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ABSTRACT 

HIGH-THROUGHPUT ENGINEERING AND ANALYSIS OF CLASS II 

MHC/PEPTIDE BINDING BY YEAST CO-DISPLAY 

Wei Jiang 

Eric T. Boder 

Polymorphisms of major histocompatibility complex (MHC) and molecular mechanisms 

of their antigen-presenting specificity and promiscuity have great impact on T cell-

mediated immune responses and related diseases.  Challenges in elucidating the 

characteristics of antigenic peptide binding by MHC motivate the development of high 

throughput experimental tools to quantitatively analyze interactions between hundreds of 

MHC allelic proteins and various peptide sequences.  We demonstrated such a method 

by co-displaying target peptides and class II MHC (MHC-II) on the yeast surface in an 

intracellular association-dependent manner.  The optimized yeast co-display system 

enabled quantitative mapping of side-chain preferences and general motifs for peptides 

binding to MHC-II by site-directed mutagenesis or peptide library screening, and also 

allowed rapid tailoring of MHC-II peptide binding specificity by directed evolution 

approaches, which derived MHC-II allelic mutants with altered peptide binding 

specificity or hyper-promiscuity.  Comparison of these experimentally engineered 

mutants with naturally discovered MHC-II proteins recovered valuable information 

about structure-function relationship in the evolutionary mechanisms for polymorphic 

MHC-II molecules, which could direct future immunotherapeutic innovation. 
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Chapter 1.  Background and significance 

1.1.  Overview 

Biological evolution makes creatures on the earth more and more sophisticated as 

well as better and better developed.  For example, to protect against diseases caused by 

various agents in the surrounding, organisms have developed a defending bio-system 

called immune system1-3 by gradually accumulating and coordinating subtle helpful 

immunological features supplied by specifically differentiated cells and naturally 

evolved molecules over thousands or millions of generations.  Natural evolution is slow 

and results are determined by complex fitness constraints existing in nature.  

Nonetheless, evolution remains a powerful paradigm for optimizing biological systems.  

Thus, in vitro methods for directed evolution4, 5, wherein researchers can control fitness 

drivers guiding change, have garnered substantial interest in the last two decades.  These 

methods are commonly and most simply applied to proteins6, 7, the basic unit of 

biological function.  

Most highly developed vertebrates, such as mammals and humans, have a relatively 

complicated immune system consisting of many types of organs, tissues, cells, and 

proteins, which connect with each other in an elaborate and dynamic process.  Within 

this network, CD4+ T cell, a sub-group of lymphocytes, serves as a director to control 

and optimize the function of other immune effector cells8 and a booster to maximize the 

efficacy of immunity.  The role of these lymphocytes is so important that dysfunction or 

deficiency of functional CD4+ T cells in human individuals will result in fatal immune 

disorders, such as severe combined immunodeficiency (SCID)9 and acquired immune 
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deficiency syndrome (AIDS) caused by a notorious virus, HIV10.  It is of great 

importance to understand the mechanism for stimulation of CD4+ T cell responses and 

find a possible way to modulate their activation and function.  Studies of CD4+ T cells at 

the molecular level indicate that two signals are involved in the process of their epitope 

specific activation11, 12.  The primary pathway for transmitting signal 1 is predominantly 

determined by the molecular interaction between T cell receptor (TCR) and class II 

major histocompatibility complex (MHC-II) associated with antigenic peptide processed 

and presented by professional antigen-presenting cells (APCs)11, 13.  Therefore, peptide-

binding specificity of MHC-II proteins plays an important role in defining the epitope 

specificity of T cell activation and evolution of MHC-II for altered specificity implicates 

potentials in regulation of helper T cell-mediated immune responses.  

As one of the most polymorphic membrane proteins14, 15, MHC has already been 

selected for millennia by nature16, 17 so that each MHC-II allele is poly-specific for a 

large set of antigenic peptides derived from both endocytosed pathogens and cytosolic 

proteins18-22 and only a few alleles are required and expressed by each individual for 

presentation of peptides and initiation of T cell responses to overwhelm a verity of 

foreign invaders.  However, environmental changes enforce improvement of MHC’s 

peptide selectivity such that CD4+ T cell mediated immune responses could function 

against mutagenic pathogens.  Laboratorial protein engineering techniques enable an 

initial evaluation of these evolutionary processes experimentally, which not only help to 

understand structure-function relationship for naturally evolved MHC-II molecules but 

also shed light on artificially modulating immune responses for therapeutic purpose.  
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This thesis work is focused on 1) development of a quantitative, high throughput in 

vitro protein engineering methodology – yeast co-display, for studying the interaction 

between various peptides and diverse MHC-II molecules (Chapter 2 and 3); 2) 

characterization at the molecular level of peptide binding specificity for selected MHC-II 

allele (HLA-DR1), determination of side chain preference for some pocket-like region in 

the binding site of DR1 (or pocket profile23), and prediction of DR1 specific ligands 

using the novel technology (Chapter 4); 3) modification of pockets within the peptide 

binding groove of DR1 for improved and/or altered peptide binding specificity by 

directed evolution, which has a potential to regulate T cell activation (Chapter 5). 

1.2.  Central role of CD4+ T cells in adaptive immune responses 

1.2.1.  Brief introduction for Immune system and lymphocytes 

The immune system that most vertebrates have not only inherits the oldest innate 

immunity, but also develops a more evolved adaptive immunity, first appeared in jawed 

vertebrates2 and became increasingly specialized with further evolution.  Adaptive 

immune system consists of macrophages and other phagocytic cells, lymphocytes and 

their derivatives such as antibodies1, 3, 24.  Lymphocytes are the only cell types in the 

body capable of specifically recognizing and distinguishing different antigenic 

determinants and are responsible for the adaptive immune response, specificity and 

memory25.  A lot of congenital and acquired immunodeficiencies are related to 

molecular defects in the development and function of lymphocytes or their products9.  

Therefore, many immunotherapeutic approaches and vaccinations aim at modifying and 

optimizing the performance of lymphocytes or its mediators26-28. 
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There are three major subsets of lymphocytes25: 1) Natural killer (NK) cells, a part of 

innate immune system, can recognize and kill infected cells directly without a need for 

additional activation; 2) B cells, main components of adaptive immune system, are 

responsible for secreting antibodies, which stimulate humoral immune responses by 

directly capturing antigens; 3) T cells, another group of main components in adaptive 

immune system, only respond to antigens processed and presented by APCs via a MHC-

invoked secretory pathway and stimulate cell-mediated immune responses.  Two 

important effector cells differentiated from T lymphocytes involved in MHC-restricted 

activations are T helper cells (Th cells, expressing CD4 coreceptors for MHC-II binding) 

and CD8+ cytotoxic T lymphocytes (CTLs, expressing CD8 coreceptors for MHC-I 

binding).  

1.2.2.  Differentiation and Function of CD4+ T cells 

Not like NK cells, antibodies or CTLs, Th cells do not have the ability to eliminate 

infected pathogens by themselves, however, taking up almost half of the lymphocyte 

population in human body, they do play an important role in adaptive immunity or even 

innate immunity.  Because of their regulatory function, these effector cells of CD4+ T 

cells are usually designated as helper cells.  Of particular interest is that CD4+ T cells 

may differentiate into two different subsets of effector cells, Th1 and Th2, which produce 

distinct cytokines and perform distinct effector functions. Once being activated, Th1 cells 

are essential in stimulating antibody secretion and determining B cell antibody class 

switch, in promoting the activation and proliferation of CTLs8, and in regulating activity 

of phagocytes such as macrophages, neutrophils, and other leukocytes responsible for 
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cell-mediated immunity (Figure 1-1).  Th2 cells on the hand mainly function as 

suppressers for these effector cell-mediate responses. Both cell subsets are involved in 

formation of tissue injury and inflammation as well as generation of memory T cells, 

which may persist for years after acute immune responses are down-regulated and 

disappeear25.   

 

Figure 1-1 Proliferation and function of CD4+ T cells.  CD4+ T cells are activated by antigenic peptide 
presented by professional APCs and driven to the clonal expansion by cytokines (e.g. interleukin-2). The 
activated and differentiated Th cells can further activate and differentiate macrophages, CD8+ T cells, and 
B cells, or introduce inflammation.  The main function of activated macrophages, CD8+ T cells, and B 
cells are to lyse phagocytosed antigens, to kill antigen-infected cells or tumor cells, and to secrete antigen-
specific antibodies, respectively.  Once antigens are eliminated, Th cells will be down regulated and 
entering a memory phase.  (Adapted from Abbas, A.K., Lichtman, A.H. & Pober, J.S. Cellular and 
molecular Immunology, 4/e (Saunders, philadelphia, 2000)). 

Both B cell and macrophages are professional APCs for Th cells29, so immature B 

cells or macrophages can process and present antigen fragments to specifically activate 

CD4+ cells, which in turn will fully activate B cells and macrophages by cytokines (e.g., 

interferon-γ (IFN-γ)30, 31) or CD40-mediated signaling32-34 (Figure 1-2) for antibody 

secretion and phagocytosis respectively (Figure 1-1). 
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In contrast, CD8+ T cells do not serve as professional APCs to Th cells and their 

development and function do not necessarily require presence of Th cells.  In a strong 

innate immune response, the primary activation of CD8+ T cells can be elicited by 

dendritic cells (DCs), if microbe directly infects DCs35, or if cross-presentation36, 37 of 

microbial antigens is sufficient.  However, the participation of Th cells is usually 

required for CD8+ T cell responses to tumor cells38, viral infections39, 40 and for 

expansion of memory CD8+ T cells41, 42.  Communication between these two types of T 

cells is largely mediated by professional APCs, such as DCs43, via interleukin-2 (IL-2) 

signaling41 (Figure 1-1) or costimulatory signaling mediated by CD40:CD40 ligand39, 44, 

45 or CD28:B7-1/B7-2 pathway42 (Figure 1-2). 

Thus, CD4+ helper T cell actually plays a central role in adaptive immunity.  The 

possibility of controlling or adjusting CD4+ T cell development and function at 

molecular level would present intriguing potential for immunotherapy of numerous 

diseases related to Th cell-mediated responses46-48. 
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Figure 1-2 Signaling pathways between CD4+ T cell and APCs. 

1.2.3.  Activation of CD4+ T cells by APCs 

In order to enter the functional stage, naïve T cells need to be activated and 

differentiated into effector T cells by specialized APCs, called “professional APCs” 

(Figure 1-1).  As mentioned earlier, DCs, B cells and macrophages can all serve as 

professional APCs to present antigenic peptides for CD4+ T cell recognition and 

activation29, 35.  However, the amount of MHC-II and cotimulators they can express, the 

phase of adaptive immune responses at which they can activate CD4+ T cells, the 

locations where they meet with T cells, and the functional feedback received from Th 

cells are all different25.  

B cells and macrophages with lower levels of MHC-II mainly present antigen to 

differentiated effector Th cells, and the process of antigen presentation mostly takes 

place in lymphoid organs.  Other than those places, macrophages can also mediate T cell 
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responses in tissues, which might cause delayed type hypersensitivity.  The main 

purpose of this antigen presenting process is to further activate B cells and macrophages 

themselves and fully accomplish their function.  DCs on the contrary, resident in 

epithelia and tissues, can capture antigens and transport them to secondary lymphoid 

organs, including lymph nodes and spleen and present them to naïve CD4+ T cells.  

They can express large amount of MHC-II and costimulators on the surface and are the 

most effective APCs for initiating primary T cell responses.  

Adoptive transplantation of autologous APCs such as DCs has been used in 

immunotherapy to generate more effective T cell-mediated immune responses26, 49.  

However, the labor intensity and high expense on producing APCs and the unreliable 

quality and quantity of the available APCs that can be used in adoptive immunotherapy 

all limit their usage in clinical applications.  Therefore, investigators have started to 

develop various artificial APCs (aAPCs) to enhance the generation of antigen specific T 

cells27.  No matter which method is going to be used, first of all, it is critical to clarify 

the molecular mechanism that leads to the activation of CD4+ T cells by APCs. 

1.2.4.  Signaling pathways for CD4+ T cell activation 

T cell activation needs both antigen recognition and costimulation.  After antigens 

are specifically processed and presented by professional APCs to CD4+ T cells, T cells 

will receive both “signal 1” through TCRs and “signal 2” via costimulator receptors 

from professional APCs11, 12. 

The primary signaling pathway, which determines the specificity of CD4+ T cell-

mediated adaptive immune responses, is formed by the interaction between CD3 and 
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ζ protein-associated TCRs (TCR complexes) and APC-processed antigenic peptide- 

coupled MHC-II molecules (peptide/MHC-II complexes) along with the CD4 

coreceptor12, 13 (Figure 1-2).  The antigen specificity of T cell response is greatly 

dependent on antigenic peptides processing and presentation by APCs and peptide-MHC 

complex recognition of TCRs on the T cell surface. 

Other than the first signaling pathway, there are several intermolecular ligand-

receptor interactions that function to deliver the second signal which is necessary for 

optimization of T cell activation and differentiation: CD28:B7-1/B7-2, the principal 

pathway for delivering second signals for T cell activation12, 13; CD2: CD58, signal 

transducer as well as intercellular adhesion molecules.  Some other ligand-receptor pairs 

might only serve as adhesion molecules, such as integrin LFA-150: ICAM-1/ICAM-2, 

however, they are necessary for keeping T cells and APCs in close contacting with each 

other for signaling transduction25 (Figure 1-2). 

Although the appearance of costimulatory molecules is substantial, specialized 

MHC-II proteins on the surface of APCs perform the main task of displaying cell-

associated antigens for recognition by CD4+ T cells.  Therefore, intensive studies using 

in vivo and in vitro methods have been carried out and will keep focusing on elucidating 

the cellular and molecular basis of antigen processing inside APCs as well as interaction 

between antigenic peptide and MHC molecules, which is also a key to the construction 

of aAPCs and to the design of vaccines for modulating T cell responses.  One purpose of 

this thesis work is trying to develop a quantitative, high throughput method for better 

understanding the characteristics of MHC-II molecules that determine their selectivity 

for peptides. 
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1.3.  MHC-II and antigenic peptide binding 

1.3.1.  Classification and evolution of polymorphic MHC 

The MHC locus is a large gene cluster found in the genome of most vertebrates.  The 

main products encoded by these diverse genes are expressed as trans-membrane 

glycoproteins on the surface of APCs, which have the ability to degrade and process 

antigens into short fragments (peptides) and transport them using MHC proteins to the 

surface for recognition by antigen-specific T cells.  Two well-known subgroups of MHC 

proteins are 1) class I (MHC-I), expressed on the surface of all nucleated cells and 

responsible for presenting intracellular peptides to CD8+ T cells, and 2) class II (MHC-

II), expressed on the surface of professional APCs, such as DCs, macrophages and B 

cells and responsible for presenting extracellular peptides to CD4+ T cells51.  In humans, 

MHC proteins are referred to as human leukocyte antigen (HLA), and most intensely 

studied HLA alleles are HLA-A, HLA-B, HLA-C (for class I) and HLA-DR, HLA-DP, 

HLA-DQ (fcor class II). 

MHC is the most polymorphic gene in the human genome.  Up till today, multiple 

alleles have been found for all the nine classical genes (the heavy chain for each of class 

I alleles and two chains for each of class II alleles), among which the most 

conspicuously diverse loci, HLA-A, HLA-B, HLA-C and HLA-DRB, have 893, 1431, 

569 and 814 known gene alleles that can encoding 681, 1165, 431 and 637 proteins 

respectively (Table 1-1). 
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Table 1-1 HLA alleles numbers (adapted From IMGT/HLA Database, assigned October 2009) 

HLA class I HLA class II 
Gene 

A B C DRA DRB DQA1 DQB1 DPA1 DPB1 

Alleles 893 1,431 569 3 814 35 106 28 136 

Proteins 681 1,165 431 2* 637 26 77 16 118 

 

HLA-DRB Alleles 
Gene 

DRB1 DRB2 DRB3 DRB4 DRB5 DRB6 DRB7 DRB8 DRB9 

Alleles 722 1 52 13 19 3 2 1 1 

Proteins 572 0 42 7 16 0 0 0 0 

* The two DRA proteins have only one difference at the cytoplasmic tail. 

The evolutionary force that has created and maintained such astounding allelic 

diversity is postulated to be balancing selection52, 53, a broad term that identifies any kind 

of natural selection in which no single allele is absolutely most fit.  This striking feature 

of MHC genes as well as proteins not only creates fertile grounds for evolutionary 

biologists but also provides resourceful platforms for protein engineers.  Although a high 

degree of MHC polymorphism is found in human population, an individual can only 

express approximately 18 class I or class II proteins, which are usually individually 

specific, so transplantation rejection and autoimmune diseases might occur when trying 

to transplant organs or tissues between individuals.  Because of these limitations, 

immunologists and bioengineers would always like to investigate the common and 

distinct molecular properties of MHC proteins and develop methods for monitoring the 

evolution of MHC molecules for improved immune tolerance as well as diversity.  The 
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in vitro methodology we will talk about in this thesis allows discovery of the molecular 

relationship among MHC-II alleles in a functionality-dependent manner. 

1.3.2.  Structure of MHC-II proteins 

An MHC-II protein is a non-covalently associated heterodimer consist of an α chain 

(32-34kDa) and a β chain (29-32kDa).  Each subunit contains two extracellular 

domains54-59 (Figure 1-3A), a trans-membrane spanning domain and a cytoplasmic tail.  

The N-terminal α1 and β1 domains interact to form the peptide-binding groove, 

composed of two α-helical walls and a floor formed by eight strands of anti-parallel β-

sheets (Figure 1-3B). Polymorphisms of MHC-II are mainly due to the existence of 

various possible residues at the same position within the peptide binding groove15.  In 

contrast with class I, the class II molecules leave both ends of the peptide-binding 

groove open for accommodating longer peptides up to 30 residues59, 60.  This peptide 

binding domain is responsible for loading peptides and presenting them to T cells61. The 

α2 and β2 domains fold into immunoglobulin (Ig) domains, responsible for CD4 

coreceptor binding and are relatively conserved among various alleles of a particular 

gene62.  
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Figure 1-3 Three-dimensional structure of human leukocyte antigen-DR1 in complex with FLU 
peptide54.   A. Extra-cellular domains of DR1 associated with FLU peptide (derived from influenza 
hemagglutinin residues 306-318: PKYVKQNTLKLAT, also known as HA306-318 elsewhere54; and we 
use “FLU” henceforward in order to distinguish it from another HA epitope tag derived from the same 
protein).  B. Top view of the peptide-binding site formed by α1 and β1 domains.  Images were made using 
PyMOL software (Delano, W.L., The PyMOL Molecular Graphics System (2002) on world wide web 
http://www.pymol.org) by rendering molecular coordinates in the code file 1DHL. 

1.3.3.  MHC-II pathway of antigen processing in APC 

The maturation of MHC-II and the peptide binding and transport by MHC-II take 

place inside professional APCs upon the exposure to foreign antigens29, 63 (Figure 1-4).  

After capturing antigens, these specialized APCs will internalize the extracellular 

proteins into vesicular compartments, such as endosomes and lysosomes, where 

proteolytic enzymes degrade antigens into short fragments (peptides) under the acidic 

condition.  Newly assembled MHC-II in endoplasmic reticulum (ER) are transported 

through Golgi complex to late endosomes and lysosomes with the help of invariant chain 

(Ii), which weakly occupies the peptide-binding groove of immature MHC-II.  After 
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membrane fusion of different endosomes and lysosomes, MHC-II and antigenic peptides 

enter the same vesicle, called the MHC class II compartment, or MIIC64, which contains 

all components required for peptide/MHC-II association such as enzymes, MHC-II, the 

Ii (or invariant chain-derived peptides), and HLA-DM (product of a non-polymorphic 

gene located at the locus of MHC-II gene cluster) with the ability to catalyze peptide 

binding65.  To remove Ii from the peptide-binding site, proteolytic enzymes first cleave Ii 

into class II-asociated invariant chain peptide (CLIP), and then DM helps to catalyze the 

conformational change66 of MHC-II for peptide exchange between CLIP and high 

affinity antigenic peptides.  Once mature MHC-II molecules are associated and 

stabilized by antigenic peptides66-69, the peptide/MHC-II complex can be delivered by 

exocytic vesicles to the surface of APC for recognition by CD4+ T cells. 

 

Figure 1-4 Peptide processing in APC via MHC-II maturation pathway. 
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1.3.4.  Peptide binding characteristics of MHC-II 

There are several important features of the interaction between MHC-II proteins and 

specific peptides21, 70.  First of all, even though each MHC-II molecule contains a single 

peptide binding groove capable of accommodating one peptide at a time, it has the 

ability to specifically recognize and present a large set of peptides derived from 

enormous numbers of antigens18-20.  This explains why each individual expressing only a 

few different MHC-II alleles (normally less than 12) could defend against infections of 

various foreign agents. 

Secondly, peptides bound to MHC-II share common structural features that favor 

their interaction.  The optimal length of specific peptides is between 12 to 16 residues, 

with 9 consecutive residues directly contacting with the binding groove59.  Some have 

their side chains pointing down to pocket-like region within the groove serving as 

anchors for MHC-II binding, whereas the rest face up with their side chains away from 

the groove for recognition by TCRs (Figure 4-1).  This feature reflects the antigen 

specificity of both MHC-II and TCRs. 

Thirdly, the association is relatively stable with a very low off-rate and the peptide 

binding affinity of MHC-II is higher than the peptide/MHC-II complex binding affinity 

of TCR25.   This allows peptide/MHC complexes to persist long enough on the surface of 

APCs for T cell recognition. 

Fourthly, MHC-II shows a broader specificity (promiscuity) for peptide binding than 

the specificity of antigen recognition by TCRs25.  They can bind different sources of 

peptides derived from both self and foreign antigens, which TCRs will distinguish for T 
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cell stimulation.  This actually increases the chance of autoimmunity and the tolerance of 

self-like foreign antigens. 

