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Direct Route to Phenol from Benzene

Abstract
Phenol production, expected to exceed 13MM metric tons in 2017, is a significant global industry with many
flaws in its current manufacturing method. The Hock process essentially converts high value propylene to low
value acetone. The proposed process design, detailed in this report, provides an alternative reaction pathway
that utilizes a direct synthesis from benzene, as developed at the Council of Scientific and Industrial Research
(CSIR) in New Delhi, India. The endorsed proposal is in accordance with US Patent 8,772,552 B2, that
describes the production of phenol via vapor phase oxidation of benzene over a copper chromium oxide
catalyst. Environmental protection and worker safety are paramount concerns due to the hazardous nature of
phenol and benzene. The inclusion of a ventilation system with flare hoods keeps the concentration of
hazardous materials within OSHA guidelines. The design uses air to oxidize benzene within four separate
packed-bed reactors with inter-stage coolers. Downstream separation removes non-condensable species,
recycles up to 98% of the unreacted benzene, and purifies phenol to design specifications. The plant’s capacity
is 500MM lb/operating-year of phenol and will be located on the U.S. Gulf Coast as part of an industrial
complex. The final product is 99.83% phenol by mass, and contains an aldehyde byproduct as the principal
impurity. The design requires an initial investment of $83.6MM, yields a fifteen-year net present value (NPV)
of $90M, and has an estimated investor’s rate of return (IRR) of 29.2%. The proposed project is forecasted to
break-even in Q1 of 2025 immediately following the second year of maximum production capacity. The
design is recommended based on project specifications and marketing team projections, though investors
should exercise caution with regards to the effect of realistic market data on proposal sensitivities.

Disciplines
Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering

This working paper is available at ScholarlyCommons: http://repository.upenn.edu/cbe_sdr/98

http://repository.upenn.edu/cbe_sdr/98?utm_source=repository.upenn.edu%2Fcbe_sdr%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages


 

University of Pennsylvania, School of Engineering and Applied Science 

Department of Chemical and Biomolecular Engineering 

220 South 33rd Street 

Philadelphia, PA 19104      

   

April 18, 2017 

 

Dear Dr. Sean Holleran and Mr. Bruce Vrana, 

 

 Enclosed is a potential design for the industrial production of phenol using the patented 

process developed at the Council of Scientific and Industrial Research. The proposed plant will be 

located at an industrial complex on the United States Gulf Coast with benzene available on site 

and is designed to produce 500MM lb phenol per year at a weight purity of 99.8%. 

 

The CSIR process oxidizes benzene over a copper chromium catalyst to produce phenol in 

a single step vapor phase reaction without the formation of major byproducts. The proposed design 

utilizes air as the source of oxygen to reduce cost. The reactions considered in the design release 

5.7x107 BTU per hour. The reactor is partitioned into four sections, each separated by a cooler, in 

an effort to maintain both isothermal and isobaric conditions due to the sensitive nature of the 

reaction. The considerable heat energy contained in the reactor effluent stream is used for heat 

integration to pre-heat the reactor feed. The reactor effluent is then further cooled and 

depressurized using coolers and turbines before being fed to a flash vessel that removes non-

condensable species. The liquid exit from the flash is sent to a distillation column to separate 

benzene and phenol, with the condensed benzene overhead recycled to the beginning of the 

process. To meet purification specifications, phenol is sent to two additional distillation columns 

to remove heavy and chemically similar byproducts. Two weeks’ supply of phenol is maintained 

in heated storage tanks. 

 

The plant will operate for 24 hours a day, 330 days a year, with benzene available for 

$1,100/metric ton and phenol valued at $2,000/metric ton. Our team conducted a thorough analysis 

of the proposed design to ensure optimal performance and to determine the economic feasibility 

of the project. Recommendations are included for further enhancement of the process. The 

proposed design requires an investment of $83.6MM to meet the annual production goal of 

500MM lb of phenol, and yields an investor’s rate of return (IRR) of 29.2%. We recommend 

investing in this process while remaining wary of the current phenol market. 

 

Sincerely, 

 

 

Bryan Daowdat        Gerard David Hoeltzel        Robert Tannenbaum 
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Phenol production, expected to exceed 13MM metric tons in 2017, is a significant global 

industry with many flaws in its current manufacturing method. The Hock process essentially 

converts high value propylene to low value acetone. The proposed process design, detailed in this 

report, provides an alternative reaction pathway that utilizes a direct synthesis from benzene, as 

developed at the Council of Scientific and Industrial Research (CSIR) in New Delhi, India. The 

endorsed proposal is in accordance with US Patent 8,772,552 B2, that describes the production of 

phenol via vapor phase oxidation of benzene over a copper chromium oxide catalyst. 

Environmental protection and worker safety are paramount concerns due to the hazardous nature 

of phenol and benzene. The inclusion of a ventilation system with flare hoods keeps the 

concentration of hazardous materials within OSHA guidelines. The design uses air to oxidize 

benzene within four separate packed-bed reactors with inter-stage coolers. Downstream separation 

removes non-condensable species, recycles up to 98% of the unreacted benzene, and purifies 

phenol to design specifications. The plant’s capacity is 500MM lb/operating-year of phenol and 

will be located on the U.S. Gulf Coast as part of an industrial complex. The final product is 99.83% 

phenol by mass, and contains an aldehyde byproduct as the principal impurity. The design requires 

an initial investment of $83.6MM, yields a fifteen-year net present value (NPV) of $90M, and has 

an estimated investor’s rate of return (IRR) of 29.2%. The proposed project is forecasted to break-

even in Q1 of 2025 immediately following the second year of maximum production capacity. The 

design is recommended based on project specifications and marketing team projections, though 

investors should exercise caution with regards to the effect of realistic market data on proposal 

sensitivities. 
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Section 2.1: Introduction 

Phenol (C6H5OH) is an organic, aromatic compound whose molecular structure is a 

benzene ring with a single hydroxyl group. The presence of the hydroxyl group results in high 

polarity which leads to greater affinity for hydrogen bonding with itself and other polar molecules. 

These chemical properties contribute to phenol’s high boiling point of 359 ℉. Phenol is a white 

crystalline solid at room temperature and melts at a relatively high temperature of 105 ℉. This 

physical property is of extreme importance to chemical processes containing this compound since 

they must maintain high temperatures to avoid solidification.2.1 The compound is toxic in doses of           

1 x 10-6 lb/lb body weight.2.2 

Phenol is a key chemical intermediate in the commercial production of plastics, nylon, and 

pharmaceuticals. 2.3,2.4 The Hock, or cumene, process yields phenol and acetone in a mass ratio of 

1.5:1. This catalytic alkylation of benzene using propylene currently accounts for 98% of all global 

production. There are many drawbacks with this method in practice. Propylene production outages 

in the U.S., due to factory closures by major companies such as ExxonMobil and Dow Chemical, 

have caused propylene prices to rise more than 100% since Q4 2016.2.5 Acetone production 

capacity has also undergone rapid increases and a corresponding decline in demand.2.6 Under 

                                                 
2.1 Clark, Jim. "Physical Properties of Phenol." Chemistry LibreTexts. N.p., 22 June 2014. Web. 14 Apr. 2017. 

<https://chem.libretexts.org/Core/Organic_Chemistry/Phenols/Properties_of_Phenols/Physical_Properties_of_Pheno

l>. 
2.2 "Toxicological Profile for Phenol." ATSDR's Toxicological Profiles (2002): Agency for Toxic Substances and 

Disease Registry, 2015. Web. 2017. 
2.3 U.S. Dept. of Health and Human Services. "Phenol." Phenol. N.p., 1989. Web. 14 Apr. 2017. <http://www.eco-

usa.net/toxics/phenol.shtml>. 
2.4 Plotkin, Jeffrey S. "What's New in Phenol Production?" American Chemical Society. ACS, 21 Mar. 2016. Web. 

14 Apr. 2017. <https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/what-s-new-in-phenol-

production-.html>. 
2.5 Joarder, Rajiv. "US Propylene Prices Up Over 100%." Spend Matters. MINTEC, 13 Feb. 2017. Web. 14 Apr. 

2017. <http://spendmatters.com/2017/02/13/us-propylene-prices-100/>. 
2.6 Peacock, Rob. "Market Outlook: Phenol/acetone Markets Are under Pressure: ICIS Consulting." ICIS.com. 

Independent Chemical Information Services, 9 June 2016. Web. 14 Apr. 2017. 
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current market conditions, the conventional reaction converts high value propylene into low value 

acetone.  

The multistep nature of this chemistry results in low selectivity for phenol and is an 

additional drawback that renders the process reliant on favorable acetone and phenol pricing for 

profitability. Furthermore, global acetone demand is expected to show decreased growth over the 

next decade. These complications render the concept of an alternative reaction chemistry to phenol, 

without the production of low value co-products, extremely intriguing.2.7,2.8 

There is also a safety concern with this method.  The Hock process generates a highly 

explosive cumene hydroperoxide intermediate with explosion limits between 0.9% and 6.5% 

volume percent in air and an autoignition temperature of 300 ℉.2.9 The multitude of issues with 

the Hock process provide the basis for proposal of our team’s novel phenol production design. 

Three years ago in 2014, a research group from the Council of Scientific and Industrial Research 

(CSIR) in New Delhi, India patented a homogenous, vapor phase, direct reaction pathway for 

phenol production from benzene using a copper-chromium-oxide catalyst.2.10 The CSIR’s direct 

route to phenol eliminates the production of acetone while increasing reaction selectivity for 

phenol. Equation 1 illustrates the irreversible chemical reaction. 

                                                 
<https://www.icis.com/resources/news/2016/06/09/10006764/market-outlook-phenol-acetone-markets-are-under-

ressure-icis-consulting/>. 
2.7 Plotkin, Jeff S. "PERP Program - Phenol, Acetone, Cumene" Phenol/Acetone/Cumene Production Cost, Process 

Technology, Supply/Demand. Nexant, 2013. Web. 14 Apr. 2017. 

<http://database.thinking.nexant.com/about/cs/news/items/PERP0910_4_Phenol.cfm>. 
2.8 Peacock, Rob. "Market Outlook: Phenol/acetone Markets Are under Pressure: ICIS Consulting." ICIS.com. 

Independent Chemical Information Services, 9 June 2016. Web. 14 Apr. 2017. 

<https://www.icis.com/resources/news/2016/06/09/10006764/market-outlook-phenol-acetone-markets-are-under-

ressure-icis-consulting/>. 
2.9 Cameo Chemicals. "Cumene Hydroperoxide." CUMENE HYDROPEROXIDE | CAMEO Chemicals | NOAA. 

NOAA Office of Response and Restoration, US GOV, 1990. Web. 15 Apr. 2017. 
2.10 US8772552, CSIR, June 2014. 
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The major competitive advantage of this method over the cumene process is its superior 

selectivity.2.11 Our team is considering licensing this technology and will attempt to recreate 

Rajaram’s et. al. findings on a large scale by designing a plant capable of producing 500MM lb 

phenol/yr with 99% purity by mass. We will attempt to design robust separation techniques capable 

of handling a wide range of possible byproducts to allow for variations in chemistry. Additionally, 

our team will analyze the financial viability of such a plant if it were to be operated on the U.S. 

Gulf Coast with an assumed uptime of 24 hr/day for 330 days/yr. The direct oxidation process 

presents a tremendous opportunity for economy of operation without an acetone by-product. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2.11 US8772552, CSIR, June 2014. 

     Cu-Cr Oxide 

𝐶6𝐻6  +  
1

2
𝑂2                                    𝐶6𝐻5𝑂𝐻 

 

(1) 
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Section 2.2: Objective Time Chart 

 

Project Leaders:             Robert Tannenbaum, Bryan Daowdat, and Gerard Hoeltzel 
 

Specific Goals: 

- Develop a plant with the capacity to generate 500MM lb 

liquid phenol/yr from benzene via direct oxidation over a 

Cu-Cr catalyst in accordance with CSIR’s patented data  

- High product purity and proper disposal of hazardous 

byproducts should be prioritized 

 

Project Scope:  

 

In Scope: 

- Produce 500MM lb liquid phenol per year 

- Produce a product with >99% phenol purity by weight 

- Determine equipment units needed and corresponding 

operating conditions 

- Determine size and bare module cost of each process unit 

- Properly design a reactor capable of carrying out the 

catalytic reaction 

- Determine best methods for disposal of hazardous 

byproducts 

- Analyze the profitability and economics of the process in the 

context of the assumptions provided in the project prompt 

along with relevant sensitivities  

                         Out of Scope: 

- Further lab work to confirm accuracy of patent data 

- Kinetic analysis of patent data 

- Manufacture required catalyst 

- Test conversion and selectivity assumptions 

- Design process control systems  

Deliverables: 

- Develop complete flowsheet illustrating the designed 

process with accurate mass and energy balances 

- Present a reasonable reactor design for the process 

- Provide block results for operating conditions of each unit 

- Financial analysis with process and pricing sensitivity 

analysis 

 

Process Development Timeline: 

- Complete mid-semester presentation by Feb. 28th, 2017 

- Complete deliverables over the course of the spring 

semester, with the final polished product complete by Apr. 

18th, 2017 
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The future market landscape for phenol remains bright despite a drastic increase in global 

production capacity and decreased demand over the last five years.4.1 Phenol is most frequently 

used as a raw material in the production of bisphenol-A (BPA) as a building block for 

polycarbonate plastic to make DVDs, tablets, flat screen TVs, and mobile phones.4.2 As the market 

stands, 46% of phenol sold is used to manufacture BPA. With the expectation that the North 

American consumer electronics market will grow with a 13.2% compounded annual growth rate 

and global electronics revenues will more than double from $1.45 trillion in 2015 to $3 trillion in 

2020, phenol demand should increase accordingly4.3. ICIS agrees, forecasting global demand for 

phenol to increase at rate of 3% per year for the next decade while claiming decreased growth in 

the acetone market.4.4 

Additionally, phenol is required as an ingredient in a range of consumer goods outside of 

its primary derivative markets.  Disinfectants, detergents, and deodorants all require phenol either 

directly or indirectly. The range of phenolic applications confers a high industrial value on the 

compound by nature of its versatility.4.5 Alkylphenols are used to produce surfactants, detergents, 

and insecticides. Cyclohexanol, a product of phenol hydrogenation, composing 8% of global 

phenol use, is an intermediate in nylon synthesis.4.6 Phenol is also used in the pharmaceutical 

                                                 
4.1 Peacock, Rob. "Market Outlook: Phenol/acetone Markets Are under Pressure: ICIS Consulting." ICIS.com. 

Independent Chemical Information Services, 9 June 2016. Web. 14 Apr. 

<https://www.icis.com/resources/news/2016/06/09/10006764/market-outlook-phenol-acetone-markets-are-under-

ressure-icis-consulting/>. 
4.2 "Versatile Polycarbonate In Different Industries." Plastics Technology. Ochre Media Group, 2016. Web. 2017. 
4.3 "Consumer Electronics to Be a US$ 3 Trillion Market by 2020." Future Market Insights. N.p., 26 Dec. 2016. 

Web. 15 Apr. 2017. 
4.4 Peacock, Rob. "Market Outlook: Phenol/acetone Markets Are under Pressure: ICIS Consulting." ICIS.com. 

Independent Chemical Information Services, 9 June 2016. Web. 14 Apr. 

<https://www.icis.com/resources/news/2016/06/09/10006764/market-outlook-phenol-acetone-markets-are-under-

ressure-icis-consulting/>. 
4.5 "Phenol - Uses." Greener Industry. EPSRC, The Royal Society of Chemistry, n.d. Web. 15 Apr. 2017. 
4.6 Weber, M., Weber, M. and Kleine-Boymann, M. 2004. Phenol. Ullmann's Encyclopedia of Industrial Chemistry.  
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industry. Salicylic acid, an intermediate in aspirin production, is produced via the Kolbe-Schmitt 

process in which liquid phenol and sodium hydroxide are reacted to make sodium phenoxide.4.7 

In 2010, annual phenol production eclipsed 10 million metric tons, or 20 billion pounds 

and has increased rapidly over the last five years. The global capacity for phenol in 2017 is 

estimated to be 13 million metric tons, or 29 billion pounds.4.8 Analyses of our planned production 

capacity in the context of these figures predict a total market share of 1.72%. 

 
         Figure 4.1. Change in global phenol capacity, or total MM tons of phenol produced from 2010 to 20174.9. 

 

InspecEthylene OxideSpecialties (INEOS), headquartered in London, stands as the largest 

incumbent phenol manufacturer, producing more than 4MM metric tons phenol/yr. INEOS has 

maintained the use of the Hock process for phenol production, taking on the risk of producing an 

acetone byproduct in stoichiometric proportion to phenol whose value has tended to fluctuate with 

                                                 
4.7 IHS. "Salicylic Acid 2003 – Chemical Production and Investment Cost." Information Handling Services. N.p., 

Dec. 2003. Web. 15 Apr. 2017. 
4.8 Peacock, Rob. "Market Outlook: Phenol/acetone Markets Are under Pressure: ICIS Consulting." ICIS.com. 

Independent Chemical Information Services, 9 June 2016. Web. 14 Apr. 

<https://www.icis.com/resources/news/2016/06/09/10006764/market-outlook-phenol-acetone-markets-are-under-

ressure-icis-consulting/>. 
4.9 Peacock, Rob. "Market Outlook: Phenol/acetone Markets Are under Pressure: ICIS Consulting." ICIS.com. 

Independent Chemical Information Services, 9 June 2016. Web. 14 Apr. 

<https://www.icis.com/resources/news/2016/06/09/10006764/market-outlook-phenol-acetone-markets-are-under-

ressure-icis-consulting/>. 
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demand in the petrochemical market.4.10 The existence of multiple reaction steps in the production 

of phenol makes it difficult to achieve high phenol yields and correspondingly introduces greater 

opportunity for undesired products. 

Our newly proposed process of producing phenol directly from benzene, using a copper-

chromium oxide catalyst with 96.7% selectivity, is a more manageable and economically viable 

synthetic route for producing phenol. This process poses a serious threat to the incumbent Hock 

process due to its potential to operate at a much higher margin given the markedly higher 

selectivity for phenol. Assuming benzene and phenol prices are aligned with those suggested by 

our marketing team, data from S&P Global Platts estimates a current profit margin of ~10% for 

the Hock process compared to ~45% for the direct oxidation pathway based on current market 

prices.4.11,4.12 

One potential disadvantage in this novel chemistry is the presence of compounds chemically 

similar to benzaldehyde. Benzaldehyde boils at 353℉ and is chemically similar to phenol, which 

makes for an energetically expensive downstream separation. We chose this compound as a 

surrogate to model the worst case of potential aldehyde byproducts. 

 

 

 

 

 

 

 

 

 

 

                                                 
4.10 "INEOS Phenol." INEOS Phenol. INEOS, 2016. Web. 15 Apr. 2017. 
4.11 Staff Reports. "Acetone:US Export Pricing Stable." S&P Global Platts. N.p., 2016. Web. 15 Apr. 2017. 
4.12 Joarder, Rajiv. "US Propylene Prices Up Over 100%." Spend Matters. MINTEC, 13 Feb. 2017. Web. 14 Apr. 

2017. <http://spendmatters.com/2017/02/13/us-propylene-prices-100/>. 

 



 

17 | P a g e  

 

Direct Route to Phenol from Benzene 

 

Daowdat, Hoeltzel, Tannenbaum 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 5 

 

Customer Requirements 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 | P a g e  

 

Direct Route to Phenol from Benzene 

 

Daowdat, Hoeltzel, Tannenbaum 

  

The project objective requires 500MM pounds of phenol to be produced per year. To 

compete with industry incumbents, high phenol purity is essential. All byproducts produced from 

the new reactive chemistry are either flushed out or left in trace amounts such that they are unlikely 

to partake in other phenolic reactions. Industry leaders like INEOS, who utilize the aforementioned 

Hock process for mass phenol production, sell a range of technical phenol grades varying from 85-

99.9 wt % phenol with water composing the remaining mass.5.1 As the largest producer of technical 

grade phenol, INEOS’s product purity represents the industry standard. 

 Sigma-Aldrich, a subsidiary of Merck, produces a reagent grade phenol product with 

weight specifications ranging from 89% phenol with 10% water and 1% unspecified impurities to 

personalized phenol orders consisting of 99% phenol with 1% unspecified impurities.5.2  

The proposed process generates a final product with 99.83% purity by mass. Benzaldehyde 

is the main impurity and composes 0.168% of the final product by mass.  A key consideration for 

our final product, compared to those sold by other producers, is the novel reactive chemistry, which 

is responsible for producing an aldehyde byproduct. Because 98% of production plants use the 

same process, purity levels between technical grade phenol have little variation.  

The direct route to phenol via benzene oxidation over a copper chromium catalyst produces 

a new phenol product given the assumed impurities. It should therefore be treated as such, with 

acknowledgment that reaching the same product specifications as a process with distinctly 

different chemistry is physically impossible. The chemistry of this reactive pathway assumes the 

production of small amounts of aldehydes as well as organic acids. A final liquid product purity 

                                                 
5.1 "INEOS Phenol." INEOS Phenol. INEOS, 2016. Web. 15 Apr. 2017. 
5.2 "Reagent Grade Phenol." Phenol. Sigma-Aldrich, 2017. Web. 15 Apr. 2017. 
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of 99.83% by weight positions our product well towards the forefront of the phenol production 

industry.  

The developed process design marginally surpasses the project goal and is capable of 

generating 505MM lb of liquid phenol per year. Slight overproduction was accounted for in case 

a small amount of phenol is lost elsewhere in the process; this loss was not accounted for in the 

ASPEN process simulation.  

The proposed design specifically produces liquid phenol to meet the most common phenol 

customer requirements: industrial manufacturers seeking to use phenol in the production of 

bisphenol-A, alkylphenols, salicylic acid, phenol formaldehyde resin, and a wide range of 

additional phenolic resins. Phenol alkylations are carried out predominantly in the liquid phase as 

are condensation reactions involving phenol such as the production of Bisphenol-A.5.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
5.3 Fiege, H., Voges, H.-W., Hamamoto, T., Umemura, S., Iwata, T., Miki, H., Fujita, Y., Buysch, H.-J., Garbe, D. 

and Paulus, W. 2000. Phenol Derivatives. Ullmann's Encyclopedia of Industrial Chemistry.  
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Section 6.1: Reactor Temperature, Pressure, and Pressure Drop 

The optimal reactor conditions were determined from patented data to be 662 ℉ and 580 

psig6.1. Deviations from these conditions prove to significantly decrease selectivity for phenol 

while increasing benzene conversion. The combination of these two phenomena drastically 

decrease phenol yield, increase the presence of unwanted byproducts, and waste valuable benzene 

feedstock. Concern over maintaining optimal reactor conditions emerged from our desired product 

purity goal of greater than 99% phenol by mass. Additionally, an increase in conversion and 

decrease in reaction selectivity would increase the energy requirements on downstream separation 

processes. Specific reaction data can be found in Tables 1 and 3 in Appendix 2, pgs. 154 and 155. 

Patented data indicates that reaction conversion is greatly affected by extreme changes in 

pressure. However, under the current design, the pressure drop through each reactor vessel is 2.14 

psi. This value is low enough to assert that pressure drop through each reactor bed is insignificant 

to process quality. 

 

Section 6.2: Unreacted Benzene Recovery 

Given the low benzene conversion for the reaction, the percent of unreacted benzene 

recovered in the recycle stream was a crucial variable for project value. A detailed sensitivity 

analysis of the impact of this variable on project net present value (NPV) can be found in Section 

20, pg. 130. Downstream separation vessels were optimized to recover as much benzene as 

possible because profitability is dependent on a greater than 78.4% unreacted benzene recovered.   

 

                                                 
6.1 US8772552, CSIR, June 2014. 
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Section 6.3: Phenol Product Purity and Production Capacity 

To generate a competitive phenol product, final purity must be at least 99% phenol by 

mass. This desired mass composition along with our production goal of 500MM lb phenol/yr were 

requirements for the final process and necessitated the development of more rigorous downstream 

separation techniques. The operating conditions for each process unit were determined using these 

goals as guidelines. 

 

Section 6.4: Phenol Storage Temperature 

It is also of critical importance that our final product be stored at a temperature above its 

high melting point of 105 ℉ to avoid phenol solidification. Our team designed a heated storage 

tank complete with a pump-around heat exchanger to maintain the necessary temperature 

requirements for liquid phenol. This pump-around should be designed with a process control unit 

to ensure liquid phenol stability regardless of seasonal temperature variations.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

23 | P a g e  

 

Direct Route to Phenol from Benzene 

 

Daowdat, Hoeltzel, Tannenbaum 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 7 

 

Product Concepts 
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Section 8 

 

Superior Product Concepts 

 
N/A 
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As previously mentioned, the Hock process is the most widely used method to produce 

phenol. The synthesis is reliant on the oxidation of cumene to cumene hydroperoxide. The 

synthesis of benzene through this method requires the alkylation of benzene by isopropanol or 

propylene, which yields cumene that is oxidized to cumene hydroperoxide and undergoes acid 

cleavage to produce major products phenol and acetone.9.1 The principal issues with the 

conventional phenol production pathway are the presence of acetone as the major byproduct and 

the low yield of phenol. The annual growth rates for acetone and phenol are estimated to be 2% 

and 3%, respectively, through the next decade.9.2 

 The Hock process also presents chemical and safety concerns as both the oxidation of 

cumene and the acid cleavage of its hydroperoxide derivative are highly exothermic reactions. 

