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The Pulse of Calm Fan Deltas

Abstract
At the heart of interpreting the history of Earth surface evolution preserved in the rock record is
distinguishing environmental (allogenic) forcing from internally generated (autogenic) “noise.” Allogenic
deposits classically have been recognized by their cyclic nature, which apparently results from periodic
changes in base level, sediment supply, or tectonics. Autogenic deposits, which are quite variable in their
origin and scale, are caused by the nonlinearity of sediment transport and might be expected to have a random
or scale-free (fractal) signature. Here we describe a robust mechanism that generates cyclic deposits by an
autogenic process in experimental fan deltas. Sheet flow over the fan surface induces deposition and an
increase in fluvial slope and curvature to a point where the surface geometry is susceptible to a channelization
instability, similar to channel initiation on hillslopes. Channelized flow results in incision and degrading of the
fan surface to a lower slope, releasing a pulse of sediment that pushes the shoreline forward. Sheet flow
resumes once the surface is regraded, and the cycle repeats in a surprisingly periodic fashion to produce cyclic
foreset accretions. We use simple scaling and a one-dimensional fan evolution model to (1) demonstrate how
time-varying flow width can cause pulses in sediment discharge at the shoreline in agreement with
experiments and (2) reinterpret cyclic deposits reported in the field. Alternating sheet and channelized flows
are known to operate on noncohesive fans in nature. Our results suggest that rather than reflecting variation in
environmental forcing, many observed cyclic sedimentation packages may be a signature of the autogenic
“pulse” of fan deltas under calm environmental conditions.
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ARTICLES

The Pulse of Calm Fan Deltas

Wonsuck Kim and Douglas J. Jerolmack1

Department of Civil and Environmental Engineering and Department of Geology, University of Illinois,
Urbana-Champaign, Illinois 61801, U.S.A.; and National Center for Earth-surface Dynamics,

University of Minnesota, Minneapolis, Minnesota 55414, U.S.A.
(e-mail: geowskim@uiuc.edu)

A B S T R AC T

At the heart of interpreting the history of Earth surface evolution preserved in the rock record is distinguishing
environmental (allogenic) forcing from internally generated (autogenic) “noise.” Allogenic deposits classically have
been recognized by their cyclic nature, which apparently results from periodic changes in base level, sediment supply, or
tectonics. Autogenic deposits, which are quite variable in their origin and scale, are caused by the nonlinearity of
sediment transport and might be expected to have a random or scale-free (fractal) signature. Here we describe a robust
mechanism that generates cyclic deposits by an autogenic process in experimental fan deltas. Sheet flow over the fan
surface induces deposition and an increase in fluvial slope and curvature to a point where the surface geometry is
susceptible to a channelization instability, similar to channel initiation on hillslopes. Channelized flow results in
incision and degrading of the fan surface to a lower slope, releasing a pulse of sediment that pushes the shoreline
forward. Sheet flow resumes once the surface is regraded, and the cycle repeats in a surprisingly periodic fashion to
produce cyclic foreset accretions. We use simple scaling and a one-dimensional fan evolution model to (1) demonstrate
how time-varying flow width can cause pulses in sediment discharge at the shoreline in agreement with experiments
and (2) reinterpret cyclic deposits reported in the field. Alternating sheet and channelized flows are known to operate on
noncohesive fans in nature. Our results suggest that rather than reflecting variation in environmental forcing, many
observed cyclic sedimentation packages may be a signature of the autogenic “pulse” of fan deltas under calm
environmental conditions.

Online enhancement: appendix.

Introduction

Conservation of mass dictates that erosion and
deposition are the result of spatial variation in
sediment discharge. The presence of sedimentary
bodies bounded by surfaces of erosion or non-
deposition is the record of variation in sediment
supply, water supply, or transportability (i.e., ap-
plied stress), which indicates unsteadiness in sedi-
ment transport. The recognition of cycles of deposi-
tional environments in the stratigraphic record
precipitated an active line of research to unravel
the nature and source of such unsteadiness (Pitman
1978; Blair and Bilodeau 1988; Posamentier et al.
1988; Smith 1994; Dorsey et al. 1997; Cui et al.

2003). There arose a general agreement that ubiqui-
tous, repetitive packages of erosion and deposition
result from large-scale climate change (e.g., Milan-
kovich cycles; Imbrie et al. 1984) or tectonic change
that affected sediment supply (e.g., Blair and Bilo-
deau 1988; Colella 1988; Price and Scott 1991;
Dorsey et al. 1997; Gupta et al. 1999; Dorsey and
Umhoefer 2000) and/or base level (e.g., Posamentier
et al. 1988). Associating depositional sequences
with allogenic changes in environmental controls
allowed for correlation of sedimentary units around
the globe (e.g., Haq et al. 1987; Posamentier et al.
1988) and quantitative reconstruction of Earth’s
climate and tectonic history (e.g., Paola 2000 and
references therein).

Although climate change appears to be quasi-
periodic and climatic cycles are expected to induce
changes in sedimentation, work in recent decades
has revealed richness in the stratigraphic record
that complicates the above picture. Several authors
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have recognized the statistical signature of random-
ness in some deposits and questioned the apparent
cyclicity reported in the literature (Drummond and
Wilkinson 1993, 1996; Drummond et al. 1996;
Wilkinson et al. 1998; Diedrich and Wilkinson
1999). Numerical models incorporating some de-
gree of randomness have succeeded in describing
many aspects of depositional sequences without
invoking climate cycles (Sadler and Strauss 1990;
Drummond and Wilkinson 1993; Jerolmack and
Sadler 2007) and provide a powerful null hypothesis
against which to test the control of climate. De-
tailed analysis of the rock record has also revealed
acyclic but nonrandom statistics that are not expli-
cable by either periodic climate cycles or purely
random variability (Rothman et al. 1994; Pelletier
and Turcotte 1997; Jerolmack and Sadler 2007).

