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Genome-Wide Double-Stranded RNA Sequencing Reveals the
Functional Significance of Base-Paired RNAs in Arabidopsis

Abstract
The functional structure of all biologically active molecules is dependent on intra- and inter-molecular
interactions. This is especially evident for RNA molecules whose functionality, maturation, and regulation
require formation of correct secondary structure through encoded base-pairing interactions. Unfortunately,
intra- and inter-molecular base-pairing information is lacking for most RNAs. Here, we marry classical
nuclease-based structure mapping techniques with high-throughput sequencing technology to interrogate all
base-paired RNA in Arabidopsis thaliana and identify ∼200 new small (sm)RNA–producing substrates of
RNA–DEPENDENT RNA POLYMERASE6. Our comprehensive analysis of paired RNAs reveals conserved
functionality within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs, as well as a novel
population of functional RNAs, many of which are the precursors of smRNAs. Finally, we identify intra-
molecular base-pairing interactions to produce a genome-wide collection of RNA secondary structure
models. Although our methodology reveals the pairing status of RNA molecules in the absence of cellular
proteins, previous studies have demonstrated that structural information obtained for RNAs in solution
accurately reflects their structure in ribonucleoprotein complexes. Furthermore, our identification of
RNA–DEPENDENT RNA POLYMERASE6 substrates and conserved functional RNA domains within
introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs using this approach strongly suggests that
RNA molecules are correctly folded into their secondary structure in solution. Overall, our findings highlight
the importance of base-paired RNAs in eukaryotes and present an approach that should be widely applicable
for the analysis of this key structural feature of RNA.
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Abstract

The functional structure of all biologically active molecules is dependent on intra- and inter-molecular interactions. This is
especially evident for RNA molecules whose functionality, maturation, and regulation require formation of correct
secondary structure through encoded base-pairing interactions. Unfortunately, intra- and inter-molecular base-pairing
information is lacking for most RNAs. Here, we marry classical nuclease-based structure mapping techniques with high-
throughput sequencing technology to interrogate all base-paired RNA in Arabidopsis thaliana and identify ,200 new small
(sm)RNA–producing substrates of RNA–DEPENDENT RNA POLYMERASE6. Our comprehensive analysis of paired RNAs
reveals conserved functionality within introns and both 59 and 39 untranslated regions (UTRs) of mRNAs, as well as a novel
population of functional RNAs, many of which are the precursors of smRNAs. Finally, we identify intra-molecular base-
pairing interactions to produce a genome-wide collection of RNA secondary structure models. Although our methodology
reveals the pairing status of RNA molecules in the absence of cellular proteins, previous studies have demonstrated that
structural information obtained for RNAs in solution accurately reflects their structure in ribonucleoprotein complexes.
Furthermore, our identification of RNA–DEPENDENT RNA POLYMERASE6 substrates and conserved functional RNA domains
within introns and both 59 and 39 untranslated regions (UTRs) of mRNAs using this approach strongly suggests that RNA
molecules are correctly folded into their secondary structure in solution. Overall, our findings highlight the importance of
base-paired RNAs in eukaryotes and present an approach that should be widely applicable for the analysis of this key
structural feature of RNA.
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Introduction

Recent discoveries reveal that RNAs perform a variety of tasks—

ranging from the regulation of gene expression (e.g. small RNAs

(smRNAs), and riboswitches) to catalytic activities (e.g. group I self-

splicing introns)—and indicate that this functionality is intimately

linked to their three-dimensional structure [1–5]. Correct secondary

structure is also central to the proper regulation and maturation of

RNA molecules [2,3,6,7]. RNAs fold into their three-dimensional

structures through specific base-pairing interactions (double-stranded

RNA (dsRNA)) that are encoded within their sequence [2,3,6,7].

These interactions can either be within (intra-molecular) or between

(inter-molecular (heteroduplex)) RNA molecules. Although it is clear

that secondary structure is abundantly important for the functionality

and regulation of RNAs, comprehensive base-pairing interaction

data are completely lacking for the majority of these molecules [3].

The recent discovery that RNA silencing pathways play a

significant role in gene regulation has brought attention to a vast

evolutionarily conserved post-transcriptional regulatory network

dependent on self and foreign base-paired RNAs (dsRNAs) [8–10].

In RNA silencing, production of heteroduplex dsRNA or self-

complementary fold-back structures gives rise to smRNAs through

the activity of DICER or DICER-LIKE (DCL) RNase III-type

ribonucleases [9–12]. In eukaryotes, smRNAs consist of micro-

RNAs (miRNAs) and several classes of endogenous small

interfering RNAs (siRNAs), which are differentiated from one

another by their distinct biogenesis pathways and the classes of

genomic loci from which they arise [8]. These smRNAs are the

sequence-specific effectors of RNA silencing, and direct the

negative regulation or control of genes, repetitive sequences,

viruses, and mobile elements through inter-molecular base-pairing

interactions [13,14]. Overall, base-paired RNAs are at the core of
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both the biogenesis and function of all eukaryotic small silencing

RNAs, emphasizing the importance of base-paired RNA in

regulating gene expression.

In plants and several other organisms, there are numerous

classes of endogenous and exogenous siRNAs that are processed

from long dsRNA molecules synthesized by an RNA-dependent

RNA polymerase (RDR) [8–10,15]. The first RDR to be

functionally identified as an RNA silencing pathway component

in Arabidopsis thaliana, was RDR6 [16,17]. RDR6 was initially

uncovered due to its ability to utilize aberrant RNAs produced by

transgenes as substrates for dsRNA synthesis [16–18]. These

dsRNA molecules are subsequently converted by DCL4 into

siRNAs that silence the transgenes [19–23]. More recently, RDR6

has been demonstrated to function in the biogenesis of endogenous

smRNA populations [8,20,24–26]. One example is trans-acting

siRNAs (tasiRNAs), which are processed from regions of non-

coding RNAs known as TRANS-ACTING siRNA (TAS) transcripts

[20,25–27]. Biogenesis of tasiRNAs is initiated by siRNA or

miRNA-mediated cleavage of the TAS transcript [20,25–27]. The

cleaved TAS transcript is then converted by RDR6 to dsRNA

[20,25–27], which is subsequently cleaved by DCL4 into phased

21 nucleotide (nt) siRNAs [20–23,28].

Here, we describe a novel, genome-wide, high-throughput

sequencing-based method, which we term dsRNA-seq, that can

specifically interrogate base-paired (dsRNA) RNA molecules, and

use this approach to identify and characterize ,200 novel,

smRNA-producing substrates of the dsRNA-synthesizing enzyme

RDR6. Additionally, we find that mRNAs encoding proteins with

functions in nucleic acid-based processes have a tendency to be

highly structured. Making use of a seven-way comparative

genomic approach, we demonstrate that the dsRNA-seq method-

ology can identify functionally conserved portions of UTRs (39 and

59), introns, transposable elements, as well as novel, structured

RNA molecules throughout the Arabidopsis genome. Finally, we

exploit the ability of dsRNA-seq to capture intra-molecular base-

pairing interactions to produce mRNA secondary structural

models on a genome-wide scale.

Results/Discussion

A novel approach to interrogate the dsRNA component
of the Arabidopsis transcriptome

To obtain a transcriptome-wide view of base-paired RNA

(dsRNA) in unopened flower buds of Arabidopsis thaliana Col-0

ecotype (hereafter referred to as wild-type Col-0), we married

classical nuclease-based structure mapping techniques [29,30] with

high-throughput sequencing technology (see Figure S1A, and

Materials and Methods for details). We characterized the dsRNA

component of the Arabidopsis transcriptome after one round of

ribosomal RNA (rRNA)-depletion, and obtained 15,499,789 raw

reads representing 4,802,974 non-redundant (NR) sequences with

an average clone-abundance of 3.2 (Accession #: GSE23439).

(The size distributions for this dataset can be seen in Figure S3A.)