All the information about peptide/MHC-II interactions may be used in vaccine 

design for enhancing CD4+ T cell-mediated adaptive immunity or in immunotherapy for 

treating T cell-related diseases26-28, 38, 46-49, 71, 72.  However, most of these strategies based 

on applying known T cell specific epitopes presented by self MHC-II molecules for 

stimulating CD4+ T cell activation, which are limited by the restricted set of epitopes 

recognized by the few types of self expressed MHC-II alleles found in each individual.  

Therefore, there will always be some nonspecific epitope or mutated epitope bearing 

antigens with the capability of escaping the recognition of MHC-II as well as CD4+ T 

cells and causing sever immune diseases to certain MHC-II alleles expressing 

individuals.  In these cases, immunotherapeutic methods relying on MHC-II-specific 

antigens will become less effective, and alternative strategies such as improving the 

range of peptides presentable by MHC-II or changing the specificity of certain alleles 

could be useful.  

Even though each individual could only bear a few MHC alleles and will inevitably 

come across with the problem of transplantation rejection when a foreign allele showing 

up in their bodies, hundreds or even thousands of alleles do exist in nature among 

different individuals and their protein products share similar structures and functions.  

This large freedom of the balancing selection for MHC-II in nature suggests that any 

self-MHC allele has the potential of being mutated or modified subtly without affecting 

most of its characteristics, possibly including self-tolerance.  Furthermore, if a selection 

mechanism is properly set up, the peptide binding properties such as specificity and 
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affinity of an MHC-II molecule should be able to be “directedly” edited or evolved by 

introducing subtle changes such as single mutations in the protein sequence leaving most 

of the other properties and functions unchanged.  Creating and applying this kind of self-

derived or self-evolved tolerant MHC-II molecules in the development of vaccines and 

aAPCs would become a breakthrough in vaccination and immunotherapy. 

In this thesis work, we will take the first step of this big project on evaluating the 

possibility of developing novel MHC-II molecules with minimum residue substitutions, 

which can specifically recognize and present targeted peptides for T cell activation.  

1.4.  Protein engineering technologies in this thesis work 

1.4.1.  Cell-surface display for target proteins 

Display of recombinant proteins on the surface of cells or viral particles not only 

serves as an expression system for correct assembly of proteins but also provides a 

platform for directly exploring and improving protein functions such as immunogenicity, 

ligand binding specificity and enzymatic activities, etc. by directed evolution73-89.  Up till 

today, various cellular systems such as bacteriophages, bacteria, yeast, baculovirus-

insect cells and baculovirus/retrovirus-mammalian cells have been developed and widely 

used for displaying and engineering proteins of interest.  There is no expression system 

perfectly suitable for all kinds of in vitro engineering applications, so advantages and 

disadvantages usually need to be considered and compromised for acquiring a specific 

accomplishment. 

Phage display90, 91 and bacterial display79, 80, 92 are largely applied for expressing 

short peptides and simple polypeptides, which require more relaxed folding 
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environments and less modifications, because these prokaryotic organisms are normally 

lack of the post-translational machinery that helps properly assembling eukaryotic 

especially human proteins.  However, the simplicity of culturing and cloning these lower 

hierarchy single-cell systems make them priorities for engineering a great number of 

well studied eukaryotic polypeptides by construction and screening of libraries of 

variants with a size of 108~1010.  Investigation of large pool of variants and screening for 

better fitness has become more and more useful via directed evolution for understanding 

function of various proteins nowadays, thus, other than cellular platform based 

displaying system, ribosome display93 or even mRNA display94-96 have been derived for 

expression of even larger libraries for protein engineering in a cell-free environment 

without limitation of transfection and/or transformation efficiency.  The latter two 

systems are very useful for screening a large variety of short peptides in some cases, but 

less preferred for polypeptides, whose function relies on tertiary structure.    

On the other hand, insect cell display76, 97 and mammalian cell display75, 82, 98, 99 

inherit the advantage of eukaryotic expression systems, which provide more accurate 

protein folding regulatory and auxiliary mechanism and better similarity to in vivo 

conditions.  As a result, large membrane proteins with sophisticated structures or 

membrane protein complexes consist of multiple non-covalently associated monomers 

are better to be studied within these higher-level organisms.  For the cost, one must 

sacrifice diversity and the number of protein variants that can be tested, or, labor 

intensity as well as time and expense cost has to be increased dramatically to obtain 

similar library of protein mutants for screening novel functionality, which sometimes is 

difficult and impossible for these multicellular organisms even with modern 
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biotechnology.  Additionally, even with the help of baculoviral100 or retroviral89 

technology, the difficulty of applying mammalian cells to engineer heterologous proteins 

make them less commonly used than other displaying systems.  The ability of producing 

viral particles (e.g. baculovirus or retrovirus) for displaying interest polypeptides though 

provides more flexibility to extend the application of these two kinds of virus infected 

eukaryotic displaying systems84, 89.  

In a lot of cases, diversity and complexity of certain eukaryotic protein are both 

desired when performing specific structure-function analysis, such as the one in this 

thesis work; hence, yeast display73, 74, 101 represents an ideal in vitro research platform, 

which has the ability to translate and modify proteins under control of eukaryotic 

expression though a little different from mammalian cells, while lose little molecular 

cloning advantage as a single cellular expression system.  Theoretically, one can 

generate a combinatorial library with up to 109 individual clones using yeast, which is 

able to cover combinations of 20 standard amino acids in 7 different sites within a 

relatively complex protein.  It is for sure that this single-cell eukaryotic displaying 

system has its potential on occupying more and more research fields in protein 

engineering. 

In this thesis, we are going to display proteins of interest on the surface of yeast and 

extend the display technology to fully utilize yeast to characterize interaction between 

two or more proteins, e.g. peptides and DR1 heterodimer. 

To display a protein of interest on the surface of yeast, the gene coding for protein of 

interest can be cloned to upstream102 or downstream74 of AGA2 gene in a yeast shuttle 

vector.  After being transformed into an engineered yeast Saccharomyces cerevisiae 
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strain EBY10074 (a GAL1-AGA1::URA3 ura3-52 trp1 leu2Δ1 his3Δ200 pep4::HIS2 

prb1Δ1.6R can1 GAL), heterologous genes in the vector will be translated to protein of 

interest fused by Aga2 protein (Aga2p), which is the subunit of a native yeast surface 

protein, a-agglutinin103, 104.  Directed by a signal peptide, the protein fusion will enter 

protein secretory pathway, where Aga2p will associate with the other subunit of a-

agglutinin (Aga1p) by forming two disulfide bonds.  Once transported outside yeast, the 

assembled a-agglutinin will anchor protein of interest on the surface by the designed 

covalent linkage between Aga2p and protein of interest (Figure 1-5). 

 

Figure 1-5 Classical yeast surface display of target protein.  Protein of interest can be covalently linked 
to either N-terminus or C-terminus of Aga2p, which serves as the anchor for surface-displaying protein of 
interest. 

1.4.2.  Analyzing immunofluorescently labeled cells by flow 

cytometry 

Detection of protein on yeast surface is mainly carried out by applying 

immunofluorescenty labeled yeast to a fluorescence detector – flow cytometer.  To label 
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proteins on the surface of yeast, cells are usually enriched in growth media and then 

switched to induction media for a certain time for optimal protein expression.  

Consequently, cells are collected by centrifugation and labeled with a primary labeling 

reagent specific for protein of interest displayed on yeast surface.  In some cases, the 

primary reagent is conjugated with a fluorophore for direct fluorescent labeling.  In other 

cases, a secondary reagent conjugated with a fluorescent dye is used for indirect 

fluorescent labeling.  These conjugated fluorescent dyes can be detected via flow 

cytometry.  All labeling work performed in this thesis work used indirect labeling, which 

normally gives the stronger signal. 

Other than proteins of interest themselves, small epitope tags such as HA, V5, 6His, 

c-Myc, etc., are wildly used and fused to nonfunctional ends of target protein enabling 

indirect checking of expression and presentation of protein of interest on the surface of 

yeast.  Due to the small size (5-20 residues), epitope tags will not affect the tagged 

protein’s biochemical properties, but can be recognized by epitope-specific antibodies, 

which also allows immunofluorescent labeling.  Fluorescent labeling can be performed 

for one epitope or more at the same time as long as primary and secondary reagents have 

lowest cross-reactivity against each other.  Double labeling by using an antibody specific 

for protein of interest and another one specific for a fused epitope tag was used 

frequently in this thesis work. 

Flow cytometer allows suspension of labeled yeast cells flowing dropwise through a 

detecting area at a high speed, where fluorophores coupled on yeast surface can be 

excited by a laser beam, and emit fluorescent light with certain wavelength, intensity of 

which can be recorded in fluorescent detector with a specific wavelength cut-off half 
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mirror.  At the same time, forward light scattering (FSC) and 90° side light scattering 

(SSC) can also be observed, which correlate with volume of yeast cells and their 

intracellular complexity, respectively.  The dot-plot of these two parameters always 

shows a certain pattern (e.g. Figure 3-1 (i)), which is significantly different from that of 

bacteria or mammalian cells, allowing a first validation for properly cultivation of yeast 

and an easy checking for contamination. 

Sometimes, yeast displaying target protein is desired to be recovered from a large 

pool of yeast cells, a more developed flow cytometer, called cell sorter, will make this 

possible.  Cell sorter can isolate individual cells via an electronic field and direct them 

into the corresponding collection tubes.  This process is usually called fluorescent-

activated cell sorting (FACS). 

After flow cytometry or cell sorting, flow cytometric data can be analyzed in 

different plots.  The simplest is using a one-dimensional histogram by cell events (or cell 

numbers) vs. fluorescence intensity of the fluorophore used for labeling protein of 

interest (e.g. Figure 2-4 (i) and (ii)).  This histogram will normally exhibit a distribution 

of cell numbers at different intensities, the mean of which statistically represents how 

well the labeled protein is displayed on the surface of yeast.  Usually, yeast cells 

themselves will give an auto-fluorescent background in most flow data, which can be 

determined by preparing a few unlabeled or irrelevant yeast controls in parallel.  If 

double labeling of two proteins on yeast surface is performed, other than histograms, a 

two-dimensional dot-plot can be generated by plotting the fluorescence intensity of one 

fluorophore against the other (e.g. Figure 2-4 (iii)).  The dot-pot will normally display 

cell populations with different fluorescence intensities, where information of two 
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proteins or epitopes displayed on yeast surface can be examined simultaneously.  It is 

critical to set up appropriate compensation when running a double-labeled sample, 

because a lot of times, the emission from one fluorophore can overflow into channels 

used to detect other fluorophores, especially for some strong signals.  In those cases, 

single labeled controls need to be used to adjust the compensation so that no signal 

interfering occurs. 

Most recent flow cytometers are equipped with at least two lasers, which can excite 

fluorophores with excitation wavelengths in a fairly large range, thus, if properly 

selected, two fluorophores with excitation wavelengths far from each other can be used 

for double labeling and excited by two lasers respectively on flow cytometer without any 

compensation.  This will greatly increase the efficacy and accuracy of flow detection.  In 

this thesis work, we are going to take advantage of this feature so that no compensation 

is needed most of times. 
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Chapter 2.  Development of yeast co-display – a novel 

methodology for characterizing MHC-II/peptide binding 

2.1.  Introduction 

Antigen specificity of CD4+ T cell-mediated immune response is primarily 

determined by peptide presented by MHC-II molecules on the surface of APCs.  In depth 

characterization of peptide binding by MHC-II is critical to understanding issues in 

vaccine design, autoimmune disease, infectious disease progression, and transplantation 

rejection28, 46, 72. 

MHC-II is a transmembrane protein, whose extracellular portion consists of two 

heterologous chains, α and β, each of which containing two domains54.  Mature MHC-II 

proteins function to capture antigenic peptides processed inside professional antigen-

presenting cells (APCs) and present them on the surface of APCs for recognition by 

CD4+ T cells to mediate adaptive immunity.  The peptide-binding site of MHC-II 

formed by α1 and β1 domains contains several pocket-like regions, which prefer to 

accommodate specific side chains of anchor residues on peptides58, 59.  The engaged 

peptides are always heterogeneous in size with both termini extended beyond the 

binding groove60.  Even though a lot of common features for peptide binding have 

already been discovered, the majority of peptide binding motif and anchor preference 

information for distinct alleles of MHC-II still needs to be further characterized so that 

specific target peptide/MHC-II pairs can be applied for immunotherapeutic application 

via activating specific T cell clone. 
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MHCs are the most polymorphic glycoproteins known in nature, out of which each 

individual only expresses a few alleles, so it is challenging to investigate peptide-binding 

properties of all these trans-membrane proteins in vivo or ex vivo.  Therefore a variety of 

in vitro methods have been developed for studying the interaction between peptide and 

MHC-II.  A routinely used in vitro approach entails purifying soluble recombinant 

MHC-II molecules from different expression systems such as B cell lines105, insect 

cells106, yeast107, or Escherichia coli108-112 and then characterizing binding of these 

molecules to different peptides generated either chemically by solid-phase synthesis113, 

114 or genetically by cell or non-cell display technologies.  The former one using 

synthesized peptides enables coupling of all kinds of quantitative assays for acquiring 

binding affinity and kinetics18, 112, 115-123, whereas the latter allows construction of big 

libraries of peptide sequences for a high throughput screening and investigation90.  

However, the labor-intensive preparation of soluble MHC-II proteins and lengthy 

binding assays limit the efficacy and throughput of these methods for mapping MHC-II 

binding specificities across the large number of existing alleles.  Other attempts focused 

on assaying binding of soluble peptide by MHC-II expressed natively on mammalian 

cell surface124-128, which still did not completely get away from the difficulty of 

manipulating MHC-II proteins. 

Alternatively, engineered cell-surface display systems such as phage129-131, yeast102, 

132-134, baculovirus-insect cells76, and mammalian cells98, 135 have been tried for 

displaying recombinant extracellular domain of MHC molecules, suggesting a potential 

to engineer MHC-II proteins by directed evolution such that any possible allele can be 

examined for peptide binding.  However, to stabilize the recombinant MHC proteins, an 
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antigenic peptide was always genetically introduced by covalent linkage, which not only 

brings in unknown artificial effects but also restrain the flexibility of using these 

methods to quantify peptide binding.  Sometimes, acid/base half of leucine zipper was 

attached to C-terminus of either chain of MHC-II to facilitate protein association and 

surface anchorage76, which was not necessary in other display system but could alter 

MHC-II native folding.  These limitations make current cell-surface display system less 

proper for characterizing the interaction between peptides and MHCs.  The lack of a 

rapid, efficient, robust, and quantitative methodology for characterizing the peptide 

binding specificity and promiscuity of MHC-II alleles remains a bottleneck.  Several 

two-hybrid expression systems76, 81, 88, 102, 136-141 suggest a way to manipulate multi-

proteins in their native forms within the same cell and a possibility to improve current 

cell-surface display technology to study interaction between peptide and MHC-II. 

Herein, we report a novel, quantitative, high throughput methodology, yeast co-

display (Figure 2-1), for characterizing and engineering peptide-binding specificity of 

MHC-II.  As a model system, the extracellular domains of the MHC-II human leukocyte 

antigen HLA-DR1 were expressed as a secreted heterodimer in Saccharomyces 

cerevisiae.  Simultaneously, an antigenic peptide known to bind to HLA-DR1 was 

surface-displayed.  Intracellular binding between the MHC-II and the peptide antigen 

thus anchored the soluble MHC-II to the cell surface upon secretion, allowing detection 

by immunofluorescence.  The relative abundance of MHC-II compared to peptide on the 

cell surface depended on the strength of binding between these species.  Accordingly, 

the relative binding of different peptides and/or MHC-II variants can be assayed by 
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genetically manipulating either partner, enabling the application of directed evolution 

approaches for high throughput characterization or engineering. 

 

Figure 2-1 Design of the yeast co-display system for HLA-DR1.  Two plasmids direct the expression of 
MHC-II ectodomain heterodimer and a peptide respectively in Saccharomyces cerevisiae yeast stain 
EBY100 (URA+, trp-, leu-).  Aga2p-fused FLU peptide (derived from influenza hemagglutinin residues 
306-318: PKYVKQNTLKLAT) is expressed flanked by HA tag (influenza hemagglutinin 98-106: 
YPYDVPDYA, different from FLU) and V5 tag (short peptide: GKPIPNPLLGLDST), enabling detection 
of peptide levels by immunofluorescent staining with antibodies specific for either tag.  The α and β chain 
of HLA-DR1 ectodomain are expressed from separate cassettes and assembled in endoplasmic reticulum 
(ER) as a soluble non-covalently associated heterodimer.  FLU peptide is anchored to the cell surface via 
native processing and secretion of the assembled a-agglutinin protein (composed of the Aga1p and Aga2p 
subunits) as described74, and the HLA-DR1 heterodimer is anchored by noncovalent binding to FLU.  
Relative fluorescence levels of different fluorophores coupled to anti-tag and anti-DR reagents indicate the 
level of saturation of available peptides by bound HLA-DR1.  GPI: glycosyl phosphatidylinositol, an 
anchor helping a-agglutinin to transport through the secretory pathway104. 

2.2.  Materials and Methods 

2.2.1.  Construction of plasmids 

Primers or oligonucleotides were synthesized commercially either by Invitrogen 

(Carlsbad, CA) or by Integrated DNA Technologies, Inc. (Coralville, Iowa).  Other than 
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stated, most enzymes were purchased from New England Biolabs (NEB, Ipswich, MA).  

Taq (Qiagen, Germantown, MD or NEB) or Vent DNA polymerase catalyzed 

amplification of polymerase chain reaction (PCR) products.  Enzymatic digested PCR 

products and plasmids were all confirmed by gel electrophoresis and purified before 

ligation, which was catalyzed by T4 DNA Ligase (NEB or Invitrogen).  Either QIAquick 

Gel Extraction Kit (Qiagen) or Wizard SV Gel and PCR Cleanup System (Promega, 

Madison, WI) was used for purification of DNA or PCR products without significant 

differences.  Either chemical- or electro- transformation in Escherichia coli strain DH5α 

(Invitrogen) was performed for cloning and amplifying plasmids, which can be isolated 

by using QIAprep Spin Miniprep Kit (Qiagen) and confirmed by DNA sequencing 

(DNA Sequencing Facility, Department of Genetics, University of Pennsylvania, PA or 

Molecular Biology Resource Facility, Division of Biology, University of Tennessee, 

TN) 

 Plasmids for classical surface display of HLA-DR1 

The gene expressing the extracellular domain of HLA-DR1 β chain allele 

DRB1*010101 (1-190) was cloned from plasmid pDLM1-drb1s (kindly provided by Dr. 

L. Sten, Umass) by PCR using N-terminal primer W3 (5’–TAATCCCGGGGACCTAA 

GTATGTGAAGCAGAATACACTGAAGCTGGCAACCGGAGGTGGTTCACTAGT

GCCACGGGGCTCTGGAGGAAAGCTTGGAGACACCCGACCACGTTTCTT) and 

C-terminal primer W4 (5’–TACTGGATCCAGAACCACCACCACCAGAACCACCAC 

CACCAGAACCACCACCACCGCTAGCTGCTCTCCATTCCACTGTGAG), such that 

sequence encoding the 13-residue FLU peptide (derived from influenza hemagglutinin 

residues 306-318: PKYVKQNTLKLAT) and a thrombin recognition site were added at 
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the N-terminus.  The PCR product was ligated into plasmid Z47102 in place of the 

original expression cassette coding for allele DRB1*0401 via annealing of sticky ends 

obtained by XmaI/BamHI double digest, to create pfluDR1 for surface-displaying FLU-

fused HLA-DR1 (Figure 2-2).  Another vector pDR1 expressing “empty” HLA-DR1 

was constructed likewise but without adding FLU peptide by using another N-terminal 

primer W1 (5’–AGCTCCCGGGGAGACACCCGACCACGTTTCTT) instead of W3.  

 Plasmids for classical surface display of FLU peptide 

The entire expression cassette (GAL1-10//AGA2//HA//scFv 4-4-20//MFα Term.) 

was excised from pCT30274 by double digest using KpnI and SacI and cloned into 

KpnI/SacI partially digested yeast shuttle vector pRS315142 to create a plasmid with a 

LEU2 selectable marker.  Expression cassette (scFv 4-4-20 //MFα Term.) within NheI 

and SacI sites in this plasmid was substituted by a PCR product encoding 

(FLU//SphI//MFα Term.), obtained by using N-terminal primer W20 (5’–

TCTAGCTAGCCCTAAGTATGTGAAGCAGAATACACTGAAGCTGGCAACCTAA

GCATGCCAACAGTGTAGATGTAACAA) and C-terminal primer W21 (5’–

CTGTGAGCTCAATTCTCTTAGGATTCG), to construct pFLU.  Similarly, W34 (5’–

TCTAGCTAGCCCTAAGGCGGTGAAGCAGAATACACTGAAGCTGGCAACCTA

AGCATGCCAACAGTGTAGATGTAACAA) was used instead of W20 for 

constructing pFLUA, which directs expression of a FLU analogue with Tyr308 

substituted by Ala (encoded by underlined GCG) at the putative anchor position P1 

(refer to Figure 4-1). 

To add V5 epitope tag at C-terminus of FLU or its analogues, an oligonucleotide 

encoding FLU followed by a short spacer (GGGP) and V5-tag was generated by PCR 
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using N-terminal primer 0118 (5’–AAGGACAATAGCTCGACGATT) and C-terminal 

primer W48 (5’–TCTAGCATGCTTAAGTAGAATCGAGACCGAGGAGTGGATTTG 

GTATAGGCTTCCCGGGTCCACCTCCGGTTGCCAGCTTCAGTGTATTC), and 

inserted into vectors pFLU and pFLUA via annealing of sticky ends generated by 

PstI/SphI double digest, for constructing ptFLU (Figure 2-6A, construct a) and ptFLUA 

respectively. 