While the proposed process is also exothermic, the reactivity of benzene is less than that of 

cumene, as seen by their lower and upper explosion limits (LEL, UEL). For benzene, the LEL and 

UEL are 1.3 and 7.9 % by weight respectively. For cumene, the LEL and UEL are 0.9 and 6.5 % 

by weight.  To handle the formation of cumene and cumene hydroperoxide, reaction and design 

equipment would need to be more expensive to guarantee worker safety.  

Forecasted growth in the phenol market is a result of of rising demand for the main phenol 

derivative BPA. This surge in demand is attributable to the versatility of BPA as it is used to 

produce polycarbonate plastics and epoxy resins. Polycarbonate is valuable due to its lightness and 

its high thermal, impact, and electrical resistance. Polycarbonate plastics are used across a plethora 

of industries. Eyeglass lenses, police visors, sports helmets, vehicles, medical devices, food 

                                                 
9.1 PERP Program, Nextant, 2013, 

http://database.thinking.nexant.com/about/cs/news/items/PERP0910_4_Phenol.cfm. 
9.2 American Chemical Council, Henteges Steve, February 2014 http://factsaboutbpa.org/benefits-applications/why-

bpa. 
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containers, electronic casings, and media discs can all be made with polycarbonate plastic.9.3 

Epoxy resins are a type of thermoset plastic known to exhibit high impact and chemical resistance 

along with strong adhesion. Epoxy resins are used to create wind turbine blades, electrical 

equipment, vehicle and metal coatings, aerospace equipment, and marine equipment. More uses 

for BPA are still being discovered, indicating that its global demand will continue to increase. 

Because the production of BPA requires phenol and acetone in a 2:1 molar ratio, growth in the 

phenol market has tended to outpace that of acetone9.4. The difference in stoichiometric quantities 

limits the market value of acetone, as phenol producers will have a surplus of low-value acetone. 

Despite being introduced in 1944, the main reason that the Hock process remains the principal 

process is the lack of a viable alternative reaction pathway.  

Since the mid-20th century, patents pertaining to phenol production have primarily focused 

on improvements to the current process rather than an alternative. One example is a European 

patent filed by Mitsui Petrochemical LTD in 1989. The patent application proposed a method to 

reduce the acetone byproduct through the integration of a recycle loop.9.5 The recycle stream, 

containing acetone separated from phenol, is hydrogenated to isopropanol, then returned to the 

reactor for benzene alkylation. This patent would reduce the operating cost, as less isopropanol 

would be needed to achieve similar yields.  

Another example is a patent filed in 2003 to increase the efficiency of phenol separation 

from a cumene mixture. The patent was intended to improve upon the downstream separation of a 

                                                 
9.3 American Chemical Council, Henteges Steve, February 2014 http://factsaboutbpa.org/benefits-applications/why-

bpa. 
9.4 Plotkin, Jeff S. "PERP Program - Phenol, Acetone, Cumene" Phenol/Acetone/Cumene Production Cost, Process 

Technology, Supply/Demand. Nexant, 2013. Web. 14 Apr. 2017. 
9.5 EP0371738A2, Mitsui Petrochemical Industries, November 1989. 
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variation of the Hock process that increases phenol yield while decreasing operational and utility 

costs.9.6 

To avoid potential cumene-related issues, research sought to oxidize something other than 

cumene. Shell Corp. filed and published a patent in 2005 to produce phenol through the oxidation 

of s-butylbenzene. The principal advantage of Shell’s process is that the acid cleavage of s-

butylbenzene hydroperoxide produces methyl ethyl ketone (MEK).9.7 The patent also contains data 

to produce phenol by oxidizing a mixture of s-butylbenzene and cumene. MEK can be used as a 

lacquer or resin solvent, and has a higher commercial value than acetone despite lower demand. 

Chemically, both MEK and acetone have similar properties, but MEK is considered a specialty 

chemical. Shell acknowledges this constraint by outlining a proprietary process that oxidizes a 

mixture of certain alkylbenzenes which can be adjusted to meet demand requirements of MEK.9.8 

No true alternative route for producing phenol was found until ExxonMobil patented a 

process in 2010 that produced phenol and cyclohexanone from benzene without the use of 

isopropanol or propylene. ExxonMobil’s patented process claimed to increase phenol yield, 

produce a co-product that is in high demand in cyclohexanone, and improve the overall safety of 

phenol production. Principal advantages of this process include the absence of propylene, which 

is growing more expensive, and the production of cyclohexanone. Cyclohexanone has high 

industrial demand for its uses as a solvent, lacquer, additive to lubricating oil, and as an 

intermediate for nylon production.9.9 Due to ExxonMobil’s presence in industry, cyclohexanone is 

especially valuable as it can be used within the company and the surplus can be sold for a profit. 

                                                 
9.6 US6583326B2, June 2003. 
9.7 WO200407423OA1, Shell Corporation, November 2005. 
9.8 WO2010098916A2, ExxonMobil, September 2010. 
9.9 National Center for Biotechnology Information. PubChem Compoud Database; CID=7697, 

https://pubchem.nchi.nih.gov/compound/7967. 
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The development of such a process presents a considerable market advantage, but the issue of a 

co-product and costly separation persists.   

 In 2012, a group of researchers from CSIR filed to patent a process that produces phenol 

from benzene in a direct route without any major co-products. The patent was published in June 

of 2014, and presents a number of advantages from a chemical standpoint. The process is 

composed of a single step, utilizes one catalyst, results in desirable yield, and produces no 

significant or dangerous byproduct.9.10 The CSIR team’s process uses air to oxidize benzene over 

a Cu-Cr oxide catalyst. The use of a single catalyst with significant longevity presents an 

opportunity to reduce the cost of phenol production. This report’s goal is to determine the 

economic viability of this process under conditions derived from the patent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
9.10 US8772552, CSIR, June 2014. 
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Preliminary Process Synthesis 
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Section 10.1: Initial Considerations 

Benzene is a major chemical product derived from petroleum that is typically used to produce 

phenol. The conventional process used to produce phenol first requires the production of cumene 

through the alkylation of benzene with propene or isopropanol over a zeolite acid catalyst: 

                                                           𝐶6𝐻6 + 𝐶3𝐻6 →  𝐶9𝐻12                        (2) 

 

Cumene is then oxidized to produce cumene hydroperoxide: 

 

                             𝐶9𝐻12 + 𝑂2 → 𝐶9𝐻12𝑂6                           (3) 

  

Cumene hydroperoxide undergoes acidic cleavage to produce phenol and acetone: 

 

                                                        𝐶9𝐻12𝑂2 → 𝐶6𝐻5𝑂𝐻 + 𝐶3𝐻6𝑂                                        (4) 

 

Figure 10.1 shows the current cumene-based phenol synthesis. 

 

 

 

The CSIR research group proposes a single-step vapor oxidation of benzene with air over 

a Cu-Cr catalyst to produce phenol with no major byproducts. The project goal is to optimize the 

CSIR process to produce 500MM lb/year of phenol and determine economic feasibility. The 

project statement provided multiple assumptions. The process will be run at a plant complex on 

the United States Gulf Coast, the Cu-Cr oxide catalyst is purchased from a vendor, liquid benzene 

Figure 10.1: Equations (2) through (4) are depicted. The current indirect route is flawed, as the profitability of the 

process is dependent on the cost of propene and the value of acetone. The demand for propene is rising faster than 

supply, which will increase the price of propene for the near future. The markets for both phenol and acetone are 

growing, but due to the large supply of acetone it is not a valuable co-product. 
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is available on site for $1,100/metric ton, and phenol is valued at $2000/metric ton.10.1 Industrial 

consultants recommended a plant uptime of 330 days/yr, 24 hr/day. The minimum phenol 

production rate needed to meet the yearly goal is 63,100 lb/hr. Project profitability requires a fresh 

benzene feed flowrate less than 115,000 lb/hr, based on pricing assumptions from our marketing 

team. 

To realistically model the process, byproducts of catechol, benzoic acid, and benzaldehyde 

are assumed. Benzoic acid and benzaldehyde model potential categories of byproducts from the 

under-oxidation of benzene. The formation of cyclohexadiene-aldehyde and hexadiene-acid is 

more likely; however, benzoic acid and benzaldehyde have boiling points similar to these 

compounds and have thermodynamic data present in the ASPEN Database. The close boiling 

points of these assumed byproducts require a more robust downstream separation. The 

development of rigorous separation units allows the proposed process to remove byproducts with 

greater relative volatilities than those assumed to allow for slight variation in process chemistry. 

Benzene polymerization is also a possibility, leading to the formation of relatively dense 

hydrocarbons. If complete combustion were to result in the formation of carbon dioxide, 

downstream removal of non-condensables is rigorous enough to handle it. Due to the high reaction 

temperature and pressure, we ensured that the mass concentration of oxygen in the reactor was less 

than 5% to avoid explosion limits. Catechol served as a model for the product of benzene over-

oxidation, as previous research reported its presence in benzene oxidation. Table 10.1 shows all 

the reactions modeled in the design. 

 

 

 

                                                 
10.1 Direct Route to Phenol from Benzene, Suggested Design Projects, Bruce M. Vrana. 
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Reaction Product(s) Fraction 

Conversion [%] 

∆𝑯𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 

(BTU/hr) 

𝐶6𝐻6 +
1

2
𝑂2 → 𝐶6𝐻5𝑂𝐻 

 

(1) 

Phenol 12.100 -5.4x107 

7𝐶6𝐻6 +
15

2
𝑂2 → 6𝐶7𝐻6𝑂2 + 3𝐻2𝑂 

(5) 

a. Benzoic Acid 

b. Water 

0.025 -3.9x104 

7𝐶6𝐻6 +
9

2
𝑂2 → 6𝐶7𝐻6𝑂 + 3𝐻2𝑂 

(6) 

a. Benzaldehyde 

b. Water 

0.025 -1.9x104 

𝐶6𝐻6 + 𝑂2 → 𝐶6𝐻6𝑂2 
 

(7) 

Catechol 0.350 -3.1x106 

 

The contents of Table 10.1 reflect assumptions and information from the CSIR patent. 

Reaction conditions were determined to be 662 °F and 580 psig. At these conditions, the patent 

provides data for benzene conversion, phenol yield and selectivity at various liquid hourly space 

velocities (LHSV). The LHSV of benzene is given in units of [
𝑚𝐿 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑔𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
], where mL benzene is 

assumed to correspond to total volumetric flow through our reactor. An LHSV of 100 
𝑚𝐿 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑔𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
= 

1.60 
𝑓𝑡3 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑙𝑏𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
  matches with a 12.5% conversion of benzene, 12.1% yield of phenol, and 

selectivity of 96.7%. The LHSV chosen gives low conversion but high selectivity. High selectivity 

is preferable as it reduces the amount of impurities in the process while low conversion requires 

high benzene recovery for an optimal process design. A higher value for LHSV could have been 

chosen to improve selectivity, but would result in significantly lower conversion of benzene. High 

conversion occurs at low LHSV but is unrealistic to meet the design goal of 500MM pounds. The 

low conversion at reaction conditions indicates that a sizable recycle stream of unreacted benzene 

Table 10.1: The reactions modeled, their fractional conversion in percent, and product(s) produced are shown. 

Values for conversion are taken from the patent and estimated using an RGIBBS reactor in ASPENPlus9 at 

reaction conditions. Combustion produces water and carbon dioxide, if not modeled in table, production is trace. 

The heats of reactions included are calculated using ASPEN data and fractional conversion.  
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is necessary and will be an important design consideration. The viability of the CSIR process 

depends on the amount of unreacted benzene recovered. The heat of reaction data in Table 10.1 is 

calculated using information from ASPEN. The block report for the reactor calculated the heats of 

reactions per lbmol and the extents of reaction from the fractional conversion. All reactions 

included are exothermic and the high amount of heat released is an important design consideration. 

Due to the elevated levels of temperature and pressure in the reactor, certain heat exchangers will 

require heating oil as a heat transfer media, as later discussed in Section 14, pg. 65. Heating oil is 

able to withstand elevated temperatures without undergoing any phase change, unlike cooling 

water which would likely form a steam envelope and inhibit the transfer of heat. 

The difference between conversion and yield indicates the presence of multiple reactions. 

The possible concentrations of significant products in the side reactions were determined using an 

RGIBBS reactor in ASPEN. This analysis led to the assumption that carbon dioxide would not be 

a major byproduct of this process. As previously mentioned, in the event that this assumption is 

proven wrong in practice, the downstream separation is robust enough to handle the presence of 

an additional non-condensable chemical. Exact mass flow rates were determined with information 

from the project statement and the patent. The presence of NO2 was initially assumed, but after an 

RGIBBS analysis, it was excluded due to a reaction temperature below 1000 °F.  

The size of all equipment included in the process needs to account for transportation, 

meaning that no piece should be wider than 18 ft, the average roadway width in the United States. 

Both phenol and benzene are highly toxic, even at low concentrations. The design of the process 

must employ proper safety considerations, such as a flare system, to meet or exceed all 

environmental standards.   
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Section 10.2: Separation 

 To ensure effective separation, all components of the process were investigated for the 

presence of azeotropes. Due to the low conversion of benzene in the process, benzene-phenol 

interactions were also considered. The Journal of Chemical and Engineering Data provides 

evidence that phenol and benzene do not form an azeotrope.10.2 Interactions with water were also 

considered due to its presence as a byproduct. Water exhibits an azeotrope with both benzene and 

phenol, but the mole fraction of water in the process is well below the azeotropic value.10.3 The 

assumed production of benzaldehyde in the process presents a potential problem, as an azeotrope 

with phenol forms at 366 °F.10.4 The concentration of the aldehyde product in the process is not 

high enough to form an azeotropic interaction but presents a separation issue due to its comparable 

boiling point. Phenol boils at 359 °F while benzaldehyde boils at 353 °F under ambient pressure. 

The benzaldehyde is a detriment to the purity of phenol produced. 

 In the single-step synthesis of phenol from benzene, air is the oxidizing agent, resulting in 

the presence of unreacted oxygen and nitrogen along with the byproducts of benzoic acid, 

benzaldehyde, catechol, and water in the reactor effluent. Full conversion of oxygen is improbable. 

Industrial consultants recommended using a conversion around 90% for a more realistic design. 

In preliminary design, the reactor effluent was fed directly into an absorption column to 

separate non-condensables and organics. The organic stream entered a distillation column with 

two liquid outlets and one vapor outlet. The vapor stream contained a significant amount of 

benzene and was recycled to the reactor. The liquid stream taken off the condenser contained the 

                                                 
10.2 Journal of Chemical & Engineering Data, Vol. 43, No. 6, Neinhaus et.al, 1998. 
10.3 Azeotropic Data for Binary Mixtures, University of Oregon, 2014. 
10.4 ChemIndustry, 2010, http://chemindustry.ru/Benzaldehyde.php. 
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non-condensables with small amounts of benzene and phenol. The bottoms liquid product stream 

was split, with one partition cooled and returned to the absorption column, and the other to be 

further processed. The cooled liquid stream returned to the absorption column to function as both 

a solvent that strips vapor phenol from the reactor effluent, and a coolant that reduces outlet 

temperature. The preliminary process can be seen in Figure 10.2. 

 

 

The absorption column was effective in removing the non-condensable species and the 

distillation column in separating benzene and phenol, but there were several drawbacks to this 

design. The need to feed cooled phenol to the absorption column created an additional recycle loop 

and a more complex design problem. The separations occurred at high temperature and pressure, 

resulting in extreme downstream operating conditions and large energy requirements. We realized 

that the inclusion of valves and heat exchangers prior to the downstream processes could allow for 

more moderate separation conditions. The preliminary design shown needed an additional 

distillation column to further purify phenol to meet customer requirements. The use of an 

Figure 10.2: Preliminary Process Flow Diagram. Shown is a preliminary design consideration consisting of an 

absorption column and a distillation column as the main separation vessels. 
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absorption tower was expensive and ultimately deemed unnecessary. The purpose of the 

absorption column was to remove volatile impurities, and can be accomplished by alternatively 

using a flash drum. The use of a flash drum removes the need for a recycle loop and significantly 

reduces cost. 

The first separation event in the final design uses a flash drum to exploit volatility 

differences between non-condensables and heavier reaction products to remove gaseous species. 

Similar to the absorption column, the flash drum removes most of the nitrogen and unreacted 

oxygen, but some of the benzene is present. Current design conditions remove 90.6% nitrogen by 

weight with the flash drum. The removal of nitrogen is necessary to ensure that further downstream 

separation vessels are of reasonable size, as the nitrogen has the highest volumetric flow. Three 

distillation columns are used, the first to achieve separation between benzene and phenol. The 

second column separates phenol and catechol. The benzene stream from the first column is 

recycled to the beginning of the process. The amount of unreacted benzene recycled was 

determined using the prices of benzene and phenol given. For a profitable process, 85% of 

unreacted benzene needs to be recycled. This value does not include any process or equipment 

cost, meaning that the percent recycled will only increase. The third column purifies phenol from 

benzaldehyde to meet customer purity specifications of 99.8% by mass. Catechol is repurposed 

within the process as fuel to the furnace. Downstream columns are operated at close to ambient 

pressure to ensure reasonable equipment costs. The similar boiling points of phenol and 

benzaldehyde result in an undesirable amount of benzaldehyde in the purified phenol. The choice 

of benzaldehyde as a byproduct may not be realistic, but its similarity to phenol requires a more 

rigorous separation than may be needed. The performance of the distillation columns are meant to 

account for various non-condensable species not explicitly mentioned in the proposed design. 
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Section 10.3: Reactor Considerations 

 Liquid benzene is available on site and will require a significant amount of energy to reach 

reactor conditions. Similarly, the air fed to the process needs to be compressed to reach reactor 

conditions. The reactions included in the direct synthesis release over 5.7x107 BTU/hr, which was 

used to develop a heat exchanger network in which the reactor effluent pre-heats the reactor feed. 

The thermal energy capable of being transferred from the reactor effluent is not sufficient to fully 

heat the reactor feed but decreases utility costs. 

 The size of the reactor depends on the stoichiometry of the reactions, shown in equations 

(1), (5) to (7), and the mass of the catalyst.  The LHSV of 100 
𝑚𝐿 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑔𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
 =1.60 

𝑓𝑡3 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑙𝑏𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
 is used 

to determine the mass of catalyst required, along with the pressure drop in the reactor and its 

diameter, as detailed in Section 15.1.3, pg. 76. 

 Based on the information in the patent, the process is sensitive to temperature, as selectivity 

declines sharply above 662 °F (Appendix 2, pg. 154). To account for the change in separation due 

to the products of common side reactions not included, the columns are designed to remove all 

potential impurities dissimilar to phenol, as modeled with the inclusion of benzaldehyde. Separate 

reactor vessels with intercoolers were designed in an effort to keep the reactor vessels reasonably 

isothermal. The temperature rise in the vessel was determined by setting the heat duty of the reactor 

to 0 BTU/hr and recording the corresponding adiabatic temperature rise. The number of reactor 

vessels was determined from this overall temperature increase and by assuming a permissible 

temperature fluctuation of 54 °F per reactor unit.  
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Section 11.1: Input Costs 

 To produce phenol with the CSIR process, benzene and oxygen are required as feedstocks. 

The project statement provides a benzene purchasing cost of $1,100/metric ton and a selling price 

of phenol to be $2,000/metric ton. To reduce variable costs, ambient air was used as the source of 

oxygen. Water and steam prices were taken from Chapter 17 of Seider et. al, 2017. To meet safety 

standards and improve heat integration strategy, we employed the use of a flare system and hot oil 

furnace. The flare and furnace use natural gas for fuel. Its market price was taken from Bloomberg 

Energy. 

 

Section 11.2: ASPEN Simulation 

 Our team used ASPEN Plus v9 to simulate the entire design process. Initially, the non-

random two-liquid model (NRTL) was chosen to account for potential azeotropes. Early 

simulations confirmed that the low amount of water would not cause great separation difficulty. 

To improve the thermodynamic data for chemically similar hydrocarbons, the Peng-Robinson 

model was used. Gaseous interactions were considerable because the CSIR process is a vapor-

phase oxidation. The Peng-Robinson equations of state, compared to other models, more 

accurately predict the behavior of chemical species near their critical points.  

 The design process used a single RSTOIC block to model the total reactor scheme. Heaters, 

turbines, and compressors were used to account for temperature and pressure changes. A HEATX 

block was used to model the main exchanger for heat integration. The distillation columns were 

modeled with RADFRAC blocks. The initial inputs for the RADFRAC blocks were estimated 

using DSTWU blocks. RADFRAC blocks were necessary to more accurately model separation 
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events because they perform more rigorous calculations than DSTWU to account for components 

in small concentrations.  

 Operating conditions for the distillation columns were determined through the use of 

design specifications to ensure phenol purity while also optimizing reflux ratio. To improve 

efficiency and reduce utility costs, all separations were conducted close to ambient pressure. 

 Benzene is a highly toxic substance and known carcinogen. OSHA regulations state that a 

concentration greater than 500 ppm poses immediate danger to life and recommends a peak 

concentration of no more than 50 ppm.11.1 Phenol is also toxic, with OSHA regulating exposure to 

5 ppm.11.2 Environmental discharge is highly discouraged for both benzene and phenol. The 

hazardous nature of these chemicals inspired the inclusion of a flare system to combust benzene 

and a storage tank for phenol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
11.1 Benzene SDS, Chevron Phillips, 2016. 
11.2 Phenol SDS, Sigma Aldrich, 2016. 
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Section 12 

 

Process Flow Diagrams & Material Balances 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 | P a g e  

 

Direct Route to Phenol from Benzene 

 

Daowdat, Hoeltzel, Tannenbaum 

  

Section 12.1: General Process Definitions 

 

Ambient Conditions: 86 °F and 0.0 psig 

Reaction Conditions: 662 °F and 580.1 psig 

High Pressure Steam (hps): 500 psig 

Low Pressure Steam (lps): 15 psig 

Heat Transfer Media (htm): Heat transfer oil12.1 with cp= 0.645 BTU/(lb-°F) 

Cooling Water (cw): available at ambient conditions 

Boiler Feed Water (bfw): available at the saturation point of 15 psig steam  

 

   refers to a stream entering or leaving the entire process  

 

 

 

 

   refers to a stream moving between different process sections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
12.1 Shell Heat Transfer Oil S2 TDS, Shell Corp, August 2010. 
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Section 13.1: Section 000-Feed Storage 

A benzene storage tank is employed to hold one day’s worth of feedstock. This was chosen 

to prevent against a complete production halt due to on site pipeline malfunctions, or to increase 

production on days with greater demand. Stream 3 feeds into the process at a rate of 65,616 lb/hr 

at ambient conditions. The specification sheet for the feed storage tank can be found in Section 16, 

pg. 103.  

 

Section 13.2: Section 100- Feed 

 To account for pressure drops across heat exchangers and reactors, the fresh benzene is 

pumped above reaction pressure. Benzene recycled from the process is also pumped to this same 

pressure and then combined with the fresh feed. The two benzene sources are pumped separately 

to prevent any partial vaporization that would occur if the two streams were mixed prior to 

pressurization. The mixed stream proceeds to process section 200. Ambient air passes through the 

three-stage multi-stage air compressor at a rate of 56,573 lb/hr and is pressurized to reaction 

pressure. Intercoolers with cooling water are used here to ensure that extreme temperatures do not 

affect the structural stability of the equipment. The pressurized air is then passed to process section 

200. Specification sheets for the pumps and compressor can be found in Section 16, pgs. 92-94. 

 

Section 13.3: Section 200- Reactor 

 The mixed benzene in stream 5 is pre-heated using a counter-current heat exchanger which 

also slightly cools and partially condenses the vapor effluent leaving in stream 9. The cold outlet 

in stream 6 is then heated up to slightly above reaction conditions using heating oil. The benzene 

is then mixed with the cooler air and stream 8 is fed into the reactor at reaction conditions. Oxygen 
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concentration within the reactor is 2.6% by mass, which is below the maximum allowable level of 

5% for explosion considerations. The process is designed to assume a realistic oxygen limiting 

reagent conversion of 91.4%.  