Positing a direct relationship between environ-
mental controls and sediment transport responses
implies that the sediment transport system is (1) lin-
ear and (2) in equilibrium with imposed boundary
conditions. Fluvial sediment transport may indeed
be approximated as a linear process when averaged
over the appropriate time and space scales (e.g.,
Howard 1982; Paola et al. 1992; Paola 2000). In
such cases, the timescale of a purported environ-
mental perturbation may be compared with the
response time of the system (as determined by
sediment transport rate and system size) to deter-
mine the likelihood of a 1 : 1 relationship between
forcing and response (e.g., conventional stratig-
raphy; Mackin 1948; Jervey 1988; Posamentier
et al. 1988). Several studies have noted that the
diffusive nature of depositional fluvial regimes acts
to attenuate high-frequency environmental signals
and, hence, damp climate/tectonic fluctuations at
timescales that are smaller than the system re-
sponse time (Ellis et al. 1999; Allen and Densmore
2000; Castelltort and Van Den Driessche 2003;
Swenson 2005). In addition, the response time of
sedimentary systems may be long (tens to hundreds
of k.yr.), challenging the notion that high-frequency
climate or tectonic signals are preserved in the
stratigraphic record (Castelltort and Van Den Dries-
sche 2003; Jerolmack and Sadler 2007; Kim and
Paola 2007).

At what point does the assumption of linearity
and steadiness in sediment transport break down? It
has been recognized for some time that a river does
not steadily convey sediment downstream but
rather pulses sediment by alternation of storage
and release events (Leopold et al. 1964; Bull 1977;
Gomez et al. 2002). Recent research has begun to
focus on the inherent variability of sediment trans-
port itself as a source of unsteadiness capable of

generating depositional units at a variety of scales
(Rothman et al. 1994; Gomez et al. 2002; Jerolmack
and Mohrig 2005; Jerolmack and Paola 2007; Jer-
olmack and Sadler 2007). The statistical signature
of autogenic processes, as measured by the distri-
bution of thicknesses of sedimentary bodies, has
been characterized as either exponential (the result
of randomness; Paola and Borgman 1991; Drum-
mond and Wilkinson 1996; Pelletier and Turcotte
1997; Wilkinson et al. 1998) or power law (the re-
sult of nonlinear dynamics; Rothman et al. 1994;
Gomez et al. 2002). Autogenic variability may
dominate the stratigraphic record over timescales
up to hundreds of thousands of years (Jerolmack and
Sadler 2007).

The picture that emerges from these studies is
that autogenic fluctuations may generate acyclic
deposits at timescales that are smaller than the
response time of the system, while allogenic forcing
creates large, cyclic (e.g., periodic in space) deposi-
tional sequences at longer times. There are obser-
vations, however, of small-scale cyclic deposits that
do not fit neatly into either of these categories.
Particularly common are cyclic fan sequences,
which have been attributed to high-frequency sea
level fluctuations (Amorosi et al. 2005), earthquake
clustering (Dorsey et al. 1997), and/or episodic tec-
tonic subsidence (Colella 1988). The relatively
short timescales inferred from these deposits, 1–
10 k.yr., calls into question whether they could
possibly reflect allogenic forcing in a straightfor-
ward way (Castelltort and VanDenDriessche 2003).
In this article, we describe regularly recurrent
(cyclic) sedimentary packages caused by an auto-
genic process at relatively short timescales, using
results from recent experiments at the Experimen-
tal EarthScape facility in the St. Anthony Falls
Laboratory, University of Minnesota (Kim et al.
2006a, 2006b; Kim and Paola 2007). Evolution of
the experimental fan delta using a noncohesive
sediment mixture exhibits periodic fluctuations
in mean shoreline position under steady boundary
conditions that result from basinwide storage and
release of sediment on the fluvial surface (Kim et al.
2006a). We propose that alternation between sheet
flow and channelized flow causes regular fluctua-
tions in the fluvial slope, and we demonstrate via a
one-dimensional morphodynamic model that this
mechanism generates periodic foreset sequences in
agreement with experimental stratigraphy. This
mechanism appears to be robust, with a cycle
period that scales with sediment discharge and
magnitude of fluvial slope variation. Scaling up to
the size of field observations suggests that at least
some cyclic sequences associated with fan deposits
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may be generated by this autogenic “pulse” of
fluvial systems.

Experimental Setting

The Experimental EarthScape (XES) facility has
been described in previous articles (Paola 2000;
Paola et al. 2001), so only a brief summary is
presented here. Data are taken from early stages
of two XES experiments conducted in 2002 (hence-
forth XES 02) and 2005 (XES 05), under conditions of
stable base level. Details of each experiment can
be found in work by Kim et al. (2006a, 2006b) for
XES 02 and Kim and Paola (2007) for XES 05. The
XES basin has a working section that is approxi-
mately 3 m wide and 6 m long and a subsiding
basement up to 1.5 m deep (fig. 1A). Experimental
controls for both experiments are summarized in
table 1.

The experimental sediment was composed of a
mixture of white quartz sand and black coal sand.

The coal has a specific gravity of 1.3, whereas
quartz has a specific gravity of 2.65, so the coal
grains were substantially more mobile than quartz
grains and thus served as a proxy for fine-grained
clastics. This sediment was premixed with water
and introduced into the experimental basin at a
point source located in the center of the upstream
end (fig. 1A). Differences between the two experi-
ments analyzed here were (1) total sediment and
water discharge and (2) base-level and subsidence
settings. Experiments XES 02 and XES 05 had a
comparable sediment-water ratio, but XES 05 had a
total discharge that was approximately five times
lower than that of XES 02 (table 1). Experiment XES
02 can be characterized as having a strong base-
level control in stratal development through time-
varying base level (Kim et al. 2006a, 2006b), while
XES 05 was designed to demonstrate the control of
lateral variation in subsidence rate on stratigraphy
(Kim and Paola 2007). We focus only on the early
part of both experiments (10–18-h run time [RT]
in XES 02 and 80–100-h RT in the presubsidence
stage of XES 05), in which base level did not vary
and subsidence rate was zero or very small. The
duration of data presented here to illustrate auto-
genic processes is limited by the amount of time
that boundary conditions were steady in each
experiment.

