random chance,

while missing the other. Therefore, our estimated FDR for dsRNA-seq likely serves as a conservative upper bound for the technology.

Reads that did not meet the respective criteria for dsRNA-seq and ssRNA-seq were discarded for all subsequent steps.

Classification and Characterization of Sequencing Reads
To classify dsRNA-seq, ssRNA-seq, and smRNA-seq reads, GFF-formatted annotation files for all D. melanogaster and C. elegans

genetic elements (protein-coding mRNAs, all noncoding RNAs (rRNAs, tRNAs, miRNAs, pseudogenes, transposable elements, etc.))

were downloaded from FlyBase (r5.22) andWormBase (WS205), respectively. Annotationswere then reformatted using in-house Perl

scripts and loaded into a local MySQL database. NR-sequences were then classified and annotated according to their genomic loca-

tions. It is of note that some of our sequencing reads overlap multiple genetic elements and were correspondingly counted toward all

pertinent genetic elements for classification purposes.

Identification of dsRNA Hot Spots in D. melanogaster and C. elegans
To identify dsRNA hot spots in the D. melanogaster and C. elegans genomes, dsRNA-seq reads were used to identify contiguous

dsRNAs (dsRNA contigs), as well as the remaining ssRNA-regions between these base-paired regions. Then, the lengths for dsRNA

and ssRNA regions on each chromosome are assumed to both follow a geometric distribution,
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PðXi = kÞ= ð1� PiÞk�1
pi

PðXi%kÞ= 1� ð1� piÞk ;

where Xi is the dsRNA/ssRNA region length and Pi is the probability for a DNA base to be in dsRNA/ssRNA status for chromosome k.

This assumption holds as long asPi is constant for every chromosome and the dsRNA/ssRNA status of a DNA base is only dependent

on the status of its proceeding base. Using this model, the lengths of dsRNA/ssRNA regions Xi are fitted, the parameters Pi are esti-

mated, and the confidence intervals of dsRNA/ssRNA region lengths are determined for each chromosome. Finally, dsRNA hot spots

are identified by selecting ‘‘merged’’ dsRNA contigs with lengths that are longer than statistically expected for that chromosome (see

Table S1 for confidence intervals for all D. melanogaster and C. elegans chromosomes used in this analysis). It is of note that

‘‘merged’’ dsRNA regions are combined dsRNA contigs that are separated by ssRNA regions that are shorter than statistically ex-

pected as determined by the confidence intervals for ssRNA on that chromosome.

Identification of ssRNA Hot Spots
Identification of ssRNA hot spots was performed as for dsRNA hot spots, but with the roles of dsRNA and ssRNA reversed. In other

words, ssRNA hot spots have a length that is longer than statistically expected, and are separated by dsRNA regions that are shorter

than statistically expected (see Table S1).

Identification of smRNA Hot Spots
smRNA hot spots were identified differently than the dsRNA and ssRNA hot spots in order to take into account expression abundance

information of all sequenced smRNAmolecules. To begin, consecutive smRNAs were identified on each chromosome and then pre-

grouped into smRNA clusters (smRNA contigs). Next, a derived ‘‘per-smRNA site’’ abundance (PSS-abundance) was calculated for

all smRNA clusters as Nr=Lc3XS, where Nr and Lc are the total number of cloned reads and length for this smRNA cluster, respec-

tively, and Xs stands for the average length of all smRNA reads. Then the derived PSS-abundance on each chromosome is assumed

to follow a Poisson distribution:

PðXi = kÞ= lki
k!
,e�li

PðXi%kÞ= e�li
Pk

i = 0

lki
i!
=
GðPk + 1R; liÞ

PkR!

where Xi is the derived PSS-abundance and li is the expected number of smRNA reads per smRNA-site on chromosome k. Thus, the

derived PSS-abundance data are fitted to this Poisson distribution model, the parameters li are estimated, and the confidence inter-

vals for PSS-abundance of all smRNA clusters are estimated for each chromosome. Finally, smRNA hot spots were identified as

smRNA clusters with significantly high PSS-abundance.

Merging of GAIIx and HiSeq2000 Data
For all subsequent analyses, mapped NR-sequences, genomic loci, and dsRNA and ssRNA hot spots were merged between the

GAIIx and HiSeq2000 runs. Hot spot identification was performed prior to merging due to the different read lengths obtained.

Classification and Functional Characterization of Hot Spots
dsRNA, ssRNA, and smRNA hot spots were classified and annotated in the same way as sequencing reads (see above). Propensity

for dsRNA hot spots to generate smRNAs was examined by finding smRNA hot spots either contained within or partly overlapping

with dsRNA hot spots.