 For the purposes of simulation, the reaction is assumed to be carried out in a single packed 

bed reactor vessel at the isothermal and isobaric conditions described in the patent. In reality, we 

propose separating the reactor into four equivalent stages, each assumed to account for one fourth 

of the total benzene converted. A total adiabatic temperature rise, due to the highly exothermic 

reactions, was determined to be 216 °F. An allowable temperature rise per reactor unit was set at 

54 °F, which would necessitate 4 reactor stages with 3 intercoolers. The flow in each packed bed 

section is designed to go from the bottom to the top. The reactor inlet would be fed at 27 °F below 

reaction conditions, allowed to raise the 54 °F, and would leave each reactor stage at 27 °F above 

reaction conditions. After each intermediate reactor stage, the effluent is cooled back down to feed 

conditions via heating oil (see Section 14.1, pg. 65). The ability of heating oil to withstand elevated 

temperatures without undergoing any phase change makes it the preferred heat transfer media for 

cooling the reactor. Cooling water used under these same conditions would likely form a steam 

envelope and greatly diminish the operational heat transfer coefficient. Reactor design allows for 

the average temperature across each reactor stage would be the isothermal reactor temperature 

given in the patent. A liquid hourly space velocity  (LHSV) of 100 
𝑚𝐿 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑔𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
 =1.60 

𝑓𝑡3 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑙𝑏𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
 was 

chosen from the patent data (as discussed in Section 10.1, pg. 33), and catalyst volume, total reactor 

dimensions, and total pressure drop across the reactor were determined accordingly (see Section 

15.1.3, pg. 76). The pressure of the feed streams would be slightly higher than reaction conditions, 
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such that the average pressure across the reactor vessel would be the isobaric reactor pressure given 

in the patent.  

 To preheat the reactor feed, exchanger E-201 is used to cool the reactor effluent by 

transferring 88,350,260 BTU/hr of thermal energy from the effluent to the feed. This cooling 

process partially condenses the effluent of this vapor phase reaction, requiring two nozzles at the 

outlet of the heat exchanger for the vapor and liquid effluent phases. These two separate phase 

effluent streams are then sent to section 300. Specification sheets for the effluent heat exchanger 

and reactor vessels can be found in Section 16, pgs. 97-98. 

 

Section 13.4: Section 300- Separations 

 Based on thermodynamic results from ASPEN, operating conditions of 110.1 °F and 145 

psig were chosen for the flash drum to maximize off-gassing of the non-condensable oxygen and 

nitrogen at 98%, while also minimizing benzene loss to 0.8%. Turbines are employed to help lower 

the pressure of streams 10 and 11 to flash conditions and recover useful work in the form of 2239 

kWh of electricity (see Section 14.1, pg. 65). Each effluent stream is then cooled with boiler feed 

water to a temperature of 285 °F to produce a total of 40,772 lb/hr low pressure 15 psig saturated 

steam for use in section 500 of the process. Excess low pressure steam produced will be sold 

elsewhere within the plant complex (see Section 15, pg. 50, Section 14.1, pg. 65, Section 19, pg. 

119). A temperature approach of 35 °F was used to ensure the occurrence of nucleate boiling. 

Streams 14 and 15 are then cooled the remainder of the way using cooling water. The flash vapor 

is collected in a flare hood and sent to section 400 for environmental abatement procedures. Design 

of the flash drum can be found in Section 15.1.4, pg.78.  
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 After off-gassing, the liquid exit from T-301 is fed to the first distillation column, T-302, 

whose main purpose is to separate the benzene and remaining non-condensables from phenol and 

the other organic byproducts. Design of distillation column 1 can be found in Section 15.1.4, pg.79. 

Operating at a condenser pressure of 5.3 psig, the column uses 32 trays to separate the remaining 

non-condensables from the bottoms stream 23. The partial condenser, with a distillate vapor 

fraction of 0.02, produces one vapor and one liquid distillate stream at 172.4 °F using cooling 

water. The liquid distillate in stream 21 is then fed back around to section 100 to act as the process 

benzene recycle stream. This column was optimized to reach a benzene recycle of 97.7% of the 

total unreacted benzene leaving the reactor in stream 9. A thermosiphon reboiler uses high pressure 

steam to maintain a temperature of 389.8 °F. The vapor distillate and the bottoms product continue 

on to process section 400. A shutdown pump, P-303, is included for shutdown operations, to aid 

the transfer of remaining liquid to the next process section in the absence of normal fluid pressure. 

Specification sheets for the two turbines, flash drum, and distillation column can be found in 

Section 16, pgs. 95-96, 99-100. 

 

Section 13.5: Section 400- Purification 

 The bottoms product from the first column is sent to distillation column 2 to separate out 

the heavy byproducts, which are represented in our simulation as catechol and benzoic acid. 

Distillation column 2 was designed much more rigorously than would be necessary in practice, 

due to the similar chemical structures of phenol and catechol. Other potential heavy products 

would likely be even heavier and thus more easily removed. The methods used to design 

distillation column 2 can be found in Section 15.1.4, pg. 81. Operating at a condenser pressure of 

5.3 psig, the column uses 20 trays to separate phenol and benzaldehyde from benzoic acid and 
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catechol. The partial condenser, with a distillate vapor fraction of 0.01, aids in the slight removal 

of some of the benzaldehyde and produces two distillate streams at 377.1 °F using cooling water. 

This column was optimized to remove 99.98% of the catechol and 100% of the benzoic acid. A 

thermosiphon reboiler uses high pressure steam to maintain a temperature of 476.1 °F. The vapor 

distillate is taken off and combined in a collection hood with the vapor exit from T-301 and vapor 

distillate from T-302. These vapors are then sent to a flare system. Based on consultant 

recommendations, approximately 10,000,000 BTU/hr of natural gas are used to fuel an auto-

oxidation reaction to safely dispose of environmentally hazardous compounds. A shutdown pump, 

P-402, is included for shutdown operations, to aid the transfer of remaining liquid to the next 

distillation column in the absence of normal fluid pressure.  

 The liquid distillate in stream 25 is pumped into the lower half of distillation column 3 at 

stage 16. The purpose of distillation column 3 is to perform the most rigorous separation of the 

entire process between phenol and benzaldehyde, which are extremely close boilers within 7 °F of 

each other at the column pressure of 10 psig. The methods for designing distillation column 3 can 

be found in Section 15.1.4, pg. 83. Since phenol is the heavier component, we proposed pulling 

the phenolic product off as a vapor at stage 20, which ensures the greatest purity. This also accounts 

for the possibility of further removal of any other heavy products that weren’t removed in column 

2. Since benzaldehyde serves as a placeholder chemical for a category of potential byproducts and 

is a much closer boiler to phenol than any real potential byproduct, we assert that our purification 

system is more than sufficient to attain a desired purity of 99.8% phenol by mass. Using our 

placeholder chemicals, the product purity in stream 29 was optimized to be 99.83% phenol by 

mass.  Operating at a condenser pressure of 5.3 psig, the column uses 22 trays to separate phenol 

from remaining organic impurities. A total condenser, used here at 303.6 °F with cooling water, is 
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an allowable simplification since all non-condensables should have been previously removed from 

the process. A thermosiphon reboiler uses high pressure steam to maintain a temperature of 395.6 

°F. A shutdown pump, P-405, is included for shutdown operations. The bottoms products of the 

two distillation columns are combined with the liquid distillate of column 3, and sent to section 

500 to be stored for use as furnace fuel to help offset the need for natural gas. The desired product 

stream 29 is also sent to the next process section for storage. Specification sheets for the two 

distillation columns can be found in Section 16, pgs. 101-102.  

 

Section 13.6: Section 500- Product Storage 

 As was the case with the two effluent streams in section 300, the two streams 29 and 31 

sent to the storage section are cooled with boiler feed water to a temperature of 285 °F to produce 

a total of 17,873 lb/hr low pressure 15 psig saturated steam for use in this storage section and the 

excess to be sold (Section 14.1, pg. 65, Section 19, pg. 119). A temperature approach of 35 °F was 

used to ensure the occurrence of nucleate boiling. Streams 32 and 33 are then cooled the remainder 

of the way using cooling water. These insulated storage tanks are maintained at 113 °F and just 

above ambient pressure to ensure that the phenol product does not crystallize, as it would at 

ambient temperature. Each phenol storage tank is designed to hold up to one week’s worth of 

product to account for variability in demand on-site and for distributors. This storage system also 

helps to account for variability in production while still maintaining enough product for the 

demand (see Section 15.1.5, pg. 86). The byproducts storage tank is designed to hold up to one 

day’s worth of byproducts to allow for variability in natural gas availability, as well as to ensure 

that there is enough byproduct fuel to burn because of the relatively low flowrate of stream 35 (see 

Section 15.1.5, pg. 87). The pump-around flow of each phenol tank is 20,226 lb/hr to combat the 
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155,166 BTU/hr of heat lost through the insulation. The pump-around flow of the byproduct tank 

is 965 lb/hr to combat the 7,496 BTU/hr of heat lost through the insulation. The hourly flowrate 

of stream 34 of 63,256 lb/hr corresponds to 500,987,520 lb/operating-year which meets the process 

design criteria. Specification sheets for the storage tanks can be found in Section 16, pgs. 104-105.  
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Section 14 

 

Energy Balance & Utility Requirements 
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Section 14.1: Heat Integration Strategy 

 Heat integration was a significant focus of our design in the hopes of minimizing lost heat 

and work, which consequently minimizes utility costs. A summary of the main heat integrations 

can be found in Table 14.1 below. The primary technique employed was evaluating the presence 

of high temperature streams that needed to be cooled, and using them to either produce steam or 

pre-heat other streams. This is most apparent when the reactor effluent in stream 9 is used to pre-

heat the reactor feed in stream 5 via counter-current heat exchanger (see Section 12, pg. 48 and 

Section 15.1.2, pg.74).  

To heat stream 6 to 698 °F, slightly above reactor conditions, heating oil is employed as a 

heat transfer media. Instead of using a furnace to heat the oil to the necessary conditions from 

ambient conditions for each iteration through its internal heat transfer loop, we elected to use the 

oil as a cooling fluid for the reactor intercoolers. This allows us to cool the reactor with a fluid that 

is capable of withstanding high reaction temperatures, while simultaneously recovering additional 

energy from the reaction stream. The furnace duty on H-001 would have been 77,555,400 BTU/hr 

(duty on E-202) for each pass through the oil heating loop. This value is effectively reduced by 

44,778,808 BTU/hr (or 14,926,269 BTU/hr per reactor intercooler) to be 32,776,592 BTU/hr. This 

reduced furnace duty is the total amount of energy required to heat the oil from its temperature 

after cooling the reactors of 654 °F to its maximum temperature within its heat loop of 705 °F. The 

mass flow of heating oil is assumed to remain constant at 1,000,000 lb/hr and is continuously 

recycled throughout the heat transfer loop from a minimum temperature of 585 °F to a maximum 

temperature of 705 °F through the reactor intercoolers to furnace to reactor feed heater.  

The utility of the heating oil furnace would normally come from enough natural gas to 

achieve the required duty. However, we offset the amount of natural gas fuel required by reusing 
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our organic byproducts from stream 35 and stored in TK-503 as additional fuel. This reduces the 

heat duty needed from burning the natural gas by 4,636,836 BTU/hr to a final required heat duty 

of 28,139,756 BTU/hr from natural gas fuel.  

While 88,350,260 BTU/hr of energy used to achieve the high reaction temperature are 

recovered with the effluent heat exchanger E-201, we attempt to recover even more. During the 

cooling of the effluent streams 10 and 11 down to flash conditions, we use E-301 and E-303 to 

produce a total of 40,722 lb/hr low pressure 15 psig steam. The same thing is done when cooling 

the hot products of streams 29 and 31 from distillation column 3 down to storage conditions. Here, 

E-501 and E-503 are used to produce a total of 17,873 lb/hr low pressure 15 psig steam. Since the 

total amount of low pressure steam required for the heated storage tanks is 336 lb/hr, the remaining 

58,309 lb/hr 15 psig steam produced is taken to be sold, presumably to other locations within the 

plant site. See Section 15, pg. 86 for storage tank designs. 

Due to the high reaction pressure, we are also able to produce electricity from two turbines: 

a gas expander on the vapor effluent stream 10, and a liquid expander on the liquid effluent stream 

11. The pressure drop from 575.6 psig to 155.0 psig allows us to recover a net of 2239 kWh, which 

we then use to partially power the multistage air compressor C-101-3. This reduces the net 

electrical requirement for the compressor from 3451 kWh to 1212 kWh.  
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Table 14.1. Summary of heat and electrical integrations with clear paths to satisfaction from demand. The 

associated textboxes explain the source of the heat and electricity to be integrated for the indicated demand.   
 

 

Heating or 

Electrical Process 

Heat Duty 

(BTU/hr) 

ΔT (°F) 

Feed to Reactor 

(Stream 5 to 7) 

165,905,660 165       698 

Heating Oil Loop 77,555,400 585       705 

Phenol Storage 155,166  

per tank 

86       113 

 

Byproduct Storage 7495 86       113 

 

Air Compressor 3451 kWh - 

 

 

 

 

Section 14.2: Process Utilities 

 Table 14.2 summarizes the annual utilities and electricity needed for each process unit per 

hour and per operating year (op-yr). The net utility requirements, accounting for heat integration 

strategies, is also included. Table 14.3 indicates the total utility requirements per pound phenol 

produced. The density of cooling water and boiler feed water was taken at 8.33 lb/gal. 

 

 

 

 

 

 

 

 

a) 88,350,260 BTU/hr as Stream 9 is 

cooled from 662 °F to 441.5 °F 

b) 77,555,400 BTU/hr from heating oil 

a) 155,166 BTU/hr from 164 lb/hr 15 

psig steam produced from E-301, 

E-303, E-501, or E-503 

a) 7495 BTU/hr from 8 lb/hr 15 psig 

steam produced from E-301, E-

303, E-501, or E-503 
a) 2239 kWh from turbines on Streams 10 and 11 

b) 1212 kWh via purchased electricity 

a) 14,926,269 BTU/hr from each reactor 

intercooler as the intermediate effluent is 

cooled from 693 °F to 635 °F 

b) 32,776,592 BTU/hr from the furnace H-001 
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Table 14.2. Net utility requirements per hour and per operating year by process unit and utility type. 

Utility Equipment Item Quantity 

(per hr) 

Quantity 

(per op-yr) 

Cooling Water (lb) E-101 195,287 1.55 x 109 

 E-102 234,875 1.86 x 109 

 E-302 1,379,310 1.09 x 1010 

 E-304 1,390,817 1.10 x 1010 

 E-305 5,743,677 4.55 x 1010 

 E-401 3,877,717 3.07 x 1010 

 E-403 860,802 6.82 x 109 

 E-502 279,640 2.21 x 109 

 E-504 21,811 1.73 x 108 

 Total (lb) 13,983,937 1.11 x 1011 

High Pressure Steam (500 psig) (lb) E-306 163,029 1.29 x 109 

 E-402 92,560 7.33 x 108 

 E-404 38,568 3.05 x 108 

 Total (lb) 294,186 2.33 x 109 

Low Pressure Steam (15 psig) (lb) E-505 164 1.30 x 106 

 E-506 164 1.30 x 106 

 E-507 8 6.28 x 104 

 Subtotal 336 2.66 x 106 

 Steam Produced (58,645) (4.64 x 108) 

 Net Utility (lb) (58,309) (4.62 x 108) 

Boiler Feed Water (lb) E-301 12,291 9.73 x 107 

 E-303 28,481 2.26 x 108 

 E-501 17,565 1.39 x 108 

 E-503 308 2.44 x 106 

 Total (lb) 58,645 4.64 x 108 

Electricity (kWh) C-101-3 3451 2.73 x 107 

 P-101 72 5.66 x 105 

 P-102 340 2.69 x 106 

 P-302 9 6.79 x 104 

 P-303 3 2.56 x 101 

 P-401 10 7.85 x 104 

 P-402 2 1.39 x 101 

 P-403 1 8.44 x 103 

 P-404 3 2.43 x 104 

 P-405 1 7.27 x 100 

 Subtotal 3892 3.08 x 107 

 Electricity Produced (2239) (1.77 x 107) 

 Net Utility (kWh) 1653 1.30 x 107 

Natural Gas Fuel (BTU) H-001 32,776,592 2.60 x 1011 

 V-401 10,000,000 7.92 x 1010 

 Subtotal 42,776,592 3.39 x 1011 

 Byproduct Fuel (4,636,836) (3.67 x 1010) 

 Net Utility (BTU) 38,139,756 3.02 x 1011 
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Table 14.3 Total utility requirements per lb phenol produced. 

Utility Unit Ratio (per lb phenol) 

Cooling Water lb 221.07 

High Pressure Steam lb 4.65 

Low Pressure Steam lb (0.92) 

Boiler Feed Water lb 0.93 

Electricity kWh 0.03 

Natural Gas Fuel BTU 602.94 
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Section 15 

 

Equipment List and Unit Descriptions 
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  The following section is divided into two sections. The first section discusses major process 

equipment units with specification sheets found in section 16. The second section details minor 

process equipment composed of mostly process heaters whose unit size was estimated with 

simplified correlations from Seider et. al, 2017.  

 

Section 15.1: Major Process Units 

 

Section 15.1.1: Pumps, Compressors, and Turbines 

 Air Compressor 

  Unit ID: C-101-3                Temperature: 384.1 °F 

  Type: Multi-stage Compressor              Pressure: 580.2 psig  

  Material: Cast Iron                Work: 4629 hp 

  Specification Sheet: Section 16, pg. 92 

  Costing data: Section 17.1.1, pg. 109 

 The multi-stage air compressor was designed with the aid of ASPEN to achieve a 

compression ratio of about 2-3 per stage, resulting in a 3-stage compressor. To avoid melting the 

compressor, a temperature of 100 °F was set for the beginning of each stage, which resulted in 2 

intercoolers removing 3,151,165 BTU/hr and 4,227,753 BTU/hr using 195,287 lb/hr and 234,875 

lb/hr of cooling water respectively. A pressure drop of 5 psi was assumed for the intercoolers. An 

approximate isentropic efficiency for each stage was taken to be 0.85. Cast iron was chosen since 

it is the cheapest option and will not react with air.  
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Feed Pump 

  Unit ID: P-101                Temperature: 92.1 °F 

  Type: Pump                            Pressure: 638.2 psig  

  Material: Cast Iron                Work: 95.6 hp 

  Specification Sheet: Section 16, pg. 93 

  Costing data: Section 17.1.1, pg. 109 

 The feed pump was designed with the aid of ASPEN to maintain a flow of 1217 ft3/hr by 

using 71.4 kWh of electricity. A head of 1698 ft was calculated based on Appendix 4.1, pg. 212. 

Guidelines15.1 suggest a centrifugal pump in Horizontal Split Case (HSC) orientation with 2 stages, 

shaft rpm of 3600, and a maximum motor hp of 1450. Cast iron was chosen since it is the cheapest 

option and will not react with benzene.  

 

Recycle Pump 

  Unit ID: P-102                Temperature: 176.6 °F 

  Type: Pump                            Pressure: 638.2 psig  

  Material: 316 Stainless Steel               Work: 457 hp 

  Specification Sheet: Section 16, pg. 94 

  Costing data: Section 17.1.1, pg. 109 

 The recycle pump was designed with the aid of ASPEN to maintain a flow of 7621 ft3/hr 

by using 340.2 kWh of electricity. A head of 1787 ft was calculated based on Appendix 4.1, pg. 

                                                 
15.1 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.452. 
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212. Guidelines15.2 suggest a centrifugal pump in Horizontal Split Case (HSC) orientation with 2 

stages, shaft rpm of 3600, and a maximum motor hp of 1450. Due to the possibility of benzoic 

acid and other corrosive byproducts being present in the recycle, a construction material of 316 

stainless steel was chosen.  

 

Vapor Effluent Turbine 

  Unit ID: C-301                Temperature: 441.5 °F 

  Type: Gas Expanding- Compression Design Turbine           Pressure: 155.0 psig  

  Material: 316 Stainless Steel               Work: -2858 hp 

  Specification Sheet: Section 16, pg. 95 

  Costing data: Section 17.1.1, pg. 109 

 The vapor effluent turbine was designed with the aid of ASPEN to reduce the pressure of 

stream 10 and maintain a flow of 152,630 ft3/hr. Guidelines15.3 suggest an approximate isentropic 

efficiency of 0.85 and mechanical efficiency of 0.98. Due to the presence of benzoic acid and other 

corrosive byproducts, a construction material of 316 stainless steel was chosen.  

 

 

 

 

 

                                                 
15.2 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.452. 
15.3 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.473. 
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Liquid Effluent Turbine 

  Unit ID: P-301                Temperature: 441.5 °F 

  Type: Liquid Expanding- Centrifugal Pump Design            Pressure: 155.0 psig  

  Material: 316 Stainless Steel               Work: -145 hp 

  Specification Sheet: Section 19, pg. 96 

  Costing data: Section 17.1.1, pg. 109 

 The liquid effluent turbine was designed with the aid of ASPEN to reduce the pressure of 

stream 11 and maintain a flow of 7838 ft3/hr. Guidelines15.4 suggest an approximate isentropic 

efficiency of 0.6. Due to the presence of benzoic acid and other corrosive byproducts, a 

construction material of 316 stainless steel was chosen.  

 

Section 15.1.2: Process Heat Exchangers 

 Effluent Heat Exchanger 

Unit ID: E-201                Temperature: 662 °F 

  Type: Counter-current Heat Exchanger             Pressure: 638.2 psig  

  Material: 316 Stainless Steel               Area: 8401.5 ft2 

  Heat Exchanged: 88,350,260 BTU/hr              

  Specification Sheet: Section 19, pg. 97 

  Costing data: Section 17.1.2, pg. 109 

 With the aid of ASPEN Exchanger Design and Rating (EDR), the counter-current shell-

and-tube effluent heat exchanger was designed in accordance with Tubular Exchanger 

                                                 
15.4 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.473. 
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Manufacturers Association (TEMA) standards. Unit E-201 was optimized for our process to cool 

the reactor effluent and harness that thermal energy to pre-heat the reactor feed. This design also 

limits the exchanger to a single unit with no additional shells in series or parallel (See TEMA sheet 

in Appendix 4.2.2, pg. 215). All design values and calculations were taken directly from ASPEN. 

This one shell/unit design allows for a smaller exchanger and lower purchasing costs. Horizontal 

type DEU was selected. Type D accounts for a high pressure shell. Since the hot fluid partially 

condenses upon cooling (necessitating the need of two outlet nozzles), the hot fluid is set to the 

tube side, and type E is used for a single phase cold fluid on the shell side. A U-tube head is used 

as the least expensive type which also accounts for the possibility of thermal expansion of the 

material. The number of tube passes was set to 2 as the minimum allowable number for a U-tube 

exchanger. A 30 inch triangular tube pattern was used as the most compact design. We suggest the 

use of a single segmental baffle as the most common type since we assume our fluids are non-

fouling. However, a low value fouling factor was included as a safety factor. A construction 

material for both the tubes and the shell was chosen as 316 stainless steel since it can handle the 

high temperatures and prevent against potential deterioration from corrosive byproducts. This 

design lead to a total number of tubes of 700 with outer diameters of 0.75 in, length of 360 in, and 

pitch of 0.9375 in. The shell was also found to have an outer diameter of 42.2047 in, with a service 

(practical dirty) heat transfer coefficient of 85.67 BTU/(hr-ft2-°F) and log-mean-temperature-

difference (LMTD) of 122.76 °F.  

 

 

 

 



 

76 | P a g e  

 

Direct Route to Phenol from Benzene 

 

Daowdat, Hoeltzel, Tannenbaum 

  

Section 15.1.3: Reactors 

 Reactor Vessels 

Unit ID: R-201-4A/B                Temperature: 662 °F 

  Type: Reactor                 Pressure: 580.1 psig  

  Material: Carbon Steel Outer Shell     Height: 9.12 ft/unit 

    316 Stainless Steel Inner Lining   Diameter: 9.12 ft 

  Heat Removed per Intercooler: 14,926,269 BTU/hr              

  Specification Sheet: Section 16, pg. 98 

  Costing data: Section 17.1.3, pg. 110 

 The following describes the equations found in Appendix 4.3, pg. 216. As previously 

discussed in Section 13.3, pg. 57, the allowable temperature rise, based on the total adiabatic 

temperature rise of the exothermic reaction, led to a design of 4 vertical reactor sections with 3 

intercoolers. The flow in each packed bed section was designed to go from the bottom to the top. 