In order to clone FLU to the N-terminus of Aga2p, a restriction site EcoRI in 

ptFLUD was changed to AatII by site directed mutagenesis for future cloning.  Briefly, 

A pair of reverse complementary oligos W95 (5’–ACCCCGGATCGACGTCCCTACTT 

CAT) / W96 (5’–ATGAAGTAGGGACGTCGATCCGGGGT) carrying the mutagenic 

site was designed to prime the synthesis of mutant strand by PCR following the 

manufacturer’s recommended procedures in QuikChange II site directed mutagenesis kit 

(Stratagene, La Jolla, CA).  After being digested by DpnI for 1 h, mutant plasmids were 

transformed into electro-competent DH5α using the MicroPulser Electroporation 

Apparatus (BIO-RAD, Hercules, CA) and recovered by Miniprep kit.  Following that, an 

AatII/SphI fragment was amplified from a modified surface display plasmid (will be 

referred to again in next paragraph) by W97 (5’–CGTCGACGTCATGAAGGTTTTGA 

TTGTC) and W98 (5’–ATGAGCATGCTTAAGCGTAGTCTGGAACG) and inserted 

into AatII/SphI sites of the mutant plasmid for introducing an expression cassette (Syn-

Pre-Pro leader//XmaI//an irrelevant protein//speI//6His//AGA2//HA), which allows 

target protein followed by a polyhistidine tag to attach to Aga2p N-terminus.  Finally, 

gene encoding the irrelevant protein was replaced by a PCR product encoding FLU 
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peptide, generated using primers 0115 (5’–CAACAAAAAATTGTTAATATACCT) and 

W106 (5’–TAATGACTAGTGGTTGCCAGCTTCAGTGTATTCTGCTTCACATACT 

TAGGACCCCGGGCTTCTCTCTTGTCCAAAG), to construct ptNFLU (Figure 2-6A, 

costruct b). 

 Plasmids for expressing soluble HLA-DR1 

Z47 was modified first for displaying an irrelevant heterodimeric protein.  In the 

resulting plasmid, XhoI recognition site at the downstream of gene cassette promoted by 

GAL1 promoter was removed and replaced by a Myc-tag (EQKLISEEDL) flanked by 

two unique restriction sites NcoI and SphI, thus, the other XhoI left in the plasmid also 

became unique for later cloning work.  Two expression cassettes (DRB1*010101 (1-

190)//Flag-tag (DYKDDDDK)) and (DRA*0101 (1-192)//6His) were synthesized by 

PCR using corresponding primer pairs W38 (5’–

CACGCGGCCGATCAAAGAAGAACATGTGATCATCC) / W43 (5’–TACTCCATG 

GGTGGTGGTGGTGGTGGTGACCACCGTCGACGTTCTCTGTAGTCTCTGGGAG) 

and W1 / W44 (5’–TAGACTCGAGTTACTTATCGTCATCATCCTTGTAATCTCCA 

CCACTAGTTGCTCTCCATTCCACTGTGAG), and cloned into the modified plasmid 

sequentially via annealing XmaI/XhoI and EagI/NcoI digested cohesive ends 

respectively, to create plasmid ptsDR1 (Figure 2-6B). 

2.2.2.  Buffers and media for yeast cultivation and treatment 

Other than stated, most chemicals and reagents mentioned below were purchased 

from Fisher Scientific (Fair Lawn, New Jersey).  Buffers used in this chapter include: 

phosphate buffer (5.4 g/l Na2HPO4, 9.70 g/l NaH2PO4·2H2O, pH 6.0); citrate buffer 
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(14.7 g/l sodium citrate (Sigma-Aldrich Inc., St. Louis, MO), 4.29 g/l citric acid 

monohydrate, pH 5.0); phosphate buffered saline (PBS; 137mM NaCl, 2.7mM KCl, 

10.1mM Na2HPO4, 1.8mM KH2PO4, pH 7.4); Tris buffered saline (TBS; 137 mM NaCl, 

20mM Tric-Cl, pH 7.6); Factor Xa buffer (100mM NaCl, 2mM CaCl, 20mM Tris-Cl, 

pH 8.0). 

Glucose (Dextrose) is used as carbon source in all growth media: rich medium such 

as YPD (10 g/l Yeast extract (BD Diagnostics Systems, Sparks, MD), 20 g/l Peptone 

(BD Diagnostic Systems), 20 g/l Glucose) can be used for enriching all strains without 

selectivity, which is suitable for preparing competent cells; minimal media allowed yeast 

growing under different nutrient dropout conditions.  For example, SD-CAA (20 g/l 

glucose, 6.7 g/l Yeast N2 Base w/o Amino Acids (BD Diagnostic Systems), 5.4 g/l 

Na2HPO4, 9.70 g/l NaH2PO4·2H2O, 5g/l Bacto Casaminoacids (CAA, Difco)) was used 

for cells requiring ura- and trp- condition and SD-SCAA (Bacto Casaminoacids in SD-

CAA was replaced by 0.62 g/l Leu/Trp/Ura dropout supplement mixtures of amino acids 

(Clontech, Mountain View, CA)) provided ura-, trp- and leu- condition.  D-Tryptophan 

(Sigma) was sometimes added in above minimal media to make those conditions 

suitable for trp- yeast strains.  For induction of protein expression promoted by GAL1-

10 promoter, glucose was replaced by galactose as the carbon source, while all other 

nutrients stay the same.  Induction media used in this chapter include rich medium YPG 

and minimal media SG-CAA and SG-SCAA for corresponding nutrient dropout 

condition as stated above.  
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2.2.3.  Antibodies and labeling reagents 

Mouse anti-DR monoclonal antibody (mAb) L243 (BD Biosciences, San Jose, CA), 

rabbit anti-HA polyclonal antibody H6908 (Sigma) and mouse anti-V5 Mab (Invitrogen, 

Carlsbad, CA) were used for specifically labeling HLA-DR1, HA-tag and V5-tag on the 

surface of yeast.  Alexa Fluor 488 or 647 fluorophore conjugated goat anti-rabbit, Alexa 

Fluor 647 or tandem dye PE-Alexa Fluor 647 conjugated goat anti-mouse (Invitrogen), 

and R-phycoerythrin (PE) conjugated goat anti-mouse (Sigma) antibodies were used as 

secondary labeling reagents for primary antibodies from corresponding species.  

Streptavidin-PE (Sigma-Aldrich) was used to label biotinylated peptides. 

2.2.4.  Generation and cultivation of yeast strains 

Saccharomyces cerevisiae yeast stain EBY100 (URA+, trp-, leu-) was used as the 

parent strain to accommodate plasmids with either TRP1 or LEU2 nutrient marker.  In 

this thesis work, all plasmids directing expression of HLA-DR1 have TRP1 marker, and 

all plasmids expressing peptide fusions contain LEU2 marker. Plasmids were 

transformed into electro-competent EBY100 (lab made) by electroporation following 

‘MicroPulser Electroporation Guide’ (BIO-RAD) and transformants were selectively 

grown up under corresponding nutrient dropout condition on glucose containing minimal 

medium agar plates (containing 1 M sorbitol) by incubating at 30 °C for 3–5 days.  For 

example, EBY100 transformed with pfluDR1, pDR1 or ptsDR1 were selected under ura-

, trp- and LEU+ condition on SD-CAA medium agar plates.  Transformants with ptFLU 

were able to grown up under ura-, TRP+ and leu- condition on SD-SCAA agar plates 



 34 

with D-tryptophan (TRP; 20µg/ml) added.  Co-displaying strains can grow under ura-, 

trp- and leu- condition on SD-SCAA agar plates.  

A single colony was picked from agar plates and inoculated into 2–3 ml 

corresponding glucose-containing liquid minimal medium and enriched to a cell density 

around OD600 of 3.0–7.0 in a 30 °C shaker for 16–24 h. After that, enough cells were 

pelleted by centrifugation and transferred to 2–3 ml corresponding galactose-containing 

liquid medium to an initial OD600 around 1.0 to induce the expression of target proteins 

in yeast. Induction using minimal medium was usually performed at 30 °C for 16–24 h, 

while that using rich medium was usually carried out at 20 °C for 48 h.  

2.2.5.  Peptide binding assay for classical surface displayed HLA-

DR1 

Yeast strain EBY100 bearing pDR1 was cultured under ura-, trp- and LEU+ 

condition as described previously. 4 × 106 galactose-induced yeast were collected by 

centrifugation and resuspended in 40 µl of one of the following solutions:  YPG (pH 

6.5), PBS (pH 7.4), citrate buffer (pH 5.0), citrate buffered SG-CAA (pH 5.0, using 

citrate buffer instead of phosphate buffer).  Biotinylated FLU peptide and β2m peptide 

(derived from human  β2 microglobulin 52-64: SDLSFSKDWSFYL, an irrelavent 

peptide specifically bound by class I MHC proteins) (Abgent, Inc., San Diego, CA) were 

added to a final concentration of 100 µM.  Cells were incubated with peptides at 30 °C 

for 1 day and then washed twice with 500 µl ice cold PBS + 1% (wt/vol) bovine serum 

albumin (BSA) before staining with streptavidin-PE diluted 1:20 in 100 µl PBS + 1% 
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BSA on ice for 30-45 min. Cells were then washed with 500 µl ice cold PBS + 1% BSA 

twice and finally resuspended in 700 µl PBS + 1% BSA for analysis on a BD 

FACSCalibur flow cytometer (BD Biosciences).  EBY100 transformed with pCT302, 

which will display an irrelavent single chain antibody on the surface, were used as a 

negative control. 

2.2.6.  Surface-stripping assay by DTT or Factor Xa treatment 

Approximately 106 yeast cells per sample were harvested by centrifugation after 

induction and washed with 400 µl TBS 1–2x.  For DTT treatment, pellets were 

resuspended in 20 µl of reducing buffer [50mM Tris-Cl pH 8.0 containing 0.04mM, 

0.2mM, or 1mM DTT (added before use, (Sigma)] and incubated at 4°C for 24 h with 

gentle shaking.  For Factor Xa treatment, pellets were resuspended in 20 µl of Factor Xa 

buffer with 20 µg/ml Factor Xa protease (NEB) added right before use.  One set of 

samples were incubated at 4 °C for 24 h, another set was incubated at 23 °C for 6 h 

followed by 4 °C for another 18 h, and a third set was incubated at 23 °C for 48 h.  After 

treatment, cells were collected by centrifugation and washed at 1–2x with 500 µl ice 

cold PBS + 1% BSA before immunofluorescent labeling. 

2.2.7.  Immunofluorescent labeling of yeast 

Labeling was performed in a 2-step manner.  After induction or other treatments, 

approximately 106 cells were collected by centrifugation and washed with 400 µl ice 

cold PBS + 1% BSA 1–2x. Cell pellet was resuspended in 20–50 µl PBS + 1% BSA 

with primary antibodies.  After staining for 40–60 min on ice or at room temperature, 
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cells were spun and washed with 400 µl ice cold PBS + 1% BSA again.  For the 

secondary labeling, cells were stained with specific reagents in 40–50 µl PBS + 1% BSA 

on ice for 30–60 min.  A final wash was applied before resuspending cells in 500–700 µl 

PBS + 1% BSA for flow cytometry. 

2.2.8.  Flow cytometric analysis of labeled cells 

Fluorescently labeled yeast cells were analyzed by flow cytometry, where forward 

scatter, side scatter and fluorescent signals in corresponding channels (e.g. Alexa Fluor 

488 in FL1 or PE in FL2) were recorded by acquiring at least 10,000 cell events.  Flow 

cytometers used in this chapter as well as this thesis work are as follows: Accuri C6 

(Accuri Cytometers Inc., Ann Arbor, MI), Beckman Coulter XL (Beckman Coulter Inc., 

Brea, CA), FACSCalibur, FACSVantage (also a cell sorter), and LSR II (BD 

Biosciences). 

2.3.  Results 

2.3.1.  Classical yeast display of functional HLA-DR1 heterodimer 

MHC-II is originally expressed on the surface of APCs for antigenic peptide 

presentation.  To verify that wild-type MHC-II heterodimers can be expressed in a 

functional form competent for binding to soluble peptides in yeast, the extracellular 

domain of HLA-DR1 both with and without a covalently fused antigen peptide was 

surface displayed by fusion to the N-terminus of the endogenous yeast adhesion receptor 

subunit Aga2p, as described previously for HLA-DR4 (with peptide linked to the β 

chain N-terminus)102.  The antigen used in these studies is a 13 amino acid peptide 
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(designated FLU) from a naturally HLA-DR1-presented fragment of influenza 

hemagglutinin (HA306-318), a well-studied peptide known to bind tightly to HLA-

DR159.  Similar to Z47102, the expression cassettes of plasmids pfluDR1 or pDR1 directs 

the expression of HLA-DR1 ectodomain on the surface of yeast, with or without FLU 

fused at N-terminus of β chain (Figure 2-2). 

 

Figure 2-2 Expression cassettes for classical yeast display of HLA-DR1 heterodimer.  Galactose 
inducible bi-directional yeast promoter GAL1-10 initiates the expression of extracellular domains of both 
chains for HLA-DR1: DRA*0101 (1-–192) and DRB1*010101 (1–190) in plasmid pfluDR1 (construct A) 
or pDR1 (construct B).  The α chain (DRα) is expressed solubly and the β chain (DR1β) is fused to the N-
terminus of Aga2p so that once correctly assembled, the non-covalent heterodimer can be led to the 
secretory pathway and anchored to surface for immunofluorescent detection.  Construct A with FLU 
peptide covalently linked to DR1β by a flexible linker is used for displaying FLU/HLA-DR1 complexes, 
while construct B is for displaying “empty” HLA-DR1 on yeast surface. 

Saccharomyces cerevisiae yeast stain EBY100 (URA+, trp-) was used as parent 

strain to accommodate either pfluDR1 or pDR1, both containing a TRP1 nutrient 

marker, and selectively cultured under ura- and trp- condition for protein expression.  

The surface display of peptide-fused or “empty” HLA-DR1 was assessed by 

simultaneous immunofluorescent labeling with anti-HLA-DRα antibody and antibodies 

specific for the HA epitope tag included at the Aga2p C-terminus (Figure 2-3, Figure 2-

4).   
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Figure 2-3 Classical yeast display and immunofluorescent detection of HLA-DR1 heterodimer.  This 
is a schematic illustration of yeast surface displayed FLU/HLA-DR1 complexes to Aga2p N-terminus 
(corresponding to the expression construct A in Figure 2-2).  The Aga2p C-terminal HA-tag enables 
immunofluorescent labeling using specific antibodies, ensuring determination and verification of Aga2p 
fusion expression on yeast surface.  Simultaneously, the expression and non-covalent association of 
soluble DRα and Aga2p fused FLU-DR1β can be validated by functional DR-specific antibodies.  

Yeast displaying either form of HLA-DR1 are exclusively HA positive (Figure 2-

4(iii)), confirming that detected anti-DR signals correlate to the corrected association of 

DRα and DR1β or simply the expression of HLA-DR1 heterodimer.  The expression 

level of FLU-fused HLA-DR1 (Figure 2-4B(ii)) is significantly higher than that of the 

“empty” form (Figure 2-4C(ii)), while the expression level of Aga2p in these two 

scaffolds are similar, as represented by anti-HA signals (Figure 2-4(i)).  Enhanced 

expression of peptide-fused HLA-DR1 suggests that specific peptides might stabilize 

MHC-II folding in yeast similarly to in natural APCs63, while the majority of the empty 

HLA-DR1 fails to express (~5-fold reduction in cellular fluorescence in Fig. 2-4(ii) and 

(iii)), consistent with a prior study134 and putatively due to degradation by the secretory 

quality control machinery143.   
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Figure 2-4 Fluorescence intensity from labeled yeast displaying FLU-linked or “empty” HLA-DR1.  
Aga2p and HLA-DR1 levels of yeast expressing A. an irrelevant soluble protein, B. Aga2p-fused HLA-
DR1 with FLU-covalently linked to DR1β N-terminus, or C. “empty” Aga2p-fused HLA-DR1.  Cells 
were double-labeled with H6908 and L243 followed by Alexa Fluor-488 goat anti-rabbit and Alexa Fluor 
647-goat anti-mouse highly cross-adsorbed secondary antibodies.  Mean fluorescence intensity (MFI) of 
HA signal and DR signal for HA positive cell population was indicated.  Flow cytometric data collected 
on Accuri C6 were plotted in (i), (ii) univariate histograms, or (iii) two-dimensional dot plots. 

Detection of FLU-linked HLA-DR1 on the surface suggests the peptide binding 

capability of HLA-DR1 expressed in yeast, however, the flexible linker connecting FLU 

and DR1β (Figure 2-3) might provide an unknown positive effect on HLA-DR1 
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refolding and FLU association.  To validate this functionality, post-induced yeast cells 

displaying “empty” HLA-DR1 were incubated with synthetic biotinylated peptides and 

stained with streptavidin-PE before detection by flow cytometry (Figure 2-5).  Synthetic 

FLU peptide bound to HLA-DR1-displaying yeast, but not to a control strain displaying 

an irrelevant protein, while a control peptide derived from β2 microglobulin 

demonstrated no binding to either yeast.  Similar results were obtained whether binding 

proceeded in citrate buffer at pH 5.0 or several other buffers or growth media at pH 5.0–

7.4 (Figure 2-5), in agreement with the demonstrated pH-independence of peptide 

recognition by HLA-DR1144.  

 

Figure 2-5 Peptide binding capability of classical yeast displayed HLA-DR1 heterodimer.  Yeast 
displaying “empty” HLA-DR1 (solid curve) or an irrelevant protein (shaded) were incubated with 100 µM 
biotinylated FLU; HLA-DR1-displaying yeast were also incubated with 100 µM biotinylated control 
peptide (dashed curve).  Peptide incubation was carried out in different media or buffers at various pH: A. 
YPG (pH 6.5), B. PBS (pH 7.4), C. citrate buffer (pH 5.0), D. citrite buffered SG-CAA (pH 5.0).  All 
samples were stained with streptavidin-PE and analyzed by flow cytometry on BD FACSCalibur. 

Successful expression of functional MHC-II heterodimer as a fusion to yeast surface 

proteins enables study and modification of this highly polymorphic molecule using 
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directed evolution or other biomolecular techniques, however, difficulties still exist for 

characterizing and engineering their functionality, such as peptide binding capability, 

which require manipulations of two or more proteins inside or outside yeast.  For 

instance, the time and labor intensity and high expense on chemically synthesizing 

peptides for binding assay significantly limit the variety of peptide sequences tested; the 

variation on mimicking peptide binding conditions outside yeast (on the surface of yeast) 

could affect the accuracy of determining peptide binding affinity of MHC-II; the 

artificial linker in between DR1β and Aga2 might introduce unknown steric impact on 

the folding of HLA-DR1 molecules; etc.  Thus, a way to co-express Aga2p-peptide 

fusion and soluble heterodimeric MHC-II in yeast, which allows interaction of peptide 

and MHC-II taking place inside ER and display of the peptide/MHC-II complex on the 

surface, would be an alternative strategy to overcome most of these problems.  

2.3.2.  Surface display of FLU peptide and their capability for 

anchoring soluble HLA-DR1 

As mentioned in Chapter I, proteins of interest can be attached to either terminus of 

Aga2p; hence, two plasmids ptFLU and ptNFLU with a LEU2 nutrient marker (Figure 2-

6A) were constructed: the former one directs expression of Aga2p C-terminal FLU 

peptide flanked by two epitope tags (HA-tag and V5-tag), whereas the latter one enables 

FLU peptide attached at N-terminus of Aga2p.  In both expression constructs, fused 

epitope tags allow immunofluorescent labeling by specific antibodies, which indirectly 

represent the display level of Aga2p-linked FLU peptide. 
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Figure 2-6 Map of yeast shuttle vectors for yeast co-display.  A. A LEU2 nutrient marker bearing 
plasmid is constructed for displaying peptide fusion covalently linked to Aga2p either at its C-terminus 
(Construct a in plasmid ptFLU) or at the N-terminus (Construct b in plasmid ptNFLU).  In construct a, 
FLU peptide is flanked by HA and V5 epitope tags, whereas in construct b, FLU is overhung at the N-
terminus of Aga2p with a 6His epitope tag fused in between.  B. The plasmid ptsDR1 with a TRP1 
nutrient marker allows simultaneous expression of DRα [DRA*0101(1-192)] and DR1β 
[DRB1*010101(1-190)] extracellular domains in secreted forms from separate cassettes under the control 
of a bi-directional promoter GAL1-10.  

EBY100 (URA+, trp-, leu-) transformed with ptFLU or ptNFLU (both LEU+) was 

selectively grown up and induced under ura-, trp+, leu- condition.  Immunofluorescent 

labeling against HA-tag and flow cytometric analysis of labeled yeast demonstrates the 

successful surface display of FLU peptide using either construct, but a better surface 

expression level by construct b (Figure 2-7A).  To evaluate HLA-DR1-binding 

probability of surface-displayed FLU, another plasmid ptsDR1 with a TRP1 nutrient 

marker (Figure 2-6B) for secreting soluble HLA-DR1 heterodimer was constructed and 

transformed into yeast displaying either form of FLU peptide fusion.  The resulting yeast 

strains were cultured under ura-, trp-, leu- condition and labeled using DR-specific 
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antibodies.  The overlay of flow cytometric data indicates that HLA-DR1 can be 

anchored on the surface of yeast no matter which terminus of Aga2p was used for FLU 

displaying, but an obvious difference of detectable HLA-DR1 amounts between these 

two strains exists (Figure 2-7B).  Construct a (Figure 2-6A) with lower FLU expression 

level actually leading to the higher DR1-anchoring capability was chosen for performing 

yeast co-display in the rest of this thesis work.  

 

Figure 2-7 Surface levels of two FLU fusion constructs and anchored soluble HLA-DR1.  A. Yeast 
displaying FLU peptide as a Aga2p C-terminal fusion (solid curve) or N-terminal fusion (dashed curve) 
were induced in SG-SCAA + tryptophan at 30 °C and labeled sequentially with HA-tag-specific H6908 
and Alexa Fluor 488 conjugated secondary antibody and analyzed on BD FACSVantage.  B. The same 
yeast strains as in A were transformed with plasmid expressing soluble HLA-DR1, induced in YPG at 20 
°C and labeled sequentially with DR-specific L243 and a tandem dye PE-Alexa Fluor 647 conjugated 
secondary antibody and analyzed on Beckman Coulter XL.  In both cases, yeast labeled with 
corresponding secondary antibody only (shaded) represents an auto-fluorescent background cell 
population in the overlayed histograms. 