As expected, we found that the majority of our dsRNA

sequencing reads corresponded to highly structured classes of

RNA molecules (e.g., rRNA, tRNA, snoRNA, snRNA, etc.),

smRNA-producing loci (e.g., miRNAs), and repetitive elements

(e.g., transposons) (Figure 1A). We also found a large proportion of

dsRNAs that correspond to protein-coding transcripts, which

likely represent the self-complementary, base-pairing regions that

form the secondary structure of mRNA molecules (Figure 1A). It is

noteworthy that dsRNA-seq data mapped to all portions of

protein-coding mRNAs, including introns, exons, and both (39 and

59) UTRs. Therefore, the dsRNA-seq methodology can identify

base-paired regions within both mature and preprocessed mRNA

molecules. (For this reason, we refer to protein-coding mRNAs

within this manuscript as pre-mRNA.) Overall, our dsRNA-seq

approach is robustly biased towards classes of RNA molecules that

are highly base-paired in nature, which strongly suggests that this

approach is interrogating the desired component of the tran-

scriptome with a stringently estimated false discovery rate (FDR) of

#0.067 (see Text S1).

The strand-specific nature of dsRNA-seq affords the opportu-

nity to distinguish between intra-molecular fold-back dsRNAs

(16.6% of total identified dsRNAs; example tRNA in Figure 1C)

and inter-molecular heteroduplex molecules (83.4% of total

identified dsRNAs; example in Figure 1D). To determine the

strand bias for the different classes of RNAs captured by dsRNA-

seq, we interrogated the ratio of sense versus anti-sense sequence

reads. As indicated by the Log-odds (Lods) values of sense to

antisense reads, the majority of RNA classes were strongly

enriched for sense-strand reads, especially for the non-coding

RNA classes (rRNA, tRNA, snoRNA, etc.) (Figure 1B). Specifi-

cally, functional RNAs (tRNA, miRNA, snoRNA, snRNA, and

rRNA) were between 100–1000 fold enriched for the sense

compared to the antisense-strand (Figure 1B). Conversely, we

identified a strong anti-sense bias in our dsRNA-seq data for

transposable element-derived sequences (Figure 1B). This may

reflect an amplification of the antisense transposon sequence by an

RDR to initiate production of siRNAs and subsequent RNA

silencing of these mobile elements. For protein coding regions

(exons) and 59 UTRs of mRNAs, there was a significant sense-

strand bias (,16-fold), which was diluted for introns or 39 UTRs of

these RNA molecules. We suspect that the existence of many

overlapping genes and non-coding RNAs (tRNAs, snRNAs, and

snoRNAs) on the strand opposite to introns or 39 UTRs is the

confounding factor. This hypothesis is consistent with the stronger

sense-strand bias in coding regions of mRNAs (Figure 1B), which

have an extremely low probability of overlapping with expressed

elements on the opposite strand. Additionally, there are numerous

instances of 39 end overlapping transcripts, as well as snRNA,

snoRNA, and tRNA loci encoded within the introns and UTRs of

Author Summary

At the heart of RNA functionality, maturation, and
regulation is the formation of intricate secondary struc-
tures that are dependent on specific nucleotide base-
pairing interactions encoded within their sequences. These
interactions can either be within (intra-molecular) or
between (inter-molecular (heteroduplex)) RNA molecules.
Although it is clear that secondary structure is abundantly
important for the functionality and regulation of RNAs,
comprehensive base-pairing interaction data are com-
pletely lacking for the majority of these molecules. To
address this, we have developed a new approach for
studying the base-pairing interactions of RNA molecules
by marrying classical nuclease-based structure mapping
techniques with high-throughput sequencing technology.
We have used this approach to identify known and novel
substrates of the base-paired RNA producing enzyme
RNA–DEPENDENT RNA POLYMERASE6, reveal conserved
functionality within introns and both 59 and 39 untranslat-
ed regions (UTRs) of mRNAs, uncover a novel population
of functional RNAs, and produce a genome-wide collection
of RNA secondary structure models by identifying the
base-pairing interactions within each RNA molecule. Our
findings demonstrate that our methodology should be
widely applicable for the identification and analysis of
base-paired RNAs in all biological organisms.

Genome-Wide Double-Stranded RNA Characterization
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protein coding mRNAs throughout the Arabidopsis genome. Taken

together, these results suggest that by using dsRNA-seq we have

identified the majority of base-paired RNA molecules (Figure S1B

and S1C), which encompass a surprisingly large portion of the

Arabidopsis genome (,14.4% (17.3 Mb)).

As described above, dsRNA-seq captured both intra- and inter-

molecular base-pairing interactions (Figure 1B–1D). In fact, we

found that regions of tRNAs predicted to form intra-molecularly

base-paired stems corresponded to higher levels of dsRNA-seq

reads than the unpaired anti-codon loop and the amino acid

acceptor stem as expected (Figure 1C). Furthermore, we observed

dsRNAs that corresponded to both the Watson and Crick strands

of the genome for a known substrate of the intermolecular dsRNA-

synthesizing RDR6 (Figure 1D). Taken together, these results

suggest that dsRNA-seq can be used to differentiate intra- from

inter-molecular base-pairing interactions.

Genome-wide identification and characterization of
Arabidopsis RDR6 smRNA–producing substrates

An ideal test to both validate and determine the utility of

dsRNA-seq is to identify all known and novel substrates of

Arabidopsis RDR6. Accordingly, we sequenced the full complement

of base-paired RNA (using dsRNA-seq) and smRNA (using

smRNA-seq) molecules from unopened flower buds of wild-type

Col-0 and rdr6-11 mutant (referred to hereafter as rdr6) plants. For

wild-type Col-0, we obtained the dsRNA-seq data described

above, as well as 17,340,638 raw sequence reads representing

8,575,097 non-redundant smRNA sequences (the size distributions

for this smRNA dataset can be seen in Figure S3B). Additionally,

we generated a total of 18,345,980 and 18,850,891 raw sequence

reads representing 9,725,315 and 9,860,471 non-redundant

dsRNA and smRNA sequences for rdr6 mutant plants, respectively

(the size distributions for these rdr6 datasets can be seen in Figure

S3C and S3D, respectively).

To identify potential RDR6 substrates, we used a sliding-window

analysis to select 1 kilobase (kb) regions of the genome that produced

$2-fold more dsRNA in wild-type Col-0 than in rdr6 mutant plants

with a p-value ,0.001 (see Text S1). Using this approach, we

identified 7,144 regions where dsRNAs are significantly depleted in

rdr6 mutant compared to wild-type Col-0 plants (Figure 2A, positive

Lods-ratio values). Within these molecules, we identified 7 of 8

previously characterized TAS transcripts (Figure 2A, Figure S2A

and S2B, blue diamonds), while the eighth was represented

by a single read in both (Col-0 and rdr6) dsRNA-seq libraries.

Additionally, we found that the majority of RDR6-dependent

dsRNAs are transposable elements (mostly MuDRs and Helitrons),

mRNAs, intergenic RNAs (mostly centromeric tandem repeats), or

tRNAs (Figure 2A and 2B (green bars), and Figure S2B). Taken

together, these results suggest that RDR6 utilizes specific classes of

repetitive elements, numerous categories of functional RNAs (e.g.

tRNAs, snRNAs, snoRNAs, etc.), mRNAs, and intergenic tran-

scripts as templates for dsRNA synthesis.