Both experimental runs began with a 3-m-long
fan delta, prograding over a flat basement (fig. 2).
Slight forehinge-style subsidence was imposed in
the XES 02 experiment. During the 8-h period of
analysis in XES 02, relative base level increased by
25 mm at the shoreline position; thus, the water
depth at the shoreline was around 125 mm at 18 h
RT. Experiment XES 05 employed a very shallow
standing body of water (water depth ¼ 5 mm), with
no change in relative base level.

Data Collection

Data collection methods for the XES 02 and XES 05
experiments were described previously (Paola 2000;
Cazanacli et al. 2002; Sheets et al. 2002; Hickson

Figure 1. A, Overhead image taken during the initial
base-level stable stage in XES 02. B, Flowmap contrasting
wet and dry portions on the fluvial surface. The solid line
indicates a digitized shoreline, and the dotted line indi-
cates a laterally averaged shoreline. A color version of this
figure is in the online edition of the Journal of Geology

Table 1. Experimental Parameters in Experiments XES 02 and XES 05

XES 02 XES 05

Sediment and water supply:
Sediment supply Qs (m3=h) .0182 .0035
Water supply Qw (m3=h) 1.5 .35
Ratio Qs=Qw .012 .01

Sediment mixture (fraction/grain size):
Quartz sand ð%=μmÞ 63/110 70/110
Coal sand ð%=μmÞ 27/(bimodal 460 and 190) 30/(bimodal 460 and 190)
Kaolinite (%) 10 0

Journal of Geology P U L S E O F C A L M F A N D E LTA S 317

http://www.jstor.org/page/info/about/policies/terms.jsp


et al. 2005; Strong et al. 2005; Kim et al. 2006a,
2006b) and so are briefly outlined here. The primary
data used for the present analysis consist of over-
head images of the fan delta, taken every 2 min for
XES 02 and every 1 min for XES 05. For visualiza-
tion purposes, water was dyed blue and made
opaque by adding titanium dioxide, and images
were converted to grayscale maps of flow depth
(fig. 1B), using dye intensity as a proxy for water
depth (Kim et al. 2006a; Kim and Paola 2007). The
wetted perimeter and shoreline were then auto-
matically extracted from each image. Data products
derived from this process were time series of wet
fraction (the fractional area covered by water) and
mean shoreline position for each experiment (fig. 3).

In addition, topographic scans were performed
using a laser sheet system and an ultrasonic sonar
transducer that allows topographic grid data of both
the delta topset and submerged delta foreset with a
horizontal resolution of 50 mm in depositional dip
direction and 10 mm in strike direction and with a
submillimeter vertical resolution (fig. 4). The fre-
quency of the surface scans was limited because
experiments had to be paused for the duration of
surface topography measurement; hence, scans
were taken every 4–8 h in XES 02 and every
2.5 h in XES 05. Topographic maps provide high
spatial-resolution data but low temporal-resolution
data on the slope and roughness of the surface.

After each experiment, the final deposit was
sliced and digitally imaged, as described previously
(Heller et al. 2001; Sheets et al. 2002; Hickson et al.
2005; Strong et al. 2005; Kim et al. 2006a, 2006b).
The result is an image scan that is similar to a
seismic survey but has a resolution comparable to
the scale of individual sand grains (∼200 μm; fig. 5).

Submerged deposit thickness for XES 05 was very
small due to the shallow water depth (5 mm), so
subsurface architecture representing foreset accre-
tion could not be clearly assessed for this run.
Stratigraphic data analyzed here are confined to
XES 02, where subsequent slow base-level change
(i.e., relatively longer timescale perturbation than
that of the system response time) and high sedi-
ment discharge allowed for high-quality preserva-
tion of the stratigraphic record that we analyze here
(Kim et al. 2006b).

Experimental Results

Fluvial Pattern Change and Shoreline Regression.
As a result of the imposed boundary conditions,
the overall direction for shoreline migration was
seaward for both experiments. Mean shoreline po-
sition should increase as the square root of time for
an extending fluvial surface fed by a constant sedi-
ment supply (Muto and Swenson 2005; Kim et al.
2006a; Kim and Muto 2007). In order to examine
variability in shoreline position, the expected
square-root relation was imposed on the data, and
this first-order trend was removed (fig. 3A, 3C). The
result is a time series showing quasi-periodic fluc-
tuations in laterally averaged shoreline position for
both experiments. These fluctuations represent
sediment storage and release in the fluvial system
under steady basin forcing (Kim et al. 2006a; Kim
and Muto 2007). While the duration of data is not
sufficient to rigorously compute the period of these
fluctuations, visual inspection (e.g., fig. 3) shows a
time difference between storage and release events
of 2–3 h for XES 02 and 8–10 h for XES 05.

Figure 2. Experimental settings for stages with a constant base level in XES 02 (A) and XES 05 (B). Deeper water depth
(∼10 cm) and slight fore-tilting subsidence are present in XES 02, whereas shallow water depth (∼0:5 cm) and no
subsidence are present in XES 05.
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Even more striking than the observed fluc-
tuations in shoreline position is the time-vary-
ing nature of flow width, as measured by the wet
fraction (fig. 3C, 3D). Fluvial flow pattern alternated
between primarily sheet flow (large wet fraction)
and largely channelized flow. The wet fraction
varied between 15% and 45% over 2–3 h for XES
02 and between 20% and 75% over 8–10 h for XES
05. Changes in flow pattern appeared to coincide
with fluctuations in shoreline position (fig. 3B, 3D).

However, we note again that there are not sufficient
data to rigorously evaluate this relationship.