Various histone modification ChIP-seq (for D. melanogaster) and ChIP-chip (for C. elegans) data were downloaded from

modENCODE (http://www.modencode.org). Specific datasets are listed in Table S4. For ChIP-seq data, genomic intervals from

modENCODE were directly uploaded to a local MySQL databse. For ChIP-chip data, ChIPOTle v1.11 (Buck et al., 2005) was

used to identify genomic intervals of enriched histonemodifications. Genomic intervals of significantly enriched histonemodifications

were then overlapped with the locations of dsRNA and ssRNA hot spots.

Comparative genomics analysis of dsRNA and ssRNA hot spots was performed as previously described (Zheng et al., 2010),

except using ‘‘insects-15-way’’ and ‘‘worm-6-way’’ multiple alignments. The insects-15-way genomes used were

D. melanogaster (dm3), D. simulans (droSim1, Apr. 2005), D. sechellia (droSec1, Oct. 2005), D. yakuba (droYak2, Nov. 2005),

D. erecta (droEre2, Feb. 2006), D. ananassae (droAna3, Feb. 2006), D. pseudoobscura (dp4, Feb. 2006), D. persimilis (droPer1,

Oct. 2005),D. willistoni (droWil1, Feb. 2006),D. virilis (droVir3, Feb. 2006),D. mojavensis (droMoj3, Feb. 2006),D. grimshawi (droGri2,

Feb. 2006), A. gambiae (anoGam1, Feb. 2003), A.mellifera (apiMel3, May 2005), and T. castaneum (triCas2, Sep. 2005). The worm-6-

way genomes used were C. elegans (ce6, May 2008), C. remanei (ceaRem3, May 2007), C. briggsae (cb3, Jan 2007), C. brenneri

(caePb1, Feb 2008), C. japonica (caeJap1, Mar 2008), and P. pacificus (priPac1, May 2007).
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Identification and Characterization of Base-Paired Transcripts
Newly identified base-paired transcripts were identified as dsRNA hot spots with no known annotation from either FlyBase (r5.22) or

WormBase (WS205), nor any overlap with exons identified in a series of recent transcriptome profiling experiments (Gerstein et al.,

2010; Graveley et al., 2011). A full breakdown of newly identified transcripts is given in Tables S2 and S3. RT-PCR analyses of

D. melanogaster dsRNA hot spots were performed as previously described (Zheng et al., 2010).

FISH
In preparation for FISH on C. elegans, we harvested embryos and larvae from synchronized and unsynchronized cultures of N2

worms. We fixed, permeabilized, and performed single molecule FISH on C. elegans embryos and larvae as previously described

(Raj et al., 2010; Raj et al., 2008). We determined the concentration of probe empirically, ending up with roughly the same concen-

tration per fluorescently labeled oligonucleotide as used previously (Raj et al., 2010; Raj et al., 2008).

Analysis of Secondary Structure in miRNA-Mediated Gene Regulation
ALG-1 binding sites were downloaded from the UCSC Genome Browser (Zisoulis et al., 2010), and miRNA target sites were then

predicted within these binding sites using TargetScan (v5.0) (http://www.targetscan.org/worm_12/). Average structure scores

were calculated as previously described in the Experimental Procedures section.

Folding and Analysis of mRNA Secondary Structure Correlation
Orthologous transcript pairs were downloaded from FlyMine v26.0 (Comparative Genomics module) (http://www.flymine.org/) and

aligned using the EMBOSS package’s water program. A filtered set of 2,223 orthologs was obtained by requiring at least 10% of all

aligned base positions to be called as paired or unpaired in both structures (i.e., log-ratio of dsRNA/ssRNA-seq reads to be greater

than 1.1 or less than �1.1). To compute the structure correlation, we first generated vectors of structure scores (log-ratio of dsRNA/

ssRNA-seq reads) for each transcript at nongap positions in the respective alignment. Next, we turned these structure scores into

a paired/unpaired profile using the above thresholds of 1.1 and �1.1. Given these profiles for a pair of orthologous transcripts, we

can then count the number of positions at which both transcripts are paired or unpaired (num_same), as well as the number of posi-

tions at which one of the orthologs is paired and the other is unpaired or vice versa (num_opposite). To test for significantly correlated

or anticorrelated pairs, we used a binomial model Bin(n,p) as the null distribution. The parameter p was taken as equal to the

sequence similarity for the given ortholog pair in order to account for sequence effects (i.e., tendency for more similar sequences

to show higher structure correlation). Significance values were then calculated using the R package’s binom.test() function.