Figure 1. The dsRNA component of the Arabidopsis transcriptome. (A) Classification of genome-matching dsRNA-seq reads. (B) The heatmap
indicates the strand bias of dsRNA-seq reads with respect to specific classes of RNA molecules. The color intensities indicate the degree of strand bias
as specified by a log-odds ratio (Lods-ratio) value of sense/anti-sense mapping reads (red, sense; green, antisense; yellow, unbiased). TE, transposable
element. (C) Model of secondary structure for an Arabidopsis tRNA (At1g16100) predicted using X-ray crystallography structure information [47].
Colored lines surrounding the model indicate the dsRNA-seq read counts that are normalized by the length of sequenced bases for each tRNA
nucleotide (see scale bar for corresponding values). Black arrows specify the anti-codon loop and amino acid acceptor stem of the tRNA. (D) An
intermolecular base-paired RNA molecule, At2g24700 (TAS1a), identified by dsRNA-seq. Screenshot from http://tesla.pcbi.upenn.edu/annoj_at9/. W
(green bars) and C (red bars) indicate sequence reads from Watson and Crick strands, respectively.
doi:10.1371/journal.pgen.1001141.g001

Genome-Wide Double-Stranded RNA Characterization
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Our sliding window approach also identified 7,584 dsRNAs

that are significantly stabilized in rdr6 mutant compared to wild-

type Col-0 plants (Figure 2A, negative Lods-ratio values). The

vast majority (.80%) of the molecules stabilized in rdr6 mutant

plants are TEs (Figure 2B, yellow bars), most of which (,95%)

are pericentrometric Gypsy-like transposons (Figure 2A and 2B

(yellow bars), and S2B). We also found a number of these

dsRNAs correspond to mRNAs (,15%) and intergenic tran-

scripts (,4%) (Figure 2B, yellow bars). Overall, the identification

of dsRNA molecules that are stabilized in rdr6 mutant

plants suggests a potential model where RDR6 antagonizes the

action of other RDRs at some targets, especially at Gypsy-like

transposons.

The consequence of dsRNA synthesis by RDR6 is often the

subsequent formation of siRNAs [19]. Therefore, to identify those

RDR6 dsRNA substrates that produce smRNAs, we identified

regions that produce $2-fold more smRNAs in wild-type Col-0

than in rdr6 mutant plants. These sources of smRNA were then

compared with the regions of the genome that produce more

dsRNA in wild-type Col-0 than in rdr6 mutant plants, which

identified 218 regions that met both criteria (Figure 2C and

Figure 3A–3D; Table S1). These common regions include ,50%

(27 total) of the previously identified smRNA-producing RDR6

substrates, the majority of which were not known to be expressed

in Arabidopsis unopened flower buds (Figure 2C and Figure S2C;

Tables S1 and S2) [31–34]. The other 6,926 regions where

dsRNAs, but not smRNAs, are significantly depleted in rdr6

mutant compared to wild-type Col-0 plants consist of mostly

MuDR and Helitron transposable elements. These results suggest

that the double-stranded MuDRs and Helitrons produced by RDR6

may only constitute an insignificant subset of the smRNA-

producing population of these transposons. Conversely, RDR6

synthesized MuDR and Helitron dsRNAs may simply not be

processed into smRNAs.

Our analysis also revealed that the majority of highly confident

smRNA-producing RDR6 substrates are mRNAs with a variety of

biological functions (Figure 2D and 2E) and, surprisingly, tRNAs

(Figure 2D). As expected, the identified RDR6 substrates tend to

produce 21 nt smRNAs (Figure 2F). It is noteworthy that RDR6-

targeted mRNAs mostly encode proteins that function in nucleic

acid-based biological functions (e.g. translation, RNA processing,

etc.) and regulation of gene expression (Figure 2E). Taken

together, these results suggest that an RDR6-dependent RNA

silencing pathway regulates multiple stages of gene expression

through siRNA production in Arabidopsis.

Figure 2. Identification of Arabidopsis RDR6 smRNA–producing
substrates genome-wide. (A) Distribution of wild-type Col-0
compared to rdr6 mutant 1 kb dsRNA-seq differentially expressed

regions along the length of Chromosome (Chr.) 1. Each colored dot
denotes a specific 1 kb region ($2-fold and p,.001). Colored dots with
positive Lods-ratio values are 1 kb regions where Col-0. rdr6, while
negative values denote Col-0, rdr6. The corresponding RNA category
for each colored dot can be found in the color legend box. The dark
blue diamond denotes known RDR6 substrate, TAS1b. (B) Classification
of all 1 kb regions where Col-0. rdr6 (green bars) and Col-0, rdr6
(yellow bars). (C) Distribution of 1 kb regions along Chr. 1 where Col-0.
rdr6 in both dsRNA- and smRNA-seq datasets ($2-fold and p,.001).
Values above black line denote Lods-ratio for dsRNA-seq regions, and
values below black line denote results for smRNAs. Blue and green
diamonds highlight known RDR6 substrates, while the red diamond
denotes the newly identified At1g20370. (D) Classification of all smRNA-
producing substrates of Arabidopsis RDR6 identified using the
combination of dsRNA- and smRNA-seq. (E) The 10 most significantly
enriched biological processes (and corresponding p-values) for protein-
coding mRNAs that are RDR6 smRNA-producing substrates. (F) The total
number of smRNAs corresponding to each indicated size class (19–26)
produced from the 218 identified RDR6 substrates.
doi:10.1371/journal.pgen.1001141.g002

Genome-Wide Double-Stranded RNA Characterization
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The identification of tRNAs as RDR6 substrates is intriguing

because it was recently suggested that the mammalian telomerase

reverse transcriptase catalytic subunit (Tert) functions as a

smRNA-producing RDR that can also use tRNAs as substrates

[15]. Taken together, these results suggest that plant RDR6 and

animal Tert are functional orthologs that can use tRNAs as

substrates for production of dsRNA precursors of smRNAs.

Therefore, studies of RDR6 may be informative for gaining insight

into the function of mammalian RDRs, and vice versa.

In order to validate and expand our characterization of new

smRNA-producing RDR6 substrates, we turned to a quantitative

reverse transcription polymerase chain reaction (qRT-PCR)

approach. For these loci, RDR6 is required to produce a dsRNA

precursor of siRNAs (see Figure 3A–3D). Therefore, if RDR6 is

not active (rdr6 mutant plants), then the single-stranded transcripts

may be stabilized. To test this hypothesis, we designed qRT-PCR

primers to 14 (four known, 10 novel) identified smRNA-producing

RDR6 substrates. We found that all fourteen tested loci, including

the 10 newly identified RDR6 substrates (e.g. At1g20370

(Figure 3B), the intergenic region just upstream of At2g41490

(Figure 3C), and At3g19890 (Figure 3D)), had higher transcript

levels in rdr6 mutant compared to wild-type Col-0 plants

(Figure 3E). These results suggest that most, if not all of the 218

loci we identified using a combination of dsRNA-seq and smRNA-

seq methodologies are true smRNA-producing RDR6 substrates;

approximately 200 of these loci are novel (Tables S1 and S2).

Most previously identified endogenous RDR6 substrates

produce phased 21 nt siRNAs [20–23,28]. We found that 51 of

the RDR6 substrates identified in this study also produce phased

smRNAs (Table S2 and Figure S2D). This group includes 22 of

the RDR6 substrates that have been previously reported [31–34],

as well as the newly identified substrates, At1g20370 (Figure 3B

and 3E), the intergenic region just upstream of At2g41490

(Figure 3C and 3E), and At5g02370 (Figure 3E; Tables S1 and

S2). However, we found that .75% of all endogenous smRNA-

producing RDR6 substrates (167) do not produce siRNAs with

Figure 3. Novel smRNA–producing substrates of RDR6. (A–D) Four examples of RDR6 smRNA-generating substrates identified using the
combination of dsRNA- and smRNA-seq (screenshots from http://tesla.pcbi.upenn.edu/annoj_at9/). W (green bars) and C (red bars) indicate sequence
reads from Watson and Crick strands, respectively. (A) At5g39370 (previously identified), (B) At1g20370 (novel), (C) the intergenic region just upstream
of At2g41490 (novel), and (D) At3g19890 (novel). (E) Random-primed RT-qPCR analysis of four previously identified and 10 novel RDR6 substrates for
wild-type Col-0 and rdr6-11 mutant plants. Error bars, 6SD. ** indicates p-value ,.001. Green and red lines underline previously identified and novel
RDR6 substrates, respectively. * denotes RDR6 substrates that produce phased siRNAs.
doi:10.1371/journal.pgen.1001141.g003

Genome-Wide Double-Stranded RNA Characterization
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any recognizable phasing, including the newly identified

At3g19890 (Figure 3D and 3E; Tables S1 and S2). These results

suggest that there are multiple mechanisms by which transcripts

become susceptible to RDR6-mediated silencing. In summary, our

results suggest that the combination of dsRNA-seq and smRNA-

seq is a highly sensitive method for identifying transcripts subject

to RDR6-dependent silencing, and is likely to be useful for

characterizing the substrates of other eukaryotic RDRs - such as

mammalian Tert [15] - that have not been demonstrated to

produce phased siRNAs.