A critical assumption is made that one-fourth of the reaction occurs equivalently in each of the 

four stages. All catalyst properties were taken to be that of bulk alumina (ρ=40.02 lb/ft3) with a 

lifetime of 6 months. It was also assumed that the catalyst cannot be regenerated, and would require 

replacement at the end of its lifetime. Guidelines15.5 suggest an approximate catalyst particle 

diameter of 0.016 ft and bed porosity of 0.42 for porous solids. To conserve space, an L/D aspect 

ratio for the overall vertical reactor was set to 4. An LHSV of 100 
𝑚𝐿 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑔𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
 =1.60 

𝑓𝑡3 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑙𝑏𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
 was 

chosen based on the patent (as discussed in Section 10.3, pg. 38). In conjunction with the total 

volumetric flowrate passing through the reactor, the LHSV was used to calculate a total mass of 

                                                 
15.5 Bartholomew, C.H., and R.J. Farrauto, “Fundamentals of Industrial Catalytic Processes, Second Edition”, John 

Wiley & Sons Inc., 2006, pg.81. 
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catalyst of 86,707 lb, or 21,677 lb per section. The assumed catalyst bulk density led to a total 

catalyst volume of 2167 ft3. Accounting for a 10% safety factor in reactor volume, and assuming 

that the volume of the bulk catalyst is equivalent to the volume of the packed bed, the total reactor 

volume was calculated to be 2384 ft3. The volumetric flow of 138,890 ft3/hr of the feed led to a 

total reactor residence time of 1.03 minutes, or 15.4 seconds per reactor section. The aspect ratio 

of 4 was used to determine the reactor diameter and overall reactor length. To separate the reactor 

into 4 sections, the diameter was held constant and the length divided by 4. Therefore, each reactor 

section has an L/D ratio of 1. The reactor has an overall diameter of 9.12 ft, length of 36.5 ft, and 

length per reactor unit of 9.12 ft. Reactor diameter was designed to be below 18 ft for ease of 

transport. The Ergun equation was then used to find the total packed bed pressure drop and pressure 

drop per bed section. A reasonable pressure drop across each reactor section was determined to be 

2.14 psi, which amounted to a total pressure drop of 8.55 psi across all sections of the packed bed 

reactor.  

 As mentioned in Section 14.1, pg. 65, each intercooler removes 14,926,269 BTU/hr via 

1,000,000 lb/hr of heat transfer media heating oil in exchangers with areas of 4429, 2076, and 8621 

ft2, each with a heat transfer coefficient estimated15.6 as 30 BTU/hr/ft2/°F.   

 To reduce costs, the reactor vessel was constructed out of a carbon steel outer shell, with a 

1/8 in thick inner 316 stainless steel lining. The stainless steel is necessary to resist high 

temperatures and prevent against potential deterioration from corrosive byproducts. A fifth spare 

reactor vessel section will be purchased and swung into the process when any reactor section needs 

                                                 
15.6 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
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to be cleaned or have catalyst replaced. This swinging design would allow for easy reactor 

exchange with less downtime.  

 

Section 15.1.4: Distillation Columns and Flash Drum 

 Flash Drum 

Unit ID: T-301                Temperature: 110.1 °F 

  Type: Flash Drum                Pressure: 145 psig  

  Material: Carbon Steel Outer Shell          Functional Height: 25.2 ft 

    316 Stainless Steel Inner Lining                      Diameter: 8.4 ft 

  Specification Sheet: Section 16, pg. 99                                    

  Costing data: Section 17.1.4, pg. 110 

 The flash drum was optimized to off-gas 98% of the non-condensable oxygen and nitrogen, 

while also minimizing benzene loss to 0.8%. To size the flash drum according to the equations in 

Appendix 4.4, pg. 218, the total vapor fraction of the combined streams 16 and 17 was first 

determined to be 0.093. Based on common technique15.7, our horizontal drum was designed with 

an L/D ratio of 3, a hold-up time of 5 min, a fraction of horizontal drum full of 0.5, and a vapor 

velocity design K-factor of 0.27 used to account for the vapor space in the drum. Correspondingly, 

the total volume of liquid held was then used to the find the design diameter of 8.4 ft and length 

of 25.2 ft. To reduce costs, the flash vessel was constructed out of a carbon steel outer shell, with 

a 1/8 in thick inner 316 stainless steel lining. The stainless steel was necessary to prevent against 

potential deterioration from corrosive byproducts. 

                                                 
15.7 Kister, H.Z., P.M. Mathias, D.E. Steinmeyer, W.R. Penney, B.B. Crocker and J.R. Fair, “Equipment for 

Distillation, Gas Absorption, Phase Dispersion, and Phase Separation”, 2008.  
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 Distillation Column 1 

Unit ID: T-302                Temperature: 389.8 °F 

  Type: Distillation Column               Pressure: 8.7 psig  

  Material: Carbon Steel Outer Shell             Functional Height: 48 ft 

    316 Stainless Steel Inner Lining     Enriching Diameter: 15.5 ft 

  Specification Sheet: Section 16, pg. 100                        Stripping Diameter: 17.5 ft            

  Costing data: Section 17.1.4, pg. 110 

 With the aid of ASPEN, distillation column 1 was optimized to separate the unreacted 

benzene from the product phenol, and recycle up to 97.7% of the total amount of unreacted benzene 

from the reactor effluent. This required 12 theoretical stages, condenser pressure of 5.3 psig with 

an internal 2 psi pressure drop and subsequent 0.15 psi pressure drop per stage, a molar reflux ratio 

of 0.50 and molar bottoms rate of 728 lbmol/hr. Based on common technique15.8, sieve trays were 

used with 4 passes per tray, and tray spacing of 1.5 ft. This produced hydraulic data with an 

enriching section diameter of 15.5 ft and stripping section diameter of 17.5 ft. We therefore 

propose that distillation column 1 be fabricated in two distinct halves, with a gradual slope joining 

the two. O’Connell correlations15.9 (as described in Appendix 4.5, pg. 219) accounted for tray 

efficiencies and were used to calculate the total number of real trays at 32, with the feed tray 

located at 14, and an average tray efficiency of 0.32. The total number of real trays multiplied by 

the assumed tray spacing yielded a functional height of 48 ft, with an additional skirt length of 7 

ft for the enriching section, and 10 ft for the stripping section. 

                                                 
15.8 Kister, H.Z., P.M. Mathias, D.E. Steinmeyer, W.R. Penney, B.B. Crocker and J.R. Fair, “Equipment for 

Distillation, Gas Absorption, Phase Dispersion, and Phase Separation”, 2008.  
15.9 Kister, H.Z., P.M. Mathias, D.E. Steinmeyer, W.R. Penney, B.B. Crocker and J.R. Fair, “Equipment for 

Distillation, Gas Absorption, Phase Dispersion, and Phase Separation”, 2008.  
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 Using a residence time of 5 minutes and L/D ratio of 2, the dimensions of the reflux 

accumulator modeled as a horizontal pressure vessel were determined with the equations found in 

Appendix 4.5, pg. 219 to be 7.44 ft diameter and 14.87 ft length. The head and electrical utility of 

the reflux pump set with a 25 psi pressure drop was determined to be 70.6 ft and 8.6 kWh 

respectively, with an isentropic efficiency of 0.71 from equations found in Appendix 4.1, pg. 212. 

 A partial condenser temperature of 172 °F and molar vapor fraction of 0.02 will be 

maintained with 2,671,478 lb/hr of cooling water in a 18,828 ft2 exchanger with a heat transfer 

coefficient estimated15.10 to be 60 BTU/hr/ft2/°F. A thermosiphon reboiler is used for its efficient 

implementation of internal baffles, and will be maintained at a temperature of 390 °F with 163,029 

lb/hr 500 psig high pressure steam in a 4496 ft2 exchanger with a heat transfer coefficient 

estimated15.11 to be 250 BTU/hr/ft2/°F. 

 To reduce costs, the distillation column and reflux accumulator were each constructed out 

of a carbon steel outer shell, with a 1/8 in thick inner 316 stainless steel lining. The reflux pump, 

condenser, and reboiler were constructed solely out of the 316 stainless steel. A shutdown pump, 

P-303, was also included to account for pumping the remaining liquid in the bottom of the column 

through to the next process section during a plant shutdown. With an assumed height equal to 6 ft 

of liquid remaining at the bottom of the column, the pump was designed to operate for 15 minute 

blocks once every shutdown, which was assumed to be once a day for 35 days out of the year. This 

pump is capable of producing a head of 62.9 ft, electrical utility of 2.9 kWh, and was also 

constructed of 316 stainless steel. 

                                                 
15.10 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
15.11 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
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  Distillation Column 2 

Unit ID: T-401                Temperature: 476.1 °F 

  Type: Distillation Column               Pressure: 8.8 psig  

  Material: Carbon Steel Outer Shell             Functional Height: 30 ft 

    316 Stainless Steel Inner Lining            Diameter: 12 ft 

  Specification Sheet: Section 16, pg. 101                                    

  Costing data: Section 17.1.4, pg. 110 

 With the aid of ASPEN, distillation column 2 was optimized to separate the unwanted 

heavier catechol byproduct from the product phenol, at a removal rate of up to 99.98% of the 

catechol from the phenol product. This required 12 theoretical stages, condenser pressure of 5.3 

psig with an internal 2 psi pressure drop and subsequent 0.15 psi pressure drop per stage, a molar 

reflux ratio of 4.0 and molar distillate rate of 703 lbmol/hr. Based on common technique15.12, sieve 

trays were used with 4 passes per tray, and tray spacing of 1.5 ft. This produced hydraulic data 

with an inside diameter of 12 ft. O’Connell correlations15.13 (as described in Appendix 4.5, pg. 

219) accounted for tray efficiencies and were used to calculate the total number of real trays at 20, 

with the feed tray located at 8, and an average tray efficiency of 0.53. The total number of real 

trays multiplied by the assumed tray spacing yielded a functional height of 30 ft, with an additional 

skirt length of 7 ft for the enriching section, and 10 ft for the stripping section. 

 Using a residence time of 5 minutes and L/D ratio of 2, the dimensions of the reflux 

accumulator modeled as a horizontal pressure vessel were determined with the equations found in 

                                                 
15.12 Kister, H.Z., P.M. Mathias, D.E. Steinmeyer, W.R. Penney, B.B. Crocker and J.R. Fair, “Equipment for 

Distillation, Gas Absorption, Phase Dispersion, and Phase Separation”, 2008.  
15.13 Kister, H.Z., P.M. Mathias, D.E. Steinmeyer, W.R. Penney, B.B. Crocker and J.R. Fair, “Equipment for 

Distillation, Gas Absorption, Phase Dispersion, and Phase Separation”, 2008.  
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Appendix 4.5, pg. 219 to be 7.88 ft diameter and 15.75 ft length. The head and electrical utility of 

the reflux pump set with a 25 psi pressure drop was determined to be 62.7 ft and 9.9 kWh 

respectively, with an isentropic efficiency of 0.73 from equations found in Appendix 4.1, pg. 212. 

 A partial condenser temperature of 377 °F and molar vapor fraction of 0.01 will be 

maintained with 1,803,589 lb/hr of cooling water in a 4053 ft2 exchanger with a heat transfer 

coefficient estimated15.14 to be 60 BTU/hr/ft2/°F. A thermosiphon reboiler is used for its efficient 

implementation of internal baffles, and will be maintained at a temperature of 476 °F with 92,590 

lb/hr 500 psig high pressure steam in a 8498 ft2 exchanger with a heat transfer coefficient 

estimated15.15 to be 250 BTU/hr/ft2/°F. 

 To reduce costs, the distillation column and reflux accumulator were each constructed out 

of a carbon steel outer shell, with a 1/8 in thick inner 316 stainless steel lining. The reflux pump, 

condenser, and reboiler were constructed solely out of the 316 stainless steel. A shutdown pump, 

P-402, was also included to account for pumping the remaining liquid in the bottom of the column 

through to the next process section during a plant shutdown. With an assumed height equal to 6 ft 

of liquid remaining at the bottom of the column, the pump was designed to operate for 15 minute 

blocks once every shutdown, which was assumed to be once a day for 35 days out of the year. This 

pump is capable of producing a head of 58.3 ft, electrical utility of 1.6 kWh, and was also 

constructed of 316 stainless steel. 

 

 

                                                 
15.14 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
15.15 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
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Distillation Column 3 

Unit ID: T-402                Temperature: 395.6 °F 

  Type: Distillation Column               Pressure: 10.0 psig  

  Material: Carbon Steel Outer Shell             Functional Height: 50 ft 

    316 Stainless Steel Inner Lining     Enriching Diameter: 5.5 ft 

  Specification Sheet: Section 19, pg. 102                        Stripping Diameter: 7.5 ft            

  Costing data: Section 17.1.4, pg. 110 

 With the aid of ASPEN, distillation column 3 was optimized to separate the close boiling 

benzaldehyde from the product phenol. Although responsible for the most rigorous separation, T-

402 is the smallest distillation column in the process due to its position far downstream. It handles 

the lowest total mass and volumetric flowrates of material amongst all distillation columns. A 

product purity of 99.83% phenol by mass was achieved by pulling the phenol off as a side product 

vapor. This required 20 theoretical stages, condenser pressure of 5.3 psig with an internal 2 psi 

pressure drop and subsequent 0.15 psi pressure drop per stage, a molar reflux ratio of 29.25, molar 

distillate rate of 23.5 lbmol/hr, and molar side product vapor rate of 672 lbmol/hr. Based on 

common technique15.16, sieve trays were used with 4 passes per tray, and tray spacing of 1.5 ft. 

This produced hydraulic data with an enriching section diameter of 5.5 ft and stripping section 

diameter of 7.5 ft. We therefore propose that distillation column 3 be fabricated in two distinct 

halves, with a gradual slope joining the two. O’Connell correlations15.17 (as described in Appendix 

4.5, pg. 219) accounted for tray efficiencies to calculate the total number of real trays at 22, with 

                                                 
15.16 Kister, H.Z., P.M. Mathias, D.E. Steinmeyer, W.R. Penney, B.B. Crocker and J.R. Fair, “Equipment for 

Distillation, Gas Absorption, Phase Dispersion, and Phase Separation”, 2008.  
15.17 Kister, H.Z., P.M. Mathias, D.E. Steinmeyer, W.R. Penney, B.B. Crocker and J.R. Fair, “Equipment for 

Distillation, Gas Absorption, Phase Dispersion, and Phase Separation”, 2008.  
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the feed tray located at 16, side product tray located at 20, and an average tray efficiency of 0.82. 

The total number of trays multiplied by the assumed tray spacing yielded a functional height of 50 

ft, with an additional skirt length of 7 ft for the enriching section, and 10 ft for the stripping section. 

 Using a residence time of 5 minutes and L/D ratio of 2, the dimensions of the reflux 

accumulator modeled as a horizontal pressure vessel were determined with the equations found in 

Appendix 4.5, pg. 219 to be 4.87 ft diameter and 9.73 ft length. The head and electrical utility of 

the reflux pump set with a 25 psi pressure drop was determined to be 61.9 ft and 3.1 kWh 

respectively, with an isentropic efficiency of 0.57 from equations found in Appendix 4.1, pg. 212. 

The feed pump P-403 set with a 25 psi pressure drop has a head of 25.1 ft and electrical utility of 

1.1 kWh. 

 A total condenser temperature of 304 °F will be maintained with 400,373 lb/hr of cooling 

water in a 1066 ft2 exchanger with a heat transfer coefficient estimated15.18 to be 60 BTU/hr/ft2/°F. 

A thermosiphon reboiler is used for its efficient implementation of internal baffles, and will 

maintained at a temperature of 396 °F with 38,568 lb/hr 500 psig high pressure steam in a 4496 ft2 

exchanger with a heat transfer coefficient estimated15.19 to be 250 BTU/hr/ft2/°F. 

 To reduce costs, the distillation column and reflux accumulator were each constructed out 

of a carbon steel outer shell, with a 1/8 in thick inner 316 stainless steel lining. The reflux pump, 

condenser, and reboiler were constructed solely out of the 316 stainless steel. A shutdown pump, 

P-405, was also included to account for pumping the remaining liquid in the bottom of the column 

through to the next process section during a plant shutdown. With an assumed height equal to 6 ft 

                                                 
15.18 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
15.19 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
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of liquid remaining at the bottom of the column, the pump was designed to operate for 15 minute 

blocks once every shutdown, which was assumed to be once a day for 35 days out of the year. This 

pump is capable of producing a head of 63.3 ft, electrical utility of 0.8 kWh, and was also 

constructed of 316 stainless steel. 

 

Section 15.1.5: Storage Tanks 

 Benzene Storage 

Unit ID: TK-001                Temperature: 86 °F 

  Type: Storage Tank                Pressure: 0.2 psig  

  Material: 316 Stainless Steel     Height: 40 ft 

  Specification Sheet: Section 16, pg. 103   Diameter: 40 ft 

  Costing data: Section 17.1.5, pg. 111 

As discussed in Section 13.1, pg. 57 one day’s worth of benzene is stored as excess raw 

material. Due to its low melting point of 41.9 °F, benzene is a liquid at ambient conditions. The 

volumetric flow of 1212.2 ft3/hr was used with a volumetric safety factor of 1.67 to ensure that the 

tank never operates at full capacity for control and pressure considerations. The total storage 

volume was determined to be 48,584 ft3. The tank is a conical roof storage vessel with a low 

pressure to be maintained with an N2 control system. 316 stainless steel is used to ensure little 

corrosion due to the elements and possible pipeline impurities since benzene is highly toxic. 

Design calculations can be found in Appendix 4.6, pg. 221. 
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Phenol Storage 

Unit ID: TK-501-2                Temperature: 113 °F 

  Type: Heated Storage Tank     Pressure: 0.2 psig  

  Material: 316 Stainless Steel     Height: 70 ft 

  Specification Sheet: Section 16, pg. 104   Diameter: 70 ft 

  Costing data: Section 17.1.5, pg.111 

 As discussed in Section 13.6, pg. 62, two weeks’ worth of phenol is stored as excess 

product in two storage tanks, each capable of maintaining up to a week’s supply. The volumetric 

flow of 953.8 ft3/hr was used with a volumetric safety factor of 1.67 to ensure that the tank never 

operates at full capacity for control and pressure considerations. The total storage volume was 

determined to be 267,588 ft3 per tank. The tank is a conical roof storage vessel with a low pressure 

to be maintained with an N2 control system. Due to the low melting point of phenol, the storage 

tank must be heated and insulated. Two-inch-thick insulation with a thermal conductivity of 0.4 

BTU-in/hr/ft2/°F was assumed to be the primary source of heat loss from each tank. Design 

calculations can be found in Appendix 4.6, pg. 221. With an insulation efficiency factor of 1.25, 

the total heat lost per tank was determined to be 155,166 BTU/hr. Allowing for a temperature drop 

to 105 °F, and heating up to 123 °F to achieve an average tank temperature of 113 °F , the tank is 

heated with a 4.25 ft2 exchanger via thermal energy from 15 psig low pressure steam transferred 

to a pump-around flow of 20,226 lb/hr for each tank. The exchanger heat transfer coefficient was 

estimated15.20 to be 250 BTU/hr/ft2/°F. 316 stainless steel was used to combat corrosion from 

organic byproducts. 

                                                 
15.20 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
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Byproduct Storage 

Unit ID: TK-503                Temperature: 113 °F 

  Type: Heated Storage Tank     Pressure: 0.2 psig  

  Material: 316 Stainless Steel     Height: 15 ft 

  Specification Sheet: Section 16, pg. 105   Diameter: 15 ft 

  Costing data: Section 17.1.5, pg. 111 

 As discussed in Section 13.6, pg. 62, one day’s worth of byproducts is stored as partial 

furnace fuel. The volumetric flow of 71 ft3/hr was used with a volumetric safety factor of 1.67 to 

ensure that the tank never operates at full capacity for control and pressure considerations. The 

total storage volume was determined to be 2841 ft3. The tank is a conical roof storage vessel with 

a low pressure to be maintained with an N2 control system. Due to the low melting point of phenol 

and the other byproducts, the storage tank must be heated and insulated. Two-inch-thick insulation 

with a thermal conductivity of 0.4 BTU-in/hr/ft2/°F was assumed to be the primary source of heat 

loss from each tank. Design calculations can be found in Appendix 4.6, pg. 221. With an insulation 

efficiency factor of 1.25, the total heat lost was determined to be 7496 BTU/hr. Allowing for a 

temperature drop to 105 °F , and heating up to 123 °F to achieve an average tank temperature of 

113 °F , the tank is heated with a 0.21 ft2 exchanger via thermal energy from 15 psig low pressure 

steam transferred to a pump-around flow of 965 lb/hr. The exchanger heat transfer coefficient was 

estimated15.21 to be 250 BTU/hr/ft2/°F. 316 stainless steel was used to combat corrosion from 

organic byproducts.  

 

                                                 
15.21 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
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Section 15.2: Minor Process Units 

 

Section 15.2.1: Furnace 

 As discussed in section 14.1, pg. 65, the furnace H-001 is used to heat the heating oil from 

its temperature after cooling the reactor vessels up to the temperature necessary for reactor feed 

heating in E-202. A total of 32,776,592 BTU/hr is necessary to heat the oil in the furnace from 654 

°F to 705 °F. 4,636,836 BTU/hr of that heat duty is achieved by burning the byproducts stored 

from stream 35. The remainder comes from burning natural gas fuel. Costing data can be found in 

Section 17.1.6, pg. 112. 

 

Section 15.2.2: Flare System 

 Based on information from the U.S. Environmental Protection Agency (EPA) 15.22, the flare 

system represented in V-401 was designed with a 10 in tip diameter, 230 ft stack height, and 

derrick support structure. A kick back drum of 10 in diameter and L/D ratio of 2 was also used. 

316 stainless steel piping and construction were used due to the high temperatures and possible 

corrosive elements present. Costing data can be found in Section 17.1.7, pg. 112. 

 

Section 15.2.3: Process Heater 

 As discussed in Section 14.1, pg. 65, E-202 finishes heating the reactor feed up to 698 °F 

just above reaction conditions. The 77,555,400 BTU/hr transfer occurs in a 11,261 ft2 exchanger 

                                                 
15.22 Evans, L.B., W.M. Vatavuk, “VOC Destruction Controls”, North Carolina, 2000. 
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with a heat transfer coefficient estimated15.23 to be 30 BTU/hr/ft2/°F. Design calculations can be 

found in Appendix 4.2.1, pg. 213. Costing data can be found in Section 17.1.3, pg. 109.  

 

Section 15.2.4: Process Coolers 

 Steam Formation 

 Design calculations for the formation of steam in units E-301, E-303, E-501, and E-503 

can be found in Appendix 4.2.1, pg. 213. The required areas for exchange are 600, 578, 536, and 

6.7 ft2 respectively with heat transfer coefficients estimated15.24 to be 250 BTU/hr/ft2/°F. For the 

purposes of costing, all exchangers below a minimum surface area were taken to be 150 ft2 due to 

a lack of small exchanger estimating techniques. Low pressure 15 psig steam was produced for 

use in the heat integration network at a temperature of 285 °F. A temperature approach of 35 °F to 

the 285 °F saturation temperature was used to ensure the formation of nucleate boiling of the boiler 

feed water used for the conversion to steam. See Section 14.1, pg. 67 for a discussion of the amount 

of steam produced and its relevance to the heat integration network. 316 stainless steel tubes were 

used due to the high temperatures and possible corrosive elements present, while a carbon steel 

outer shell is acceptable for handling the boiler feed water evaporation to steam. Costing data can 

be found in Section 17.1.3, pg. 109.    

  

 

 

                                                 
15.23 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
15.24 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
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Stream Coolers 

Design calculations for the cooling process streams in units E-302, E-304, E-502, and E-

504 can be found in Appendix 4.2.1, pg. 213. The required areas for exchange are 5325, 5370, 

1037, and 81 ft2 respectively with heat transfer coefficients estimated15.25 to be 60 BTU/hr/ft2/°F. 

For the purposes of costing, all exchangers below a minimum surface area were taken to be 150 

ft2 due to a lack of small exchanger estimating techniques. Cooling water is allowed to vary from 

86 °F up to 104 °F as a conservative temperature change to minimize thermal pollution of 

wastewater. See Section 14.1, pg. 67 for a discussion of the amount of cooling water necessary. 