To further confirm the display of FLU to Aga2p C-terminus on the surface of yeast 

using construct a, HA-tag and V5-tag flanking FLU peptide were simultaneously stained 

with corresponding antibodies.  In comparison to non-peptide displaying strain (Figure 

2-8A), yeast expressing FLU fusion exhibit comparable HA-tag and V5-tag display 

levels, which is independent to the expression of soluble HLA-DR1 (Figure 2-8B and 

C).  The FLU display level on the surface of yeast can be represented by the 
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background-corrected mean fluorescence intensity value normalized to the background 

intensity: 

! 

cMFI =
MFI

(HA+)
"MFI

(HA -)

MFI
(HA -)

                         Equation 2-1 

where MFI(HA-) and MFI(HA+) represent mean fluorescence intensity of the HA-tag 

coupled Alexa Fluor 647 emission for negative and positive cell populations, 

respectively (Figure 2-8 (i)).  Analysis using anti-V5-tag staining resulted in equivalent 

cMFI values (Figure 2-8 (ii)), confirming the surface display of FLU peptide. 
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Figure 2-8 Simultaneous detection of both HA and V5 epitope tags flanking FLU peptide.  Yeast 
expressing A. soluble HLA-DR1, B. Aga2p-fused FLU, or C. both were induced in YPG at 20 °C and 
labeled with antibodies specific for (i) HA-tag or (ii) V5-tag and analyzed on BD FACSCalibur.  cMFI 
was calculated using MFI measured by Flowjo software (Tree Star Inc.) for positive and negative cell 
populations. 
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2.3.3.  Yeast co-display of FLU and FLU-anchored soluble HLA-DR1 

It was suggested previously that a two plasmids based co-display methodology 

(Figure 2-1) can be derived from the classical yeast display approach such that the 

MHC-II and target peptide are expressed from separate yeast shuttle vectors (Figure 2-

6).  MHC-II heterodimers that bind the Aga2p-fused target peptide are thus anchored to 

the cell surface via Aga2p (Figure 2-7), whereas MHC-II that do not bind the target 

peptide or bind instead to endogenous peptides present in the secretory pathway will be 

either secreted as soluble species or potentially degraded by the secretory quality control 

machinery, as suggested by our classical surface display results.  To verify the peptide-

binding-dependent cell surface display of HLA-DR1, plasmids directing expression of 

HLA-DR1 or Aga2p-FLU were transformed into EBY100.  Yeast expressing 

combinations of these proteins were immunofluorescently co-stained to detect the level 

of FLU peptide and HLA-DR1 on the surface and analyzed by flow cytometry (Fig. 2-

9).  Yeast expressing only the soluble HLA-DR1 ectodomain show no detectable 

staining, while those co-expressing soluble HLA-DR1 and surface-displayed FLU 

demonstrate correlated signals for both (Fig. 2-9B and D).  Based on the known peptide-

binding motif of HLA-DR190, 145, Ala was substituted for Tyr at the P1 major anchor 

position of the FLU peptide (peptide P1-Ala; PKAVKQNTLKLAT; see Figure 4-1).  As 

anticipated, this substitution abolished detectable HLA-DR1 on the cell surface (Figure 

2F) without affecting peptide display level (Figure 2C and E), confirming the specific 

anchoring of HLA-DR1 to the surface via interaction with FLU.   
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Figure 2-9 Yeast co-display and surface detection of FLU peptide and FLU-bound soluble HLA-
DR1.  A. Yeast parent strains or yeast expressing B. HLA-DR1, C. Aga2p-fused FLU alone, D. Aga2p-
fused FLU with HLA-DR1, E. Aga2p-fused P1-Ala alone, or F. Aga2p-fused P1-Ala with HLA-DR1 
were induced in corresponding galactose-containing minimal media at 30 °C, co-stained by anti-HA and 
anti-DR antibodies, and analyzed on BD LSR II.  MFI of DR signal was generated using Flowjo for HA 
positive cell population.  Proportions of the whole cell events were indicated at the corner of each quad.  
P1-Ala is a FLU analogue with Tyr308 replaced by Ala.  
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2.3.4.  Stripping of FLU/HLA-DR1 complex off the surface of yeast 

Anchorage of all Aga2p fusions to Aga1p is through two disulfide bonds, which is 

reducible by reducing reagents (Figure 2-10), such as Dithiothreitol (DTT) and β-

mercaptoethanol (βME).  Other than that, reducing reagents can also degrade HLA-DR1, 

which contains three disulfide bonds (one on α chain and two on β chain).  

 
Figure 2-10 DTT and Factor Xa reacting sites in two FLU/HLA-DR1 displaying schemes: A. co-
display, and B. classical surface-display.  

To evaluate the effect of reducing reagents, different concentrations of DTT were 

applied to yeast strains displaying FLU/HLA-DR1 complexes by co-display or classical 

surface display.  Cells before or after DTT treatment were co-stained to detect HA-tag 

and HLA-DR1 by flow cytometry (Figure 2-11).  As expected, mean fluorescence 

intensity of either anti-HA-tag or anti-DR signal decreased as increasing DTT 

concentration (Figure 2-12 and Table 2-12), indicating the surface anchorage of 

FLU/HLA-DR1 complexes by Aga2p for both displaying schemes.  It is worthy of 

noticing that almost all FLU/HLA-DR1 complexes were stripped off the surface of co-

displaying yeast at the concentration of 1 mM, while the negative showed little influence 
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by DTT except for a small population moving towards higher intensity possibly due to 

contamination from DTT preparation.  

 
Figure 2-11 Effect of DTT on surface display of Aga2p or FLU/HLA-DR1 complexes.  Yeast 
expressing an irrelevant soluble protein (left column), co-displaying Aga2p-FLU and FLU-anchored 
soluble HLA-DR1 (middle column) or displaying FLU-linked HLA-DR1 by classical approach (right 
columnw), collected before (top row) or after (other rows) DTT treatment, were double labeled using 
antibodies specific for HA-tag and HLA-DR1 and applied to Accuri C6 for dot-plot analysis. 
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Table 2-1 MFI for HA or DR signal on the surface of yeast before or after DTT treatment. 

EBY100 co-transformed with 
ptsDR1 and ptFLU 

EBY100 transformed with 
pfluDR1  

MFI(HA) MFI(DR) MFI(HA) MFI(DR) 

Non-treated 192000 2721 149000 19439 

0.04mM 138000 1902 110000 10613 

0.2mM 12290 1618 37300 2231 Treated 
with DTT 

1mM 6471 1336 22857 1232 

NOTE: MFI represents mean fluorescence intensity for the major cell population shown in Figure 2-11.  

A short peptide (Ile-Glu-Gly-Arg) constructed in between Aga2p and HA-tag 

enables removal of Aga2p C-terminal protein fusion by Factor Xa cleavage (Figure 2-

10).  To examine this effect, yeast strains displaying FLU/HLA-DR1 by either 

displaying scheme were collected and incubated with Factor Xa protease at two different 

temperatures (4 °C and 23 °C).  Flow cytometric data of yeast co-displaying FLU and 

HLA-DR1 (Figure 2-12 (middle column)) exhibits a noticeable decrease for both HA 

and DR signals, as suggested by calculated MFI values (Table 2-2).  Longer treatment 

(~2 days) by Factor Xa at 23 °C resulted a substantial decline of the amount of 

FLU/HLA-DR1 complexes (Figure 2-13 and Table 2-3), further confirming the fact that 

FLU peptide is fused to the C-terminus of Aga2p and HLA-DR1 is bound by FLU 

peptide (or at least peptides to the C-terminal downstream of Aga2p//HA-tag cassette, 

which do not confirm previous results).  On the other hand, the data of yeast displaying 

FLU-linked HLA-DR1 by classical approach (Figure 2-13 (right column)) shows 

decrease only for HA signal but not DR signal (see Table 2-2), demonstrating that 

FLU/HLA-DR1 complexes were linked to the other terminus of Aga2p, where Factor Xa 

cleavage had no impact on.  Effect of both DTT and Factor Xa protease confirmed 
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previously conclusion that soluble HLA-DR1 was specific anchored on the surface of 

yeast by interaction with FLU peptide. 

 
Figure 2-12 Effect of Factor Xa protease on surface display of FLU/HLA-DR1.  Yeast expressing an 
irrelevant soluble protein (left column), co-displaying Aga2p-FLU and FLU-anchored soluble HLA-DR1 
(middle column) or displaying FLU-linked HLA-DR1 by classical approach (right columnw), collected 
before (top row) or after (other rows) Factor Xa treatment were double labeled for HA-tag and HLA-DR1 
and applied to Accuri C6 for flow analysis. 
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Table 2-2 MFI for HA or DR signal on the surface of yeast before or after Factor Xa treatment. 

EBY100 co-transformed with 
ptsDR1 and ptFLU 

EBY100 transformed with 
pfluDR1  

MFI(HA+) MFI(DR) MFI(HA+) MFI(DR) 

Non-treated 192000 2721 149000 19439 

4 °C 201000 1983 123000 13712 Treated with 
factor Xa 23 °C 125000 1498 50682 14489 

NOTE: MFI represents mean fluorescence intensity for HA-positive cell population shown in Figure 2-12.  

 

Figure 2-13 Effect of Factor Xa on FLU/HLA-DR1 display level after longer incubation at 23 °C.  
Yeast displaying Aga2p-FLU (left column) or co-displaying Aga2p-FLU and FLU-anchored soluble 
HLA-DR1 (right column), collected before (top row) or after (bottom row) Factor Xa treatment, were 
double labeled using antibodies specific for HA-tag and HLA-DR1 and applied to BD FACSVantage (cell 
sorter) flow cytometric analysis. 



 53 

Table 2-3 MFI for HA or DR signal on the surface of yeast before or after longer Factor Xa 
treatment. 

EBY100 co-transformed with 
ptsDR1 and ptFLU 

EBY100 transformed with 
pfluDR1  

MFI(HA+) MFI(DR) MFI(HA+) MFI(DR) 

Non-treated 394 3.27 442 18.1 

Treated with factor Xa 21.4 3.34 29 4.71 

NOTE: MFI represents mean fluorescence intensity for HA-positive cell population 
shown in Figure 2-13.  

2.3.5.  Verification of genotype-phenotype linkage between plasmids 

and co-displayed proteins 

In order to extend the co-display approach to library screening, the genotype-

phenotype linkage between plasmids and displayed proteins must be maintained; 

therefore, experiments were performed to determine whether HLA-DR1: (1) bound to 

FLU intracellularly and was subsequently exported to the surface, (2) was secreted 

“empty” into the culture medium (or with weakly bound endogenous peptides) and then 

bound to FLU, or (3) a combination of these mechanisms.  

Yeast cells displaying FLU peptide (Figure 2-9C) or P1-Ala analogue (Figure 2-9E) 

were co-cultured with yeast expressing soluble HLA-DR1 ectodomain (Figure 2-9B) and 

double labeled using anti-HA and anti-DR antibodies before flow analysis (Figure 2-

14A).  Approximately 50% HA-positive cell population shown in the dot-plot indicates 

an unaffected peptide expression level on the surface of either peptide-displaying strain, 

whereas no obvious DR-positive cell population were observed, suggesting failure of 

secretion of soluble HLA-DR1 by corresponding yeast strain or failure of interaction 

between surface-displayed FLU and soluble HLA-DR1 outside yeast under the culturing 
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condition.  Furthermore, yeast cells displaying FLU were incubated in conditioned 

medium from a culture of soluble HLA-DR1-expressing yeast (Fig. 2-14 B and C), 

including the co-displaying strain that ensured secretion of soluble HLA-DR1 (Fig. 2-

14B(i)).  In all cases, no significant binding of HLA-DR1 to the surface of any yeast was 

observed regardless of media used, indicating that resorting of secreted HLA-DR1 

between different cells in the same culture fails to occur and suggesting that HLA-

DR1/FLU binding occurs intracellularly within the secretory pathway. 

 
Figure 2-14 Control experiments for examining possible switching of soluble HLA-DR1 molecules 
among different yeast cells in the same culture.  A. Co-culturing.  107 yeast cells expressing (i) Aga2p-
FLU or (ii) P1-Ala were co-induced with 107 yeast cells expressing soluble HLA-DR1 in 2 ml SG-CAA + 
TRP at 30 °C.  B. Medium switching.  After induction in minimal media, 2.5 ×  106 yeast cells displaying 
FLU peptide were incubated in 500 µl medium preconditioned by growing yeast (i) co-expressing Aga2p-
FLU and HLA-DR1, (ii) expressing soluble HLA-DR1, (iii) co-expressing Aga2p-P1-Ala and HLA-DR1, 
or (iv) expressing Aga2p-FLU peptide at 30 °C.  C. Minimal media used in (B) for induction was replaced 
by rich medium YPG.  Cells were all double labeled for HA-tag and HLA-DR1 molecules by H6908 and 
L243 before applied on BD LSRII for flow cytometric analysis. 
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2.4.  Discussion 

2.4.1.  Yeast is suitable for expressing functional heterologous 

multimeric protein complexes  

The eukaryotic protein displaying and engineering system, Saccharomyces 

cerevisiae has been demonstrated to have the ability to assemble heterologous 

multimeric proteins either as recombinant single chain derivatives74, 132, 133, 146, or more 

natively as non-covalently associated heterodimers, such as MHC-II alleles DR4102, Fab 

antibody fragments88.  In this chapter, we also showed that the heterodimeric HLA-DR1 

can be displayed on the surface of yeast with or without covalently linked FLU peptide 

(Figure 2-4).  The noticeablly better expression level of FLU-linked form on yeast 

surface agrees with the stabilization effect of FLU peptide on assembly of DR1 

molecules67, 68, suggesting a similarity of the in vivo environments between yeast and 

human cells.  Furthermore, we confirmed the peptide binding ability of “empty” form of 

HLA-DR1 on yeast surface (Figure 2-5), which indicates the potential of yeast surface 

display as a strategy for characterizing peptide/MHC interaction.  However, the time and 

labor consumed on chemically synthesizing peptides individually would eventually 

restrain this method to generate high throughput results.  Another disadvantage of most 

available strategies used for characterizing peptide/MHC-II interactions (including the 

one just mentioned and those mentioned in introduction of this chapter) is the in vitro 

laboratory environments where interaction between peptides and MHCs takes place.  As 

we all know, in their native biological environments, proteins are not independently 

existing but mostly within a complex network, where molecular interactions among 
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proteins, nucleic acids, lipids, chemicals, etc. are occurring all the time (known as 

interactome147, 148), so, the simple in vitro peptide binding condition might not accurately 

reflect the true scenario for peptide/MHC-II association happening inside ER of 

professional APCs. 

2.4.2.  Yeast co-display contains a variety of advantages for studying 

peptide/MHC-II interaction 

Most of above problems can be solved by the novel method – yeast co-display – we 

developed in this chapter.  Intensive characterization and validation were performed for 

an interacting pair: HLA-DR1 and DR-specific FLU peptide.  These two molecules are 

translated from gene cassettes carried by two separated yeast vectors, both of which can 

be accommodated by the same yeast cell. Under regulation of secretory signal peptides, 

both molecules will enter endoplasmic reticulum, where the association between FLU 

and HLA-DR1 starts occurring at a more in vivo like environment.  Along with exocytic 

process, the Aga2p fused FLU/HLA-DR1 complex will be delivered outside yeast and 

anchored on the surface of yeast as design (Figure 2-1).  In this genetic design, we took 

advantage of the fact that the binding groove of MHC-II is more open and allows both 

ends of peptide extended outside60, and covalently attached FLU peptide to the yeast 

surface protein, a-agglutinin.  This small trick not only provides a linkage for co-

displaying FLU and soluble HLA-DR1, but also eliminates possible artifacts caused by 

covalently linking HLA-DR1 to anchoring proteins in other display strategies, such as 

Aga2 protein for yeast display74, gIII or gVIII coat proteins for phage display139, hybrid 
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produces of lipoproteins and membrane proteins for E.coli display80, envelope 

glycoprotein gp64 for baculovirus-insect cell display76. 

By site directed mutagenesis and enzymatic cleavage (Figure 2-9E and F, Figure 2-

10 ~ 2-13, and Table 2-1 ~ 2-3), the surface anchorage of soluble HLA-DR1 by FLU 

peptide but not other yeast surface structural molecules has been evaluated and 

confirmed.  The fact that a single substitution in the FLU peptide sequence was able to 

disrupt the binding of HLA-DR1 obviously implies the peptide specificity of HLA-DR1 

produced in our co-display system, which we will further examine in the following 

chapter more quantitatively. 

It is worth noticing that the display level of FLU/HLA-DR1 complexes by co-

displaying yeast is significantly lower than using classical surface display (Figure 2-11 

top row).  This could be a direct reflection for the non-covalent association of FLU to 

HLA-DR1 in yeast, because there is no artificial linker introduced in between these 

molecules any longer.  Another interesting result is that no intercellular switching of 

soluble HLA-DR1 molecules via FLU anchoring on the surface of yeast is detectable 

(Figure 2-14), validating that the interaction of these two molecules mainly takes place 

inside yeast cells and both dissociation and re-association kinetics happened outside 

yeast is probably slow enough such that phenotype on the surface of a yeast cell is 

directly related to its genotype but not others.  This observation not only clarifies the 

binding location but also suggests FACS as an appropriate screening and sorting strategy 

for discovering HLA-DR1 mutants specific for target peptide by directed evolution. 

As a new in vitro technology for studying in vivo interaction between peptide and 

MHC-II, yeast co-display bears most advantages described earlier for other methods, 
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such as the ability to perform quantitative analysis of peptide binding (the analysis in 

Figure 2-8 has already set up an basis), the potential to generate peptide libraries and/or 

MHC mutant libraries for high throughput assay, etc.  In chapter III, we will discuss how 

to quantify peptide binding and how to maintain optimal experimental conditions so as 

to ensure the reliability of the quantitation.  In the following two chapters, we will show 

some applications of this quantitative, high throughput methodology for identification of 

HLA-DR1 binding motif and prediction of HLA-DR1-specific ligands and for 

characterization and engineering of peptide binding specificity of MHC-II allelic 

variants.  
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Chapter 3.  Optimization of yeast co-display for quantitative 

analysis 

3.1.  Introduction 

Yeast co-display provides us a powerful tool to study the interaction between at least 

two molecules.  It has been shown in chapter II that, by doing some simple cloning work 

we could culture yeast to produce both FLU peptides and HLA-DR1 proteins, in return, 

yeast will give a feedback about the interaction between these two molecules via 

presenting them on the surface for detection by flow cytometry.  Only knowing whether 

a given MHC-II molecule can bind a target peptide or not is not enough sometimes, we 

would also like to know how well they bind with each other so that we can understand 

which residue at which position will favor or inhibit the interaction and what kind of side 

chain of a anchor residue is preferable to the peptide binding, etc.  Indeed, yeast co-

display system does have the potential to quantitatively determine the relative peptide 

binding affinity for MHC-II molecules.  As demonstrated by experiments in Chapter II, 

the expression level of peptide on yeast surface is independent and supposed to be 

constant if yeast is always induced for a certain time, so theoretically, the better an 

MHC-II can bind a peptide, the more MHC-II should be anchored and displayed on the 

surface of yeast after being induced for a certain time.  

Although the direct counting of how many peptides each yeast can display and how 

many MHC-II molecules are anchored by peptides on yeast surface is impossible, we 

can always get some related information about them by immunofluorescently labeling 
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MHC-II or peptide and measuring the fluorescence intensity using some detection 

techniques, such as flow cytometry as described in Chapter I.  Due to the morphology 

and diverse size of budding yeast, the integrated fluorescence intensity of each yeast will 

be different, so measuring thousands or millions of yeast by flow cytometer and 

generating a distribution of global fluorescence intensity of different yeast cells is 

relatively more meaningful.  The mean value of the distribution (MFI) can properly 

represent the relative number of MHC-II or peptides on the surface of the average yeast 

cell.  

It is clear that the biological expression system will never tell us the exact amount of 

proteins produced and associated inside the cell before the result is turned out on its 

surface, so in order to quantitatively characterize peptide binding specificity of MHC-II 

by yeast co-display, optimal yeast culturing and labeling conditions have been 

determined so that the generated MFI from flow data with apparently small standard 

deviation could be used to accurately reflect how well an MHC-II binds to a peptide.  

This optimization actually contains two meanings.  First one is to investigate appropriate 

experimental conditions for better proteins expression and interaction as well as more 

accurate labeling and surface detection.  The expression of FLU peptide essentially is an 

indicator of protein expression level in yeast cells and an optimal expression level 

obviously provides enough binding blocks for efficient protein-protein interaction.  A 

better interaction between FLU peptide and HLA-DR1 molecule in yeast will result in 

more detectable HLA-DR1 anchored for easier surface detection.  Consequently, proper 

labeling for proteins on yeast surface will largely decrease the inaccuracy and variance 

of fluorescent detection by flow cytometry.  Second meaning is that the optimized 
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working condition has no need to be the best, but at least a local optimum with relatively 

broad resistance to variations caused by different reagents and instrument parameters so 

that the quantitative assay generated later on can be more reliable.  This will also ensure 

that mutagenesis introduced to FLU and HLA-DR1 molecules in the following chapters 

have no significant impact on quantitation by yeast co-display.  Normally, an optimum 

should provide some resistance to small errors, so we will mainly focus on seeking for 

optimal experimental conditions in this chapter without worrying about the second 

meaning too much as it could be obtained automatically once working condition is 

optimized. 

Variables for culturing yeast such as medium, temperature, time length, and cell 

density, etc, are direct effectors controlling the expression and association of proteins in 

yeast.  Variables for fluorescent labeling including choices of primary antibodies and 

secondary fluorescently labeling reagents, concentration or dilution of reagents used, etc, 

are factors probably introducing errors for flow detection but not affecting the real 

amount of proteins on yeast surface.  Actually, all these variables are more or less 

connected with each other, which makes the evaluation really difficult.  As mentioned 

previously, we do not have to find out the best condition, so to make things easier and 

still reasonable, the number of variables were grouped and varied a few at a time to 

maximize the efficacy of the whole optimization process. 