Identification of dsRNA ‘‘hotspots’’ in the Arabidopsis
genome

We next identified regions of the Arabidopsis genome that are

significantly enriched for base-paired RNA using the dsRNA-seq

data for wild-type Col-0. For this purpose, we used a geometric

distribution-based approach to identify unusually long dsRNA

molecules (dsRNA ‘hotspots’) based on the average size of dsRNAs

computed for each chromosome independently. This analysis

revealed 9,719 dsRNA ‘hotspots’ of varying lengths scattered

along the entire length of all Arabidopsis chromosomes (Figure 4A

and Figure S4A; Tables S3 and S4). In fact, we have identified the

vast majority of highly base-paired RNA molecules in the

Arabidopsis transcriptome (Figure S9). For example, the highly

repetitive, transposon-rich pericentromeric regions of the Arabi-

dopsis genome were found to be a rich source of dsRNA (Figure 4A

and 4B, and Figure S4A). This is not surprising because cis

transcriptional silencing of transposons and repetitive elements in

the pericentromeric regions of Arabidopsis chromosomes is

mediated by RDR2-dependent siRNAs [35–38]. These findings

not only substantiate that dsRNA-seq interrogates the desired

portion of the transcriptome, but also suggest that, as expected,

Arabidopsis transposons and repetitive elements are highly enriched

in dsRNA on a genome-wide scale.

A classification of Arabidopsis dsRNA ‘hotspots’ revealed that

transposons and protein-coding mRNAs are the two most highly

base-paired classes of RNA molecules (Figure 4B). In fact, we

identified 1949 protein-coding mRNAs that contained dsRNA

‘hotspots’ (Figure 4B), so we interrogated over-represented

molecular functions for these genes using Gene Ontology (GO)

analysis. Ribulose-bisphosphate carboxylase was the most signif-

icantly over-represented protein in this analysis. However, the

most highly over-represented group of genes were those involved

in nucleic acid biology (e.g., translation, nucleic acid binding, etc.)

(Figure 4C). Interestingly, genes involved in nucleic acid

metabolism are also over-represented in dsRNA ‘hotspot’-

containing transcripts of Drosophila melanogaster and Caenorhabditis

elegans (Q.Z. and B.D.G., unpublished data). Thus, a propensity to

form complex secondary structure (self base-pairing) may be a

general feature of eukaryotic transcripts that encode proteins

involved in processes involving nucleic acids. This may point to a

feedback regulatory mechanism that is dependent on an

interaction between the proteins encoded by these transcripts

and highly structured RNA intermediates.

Figure 4. Highly base-paired segments of the Arabidopsis
genome (dsRNA ‘‘hotspots’’). (A) Approximate genomic distribution
(,100 kb resolution) and length of dsRNA ‘‘hotspots’’ along Arabidopsis
Chr. 1 for wild-type Col-0. (B) Classification of dsRNA ‘‘hotspots.’’ TE,
transposable element. (C) The 18 most significantly enriched molecular
functions for protein-coding mRNAs that contain dsRNA ‘hotspots’. Red
labels indicate nucleic acid biology GO categories. (D) The percent of
nucleotides within dsRNA ‘hotspots’ that were found to produce
smRNAs. The smRNA data used for this analysis is described in Figure S8.
doi:10.1371/journal.pgen.1001141.g004
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The biogenesis of all functional small silencing RNAs (e.g.

miRNAs and siRNAs) requires a dsRNA intermediate. Therefore,

we determined the propensity of highly base-paired regions

(dsRNA ‘hotspots’) to be processed into smRNAs (Figure 4D)

using corresponding smRNA-seq data (Figure 2C; see Figure S8

for smRNA data analysis). We found that the highly base-paired

regions within 9 of 10 interrogated RNA categories were

extremely likely to be processed into smRNAs, the exception

being pre-mRNA molecules (Figure 4D). Although these results

were expected for transposable elements and miRNAs - which are

known to be smRNA biogenesis substrates - it was surprising that

functional RNAs (e.g. rRNA, tRNA, snRNA, etc.) also have a high

likelihood of being processed into smRNAs since intramolecular

base-pairing interactions are intrinsic to their function.

The evidence that highly base-paired regions of RNA molecules

are frequently processed into smRNA, suggests that this process

may be important for regulating the abundance of functional

RNAs in Arabidopsis cells. Our finding that any highly base-paired

molecule can be processed into smRNAs, may provide an

explanation for the restriction of the miRNA biogenesis machinery

to specific sites within the plant nucleus (dicing bodies) [39,40]. An

intriguing hypothesis is that the sequestration of proteins involved

in miRNA biogenesis and their MIRNA substrates to dicing bodies

provides specificity to miRNA biogenesis, while protecting other

structured RNAs (e.g. rRNA) from these proteins. Our findings

suggest further studies of smRNA sources in eukaryotes will reveal

additional siRNA-mediated regulatory pathways, as demonstrated,

for example, by the analysis of tRNA-derived RNA fragments

(tRFs) in human cells [41].

Comparative genomics of dsRNA ‘‘hotspots’’ reveals
functionality within introns, both UTRs, and intergenic
regions of the Arabidopsis genome

Regulation and maturation of eukaryotic pre-mRNA molecules

is intimately linked to the proper formation of secondary structure

[2,3,6,7], which suggests that base-paired regions of these

molecules are likely to be functionally conserved. To test this

hypothesis, we employed a seven-way comparative genomics

approach that determines an average conservation score (cons-

Score) for all bases of dsRNA ‘hotspots’ and all other sequences

(‘flanking regions’) within the four structural moieties (exons,

introns, and both UTRs) of every mRNA. The consScores for

dsRNA ‘hotspots’ and ‘flanking regions’ were then compared to

determine if base-pairing mediates evolutionary conservation of

mRNAs. Using this approach, we found that dsRNA ‘hotspots’ in

exons are significantly less evolutionarily conserved than ‘flanking

regions’ (Figure 5A), which suggests that intra- and/or intermo-

lecular base-pairing interactions are disfavored in the protein-

coding regions of plant mRNAs.

Our comparative genomic analysis of pre-mRNA data also

demonstrated that dsRNA ‘hotspots’ are significantly more

conserved than ‘flanking regions’ in 39 UTRs (p = 0.0012) and

introns (p = 1.73e–58) (Figure 5A), and that highly base-paired

regions within 59 UTRs (p = .072) were more evolutionarily

conserved than ‘flanking regions’, but far less significantly than in

39 UTRs and introns. This analysis suggests the ability to base-pair

is functionally important, and has been selected during plant

evolution. Just as selection for protein function maintains exonic

sequences, base-pairing interactions may be important for conserv-

ing functionally important moieties in non-coding regions of

mRNAs. These functions may include 1) providing appropriate

structure for post-transcriptional and/or translational regulation, 2)

maintaining mRNA stability, 3) providing cis-element sites for RNA

binding proteins, and/or 4) forming the processed precursors of

non-coding RNAs. Similar results have been obtained for Drosophila

melanogaster and Caenorhabditis elegans (Q.Z. and B.D.G., unpublished

data), suggesting that the ability to base pair is a critical feature of

UTRs and introns in both plants and animals. An mRNA

secondary structure prediction methodology (see below) was used

to obtain a folded model of two highly conserved intronic dsRNAs

(see Figure S5A and S5B for alignments), and suggested that these

regions are almost entirely base-paired, and fold into unique, stable

secondary structures (Figure 5C and 5D). Taken together, our

results reveal that dsRNA-seq identifies functionally conserved

regions of 59 and 39 UTRs and introns transcriptome-wide, and thus

provides the critical first step towards understanding how such

structural moieties affect the maturation and stability of transcripts

in eukaryotic organisms.

We also noticed that a number of our dsRNA ‘hotspots’ are

located in transposons and portions of the genome that do not

contain any known genes. Comparative analysis revealed that

dsRNA ‘hotspots’ in intergenic regions (p = 7.3e–5) and transposons

(p = 9.1e–16) are significantly more conserved than their flanking

regions (Figure 5B). In the case of transposons, this finding was quite

surprising because the majority of these repetitive elements are

selectively neutral, especially for ancestral repeats (ARs) [42,43].