316 stainless steel tubes were used due to the high temperatures and possible corrosive elements 

present, while a carbon steel outer shell is acceptable for handling the cooling water. Costing data 

can be found in Section 17.1.3, pg. 109. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
15.25 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 
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Section 16 

 

Specification Sheets 
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item     Air Compressor

  Item No. C-101-3

  No. required     1

Date: 18 April 2017

By: BGR

Net Work: 4629 hp

Material of Construction: Cast Iron

No. Stages: 3

No. Intercoolers: 2

Net Heat Duty: -7,742,918 BTU/hr

Type: Multistage Compressor

Isentropic Efficiency: 0.85 per stage

Overall Compression ratio: 4

86

0.0

1.0

56573

-

-

-

-

-

-

13120

43453

1961

780844

384.1

580.2

1.0

56573

-

-

-

-

-

-

13120

43453

1961

30162
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item        Feed Pump

  Item No. P-101

  No. required     1

Date: 18 April 2017

By: BGR

Net Work: 95.85 hp

Material of Construction: Cast Iron

No. Stages: 2

Shaft rpm: 3600

Type: Centrifugal Pump

Orientation: HSC

Flowrate: 151.2 gpm

Head: 1698 ft

Max Motor hp: 1450 

86

0.0

0.0

65616

65616

-

-

-

-

-

-

-

840

1212

92.1

638.2

0.0

65616

65616

-

-

-

-

-

-

-

840

1217
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item        Recycle Pump

  Item No. P-102

  No. required     1

Date: 18 April 2017

By: BGR

Net Work: 457 hp

Material of Construction: 316 Stainless Steel

No. Stages: 2

Shaft rpm: 3600

Type: Centrifugal Pump

Orientation: HSC

Flowrate: 948 gpm

Head:  1787 ft

Max Motor hp: 1450 

172.4

5.3

0.0

453124

452800

1

-

-

-

281

7

35

4974

7597

176.6

638.2

0.0

453124

452800

1

-

-

-

281

7

35

4974

7621

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item        Recycle Pump

  Item No. P-102

  No. required     1

Date: 18 April 2017

By: BGR

Net Work: 457 hp

Material of Construction: 316 Stainless Steel

No. Stages: 2

Shaft rpm: 3600

Type: Centrifugal Pump

Orientation: HSC

Flowrate: 948 gpm

Head:  1787 ft

Max Motor hp: 1450 

172.4

5.3

0.0

453124

452800

1

-

-

-

281

7

35

4974

7597

176.6

638.2

0.0

453124

452800

1

-

-

-

281

7

35

4974

7621
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item            Vapor Effluent Turbine

  Item No. C-301

  No. required     1

Date: 18 April 2017

By: BGR

Net Work Recovered: 2858 hp

Material of Construction: 316 Stainless Steel

Pressure: 155 psig

Type: Gas Expander – Compression Design

Isentropic Efficiency: 0.85

Mechanical Efficiency: 0.98

441.5

575.6

1.0

190451

139430

8743

147

6

16

158

1073

40878

3381

47368

327.5

155.0

0.97

190451

139430

8743

147

6

16

158

1073

40878

3381

152630

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item            Vapor Effluent Turbine

  Item No. C-301

  No. required     1

Date: 18 April 2017

By: BGR

Net Work Recovered: 2858 hp

Material of Construction: 316 Stainless Steel

Pressure: 155 psig

Type: Gas Expander – Compression Design

Isentropic Efficiency: 0.85

Mechanical Efficiency: 0.98

441.5

575.6

1.0

190451

139430

8743

147

6

16

158

1073

40878

3381

47368

327.5

155.0

0.97

190451

139430

8743

147

6

16

158

1073

40878

3381

152630
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item            Liquid Effluent Turbine

  Item No. P-301

  No. required     1

Date: 18 April 2017

By: BGR

Net Work Recovered: 145 hp

Material of Construction: 316 Stainless Steel

Pressure: 155 psig

Type: Liquid Expander – Centrifugal Pump Design

Isentropic Efficiency: 0.6

441.5

575.6

0.0

319246

256770

57268

2087

146

116

146

103

2610

4021

7892

437.0

155.0

0.0

319246

256770

57268

2087

146

116

146

103

2610

4021

7838

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item            Liquid Effluent Turbine

  Item No. P-301

  No. required     1

Date: 18 April 2017

By: BGR

Net Work Recovered: 145 hp

Material of Construction: 316 Stainless Steel

Pressure: 155 psig

Type: Liquid Expander – Centrifugal Pump Design

Isentropic Efficiency: 0.6

441.5

575.6

0.0

319246

256770

57268

2087

146

116

146

103

2610

4021

7892

437.0

155.0

0.0

319246

256770

57268

2087

146

116

146

103

2610

4021

7838
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item         Effluent Heat Exchanger

  Item No. E-201

  No. required     1

Date: 18 April 2017

By: BGR

Effective Surface Area/unit: 8401.5 ft2

LMTD: 122.76 °F

Heat Exchanged: 88,350,260 BTU/hr

Service Transfer Coeff: 85.67 BTU/(h-ft2-°F)

Tube Side: Material of Construction: 316 Stainless Steel

       No.: 700

       OD: 0.75 in

       Length: 360 in

       Pitch: 0.9375 in

       No. Passes/Shell: 2

Shell Side: Material of Construction: 316 Stainless Steel

      ID: 40 in

      OD: 42.21 in

      No. Passes/Shell: 1

       

Type: DEU Horizontal

Shells in Parallel: 1

Shells in Series: 1

Shells/unit: 1

165

638.2

0.0

453124

452800

1

-

-

-

281

7

35

5814

8835

515.4

636.4

0.0

453124

452800

1

-

-

-

281

7

35

5814

14402

662

580.1

1.0

509697

396200

66011

2234

152

132

304

1176

43488

7402

127830

441.5

575.6

1.0

190451

139430

8743

147

6

16

158

1073

40878

3381

47368

441.5

575.6

0.0

319246

256770

57268

2087

146

116

146

103

2610

4021

7892

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item         Effluent Heat Exchanger

  Item No. E-201

  No. required     1

Date: 18 April 2017

By: BGR

Effective Surface Area/unit: 8401.5 ft2

LMTD: 122.76 °F

Heat Exchanged: 88,350,260 BTU/hr

Service Transfer Coeff: 85.67 BTU/(h-ft2-°F)

Tube Side: Material of Construction: 316 Stainless Steel

       No.: 700

       OD: 0.75 in

       Length: 360 in

       Pitch: 0.9375 in

       No. Passes/Shell: 2

Shell Side: Material of Construction: 316 Stainless Steel

      ID: 40 in

      OD: 42.21 in

      No. Passes/Shell: 1

       

Type: DEU Horizontal

Shells in Parallel: 1

Shells in Series: 1

Shells/unit: 1

165

638.2

0.0

453124

452800

1

-

-

-

281

7

35

5814

8835

515.4

636.4

0.0

453124

452800

1

-

-

-

281

7

35

5814

14402

662

580.1

1.0

509697

396200

66011

2234

152

132

304

1176

43488

7402

127830

441.5

575.6

1.0

190451

139430

8743

147

6

16

158

1073

40878

3381

47368

441.5

575.6

0.0

319246

256770

57268

2087

146

116

146

103

2610

4021

7892
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°F about the optimal 

   isothermal operating temperature of 662 °F

°F about the optimal 

   isothermal operating temperature of 662 °F

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item                Reactor Vessels

  Item No.      R-201-4A/B

  No. required   5

Date: 18 April 2017

By: BGR

Adiabatic Temperature Rise/unit: 54 °F

Mass catalyst/unit: 21,677 lb

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inner diameter: 9.12 ft

Functional Height/unit: 9.12 ft

Total Functional Height: 36.5 ft

Total Reactor Volume: 2384 ft3

Reactor Volume/unit: 596 ft3

Total Reactor Pressure Drop: 8.55 psi

Reactor Pressure Drop/unit: 2.14 psi

       

No. units in series: 4

Orientation: Vertical

Bed Porosity: 0.42

Total Residence Time: 1.03 min

Residence Time/unit: 15.4 sec

665

580.1

1.0

509697

452800

1

-

-

-

281

13127

43488

7775

138890

662

580.1

1.0

509697

396200

66011

2234

152

132

304

1176

43488

7402

127830

°F about the optimal 

   isothermal operating temperature of 662 °F

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item                Reactor Vessels

  Item No.      R-201-4A/B

  No. required   5

Date: 18 April 2017

By: BGR

Adiabatic Temperature Rise/unit: 54 °F

Mass catalyst/unit: 21,677 lb

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inner diameter: 9.12 ft

Functional Height/unit: 9.12 ft

Total Functional Height: 36.5 ft

Total Reactor Volume: 2384 ft3

Reactor Volume/unit: 596 ft3

Total Reactor Pressure Drop: 8.55 psi

Reactor Pressure Drop/unit: 2.14 psi

       

No. units in series: 4

Orientation: Vertical

Bed Porosity: 0.42

Total Residence Time: 1.03 min

Residence Time/unit: 15.4 sec

665

580.1

1.0

509697

452800

1

-

-

-

281

13127

43488

7775

138890

662

580.1

1.0

509697

396200

66011

2234

152

132

304

1176

43488

7402

127830
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item        Flash Drum

  Item No. T-301

  No. required     1

Date: 18 April 2017

By: BGR

Hold-up time: 5 min

Pressure: 145 psig

Functional height: 25.2 ft

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inside diameter: 8.4 ft

Orientation: Horizontal

Frac. of Drum Full: 0.5

K-factor: 0.27

Vap Velocity Allowed: 8.38 ft/s

Liq. Vol Held: 701.6 ft3

110

145.0

0.45

190451

139430

8743

147

6

16

158

1073

40878

3381

60759

110

145.0

0.02

319246

256770

57268

2087

146

116

146

103

2610

4021

8668

110.1

145.0

1.0

47015

3233

9

-

-

-

8

1108.3

42656

1599

60919

110.1

145.0

0.0

462673

392960

66002

2234

152

132

296

68

830.8

5803

8422

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item        Flash Drum

  Item No. T-301

  No. required     1

Date: 18 April 2017

By: BGR

Hold-up time: 5 min

Pressure: 145 psig

Functional height: 25.2 ft

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inside diameter: 8.4 ft

Orientation: Horizontal

Frac. of Drum Full: 0.5

K-factor: 0.27

Vap Velocity Allowed: 8.38 ft/s

Liq. Vol Held: 701.6 ft3

110

145.0

0.45

190451

139430

8743

147

6

16

158

1073

40878

3381

60759

110

145.0

0.02

319246

256770

57268

2087

146

116

146

103

2610

4021

8668

110.1

145.0

1.0

47015

3233

9

-

-

-

8

1108.3

42656

1599

60919

110.1

145.0

0.0

462673

392960

66002

2234

152

132

296

68

830.8

5803

8422
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item Distillation Column 1

  Item No. T-302

  No. required     1

Date: 18 April 2017

By: BGR

Number of trays: 32

Enriching Section: 14

Stripping Section: 18

Pressure: 8.8 psig

Functional height: 48 ft

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inside diameter:

Enriching Section: 15.5 ft

Stripping Section: 17.5 ft

Average Tray efficiency: 0.32

Feed stage: 14

Molar reflux ratio: 0.50 

Tray spacing: 1.5 ft

Skirt height: 17 ft

110.1

145.0

0.0

462673

392960

66002

2234

152

132

296

68

831

5803

8422

172.4

5.3

0.0

387469

387180

1

-

-

-

281

7

35

4974

7597

389.8

8.7

0.0

68803

284

66001

2234

152

132

-

-

-

728

1201

172.4

5.3

1.0

6369

5498

-

-

-

-

14

61

796

102

33696

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item Distillation Column 1

  Item No. T-302

  No. required     1

Date: 18 April 2017

By: BGR

Number of trays: 32

Enriching Section: 14

Stripping Section: 18

Pressure: 8.8 psig

Functional height: 48 ft

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inside diameter:

Enriching Section: 15.5 ft

Stripping Section: 17.5 ft

Average Tray efficiency: 0.32

Feed stage: 14

Molar reflux ratio: 0.50 

Tray spacing: 1.5 ft

Skirt height: 17 ft

110.1

145.0

0.0

462673

392960

66002

2234

152

132

296

68

831

5803

8422

172.4

5.3

0.0

387469

387180

1

-

-

-

281

7

35

4974

7597

389.8

8.7

0.0

68803

284

66001

2234

152

132

-

-

-

728

1201

172.4

5.3

1.0

6369

5498

-

-

-

-

14

61

796

102

33696
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item Distillation Column 2

  Item No. T-401

  No. required     1

Date: 18 April 2017

By: BGR

Number of trays: 20

Pressure: 8.8 psig

Functional height: 30 ft

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inside diameter: 12 ft

Average Tray efficiency: 0.53

Feed stage: 8

Molar reflux ratio: 4.0 

Tray spacing: 1.5 ft

Skirt height: 17 ft

389.8

8.7

0.0

68803

284

66001

2234

152

132

-

-

-

728

1201

377.1

5.3

0.0

65463

256

65076

1

-

130

-

-

-

696

1139

476.1

8.8

0.0

2684

-

299

2233

152

-

-

-

-

25

44

377.1

5.3

1.0

656

28

626

-

-

2

-

-

-

7

3063

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item Distillation Column 2

  Item No. T-401

  No. required     1

Date: 18 April 2017

By: BGR

Number of trays: 20

Pressure: 8.8 psig

Functional height: 30 ft

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inside diameter: 12 ft

Average Tray efficiency: 0.53

Feed stage: 8

Molar reflux ratio: 4.0 

Tray spacing: 1.5 ft

Skirt height: 17 ft

389.8

8.7

0.0

68803

284

66001

2234

152

132

-

-

-

728

1201

377.1

5.3

0.0

65463

256

65076

1

-

130

-

-

-

696

1139

476.1

8.8

0.0

2684

-

299

2233

152

-

-

-

-

25

44

377.1

5.3

1.0

656

28

626

-

-

2

-

-

-

7

3063
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item Distillation Column 3

  Item No. T-402

  No. required     1

Date: 18 April 2017

By: BGR

Number of trays: 22

Enriching Section: 16

Stripping Section: 6

Pressure: 8.8 psig

Functional height: 50 ft

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inside diameter:

Enriching Section: 5.5 ft

Stripping Section: 7.5 ft

Average Tray efficiency: 0.82

Feed stage: 16

Side Product Stage: 20

Molar reflux ratio: 29.25 

Tray spacing: 1.5 ft

Skirt height: 17 ft

377.2

15.3

0.0

65463

256

65076

1

-

130

-

-

-

696

1140

303.6

5.3

0.0

2162

255

1883

-

-

23.9

-

-

-

24

37

395.6

10.0

0.0

44

-

44.2

-

-

0.1

-

-

-

1

1

394.6

9.7

1.0

63255

1

63148

1

-

106

-

-

-

672

243690

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item Distillation Column 3

  Item No. T-402

  No. required     1

Date: 18 April 2017

By: BGR

Number of trays: 22

Enriching Section: 16

Stripping Section: 6

Pressure: 8.8 psig

Functional height: 50 ft

Material of Construction: Carbon Steel outer shell with 

      316 Stainless Steel inner shell

Recommended inside diameter:

Enriching Section: 5.5 ft

Stripping Section: 7.5 ft

Average Tray efficiency: 0.82

Feed stage: 16

Side Product Stage: 20

Molar reflux ratio: 29.25 

Tray spacing: 1.5 ft

Skirt height: 17 ft

377.2

15.3

0.0

65463

256

65076

1

-

130

-

-

-

696

1140

303.6

5.3

0.0

2162

255

1883

-

-

23.9

-

-

-

24

37

395.6

10.0

0.0

44

-

44.2

-

-

0.1

-

-

-

1

1

394.6

9.7

1.0

63255

1

63148

1

-

106

-

-

-

672

243690
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item     Benzene Storage

  Item No. TK-001

  No. required     1

Date: 18 April 2017

By: BGR

Amount of Benzene Stored: 1 day

Recommended inside diameter: 40 ft

Functional height: 40 ft

Material of construction: 316 Stainless Steel

Roof design: conical

Pressure: 6 in H2O maintained with N2 control system

Total storage volume: 48,584 ft3 

86

0.0

0.0

65616

65616

-

-

-

-

-

-

-

840

1212

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item     Benzene Storage

  Item No. TK-001

  No. required     1

Date: 18 April 2017

By: BGR

Amount of Benzene Stored: 1 day

Recommended inside diameter: 40 ft

Functional height: 40 ft

Material of construction: 316 Stainless Steel

Roof design: conical

Pressure: 6 in H2O maintained with N2 control system

Total storage volume: 48,584 ft3 

86

0.0

0.0

65616

65616

-

-

-

-

-

-

-

840

1212
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Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item    Phenol Storage

  Item No.          TK-501-2

  No. required     2

Date: 18 April 2017

By: BGR

Amount of Phenol Stored: 7 days

Recommended inside diameter: 70 ft

Functional height: 70 ft

Material of construction: 316 Stainless Steel

Roof design: conical

Pressure: 6 in H2O maintained with N2 control system

Total storage volume: 267,588 ft3 

Insulation: 2 in thickness with thermal conductivity of 0.4 BTU-in/(h-ft2-°F)

Heat Loss: 155,166 BTU/hr

Pumparound flow: 20,226 lb/hr 

113

0.0

0.0

63256

1

63148

1

-

106

-

-

-

672

954

Temperature (°F)

Pressure (psig)

Vapor Fraction

Mass Flow (lb/hr)

Component Mass Flow (lb/hr)

Benzene

Phenol

Catechol

Benzoic Acid

Benzaldehyde

Water

Oxygen

Nitrogen

Molar Flow (lbmol/hr)

Operating Volume Flow (cuft/hr)

Identification: Item    Phenol Storage

  Item No.          TK-501-2

  No. required     2

Date: 18 April 2017

By: BGR

Amount of Phenol Stored: 7 days

Recommended inside diameter: 70 ft

Functional height: 70 ft

Material of construction: 316 Stainless Steel

Roof design: conical

Pressure: 6 in H2O maintained with N2 control system

Total storage volume: 267,588 ft3 

Insulation: 2 in thickness with thermal conductivity of 0.4 BTU-in/(h-ft2-°F)

Heat Loss: 155,166 BTU/hr

Pumparound flow: 20,226 lb/hr 

113

0.0

0.0
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Equipment Costing Summary 
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Table 17.1. Summary table for all process units including purchase cost, bare module factor, and bare module cost. 
 

Process Equipment ID Type Purchase Cost ($) Bare Module Factor Bare Module Cost ($) 

TK-001 Storage $384,000 3.21  $1,360,000  

P-101 Process Machinery $53,300 3.30  $176,000  

P-102 Process Machinery $282,000 3.30  $931,000  

P-301 Process Machinery $98,900 3.30  $326,000  

P-302 Process Machinery $10,430 3.30  $34,400  

P-303 Other Equipment $11,500 3.30  $37,900  

P-401 Process Machinery $10,800 3.30  $35,600  

P-402 Other Equipment $9,320 3.30  $30,800  

P-403 Process Machinery $8,210 3.30  $27,100  

P-404 Process Machinery $8,280 3.30  $27,300  

P-405 Other Equipment $8,350 3.30  $27,600  

C-101-3 Fabricated Equipment $1,840,000 2.15  $3,960,000  

C-301 Fabricated Equipment $903,000 2.15  $1,940,000  

T-301 Fabricated Equipment $133,000 4.16  $553,000  

T-302 Fabricated Equipment $667,000 4.16  $2,780,000  

T-401 Fabricated Equipment $325,000 4.16  $1,350,000  

T-402 Fabricated Equipment $296,000 4.16  $1,230,000  

R-201A Fabricated Equipment $209,000 4.16 $869,000  

R-202A Fabricated Equipment $209,000 4.16 $869,000  

R-203A Fabricated Equipment $209,000 4.16 $869,000  

R-204A Fabricated Equipment $209,000 4.16 $869,000  

R-20XB Spare $209,000 4.16 $869,000  

E-101 Fabricated Equipment $14,100 3.17  $44,700  

E-102 Fabricated Equipment $14,800 3.17  $44,700  

E-201 Fabricated Equipment $331,000 3.17  $1,050,000  

E-202 Fabricated Equipment $403,000 3.17  $1,280,000  

E-203 Fabricated Equipment $179,000 3.17  $567,000  

E-204 Fabricated Equipment $107,000 3.17  $339,000  

E-205 Fabricated Equipment $310,000 3.17  $983,000  

E-301 Fabricated Equipment $40,900 3.17  $129,000  

E-302 Fabricated Equipment $156,000 3.17  $495,000  

E-303 Fabricated Equipment $40,300 3.17  $128,000  

E-304 Fabricated Equipment $157,000 3.17  $498,000  

E-305 Fabricated Equipment $510,000 3.17  $1,620,000  

E-306 Fabricated Equipment $132,000 3.17  $418,000  

E-401 Fabricated Equipment $122,000 3.17  $387,000  

E-402 Fabricated Equipment $229,000 3.17  $726,000  

E-403 Fabricated Equipment $51,200 3.17  $162,000  

E-404 Fabricated Equipment $63,100 3.17  $200,000  

E-501 Fabricated Equipment $38,000 3.17  $121,000  

E-502 Fabricated Equipment  $50,700 3.17  $161,000 

E-503 Fabricated Equipment  $34,900 3.17 $111,000 

E-504 Fabricated Equipment  $34,900 3.17 $111,000 

E-505 Fabricated Equipment  $34,900 3.17 $111,000 

E-506 Fabricated Equipment  $34,900 3.17 $111,000 

E-507 Fabricated Equipment  $34,900 3.17 $111,000 

V-301 Fabricated Equipment  $61,800 4.16  $257,000 

V-401 Fabricated Equipment  $103,000 1.92  $197,000 

V-402 Fabricated Equipment  $65,500 4.16  $273,000 

V-403 Fabricated Equipment  $39,100 4.16  $163,000  

TK-501 Storage  $905,000 3.21 $3,190,000 

TK-502 Storage  $905,000 3.21 $3,190,000 

TK-503 Storage  $87,900 3.21  $311,000  

H-001 Fabricated Equipment  $992,000 2.19  $2,170,000 

Total Costs - $12,400,000 - $38,800,000 
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To begin plant operation, we request a total capital investment (TCI) of $83.6MM. 

$65.3MM of the total capital required will be spent on contractor fees, site preparation, service 

facilities, all process machinery, the land for the plant, royalties to the patent owners, as well as 

plant start-up costs, such as filling the purchased reactor vessels with the necessary amount of 

catalyst. More than half of this portion of the TCI will be allocated towards purchasing and 

installing all required pieces of equipment. 

  

Figure 17.1. Breakdown of total equipment costs required for plant construction and the average equipment cost per 

vessel. Heat exchangers and pumps comprise a large portion of the fixed investment due to their abundance in the 

process, though they have the lowest average costs. The compressor, storage tanks, and distillation columns make up 

the most expensive units in the process due to size. 

 

Of the $38.8MM required for all pieces of equipment, heat exchangers (26%), storage tanks 

(21%), and the pumps and compressors (17%) make up the bulk of the total equipment costs. The 

high equipment costs of the heat exchangers and pumps are a result of the sheer number of these 

vessels that appear in the process, though the most expensive pieces of equipment are the 

compressor, storage tanks, and distillation columns with average costs of $3.96MM, $2.01MM, 

and $1.79MM, respectively.   
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The most expensive piece of equipment is C-101-3, the $3.96MM three-stage air 

compressor required to bring ambient air to the ideal reactor operating pressure of 580 psig. This 

unit requires 4630hp. The first distillation column, T-302, responsible for separating most of the 

unreacted benzene from the desired phenol product, is the most expensive column due to size. It 

handles the largest volume of material following separation of the non-condensables in the flash 

drum and has a total height of 65 ft with an average diameter of 16.5 ft. Each of the two phenol 

storage tanks totals $3.19MM and the benzene storage tank will cost $1.36MM. The volume 

requirements for these tanks are responsible for their large bare module costs. 

 

Section 17.1: Unit Costing Considerations 

 

Section 17.1.1: Pumps, Compressors, and Turbines 

The compressor, pumps, and turbines were costed in accordance with the equations 

presented in Chapter 16 of Seider et. al, 2017. Purchase cost calculations for each unit required 

the flow rates in gallons per minute of the respective stream through each unit, the head in feet for 

each pump, as well as the compressor horsepower. Each input was retrieved from the ASPEN 

process simulation results. The specific values used for equipment costing can be found in either 

the stream results for each pump, block results for the compressors, or unit descriptions in Section 

15.1.1, pg. 71.  

 

Section 17.1.2: Heat Exchangers, Reboilers, Condensers, and Reflux Accumulators 

All heat exchangers were costed according to their required surface area and material of 

construction, discussed in Section 15.2, pg. 88. The effluent heat exchanger was costed in ASPEN. 
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These variables were used in accordance with the equations presented in Seider et. al, 2017 to 

accurately determine the cost for each exchanger. The same methodology was applied for 

distillation column reboilers and condensers.  

Reflux accumulators were treated as horizontal pressure vessels with holding times of five 

minutes. The vapor and liquid densities, as well as the volumetric flow rates into each accumulator, 

were taken from ASPEN profile data from the corresponding distillation column. The 

accumulators were assumed to have an aspect ratio of 2, and their costs were determined from the 

horizontal pressure vessel equation from Chapter 16 of Seider et. al, 2017. Detailed calculations 

can be found in Appendix 4.5, pg. 219.  

 

Section 17.1.3: Reactor Vessels 

The required volume for reactors R-201A, 202A, 203A, 204A, and 20XB was determined 

as described in Section 15.1.3, pg. 76.  Each reactor vessel was treated as a vertical pressure vessel 

with a carbon steel base shell and a 1/8-inch stainless steel inner shell. The length and diameter of 

each partitioned reactor were used in combination with equations found in Chapter 16 of Seider 

et. al, 2017  to determine an estimate of the bare module costs of the carbon steel outer vessels and 

stainless steel shells.  