The most direct and reasonable phenotypic signal for evaluating the optimum of 

experimental conditions is the amount of HLA-DR1 on the yeast surface.  In this 

chapter, we proposed a quantitative way to measure the relative HLA-DR1 amount in 

the materials and methods section and then evaluated several sets of variables based on 
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the HLA-DR1 measurement for searching an optimal experimental condition in result 

section.  First of all, issues about medium, time and temperature selected for inducing 

yeast to produce proteins for interaction were analyzed.  Following that, cell densities at 

different stages were evaluated for eliciting better detectable DR-signals on yeast 

surface.  Finally, proper antibodies and labeling reagents were selected and the 

concentrations of them were titrated for an accurate surface detection. 

3.2.  Materials and Methods 

3.2.1.  Media for yeast growth and induction 

SD-SCAA was used for cell enrichment.  Either a minimal medium SG-SCAA or a 

rich medium YPG was picked for induction of GAL1-10 promoted protein expression.  

Both SD-SCAA and SG-SCAA were filter sterilized.  For YPG, five different batches 

were used in experiments done in this chapter (Table 3-1). 
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Table 3-1 Different batches of YPG media used in this chapter. 

Batch Number Component Vendor Sterilization method 

Yeast extract BD Biosciences 

Peptone Fisher Sientific YPG 1 

Galactose Acros Organics 

Autoclaved 

Yeast extract BD Biosciences 

Peptone Fisher Sientific YPG 2 

Galactose Acros Organics 

Filtered 

Yeast extract 

Peptone 
Invitrogen Autoclaved 

YPG 3 

Galactose Acros Organics Filtered 

Yeast extract 

Peptone 
BD Biosciences 

YPG 4 

Galactose Acros Organics 

Autoclaved 

Yeast extract 

Peptone 
BD Biosciences Autoclaved 

YPG 5 

Galactose Acros Organics Filtered 

3.2.2.  Primary and secondary labeling reagents 

Immunofluorescent labeling for induced yeast cells was carried out mostly in a 2-

step manner, and primary antibodies and secondary reagents with fluorophores 

conjugated are listed in the following. 

One of the following DR-specific mouse Mab: L243 or biotinylated LB3.1 (purified 

from hybridoma culture supernatant at National Jewish Center, Denver, CO) was used to 

specifically label functional HLA-DR1 in the primary labeling step.  Different secondary 

reagents used for labeling corresponding primary antibodies are Alexa Fluor 488 or 647 

conjugated goat anti-mouse antibody (all Alexa Fluor dyes were purchased from 

Invitrogen), tandem dye PE-Cy5 conjugated streptavidin (BD Biosciences Pharmingen). 
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Polyclonal antibody H6908 and Alexa Fluor 488 - goat anti-rabbit were used as 

primary and secondary labeling reagents, respectively, for detecting FLU-linked HA-tag. 

3.2.3.  General culturing procedure for yeast co-display 

Colonies for EBY100 transformants with two plasmids containing both TRP1 and 

LEU2 nutrient markers are first selectively grown up on SD-SCAA agar plates 

(containing 1 M sorbitol) under trp-, leu-, and ura- condition and then inoculated into 2 

ml SD-SCAA liquid medium in an autoclaved glass test tube.  The yeast culture was 

then enriched to a proper OD600 (an optimal range of the density will be determined in 

this chapter) in a 30 °C shaker at 225 rpm.  To induce the expression of both FLU fusion 

and sDR1, enough yeast cells (an optimal amount will be determined in this chapter) are 

collected by centrifugation for ~1 min at maximum speed in a microcentrifuge.  After 

withdrawing the supernatant, cell pellet was resuspended by 2 ml of either SG-SCAA or 

YPG medium and transferred to a new glass tube.  Induction is carried out at some 

temperature for a certain time length before harvest for surface detection (optimal 

induction condition will be determined in this chapter). 

Above is just a general yeast cultivation procedure, specific OD600, medium, time 

length, temperature are indicated in each experiment stated later on. 

3.2.4.  General fluorescent labeling procedure 

After induction, a pellet of 106 yeast cells were collected from each sample by 

centrifugation into a 1.5 ml Eppendorf tube and washed once with at least 300 µl ice 

cold PBS + 1% BSA.  Cells were then stained with a proper dilution of a primary 

antibody specific for either DR or HA epitope tag in PBS + 1% BSA at room 
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temperature (RT) or on ice for 30-60 min.  Following that, cells were spun and washed 

once again with ice cold PBS + 1% BSA and then incubated with corresponding 

secondary labeling reagents diluted in PBS + 1% BSA at RT or on ice for 30-60 min.  

Finally, cells were washed with PBS + 1% BSA one more time and resuspended in 

500~750 µl ice cold PBS + 1% BSA for analysis by flow cytometer. 

Above is just a general labeling procedure, specific antibody chosen and exact 

dilution used will be indicated in each experiment stated later on.  

3.2.5.  Quantitative analysis of flow cytometric data 

A direct way of evaluating one working condition versus another is to compare the 

relative amount of HLA-DR1 on the surface of yeast prepared using different conditions, 

because the only reason one can detect HLA-DR1 molecules by yeast co-display is due 

to the association and anchorage of HLA-DR1 by FLU peptide expressed on yeast 

surface.  Herein, we proposed one quantitative approach for determining relative amount 

of HLA-DR1 on the surface of yeast by flow cytometric analysis.  In most experiments 

carried out in this chapter, both a DR-positive and a DR-negative co-displaying yeast 

strain were used under each working condition.  After flow cytometry, data were first 

plotted by SSC vs. FSC for checking and gating the right yeast cell population (Figure 3-

1 (i)).  Then the fluorescent signal for labeled HLA-DR1 molecules on the surface of 

gated cells was displayed as a cell event distribution in a histogram (Figure 3-1 (ii)).  By 

using Flowjo, one can measure the mean fluorescence intensity for the distribution. The 

HLA-DR1 display level on the surface of yeast can be estimated by the background-

corrected mean fluorescence intensity value normalized to the background intensity: 
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where MFI(DR)(+) and MFI(DR)(-) represent mean fluorescence intensity of DR signals on 

the surface of DR-positive and negative yeast strains, respectively. 

The cMFI(DR) value can be used to reflect the relative HLA-DR1 amount on the 

surface of yeast cultured and labeled under a certain condition.  The negative subtraction 

and normalization are both necessary to set up a base line for comparing data collected at 

different experimental condition and minimize unnecessary errors introduced by 

different parameters set up on flow cytometers.  It is worthy of noticing that due to the 

difficulty to discriminate negative and positive, the measurement of MFI (Figure 3-1 (ii)) 

includes the whole cell population, which actually brings down all absolute values of 

cMFI after the background subtraction in Equation 3-1, but has no impact on relative 

value when we compare them with each other.  Additionally, due to the truth that 

negative strain could change its surface turning-out at different culturing condition as 

well, there is actually no exact base line to compare data collected on different flow 

cytometers or even on different dates.  Therefore, most comparison was done for flow 

data collected on the same flow cytometer in the same day, and results from different 

dates were then put together to draw a final conclusion. 
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Figure 3-1 Quantitative analysis of relative HLA-DR1 amount on yeast surface using flow 
cytometric data generated from anti-DR-labeled yeast.  Data of both A. DR- and B. DR+ cell samples 
were first plotted in (i) a dot plot by side scatter (SSC) vs. forward scatter (FSC) representing information 
of cell morphology and intracellular organelle complexity, and then gated for the majority of cell 
population (red line, ~90% of total) in order to separate real yeast from contaminants.  The gated cell 
subset was then plotted in (ii) a histogram for fluorescence intensity of fluorophore labeling HLA-DR1 
molecules.  Mean fluorescence intensity (MFI) of the whole subset was measured for both A and B.  

3.3.  Results 

3.3.1.  Evaluation of medium, temperature and time for induction 

The growth and induction of yeast cells are usually sensitive to a couple of things 

which people might not notice most of the times, such as air flow inside the shaker, 

shaking speed, size and shape of the flasks or tubes, which will affect the aeration for the 

cell culture and thus the cell growth.  To minimize the influence of these factors, all 

yeast strains used for quantitative analysis were inoculated and induced in a constant 
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volume - 2 ml of medium in an autoclaved glass culture tube, and the shaking speed was 

set to 225rpm for all experiments. By setting other effectors unchanged, we will evaluate 

medium and temperature chosen for induction at different time length first. 

Co-displaying yeast strains were first selected out on SD-SCAA agar plates, which 

will inhibit the growth of background or parent strains.  After being enriched in the 

minimal liquid medium SD-SCAA, cells were switched to different induction media for 

expressing proteins.  Herein, we tested two kinds of media: a rich medium YPG and a 

minimal medium SG-SCAA both containing galactose with the ability to turn on the 

GAL1-10 promoter for expression of both Aga2-FLU fusion and soluble HLA-DR1.  

The cell growth rate in YPG is dramatically faster than that in SG-SCAA, so the 

induction in YPG was tried mainly at 20°C.  Occasionally, huge difference between the 

final densities of induced cells was observed when different batches of YPG media were 

used (OD600 not shown).  To determine whether YPG, made of components bought from 

different vendors and prepared differently by autoclaving or filtering, would affect the 

expression and interaction of FLU and HLA-DR1, different batches of YPG were 

examined in some experiments (Table 3-1, Figure 3-2A~C and Figure 3-3D).  Results 

suggest that not only the final cell density is different, but the HLA-DR1 amount on cell 

surface is also different.  However, there is no obvious relationship between different 

batches and the detectable HLA-DR1 amounts.  For example, YPG 3 can provide a 

much higher cMFI than YPG 2 when induced for 90 h (Figure 3-2A), but a lower cMFI 

when induction time became shorter (Figure 3-3D).  In contrast with using other bathes, 

cells in YPG 3 didn’t show obvious loss of DR signal after 90 h induction comparing 

with 20 h (Figure 3-2A, B and Figure 3-3D), where the yeast extract and peptone 
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purchased from Invitrogen for making YPG 3 could have an impact.  Hence, it is 

difficult to predict which batch of YPG will give the best expression or the highest 

association of proteins.  Theoretically, YPG provides the most nutrients and materials 

for cells to make proteins, however, the uncertainty and richness of components in YPG 

will lead to an unpredictable cell growth behavior, which we would like to avoid when 

performing quantitation.  On the contrary, although not rich, SG-SCAA indeed provides 

enough nutrients to keep cells growing slowly while making proteins as well as to inhibit 

background cells growing.  Henceforward, we will characterize the induction in SG-

SCAA more intensively.  

It was suggested that induction in YPG with shorter time tends to favor the detection 

of HLA-DR1 molecules on yeast surface (Figure 3-2B and C), so we tried to induce 

yeast in SG-SCAA at two different temperatures using shorter time frames.  Within 2 

Days, cells induced in SG-SCAA at 30 °C can display an equivalent amount of HLA-

DR1 in comparison with those induced in YPG at 20 °C and both exhibited a similar 

feature that the longer they were induced, the fewer HLA-DR1 we can detect on cell 

surface (Figure 3-2B and C, also see Figure 3-3A~C), whereas cells induced in SG-

SCAA at 20 °C do need longer time to present more HLA-DR1 (Figure 3-2C), 

suggesting that protein expression in minimal media is slower than in rich media.  

Considering higher temperature could favor the protein binding kinetics, we stuck to 30 

°C induction in SG-SCAA and explored behaviors at even shorter time frames, where 

DR signal no longer increased with increasing time (Figure 3-2D).  Together with 

previous results (Figure 3-2C), a local optimum for induction time can be searched out 

between 14 h and 20 h when inducing co-displaying yeast in SG-SCAA at 30 °C. 
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Figure 3-2 Effect of medium, temperature and time length used for yeast induction on HLA-DR1 
surface display level.  Shown are four separate experiments.  cMFI(DR) were calculated as described in 
Equation 3-1 for the co-displaying yeast strain prepared at different conditions.  A. Cells were induced in 
different batches of YPG at 20 °C for 90 h.  B. Time lengths for induction were varied when using two 
different YPG media.  C. Induction was carried out in different media at different temperature for various 
time lengths.  Biotinylated LB3.1 and PE-Cy5 conjugated streptavidin were used for DR-labeling.  D. The 
initial cell density (OD600) for inoculation and the time length for induction were both varied.  Another 
change in this set of experiment is that cells collected for induction were not spun down but with some 
volume of SD-SCAA carried over to the medium for induction.  (Other than noted, L243 and Alexa Fluor 
488 conjugated goat anti-mouse antibody were used for the two-step yeast labeling.  The staining was 
carried out on ice and flow cytometry was done on Beckman Coulter XL.) 

3.3.2.  Optimization of cell density for induction 

We introduced another factor – cell density when seeking for a local optimum of 

induction time when performing induction in SG-SCAA at 30 °C to broaden the 

applicability of the optimized condition.  Since most of the time yeast is inoculated from 

plates directly into culture tubes, it is impossible to check the starting yeast age.  Indeed, 
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a little more HLA-DR1 molecules were detected when inoculating at a higher density 

(OD600~0.4) than lower one (OD600~0.05) (Figure 3-2D), partially reflecting that starting 

with fresh cells tends to result better than older ones for a certain growth length, because 

old ones normally contain more dead cells which won’t divide.  This postulation was 

also confirmed by the experimental result being talked about in Chapter IV (Figure 4-3).  

Bearing this in mind, we tried to inoculate yeast as fresh as possible henceforward.  

However, if cells are too old, several passages using fresh medium will always dilute out 

older ones, so it is not necessary to control the starting cell density for inoculation. 

Densities of cells collected and initiated for induction are parameters that could 

affect the final HLA-DR1 surface display level.  Yeast collected from SD-SCAA culture 

at both an OD600 of 3.0 and 6.0 exhibit optimal DR signals after being induced for 16 h 

regardless of what OD600 used for initiating induction (Figure 3-3A and B), suggesting 

that an optimal induction time could be somewhere closed to 16 h.  A direct comparison 

of these two local optimums (Figure 3-3C) further confirms that cells collected at a 

smaller OD600~3.0 and induced in SG-SCAA at a smaller OD600~0.5 will display more 

detectable HLA-DR1 than those with bigger OD600.  Additionally, serving as a parallel 

control, results of yeast induced in YPG at different initial densities (Figure 3-3D) 

confirmed that collecting cells at a relatively earlier growth stage helped to display more 

HLA-DR1.  This makes us to speculate that cells should be collected and induced within 

the exponential phase of growth or before stationary phase, after which the changes in 

cell wall structure could possibly influence surface display and detection of target 

proteins. 
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Figure 3-3 Effect of densities of cells collected and initiated for induction on HLA-DR1 surface 
display level.  Co-displaying yeast grown up in SD-SCAA were collected at either A. OD600 ~ 3.0 (open 
symbols) or B. OD600 ~ 6.0 (filled symbols), spun down and resuspended in SG-SCAA to various densities 
at an OD600 of 0.5, 1.0 or 2.0 as indicated, and then induced at 30°C for various time lengths.  C. Further 
comparison of the DR signal from yeast collected at the two different OD600 and induced with a starting 
OD600 of 0.5.  D. Cells collected at different OD600 after enrichment were also resuspended in different 
batches of YPG media to an OD600 of 1.0 and induced at 20 °C for 20 h.  After induction, all samples in 
were collected and labeled at the same time for flow cytomeric analysis.  cMFI(DR) were calculated as 
described previously for yeast prepared at different conditions. 

Before performing more experiments searching for optimal densities of cells 

collected and initiated for induction, we defined the growth pattern for co-displaying 

yeast strain in SD-SCAA medium.  2 ml of SD-SCAA fresh media in glass culture tubes 

were inoculated by two-day-old cell cultures (used to be kept at 4 °C) to an OD600 of 

0.02 and incubated in a 30 °C shaker at 225rpm.  OD600 measured at different time 
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points plotted in log scale against growth time (Figure 3-4) reveals a curve for yeast 

growing in SD-SCAA medium.  The curve is actually linear before 20 h (OD600~4.0), 

reflecting an exponential growth phase, and then starts to tilt down a little bit, indicating 

the beginning of stationary phase or a deceleration stage for entering stationary, where 

apoptosis of older cells in the culture tube emerges.  Furthermore, the doubling time for 

yeast cells growing in SD-SCAA can be determined using this curve, which is around 

3.5 hours.  It is clear that OD600~3.0 (~19 h post-inoculation) is within the exponential 

phase whereas OD600~6.0 (~24 h post-inoculation) is towards the end of this partial 

growth curve closed to the stationary phase, confirming our assumption that cells 

collected in exponential growth stage tended to display more HLA-DR1 than those 

collected outside.  

 

Figure 3-4 Cell growth curve for co-displaying yeast cultured in SD-SCAA. 

To further evaluate the effect of growth stage and starting cell density on induction 

of proteins expression and association, more OD600 were examined (Figure 3-5).  It is 

suggested that as long as not collected too early, the yeast will always display a similar 
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amount of detectable HLA-DR1 after proper induction, while a relative higher cMFI is 

observed at OD600~5.2 (Figure 3-5A).  The suggested range of OD600 is about 2.0 to 6.0, 

which is a little broader than that obtained from previous results.  Meanwhile, the 

checking for different initial cell densities of induction culture shows an optimum 

around OD600~0.5 (Figure 3-5B), which is consistent with previous observation (Figure 

3-3A). 

 

Figure 3-5 Further evaluation for the effect of cell age and initial cell density.  A. Cells were grown up 
to various ages (OD600), and then switched to SG-SCAA to an OD600 of 0.75.  B. Cells were collected at an 
OD600 of 3.7 and resuspended in SG-SCAA to various densities (OD600).  In both experiments, 
immunofluorescent labeling was performed using biotinylated LB3.1 and streptavidin-PE-Cy5.  cMFI(DR) 
were calculated and plotted against OD600 measurements representing densities of cells collected or 
initiated for induction. 

In sum, one local optimum condition for culturing co-displaying yeast would be: 

inoculate a 2 ml SD-SCAA medium by a single colony (or an aliquot from a few days 

old culture) in a culture tube and grow cells in 225 rpm shaker at 30 °C for 16~20 h until 

the density reach an OD600 of 2.5 to 5.0, then switch cells into 2 ml SG-SCAA to an 

OD600~0.5 and incubate in 225 rpm shaker at 30 °C for 16~18 h before harvest. 
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3.3.3.  Optimization of immunofluorescent labeling 

Using the culturing method optimized in previous section, we can have yeast to 

express and display an optimal amount of HLA-DR1 for surface detection.  In this 

section, different immunofluorescent labeling conditions will be evaluated for 

maximizing the detectable signal for flow cytometric analysis.  Two-step labeling 

procedures are wildly used for indirect immnofluorescence methods, because of their 

higher specificity and better fluorescence intensity.  Thereby, all labeling procedures 

stated in this thesis work are in a two-step manner.  In previous experiments, small 

changes have already been tried for evaluating different labeling conditions, such as 

using different amount of wash buffers, using different time length for incubations, and 

using different labeling reagents, etc.  It turned out that washing 106 cells with 200–400 

µl PBS + % BSA once or twice, incubating cells with different DR-specific antibodies 

for 30–60 min and using different fluorophores, all showed no obvious impact on yeast 

labeling and HLA-DR1 detection.  However, Alexa Fluor dyes149, 150 are said to be more 

stable, brighter, and less pH-sensitive than common dyes such as fluorescein, rhodamine 

and the newer cyanine series, so we will use them for the rest of this thesis work. 

First, antibodies used for labeling HLA-DR1 were titrated for a better working 

dilution.  L243 and Alexa Fluor 488 – goat anti-mouse antibodies were selected because 

both antibodies are commercially available with suggested concentration and working 

dilutions (Table 3-2).  A series of dilutions for both were prepared around a reasonable 

range and tested for labeling and surface detection of sDR1 (Figure 3-6A and B).  The 

roughly horizontal curve indicates that within the range tested, both L243 and Alexa 

Fluor 488 – goat anti-mouse are sufficient to couple most detectable DR molecules on 
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yeast surface without losing essential information.  For L243 (Figure 3-6A), the result 

basically agree with the suggested dilution by supplier (Table 3-2), and more case-

specifically, dilutions around 1:4–1:2 seems to be an optimum for yeast co-displaying 

FLU and HLA-DR1.  For Alexa Fluor 488 – goat anti-mouse, dilution as low as 1:200 is 

still enough to cover all DR proteins labeled by primary antibodies L243 on the whole 

yeast surface, due to the high concentration of the antibody itself (Table 3-2). 

Table 3-2 Antibodies with working dilution recommended by corresponding suppliers. 

Antibody name Concentration Working dilution 

L243 0.025 mg/ml 1:1 

H6908 0.5 mg/ml 1:25 

Alexa Fluor dye-secondary labeling reagents 2 mg/ml NR 

NR, no recommendation. 

Up till now, we have already constructed a working condition for producing and 

detecting an optimal amount of HLA-DR1 on co-displaying yeast surface. To 

quantitatively determine the relative binding of FLU by HLA-DR1, the relative amount 

of FLU peptide on the surface needs to be calculated using Equation 2-1 and used as a 

comparison base line (will explain this in the discussion section in detail).  Here, we 

evaluated the titration of antibodies used for labeling FLU-fused HA-tag so that more 

accurate amount of FLU peptide on yeast surface can be determined later for 

quantitation.  Again, commercially available antibodies, H6908 and Alexa Fluor 488 – 

goat anti-rabbit were examined at a series of dilutions for HA signal by flow cytometry 

(Figure 3-6C and D).  The Alexa Fluor dye conjugated secondary shows similar 

horizontal curve to that used to label HLA-DR1 (Figure 3-6D), whereas H6908 has to be 
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used in a relatively smaller dilution to stay concentrated enough for coupling all HA 

epitopes on yeast surface (Figure 3-6C).  It also suggests that an optimum might be 

achieved while using a dilution around 1: 25, consisting with the vendor’s suggestion 

(Table 3-2). 