However, our findings demonstrate that the highly antisense-prone

transposable element dsRNA ‘hotspots’ (Figure S4C and S4D) have

been undergoing a significant purifying selection compared to their

‘flanking regions’, suggesting that these portions of TEs are not

selectively neutral, but have important functions in plant cells. An

intriguing hypothesis is that a class of smRNAs that are integral to

initiate and/or maintain the transcriptional silencing of transpos-

able elements are processed from these conserved highly-base

paired regions. Overall, these results reveal functionally conserved

portions of transposons, as well as novel, structured RNAs that have

not been previously identified.

Identification and characterization of novel, highly base-
paired RNAs with conserved functions in land plants

We identified a total of 1602 novel transcripts, ,60% of which

are unannotated transposable elements and/or simple repeats

(Figure 6J; Tables S5 and S6). The other .700 transcripts represent

newly identified RNAs. To determine the function of these 1602

transcripts we looked for the presence of these sequences in our

flower bud smRNA dataset (see Figure S8 for smRNA analysis).

1437 (89.7%) of the novel RNAs overlapped regions of the genome

that produce significant quantities of smRNAs (smRNA ‘hotspots’,

Figure S8) (Figure 6 and Figure S6; Tables S5 and S6). Specifically,

.98% of the unannotated transposable elements and/or simple

repeats and ,79% of the entirely novel RNAs produced smRNAs,

respectively (Figure 6J). Most smRNAs from these transcripts were

24 nt in length (Figure 6K and 6L). In Arabidopsis, this size class is

highly correlated with DNA methylation and heterochromatin

formation [44], suggesting that these loci produce 24 nt smRNAs

that direct transcriptional silencing.

To validate our sequencing data and further interrogate the newly

identified transcription units, we characterized several of these RNAs

by reverse transcription (RT) polymerase chain reaction (RT-PCR) in

five different Arabidopsis tissues (leaf blade, leaf petiole, cauline leaves,

stem, and unopened flower buds). We selected four loci that do (see

Figure 6A and 6C; Figure S6A, S6C, and S6E; Table S5) and seven

RNAs that do not (Figure 6B and 6D; Figure S6B, S6D, S6F, S6G,

S6K, S6L, and S6M; Table S5) produce statistically significant

amounts of smRNAs (11 total transcripts). As expected, all 11 of these

RNAs are expressed in flower buds, the tissue used for the initial

analysis of base-paired RNAs. Eight of these transcription units are

expressed in all five tissues, and three are expressed only in unopened
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flower buds (Figure 6E–6I; Figure S6H, S6I, S6J, S6N, S6O, and

S6P). Two of these latter transcripts are also the source of smRNAs

(Figure 6A and Figure S6A; Table S5). Overall, our findings reveal a

large collection of novel, structured RNAs in Arabidopsis flower buds,

many of which have evolutionarily conserved functions in land plants

(Figure 5B, intergenic).

Using dsRNA–seq data to produce models of mRNA
secondary structure genome-wide

In principle, dsRNA-seq data should reveal the pairing status of

all sequences within expressed mRNA molecules (Figure 1). If this

is true, this approach can be used to generate and/or validate

secondary structural predictions on a genome-wide scale. To test

this hypothesis, we employed a novel methodology that produces

structural models using sequence data obtained with a dsRNA-seq

approach. For this analysis, we used sequence data obtained from

samples that were processed using two rRNA-depletion steps (2X

Ribominus approach (see Text S1; Figure S7)). We used this

dataset because - although incredibly similar to the normal

dsRNA-seq approach (see Text S1) - it is enriched for sense-strand

mRNA sequences (Figure 7A and 7B, Figure S4D, and Figure S7),

increasing the likelihood of generating useful secondary structure

models. This mRNA secondary structure analysis revealed base-

Figure 5. Identification of widespread, conserved functionality within non-coding portions of mRNA (introns, 39 and 59 UTRs),
intergenic regions, and transposons. (A, B) The average conservation scores (consScore) calculated using a seven-way comparative genomics
analysis of dsRNA ‘hotspots’ (green bars) or their flanking regions (yellow bars) in specific portions (coding (exons), 59 UTR, 39 UTR, and introns) of pre-
mRNAs (A), as well as intergenic regions and transposons (TE) (B). (C, D) Models of secondary structure for Arabidopsis (E) At1g67430 (nt 25262487–
25262809) and (F) At2g40650 (nt 16964129–16964413) intronic functional moieties determined by dsRNA-seq constrained parameters for RNAfold
(see below) (screenshots from the structural viewer at http://tesla.pcbi.upenn.edu/annoj_at9/). The scale bar to the left of each model indicates the
read counts that are normalized by the length of sequenced bases for the transcript. The multiple alignments for these conserved, intronic dsRNA
‘hotspots’ can be seen in Figure S5A and S5B. G denotes the Gibb’s free energy value (kilocalories/mole) for the corresponding RNA secondary
structure model.
doi:10.1371/journal.pgen.1001141.g005
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pairing differences between the structural models produced by the

RNAfold program of the Vienna package (http://www.tbi.univie.

ac.at/,ivo/RNA/) with and without dsRNA-seq constraints.

Many regions that were predicted not to base-pair, but to form

large loops and open regions by non-constrained RNAfold were

more highly paired when constrained, and vice versa (see

Figure 7C and 7D, http://tesla.pcbi.upenn.edu/annoj_at9/).

To test the ability of our structural modeling approach to

predict highly base-paired regions, we characterized significantly

paired regions of mRNAs (as determined by our methodology)

(Figure 7C and 7D, see yellow regions) by reverse transcription

(RT) polymerase chain reaction (RT-PCR) after digestion with a

single-stranded or double-stranded RNase. We expected that the

selected mRNA regions would be sufficiently intact for RT-PCR

amplification after treatment with the single-stranded, but not the

double-stranded RNase. As predicted, the regions of mRNA

molecules determined to be highly base-paired were amplified

following treatment with the ssRNase (Figure 7E). Conversely, we

could not amplify these same regions after treatment with the

dsRNase, which implies that they were completely degraded by

this enzyme. These results demonstrated that dsRNA-seq reliably

identifies base-paired portions of mRNAs. We also found that the

models of secondary structure produced using dsRNA-seq data as

constraints are predicted to be stable (Figure 7C, 7D, and 7F–7H,

negative G values). In total, these results suggest that the

constrained secondary structure models are accurate representa-

tions of folded RNAs in solution, providing valuable insight into

the pairing status of RNA molecules genome-wide.

Finally, we used our mRNA secondary structure prediction

methodology to produce folded models for the novel intergenic

transcripts identified by the RNA-seq approach (Figure 6 and

Figure S6). These structural models indicated that the new RNAs

are highly base-paired, and are folded into a diverse array of stable

(negative G values) secondary structures (Figure 7F–7H). Further

evidence that these models are likely to be correct is provided by

the observation that we obtained no dsRNA-reads for regions that

are predicted to contain large loops by both dsRNA-seq data, as

well as the RNAfold program of the Vienna package (http://www.

tbi.univie.ac.at/,ivo/RNA/). We believe that these transcrip-

tome-wide mRNA secondary structure models and corresponding

web-based viewer (http://tesla.pcbi.upenn.edu/annoj_at9/) will

be useful tools for elucidating the function of RNA folding in

regulating gene expression and protein translation.