Finally, as a plotable score for structure correlation (see Figure 7A, y axis), we used the following: S = (2 * num_same / (num_same+

num_opposite)) – 1, �1 % S % 1.

dsRNA and ssRNA RT-PCR Analysis
RNaseONE ssRNase digestion (dsRNA selection) was performed on three 20 mg total RNA samples fromDrosophilaDL1 culture cells

as per manufacturer’s instructions. Following digestion, these three samples were pooled together and purified using a phenol:

chloroform extraction. To obtain ssRNA, a dsRNase digestion (RNase V1, (Ambion, Foster City, CA)) was carried on three 20 mg total

RNA samples from Drosophila DL1 culture cells as per manufacturer’s instructions. Following digestion, these three samples were

pooled together and purified using a phenol:chloroform extraction. Random-primed RT PCR analyses were performed on these di-

gested samples using primers listed in Table S6. This experiment was repeated three times and a representative example can be

seen in Figure 5C.

AnnoJ and RNA Structure Browser
The AnnoJ Genome Browser is a REST-based genome annotation visualization program built using Web 2.0 technology. Licensing

information and documentation are available at http://www.annoj.org. We have developed a structure browser enhancement for

AnnoJ that enables visualization of the mRNA secondary structure models produced as described above. To do this, each predicted

structural model was rendered as a SVG plot using Vienna (http://www.tbi.univie.ac.at/�ivo/RNA/) RNAplot. Reads and other

features of interest such as validated regions for mRNAs were then added to the SVG file. Users can visualize the models of

secondary structure for an annotated transcript by selecting the corresponding genomic interval on AnnoJ (RNA structures track)

or by entering its accession number. Ortholog alignments can also be visualized on the Ortholog alignments track.
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Figure S1. Saturation Analysis of dsRNA-seq and ssRNA-seq; Related to Figures 1 and 2

(A) The relative dsRNA-seq coverage overall (black line) and for 10 classes of RNA molecules (colored lines as specified in legend) as the library subset size

changes from 5% to 95% (in 5% increments) for Drosophila dsRNA-seq data.
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(B) The relative highly base-paired RNA (dsRNA hot spot) coverage overall (black line) and for 10 classes of RNAmolecules (colored lines as specified in legend) as

the library subset size changes from 5% to 95% (in 5% increments) for Drosophila.

(C) The relative dsRNA-seq coverage overall (black line) and for 13 classes of RNA molecules (colored lines as specified in legend) as the library subset size

changes from 5% to 95% (in 5% increments) for C. elegans dsRNA-seq data.

(D) The relative highly base-paired RNA (dsRNA hot spot) coverage overall (black line) and for 13 classes of RNAmolecules (colored lines as specified in legend) as

the library subset size changes from 5% to 95% (in 5% increments) for C.elegans.

(E) The relative ssRNA-seq coverage overall (black line) and for 10 classes of RNA molecules (colored lines as specified in legend) as the library subset size

changes from 5% to 95% (in 5% increments) for Drosophila ssRNA-seq data.

(F) The relative highly unpaired RNA (ssRNA hot spot) coverage overall (black line) and for 10 classes of RNAmolecules (colored lines as specified in legend) as the

library subset size changes from 5% to 95% (in 5% increments) for Drosophila.

(G) The relative ssRNA-seq coverage overall (black line) and for 13 classes of RNA molecules (colored lines as specified in legend) as the library subset size

changes from 5% to 95% (in 5% increments) for C. elegans ssRNA-seq data.

(H) The relative highly unpaired RNA (ssRNA hot spot) coverage overall (black line) and for 13 classes of RNAmolecules (colored lines as specified in legend) as the

library subset size changes from 5% to 95% (in 5% increments) for C.elegans.
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Figure S2. Chromosomal Distribution of dsRNA and ssRNA Hot Spots; Related to Figures 1, 2, 3, and 4

(A) The distribution of dsRNA (red) and ssRNA (purple) hot spots along the length of all Drosophila chromosomes. Red and purple dots denote specific hot spots.

(B) The distribution of dsRNA (red) and ssRNA (purple) hot spots along the length of all C. elegans chromosomes. Red and purple dots denote specific hot spots.
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Figure S3. Identification of Highly Conserved RNAs in Drosophila and C elegans; Related to Figures 3 and 4

(A and B) The average conservation scores (consScore) calculated using a comparative genomics analysis (see Extended Experimental Procedures) of dsRNA

hot spots (green bars) or their flanking regions (yellow bars) in intergenic regions of (A) Drosophila or (B) C. elegans.
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Figure S4. Identification of Highly Structured RNAs in Drosophila; Related to Figure 3

(A and B) Another example of an intergenic, highly base-paired transcript (screenshots from our Drosophila RNA-seq browser, http://tesla.pcbi.upenn.edu/

annoj_dm/). W (green bars) and C (red bars) indicate signal from Watson and Crick strands, respectively. (A) An intergenic dsRNA hot spot found between

CG2189 and CG1030. (B) Random-primed RT-PCR analysis of base-paired RNAs in multiple tissues and developmental stages of Drosophila. Rps6 serves as

a loading control.
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Figure S5. Identification of Highly Structured RNAs in C. elegans; Related to Figure 4

(A and C) Two examples of intergenic, highly base-paired transcripts (screenshots from ourC. elegansRNA-seq browser, http://tesla.pcbi.upenn.edu/annoj_ce/).