 

Figure 3-6 Titration of antibodies used for immunofluorescent labeling of HLA-DR1 and HA-tag on 
the surface of yeast.  Yeast co-displaying FLU and HLA-DR1were induced using the culturing condition 
optimized in previous sections and labeled for either A and B. HLA-DR1, or C and D. HA epitope tag.  A 
and B.  L243 and Alexa Fluor 488 goat anti-mouse antibodies were used for labeling HLA-DR1.  Staining 
was performed at room temperature (RT) for 40–50 min.  C and D.  H6908 and Alexa Fluor 488 goat anti-
rabbit antibodies (highly cross-adsorbed with lowest cross-reactivity to mouse antibodies) were used for 
labeling HA-tag.  Staining was performed at room temperature (RT) for 30 min followed by on ice for 10 
min.  Flow cytometric data was collected on BD LSR II flow cytometer. 



 78 

3.4.  Discussion 

3.4.1.  Optimal working condition for yeast co-display 

Optimization for cultivation and post-induction manipulation of yeast co-displaying 

FLU peptide and HLA-DR1 protein has been carried out.  Variables possibly 

determining or affecting the detectable DR-signal have been tested in groups in a 

reasonable manner searching for a local optimum that can be used reliably for 

quantitation.  Quantitative analysis of flow cytometric data confirms that differences do 

exist when disturbing certain factors, so it is essential to adjust variables and optimize 

experimental conditions so that consistent and reliable flow cytometric results can be 

generated for quatitation. 

Results suggest that the immunofluorescent labeling of HLA-DR1 or FLU on the 

surface of yeast cells is not a big factor for introducing errors for flow cytometry, as long 

as the concentration of labeling reagents used every time is closed to the optimal or 

exceed the saturation amount.  The labeling procedure is relatively robust without 

causing too much variance when performing at different temperatures (RT or on ice) for 

a certain range of time lengths.  Actually, the vessels used for labeling also have no 

impact on the data at all as suggested in the following chapters, where labeling were 

largely performed in 96-well plates instead of 1.5 ml eppendorf tubes.  In those cases, 

more wash steps were included to remove as many non-specific coupling reagents as 

possible. 

Indeed, cultivation of yeast is the dominant part, where significant differences 

between MFI values calculated from flow data could emerge.  Therefore cares need to be 
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taken when growing and inducing yeast cells.  First of all, minimal media is better than 

rich media on keeping the constancy of nutrient combination and providing the time 

efficiency at higher temperature (for example, 30 °C instead of 20 °C).  Next, cells are 

better to be collected at the exponential growth stage before switching for induction (for 

example, OD600~3.0), where too early or too late is neither recommended.  Then, initial 

cell density of the induction culture should not be too high so that plenty of nutrients 

could be used for protein assembly (for example, OD600~0.5).  Finally, temperature and 

time length selected for induction should enable both optimal protein expression and 

protein-protein interaction (for example, 16h).  An optimized protocol for yeast co-

displaying FLU peptide and sDR1 is suggested as follow: 

• Culturing: 

1) Inoculate a 2 ml SD-SCAA medium by a single colony (or an aliquot from an old 

culture, but not too old) in a culture tube 

2) Put the tube into a 225 rpm shaker with an angle and grow cells at 30 °C for 16–

20 h until the density reaches an OD600 of 2.5 to 5.0 

3) Collect 107 cells by centrifugation and withdraw most medium 

4) Resuspend cell pellet in 2 ml SG-SCAA medium to an OD600~0.5 

5) Put the tube back to the same shaker and induce cells at 30 °C for 16–18 h 

6) Harvest enough cells by centrifugation and withdraw as much medium as 

possible for fluorescently labeling. (Alternatively, cell culture can be stored at 4 

°C for a couple of days without significantly affecting the flow cytometric 

results, but this is not recomended) 

• Labeling (for 106 cells): 
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1) Resuspend 106 cells by 300–400 µl ice cold PBS + 1% BSA in a 1.5 ml 

eppendorf tube and wash cells by thoroughly vortexing 

2) Spin cells down and withdraw as much supernatant as possible 

3) label cells by primary antibodies appropriately diluted in PBS + 1% BSA 

(specifically, 1:2.5 for L243 and 1:25 for H6908) at room temperature for 30 min 

and then on ice for 10 min 

4) Spin cells down and repeat step 1) and 2) 

5) label cells by secondary reagents appropriately diluted in PBS+1%BSA 

(specifically, 1:80 for all kinds of Alexa Fluor dye conjugated secondary 

reagents) at room temperature for 25–30 min followed by on ice for 10 min 

6) Repeat step 4) 

7) resuspend cell pellet by 500–700 µl ice cold PBS + 1% BSA for flow cytometry 

NOTE: these procedures are actually case sensitive, so for cultivation and labeling of yeast cells under 

other nutrient dropout conditions, they might not be suitable and another optimum might need to be 

characterized. 

3.4.2.  Quantitative analysis of co-displayed FLU and HLA-DR1 

We now proposed a quantitative analysis for defining the relative binding of peptide 

to MHC-II molecules using optimized yeast co-display.  First of all, both a co-displaying 

yeast strain and a peptide-only-displaying strain have to be simultaneously stained for 

peptide-fused HA epitope tag and MHC-II for flow detection.  As described in Chapter 1 

(1.4.2), cross-reactivity of labeling reagents and fluorescent signal overflowing are both 

issues we should pay attention to when performing double labeling.  Henceforward, 

L243/Alexa Fluor 647 – goat anti-mouse and H6908/Alexa Fluor 488 – goat anti-mouse 
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will be used for labeling HLA-DR1 and FLU respectively when performing quantitative 

analysis.  Both secondary reagents purchased form Invitrogen are ‘highly cross-

adsorbed’ with lowest cross-reactivity for other species, ensuring no cross-reaction 

taking place during labeling (this has been checked and proved in some experiments 

with data not shown).  The far separation of excitation and emission wavelengths 

between these two fluorophores also minimizes signal overflowing, where no 

compensation required at all. 

Next, flow cytometric data (take the two samples in Figure 2-9C and D for example) 

were analyzed using Flowjo (Figure 3-7).  The display level of FLU peptide on yeast 

surface can be determined by calculating cMFI for HA signal using Equation 2-1.  

Different from Equation 3-1, the background correction here is based on the same 

sample.  One reason is that there are two distinct populations in the same culture, 

indicating an obvious population of negative cells missing FLU-displaying plasmids and 

having no contribution to the surface display of FLU at all.  Another reason is that in 

contrast with the dependency of detectable amount of HLA-DR1 on FLU expression, 

displaying and detecting FLU peptide on yeast surface is apparently independent.  

Therefore, eliminating the background will not affect analysis of DR signal at all, but 

increase the accuracy as shown in the following.  To reflect how well HLA-DR1 bind to 

FLU peptide on the surface of yeast, the ratio of MFI(DR) to cMFI(HA) instead of MFI(DR) 

(in Equation 3-1) was used for negative subtraction and normalization in the following 

equation:  
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DR - ratio =
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                    Equation 3-2 

where 

! 

MFI (DR )

cMFI ( HA )
[ ](+)  and 

! 

MFI (DR )

cMFI ( HA )
[ ](")  represent the ratio on the surface of the co-

displaying yeast and peptide-only-displaying yeast, respectively. 

This equation can generate relative binding values for different MHC-II proteins to 

different peptides by comparing DR-ratio of corresponding co-expressing yeast.  In the 

following two chapters, we are going to introduce mutations in FLU peptide and HLA-

DR1 protein to evaluate relative binding of different DR mutants to different FLU 

variants, where DR-ratio normalized by that of the wild type co-displaying strain will be 

compared frequently. 
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Figure 3-7 Quantitation for relative binding of MHC-II to peptides on the surface of yeast.  Flow 
cytometric data of A. peptide-only-displaying yeast or B. co-displaying yeast were first assessed (i) to gate 
the gate the correct cell population (red line).  Gated cells was then analyzed in (ii) a dot plot showing 
FLU and HLA-DR1 surface display level respectively, where HA+ and HA- populations can be further 
gated.  An easier way to gate and generate mean values (MFI(HA+) and MFI(HA-)) for the two populations is 
using (iii) a univariate histogram for HA signal only.  Detection of HLA-DR1 on yeast surface is largely 
due to their binding to the displayed FLU peptide, so HA+ subgroup was further plotted in (iv) the 
univariate histogram for generation of MFI(DR)(+) in B and MFI(DR)(-) in A.  
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Chapter 4.  Identification of P1 pocket profile and prediction of 

HLA-DR1-specific ligands 

4.1.  Introduction 

Naturally evolved immune systems can function properly for detecting, preventing 

and eliminating foreign pathogens without influencing most of self bio-systematic 

balances, predominantly due to their capability to specifically recognize and associate 

with epitopes (usually short peptides) in a target pathogen.  Hence, immunotherapy and 

vaccination used to rely on the original form of pathogens for initiating immune 

responses now have an alternative strategy via directly applying epitope-based reagents 

to stimulate specific immune responses28.  Identification and prediction of pathogenic 

epitope-like peptides have become more and more essential. 

CD4+ T cell-mediated immune responses are restrictedly initiated by TCR-specific 

epitopes associated and presented by MHC-II molecules.  Thus, epitope-specificity of 

CD4+ T cells is largely determined by antigenic peptide binding specificity of MHC-II 

proteins. A few MHC-II alleles expressed by an individual able to present peptides 

derived from many kinds of self or foreign antigens indicates the fact that one MHC-II 

allele is supposed to recognize and bind a group of structurally similar peptides for 

selection by T cell receptor, as a result of which CD4+ T cell-mediated immune 

responses will be initiated.  Investigating the promiscuous peptide sequences recognized 

by MHC-II molecules will greatly help to define peptide-binding specificity of CD4+ T 

cells and predict T cell specific epitopes, which can be used for vaccine design and 

immunotherapeutic application. 
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The earliest and most directly method of defining MHC-specific epitope peptides is 

to analyze and pool-sequence peptides eluted off peptide/MHC-II complexes purified 

from specialized APC cell lines22, 60, 151-156.  This method provides enormous information 

for defining binding motif of MHC-II molecules by aligning naturally processed 

peptides, but lack of freedom on manipulation of residues at positions of interest for 

determining side chain preference and detecting unknown MHC-II ligands.  Thereafter, 

people started to synthesize soluble peptides and assay for their capability to bind 

“empty” MHC-II molecules on the surface of APCs124 or solubly produced from an 

EBV-transformed homozygous B cell line18, 118-123.  Theoretically, one can examine the 

binding of any peptide to a given MHC-II, but the disadvantage of labor intensity on 

synthesizing peptides actually makes it a really high cost and low throughput method 

even with a modern peptide synthesizer.  In addition, the difficulty on acquiring and 

culturing mammalian cell lines could be another problem, which was partially solved by 

expressing and purifying soluble “empty” MHC-II proteins in other easily manipulated 

expression systems106, 108.  

Investigation of various peptides with different sequences and lengths for MHC-II 

binding requires high throughput experimental approaches and probably computational 

prediction.  For example, libraries of peptides can be constructed by using phage display, 

and screened by mixing phage particles with biotinylated HLA-DR120, 90.  This 

engineering system allows generating information of hundreds of DR-specific peptide 

sequences, which is suitable for identifying peptide binding motif and anchor 

preferences of MHC-II proteins145 or even predicting promiscuous MHC-II ligands and 

T cell specific epitopes with the help of computational programs TEPITOPE23.  As one 
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of the most successful experimental approaches, phage display and peptide screening 

have little to no ability to tell the difference of affinity between different peptides bound 

by HLA-DR1, which, complimentarily, has to be further determined by synthesizing 

peptides screened out of phage library and mixing them with soluble produced HLA-

DR1 molecules for binding assay.  This greatly limits the applicability of phage display 

on quantifying peptide-binding specificity of given MHC-II molecules. 

Other than above experimental approaches, people have also developed several 

computational methods for predicting immunogenic epitopes157.  Some are algorithms or 

programs such as TEPITOPE, depending on binding motifs and ligand matrices of 

MHC-II determined by experimental data.  Others are models based on 3D structure and 

molecular dynamic simulation, for example, a predictive computational model by global 

minimization of potential energy between interacting atoms was proposed for examining 

interactions between the entire array of naturally occurring amino acids and the P1 

pocket within the binding groove of HLA-DR1158.  However, these estimations based on 

simplified models are less meaningful without support of experimental data. 

Yeast co-display we have developed and optimized in previous chapters on the 

contrary, not only has the ability to create libraries of various peptides for screening 

MHC-binders experimentally, but also contains a potential to quantitatively determining 

relative binding of each peptide to MHC-II.  In this chapter, we will examine these 

features of the novel engineering system and show its applicability in characterization of 

side chain preference of HLA-DR1 and in prediction of MHC-II ligands. 

Experimental results from other work20, 90, 145 as well as predictive molecular 

dynamic calculations158 confirm the observation obtained from X-ray crystallographic 
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studies of HLA-DR159 that there are five pocket-like regions within the peptide-binding 

site of HLA-DR1 molecule (Figure 4-1), which are critical for holding specific side 

chains of anchor residues in peptide and determining peptide binding specificity.  

Among these pockets, the largest and deepest one closed to N-terminus of the bound 

peptide (named as P1), is demonstrated to be the dominant position for peptide-HLA-

DR1 interaction.  The hydrophobic feature of P1 pocket demands most accommodated 

peptides containing an anchor residue with a large hydrophobic side chain towards their 

N-terminus.  Specifically, aromatic residues such as Trp, Tyr, Phe show the most 

favorability to P1 pocket, followed by other hydrophobic residues such as Met, Ile, Leu, 

and Val.  The known anchor preference of P1 pocket can be used to validate the 

applicability of yeast co-display for quantitatively determining peptide-binding motif.  

Pockets other than P1 are consecutively accommodating the fourth, sixth, seventh and 

ninth residues from P1 anchor residue of the associated peptide and designated as P4, 

P6, P7, P9 respectively, which exhibit less importance than P1 pocket but noticeable 

additive effects on peptide binding145. 

In this chapter, site directed mutagenesis was first coupled for replacing and 

saturating P1 anchor of FLU peptide with all natural amino acids and yeast co-display 

was used for quantifying the relative binding of these P1 variants to HLA-DR1.  

Subsequently, a small library of peptides was constructed and screened by directed 

evolution approaches allowing isolation and identification of HLA-DR1-specific 

peptides in a high throughput manner. 
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Figure 4-1 Anchor-Pocket regions in the structure of HLA-DR1 associated with FLU peptide.  A. 
Top view of the peptide-binding groove formed by α1 and β1 domains of HLA-DR1, represented by green 
and purple cartoon structures respectively.  Residues in FLU peptide are shown as spheres, where red ones 
depict anchors with side chain buried inside pockets formed by residues in the binding groove, represented 
by green or purple dots.  B. Side view perpendicular to the FLU peptide extending direction with side 
chain of all peptide residues shown.  Red ones again suggest the five main anchors and yellow ones either 
point up to bind T cell receptor (especially the four in the middle) or extend out of the binding groove.  
The deepest anchor (P1) near the amino-terminus of FLU peptide dominates the peptide association. 

4.2.  Materials and Methods 

4.2.1.  P1 variant-expressing plasmid construction and yeast 

transformation 

Site directed mutagenesis following “Quikchange II” protocol (as described in 

Chapter 2 section 2.2.1) was used to introduce residue substitutions at P1 anchor of FLU 

peptide for construction of ptFLUX (X denotes any single letter designation for amino 

acids).  For example, ptFLUF was generated via PCR using a pair of reverse 

complementary primers W53 (5’–GCTAGCCCTAAGTTCGTGAAGCAGAATAC) / 
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W54 (5’–GTATTCTGCTTCACGAACTTAGGGCTAGC) carrying mutated nucleotides 

(underlined) encoding Phe at P1 anchor. 

Plasmid ptFLUX was transformed into either EBY100 or EBY100 with ptsDR1 by 

electroporation for expressing P1-variant of FLU peptide or co-expressing P1 variant 

and soluble HLA-DR1 in yeast. 

4.2.2.  P1 anchor preference assay via yeast co-display 

Yeast were prepared using previously optimized culturing and labeling conditions 

with a minor modification.  96-well plates instead of 1.5 ml Eppendorf tubes were used 

sometimes for a high throughput labeling.  For washing steps, cells in each well of the 

plate were spun down by centrifugation of the plate at 4 °C, 3000 × g for 5 min and 

washed with more than 200 µl ice cold PBS + 1% BSA at least twice.  In the final step, 

cells were resuspended in 150–300 µl PBS + 1% BSA for flow cytometric analysis.  DR-

ratio (using Equation 3-2) was then calculated for each co-expressing yeast strain and 

normalized by wild type (FLU peptide) for quantitatively determining the relative 

binding of MHC-II to different peptide variants on the surface of yeast. 

4.2.3.  Construction of peptide library 

An oligonucleotide mixture W124 (5’–TGGTGGTGGTTCTGCTAGCNNSNNSNN 

SNNSNNSNNSNNSNNSNNSNNSNNSNNSNNSNNSNNSGGAGGTGGACCCGGG

AAGCCTATAC, PAGE purified; IDT) with 15 degenerate NNS codons was designed 

for generating a library of 15 amino-acid-long random peptide sequences.  Another two 

primers W123 (5’–CGCTCTGCAGGCTAGTGGTGGTGGTGGTTCTGGTGGTGGTG 
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GTTCTGGTGGTGGTGGTTCTGCTAGC) and W125 (5’–TTGGCATGCTTAAGTAG 

AATCGAGACCGAGGAGTGGATTTGGTATAGGCTTCCCGGGTCC) allowed 

amplification and extension of the degenerate oligonucleotides by PCR such that both 

ends had at least 50 base pairs (bps) sequence homologous to the linear backbone vector, 

separately prepared by digesting ptFLUD with NheI and XmaI.  Both the PCR generated 

insert and the open backbone vector were prepared at a large scale and concentrated by 

Microcon YM-10 cartridges (Millipore, Billerica, MA) before the final purification by 

agarose gel electrophoresis.  Purified DNAs were precipitated using Pellet Paint Co-

Precipitant kit (Novagen) following the manufacturer’s instructions after estimating the 

concentration by absorption at 260 nm.  Approximately 2.25 µg degenerated gene inserts 

and 1.5 µg linear vectors were mixed in 2 µl of sterile nuclease-free water and 

transformed into 100 µl freshly made electro-competent cells (EBY100 previously 

transformed with ptsDR1) via two separate eletroporation reactions.  Transformants 

were recovered from the two cuvettes (Fisher) and transferred into 80 ml SD-SCAA 

liquid medium for construction of a yeast library co-expressing randomized peptides and 

HLA-DR1.  Samples of the yeast culture were plated at different dilutions on SD-SCAA 

agar plates for estimation of peptide library size (number of distinct transformants), after 

which the culture was incubated at 30 °C to enrich real transformants.  Once the library 

size was determined, the grown up culture (OD600~7.0) was passaged at least twice in 

50–150 ml fresh SD-SCAA medium to eliminate non-transformants.  During each 

passage, number of cells transferred to fresh medium was at least 10 fold larger than the 

library size to maintain the diversity.  A separate electroporation reaction was performed 

by transforming only 0.75 µg vector but no insert into 50 µl competent cells, which were 
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plated at different dilutions as well for estimation of background caused by non-

linearized vector transformants. 

4.2.4.  Library screening and FACS sorting  

After non-transformants being diluted away, the combinatorial library of yeast 

transformants bearing both random peptide sequence-expressing plasmid and ptsDR1 

were prepared under the optimal condition as described in a larger scale.  Briefly, library 

culture was enriched in SD-SCAA to an OD600 around 4.0 and transferred to 50 ml SG-

SCAA in a 250 ml baffled flask to initiate induction at an OD600 of 0.5 for 17–18h.  A 

scaled up double staining was performed for 1.5 × 107 cells from the yeast library using 

antibody pairs H6908/Alexa Fluor 488 – goat anti-rabbit and L243/Alexa Fluor 647 – 

goat anti-mouse at similar dilutions as suggested in the discussion of Chapter 3.  Labeled 

yeast was then sorted on a FACSVantage flow cytometer (Becton-Dickinson) with 

sorting gate set to collect double-positive cells and sorting speed set around 3,000 

events/s.  Sorted cells in citrate buffered SD-SCAA (pH 5.0, to minimize bacterial 

contamination) were enriched and prepared in an enough scale to cover the diversity for 

next round of sorting until yeast with desired phenotype  (double-positive for Alexa 

Fluor 488 and 647 signals) occupies a constant proportion of the total cell population.  

4.2.5.  Positive clone isolation and plasmid recovery 

A dilution of cell samples were spread on SD-SCAA agar plates after the fourth 

round of sorting for isolation of individual clones.  10 colonies were picked randomly 

from the plate and inoculated for growth and induction followed by labeling for flow 

cytometric analysis as described.  Plasmids in clones with the desired phenotype were 
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rescued using Zymoprep Yeast Plasmid Miniprep Kit (Zymo research, Orange, CA) and 

transformed into electro-competent DH5α for discrimination of peptide-expressing 

plasmids from ptsDR1 by E. coli colony PCR using vector-specific primer pairs 0118 / 

W126 (5’–GTACGAGCTAAAAGTACAGT).  Peptide-expressing plasmids were 

finally isolated from the right E.coli cells by normal miniprep and sequenced as 

described in section 2.2.1.  All recovered plasmids were retransformed into fresh yeast to 

verify that plasmids conferred the observed binding phenotype.  

4.3.  Results 

4.3.1.  Quantitative mapping of P1 pocket profile by saturation 

mutagenesis  

Side chain preference for anchor residues accommodated by pockets in the peptide-

binding site of MHC-II (defined as “anchor preference” or “pocket profile”) can be 

determined by amino acid saturation of selected anchor position for a target MHC-II-

specific peptide.  For instance, P1 anchor-pocket position was chosen to be further 

characterized for its anchor preference in this section.  Tyr308 at P1 anchor of FLU 

peptide was replaced by all other natural amino acids (except for Cys, which could form 

disulfide bond) using site-directed mutagenesis.  The sequence of resulting P1 variant-

expressinging plasmids ptFLUX (X refers to any single letter designation for amino 

acids) were confirmed by sequencing gene of interest portion of these plasmids. 