 

Section 17.1.4: Distillation Columns and Flash Drum 

Our team consulted Professor Fabiano on the correct approach for sizing flash drum T-301. 

The calculations for determining drum size required the inlet flow rate to the vessel, the vapor and 

liquid fractions of the total inlet stream, the liquid and vapor densities of the inlet stream, avapor 

velocity design K factor of 0.27 (described in Section 15.1.4, pg. 78), an L/D ratio of 3, and a 
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holding time of five minutes. Calculation of the vessel dimensions from these parameters can be 

found in Appendix 4.4, pg. 218. This vessel was costed as a horizontal pressure vessel according 

to equations found in Chapter 16 of Seider et. al, 2017. 

Each of the three distillation columns, T-302, 401, and 402, were first modeled in ASPEN 

to provide an initial estimate for the number of theoretical stages, as described in section 15.1.4, 

pg. 78. To develop an accurate estimate of tray column size, Murphree tray efficiencies were 

determined for each column using O’Connell correlations. The actual number of trays required for 

each column was calculated using the theoretical number of stages in combination with the 

calculated tray efficiencies. An example of this calculation can be found in Appendix 4.5, pg. 219. 

Using an assumed tray spacing of 1.5 ft, 3 ft spacing required for the feed tray, and an additional 

4 ft and 10 ft for the enriching and stripping sections skirts, respectively, total column diameters 

and lengths for each tower were determined. These values were used in accordance with Chapter 

16 of Seider et. al, 2017 to accurately determine the cost of each column. Interior stainless steel 

shells were also costed, with a shell thickness of 1/8 inch, as discussed in Section 15.1.4, pg. 78, 

to prevent against the potentially corrosive properties of the reaction products.  

 

Section 17.1.5: Storage Tanks 

Storage tanks TK-001, 501, 502, and 503 were each costed using the storage tank pricing 

equation from Chapter 16 of Seider et. al, 2017, in accordance with the assumed volume of storage 

required for sufficient chemical inventory as described in Section 15.1.5, pg. 85. The insulation 

cost for each tank was assumed to be 10% of the tank’s bare module cost. Design calculations for 

the pump-arounds for each tank, found in Appendix 4.6, pg. 221, determined that the required 

surface area for these exchangers was much less than the 150 ft2 threshold for using costing 
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equations from Chapter 16 of Seider et. al, 2017. The costs for these exchangers were estimated 

by the minimum heat exchanger cost found in Chapter 16 of Seider et. al, 2017. For a detailed 

description of phenol tank insulation and pump-arounds, see Section 15.1.5, pg. 85.  

 

Section 17.1.6: Hot Oil Furnace 

The cost of the hot oil furnace, H-001, can be solely determined from the required heat 

duty of the unit. The heat duty of the furnace was calculated to be 32,776,592 BTU/hr and was 

used in accordance with Seider’s et. al, 2017 equations to determine purchase cost. See Section 

15.2, pg. 88 for further details. 

 

Section 17.1.7: Flare System 

The flare system, V-401, was valued according to its physical dimensions discussed in 

Section 15.2.2, pg. 88. The flare purchase cost was determined according to methods suggested in 

Evans et. al, 2000, which relates flare purchase cost to diameter, length, and tip length via the 

Derrick-Guy Support Group equation taken from EPA recommendations17.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
17.1 Evans, L.B., W.M. Vatavuk, “VOC Destruction Controls”, North Carolina, 2000. 
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Fixed-Capital Investment Summary 
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The methods used to estimate the total capital investment for the project from the total 

equipment purchase costs are shown in Table 18.1. The bare module factors for all fabricated 

equipment, process machinery, storage tanks, and spare plant parts are displayed in Table 17.1. 

The total purchase cost for all equipment was calculated to be $12.4MM and the total bare module 

cost is $38.8MM. 

Table 18.1. Relationship between total capital investment, total permanent invest, and estimated equipment 

purchase costs (Seider et. al, 2017). 

 
 

The factors used to determine the required costs for plant preparation, startup, product 

distribution, and royalties are shown in Table 18.2. These calculations formed the basis for 

calculating the total capital investment required for the project. 
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Table 18.2. Correlations between total capital investment and required fees for the proposed plant (Seider et. al, 

2017). 

Component of Total Capital Investment Relationship to 𝑪𝑻𝑪𝑰 

Cost of Site Preparation 20% of Total Bare Module Cost 

Cost of Service Facilities 5% of Total Bare Module Cost 

Cost of Contingencies and Contractor’s Fee 18% of Direct Permanent Investment 

Cost of Land 2% of Total Depreciable Capital 

Cost of Initial Royalty for Patent Data 2% of Total Depreciable Capital 

Cost of Plant Startup 10% of Total Depreciable Capital 

 

 

A breakdown of the required investment costs, beginning with total bare module costs and 

ending with the required total capital investment for the project, is shown in Table 18.3. Our team 

requests an initial investment of $65.3MM to cover the minimum required costs to build the phenol 

production plant.  
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Table 18.3. Calculation of total capital investment required from estimated equipment bare module costs (Downey, 

2008). 
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Section 19 

 

Operating Costs – Cost of Manufacturing 
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Section 19.1: Variable Operating Costs 

 
Table 19.1. Estimated raw material pricing and yearly requirements. 

 

Raw Material Estimated Cost  

($/lb) 

Yearly 

Requirement (lb) 

Total Annual 

Cost ($MM/yr) 

Benzene ($0.499) 520MM ($260MM) 

Copper Chromium Oxide Catalyst ($65.8) 0.173MM ($12.0MM) 

Catalyst Pelleting ($3.29) - ($0.60MM) 

Total - - ($272MM) 

 

The fresh benzene feedstock for the process is available on site for a cost of $1,100/metric 

ton. After engaging in direct conversations with Yingkou Tanyun Chemical Research Institute in 

Shenzhen, China, we determined that the copper chromium oxide catalyst can be procured in bulk 

for $65.8/lb. We assumed a 5% markup on this cost for pelletization of the catalyst, which is 

necessary for use in a packed bed reactor.  

Based on reactor design calculations, found in Appendix 4.3, pg. 216, it was found that 

each of the four reactor sections would require 21,700 lb catalyst, amounting to 86,800 lb to fill 

the entire reactor. In accordance with recommendations from industrial consultants, we assume 

the catalyst cannot be regenerated and has a 6-month lifespan. The reactor will require two fresh 

batches of catalyst each year, amounting to a yearly requirement of approximately 174,000 lb of 

catalyst.  
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Table 19.2. Utility cost estimates per hour and per operating year. Steam is produced in excess and sold for a profit. 

 

Utilities Cost or Value ($) Required Ratio  

(per lb phenol) 

Cost ($/hr) Total Cost 

($/op-yr) 

High Pressure 

Steam (500psig) 

($0.0085)/lb 4.65 ($2,500) ($19.8MM) 

Low Pressure 

Steam (15psig) 

$0.0055/lb 0.92 $321 $2.50MM 

Boiling Feed Water ($2.4 x 10-4)/lb 0.93 ($14) ($112,000) 

Cooling Water ($1.2 x 10-5)/lb 221 ($167) ($1.30MM) 

Electricity $0.07/kWh 0.026 ($14) ($0.90MM) 

Natural Gas Fuel ($3.2 x 10-6)/BTU 603 ($122) ($1.00MM) 

Total - - ($2,600) ($20.6MM) 

 

Referring to Table 14.2, our process generates 58,600 lb of low pressure steam/hr assuming 

all of the boiler feed water is successfully vaporized. Our process only requires 336 lb/hr of low 

pressure steam to maintain the phenol and byproduct storage tanks at an average temperature of 

113 °F. The remaining 58,300 lb/hr of low pressure steam generated will be sold on site at a price 

of 6 cents per pound, generating a yearly revenue of $2.5MM.  

 
 Table 19.3. Annual general expense data required for plant operation (Chapter 17 of Seider et. al 2017). 

 

Component of General Expenses Relationship to Sales Total Annual Cost 

($MM/yr) 

Selling and Transfer Expenses 2.0% of Sales ($13.6MM) 

Direct Research 4.8% of Sales ($21.8MM) 

Allocated Research 0.50% of Sales ($2.27MM) 

Administrative Expenses 2.0% of Sales ($9.09MM) 

Management Incentive Compensation 1.3% of Sales ($5.68MM) 

Total 10.6% of Sales ($52.5MM) 

 

General expense data required for plant operation in Table 19.3 is taken from Seider et. al, 

2017. The combination of raw material costs, utilities, and general expenses for plant operation 

total to $344MM in annual variable costs. 

 

 



 

120 | P a g e  

 

Direct Route to Phenol from Benzene 

 

Daowdat, Hoeltzel, Tannenbaum 

  

Section 19.2: Fixed Operating Costs 

 
Table 19.4. Fixed operating expenses required per year to carry out the duties at the plant site taken from Chapter 17 

of Seider et. al 2017. 

 

Operations (labor-related) Estimated Cost Total Annual cost 

($MM/yr) 

Direct Wages and Benefits $40/operator hour ($0.832MM) 

Direct Salaries and Benefits 15% Direct Wages and Benefits ($0.125MM) 

Operating Supplies and 

Services 

6% Direct Wages and Benefits ($0.499MM) 

Technical Assistance to 

Manufacturing 

$60,000/yr/operating shift ($0.600MM) 

Control Laboratory $65,000/yr/operating shift ($0.650MM) 

Total - ($2.26MM) 

 

To ensure successful plant operation, we assumed we would need five daily operating 

shifts, each lasting approximately 4.8 hours. We also assumed employment of two operators per 

shift. These assumptions were aligned with suggestions from Table 17.3 in Chapter 17 of Seider 

et. al. 2017 for a large continuous fluid generating process. 

 
Table 19.5. Site maintenance cost estimates based on assumptions from Chapter 16 of Seider et. al. 2017. 

  

Site Maintenance Estimated Cost Total Annual Cost ($/yr) 

Wages and Benefits 4.5% Total Depreciable Capital ($2.58MM) 

Salaries and Benefits 25% Maintenance Wages and Benefits ($0.644MM) 

Materials and Services 100% Maintenance Wags and Benefits ($2.58MM) 

Maintenance Overhead 5% Maintenance Wages and Benefits  ($0.129MM) 

Total - ($5.93MM) 
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Table 19.6. Yearly general expense estimates based on assumptions from Chapter 16 of Seider et. al. 2017. 

 

General Expenses Estimated Cost  Annual Cost 

General Plant Overhead 7.1% Maintenance Operations Wages and Benefits ($0.297MM) 

Mechanical Department 

Services 

2.4% Maintenance Operations Wages and Benefits ($0.100MM) 

Employee Relations Dpt. 5.9% Maintenance Operations Wages and Benefits ($0.247MM) 

Business Services 7.4% Maintenance Operations Wages and Benefits ($0.309MM) 

Property Tax and 

Insurance 

2% Total Depreciable Capital ($1.15MM) 

Licensing Fees 3% of Total Annual Sales ($12.3MM) 

Total - ($14.4MM) 

 

The combination of fixed operating expenses, site maintenance costs, and general yearly 

expenses, outlined in Tables 19.4-19.6, total $22.6MM in annual fixed operating costs. 
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Section 20 

 

Profitability Analyses – Business Case 
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The novel oxidation reaction herein described for generating phenol in a 1:1 molar ratio 

from benzene with limited byproducts displays great potential as a profitable venture in the 

petrochemical industry. However, our team must obtain the necessary investments required to 

build the plant and begin production.  

Of the $83.6MM capital investment, $18.3MM can be attributed to the present value of the 

project’s working capital requirements, or the fixed capital and startup funds needed for the process 

to meet its goals until payments for phenol can be received. Working capital is composed of current 

assets, such as stored phenol inventory, and current liabilities, such as accounts payable for 

purchasing of the process feedstocks (Seider et. al, 2017). The working capital ratio, highlighted 

in Table 20.1, is equal to 
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑠𝑠𝑒𝑡𝑠 ($)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ($)
 . Our project displays a ratio of 2.42 for the first three 

years of production, indicating the project’s capacity to pay investors back in the short term.20.1 

 

Table 20.1. Summary of working capital requirements and working capital ratio for the proposed project over the 

first three years of production.  

 
 

                                                 
20.1 Picardo, Elvis. "Working Capital." Investopedia. N.p., 23 Aug. 2016. Web. 15 Apr. 2017. 
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The catalytic technology that drives this project will require the remainder of the current 

calendar year for additional research and process design, followed by three years of plant 

construction before any phenol product can be generated and distributed. Our team estimated the 

value of this project over a fifteen-year plant lifespan. The first two years of plant operation will 

be carried out at 50% of the 500MM lb/yr total phenol production capacity, and the remaining 

thirteen years at 90% production capacity.  

Table 20.2 displays an overview of multiple profitability metrics for the process in its third 

production year, or the first year when the plant can operate at its maximum production capacity. 

Over the plant’s first fifteen years of life, our team projects an internal rate of return (IRR) equal 

to 29.2%, nearly twice the nominal interest rate of 15%, as well as a return on investment (ROI) 

of 44.7%.  

It is important to note that IRR assumes that all future cash inflows will be reinvested at 

the same rate of return. The IRR metric can be a confounding metric for new product 

developments, as single products are unlikely to generate increasing amounts of revenue over long 

periods of time.20.2 Usually, peak sales are reached within a few years of launch, and demand 

dwindles as new products enter the market and competition increases. However, for our new, direct 

phenol generation process, it is highly likely that additional research and plant optimization will 

occur over time and improve plant capacity as well as product purity. Given the potential for 

process improvement, our team expects future cash flows to be reinvested with return rates even 

greater than the estimated IRR.  

 

                                                 
20.2 Klleher, John C., and Justin J. MacCormack. "Internal Rate of Return: A Cautionary Tale." McKinsey & 

Company, Aug. 2004. Web. 16 Apr. 2017. 
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Table 20.2. Profitability metrics for the proposed process using base case pricing suggestions and a nominal interest 

rate of 15%. 

 
 

To provide context for these metrics, DuPont’s stock has increased 26.2% over the last 

three years for an annual growth rate of 8.7%, while the S&P index has grown 23.6% over the last 

three years for an annual growth rate of 7.9%.20.3 This project presents the opportunity for a 44.7% 

ROI over three years, or 14.9% average annual return. This renders it as an attractive investment 

with greater potential than other investments in the chemical industry as well as other Fortune 500 

companies.20.4 

These compelling financials suggest that there is a profitable and realistic process design 

capable of producing phenol without comparable amounts of co-products. The value of this 

process is not reliant on the sale of low value byproducts produced from the intrinsic reaction 

chemistry, as it is in the conventional Hock process. The development of this disruptive catalytic 

technology will undoubtedly create ripples in the phenol marketplace. Any new technological 

                                                 
20.3 "Summary for E.I. Du Pont De Nemours and Com - Yahoo Finance." Yahoo! Yahoo!, 2017. Web. 15 Apr. 2017. 
20.4 Summary for S&P 500 Yahoo Finance." Yahoo! Yahoo!, 2017. Web. 15 Apr. 2017. 
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undertaking is associated with risk, but the large payoff from this process warrants attention from 

investors.  

The net present value (NPV) of the base case for the process over fifteen years was 

estimated to be $90MM. This project NPV assumes that all phenol produced is sold at $0.91/lb, 

generating constant yearly revenue streams of ~$409MM beginning in the third production year. 

A graph of the cumulative free cash flow for this process over time is shown in Figure 20.1.  

 

Figure 20.1. Cumulative discounted free cash flow ($MM) for project over fifteen-year lifespan assuming benzene 

price $0.50/lb and phenol price $0.91/lb. The process is shown to break-even in 2025, two years after reaching 

maximum production capacity. 

 

 

The cumulative free cash flow graphic illustrates the value of the phenol production process 

in millions of 2017 dollars over time. In the first few years, the process nets a negative cash inflow 

due to site construction and plant development concomitant with an absence of phenol production 

and sales. Phenol sales will begin in 2021 with maximum production capacity achieved in 2023. 

The outlook for the process is promising. The process value breaks even in Q1 2025, two years 

after maximum capacity is reached, and displays sustained growth in the following decade. 
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Section 20.1: Sensitivity Analyses 

 

Aside from the small-scale work performed by the team at CSIR, additional research has 

yet to be carried out to determine the accuracy of the patented data. Testing at a proper pilot plant 

must be performed to properly assess the viability of each assumption presented in this report. It 

is highly likely that industrial scale data collection from this process will elucidate problems with 

the current design that warrant increased funding. Although the previous economic analyses only 

presented the base case, Figure 20.2 presents a sensitivity for the impact of increased variable and 

capital costs on project value.  

 
 

Figure 20.2. Cumulative discounted cash flows for the project with sensitivities for a 100% increase in fixed costs 

and 15% increase in variable costs compared to the base case. A 15% increase in variable costs results in a net loss 

of $5.43MM. 

 

 

This graph displays the comparative impact of a 100% increase in fixed costs and 15% 

increase in variable costs on cumulative NPV. The impact on value for a 100% increase in fixed 
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costs is marginal, even when compared to a 15% increase in variable costs. These results indicate 

that project value will not be greatly affected if equipment costing data is inaccurate. 

On the contrary, a slight increase in variable costs has a markedly greater impact on project 

value. The profitability of this process hinges much more on changes in variables costs, such as 

raw material prices, as opposed to equipment valuations, site construction costs, contractor fees, 

and the like.  

Benzene feedstock composes the bulk of the annual variable costs associated with this 

process primarily due to the large design production capacity. Catalyst cost is less because of its 

long assumed lifetime. 

     
 
Figure 20.3. Annual variable cost distribution for direct benzene to phenol oxidation reaction assuming prices 

predicted by our marketing team. Benzene poses a serious threat to project value because it composes 75%, or 

$260MM, of all variable costs. 

 

Because benzene constitutes 75% of the total variable costs for the process each year, the 

process’ ability to recover any unreacted benzene greatly affects project value. Moreover, it was 

previously noted that total benzene conversion in the reactor is only 12.5%. The process recycle 

Benzene

Catalyst

Utilities

General Expenses

Benzene: 75% ($260MM) Catalyst: 4% ($13MM)

Utilities 6% ($21MM) General Expenses 15% ($53MM)
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stream must recover a substantial portion of the unreacted benzene to ensure the process is 

profitable. As it currently stands, our process recovers 97.7% of the total unreacted benzene. Our 

team generated a sensitivity analysis surrounding this crucial metric and used it as a primary 

guideline for process design.  

           

Figure 20.4. Effects of unreacted benzene lost in downstream separations on project NPV. Process profitability 

necessitates an overall unreacted benzene recovery above 79% (or less than 21% unreacted benzene lost). 

 

 

Figure 20.4 predicts an extreme dependency on recovery of the unreacted benzene for 

process profitability. The red point indicates that if 21.3% of the unreacted benzene is not 

recovered in the recycle, the process is no longer profitable. Our downstream must recover at least 

78.7% of the total unreacted benzene. The green point indicates the current percent of unreacted 

benzene lost with our process design: 2.2%. Because the amount of recovered benzene emerged 

as such an important factor for value creation, it dictated much of our process synthesis decision-
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making. Any improvements or changes in the system that are required following a plant pilot run 

should seek to maximize unreacted benzene recovery in the recycle.    

Each of the previous profitability analyses and sensitives accounted for variables intrinsic 

to the process. They assumed no variations in the benzene or phenol petrochemical market that 

might result in pricing changes and, correspondingly, a drastic change in project value. Assuming 

phenol and benzene prices aligned with suggestions from our marketing team, this process would 

still be profitable selling phenol at $0.79/lb. Holding benzene price constant, this is equivalent to 

a 13.2% decrease in the suggested price for phenol. If phenol prices remain as provided, the project 

would remain profitable until the price of benzene exceeds $0.59/lb. This corresponds to a 19.1% 

increase in the price of benzene suggested for this project. 

          
 

Figure 20.5. Phenol and benzene market pricing required to maintain a 15% and 30% project IRR over a fifteen-

year lifespan. Variations in chemical pricing from our marketing team allows us to weigh the profitability of our 

process in light of realistic market data. 

 

$0.0

$0.20

$0.40

$0.60

$0.80

$1.0

$1.20

$0.35 $0.40 $0.45 $0.50 $0.55 $0.60 $0.65 $0.70

P
ri

ce
 P

h
en

o
l (

$
 U

S
D

)

Price Benzene ($ USD)

15% IRR 30% IRR Suggested Prices Best Case Pricing Worst Case Pricing



 

132 | P a g e  

 

Direct Route to Phenol from Benzene 

 

Daowdat, Hoeltzel, Tannenbaum 

  

This figure illustrates pricing requirements to generate both a 15% and 30% IRR for the 

proposed project. Under the assumption that benzene and phenol market prices are aligned with 

those provided, denoted by the blue point, the project is profitable and generates an IRR of 29.2%, 

as previously mentioned. The green point indicates the best possible pricing situation, while the 

red point indicates the worst possible pricing. Our base case process was designed near the best- 

case scenario. An IRR of 15% could still be achieved even if phenol prices drop by 8% while 

benzene prices increase by 8%.  

However, the margin between phenol and benzene prices is a much more important metric 

to consider for profitability, as it provides a strong indication of the profit margin for direct benzene 

to phenol production. Figure 20.6 displays pricing data from NEXANT for these two industrial 

compounds over the last eleven years. 

 

Figure 20.6. Prices and price margin data for benzene and phenol in the U.S. between Nov. 2006 and Feb. 2017 

provided by NEXANT. This historical margin has remained relatively constant, indicating a strong correlation 

between the pricing for the two chemicals. 
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The market prices for benzene and phenol in the U.S. from Nov. 2006 to Feb. 2017 more 

realistically contextualize the profitability of this project. The data indicates that assuming benzene 

pricing of $0.499/lb was certainly reasonable, though a phenol price of $0.91/lb phenol was 

bullish. 

It is possible that the optimistic prices from our company’s marketing group are grounded 

in expectations for a future return to high crude oil prices and a corresponding rise in phenol prices. 

Phenol shortages are equally as likely, and could drive supply down and prices up if many of the 

cumene-based production plants shutdown due to unfavorable economics in the propylene to 

acetone conversion. ICIS predicts U.S. phenol and benzene prices to remain steady in 2017, though 

there is a possibility for phenol and derivatives like polycarbonate to rebound on increased crude 

oil production.20.5  Time alone will tell which forecasts are most probable.  

The data indicates that benzene and phenol prices have moved together over time and 

maintained a price margin between $0.10/lb and $0.20/lb for the last decade. This margin is much 

less than the $0.41/lb price differential suggested by our marketing team. While we do recommend 

investment in the process based on data from our marketing team, under the conditions provided 

by NEXANT, our group does not recommend moving forward. The prices from 2017 indicate 

unfavorable economics and yield a net loss of $75MM over fifteen years.  

 The requirement for profitability of this project under the current design is a phenol selling 

price of $0.79/lb. If prices for phenol rise above this value, we recommend development of the 

proposed process as a replacement for the Hock process. It is ultimately up to management to make 

                                                 
20.5 Dietrich, John. "OUTLOOK '17: US Polycarbonate Growth Tied to Economy." ICIS.com. ICIS, 23 Dec. 2016. 

Web. 16 Apr. 2017. 
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an informed prediction of future raw material and product pricing before conducting further 

research or beginning plant construction.  
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Section 21.1: Environmental Considerations 

 

 Benzene is one of the main chemical derivatives from crude oil, and although it is used 

extensively in industry, it is dangerous to humans, animals, and the environment. According to the 

Safety Data Sheet on liquid benzene issued by Chevron Phillips, the LC50 (50% lethal 

concentration) for an exposure time of 96 hours for aquatic life is 5.3 ppm. Benzene is also a 

known carcinogen that should not be released into the environment. Uncontrolled discharge of 

phenol into the environment is similarly dangerous, as aquatic life will be at risk. A flare system 

was designed for the non-condensable components, unrecycled benzene, and for collection of all 

possible leakage points within process units and piping. A benzene storage tank was also designed 

in the event of pipeline malfunction. 

 

Section 21.2: Safety & Health Considerations 

 To ensure safe working conditions, OSHA recommends a peak concentration of 50 ppm 

for benzene and 5 ppm for phenol. Benzene is an immediate danger to life at concentrations above 

500 ppm. Benzene and phenol are also flammable. Plant workers will wear flame retardant, 

antistatic, and chemically impermeable protective gear. A ventilation system will be designed to 

maintain minimal oxygen concentrations of 19.5% by volume at ambient conditions. Additionally, 

all workers will be equipped with National Institute of Occupational Safety and Health (NIOSH) 

approved respirators.  

 The upper and lower explosion limits of benzene in air are 7.8 and 1.2% by volume, 

respectively. Phenol’s upper and lower explosion limits in air are 1.8 and 8.6% by volume, 

respectively. Throughout the process, the volume of benzene and phenol relative to air, or oxygen, 

is kept significantly above their upper explosion limits. 
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 Process safety was also considered for the reactor design. Given extreme operating 

conditions, the reactor effluent is cooled and depressurized to allow for safer, more ambient 

downstream operating conditions.   