Conclusions
We describe in this report novel methodologies that produce a

comprehensive genomic view of intra- and intermolecular base-

paired RNAs at unprecedented resolution. We take advantage of

Figure 6. Identification of novel, highly structured RNAs using dsRNA–seq. (A–D) Four examples of intergenic, highly base-paired
transcripts (screenshots from http://tesla.pcbi.upenn.edu/annoj_at9). W (red bars) and C (green bars) indicate signal from Watson and Crick strands,
respectively. (A) Two intergenic dsRNA ‘hotspots’ (h348 and h349) found between At2g06555 and At2g06560. (B) A novel, base-paired RNA on Chr. 4
between At4g03360 and At4g03370. (C) A Chr. M intergenic dsRNA ‘hotspot’ between AtMg00160 and AtMg00170. (D) An example of a new, highly
structured RNA from Chr. M that lies between AtMg01330 and AtMg01340. (E–I) Random-primed RT-PCR analysis of the novel, base-paired RNAs that
are pictured in (A–D) using five different Arabidopsis tissues (leaf blade, leaf petiole, cauline leaves, stem, and unopened flower bud clusters). (E, F)
correspond to h348 and h349 in (A), respectively. (G–I) correspond to (B–D), respectively. Flower bud RNA samples that were not treated with reverse
transcriptase serve as controls for this experiment. (J) The percent of total new transcripts for each indicated category that do (blue bars) or do not
(red bars) overlap with smRNA ‘hotspots’. There are 1,602, 897, and 705 corresponding transcription units for the All, unannotated repeats/TEs, and
completely unannotated categories, respectively. TE, transposable element. (K) The number of smRNAs corresponding to each indicated size class
(19–26) produced from the unannotated repeats/TEs. (L) The number smRNAs corresponding to each indicated size class (19–26) produced from the
completely unannotated transcription units.
doi:10.1371/journal.pgen.1001141.g006
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the data from these approaches, which capture intra-molecular

base-pairing interactions, to generate models of mRNA second-

ary structure in solution on a genome-wide scale (Figure 7).

Although our methodology reveals the pairing status of RNA

molecules in the absence of cellular proteins, previous studies

have demonstrated that structural information obtained for

RNAs in solution accurately reflects their structure in ribonu-

cleoprotein complexes [3,45]. Furthermore, our identification of

conserved functional RNA domains using dsRNA-seq strongly

suggests that RNA molecules are correctly folded into their

secondary structure in solution (Figure 5). Overall, our results

suggest we have produced highly informative models of mRNA

Figure 7. A sequencing-based approach to interrogate mRNA secondary structure genome-wide. (A) Classification of genome-matching
dsRNA-seq reads after two rounds of rRNA-depletions (2X Ribominus approach). (B) The heatmap indicates the strand bias of 2X Ribominus dsRNA-
seq reads with respect to specific classes of RNA molecules. The color intensities indicate the degree of strand bias as specified by a normalized Lods-
ratio value of sense/anti-sense mapping reads (red, sense; green, antisense; yellow, unbiased). TE, transposable element. (C, D) Models of secondary
structure for Arabidopsis (C) At2g07698 and (D) At4g02510 transcripts determined by default (unconstrained) or dsRNA-seq constrained parameters for
RNAfold (screenshots from the structural viewer at http://tesla.pcbi.upenn.edu/annoj_at9/). The sequences interrogated in (E) (At2g07698 #1 and
At4g02510) are highlighted in yellow. The scale bar between the two models indicates the read counts that are normalized by the length of
sequenced bases for the transcript. Black arrows indicate RNA loops that are .5 nt within the yellow shaded portions of the models. G denotes the
Gibb’s free energy value (kilocalories/mole) for the corresponding RNA secondary structure model. (E) Random-primed RT-PCR analysis of dsRNA
‘hotspots’ from At5g56070, At2g07698 (2), At4g02510, At5g13630, and At5g02500 after treatment of total RNA samples with either a single-stranded
(ss) or double-strand RNase (ds). Samples that were not treated with reverse transcriptase (RT -) or either RNase (-) serve as controls for this
experiment. (F–H) Models of secondary structure for Arabidopsis (D) chr4_h76 (chr4: nt 1476284–1476589), (E) chrM_h20 (chrM: nt 46875–47251), and
(F) chrM_h95 (chrM: nt 334344–334833) novel intergenic transcripts determined by dsRNA-seq constrained parameters for RNAfold (screenshots from
the structural viewer at http://tesla.pcbi.upenn.edu/annoj_at9/). The scale bar to the left (F, G) or right (H) of each model indicates the read counts
that are normalized by the length of sequenced bases for the transcript. G denotes the Gibb’s free energy value (kilocalories/mole) for the
corresponding RNA secondary structure model.
doi:10.1371/journal.pgen.1001141.g007
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secondary structure on a genome-wide scale for Arabidopsis, which

can serve as a model for orthologous RNAs from other eukaryotic

organisms.

As a resource for the larger community we have made available

all sequencing data sets to NCBI Gene Expression OmniBus

(GEO), and we have displayed them in a powerful and easy-to-use

genome browser, Anno-J (http://tesla.pcbi.upenn.edu/anno-

j_at9/). Additionally, we have made the models of mRNA

secondary structure freely available to the community through a

structure viewer that has been incorporated into the dsRNA-seq

Anno-J browser. Overall, the methods we have developed, as well

as the highly informative sequencing data sets and models of RNA

secondary structure that have resulted from this study will

contribute positively to future work aimed at illuminating the

numerous functions that RNA secondary structure has in

regulating eukaryotic gene expression during developmental

processes.

Materials and Methods

Text S1 information
Further details on the plant materials, experimental procedures,

high-throughput sequencing, processing, mapping, and analysis of

Illumina GA sequence reads are provided in Text S1. Primers

used in this study are listed in Table S7.

dsRNA–seq library preparation
Briefly, total RNA is subjected to one (1X Ribominus) or two

(2X Ribominus) rounds of rRNA depletion as per manufacturer’s

instructions (Ribominus, Invitrogen (Carlsbad, CA)). Next, these

rRNA-depleted RNA samples are treated with a single-strand

specific ribonuclease as per manufacturer’s instructions (RNase

One, Promega (Madison, WI)). The RNA sample is then used as

the substrate for sequencing library construction using the Small

RNA Sample Prep v1.5 kit (Illumina, San Diego, CA) as per

manufacturer’s instructions. For more detailed methodology see

Text S1 and Figure S1A.

High-throughput sequencing
smRNA-seq and dsRNA-seq libraries were sequenced using the

Illumina Genetic Analyzer II as per manufacturer’s instructions

(Illumina Inc., San Diego, CA).

Sequence read processing and mapping
Sequence information was extracted from the image files with

the Illumina (San Diego, CA.) base calling software package

(GAPipeline version 1.4). Prior to alignment, sequence reads were

reduced to a list of only non-redundant (NR) sequences. NR

sequences for which a 39 adapter sequence was observed were

truncated up to the junction with the adapter sequence, while

sequences without recognizable 39 adapters were also retained and

processed independently. The dsRNA-seq and smRNA-seq reads

were then aligned to the Arabidopsis genome (TAIR9 assembly).

Finally, NR-sequences with their genomic coordinates were

combined to form the final dataset. For more detailed method-

ology see Text S1.

Identification of dsRNA ‘‘hotspots’’ in the Arabidopsis
genome

To identify dsRNA ‘hotspots’ in the Arabidopsis genome, we

utilized a geometric distribution-based approach. For more

detailed methodology see Text S1.

Gene Ontology (GO) enrichment of dsRNA ‘‘hotspot’’-
containing, protein-coding mRNAs

All protein-coding mRNAs overlapping identified dsRNA

‘hotspots’ were subjected to this analysis. Specifically, the GO

enrichment analysis was carried out using the GOEAST web-

based ‘‘Batch-Genes’’ tool [46].

Comparative genomics analysis of Arabidopsis dsRNA
‘‘hotspots’’

The plant seven-way comparative genomics analysis was

conducted as previously described. (http://genomewiki.ucsc.edu/

index.php/Whole_genome_alignment_howto). For more detailed

methodology see Text S1.

RNA structural models
We generated two computational structures for each annotated

transcript. The unconstrained structure was obtained by folding

with RNAfold v1.8.4 from the Vienna package with default

parameters. The constrained structure was obtained with RNA-

fold using default parameters, but with structural constraints as

additional input defined by reads from the dsRNA-seq approach.

Specifically, any position covered by at least one mapped dsRNA

read was constrained as paired (‘|’ in the structural constraint

input); all other positions were left unconstrained (‘.’ in the

structural constraint input).

Anno-J and RNA structure browser
The Anno-J Genome Browser is a REST-based genome

annotation visualization program built using Web 2.0 technology.