The high-resolution images allow us to describe
the cycle of wet-fraction variation (fig. 3E). An
initial sheet or tabular flow style developed a fan-
shaped deposit (fig. 4), during which time migration
of the shoreline was limited. Generally, a scour hole
would initiate at some point on the fan surface and
migrate rapidly upstream, focusing the flow into a
more channelized pattern. The channelized flow

Figure 3. Shoreline and wet-fraction data from XES 02 (A, C) and 05 (B, D). A, B, Mean shoreline position averaged
normal to the mean sediment transport direction and best fit curves. Graphs show shoreline position fluctuations after
removal of long-term shoreline regression trend. C, D, Time series of wet fraction showing cyclic changes in fluvial
pattern between sheet and channelized flow. E, Representative overhead images showing a cycle of wet-fraction change:
(1) channel cutting and flow focusing, (2) channel avulsion and lateral migration, (3) backfilling, and (4) sheet flow
deposition. Time of each image is indicated in C. A color version of this figure is in the online edition of the Journal
of Geology.
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effectively eroded the fluvial surface, delivering
sediment to the shoreline. Because of the noncohe-
sive nature of the experimental sediment mixture,
newly formed channels migrated rapidly across the
delta topset, reworking the entire fluvial surface.
Shoreline regression was most pronounced when
channelized flow was cutting through a previously
developed fan-shaped deposit. Once the surface was
reworked, a flow divergence generally developed
somewhere downstream on the fan and gradually
shifted upstream, backfilling the fluvial surface and
returning the flow to a tabular style (fig. 3E). During
these backfilling episodes, little sediment reached
the shoreline. Topographic scans and grayscale flow
maps of XES 05 at RT ¼ 85 h and 95 h, respectively,
capture both channelized flow and sheet flow and,
thus, sediment release and storage processes (fig. 4).
Migration of the scour hole shown in the topo-
graphic scan and the overhead image at RT ¼
85 h excavated the fluvial surface and caused a
major sediment release event. The topographic
roughness due to the scour migration was decreased
by flow diversion and sediment backfill. As indi-
cated in both the topographic scans and the isopach
between two consecutive scans at RT ¼ 85 and 95 h

(fig. 4), the high deposition associated with sheet
flow tended to smooth the fluvial surface.

Regular Cyclic Sedimentation in Dip Sections.
Large-scale fluctuations in shoreline position re-
flect changes in the overall transport efficiency of
the fluvial system. This variability in transport
efficiency is recorded in the stratigraphy as changes
in grain-size distribution on the accreting delta
foreset. As mentioned, XES 02 was the only experi-
ment to preserve a significant record of deposition
during the initial phase of steady boundary condi-
tions. Figure 5 shows a representative dip (X) direc-
tion slice of the final deposit in the XES 02
experiment. Image data corresponding to the initial
stage of steady experimental controls were ex-
tracted (fig. 5A), corrected for hinge-type sub-
sidence, and converted to a gray scale to indicate
proportion of sand in the deposit (fig. 5B). These
data are of sufficient length to perform time series
analysis of the variation in black (coal; proxy for
“fine”) and white (quartz; proxy for “coarse”) sand
deposits in the accreting delta foreset. Autocorre-
lations were calculated for each of three image
slices taken at lateral locations of Y ¼ 1:9, 2.1,
and 2.3 m and were then ensemble averaged to

Figure 4. Topographic scan data of run time ðRTÞ ¼ 85 and 95 h in XES 05 and the corresponding flow depth maps.
Local depositional pattern is shown in the isopach constructed using two topographic scans given above.
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generate a representative autocorrelation series for
the experiment (fig. 5C). The analysis clearly in-
dicates regular switching between sand- and coal-
dominated deposits with a well-defined wavelength
of 100 mm.

Interpretation and Discussion

Boundary conditions for both experiments de-
scribed here were steady, and therefore, any vari-
ability observed in shoreline and wet-fraction
dynamics must be the result of the mechanics of
sediment transport within the fluvial system. If
lateral migration and channel avulsion (i.e., abrupt
relocation of established channels) were the only
autogenic processes, then strong fluctuation of the
laterally averaged shoreline position would not oc-
cur. The large fluctuations that are observed (fig. 3)
indicate time variation of sediment transport effi-
ciency for the entire fluvial system. Rather than
generating spatially variable “local noise,” auto-
genic processes on the delta topset create a coher-
ent, systemwide pulse (Kim et al. 2006a). The
apparent coincidence of wet-fraction variation
and shoreline position is suggestive of a causative
relationship, which we explore here through the use
of scaling analysis and mathematical modeling.

Timescale and Event Size of Autogenic Processes.
Topographic scans in the XES 05 experiment cap-
tured delta morphology associated with sheet flow

and channelized flow and may therefore be used to
estimate the volume of sediment that accounts for
shoreline migration events. Slopes of the longitu-
dinally averaged fluvial surface at RT ¼ 85 and 95 h
were 0.0470 and 0.0497, respectively. The amount
of sediment that can be accommodated between
these two slopes, assuming linear fluvial profiles, is
represented as

Ψs ¼ 0:5ΔSts2Bt; (1)

where ΔSt denotes the difference of minimum and
maximum topset fluvial slopes, s is the distance of
the shoreline from the delta apex, and Bt denotes
the total basin width. For XES 05, the computed
fluvial storage volume is Ψs ¼ 0:0318 m3. If we
assume that all sediment is captured on the delta
topset, the time needed to fill the fluvial buffer
between two critical release and storage slopes
can be written as

Tap ¼ Ψs

Qso
; (2)

where Tap denotes the autogenic process timescale
and Qso is the sediment discharge input at the apex
of the delta, or origin. Equation (2) yields a time of
9.1 h for XES 05, in good agreement with the
observed timescales of shoreline fluctuation and
change in wet fraction (fig. 3B, 3D). This simple

Figure 5. A, Representative dip section sliced at Y ¼ 2:1 m of the XES 02 final deposit. Data for analyzing the scale of
alternation in sand-coal sedimentation were collected at the bottom of the final deposit, where deposits under a stable
base-level condition were preserved. B, Grayscaled sand intensity. C, Autocorrelation of grayscaled sand intensity,
averaged from sliced sections at Y ¼ 1:9, 2.1, and 2.3 m, indicating a periodic alternation in sand-coal sedimentation
with a wavelength of 100 mm.
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calculation verifies that systemwide changes in
fluvial slope are related to shoreline pulsing, and
it implicates flow width variation as well.