W (green bars) and C (red bars) indicate signal from Watson and Crick strands, respectively. (A) Three intergenic dsRNA hot spots found between F41A4.1 and

Y55F3C.7b (h69 – h71). (C) A highly base-paired transcript found between F40G9.14 and F40G9.6. (B) Random-primed RT-PCR analysis of a base-paired RNA

(h69) from mixed stage C. elegans that is pictured in (A). (D) Random-primed RT-PCR analysis of a new transcript (h12) from mixed stage C. elegans that is

pictured in (C). These transcripts were also recently identified via high-throughput RNA profiling (Gerstein et al., 2010).
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Figure S6. Characterization of Highly Structured RNAs in C. elegans; Related to Figure 4

(A–C) FISH images of 3 highly base-paired RNAs of C. elegans (chrV_h1921 in A, chrV_h2006 in B, and chrI_h719 in C) taken at single molecule resolution at

a variety of developmental stages. The top panels show the nuclei (stained with DAPI), whereas the bottom panels show maximummerges of a series of optical

sections of the RNA labeled with probes coupled to the TMR fluorophore. Notice that the images contain spots of variable intensity. The dimmer spots most likely

represent single dsRNA molecules (based on a comparison of spot intensity to previous acquired data (Raj et al., 2008), whereas the brighter spots mostly likely

arise from the accumulation ofmultiple dsRNAs.We believe these agglomerations aremost likely located at the site of transcription, given that we see atmost 1 or

two per cell and that they are located within the nucleus. All scale bars are 5 mm long.

S12 Cell Reports 1, 69–82, January 26, 2012 ª2012 The Authors


	University of Pennsylvania
	ScholarlyCommons
	1-26-2012

	Global Analysis of RNA Secondary Structure in Two Metazoans
	Fan Li
	Qi Zheng
	Paul Ryvkin
	Isabelle Dragomir
	Yaanik Desai
	See next page for additional authors
	Recommended Citation

	Global Analysis of RNA Secondary Structure in Two Metazoans
	Abstract
	Disciplines
	Author(s)


	Global Analysis of RNA Secondary Structure in Two Metazoans
	Introduction
	Results
	Genome-wide Characterization of the dsRNA and ssRNA Components of Drosophila and C. elegans Transcriptomes
	Highly Structured, Functional RNAs are Sources of smRNAs
	dsRNA and ssRNA Hot Spots Are Associated with Distinct Epigenetic Modifications
	Identification of Highly Base-Paired RNAs in Two Metazoans
	Using dsRNA and ssRNA-seq Data to Develop Experimentally-Derived Models of mRNA Secondary Structure on a Genome-wide Scale
	Identification of Structural Features in Animal mRNAs that Potentially Affect Translation and miRNA-Mediated Regulation
	Identification and Characterization of Significantly Correlated and Anticorrelated mRNA Secondary Structures

	Discussion
	Experimental Procedures
	dsRNA-seq, ssRNA-seq, and smRNA-seq Library Preparation
	Identification of Hot Spots in the Drosophila and C. elegans Genomes
	Functional Analysis of Drosophila and C. elegans Hot Spots
	Identification of Base-Paired Transcripts
	RNA Secondary Structure Prediction and Analysis of mRNA Secondary Structure Patterns
	Correlated and Anticorrelated Secondary Structure in Pre-mRNAs

	Accession Numbers
	Supplemental Information
	Licensing Information
	Acknowledgments
	References

	Supplemental Information
	Extended Results
	The smRNA Component of the Drosophila and C. elegans Transcriptomes

	Extended Experimental Procedures
	Animal Materials
	dsRNA-seq Library Preparation
	ssRNA-seq Library Preparation
	High-Throughput Sequencing and Sequence Read Processing and Mapping
	Balanced Preprocessing Pipeline for Mapping dsRNA-seq/ssRNA-seq/smRNA-seq Reads
	Evaluation of Sequencing Coverage by dsRNA-seq and ssRNA-seq
	Estimating the False Discovery Rate of dsRNA-seq and ssRNA-seq
	Classification and Characterization of Sequencing Reads
	Identification of dsRNA Hot Spots in D. melanogaster and C. elegans
	Identification of ssRNA Hot Spots
	Identification of smRNA Hot Spots
	Merging of GAIIx and HiSeq2000 Data
	Classification and Functional Characterization of Hot Spots
	Identification and Characterization of Base-Paired Transcripts
	FISH
	Analysis of Secondary Structure in miRNA-Mediated Gene Regulation
	Folding and Analysis of mRNA Secondary Structure Correlation
	dsRNA and ssRNA RT-PCR Analysis
	AnnoJ and RNA Structure Browser

	Supplemental References