 

Section 21.3: Process Control Considerations 

 The implementation of controllers is necessary to maintain the relatively isothermal 

conditions of the reactors. The potentially variable temperature of the reactor effluent determines 

the amount of heat exchanged in counter-current heat exchanger E-201. This causes the amount of 

energy required to pre-heat the reactor feed in E-202 to fluctuate. The hot oil heater E-202 can be 

modelled as part of a control system. A process controller can be designed to manipulate oil 

temperature leaving furnace H-001 or the oil flowrate exchanging heat in E-202. Industrial 

consultants suggested the use of a flow controller. A temperature controller would increase furnace 

duty to meet the set-point temperature, yet responds slowly compared to an oil flow controller. 

The use of a flow controller can optimize natural gas fuel flow to the furnace by setting the amount 

of fuel fed to the furnace as constant. A flow controller may result in greater overshoot of the set-

point temperature but is considered inconsequential since this overshoot is likely to remain within 

the allowable bounds set for reaction temperature increase. 

 Additional controllers would be used to adjust the inert N2 pressure in all four of the storage 

tanks. By manipulating N2 flowrate, the pressure can be maintained even when filling up or 

removing large quantities of the stored chemicals. A pressure greater than the vapor pressure of 

the contents is used to prevent atmospheric discharge. 
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Section 21.4: Plant Location, Layout, Start Up 

 The proposed plant will be located on the U.S. Gulf Coast as part of an industrial chemical 

complex. Prior to plant start-up, considerations for plant layout need to ensure worker and 

environmental safety. This would include positioning the reaction process section within a 

containment vessel in a remote part of the plant in case of accidental explosions. The plant also 

needs to meet all state and federal regulations. Preliminary costs, as determined in Section 18, pg. 

114, include site preparation, service facilities, land cost, and contractor fees. Site preparation 

requires $7.8MM, service facilities $1.9MM, cost of land $1.1MM, and contractor fees of 

$8.7MM.  

 Plant start-up, including the loading of chemicals into their respective process vessels, costs 

$5.7MM. Costs obtained using Seider et. al, 2017 may be below the actual price due to the 

approximate nature of the recommended percentages. 
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Thorough analysis of the proposed design indicates that the direct process to produce 

phenol from benzene developed by researchers at CSIR warrants further investigation. In 

accordance with the project objective, the process produces 500MM lb of liquid phenol per year. 

Economic analysis estimates an NPV of $90MM with an IRR of 29.2%. Prior to further 

development of the process, design calculations, as seen in Appendix 4, pg. 211, should be 

revisited to confirm their accuracy or to adjust assumptions. The calculated capital and operating 

costs may be an underestimate, as the design is not fully refined. 

 Additional optimization of the process is possible with the development of a kinetic model. 

The CSIR patent provides limited kinetic data but with the help of a comprehensive kinetic model, 

reactor conditions can be further adjusted to achieve desired conversion and selectivity. Patent data 

must first be confirmed prior to the development of such a model. 

 Limited catalyst data is included in the patent; assumptions are made for the catalyst 

density, activity, longevity, and price. Research into the copper-chromium catalyst will result in a 

more accurate design.  

 The reactor contains four segments with intercoolers to keep temperature and pressure 

close to 662 °F and 580 psig, with conversion assumed to be equivalent throughout each section. 

In the design of the reactor, an allowable temperature fluctuation of 54 °F per segment was 

assumed possible without having a significant effect on conversion and selectivity. Should further 

research refute this assumption, the reactor will have to be re-designed.  

 The profitability of the proposed design depends heavily on the market price of benzene 

and phenol. According to our marketing team, phenol is valued at $0.91/lb. Sensitivity analyses 

revealed that a minimum requirement for profitability of this project under the current design is a 

phenol selling price of $0.79/lb. Historical NEXANT market data for phenol and benzene, as 
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discussed in Section 20.1, pg. 132, indicate a price margin of about $0.20/lb for the last decade. 

This margin is 50% less than the $0.41/lb price differential suggested by our marketing team, and 

yields a net loss of $75MM over fifteen years. Ultimately, we do recommend investment in this 

project based on data provided from our marketing team in the proposal. However, in light of 

realistic cost information, we advise caution before proceeding with any investment.  
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3. Direct Route to Phenol From Benzene 

(recommended by Bruce M. Vrana, DuPont) 
 

Phenol is a major chemical intermediate used in a variety of other products. Phenolic resins are 

used in a wide range of products, including printed circuit boards. Phenol is a raw material to 

make polycarbonate, used in CD, DVD and Blu-ray discs. Phenol can be converted to 

caprolactam and ultimately nylon-6, or to adipic acid and ultimately nylon-6,6, both used for 

fibers and engineering polymers. There are a wide variety of other applications for this versatile 

intermediate. 

 

Phenol is conventionally made from cumene using the following chemistry: 

 
This route has several drawbacks. Growth in demand for propylene has exceeded the growth in 

supply, driving propylene prices higher. Also, one mole of acetone is made per mole of phenol. 

The acetone must be sold at a reasonable price in order to have favorable economics on making 

the phenol. Although acetone has numerous uses, phenol producers often have difficulty selling 

the byproduct at an attractive price. Effectively, this process converts high value propylene into 

low value acetone. In fact, although you could sell more phenol, your company has decided to 

not expand phenol capacity if it produces acetone as a coproduct. 

 

A team of scientists at the Council of Scientific and Industrial Research (CSIR) in New Delhi has 

recently patented a direct process from benzene to phenol. Their vapor-phase process uses air to 

oxidize benzene directly over a supported copper-chromium catalyst with about 95% yield at 

28% conversion of benzene. 

 

Your company is considering licensing this technology. Your team has been assembled to 

determine whether the process will be economical before engaging in any discussions with 

CSIR. Because these negotiations can be sensitive, your management has forbidden any form of 

contact with anyone at CSIR during your design. You may use only information that you can 

find in the public domain, in the patent, on the Internet, etc. The objective is to obtain a license at 

the lowest possible price, so you do not want to tip off your company’s interest in the process 

until your engineering analysis is complete. 

 

Based on data in the patent, design the optimum process to make 500MM lb/yr of phenol from 

benzene at your plant complex on the U.S. Gulf Coast. You will need to focus on the process to 

make phenol, not the process to make the catalyst, which you can assume will be produced for 
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you by a catalyst vendor. Benzene is available on site for $1,100/metric ton. Phenol is worth 

$2,000/metric ton to your company. All prices are forecasts by your marketing organization for 

long term average prices, expressed in 2017 dollars. 

 

You will need to make many assumptions to complete your design, since the data you have is far 

from complete. State them explicitly in your report, so that management may understand the 

uncertainty in your design and economic projections before approaching CSIR to discuss a 

license. Test your economics to reasonable ranges of your assumptions. If there are any possible 

“showstoppers” (i.e., possible fatal flaws, if one assumption is incorrect that would make the 

design either technically infeasible or uneconomical), these need to be clearly communicated and 

understood before proceeding. 

 

The plant design should be as environmentally friendly as possible, at a minimum meeting 

Federal and state emissions regulations. Recover and recycle process materials to the maximum 

economic extent. Also, energy consumption should be minimized, to the extent economically 

justified. The plant design must also be controllable and safe to operate. Remember that if the 

negotiations are successful, you will be there for the plant start-up and will have to live with 

whatever design decisions you have made. 

 

Reference 

 

U. S. Patent 8,772,552, July 8, 2014, assigned to Council of Scientific and Industrial Research. 
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Appendix 4.1: Compressor, Pump, and Turbine Head and Power Requirements 

Head was calculated from pressure changes across the process unit and the density ρ of the 

fluid passing through. A pressure change of 25 psi was assumed for the normal movement of fluid 

through the reflux and shutdown pumps in each distillation column. Pump and motor efficiencies 

for these six pumps were determined based on the operating volumetric flowrate Q in gallons per 

minute. The electricity consumption in kWh was then determined from the brake horsepower. Net 

power requirements and head for the feed and recycle pumps, and air compressor, were taken 

directly from ASPEN in units of horsepower and feet. Net electricity produced by the two turbines 

was also taken directly from ASPEN in units of kilowatts. 

 

Sample Calculation using P-302  

𝐻𝑒𝑎𝑑 (𝐻) =
2.31 ∗ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐶ℎ𝑎𝑛𝑔𝑒

𝐹𝑙𝑢𝑖𝑑 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐺𝑟𝑎𝑣𝑖𝑡𝑦
=  

(25 𝑝𝑠𝑖) ∗ 2.31

(
6.82

𝑙𝑏
𝑔𝑎𝑙

8.33
𝑙𝑏

𝑔𝑎𝑙

⁄ )

= 70.6 𝑓𝑡 

𝑃𝑢𝑚𝑝 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜂𝑃) =  −0.316 + 0.24015(ln 𝑄) − 0.01199(ln 𝑄)2

=  −0.316 + 0.24015(ln 483 𝑔𝑝𝑚) −  0.01199(ln 483 𝑔𝑝𝑚)2 = 0.710 

𝐵𝑟𝑎𝑘𝑒 𝐻𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 (𝑃𝐵) =
𝑄𝐻𝜌

33,000𝜂𝑃
=  

483 𝑔𝑝𝑚 ∗ 70.6 𝑓𝑡 ∗ 6.28
𝑙𝑏

𝑔𝑎𝑙

33,000 ∗ 0.71
= 9.92 ℎ𝑝 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑀𝑜𝑡𝑜𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜂𝑀) =  0.80 + 0.0319(ln 𝑃𝐵) − 0.00182(ln 𝑃𝐵)2

=  0.80 +  0.319(ln 9.92 ℎ𝑝) − 0.00182(ln 9.92 ℎ𝑝)2 = 0.864 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑃𝐶) =
𝑃𝐵

𝜂𝑀
∗

0.7457 𝑘𝑊

ℎ𝑝
∗ 1 ℎ𝑟 =  

9.92 ℎ𝑝

0.864
∗

0.7457 𝑘𝑊

ℎ𝑝
∗ 1 ℎ𝑟

= 8.57 𝑘𝑊ℎ 

(A1) 

(A4) 

(A3) 

(A2) 

(A5) 
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Appendix 4.2.1 Process Heat Exchanger Sizing and Utilities 

 Surface areas for all heat exchangers in the process, excluding the main counter-current 

effluent heat exchanger E-201, were approximated using heat duties 𝑄̇ , appropriate LMTD 

temperature approaches, and heat transfer coefficients U estimated from Seider et. al, 2017A4.1 . 

All exchanger heat duties, except for heated storage pump-arounds E-505, E-506, E-507, were 

taken from ASPEN. See Appendix 4.6, pg. 221 for heat duty calculations on the storage tanks. 

Temperature changes for cooling water streams were taken to be from 86 °F to 104 °F. We 

assumed that all of the energy taken from steam, or given to boiler feed water, comes from the 

respective processes of condensation and vaporization. Low pressure steam temperature for 

condensation and boiler feed water temperature for steam formation were both taken to be constant 

at 250 °F, the saturation temperature of 15 psig steam. High pressure steam temperature for 

condensation was taken to be constant at 470 °F, the saturation temperature of 500 psig steam. 

Utility flows were determined based on the exchanger heat duty and either the heat of vaporization 

of the utility stream, or the constant pressure heat capacity cp and allowed temperature change of 

the utility stream. 

 

Sample Calculation using E-302 

𝐿𝑀𝑇𝐷 =  
∆𝑇1 − ∆𝑇2

ln (
∆𝑇1

∆𝑇2
)

=  
(285 ℉ − 104 ℉) − (110 ℉ − 86 ℉)

ln (
(285 ℉ − 104 ℉)
(110 ℉ − 86 ℉)

)
= 78 ℉ 

                                                 
A4.1 Seider, W.D., J.D. Seader, D.R. Lewin, and S. Widago, “Product and Process Design Principles”, John Wiley & 

Sons Inc., New Jersey, 2017, pg.376. 

(A6) 
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𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 (𝐴) =
𝑄̇

𝑈 ∗ 𝐿𝑀𝑇𝐷
=  

24,827,573
𝐵𝑇𝑈

ℎ𝑟

60
𝐵𝑇𝑈

℉ − 𝑓𝑡2 − ℎ𝑟
∗ 78 ℉

= 5325 𝑓𝑡2 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑀𝑎𝑠𝑠 𝐹𝑙𝑜𝑤 (𝑚) =  
𝑄̇

𝑐𝑝 ∗ ∆𝑇
=  

24,827,573
𝐵𝑇𝑈

ℎ𝑟

1
𝐵𝑇𝑈

𝑙𝑏 − ℉
∗ 18 ℉

= 1,379,310
𝑙𝑏

ℎ𝑟
𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A8) 

(A7) 
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Appendix 4.2.2 Tubular Exchanger Manufacturers Association (TEMA) Specification Sheet 
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Appendix 4.3 Reactor Pressure and Sizing 

 The procedure for determining reactor pressure, sizing, and number of stages is described 

in detail in Section 13.3, pg. 57 and Section 15.1.3, pg. 76. The procedure is briefly summarized 

here. All catalyst properties were assumed to be that of bulk alumina with bulk density ρbulk, bed 

porosity ε, and particle diameter dp. ASPEN was used to determine the overall adiabatic 

temperature rise of 216 °F, which led us to set a reasonable temperature rise of 54 °F across each 

of 4 reactor stages, with 3 intercoolers used to maintain the temperature range. An L/D ratio of 4 

for a vertical reactor was set to conserve space. An LHSV of 100 
𝑚𝐿 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑔𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
 =1.60 

𝑓𝑡3 𝑏𝑒𝑛𝑧𝑒𝑛𝑒

ℎ𝑟∗𝑙𝑏𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
was 

taken from the patent. Total mass of catalyst was calculated from LHSV and volumetric flowrate 

𝑉̇. Reactor volume was determined from catalyst volume and a 10% safety factor. This total 

volume was used to find reactor residence times, diameter, and consequently the height of the 

overall reactor and of each reactor section. The Ergun equation with fluid viscosity μ and fluid 

density ρ was used to find a reasonable pressure drop set across each stage, as well as an overall 

pressure drop.    

 

Sample Calculations using R-201A/B 

𝐿

𝐷
= 4 

𝑚𝑐𝑎𝑡𝑡𝑜𝑡
=  

𝑉̇

𝐿𝐻𝑆𝑉
=

38.58
𝑓𝑡3

𝑠

100
𝑚𝑙

ℎ𝑟 − 𝑔𝑐𝑎𝑡

∗
3600 𝑠

ℎ𝑟
∗

28317 𝑚𝑙

𝑓𝑡3
∗

2.205 𝑙𝑏

𝑘𝑔
∗

1 𝑘𝑔

1000 𝑔𝑐𝑎𝑡

= 86,707 𝑙𝑏 

𝑚𝑐𝑎𝑡𝑠𝑒𝑐𝑡𝑖𝑜𝑛
=

𝑚𝑐𝑎𝑡𝑡𝑜𝑡

4
=

86,707 𝑙𝑏

4
= 21,677 𝑙𝑏 

(A10) 

(A9) 

(A11) 
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𝑉𝑡𝑜𝑡 =
𝑚𝑐𝑎𝑡𝑡𝑜𝑡

∗ 𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟

𝜌𝑏𝑢𝑙𝑘
=  

86,707 𝑙𝑏 ∗ 1.1

40.02
𝑙𝑏

𝑓𝑡3

= 2384 𝑓𝑡3 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑇𝑖𝑚𝑒 (𝜏𝑡𝑜𝑡) =
𝑉𝑡𝑜𝑡

𝑉̇
=

2384 𝑓𝑡3

38.58
𝑓𝑡3

𝑠

∗
𝑚𝑖𝑛

60 𝑠𝑒𝑐
= 1.03 𝑚𝑖𝑛 

𝜏𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝜏𝑡𝑜𝑡

4
=

1.03 𝑚𝑖𝑛

4
∗

60 𝑠𝑒𝑐

𝑚𝑖𝑛
= 15.4 𝑠𝑒𝑐 

𝐷 =  (
𝑉𝑡𝑜𝑡

𝜋
)

1/3

= (
2384 𝑓𝑡3

𝜋
)

1/3

= 9.12 𝑓𝑡 

𝐿𝑡𝑜𝑡 = 4 ∗ 𝐷 = 4 ∗ (9.12𝑓𝑡) = 36.5 𝑓𝑡 

𝐿𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐿𝑡𝑜𝑡

4
= 9.12 𝑓𝑡 

𝐶𝑟𝑜𝑠𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎 (𝐴) =
𝜋𝐷2

4
=

𝜋 ∗ (9.12 𝑓𝑡)2

4
= 65.3 𝑓𝑡2 

𝑆𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙 𝐹𝑙𝑢𝑖𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑢0) =
 𝑉̇

𝐴
=

38.58
𝑓𝑡3

𝑠
65.3 𝑓𝑡2

= 0.591
𝑓𝑡

𝑠
 

Substitute in above values and use the Ergun equation to solve for total pressure drop:  

Δ𝑃𝑡𝑜𝑡 =
150𝜇𝐿 (1 − 𝜀)2

𝑑𝑃
2 𝜀3

𝑢0 +  
1.75𝐿𝜌 (1 − 𝜀)

𝑑𝑃𝜀3
𝑢0

2 

=  
150 (4.10 ∗ 10−7 𝑙𝑏𝑓 − 𝑠

𝑓𝑡2 ) (36.5 𝑓𝑡)(1 − 0.42)2

(0.016 𝑓𝑡)2  ∗ 0.423
∗ 0.591

𝑓𝑡

𝑠

+

1.75(36.5 𝑓𝑡) (3.67
𝑙𝑏

𝑓𝑡3) ∗ (
1 𝑙𝑏𝑓

32.2 𝑙𝑏𝑚 −
𝑓𝑡
𝑠2

) (1 − 0.42)

(0.016 𝑓𝑡) ∗ 0.423
∗ (0.591

𝑓𝑡

𝑠
)

2

= 1231.2 𝑝𝑠𝑓 ∗
𝑓𝑡2

144 𝑖𝑛2
= 8.55 𝑝𝑠𝑖 

(A12) 

(A18) 

(A17) 

(A16) 

(A19) 

(A15) 

(A14) 

(A13) 

(A20) 
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∆𝑃𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
∆𝑃𝑡𝑜𝑡

4
=

8.55 𝑝𝑠𝑖

4
= 2.14 𝑝𝑠𝑖 

 

Appendix 4.4 Flash Drum Design 

 Based on thermodynamic results from ASPEN, operating conditions for the flash were 

chosen to be 110 °F and 145 psig. Average total vapor fraction (VF) of all inlet streams and 

corresponding vapor and liquid densities (ρ) were used with a vapor velocity design K-factor of 

0.27 to determine maximum allowable vapor velocities (uvap) within the drum. After setting an 

L/D ratio of 3 for a horizontal pressure vessel to minimize equipment space, mass flowrates (m) 

with a hold-up time of 5 min to allow proper separation, and a liquid level within the tank of 50%, 

were used to calculate the dimensions of the drum. 

  

Sample Calculations with T-301 

𝐿

𝐷
= 3 

𝑉𝐹𝑎𝑣𝑔 =
(𝑉𝐹1𝑚1) + (𝑉𝐹2𝑚2)

𝑚1 + 𝑚2
=

(0.236 ∗ 190454
𝑙𝑏
ℎ𝑟

) +  (0.007 ∗ 319238
𝑙𝑏
ℎ𝑟

)

190454
𝑙𝑏
ℎ𝑟

+ 319238
𝑙𝑏
ℎ𝑟

= 0.0926 

𝐿𝑖𝑞𝑢𝑖𝑑 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝐿𝐹𝑎𝑣𝑔) = 1 − 𝑉𝐹𝑎𝑣𝑔 = 1 − 0.0926 = 0.9074 

𝑢𝑣𝑎𝑝 = 𝐾√
𝜌𝑙𝑖𝑞 − 𝜌𝑣𝑎𝑝

𝜌𝑣𝑎𝑝
= 0.27 ∗ √

54.9
𝑙𝑏

𝑓𝑡3 − 0.772
𝑙𝑏

𝑓𝑡3

0.772
𝑙𝑏

𝑓𝑡3

= 2.26
𝑓𝑡

𝑠
 

(A21) 

(A23) 

(A24) 

(A25) 

(A22) 
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𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 ℎ𝑒𝑙𝑑 (𝑉) =
(𝑚1 + 𝑚2) ∗ 𝐿𝐹𝑎𝑣𝑔 ∗ ℎ𝑜𝑙𝑑𝑢𝑝

𝜌𝑙𝑖𝑞
∗

ℎ𝑟

60 𝑚𝑖𝑛

=
509692

𝑙𝑏
ℎ𝑟

∗ 0.9074 ∗ 5 𝑚𝑖𝑛

54.9
𝑙𝑏

𝑓𝑡3

∗
ℎ𝑟

60 𝑚𝑖𝑛
= 702 𝑓𝑡3 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝐷) =  (
4 ∗ 𝑉

𝑓𝑟𝑎𝑐 𝑓𝑢𝑙𝑙 ∗ 𝜋 ∗ 𝐿/𝐷
)

1/3 

= (
4 ∗ 702 𝑓𝑡3

0.5 ∗ 𝜋 ∗ 3
)

1/3 

= 8.41 𝑓𝑡  

𝐿 = 3 ∗ 𝐷 = 3 ∗ 8.41 𝑓𝑡 = 25.2 𝑓𝑡 

 

Appendix 4.5 Distillation Column & Reflux Accumulator Design 

The operating conditions and design specifications for distillation columns T-302, T-401, 

and T-402 were taken from ASPEN, with those for the first distillation tower, T-302, chosen to be 

389.9 ℉ and 8.7 psig. The number of theoretical stages required for adequate separation was also 

determined from ASPEN. Tower T-302 was found to have 12 theoretical stages, or 11 theoretical 

trays plus the reboiler. The tray profiles for each column provided data on the viscosity of liquid 

from each stage in centipoise and the K values for the heavy and light keys (phenol and benzene 

in the first column). The empirical O’Connell relationshipA4.2 relates the liquid viscosity 𝜇𝐿 on 

each tray with the relative volatility α of the heavy and light components on each tray to determine 

the Murphree tray efficiencies, EOC, for 90% of efficiency data within +/- 10%.  

Reflux accumulators were designed based on the volumetric flowrate of the reflux cycling 

through. A residence time for each unit was set to 5 minutes with an L/D of 2. 

 

 

                                                 
A4.2 Baburao, Dadasaheb Baburao. An O’Connell Type Correlation for Prediction of Overall Efficiency of Valve 

Tray Columns. Pune, Maharashtra, India: n.p., 2006. Print. 

(A26) 

(A28) 

(A27) 
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Sample Calculations with T-302 & V-301 

 

𝑂′𝐶𝑜𝑛𝑛𝑒𝑙𝑙 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝: 𝐸𝑂𝐶 = 0.492 ∗ (𝜇𝐿𝛼)−0.245 

For Tray 2: Relative Volatility, 𝛼1 = 
𝐾1,2

𝐾2,2
=

0.993521

0.0799125
= 12.483  

        𝐸𝑂𝐶,2 = 0.492 ∗ ((. 2203) ∗  12.48)
−0.245

= 0.384 

                               Real Trays Required = 
1

𝑇𝑟𝑎𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
=

1

.384
= 2.62 

Real Tray Number = ∑ 𝑹𝒆𝒂𝒍 𝑻𝒓𝒂𝒚𝒔 𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝒊=𝟏𝟏 = 𝟐𝟔. 𝟎𝟐 

Because we cannot purchase a column with 2% of a tray, we must account for 27 total trays in the 

column according to the efficiency estimates from the O’Connell correlation. 

Table A4.1. Summary of hydrodynamic data and tray efficiencies for column T-302. 