During the sediment release process, channels
excavate the fluvial storage, and the surface slope
cuts down to the minimum critical slope for the
release event, 0.0470 in the case of XES 05. The
nonlinearity of sediment transport is such that for
the same flow discharge, a relatively narrow and
deep channel requires a much lower slope for trans-
port compared to the sheet flow case (Paola 1996;
Parker et al. 1998; Whipple et al. 1998); hence,
reduction in flow width should cause a reduction
in slope for the channelized portion. Avulsion and/
or lateral migration of channels may then regrade
the entire fluvial surface to achieve the channelized
slope (Parker et al. 1998). Fluvial erosion causes
high sediment discharge at the shoreline, inducing
shoreline regression (fig. 6). The distance of shore-
line translation by a release event, Λ, is related to
the associated change in fluvial slope through con-
servation of mass at the shoreline:

Sch
2Hf

ðΛþ sÞ2 þ Λ ¼ ðSch þΔStÞ
2Hf

s2; (3)

where Sch denotes the fluvial slope for a system
with channelized flow andHf denotes the toe depth,
that is, the elevation difference between the base
level and the delta toe (fig. 6). Using the experimen-
tal parameters for XES 05 (i.e., Sch ¼ 0:0470,
Hf ¼ 0:005 m, ΔSt ¼ 0:0027, and s ¼ 3:3 m), the
shoreline regression distance caused by a release
event is 91 mm, which is consistent with the total
shoreline regression during the sediment release
period (e.g., RT ¼ ∼85–∼90 h) shown in figure 3B.

We cannot perform the same calculations for
XES 02, as the change in fluvial slope is unknown
due to insufficient topographic data. We may use
the available stratigraphic data, however, to infer
the magnitude of this slope change. The distance of
shoreline translation associated with a sediment
release event is equal to the wavelength of grain-
size variation of the deposit (fig. 5), that is,
Λ ≅ 100 mm. Setting Sch ¼ 0:036 (the mean fluvial
slope from the topographic scan taken at RT ¼
18 h) and using equation (3), it is found that the
associated slope change should be ΔSt ¼ 0:004.
This fluvial buffer would store Ψs ¼ 0:0456 m3 of
sediment, with a timescale Tap of 2.5 h at the given
sediment supply rate. This is in good agreement
with the time series of shoreline position and wet
fraction for XES 02 (fig. 3), which show a fluctuation
timescale of 2–3 h.

Modeling Variation in Flow Pattern—Equilibrium
Model. We have documented large-scale fluctua-
tions in shoreline position, which may be explained
by cyclic variation in the fluvial slope (Kim et al.
2006a). Where topographic scans were available
(i.e., XES 05), we verified that the observed change
in fluvial slope is consistent with the volume of
sediment required to generate shoreline migration
pulses. The experimental data indicate a temporal
correlation between flow width (wet fraction) and
shoreline migration rate, suggesting that storage
and release of sediment in the fluvial buffer corre-
sponds to alternation between sheet flow and chan-
nelized flow. Here we examine this connection
mechanistically, using a one-dimensional model
for the evolution of a fan delta profile.

We begin with the Parker et al. (1998) formu-
lation for a steady state alluvial fan but modify the
model for the case of a delta undergoing both fluvial
and foreset sedimentation. Details of the model and
its derivation can be found in the appendix, avail-
able in the online edition or from the Journal of
Geology office. We assume that no sediment
escapes beyond the delta toe and that the delta
foreset has a prescribed, linear geometry sloping
with a constant slope Sf (fig. 6). With the appropriate
boundary conditions, wemay derive an equation for
the shoreline migration rate as a consequence of
mass conservation (see appendix). As discussed by
Whipple et al. (1998), flows on experimental non-
cohesive fans are not fully channelized, and so
modeling using partial sheet flow parameters is
more appropriate. The active flow width is defined
as a fraction χ of aerial coverage of sheet flow
multiplied by the total basin width, Bch ¼ χBt,
where χ is a constant value between 0 and 1. The

Figure 6. Fan delta downstream profiles at maximum
sediment storage and release events. Two profiles contain
the same amount of sediment under the surface; differ-
ence in shoreline position is caused by the change in
fluvial slopes for storage and release stages.
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goal of our modeling exercise is not to tune param-
eters to maximize agreement with the experiment
but rather to gain fundamental insight into the
nature of deltaic evolution. For this reason, all
coefficients and exponents of the model are chosen
following those outlined for a sand bed system by
Parker et al. (1998; appendix). Using the observed
mean wet fraction, the computed equilibrium
slopes are 0.037 and 0.070 for the XES 02 and
XES 05 experiments, respectively, while the
measured slopes are 0.036 and 0.048. Agreement
between experimental and theoretical slope values
is very good for XES 02 and decent for XES 05,
verifying that the model provides a reasonable
description of mean delta geometry.

Using equation (A5) (appendix), we can compute
the average fan slope that should result from flow
conditions associated with different wet fractions.
For XES 02, the wet fraction fluctuated between χ ¼
0:15 and χ ¼ 0:45; the corresponding average slopes
would be 0.028 and 0.043, respectively, giving
ΔSt ¼ 0:015. While slope difference was not mea-
sured directly in the experiment, the slope differ-
ence required to generate the observed shoreline
pulses is ΔSt ¼ 0:004. Thus, the equilibrium fan
model using the minimum and maximum wet-
fraction values overestimates slope fluctuations
by a factor of 4. For XES 05, the comparison is even
worse; the computed slope difference based on a
minimum and maximum wet fraction of χ ¼ 0:20
and χ ¼ 0:75, respectively, is ΔSt ¼ 0:034, while
the observed slope change was much smaller,
ΔSt ¼ 0:003. What is missing in this formulation?