 Verification for expression of P1 variants on yeast surface  

Yeast expressing P1-variants only (Figure 4-2) or co-expressing P1-variants and 

HLA-DR1 (Figure 4-3) co-stained for HA and V5 epitope tags indicates that HA-tag and 
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V5-tag are always present on the surface of yeast simultaneously and the relative ratio of 

these two tags is constantly closed to 1 for all P1 variants, which is independent of HLA-

DR1-secretion.  Double-positive cell population also represented a relatively constant 

percentage of total cells for both types of stains: 60–80% for the one without expression 

of HLA-DR1 and 40–60% for the one with.  The HLA-DR1-expressing yeast cells used 

in this experiment were inoculated from relatively old plates, so the expression level of 

P1 variants was a little lower than that of strains without HLA-DR1 expressing plasmid, 

confirming previous conclusion in Chapter 3 that inoculation of older cells tended to 

result in lower detectable signals of displayed proteins.  Other independent experiments 

suggested that expression level of P1 variants has no difference for yeast expressing 

HLA-DR1 or not (data not shown). 

These results and observations convinced that mutation at P1 anchor of FLU peptide 

and introduction of HLA-DR1-expressing plasmid both have no impact on proper 

expression and display of various Aga2-P1-variant fusions by yeast.  
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Figure 4-2 Fluorescent detection of HA-tag and V5-tag simultaneously on the surface of yeast 
displaying P1 variant of FLU peptide.  The specific residue substitution at P1 anchor position of 
surface-displayed FLU peptide is indicated to the top left of each plot using the single letter designation of 
amino acids.  Alexa Fluor 488 and 647 were used for labeling HA-tag and V5-tag respectively.  Data were 
collected on BD LSR II flow cytometer.  
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Figure 4-3 Fluorescent detection of HA-tag and V5-tag simultaneously on the surface of yeast co-
expressing Aga2p-P1-variant and HLA-DR1.  The specific residue substitution at P1 anchor position of 
surface-displayed FLU peptide is indicated to the top left of each plot using the single letter designation of 
amino acids.  Alexa Fluor 488 and 647 were used for labeling HA-tag and V5-tag respectively.  Data were 
collected on BD LSR II flow cytometer.  
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   Relative binding of HLA-DR1 to P1 variants determined by yeast co-display  

Knowing the proper expression of P1 variants, yeast cells co-expressing one P1 

variant (except for Cys) and HLA-DR1 molecules were double labeled using anti-HA-

tag and anti-DR antibodies in order to detect variant-binding dependent DR signal.  A 

two-dimensional dot-pot (Figure 4-4) exhibits two separated cell populations for all 

samples, where the double-negative auto-fluorescent background occupied 

approximately 20–30% of total cell population, indicating that all P1 variants were 

displayed as expected on yeast surface.  However, some strain shows only HA-positive 

while others contain a double-positive cell population.  The double-positive population 

bearing yeast strains were displaying following P1 variants: Phe, Tyr, Trp, Met, Leu, Ile, 

Val respectively, which all contain hydrophobic side chain, consistent with the side 

chain preference of P1 pocket found elsewhere145. 

The relative peptide binding of HLA-DR1 to all these P1 variants can be further 

estimated by using the quantitative analysis proposed in the discussion of Chapter 3.  An 

average generated from four independent flow experiments (Figure 4-5) suggests that the 

peptide binding affinities follow the order Phe ≥ Tyr ≥ Trp > Met ≥ Leu ≥ Ile ≥ Val, with 

other amino acids tested yielding much weaker or no binding to DR1, in agreement with 

the peptide binding motif of DR1 determined using phage display and/or other 

methods145.  However, compared to other methods, our system is even more sensitive for 

detecting the subtle differences between all those weaker or non-binders, which would 

be especially useful for characterizing naturally existing weak interactions between 

epitopes and epitope-specific MHCs. 
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Figure 4-4 Simultaneous detection of P1-variant and HLA-DR1 on the surface of co-expressing 
yeast. Yeast Co-expressing HLA-DR1 and a peptide with the indicated P1 residue were co-stained for 
HA-tag and HLA-DR1 to determine the surface level of both peptide and HLA-DR1 and analyzed by flow 
cytometry. 



 98 

 

Figure 4-5 P1 pocket profile of HLA-DR1 analyzed by yeast co-display.  DR-ratio was calculated 
using Equation 3-2 based on flow cytometric data (Figure 4.4) of yeast co-expressing HLA-DR1 and FLU 
analogues with the indicated P1 anchor residue.  Relative binding level of HLA-DR1 to different peptide 
variants were generated by normalizing DR-ratio by the value for yeast co-displaying FLU with Tyr at P1 
and HLA-DR1, indicated as the dashed line.  Error bars represent standard error of the mean (SEM) 
determined from four independent experiments. 

The ability to discriminate the difference of peptide binding among P1 variants also 

confirms that yeast co-display is an appropriate approach for quantitatively 

characterizing peptide/MHC-II interaction.  Using similar method, determining anchor 

preference of any pockets of a selected MHC-II molecule will be straightforward.  

Theoretically, a matrix could be generated for all possible combinations of anchor 

residues allowing peptides to bind any given MHC-II protein, which will be greatly 

helpful for predicting MHC-II specific ligands. 

4.3.2.  Determination of HLA-DR1 specific ligands by screening 

peptide library 

By saturation mutagenesis at a specific anchor of peptides, information such as 

anchor reference of a specific pocket can be generated, however, the labor intensity will 

limit the output once more anchors are involved.  To generate more information about 
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the whole amino acid sequence of peptides bound by MHC-II molecules or to further 

determine peptide binding specificity, alternative approaches can be screening of yeast 

co-expressing HLA-DR1 and library of randomized peptides for DR-positive clones. 

 Construction and screening of peptide library 

Degenerate oligonucleotides encoding randomized peptides with 15 amino acids in 

length were used for amplification of mutated gene of interest cassettes [(SGGGG)3 

linker//randomized peptide//V5-tag] by PCR.  These mutated gene inserts along with 

enzymatic-linearized vector (from ptFLUD instead of ptFLU in order to minimize false 

positive caused by wild type FLU peptide) were then co-transformed into yeast strain 

bearing HLA-DR1-expressing plasmid by electroporation.  The insert and vector were 

ligated to form randomized peptide-displaying plasmids by homologous recombination 

inside yeast cells.  After several passages, yeast cells displaying millions of distinct 

peptides were selectively enriched with background or parent strains all diluted out.  

Size of the yeast library was estimated by plating a series of diluted samples of the 

library culture on agar plates.  For the first trial, the library size was designed to be 1–2 × 

106, which is amenable by FACS screening and later characterization.  Once the 

procedure was approved to be applicable, the size of yeast library can be scaled up easily 

to 108 or even 109 by increasing the concentration of insert and vector DNA and the 

number of electroporation reactions to obtain more information. 

The combinatorial peptide library was cultured and double labeled for HA-tag and 

HLA-DR1 signal using the same procedure as that for wild type co-displaying strain at a 

bigger scale, and sorted by fluorescent-activated cell sorting (FACS) on a FACSVantage 

cell sorter for four rounds.  The sorting gate was set for HA and HLA-DR1 double-
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positive cell population and the sorting stringency was increased gradually (not too 

much) every round by moving the gate toward higher fluorescence intensity.  Significant 

amount of double positive was already observed after the second around (Figure 4-6).  

Ratios of sorted cells to total cells in the four rounds are 0.6%, 5.8%, 14.8%, and 7.9% 

respectively.  The percentage of cell population within the sorting gate increased each 

round for the first three rounds and stayed constant (dropped a little due to the restrict 

stringency) after the third one, suggesting no more sorting rounds needed.  According to 

the ratio of sorted cells in each round, we can also estimate that the real number of 

distinct positive clones sorted out of peptide library with a size of 1–2 × 106 is roughly 

10–102.  

 

Figure 4-6 Fluorescent-activated cell sorting of a library of randomized peptides for HLA-DR1 
specific ligands by yeast co-display.  Wild type (yeast co-displaying FLU and HLA-DR1) was used as a 
double positive control for each round.  The original sorting gate was draw with a little relaxed stringency 
to ensure the recovery of all possible genuine HLA-DR1 binders in the library.  
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 Characterization of HLA-DR1-specific ligands extracted from yeast libray  

Samples of the sorted cells were plated on SD-SCAA agar plates to isolate individual 

clones. Ten colonies, a proper sample number representing the sorted positive strains, 

were inoculated and induced for further characterization of the interaction between 

HLA-DR1 and the displayed peptide.  The ten selected yeast clones were double labeled 

for HA-tag and HLA-DR1 and applied for flow cytometric analysis (data not shown).  

cMFI(DR) values corresponding to the amount of HLA-DR1 anchored by peptides on the 

surface of these ten clones were calculated based on the flow data (using Equation 3-1), 

and cMFI(DR) of yeast co-displaying FLU/HLA-DR1 was used for normalization (Figure 

4-7).  Seven of these ten clones display peptides with improved HLA-DR1-anchoring 

ability than FLU peptide, and only one clone shows no detectable HLA-DR1 on its 

surface.  

 

Figure 4-7 Relative HLA-DR1 amount on the surface of selected clones from yeast library co-
expressing randomized peptide sequences and HLA-DR1.  By using flow data, cMFI for DR coupled 
fluorophores was generated using Equation 3-1 for all selected clones (designated as S4DR1pep1.n, where 
n refers to clone number) and normalized by that of yeast co-displaying FLU/HLA-DR1 (dashed line). 
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Plasmid rescuing and DNA sequencing enables further analysis of these peptides.  

Plasmids were recovered from the seven positive yeast clones by yeast mini-prep, which 

normally contains two kinds of plasmids: one for displaying peptide (ptFLU based 

plasmid), the other for secreting soluble HLA-DR1 (ptsDR1 based plasmid).  To screen 

the plasmid prep and select out the one for displaying peptide, the prep was transformed 

into E. coli strain DH5α by electroporation and a portion of the transformants was 

spread on LB agar plates with ampicillin added.  Colony PCR allows discrimination of 

these two kinds of plasmids because each E. coli cell can only accommodate one 

plasmid.  It is worthy of noticing that DH5α containing peptide-expressing plasmid 

tends to grow faster than the one containing HLA-DR1-expressing plasmid, so bigger 

colonies on the plate would always be the right ones.  Plasmids encoding peptide 

sequences were then isolated from the right E. coli colonies by normal mini-prep and 

sequenced to acquire sequences of sort-out peptides (Fig 4-8).  Six of these seven clones 

gave distinct sequences while one sequence showed up twice, which suggested that the 

original ten clones represented a good sample of the whole sort-out strains. 

 

Figure 4-8 Sequences of peptide fusions displayed by sorted DR-positive clones.  The sequence starts 
from Factor Xa cleaving site (IEGR) followed by HA-tag (pink), (SGGGG)3 linker, randomized peptide 
(underlined), and V5-tag (orange). 

To verify that higher HLA-DR1 amount on yeast surface is due to peptide binding 

but not other positive effect introduced by cell sorting and to compare relative binding of 
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HLA-DR1 to these sorted peptide and FLU peptide, plasmids encoding the six distinct 

peptides were re-transformed back to yeast strain containing HLA-DR1-expressing 

plasmid and tested for the phenotype by flow cytometry again.  As a control, these 

plasmids were also transformed into parent strain EBY100 for checking false positives 

obtained by sorting yeast co-displaying library.  Strains without HLA-DR1-secretion 

will give a value close to zero for genuine HLA-DR1 binders because there is no HLA-

DR1 produced and anchored by these yeast at all, while those with HLA-DR1 

expression should generate higher DR-ratio due to their apparently stronger HLA-DR1-

binding ability than FLU as suggested from previous results (Figure 4-7).  Five out of six 

re-transformed clones show true phenotypes in agreement with expectation (Figure 4-9).  

On the contrary, one clone shows no difference between strains with and without HLA-

DR1 expressing plasmid, indicating that the DR-signal detected by flow cytometry is 

actually a false positive probably due to the interaction between displayed peptide and 

DR-labeling antibodies or fluorophores. 

The whole trial experiment suggests that, a combinatorial yeast library of 

randomized peptides with 1–2 × 106 distinct clones will yield 10–20 distinct peptide 

sequences with the capability to bind HLA-DR1, excluding 10% false positives. 
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Figure 4-9 Relative binding of HLA-DR1 to peptides sorted out of yeast library.  Plasmids encoding 
randomized peptides were recovered from selected positive clones and re-transformed into parent strain 
with (filled bar) or without (open bar) HLA-DR1-expressing plasmid.  Double labeling and flow detection 
of these transformants (data not shown) were performed for generation of DR-ratio values.  DR-ratio for 
yeast co-displaying HLA-DR1 and FLU (dashed line) was used for normalization. 

4.4.  Discussion 

In last two chapters, we have developed yeast co-display for characterizing and 

engineering peptide binding specificity of MHC-II molecules and optimized its working 

condition for quantitatively determining the interaction between peptides and MHC-II.  

In this chapter, one application of this quantitative, high throughput method has been 

explored for characterization of peptide binding specificity. 

4.4.1.  Yeast co-display can quantitatively determine pocket profiles 

The ability of defining anchor preference or pocket profile by yeast co-display has 

been proved by substituting Tyr at P1 anchor of FLU peptide with all natural amino 

acids and calculating relative binding level of P1 variants to HLA-DR1 displayed on 

corresponding yeast surface (Figure 4-5).  Specifically, expression of P1 variants on the 

surface of yeast has been demonstrated to be irrelevant to the reside substitution within 
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FLU peptide and also independent of possible binding by HLA-DR1 as well (Figure 4-2 

and 4-3). The equivalent amount of HA-tag and V5-tag detected by flow cytometry 

confirms the relatively constant display level of peptide variants and suggests a standard 

for quantitative analysis (refer to Figure 2-8, Figure 4-2 and 4-3).  Relative binding of 

HLA-DR1 to all 19 P1 variants (except for Cys) generated using flow cytometric data of 

corresponding co-displaying yeast shows perfectly agreement with the P1 pocket profile 

obtained by soluble HLA-DR1/peptide binding assay145.  Our quantitative analysis also 

shows an preferable binding order for favorable anchor residues: Phe ≥ Tyr ≥ Trp > Met 

≥ Leu ≥ Ile ≥ Val, confirming that anchor preference of P1 pocket is restricted, where 

aromatic side chains are most favorable to be accommodated followed by other larger 

hydrophobic side chains. 

Due to the relatively independent and additive nature of different pockets of HLA-

DR proteins contributing for peptide binding145, anchor preferences of other pockets of 

HLA-DR1 can be similarly defined using yeast co-display simply by saturating other 

anchor residues with all natural amino acids.  To extend this application, pocket profiles 

of other DR alleles can be determined likewise by yeast co-display, which would largely 

broaden the predictability of software such as TEPITOPE for evaluation and 

identification of DR-specific ligands. 

4.4.2.  Potential of yeast co-display for determining binding motif of 

DR-specific ligands in a high throughput manner 

Other than performing anchor preference analysis as discussed above, another 

feature of yeast co-display for generation of high throughput informative results has 
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been tested by constructing a library of peptides in an easily manipulative scale.  This 

can also be used as an alternative method for determining pocket profile or generally 

identifying binding motif of MHC-II proteins.  From this initial attempt, we can estimate 

that a combinatorial library of randomized peptides with 106 distinct yeast clones will 

yield 10–100 HLA-DR1 specific peptide sequences with 10–20% experimental errors 

introduced by false positives.  Theoretically, information of 103–104 DR1-specific 

ligands can be generated if a yeast library (with a size up to 109 as stated in Chapter 1) is 

properly designed and sorted.  Comparison of these peptide sequences will help to 

discover most correlation between peptide binding groove of HLA-DR1 molecules and 

specific peptides. 

Although only a few peptides were sorted out from the small yeast library, the 

alignment of their sequence (Figure 4-8) did exhibit some common features which are 

consistent with the binding motif determined elsewhere.  For example, first, the N-

terminal residue of all five genuine DR1 binders has a large hydrophobic side chain, 

which has the potential to serve as the putative P1 anchor for their binding to HLA-DR1.  

The whole sequence of each peptide is relatively hydrophobic due to the existence of 

more hydrophobic residues, which agrees with the truth that most DR1 pockets favor for 

accommodating hydrophobic residues59 though FLU has a Asn at P4 anchor.  However, 

the false positive also show all these features, indicating that more intensive 

characterization is needed to clarify the exact anchors for these peptides, so that binding 

motif based on these anchor preference information could be statistically determined if 

more genuine binders were sorted and characterized.  
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The work in this chapter has shown evidences of the quantitative and high through 

put features of yeast co-display on characterizing peptide-MHC-II binding.  It is 

suggested that discovery of the database for promiscuous HLA-specific ligands would 

become possible within decades. 
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Chapter 5.  Engineering HLA-DR1 by directed evolution for 

altered peptide binding specificity  

5.1.  Introduction 

Intensive study of anchor preferences or binding motifs of certain MHC-II alleles 

(e.g. results in Chapter 4) discovers their peptide-binding specificity, but the molecular 

basis and evolutionary motivation eliciting these kinds of properties remains unclear.  

Therefore approaches such as crystallography, NMR, and molecular modeling, etc., have 

been widely applied attempting to learn the rules and limitations governing the 

architecture of peptide/MHC-II complexes by isolating them from all the other 

biological constraints imposed on the naturally occurring proteins55-59, 159-165.  

Introducing mutations at interested sites of these molecules and analyzing the structure-

function relationship with the help of X-ray crystal structures or stimulated models are of 

great value for understanding the significance of specific residues to peptide binding and 

presentation69, 119, 165-167.  However, information in protein crystal structures is not 

sufficient to guide decisions for mutagenesis studies, so a high throughput screening of 

MHC-II allelic variants for altered peptide binding specificity is required to help 

narrowing down criteria important for peptide association.  A few attempts performed in 

other work suggested a potential of using classical yeast surface display to screen 

libraries of single-chain MHC-II mutants, but none of them successfully expressed wild 

type proteins or suggested useful information about mutation sites in regard of peptide 
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binding133, 168.  Therefore, a robust high throughput in vitro screening method is of great 

demand.  

In addition, screening DR-variants for altered or desired peptide binding properties 

could find application in immunotherapy and vaccine design.  For example, applying 

soluble MHC-II or its multimeric products to associate epitope peptides and present 

them to CD4+ T cells169-174 has been demonstrated to be an efficient strategy in therapy 

of autoimmune diseases46-48, 71, 175, 176 and in initiating antitumor immune responses38, but 

the restricted set of peptides that can be presented by available solubly produced MHC-II 

allelic proteins hamper widely clinical application of peptide/MHC-II complexes.  The 

possibility of genetically engineering peptide-binding site of some MHC-II protein so 

that they can specifically bind and present designed target peptide could help expand 

recently limited MHC-II presenting capability.  

Alignment of known natural selected MHC-II proteins shows that most polymorphic 

residues locate at or have their side chains involved in forming pockets and stabilizing 

peptide binding or contacting T cell receptors15 (e.g. Figure 5-8), suggesting an 

evolvability of MHC-II proteins for altered peptide specificity.  Protein Engineering via 

experimental evolution and selection imposes a possible path to select better fitness of 

MHC-II functionalities.  Yeast co-display actually represents such an high throughput 

engineering and screening method. 

Since P1 anchor-pocket region is known to be the determinant for peptide binding59, 

90, 145, the initial trial will be focused on this region.  According to the pocket profile 

generated in Chapter 4, some P1 variants are not bound by wild type HLA-DR1.  These 

variants are proper representatives that emerge outside the restricted group of HLA-
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DR1-specific peptides.  To possibly bind these targets, specific modifications or 

mutations of HLA-DR1 need to be introduced (or in nature, we would say evolved).  

Therefore, a combinatorial library of HLA-DR1 mutants will be constructed using yeast 

co-display system and screened for positive alones regaining P1 variant binding ability.  

Based on the structural and polymorphic information of HLA-DR1 in complex with 

FLU peptide, mutation sites will be intensively evaluated within the P1 pocket of the 

peptide-binding site, where residues are mainly involved in peptide association. 

In this chapter, we will first show a laboratory strategy for in vitro engineering HLA-

DR1 protein for altered peptide association properties by construction and screening two 

generations of co-displaying yeast libraries, and then discuss the possible evolutionary 

significance of polymorphic peptide binding regions where essential substitutions could 

take place in the lab or in the nature. 

5.2.  Materials and Methods 

5.2.1.  Construction of HLA-DR1 mutants library in yeast 

The GAL1-10 promoter flanked by fragments of DRA*0101 and DRB1*010101 

genes encoding the α1 and β1 domains, respectively, was amplified from plasmid 

ptsDR1 via 20 cycles of PCR reactions using two synthetic oligonucleotides: W90 (5’–

CGCCAGACCGTCTCCTTCTTTGCCATATCCACATGSNNSNNCTCATCACCATC

AAAGTCSNNCATAAACTCGCCTGATTGGT, PAGE purified; IDT) carrying three 

NNS degenerate codons enabling saturated mutations at positions α 24, α 31, and α 32 

on α1 domain, and W93 (5TGGGTCTTTGAAGGATACACAGTCACCTTAGGCTCA 
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ACTCGCCGCTGCACSNNSNNGCTCTCSNNAACCCCGTAGTTGTGTCTGC, 

PAGE purified; IDT) carrying three NNS codons at positions β 86, β 89, and β 90.  The 

mutagenized PCR products were agarose gel purified and extended twice each by PCR 

with another two pairs of primers.  Primers for the first extension were W89 (5’–

TTTGTCCACAGCTATGTTGGCCAATGCACCTTGAGCCTCAAAGCTGGCAAAT

CGTCCAAATTCTTCAAGCCGCCAGACCGTCTCCTTCTT, PAGE purified; IDT) 

and an ultramer W92 (5’–TCCAATCTCCATTCTGGATCAGGCCTGTGGACACCAC 

CCCAGCCTTCTCTTCCTGGCCGTTCCGGAACCACCTGACTTCAATGCTGCCTG

GATAGAAACCACTCACAGAGCAGACCAGGAGGTTGTGGTGCTGCAGGGGCT

GGGTCTTTGAAGGATACAC, PAGE purified; IDT).  The second pair, W88 (5’–

GTTGGAGCGCTTTGTCATGATTTCCAGGTTGGCTTTGTCCACAGCTATGTTGG) 

and W91 (5’–CTGTTTCCAGCATCACCAGGGTCTGGAAGGTCCAATCTCCATTC 

TGGATC) added 50 bps of sequence homologous to the linearized yeast shuttle vector 

prepared by MscI/StuI enzymatic digest of ptsDR1.  Both the PCR generated insert and 

the open backbone vector were prepared at a large scale to ensure enough DNA for 

highly efficient homologous recombination and concentrated by Microcon YM-10 

cartridges (Millipore) before the final purification by agarose gel electrophoresis.  