Theoretical 

Stage 

Number 

Viscosity of 

Liquid from 

Stage 𝝁𝑳 

(Centipoise) 

K2 Value 

(Phenol) 

K1 Value 

(Benzene) 

Relative 

Volatility  

𝜶 

Stage 

Efficiency 

 𝑬𝑶𝑪  

Real 

Trays 

Required 

Real 

Tray 

Number 

Condenser1 - - - - - - - 

2 0.2206 0.0796 0.9935 12.4830 0.384 2.62 2.62 

3 0.2203 0.0799 0.9950 12.4513 0.384 2.62 5.24 

4 0.2205 0.0802 0.9979 12.4430 0.384 2.62 7.86 

5 0.2221 0.0809 1.0106 12.4979 0.383 2.64 10.5 

6 0.2296 0.0837 1.0698 12.7884 0.378 2.68 13.18 

7 0.2294 0.0843 1.0744 12.7488 0.378 2.68 15.86 

8 0.2319 0.0856 1.0998 12.8447 0.377 2.74 18.6 

9 0.2512 0.1006 1.3843 13.7622 0.363 2.79 21.39 

10 0.1964 0.2976 3.5733 12.0086 0.399 2.56 23.95 

11 0.1179 0.7944 6.7562 8.5052 0.492 2.07 26.02 

Reboiler 12 0.1065 0.9877 7.7546 7.8516 - - - 

Total       27 

 

             𝐷 = (
4∗𝑉𝑜𝑙𝑢𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑅𝑒𝑓𝑙𝑢𝑥 𝐹𝑙𝑜𝑤∗ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑇𝑖𝑚𝑒

𝜋
)

1/3

= (
4∗64.6 𝑓𝑡3

𝑚𝑖𝑛
∗ 5 𝑚𝑖𝑛

𝜋
)

1/3

= 7.44 𝑓𝑡 

𝐿 = 2 ∗ 𝐷 = 2 ∗ 7.44 𝑓𝑡 = 14.9 𝑓𝑡 

 

(A32) 

(A31) 

(A30) 

(A33) 

(A29) 

(A34) 

(A35) 
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Appendix 4.6 Storage Tank Considerations 

 For all four storage tanks, sizing was based on the amount of the feed or product that is 

desired to be maintained, as well as the volumetric flow (𝑉̇) into the three product tanks or the 

volumetric flow (𝑉̇) required from the feed tank. A volumetric safety factor of 1.67 was used to 

ensure that the tank never operates at full capacity for control and pressure considerations. The 

dimensions were obtained from setting an L/D ratio of 1. To maintain temperatures of 113 °F for 

the three heated storage tanks, pump-around heat exchangers are used. Two-inch-thick (t) 

insulation with a thermal conductivity k of 0.4 BTU-in/(hr-ft2-°F) is used to estimate the heat lost 

to the surroundings (𝑄̇) from each of the heated tanks. A 25% error factor was used to account for 

the assumption that all heat lost is from the insulation to the surroundings. This heat duty was then 

used to size the heat exchanger itself in the manner described in Appendix 4.2.1, pg. 213. The mass 

flowrate (m) of the product necessary for the pump-around was determined based on the constant 

pressure heat capacity cp of the fluid, as well as the allowable temperature rise from 105 °F to 123 

°F in order to maintain an average tank temperature of 113 °F.  

 

Sample Calculations using TK-501 

𝑉𝑜𝑙𝑢𝑚𝑒 (𝑉) = 𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝐹𝑙𝑜𝑤 (𝑉̇) ∗  𝑇𝑖𝑚𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟

= 954
𝑓𝑡3

ℎ𝑟
∗

24 ℎ𝑟

𝑑𝑎𝑦
∗ 7 𝑑𝑎𝑦𝑠 ∗ 1.67 = 267,588 𝑓𝑡3 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝐷) = (
4 ∗ 𝑉

𝜋
)

1/3

=  (
4 ∗ 267,588 𝑓𝑡3

𝜋
)

1/3

≅ 70 𝑓𝑡 ≅ 𝐿𝑒𝑛𝑔𝑡ℎ (𝐿) (A37) 

(A36) 
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𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 (𝐴) = 2 ∗ 𝜋 ∗ (
𝐷

2
)

2

+ 2 ∗ 𝜋 ∗ (
𝐷

2
) ∗ 𝐿

= 2 ∗ 𝜋 ∗ (
70 𝑓𝑡

2
)

2

+ 2 ∗ 𝜋 ∗ (
70 𝑓𝑡

2
) ∗ 70 𝑓𝑡 = 22,988 𝑓𝑡2 

𝐻𝑒𝑎𝑡 𝐿𝑜𝑠𝑡 (𝑄̇) =
𝑘 ∗ 𝐴 ∗ ∆𝑇 ∗ 𝐸𝑟𝑟𝑜𝑟 𝐹𝑎𝑐𝑡𝑜𝑟

𝑡

=
0.4

𝐵𝑇𝑈 − 𝑖𝑛
ℎ𝑟 − 𝑓𝑡2 − ℉

∗ 22,988 𝑓𝑡2 ∗ (113 ℉ − 86℉) ∗ 1.25

2 𝑖𝑛

= 155,166
𝐵𝑇𝑈

ℎ𝑟
 

𝑃𝑢𝑚𝑝𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝑙𝑜𝑤 (𝑚) =  
𝑄̇ ∗ 𝑀𝑊

𝑐𝑝 ∗ ∆𝑇
=

155,166
𝐵𝑇𝑈

ℎ𝑟
∗ 94.13

𝑙𝑏
𝑙𝑏𝑚𝑜𝑙

40.12
𝐵𝑇𝑈

𝑙𝑏𝑚𝑜𝑙 − ℉
∗ (123 ℉ − 105 ℉)

= 20,226 𝑙𝑏/ℎ𝑟 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A40) 

(A38) 

(A39) 
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Appendix 5 

 

ASPEN Process Simulation 
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Appendix 5.2: Input File 

 
; 

;Input Summary created by ASPEN Plus Rel. 35.0 at 11:18:25 Thu Apr 6, 2017 

;Directory S:\Documents\459\WORKING  Filename C:\Users\rtann\AppData\Local\Temp\~ap5829.txt 

; 

 

 

DYNAMICS 

    DYNAMICS RESULTS=ON 

 

IN-UNITS ENG SHORT-LENGTH=in  

 

DEF-STREAMS CONVEN ALL  

 

SIM-OPTIONS MASS-BAL-CHE=YES PEQ-CHK-FRAC=1E-015  & 

        MASS-BAL-TOL=0.0001  

 

MODEL-OPTION  

 

DATABANKS 'APV90 PURE35' / 'APV90 AQUEOUS' / 'APV90 SOLIDS' /  & 

        'APV90 INORGANIC' / 'APEOSV90 AP-EOS' /  & 

        'NISTV90 NIST-TRC' / NOASPENPCD 

 

PROP-SOURCES 'APV90 PURE35' / 'APV90 AQUEOUS' / 'APV90 SOLIDS' & 

         / 'APV90 INORGANIC' / 'APEOSV90 AP-EOS' /  & 

        'NISTV90 NIST-TRC' 

 

COMPONENTS  

    BENZENE C6H6 /  

    PHENOL C6H6O /  

    CATECHOL C6H6O2-E1 /  

    BENZO-01 C7H6O2 /  

    BENZA-01 C7H6O /  

    WATER H2O /  

    OXYGEN O2 /  

    NITROGEN N2  

 

HENRY-COMPS HC-1 OXYGEN NITROGEN  

 

SOLVE  

    PARAM SEPSEQ=NO  

    RUN-MODE MODE=SIM  

 

FLOWSHEET  

    BLOCK T-302 IN=19 OUT=20 21 23  

    BLOCK T-301 IN=17 16 OUT=18 19  

    BLOCK R-201-4 IN=8 OUT=9  

    BLOCK MIX IN=22 4 OUT=5  

    BLOCK E-201 IN=9 5 OUT=DUM 6  

    BLOCK E-202 IN=6 OUT=7  

    BLOCK E-304 IN=15 OUT=17  

    BLOCK P-102 IN=21 OUT=22  

    BLOCK P-101 IN=3 OUT=4  
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    BLOCK C-E101-3 IN=1 OUT=2  

    BLOCK DUMMY IN=DUM OUT=10 11  

    BLOCK E-302 IN=14 OUT=16  

    BLOCK T-401 IN=23 OUT=24 25 27  

    BLOCK DUMMIX IN=2 7 OUT=8  

    BLOCK E-502 IN=32 OUT=34  

    BLOCK E-504 IN=33 OUT=35  

    BLOCK C-301 IN=10 OUT=12  

    BLOCK P-301 IN=11 OUT=13  

    BLOCK E-301 IN=12 OUT=14  

    BLOCK E-303 IN=13 OUT=15  

    BLOCK T-402 IN=26 OUT=28 30 29  

    BLOCK P-403 IN=25 OUT=26  

    BLOCK PRODMIX IN=30 27 28 OUT=31  

    BLOCK E-501 IN=29 OUT=32  

    BLOCK E-503 IN=31 OUT=33  

 

PROPERTIES PENG-ROB  

    PROPERTIES NRTL  

 

ESTIMATE ALL  

    NRTL ALL ALL UNIFAC  

 

PROP-DATA HENRY-1 

    IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar  & 

        INVERSE-PRES='1/bar' SHORT-LENGTH=mm  

    PROP-LIST HENRY  

    BPVAL OXYGEN BENZENE 21.67187354 -437.4599910 -2.341200000  & 

        8.72000000E-4 10.00000000 60.00000000 0.0  

    BPVAL OXYGEN WATER 144.4080745 -7775.060000 -18.39740000  & 

        -9.4435400E-3 .8500000000 74.85000000 0.0  

    BPVAL NITROGEN BENZENE -62.53052646 1916.800049 12.54900000  & 

        -.0257110000 7.100000000 60.00000000 0.0  

    BPVAL NITROGEN WATER 164.9940745 -8432.770000 -21.55800000  & 

        -8.4362400E-3 -.1500000000 72.85000000 0.0  

 

PROP-DATA NRTL-1 

    IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar  & 

        INVERSE-PRES='1/bar' SHORT-LENGTH=mm  

    PROP-LIST NRTL  

    BPVAL BENZENE PHENOL 0.0 389.2036000 .3000000000 0.0 0.0  & 

        0.0 70.00000000 80.00000000  

    BPVAL PHENOL BENZENE 0.0 -15.05350000 .3000000000 0.0 0.0  & 

        0.0 70.00000000 80.00000000  

    BPVAL BENZENE WATER 45.19050000 591.3676000 .2000000000 0.0  & 

        -7.562900000 0.0 .8000000000 77.00000000  

    BPVAL WATER BENZENE 140.0874000 -5954.307100 .2000000000  & 

        0.0 -20.02540000 0.0 .8000000000 77.00000000  

    BPVAL PHENOL BENZA-01 0.0 356.6832000 .3000000000 0.0 0.0  & 

        0.0 115.1500000 122.2000000  

    BPVAL BENZA-01 PHENOL 0.0 -449.1747000 .3000000000 0.0 0.0  & 

        0.0 115.1500000 122.2000000  

    BPVAL PHENOL WATER 2.301500000 -879.7008000 .3000000000 0.0  & 

        0.0 0.0 44.40000000 182.0000000  
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    BPVAL WATER PHENOL -.5363000000 1412.731600 .3000000000 0.0  & 

        0.0 0.0 44.40000000 182.0000000  

    BPVAL BENZO-01 WATER 253.4649000 -9663.475600 .2000000000  & 

        0.0 -38.85230000 0.0 64.00000000 115.5000000  

    BPVAL WATER BENZO-01 507.4191000 -27731.77730 .2000000000  & 

        0.0 -71.92100000 0.0 64.00000000 115.5000000  

    BPVAL PHENOL BENZO-01 0.0 439.3573100 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL BENZO-01 PHENOL 0.0 -185.5319200 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL BENZO-01 BENZA-01 0.0 -193.2510240 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZA-01 BENZO-01 0.0 420.6283360 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZA-01 WATER 0.0 839.3810740 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL WATER BENZA-01 0.0 1752.355170 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL BENZENE CATECHOL 0.0 1509.274030 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL CATECHOL BENZENE 0.0 -3.561853730 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZENE BENZO-01 0.0 555.4487960 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL BENZO-01 BENZENE 0.0 -141.1490830 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZENE BENZA-01 0.0 296.0398560 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL BENZA-01 BENZENE 0.0 -132.1842970 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZENE OXYGEN 0.0 805.1484280 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL OXYGEN BENZENE 0.0 -533.1209200 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL BENZENE NITROGEN 0.0 729.0478970 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL NITROGEN BENZENE 0.0 -497.2678470 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL PHENOL CATECHOL 0.0 163.0115060 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL CATECHOL PHENOL 0.0 -93.15335030 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL PHENOL OXYGEN 0.0 -429.9818290 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL OXYGEN PHENOL 0.0 128.3592970 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL PHENOL NITROGEN 0.0 -387.4383670 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL NITROGEN PHENOL 0.0 74.60129170 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL CATECHOL BENZO-01 0.0 382.6082020 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZO-01 CATECHOL 0.0 -6.899688710 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  
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    BPVAL CATECHOL BENZA-01 0.0 -347.3339800 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZA-01 CATECHOL 0.0 35.24558880 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL CATECHOL OXYGEN 0.0 2030.082890 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL OXYGEN CATECHOL 0.0 -920.7941860 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL CATECHOL WATER 0.0 2139.798090 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL WATER CATECHOL 0.0 -904.1092180 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL CATECHOL NITROGEN 0.0 1899.822030 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL NITROGEN CATECHOL 0.0 -892.5357340 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZO-01 OXYGEN 0.0 2413.743770 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL OXYGEN BENZO-01 0.0 -997.3756170 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL BENZO-01 NITROGEN 0.0 2220.857730 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL NITROGEN BENZO-01 0.0 -959.6016860 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL BENZA-01 OXYGEN 0.0 1804.820110 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL OXYGEN BENZA-01 0.0 -860.9135230 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL BENZA-01 NITROGEN 0.0 1670.272620 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL NITROGEN BENZA-01 0.0 -827.3024430 .3000000000 0.0  & 

        0.0 0.0 25.00000000 25.00000000  

    BPVAL OXYGEN WATER 0.0 182.2724850 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL WATER OXYGEN 0.0 -107.2436390 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL OXYGEN NITROGEN 0.0 4.268334610 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL NITROGEN OXYGEN 0.0 -5.121252420 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL WATER NITROGEN 0.0 -35.82780730 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

    BPVAL NITROGEN WATER 0.0 142.4194540 .3000000000 0.0 0.0  & 

        0.0 25.00000000 25.00000000  

 

PROP-DATA PRKBV-1 

    IN-UNITS ENG SHORT-LENGTH=in  

    PROP-LIST PRKBV  

    BPVAL BENZENE NITROGEN .1641000000 0.0 0.0 -459.6700000  & 

        1340.330000  

    BPVAL NITROGEN BENZENE .1641000000 0.0 0.0 -459.6700000  & 

        1340.330000  

    BPVAL OXYGEN NITROGEN -.0119000000 0.0 0.0 -459.6700000  & 

        1340.330000  
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    BPVAL NITROGEN OXYGEN -.0119000000 0.0 0.0 -459.6700000  & 

        1340.330000  

 

STREAM 1  

    SUBSTREAM MIXED TEMP=30. <C> PRES=14.7  

    MOLE-FLOW OXYGEN 410. / NITROGEN 1551.133  

 

STREAM 3  

    SUBSTREAM MIXED TEMP=30. <C> PRES=14.7  

    MOLE-FLOW BENZENE 840.  

 

STREAM 21  

    SUBSTREAM MIXED TEMP=240. PRES=50.  

    MOLE-FLOW BENZENE 2000.  

 

STREAM 22  

    SUBSTREAM MIXED TEMP=245. PRES=4.4 <MPag>  

    MOLE-FLOW BENZENE 6000. / PHENOL 1.36 / OXYGEN 1. /  & 

        NITROGEN 8.  

 

BLOCK DUMMIX MIXER  

    PARAM  

 

BLOCK MIX MIXER  

    PARAM  

 

BLOCK PRODMIX MIXER  

    PARAM  

 

BLOCK E-202 HEATER  

    PARAM TEMP=370. <C> PRES=-5. DPPARMOPT=NO  

 

BLOCK E-301 HEATER  

    PARAM TEMP=285. PRES=-5. DPPARMOPT=NO  

 

BLOCK E-302 HEATER  

    PARAM TEMP=110. PRES=-5. DPPARMOPT=NO  

 

BLOCK E-303 HEATER  

    PARAM TEMP=285. PRES=-5. DPPARMOPT=NO  

 

BLOCK E-304 HEATER  

    PARAM TEMP=110. PRES=-5. DPPARMOPT=NO  

 

BLOCK E-501 HEATER  

    PARAM TEMP=285. PRES=-5. DPPARMOPT=NO  

 

BLOCK E-502 HEATER  

    PARAM TEMP=45. <C> PRES=-5. DPPARMOPT=NO  

 

BLOCK E-503 HEATER  

    PARAM TEMP=285. PRES=-5. DPPARMOPT=NO  

 

BLOCK E-504 HEATER  
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    PARAM TEMP=45. <C> PRES=-5. DPPARMOPT=NO  

 

BLOCK DUMMY FLASH2  

    PARAM PRES=0. DUTY=0.  

 

BLOCK T-301 FLASH2  

    PARAM PRES=0. <bar> DUTY=0.  

 

BLOCK E-201 HEATX  

    PARAM CALC-TYPE=SIMULATION CALC-METHOD=TASCPLUS-RIG  

    HETRAN-PARAM INPUT-FILE= &  

    'E-201_1.edr' SAV-INPUT=YES  

    FEEDS HOT=9 COLD=5  

    OUTLETS-HOT DUM  

    OUTLETS-COLD 6  

    FLASH-SPECS DUM MAXIT=100  

    FLASH-SPECS 6 MAXIT=100  

    HOT-SIDE SHELL-TUBE=TUBE DPPARMOPT=NO  

    COLD-SIDE DPPARMOPT=NO  

    TQ-PARAM CURVE=YES  

 

BLOCK T-302 RADFRAC  

    SUBOBJECTS INTERNALS = CS-1 CS-2  

    PARAM NSTAGE=12 ALGORITHM=STANDARD HYDRAULIC=NO MAXOL=200  & 

        TOLOL=0.0001 DAMPING=NONE  

    PARAM2 STATIC-DP=YES  

    COL-CONFIG CONDENSER=PARTIAL-V-L REBOILER=KETTLE  & 

        CA-CONFIG=INT-1  

    FEEDS 19 6  

    PRODUCTS 20 1 V / 21 1 L / 23 12 L  

    P-SPEC 1 20.  

    COL-SPECS DP-STAGE=0.14 MOLE-RDV=0.02 MOLE-B=740.  & 

        MOLE-RR=0.5 DP-COND=2.  

    SPEC 3 MOLE-FRAC 0.005 COMPS=BENZENE STREAMS=23  

    VARY 3 MOLE-B 500. 1000.  

    REPORT NOHYDRAULIC  

    INTERNALS CS-1 STAGE1=2 STAGE2=5 P-UPDATE=NO NPASS=4  & 

        TRAY-SPACE=1.5  

    TRAY-SIZE 1 2 5 SIEVE  

    INTERNALS CS-2 STAGE1=6 STAGE2=11 P-UPDATE=NO  & 

        TRAY-SPACE=1.5  

    TRAY-SIZE 2 6 11 SIEVE  

 

BLOCK T-401 RADFRAC  

    SUBOBJECTS INTERNALS = CS-1 CS-2  

    PARAM NSTAGE=12 ALGORITHM=STANDARD HYDRAULIC=NO MAXOL=25  & 

        DAMPING=NONE  

    PARAM2 STATIC-DP=YES  

    COL-CONFIG CONDENSER=PARTIAL-V-L CA-CONFIG=INT-1  

    FEEDS 23 6 ON-STAGE  

    PRODUCTS 24 1 V / 25 1 L / 27 12 L  

    P-SPEC 1 20.  

    COL-SPECS DP-STAGE=0.15 MOLE-RDV=0.01 MOLE-D=703. MOLE-RR=4.  & 

        DP-COND=2.  
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    REPORT NOHYDRAULIC  

    INTERNALS CS-1 STAGE1=2 STAGE2=5 P-UPDATE=NO NPASS=2  & 

        TRAY-SPACE=1.5  

    TRAY-SIZE 1 2 5 SIEVE  

    INTERNALS CS-2 STAGE1=6 STAGE2=11 P-UPDATE=NO NPASS=2  & 

        TRAY-SPACE=1.5  

    TRAY-SIZE 2 6 11 SIEVE  

 

BLOCK T-402 RADFRAC  

    SUBOBJECTS INTERNALS = CS-1 CS-2  

    PARAM NSTAGE=20 ALGORITHM=STANDARD HYDRAULIC=NO MAXOL=25  & 

        DAMPING=NONE  

    PARAM2 STATIC-DP=YES  

    COL-CONFIG CONDENSER=TOTAL CA-CONFIG=INT-1  

    FEEDS 26 15  

    PRODUCTS 30 20 L / 29 18 V MOLE-FLOW=672. / 28 1 L  

    P-SPEC 1 20.  

    COL-SPECS DP-STAGE=0.15 MOLE-D=23.5 MOLE-RR=20. DP-COND=2.  

    SPEC 1 MASS-FRAC 0.9983 COMPS=PHENOL STREAMS=29  & 

        SPEC-ACTIVE=YES  

    VARY 1 MOLE-RR 1. 1000. VARY-ACTIVE=YES  

    REPORT NOHYDRAULIC  

    INTERNALS CS-1 STAGE1=2 STAGE2=14 P-UPDATE=NO NPASS=2  & 

        TRAY-SPACE=1.5  

    TRAY-SIZE 1 2 14 SIEVE  

    INTERNALS CS-2 STAGE1=15 STAGE2=19 P-UPDATE=NO NPASS=2  & 

        TRAY-SPACE=1.5  

    TRAY-SIZE 2 15 19 SIEVE  

 

BLOCK R-201-4 RSTOIC  

    PARAM TEMP=350. <C> PRES=4. <MPag> MAXIT=100 TOL=0.0001  & 

        HEAT-OF-REAC=YES COMBUSTION=NO  

    STOIC 1 MIXED BENZENE -1. / OXYGEN -0.5 / PHENOL 1.  

    STOIC 2 MIXED BENZENE -7. / OXYGEN -7.5 / BENZO-01 6. /  & 

        WATER 3.  

    STOIC 3 MIXED BENZENE -7. / OXYGEN -4.5 / BENZA-01 6. /  & 

        WATER 3.  

    STOIC 4 MIXED BENZENE -1. / OXYGEN -1. / CATECHOL 1.  

    CONV 1 MIXED BENZENE 0.121  

    CONV 2 MIXED BENZENE 0.00025  

    CONV 3 MIXED BENZENE 0.00025  

    CONV 4 MIXED BENZENE 0.0035  

    HEAT-RXN REACNO=1 CID=BENZENE / REACNO=2 CID=BENZENE /  & 

        REACNO=3 CID=BENZENE / REACNO=4 CID=BENZENE  

 

BLOCK P-101 PUMP  

    PARAM PRES=4.4 <MPag>  

 

BLOCK P-102 PUMP  

    PARAM PRES=4.4 <MPag> NPHASE=2 MAXIT=100  

    BLOCK-OPTION FREE-WATER=NO  

 

BLOCK P-301 PUMP  

    PARAM PRES=155.04 <psig> EFF=0.6 PUMP-TYPE=TURBINE  
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BLOCK P-403 PUMP  

    PARAM PRES=30.  

 

BLOCK C-301 COMPR  

    PARAM TYPE=ASME-ISENTROP PRES=155.04 <psig> SEFF=0.85  & 

        MEFF=0.98 NPHASE=2 SB-MAXIT=30 SB-TOL=0.0001   & 

        MODEL-TYPE=TURBINE  

    BLOCK-OPTION FREE-WATER=NO  

 

BLOCK C-E101-3 MCOMPR  

    PARAM NSTAGE=3 TYPE=ISENTROPIC PRES=4. <MPag> SB-MAXIT=30  & 

        SB-TOL=0.0001   

    FEEDS 1 1  

    PRODUCTS 2 3  

    COMPR-SPECS 1 SEFF=0.85 MEFF=1. / 2 SEFF=0.85 MEFF=1. /  & 

        3 SEFF=0.85 MEFF=1.  

    COOLER-SPECS 1 TEMP=100. PDROP=5. / 2 TEMP=100. PDROP=5. /  & 

        3 DUTY=0.  

 

UTILITY U-1 GENERAL  

    DESCRIPTION "Cooling Water, Inlet Temp=20 C, Outlet Temp=25 C"  

    COST ENERGY-PRICE=2.12E-007 <$/kJ>  

    PARAM UTILITY-TYPE=WATER PRES=1. <atm> PRES-OUT=1. <atm>  & 

        TIN=20. <C> TOUT=25. <C> CALOPT=FLASH MIN-TAPP=5. <C>  & 

        HTC=0.0135 <GJ/hr-sqm-C>  

 

DESIGN-SPEC DS-1  

    DEFINE PROD MOLE-FLOW STREAM=23 SUBSTREAM=MIXED  & 

        COMPONENT=PHENOL UOM="lbmol/hr"  

    SPEC "PROD" TO "680"  

    TOL-SPEC "0.1"  

    VARY MOLE-FLOW STREAM=3 SUBSTREAM=MIXED COMPONENT=BENZENE  & 

        UOM="lbmol/hr"  

    LIMITS "840" "870"  

 

EO-CONV-OPTI  

 

CONV-OPTIONS  

    WEGSTEIN MAXIT=1000  

 

STREAM-REPOR MOLEFLOW MASSFLOW STDVOLFLOW  

 

PROPERTY-REP PARAMS PCES  

 

DISABLE  

    DESIGN-SPEC DS-1  

; 

; 

; 

; 
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