Licensing information and documentation are available at http://

www.annoj.org.

We have developed a structure browser enhancement for Anno-

J that enables visualization of the mRNA secondary structure

models produced as described above. To do this, each predicted

model was rendered as a SVG plot using Vienna (http://www.tbi.

univie.ac.at/,ivo/RNA/) RNAplot. Reads and other features of

interest such as UTR regions for mRNAs were then added to the

SVG file. Read counts were normalized by the length of covered

nucleotides (e.g. number of nucleotides covered by one or more

reads). Users can visualize the structural model for an annotated

transcript by selecting the corresponding genomic interval on

Anno-J (RNA structures track) or by entering its accession

number.

Supporting Information

Figure S1 Related to Figure 1. (A) Schematic of dsRNA-seq, a

novel high-throughput sequencing methodology for identifying

and characterizing the dsRNA component of the eukaryotic

transcriptome genome-wide. See Text S1 (Supplemental Materials

and Methods) for details on the methodology. (B) The relative

dsRNA sequence coverage overall (black line) and for 10 classes of

RNA molecules (colored lines as specified in legend) as the library

subset size changes for the 1X Ribominus dsRNA-seq methodol-

ogy. (C) The relative dsRNA sequence coverage overall (black line)

and for 10 classes of RNA molecules (colored lines as specified in

legend) as the library subset size changes for the 2X Ribominus

dsRNA-seq methodology.

Found at: doi:10.1371/journal.pgen.1001141.s001 (8.11 MB TIF)

Figure S2 Related to Figure 2 and Figure 3. (A) The distribution

of wild-type Col-0 compared to rdr6 mutant 1 kb dsRNA-seq

differentially expressed (DE) bins along the length of all Arabidopsis

chromosomes. Each red dot denotes a specific 1 kb dsRNA-seq
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DE bin (fold change $2 and p,.001). Red dots with positive

Lods-ratio values are dsRNA-seq DE bins where Col-0. rdr6,

while negative values denote Col-0, rdr6. The blue dots denote

known RDR6 TAS substrates as specified. (B) The distribution of

wild-type Col-0 compared to rdr6 mutant 1 kb dsRNA-seq

differentially expressed (DE) bins along the length of all Arabidopsis

chromosomes that correspond to the indicated classes of

transcripts. All identified TAS transcripts (7/8) are marked with

large purple diamonds and labeled. Each green dot denotes a

specific 1 kb dsRNA-seq DE bin (fold change $2 and p,.001)

that corresponds to a protein-coding mRNA. Each black dot

denotes a specific 1 kb dsRNA-seq DE bin (fold change $2 and

p,.001) that corresponds to tandem repeats. Each red dot denotes

a specific 1 kb dsRNA-seq DE bin (fold change $2 and p,.001)

that corresponds to a Gypsy transposon. Each blue dot denotes a

specific 1 kb dsRNA-seq DE bin (fold change $2 and p,.001)

that corresponds to a MuDR transposon. Each fuchsia dot denotes

a specific 1 kb dsRNA-seq DE bin (fold change $2 and p,.001)

that corresponds to a Helitron transposon. All other 1 kb dsRNA-

seq genomic bins are marked in grey. (C) The distribution of 1 kb

DE bins along all Arabidopsis chromosomes where Col-0. rdr6 in

both dsRNA- and smRNA-seq datasets (fold change $2 and

p,.001). Values above black line denote Lods-ratio for dsRNA-

seq DE bins, and values below black line denote results from

smRNA-seq analysis. Blue and green dots highlight known RDR6

substrates, TASs and PPRs, respectively. (D) Identifying RDR6

substrates that produce phased smRNAs. (Top) This figure

demonstrates the smRNA-seq reads for wild-type Col-0 (red bars)

compared to rdr6 mutant (green bars) plants for an smRNA-

producing RDR6 target region in At2g27400 (TAS1a). (Bottom

box) The graph shows phase signals from wild-type Col-0 (red line)

compared to rdr6 mutant (green line) smRNA sequence reads for

this region of TAS1a. Taken together, these results suggest that our

analysis can identify phased smRNA-producing substrates of

RDR6 in unopened flower buds of Arabidopsis.

Found at: doi:10.1371/journal.pgen.1001141.s002 (7.37 MB TIF)

Figure S3 Related to Figure 2 and Figure 3. (A) The size

distribution of dsRNA-seq reads obtained from unopened flower

buds of wild-type Col-0 plants using normal and 2X Ribominus

dsRNA-seq approaches. The left graph shows the size distribution

of all raw dsRNA-seq reads for wild-type Col-0 plants using the

normal (yellow bars) and 2X (green bars) Ribominus approaches.

The right graph shows the size distribution of all non-redundant

(NR) dsRNA-seq reads for wild-type Col-0 plants using the normal

(yellow bars) and 2X (green bars) Ribominus approaches. (B) The

size distribution of smRNA-seq reads obtained from unopened

flower buds of wild-type Col-0 plants (see Figure S8 for analysis).

The left graph shows the size distribution of all raw smRNA-seq

reads for wild-type Col-0 plants, while the right graph shows the

size distribution of all non-redundant (NR) smRNA-seq reads for

wild-type Col-0 plants. (C) The size distribution of dsRNA-seq

reads obtained from unopened flower buds of rdr6-11 mutant

plants using the normal Ribominus approach. The left graph

shows the size distribution of all raw dsRNA-seq reads for rdr6-11

mutant plants, while the right graph shows the size distribution of

all non-redundant (NR) dsRNA-seq reads for rdr6-11 mutant

plants. (D) The size distribution of smRNA-seq reads obtained

from unopened flower buds of rdr6-11 mutant plants. The left

graph shows the size distribution of all raw smRNA-seq reads for

rdr6-11 mutant plants, while the right graph shows the size

distribution of all non-redundant (NR) smRNA-seq reads for rdr6-

11 mutant plants.

Found at: doi:10.1371/journal.pgen.1001141.s003 (7.26 MB TIF)

Figure S4 Related to Figure 4, Figure 5, and Figure 7. (A) The

distribution of dsRNA ‘hotspots’ identified using the normal (1X

Ribominus) dsRNA-seq dataset along the length of all (as specified)

Arabidopsis chromosomes. Red dots denote specific ‘hotspots’. (B)

The distribution of dsRNA ‘hotspots’ identified using the 2X

Ribominus dsRNA-seq dataset along the length of all (as specified)

Arabidopsis chromosomes. Red dots denote specific ‘hotspots’. (C,

D) Strand-bias of Arabidopsis dsRNA ‘hotspots’. (C) The heatmap

indicates the strand bias of dsRNA ‘hotspots’ identified with the

1X Ribominus dataset with respect to specific classes of RNA

molecules. The color intensities indicate the degree of strand bias

as specified by a normalized Lods-ratio value of sense/anti-sense

mapping reads (red, sense; green, antisense; yellow, unbiased). TE,

transposable element. (D) The heatmap indicates the strand bias of

dsRNA ‘hotspots’ identified with the 2X Ribominus dataset with

respect to specific classes of RNA molecules. The color intensities

indicate the degree of strand bias as specified by a normalized

Lods-ratio value of sense/anti-sense mapping reads (red, sense;

green, antisense; yellow, unbiased). TE, transposable element.

Found at: doi:10.1371/journal.pgen.1001141.s004 (7.27 MB TIF)

Figure S5 Related to Figure 5 and Figure 7. (A, B) Identification

of widespread conserved functionality within non-coding portions

(introns) of mRNA. (A) The top figure is a model demonstrating

the position of the dsRNA ‘hotspot’ within the 3rd intron (from the

59 end) of At1g67430. The black lines delineate the positions within

the intron that are demonstrated in the multiple alignment directly

below. The bottom figure is the multiple alignment of the best

orthologous sequences from six of the seven interrogated plant

species. The black bars below the alignments demonstrate the

conservation scores for each nucleotide position within the

alignment. The red box delineates the position of the dsRNA

‘hotspot’ identified by our geometric distribution-based analysis.