Modeling Variation in Flow Pattern—Dynamic
Model. The problemwith the described model lies
in the assumption of equilibrium on the fan surface.
The computed minimum and maximum slopes
based onwet-fraction values assume that the fluvial
slope achieves instantaneous equilibrium with the
imposed flow width. In reality, the fluvial surface
has a response time that is dictated by the size of
the delta and the mean sediment transport rate
(Paola et al. 1992; Paola 2000). This equilibrium
time is the so-called diffusion timescale,

Teq ¼ L2

ν
; (4)

where L is a representative fluvial length scale of
the system, ν ¼ Qso=ðBtStÞ is fluvial diffusivity, and
St is the average fluvial slope. Usingmean values for
XES 02 and XES 05, computed basin equilibrium
times are Teq ≅ 60 h (L ¼ 3 m, Qso ¼ 0:018 m3=h,
Bt ¼ 3 m, and St ¼ 0:04) and Teq ≅ 390 h (L ¼ 3 m,
Qso ¼ 3:5 × 10�3 m3=h, Bt ¼ 3 m, and St ¼ 0:05), re-

spectively. For comparison, the peak-to-peak period
of wet-fraction variation for each experiment, Tb, is
5 and 12 h, respectively (fig. 3). Thus, wet fraction
varies on a timescale that is significantly shorter
than the equilibrium time of the system (Tb ≪ Teq),
and we therefore expect slope fluctuations to be
damped, compared with those values predicted by
the equilibrium model.

To test this idea, we investigate the dynamic
response of the fluvial slope to a time-varying input
of flow width using a variant on the equilibrium
model outlined above and input parameters from
the XES 02 and XES 05 experiments (see appendix).
We represent wet-fraction variation as an idealized
sine wave with a specified period, Tb (fig. 7), and
impose this time-varying flow width on the entire
fluvial profile. We then solve the sediment trans-
port and conservation of mass equations at succes-
sive time steps using the updated flow width to
model the time evolution of the fluvial profile.

Using parameters from XES 02, including a
wet-fraction variation period Tb ¼ 5 h, we see that
modeled average slope fluctuates with a range
ΔSt ¼ 0:005 (fig. 7), which is very close to the range
ΔSt ¼ 0:004 that accounts for the observed shore-
line regression. Modeling XES 05 with Tb ¼ 12 h,
the predicted slope variation is ΔSt ¼ 0:003 (fig. 8),
while the observed value is ΔSt ¼ 0:003. By impos-
ing a dynamically varying flow width on the sim-
plified fan evolution model, we obtain variations in
fluvial slope that are in very good agreement with
experiments. It is important to note that no tuning
of the model was performed; all transport parame-
ters were taken directly from the Parker et al. (1998)
formulation for a sand bed fan, while boundary
conditions and flow-width parameters were derived
from the experiments themselves.

The model allows us to explore the effect of
changes in the period of wet-fraction variation.
When Tb ≪ Teq, the magnitude of slope variation
is far smaller than that predicted from the equilib-
rium model. Our expectation, based on fluvial
response time arguments outlined above, is that
the magnitude of slope variability will increase as
the period of wet-fraction variation increases. This
expectation is borne out in model results (fig. 7). As
Tb approaches Teq, the response time of the fluvial
system, ΔSt, approaches the maximum value pre-
dicted by the equilibrium model (fig. 7).

Conceptual Model for Sediment Storage and Release.
The importance of this dynamic model is that it
illustrates how the observed periodic changes in
wet fraction can generate sediment storage and
release events of the appropriate magnitude to
cause measured shoreline pulses. Further, these
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pulses are recorded as cyclic delta foreset sequences
whose thickness also agrees with predicted model
results. It is clear that changes in flow width, fluvial
slope, and shoreline position are directly related to
one another. What has not been addressed in this
analysis, however, is the cause of autogenic, peri-
odic changes in wetted width. More fundamentally,
the question is what causes transitions in flow style
from sheet flow to channelized flow on fans under

steady state conditions? This question cannot be
resolved from our experimental data or modeling
results, but we can propose a conceptual model that
is consistent with observations in other systems.
Alternation between sheet flow and channelized
flow has been observed in other experimental deltas
(Schumm et al. 1987; Whipple et al. 1998; Shieh
et al. 2001) and also in natural alluvial fans (Blis-
senbach 1954; Denny 1965; Bull 1977; Hooke and

Figure 7. Dynamic model results for XES 02 conditions, showing imposed cycles of wet-fraction variation (left) and
response of the average fluvial slope to the imposed wet-fraction cycles (right). The period of wet-fraction cycles and the
amplitude of slope variation are indicated in figure 3; see text for definition of symbols. Dashed lines show minimum
and maximum slopes predicted from the equilibrium fan model. The response time of the fan, as computed from
equation (4), is also noted.

Figure 8. Dynamic model results for XES 05 conditions. Left, imposed wet-fraction variation; right, response of the
average fluvial slope. See the figure 7 legend.
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Rohrer 1979; Moore and Nilsen 1984; Blair 1987;
Goedhart and Smith 1998) and desert arroyos (Bull
1997), so it appears to be a general phenomenon in
unconfined flows over noncohesive sediment.

We conjecture that the instability leading to
channel formation on sheet flow fan deltas is
the same as the more well-studied case of chan-
nel initiation from sheet wash on hillslopes. Theo-
retical and empirical studies of rill and channel
formation on hillslopes have demonstrated that
convex surfaces (i.e., positive curvature) are stable
to perturbations and resist channelization, while
concave surfaces are unstable and tend to channel-
ize and planar surfaces (constant slope) are neu-
trally stable (Smith and Bretherton 1972; Loew-
enherz 1991; Montgomery and Dietrich 1992;
Loewenherz-Lawrence 1994; Fowler et al. 2007).
Mechanistically, the dispersive flow on convex
surfaces behaves diffusively (Loewenherz 1991),
and thus perturbations to the surface generate
a diffusive lateral flux that fills in divots. Con-
cave surfaces allow flow to concentrate, leading
to “advective” sediment transport in the sense that
down-gradient fluid momentum dominates sedi-
ment transport (Loewenherz 1991; Loewenherz-
Lawrence 1994). Theory and observation of real
hillslopes indicates that channel initiation occurs
at the inflection point in the profile, that is, the
convex/concave boundary where the slope is maxi-
mized. This provides a condition in which to test
the hypothesis that channel initiation in the
XES experiments is similar to that on hillslopes—
channels should initiate at the inflection point in
the fluvial profile (Loewenherz 1991). The hillslope
analog also suggests that perturbations at the in-
flection point can migrate upstream as a shock
wave (or kinematic wave; Fowler et al. 2007), re-
ferred to as a “knick point” in geology, providing
another (qualitative) test of the applicability of
these models to fan deltas.

Sheet flow conditions in the XES experiments are
associated with periods of deposition, which gen-
erate increases in both the total slope and the
curvature of the fluvial profile (Bull 1977; Parker
et al. 1998; fig. 4). Flow entering the apex of the fan
becomes unconfined and produces an overall ex-
pansion for some distance down the fan. The de-
crease in flowmomentum down the fan that results
from this flow expansion is probably responsible for
sheet flow sediment deposition. The convexity of
the fan surface in our experiments grows with time,
having a slope maximum near the middle of the
profile, in agreement with theory (Parker et al.
1998). The curvature is not positive everywhere,
however. As the fan approaches the downstream

boundary (the sea), the slope decreases (both in
experiments and in theory [Parker et al. 1998]).
Thus, the fluvial profile consists of a convex upper
portion, a concave lower portion, and an inflection
point that joins the two where slope is maximized
(fig. 9). By analogy to the hillslope example, the
creation of a substantially large slope at the tran-
sition between convex and concave profile seg-
ments should initiate a channel head at the
inflection point. We mapped the locations on the
fan surface where scour holes were initiated, be-
cause these scours often migrated headward and led
to channel development in the experiment. Data
demonstrate that the locations of channel initia-
tion, as defined by the development of scour holes,
coincide very well with the point of maximum
slope at the inflection in the fluvial profile (fig. 9).

As flow is focused by the initial perturbation,
erosion of the fluvial surface occurs that further
confines and focuses flow in a positive feedback.
The scour holes in the experiments migrated up-
stream as knick points to create channels, as envi-
sioned by the hillslope model (fig. 9). The flow
confinement/erosion feedback may be enhanced
by the reduction in flow resistance as depth in-
creases with channelization (e.g., Lawrence 2000).
The narrower flow width results in a lower slope
over the channelized portion of the fan surface.
Lateral channel mobility is high due to the non-
cohesive nature of the substrate and strong local
aggradation of the channel bed near the shoreline,
so a fairly large portion of the delta topset is re-
graded to the lower slope within a relatively short
time. Once the entire surface is reworked and the
channel elevated by local regression, flow is no
longer confined and so diverges to resume a sheet
flow pattern.

Experimental observations qualitatively support
the application of hillslope channel instability mod-
els to fan deltas. Amore rigorous comparison would
require (1) high-resolution topographic data show-
ing the temporal development of the fluvial sur-
face in the XES experiments through a storage and
release cycle and (2) the development of a two-
dimensional (or perhaps three-dimensional) trans-
port model for sheet flow on fans. The former is not
possible with the current data, while the latter is
beyond the scope of this article. The connection
between channelization on hillslopes and noncohe-
sive fans seems compelling, however, and warrants
further research.

Application to Field Examples. Alternation be-
tween sheet flow and channelized flow was ob-
served to occur frequently on the coarse-gravel
Emerald Lake fan (Goedhart and Smith 1998), re-
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sulting in pulsed migration of the fan margin.
The striking similarity in flow pattern dynamics
suggests that the Emerald Lake fan may be a direct
field analog of the XES experiments. More gener-
ally, the cycle described above may be common to
noncohesive fans in nature and appears also to be
strongly related to repeated cut-and-fill cycles de-
scribed in desert arroyos in the southwestern
United States (Bull 1977, 1997). Verification of this
idea requires a more detailed, higher-dimensional
model and is beyond the scope of this article. It
seems reasonable to believe, however, that cyclic
parasequences commonly observed in natural fan
deltas may well be the result of the described
autogenic storage and release processes rather than
high-frequency climate or tectonic cycles. To ex-
plore this idea, we look at two reported examples
of quasi-cyclic Gilbert delta progradation reported
in the literature.

Colella (1988) described Gilbert delta deposits
that were composed of conglomerate and pebbly
sandstone from the Pliocene-Holocene Crati Basin,
where the length of the system ranges up to 20 km.
Cyclic foreset deposits occur with approximate
vertical and horizontal dimensions of 100 m and
400 m, respectively (area [A ¼ Ψs=Bt] is approxi-
mately 40; 000 m2, with all dimensions estimated
from sketches). Colella (1988) attributed this pat-
tern to repetitive, large-scale fault slip events. We
propose that these depositional cycles may have
resulted from autogenic fluctuations in fluvial slope
as described above. Using equation (1), foreset para-
sequences would require changes in the fluvial
slope ofΔSt ¼ 0:0002. If we assume amean channel
slope of St ¼ 0:01 (a common value for coarse-
grained fans), this would represent a 2% fluc-
tuation. Alternatively, by again assuming Sch ¼
0:01 and Hf ¼ 100 m, we can use equation (3) to

Figure 9. Top, cross-stream-averaged fluvial elevation and slope profiles for XES 05 experiment. Topographic scan was
taken at run time ðRTÞ ¼ 85 h. Vertical line shows the mean location of scour hole development, which coincides well
with the location of maximum slope (except the first ∼0:6 m of the fan, where the flow was dominated by inlet effects).
The gray shading shows the range of scour hole initiation locations. Scour holes were mapped over the duration 82 h <
RT < 87 h using amovie generated from time-lapse images. Bottom, sequence of images showing the creation of a scour
hole at the fan inflection point and headward migration as a kinematic wave to create a channel. A color version of this
figure is in the online edition of the Journal of Geology.
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estimate ΔSt ¼ 0:0006, a 6% change in fluvial
slope. Autogenic fluctuations of 2%–6% of the
mean slope are well within the range observed in
our experiments and in natural river systems (Kim
et al. 2006a).