(B) The top figure is a model demonstrating the position of the

dsRNA ‘hotspot’ within the 5th intron (from the 59 end) of

At2g40650. The black lines delineate the positions within the

intron that are demonstrated in the multiple alignment directly

below. The bottom figure is the multiple alignment of the best

orthologous sequences from all seven interrogated plant species.

The black bars below the alignments demonstrate the conservation

scores for each nucleotide position within the alignment. The red

box delineates the position of the dsRNA ‘hotspot’ identified by

our geometric distribution-based analysis. (C, D) Identification of

widespread conserved functionality within non-coding portions of

mRNA (introns, 39 and 59 UTRs), intergenic regions, and

transposons. (C, D) The average conservation scores (consScore)

calculated using a seven-way comparative genomics analysis of

dsRNA ‘hotspots’ (green bars) or their flanking regions (yellow

bars) in specific portions (coding (exons), 59 UTR, 39 UTR, and

introns) of pre-mRNAs (C), as well as intergenic regions and

tranposons (TE) (D) from the 2X Ribominus approach.

Found at: doi:10.1371/journal.pgen.1001141.s005 (7.91 MB TIF)

Figure S6 Related to Figure 6. Identification of novel, highly

structured RNAs using dsRNA-seq. (A–D) Four examples of

intergenic, highly base-paired transcripts (screenshots from http://

tesla.pcbi.upenn.edu/annoj_at9). W (red bars) and C (green bars)

indicate signal from Watson and Crick strands, respectively. (A)

Two intergenic dsRNA ‘hotspots’ (h348 and h349) found between

At2g06555 and At2g06560. (B) A novel, base-paired RNA on Chr.

4 between At4g03360 and At4g03370. (C) A Chr. M intergenic

dsRNA ‘hotspot’ between AtMg00160 and AtMg00170 (D) An

example of a new, highly structured RNA from Chr. M that lies

between AtMg01330 and AtMg01340. It is of note that these figures

demonstrate a more zoomed in representation of the genomic loci
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that can be seen in Figure 6. (E–G) Three additional examples of

intergenic, highly base-paired transcripts (screenshots from http://

tesla.pcbi.upenn.edu/annoj_at9). W (red bars) and C (green bars)

indicate signal from Watson and Crick strands, respectively. (E) An

intergenic dsRNA ‘hotspot’ found between At1g66400 and

At1g66410. (F) A novel, base-paired RNA on Chr. 5 between

At5g51670 and At5g51680. (G) A Chr. 5 intergenic dsRNA

‘hotspot’ between At5g54180 and At5g54190. (H–J) Random-

primed RT-PCR analysis of the novel, base-paired RNAs that are

pictured in E–G using five different Arabidopsis tissues (leaf blades,

leaf petioles, cauline leaves, stems, and unopened flower bud

clusters). (H–J) correspond to (E–G), respectively. Unopened

flower bud RNA samples that were not treated with reverse

transcriptase serve as controls for this experiment. (K–M) Three

additional examples of intergenic, highly base-paired transcripts

(screenshots from http://tesla.pcbi.upenn.edu/annoj_at9). W (red

bars) and C (green bars) indicate signal from Watson and Crick

strands, respectively. (K) An intergenic dsRNA ‘hotspot’ found

between At2g07678 and At2g07669. (L) A novel, base-paired RNA

on Chr. 2 between At2g20410 and At2g20420. (M) A Chr. 4

intergenic dsRNA ‘hotspot’ between At4g18422 and At4g18425.

(N–P) Random-primed RT-PCR analysis of the novel, base-paired

RNAs that are pictured in (K–M) using five different Arabidopsis

tissues (leaf blades, leaf petioles, cauline leaves, stems, and

unopened flower bud clusters). (N–P) correspond to (K–M),

respectively. Unopened flower bud RNA samples that were not

treated with reverse transcriptase serve as controls for this

experiment.

Found at: doi:10.1371/journal.pgen.1001141.s006 (8.61 MB TIF)

Figure S7 Related to Figure 7. Highly base-paired segments of

the Arabidopsis genome (dsRNA ‘hotspots’). (A) Approximate

genomic distribution (,100 kb resolution) and length of dsRNA

‘hotspots’ along Arabidopsis Chr. 1 identified using the 2X

Ribominus dataset (B) Classification of dsRNA ‘hotspots’ identified

using the 2X Ribominus dataset. TE, transposable element. (C)

The 18 most significantly enriched molecular functions for

protein-coding mRNAs that contain dsRNA ‘hotspots’ identified

using the 2X Ribominus dataset. Red labels indicate nucleic acid

biology GO categories. (D) The percent of nucleotides within

dsRNA ‘hotspots’ hotspots’ identified using the 2X Ribominus

dataset that were found to produce smRNAs. The smRNA data

used for this analysis is described in Figure S8.

Found at: doi:10.1371/journal.pgen.1001141.s007 (7.87 MB TIF)

Figure S8 Related to Figure 2, Figure 3, Figure 4, and Figure 6.

The smRNA component of the Arabidopsis unopened flower bud

transcriptome. (A) The pie chart demonstrates the classification of

smRNA sequencing data from Arabidopsis unopened flower buds.

(B) Distribution of smRNA ‘hotspots’ along the length of

Chromosome 1. Red dots denote specific smRNA ‘hotspots’. (C)

Classification of all smRNA ‘hotspots’ in the Arabidopsis unopened

flower bud transcriptome. (D) The graph shows the overlap

between smRNA ‘hotspots’ and dsRNA-seq data along the length

of Arabidopsis Chr. 1. Red dots denote smRNA ‘‘hotspots’’ that

overlap with dsRNA ‘‘hotspots’’. Green dots denote smRNA

‘hotspots’ that overlap with dsRNA-seq reads covering non-

hotspot genomic regions. (E) The distribution of smRNA ‘hotspots’

along the length of all Arabidopsis chromosomes. Red dots denote

specific ‘hotspots’.

Found at: doi:10.1371/journal.pgen.1001141.s008 (7.83 MB TIF)

Figure S9 Related to Figure 4 and Figure S7. (A) The relative

highly base-paired RNA (dsRNA ‘hotspot’) coverage overall (black

line) and for 10 classes of RNA molecules (colored lines as specified

in legend) as the library subset size changes for the 1X Ribominus

dsRNA-seq methodology. (B) The relative highly base-paired

RNA (dsRNA ‘hotspot’) coverage overall (black line) and for 10

classes of RNA molecules (colored lines as specified in legend) as

the library subset size changes for the 2X Ribominus dsRNA-seq

methodology. This analysis is not informative for miRNAs because

too few or no dsRNA ‘hotspots’ are found in this class of RNA

molecules for the normal (1X) or 2X Ribominus approaches,

respectively. Therefore, they have been intentionally excluded

from these graphs.

Found at: doi:10.1371/journal.pgen.1001141.s009 (7.81 MB TIF)

Table S1 Arabidopsis RDR6 substrates determined using the

combination of dsRNA- and smRNA-seq.

Found at: doi:10.1371/journal.pgen.1001141.s010 (0.06 MB

XLS)

Table S2 RDR6 substrates that produce phased siRNAs.

Found at: doi:10.1371/journal.pgen.1001141.s011 (0.03 MB

XLS)

Table S3 Normal (1X Ribominus) dsRNA-seq dsRNA ‘hot-

spots’.

Found at: doi:10.1371/journal.pgen.1001141.s012 (2.82 MB

XLS)

Table S4 2X Ribominus dsRNA-seq dsRNA ‘hotspots’.

Found at: doi:10.1371/journal.pgen.1001141.s013 (2.24 MB

XLS)

Table S5 Normal (1X Ribominus) dsRNA-seq novel RNAs.

Found at: doi:10.1371/journal.pgen.1001141.s014 (0.30 MB

XLS)

Table S6 2X Ribominus dsRNA-seq novel RNAs.

Found at: doi:10.1371/journal.pgen.1001141.s015 (0.16 MB

XLS)

Table S7 Primers used.

Found at: doi:10.1371/journal.pgen.1001141.s016 (0.03 MB

XLS)

Text S1 Supplemental text.

Found at: doi:10.1371/journal.pgen.1001141.s017 (1.03 MB

DOC)
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