Dorsey et al. (1997) reported cyclic progradation
packages in Gilbert deltas from the Pliocene Loreto
Basin. These fan deltas were composed mainly of
gravel and accumulated over a 100,000-yr period of
rapid subsidence. Each parasequence is approxi-
mately 50 m thick and 2 km long and is separated
from the next one by a marine shell bed, indicat-
ing hiatuses in sediment delivery followed by
rapid progradation. Dating indicates approximately
6000 yr for deposition of each unit. Dorsey et al.
(1997) suggested that clustering of earthquakes was
a plausible mechanism to generate these parase-
quences. Assuming all sediment delivered to the
fan was deposited on it, we can estimate the sedi-
ment flux input to the fan from equation (2):
Qso=Bt ≈ 10 m2=yr. If we again assume a channel
slope of 0.01, fluvial diffusivity becomes 1000 m2=
yr. The total length of the fluvial system is
unknown; however, outcrop exposure indicates it
is at least 5 km. From equation (4), we compute a
minimum basin equilibrium time of 25,000 yr, far
longer than the proposed 6000-yr period of earth-
quake recurrence. It is unlikely that the fluvial
system could respond in a coherent fashion to such
short-timescale perturbations (Castelltort and van
den Driessche 2003). In our view, a more likely
explanation for pulses of progradation and interven-
ing hiatuses in foreset deposition is autogenic cut-
and-fill cycles resulting from alternation between
channelized and sheet flow on the fan topset.

An important question that arises from these
field-scale extrapolations is whether changes in
fluvial flow pattern actually occur in nature with
timescales of thousands of years, as predicted by our
hypothesis. Durations of historic records of stream
discharge are too short to provide an adequate
assessment of the long-term variation in surface
flow systems. However, Knox (1985) and Carson
et al. (2007) reported data for long-term variations of
flood magnitude (up to ∼10 k:yr:) in the Upper
Mississippi Valley,Wisconsin, and the UintaMoun-
tains, northeastern Utah, respectively, which were
quantified from the bankfull dimensions of aban-
doned channels preserved on the floodplain. They
used the cross-sectional area of subsurface channels
to reconstruct bankfull discharge, using a relation-
ship derived from a nearby active gage. The results
indicate a periodic variation in bankfull flood with a
magnitude change of ±10%–20% from the mean
discharge and with a period of ∼4000 yr. The

authors implicate high-frequency climate change
in driving channel variation, as indicated by forest
fire cycles with a comparable period. However, the
basin equilibrium timescale calculated from the
data given by Carson et al. (2007) is ∼75; 000 yr,
indicating that response of the fluvial system to
such short-period perturbations should be signifi-
cantly damped and lagged. Based on the data (L ¼
20 km, St ¼ 0:0005, qs ¼ 2:6 m2=yr) and assuming
a 5% fluctuation of the fluvial slope to store
and release sediment (ΔSt ¼ 0:000025), the esti-
mated autogenic timescale of storage and release
(∼0:5Tb) using equations (1) and (2) is approximately
2000 yr, close to the observed channel change
period. Results suggest an alternative explanation
for variation in the subsurface channel geometry,
that is, the fluvial autogenic process.

Conclusions

The shoreline migration of a noncohesive experi-
mental fan delta has been found to exhibit periodic
pulses under conditions of steady subsidence, base
level, and sediment supply. These pulses are corre-
lated with cyclic changes in flow width on the
fluvial surface. Large fluctuations in mean shore-
line position require temporal variability in trans-
port efficiency of the entire fluvial system. This
coherent, autogenic pulse of sediment storage and
release on the delta topset is quite different from the
more commonly reported localized “noise” associ-
ated with autogenic processes such as avulsion,
bank erosion, or bed form migration (Bull 1990;
Hooke and Redmond 1992; Hooke 1995; Stolum
1996, 1998). The pulse period occurs at timescales
far smaller than the basin equilibrium time and is
due to the nonlinear threshold process of the chan-
nelization instability.

We have used a one-dimensional morpho-
dynamic model for fan delta evolution to demon-
strate the relationship between total flow width,
fluvial slope, and shoreline migration in the XES
experiments. Since alternation between sheet flow
and channelized flow has been reported in other
experimental deltas (e.g., Schumm et al. 1987;
Whipple et al. 1998; Shieh et al. 2001) and also in
natural alluvial fans (e.g., Blissenbach 1954; Bull
1977; Blair 1987; Moreno and Romero-Segura 1997;
Goedhart and Smith 1998) and desert arroyos (Bull
1997), we believe the derived results to be general.
The dynamic model provides a mechanistic expla-
nation for the generation of autogenic stratigraphy
and allows for extrapolation to field scales. The
model falls short of providing a complete picture
of the autogenic cycle, however, because it does not
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include the fundamental instability that causes
flow to transition from a sheetlike pattern to a
more channelized regime.

The conceptual model we present to explain this
cycle follows from the premise that channel initia-
tion on fan deltas is mechanistically equivalent to
that on hillslopes. This model envisions (1) deposi-
tion and an increase in fluvial slope during times of
developing a convex upward profile by divergent
(sheet) flow; (2) exceeding of some critical slope at
the transition from the convex upper fan profile to
the concave lower profile, which induces a chan-
nelization instability leading to incision in the form
of a scour hole; (3) focusing of flow during erosion
leading to headward migration of the scour and
creation of a channel; and (4) a regrading of the
delta topset by the channel followed by resumed
sheet flow. Further progress in revealing the cause
of sediment storage and release requires a more
sophisticated model; however, experimental data
support the hillslope channel initiation model.

The statistics of sedimentary units created by
autogenic processes have generally been charac-
terized as having either an exponential or a
fractal distribution of thicknesses (Drummond
and Wilkinson 1993, 1996; Rothman et al. 1994;
Drummond et al. 1996; Pelletier and Turcotte 1997;
Wilkinson et al. 1998; Diedrich and Wilkinson
1999; Gomez et al. 2002; Jerolmack and Sadler

2007). The recognition of a robust mechanism for
creating cyclic fan-delta deposits may help to ex-
plain their occurrence in nature without calling on
changes in external forcing. Further progress in
interpreting the history of Earth surface evolution
requires recognition that depositional cycles may
be the result of the internally generated dynamics
of sediment transport. Many classic depositional
sequences record the turbulent response of land-
scapes to the pulse of the earth’s climate cycles. It
may be that other depositional cycles record the
pulse of sediment transport during calm intervals in
the earth’s history.
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