Purified DNAs were precipitated using Pellet Paint Co-Precipitant kit (Novagen) 

following the manufacturer’s instructions after estimating the concentration by 

absorption at 260 nm.  Approximately 24–30 µg insert and 6 µg vector were mixed in 6 

µl sterile nuclease-free water and transformed into EBY100 bearing a plasmid directing 

surface display of P1-mutated FLU via six separate electroporation reactions.  

Transformants were pooled into 150 ml SD-SCAA liquid medium and aliquots were 
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plated at different dilutions on SD-SCAA agar plates for determination of library size. 

Yeast cultures were enriched at 30 °C and passaged twice by transferring at least 109 

cells into 250 ml fresh SD-SCAA medium to dilute background cells and maintain the 

HLA-DR1 mutant library diversity.  A separate reaction of electroporation by 

transforming only 1µg vector but no insert into competent cells served as the 

background control. 

5.2.2.  FACS Sorting for Library of HLA-DR1 mutants 

Culturing, labeling and screening of HLA-DR1 mutants’ library were similar to 

methods described in Chapter 4 section 4.2.4, except:  1) The primary/secondary 

labeling reagent pair: Biotinylated L243 (BD Biosciences) or Biotinylated LB3.1 / Alexa 

Fluor 647 – streptavidin (Invitrogen), instead of L243 / Alexa Fluor 647 – goat anti-

mouse antibody, were used for labeling HLA-DR1 when performing cell sorting for Val- 

and P1-Ala-binding HLA-DR1 mutant libraries in some rounds, which provided no 

impact on phenotype detection and positive recovery at all; 2) In the first round, 

approximately 108 cells were examined using enrich mode with an event rate of 5,000–

10,000 s-1 to recover as many positive cells as possible. 

5.2.3.  DNA shuffling and backcrossed library screening 

Yeast cells recovered after the fourth round of sorting were enriched in SD-SCAA 

and applied directly for yeast miniprep using Zymoprep Yeast Plasmid Miniprep Kit.  

Plasmids isolated from the culture were used as template for PCR amplification of 

mutagenic gene inserts encoding cassettes ((DRα(1–61)//GAL1-10//DR1β(1–146)) by 

primers W88 and W91.  At the same time wild type gene inserts were cloned from 
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ptsDR1 by similar PCR reactions using primer pairs: W88/W91, W120 (5’–

GGAGGTACATTGGTGATCG) / W121 (5’–CAGGTGTAAACCTCTCCAC) or just 

0117 (5’–GTTACATCTACACTGTTGTTAT), products of which had a little different 

lengths but all cover the whole mutated cassette sequence.  After concentration and gel 

purification, 0.5 mg mutant and 2.5 mg wild type DNA were mixed in 100 µl of Buffer 

A (1 mM MgCl2, 50 mM Tris-HCl pH7.4) in an Eppendorf tube and degraded by 

quickly adding 1.5 U DNase I (10 U/µl, Thermo Scientific, Pierce, Rockford, IL) and 

gently shaking the tube for 14–18 min at room temperature, after which the DNase I 

was inactivated immediately by incubating the tube at 90 °C for at least 10 min.  The 

degraded DNA fragments were mostly shorter than 250 bps as confirmed by 2% 

Agarose (Invitrogen) gel electrophoresis.  0.05 U/µl PfuUltra high fidelity DNA 

polymerase (2.5 U/µl, Stratagene) in a 25 µl primerless PCR reaction [programmed as 

(96 °C, 3 min) for 1 cycle, (94 °C, 1 min, 55 °C, 1 min, 72 °C, 1 min 40 s + 5 s/ cycle 

gradient) for 40 cycles, (72 °C, 10 min) for 1 cycle, 4 °C to infinity] allowed 5 ng/µl gel 

purified DNA fragments to reassemble into new gene cassettes with the original length 

but different combination of mutations.  Another gene piece encoding cassette GAL1-10 

amplified from the wild type ptsDR1 was also added in the primerless PCR mixture to 

decrease the mutation carry-over within the promoter region.  4 µl raw primerless PCR 

products were diluted 50 fold in a modified PCR mixture containing primer pairs 

W88/W91 or W120/W121, 1× ThermolPol Reaction buffer (NEB) and two kinds of 

polymerases: 0.05 U/µl PfuUltra and 0.05–0.1 U/µl Taq (5 U/µl, NEB) for amplification 

of the right shuffled gene cassettes by 20 cycles of reactions.  The shuffled DNA was 
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confirmed by 1% gel electrophoresis and purified using the Wizard Cleanup Kit 

(Promega). 

4–5 µg shuffled insert DNA’s along with 0.8–0.9 µg vector (MscI/StuI double cut 

ptsDR1, same as the one used in section 5.2.1) were transformed into 100 µl freshly 

made competent cells (EBY100 containing a P1-variant-expressing plasmid) via 2 

electroporation reactions.  Transformants in both cuvettes were transferred into 50 ml 

SD-SCAA to construct the backcrossed library of HLA-DR1 mutants.  Culturing and 

labeling of this library was the same as described in Chapter 4 section 4.2.3 and 4.2.4.  

Backcrossed libraries were only sorted for one round at normal mode on FACSVantage.  

5.2.4.  Positive clone isolation and characterization 

The isolation of positive clones and recovery of corresponding plasmids were carried 

out in a similar manner as described in Chapter 4 section 4.2.5, with clone numbers 

varied.  E. coli transformation was used again as mentioned previously but followed by 

Colony PCR with [DRα(1–61)//GAL1-10//DR1β(1–146)] expression cassette-specific 

primers W7 (5’–AAGGATACACAGTCACCTTAGGCTCA) and W10 (5’–

AACTCGGCCTGGATGATCACAT) for discriminating HLA-DR1 mutant-expressing 

plasmids from P1-variant-expressing plasmids in the yeast miniprep mixture.  Recovered 

plasmids were retransformed into EBY100 by electroporation for false positive 

evaluation and resulting transformants were subsequently transformed with ptFLUX for 

P1 anchor preference analysis as described in Chapter 4 section 4.2.2. 
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5.3.  Results 

Different from the peptide library constructed in Chapter 4, HLA-DR1 mutant 

library results in non-directly tethered protein variants outside yeast cells, where possible 

self-neighbor interchange raises certain issues.  It has already been demonstrated that 

HLA-DR1 molecules secreted and anchored by FLU peptide on the surface of yeast are 

rather self-specific than intercellular switchable, indicating that in the library each yeast 

will mainly present HLA-DR1 mutants secreted by its own via P1-variant-anchorage.  

This genotype-phenotype linkage will greatly favor for yeast library screening and DR 

positive clone recovery by flow cytometry or FACS sorting.  

5.3.1.  Construction and screening of HLA-DR1 mutant library 

In order to edit HLA-DR1 molecules for altered peptide-binding specificity, 

nonspecific peptides will be set up as targets and a combinatorial library of HLA-DR1 

mutants need to be screened against these target peptides for sorting of target-binding 

mutants.  From results described in Chapter 4, yeast co-display system has already 

discovered some P1 variants of FLU peptide showing lower or no binding ability to wild 

type HLA-DR1 proteins (Figure 4-5), which can be used as proper target peptides for 

screening HLA-DR1 mutant-containing yeast library.  Herein, initial trial was taken 

placed by selecting three representative peptides: 1) P1-Val (PKVVKQNTLKLAT) – 

weak binder with hydrophobic side chain at P1 anchor; 2) P1-Ala 

(PKAVKQNTLKLAT) – non-binder with hydrophobic side chain at P1; and 3) P1-Glu 

(PKEVKQNTLKLAT)  – non-binder with hydrophilic side chain at P1.  It is obvious 

that screening difficulty increases one after another for these three variants, because P1 



 116 

pocket of wild type HLA-DR1 protein favors for larger hydrophobic side chain as shown 

in Figure 4-5. 

Different purposes of protein engineering by directed evolution require different 

criteria for designing and screening library of protein mutants.  In this trial, we are 

testing the possibility of altering minimum residues of HLA-DR1 molecules so that only 

the peptide binding specificity will be modified but not other properties or function.  

Accordingly, criteria for construction HLA-DR1 mutants-secreting library include: 1) 

mutations should be focused within regions related to peptide-binding site, e.g., pockets, 

which specially serve as functional group for peptide recognition and association; 2) 

mutations should not greatly affect structural stability of HLA-DR1 protein, e.g., 

disulfide bonds, non-covalent interactions; 3) mutations should not inhibit peptide 

presenting ability of HLA-DR1 mutants to T cell receptor, so that the HLA-DR1 mutant 

remains a potential for immunotherapeutic application; 4) mutations should not 

influence other functional regions of HLA-DR1 molecules, e.g., CD4 reactive region, 

DM binding region.  Based on the crystal structure of HLA-DR1 in complex with FLU 

peptide59, residues chosen to be saturated to all natural amino acids are Phe α24, Ile α31, 

Phe α32, Gly β86, Phe β89, Thr β90, all located around P1 pocket of the binding site 

containing at least one atom within 5 Å of at least on atom of P1 anchor residue 

(Tyr308) of FLU peptide (Figure 5-1).  All these residues were closed to the floor of 

peptide binding groove, where is far from the TCR accessible peptide-presenting surface 

as well as HLA-DR1 heterodimer-associating interface. 

Three pairs of nested primers were used to amplify mutagenic PCR product encoding 

expression cassette [DRα(1–61)//GAL1-10//DR1β(1–146)] bearing the six designed 
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mutation sites via 60 reaction cycles totally.  More PCR cycles actually provide 

undersigned random mutations within the insert gene cassette, which might help 

stabilize folding of HLA-DR1 mutants interfered by the six modified residues and 

provide more structure-function linkage related to peptide binding. 

 

 

Figure 5-1 P1 pocket in peptide binding site of HLA-DR1.  A. Top view of P1 pocket formed by HLA-
DR1 residues surrounding P1 anchor (red sphere) of FLU peptide.  B. side view of how P1 pocket holds 
the side chain of P1 anchor residue, Tyr308.  C. Residues in P1 pocket have at least one atom within 5 Å 
of at least on atom of Tyr. 

Mutated gene cassette mixture and cut vector were concentrated and co-transformed 

into yeast strain expressing P1-Val, P1-Ala, or P1-Glu peptides to construct three HLA-

DR1 mutant-secreting yeast libraries for sorting P1-variant-binding HLA-DR1 mutants: 

P1-Val-bing mutants, P1-Ala-bing mutants, or P1-Glu-bing mutants.  Homologous 
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recombination of insert and vector DNA took place inside yeast cell to form a HLA-DR1 

mutant-expressing plasmid, millions of which were then selectively enriched after 

several passages in minimal growth medium.  Plating of diluted samples from each 

library suggested an estimation of their sizes: 3 × 107 (P1-Val), 6 × 107 (P1-Ala), and 2 × 

107 (P1-Glu).  Size of background determined by transformants with vector only is three 

orders of magnitude less.  Consequently, each library constructed includes almost all 

combinations of 20 natural amino acids in the six selected positions, which is supposed 

to be 206.  

The three combinatorial yeast libraries were cultured and double labeled for HA and 

DR signal using the same procedure as that for wild type co-displaying strain at a bigger 

scale, and sorted by FACS on a FACSVantage cell sorter for four rounds.  Sorting gates 

were all set for HA and DR double positive population with variations in each round.  

Enrichment mode and relaxed stringency were set up for the first round to collect as 

many positive clones as possible.  Normal mode and a little more stringent sorting were 

used for the rest rounds.  Ratios of sorted cells to total cells in each round (Table 5-1) 

suggest that roughly 103, 102, and 10–102 distinct positive clones were sorted out of P1-

Val, P1-Ala, and P1-Glu -displaying yeast libraries, respectively.  It is also worthwhile 

noticing that the sorting of P1-Val-displaying library is relatively easier than the other 

two as suggested by the percentage in the third round of sorting, wherein significant 

numbers of positive clones had already been screened out for P1-Val-displaying. 
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Table 5-1 Ratios of sorted cells to total cells after each round of sorting. 

Libraries 
Sorting rounds 

P1-Val-displaying P1-Ala-displaying P1-Glu-displaying 

1 2.2% 5.1% 0.5% 

2 0.6% 0.5% 0.3% 

3 9.1% 0.3% 1.1% 

4 21.6% 22.2% ND 
ND, not determined. 

5.3.2.  Characterization of positive clones containing target HLA-DR1 

mutants     

After the fourth round of sorting, samples of sorted clones from each of the three 

libraries were plated on agar plates.  Individual colonies were randomly selected and 

inoculated for induction and further characterization.  Number of colonies picked for P1-

Val, P1-Ala, and P1-Glu -displaying libraries are ten, ten, and eighteen respectively.  

Flow analysis of these yeast clones (data not shown) indicated most of them carrying the 

phenotype as sorted, except for some from P1-Glu-displaying library.  Additionally, the 

detectable DR-positive signal indicates that mutations within these sorted HLA-DR1 

mutants have no impact on the binding and coupling of DR-specific mAb L243.  

cMFI(DR) representing the amount of HLA-DR1 mutants anchored by P1 variants on the 

surface of these clones were calculated (using Equation 3-1), and normalized by wild 

type (Figure 5-2).  Most HLA-DR1 mutants show improved corresponding P1-variant-

binding ability than wild type FLU peptide, and it is easier to find out mutants with 

higher binding affinity to weak binder (P1-Val, Figure 5-2A) than non-binder (P1-Ala or 

P1-Glu, Figure 5-2B or C).  In addition, not all clones derived from the P1-Glu-diplaying 
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library exhibit detectable HLA-DR1 molecules (e.g., clone S4E1.10 in Figure 5-2C) or 

display HLA-DR1 with improved binding affinity (e.g. clone S4E1.1, S4E1.16 and 

S4E1.17 in Figure 5-2C), again indicating that the hydrophilic side chain is not as 

favorable as hydrophobic ones in P1 pocket even with designed residue substitutions.  
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Figure 5-2 Relative HLA-DR1 amount on the surface of selected positive clones co-displaying HLA-
DR1 mutants and target P1 variant: A. P1-Val, B. P1-Ala, or C. P1-Glu.  The wild-type-normalized 
cMFI value representing relative HLA-DR1 amount was generated using flow data for selected clones 
(designated as S4X1.n, where X refers to A. V, B. A, or C. E, and n refers to clone numbers) from 
corresponding HLA-DR1 mutant libraries.  The dashed line indicated cMFI value of yeast co-displaying 
wild type HLA-DR1 and FLU peptide. 
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In order to find out more sequence-structure-function related information, plasmids 

were rescued from selected positive yeast clones by yeast mini-prep.  As mentioned in 

Chapter 4, the prep is a mixture of two kinds of plasmids, which can be distinguished by 

screening of E. coli transformants on LB agar plates.  This time, the plate was incubated 

at 37 °C a little longer allowing the smaller colonies to grow big enough for colony PCR 

and inoculation.  E. coli mini-prep of grown-up culture was performed to isolate the ones 

containing HLA-DR1 mutant-expressing plasmid, which can be used as template for 

DNA sequencing.  However, the yield of these plasmids was sometimes not high enough 

for sequencing; alternatively, gene cassettes encoding mutated regions of HLA-DR1 

mutants were amplified from yeast mini-prep or E. coli mini-prep by PCR, and then 

cleaned up by electrophoresis gel extraction and purification before DNA sequencing. 

Sequences of selected HLA-DR1 mutant clones obtained by DNA sequencing (Table 

5-2) suggest that other than the six selected mutation sites, random mutations do exist 

within the PCR amplified gene cassette.  The observation that all P1-Val and P1-Ala-

binding mutants are different from each other confirms that the number of distinct clones 

sorted out of these two libraries is larger than the sample number.  In contrast, the same 

clone was sequenced multiple times for P1-Glu-binding mutants, indicating a relatively 

small number of distinct clones sorted out of this library.  This is consistent with the 

estimation made by sorted cell percentage as described previously, confirming the 

difficulty for sorting P1-Glu-binding mutants.  Another interesting result is that most P1-

Val-binding and P1-Ala-binding mutants bearing an Aα61S mutation located at the 

restriction enzyme recognition site used for linearizing vector ptsDR1.  This mutation 

may be result from homologous recombination, but provide no positive effect on peptide 



 123 

binding (actually, this assumption was confirmed by sequence analysis after 

backcrossing shown in table 5-3).  Except for this mutation, consensus mutations or 

single mutation bearing mutants are seldom observed by alignment of these sequences, 

but besides the six heavily mutated sites, α54, β11, β30, β37, β57, β81 show certain 

importance on peptide binding.  Backcrossing of these multiple-mutation sequences with 

wild type HLA-DR1 can be used to pinpoint the most essential mutations that contribute 

to the altered peptide binding capability and to derive more conclusive results. 
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Table 5-2  
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Three representative HLA-DR1 mutants, S4V1.5, S4A1.9 and S4E1.3, with the 

highest relevant P1-variant-binding ability were chosen from these three characterized 

mutant pools for P1 anchor preference analysis.  EBY100 was first transformed with the 

plasmid secreting one of these three HLA-DR1 mutants, and then transformed with one 

of 19 P1-variant-displaying plasmids ptFLUX to generate corresponding co-expressing 

strain.  All resulting strains were cultured and double labeled with H6908 and L243 for 

flow analysis as described before.  Relative binding of each mutant to any P1 variant 

(Figure 5-3) determined using Equation 3-2 followed by normalization shows 

significantly higher overall peptide binding ability of all HLA-DR1 mutants than wild 

type, which is supposed to be the result of sorting for better binding signal.  Other than 

that, P1 anchor preferences of these three HLA-DR1 mutants (Figure 5-3B~D) are all 

different from that of wild type (Figure 5-3A or Figure 4-5), indicating a possibility of 

engineering peptide binding specificity of MHC-II protein using yeast co-display by 

directed evolution.  Among these mutants, S4V1.5 and S4A1.9 still prefer to 

accommodate hydrophobic side chains in their P1 pockets; however, residues with 

smaller hydrophobic side chains tend to be more favorable because sorting was set for 

against peptide variants with smaller hydrophobic side chain (Val or Ala) at P1 anchor.  

S4E1.3 on the other hand, shows a hyper bidning promiscuity, suggesting the P1 pocket 

is no longer dominant for determining peptide-binding specificity. 

The ability of screening co-expressing yeast library by FACS for acquiring HLA-

DR1 mutants with improved peptide binding ability and altered specificity validates the 

fact that the interaction between peptide and MHC-II molecules does occur inside yeast 
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cells and the switching of MHC-II proteins among different yeast cell surface is a rare 

event or flow non-detectable in our experimental circumstance as evaluated in Chapter 2.  

 

Figure 5-3 P1 anchor preference for HLA-DR1 and its variant-binding mutants.  DR-ratio was 
calculated using Equation 3-2 based on flow cytometric data of yeast co-expressing HLA-DR1 mutant and 
one of the indicated P1-variants.  Relative binding level of A. wild type HLA-DR1, or B. P1-Val-binding 
mutant S4V1.5, or C. P1-Ala-binding mutant S4A1.9 D. P1-Glu-binding mutant S4E1.3 to indicated P1-
variant were generated by normalizing DR-ratio by the value for yeast co-displaying FLU with Tyr at P1 
and HLA-DR1 (dashed line).  Error bars represent standard error of the mean (SEM) determined from four 
independent experiments. 
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5.3.3.  Backcrossing and new library construction and screening 

Although P1-variant-binding mutants with changed peptide binding properties were 

obtained from previously constructed yeast libraries, mutations in these mutants are too 

diverse, which brings too much difficulty to structure-function analysis.  Shuffling 

mutagenized gene cassettes with extra amount of wild type provides an effective 

approach to separate these mutations and enables construction and screening of yeast 

library containing single mutation bearing mutants177, 178.  

Three plasmid mixtures were recovered from three sorted mutant pools, respectively, 

by yeast mini-prep and used as templates for amplifying mutated gene portions [DRα(1–

61)//GAL1-10//DR1β(1–146)], which carrying all mutations to be shuffled.  After gel 

purification, each of the three PCR products was mixed with five folds more 

concentrated wild type DNA and was chopped up into small fragments by DNase I.  

Primerless PCR drives these small fragments to reassemble into longer pieces DNA, 

which were then selectively amplified using specific primers to recover shuffled gene 

cassettes.  Enough shuffled insert and cut vector (same as the one used to construct 

previous three HLA-DR1 mutant libraries) were co-transformed into corresponding P1-

variant-displaying yeast strain, respectively, to construct backcrossed HLA-DR1 library 

by homologous recombination.  Combinations of all mutations after shuffling is not too 

many due to the small amount of essential mutations found in previous libraries, so the 

size of new libraries was designed to be a little smaller: 8 × 106 (P1-Val), 7 × 106 (P1-

Ala), and 1.5 × 107 (P1-Glu).  The three backcrossed libraries were sorted against the 

three P1-variants individually by FACS.  Different from previous ones, only one round 

of sorting yield significant amount of double positive clones for all three libraries. 
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5.3.4.  Characterization of positive clones of backcrossed libraries 

Spreading sorted clones on agar plates enabled isolation and characterization of 

individual colonies.  More than twenty clones were randomly picked from each of these 

three libraries for flow cytometric characterization.  Similar results were observed by 

comparing the normalized cMFI(DR) histograms generated before (Figure 5-2) and after 

DNA shuffling (Figure 5-4), suggesting a correlation between these two sets of mutants.  

Because of fewer rounds of sorting were carried out, more negative clones without 

phenotype of interest (normalized cMFI(DR)≈0) were included. 
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Figure 5-4 Relative HLA-DR1 amount on the surface of clones sorted out of wild type-backcrossed 
libraries for co-displaying of HLA-DR1 mutants and target P1 variant: A. P1-Val, B. P1-Ala, or C. 
P1-Glu.  The wild-type-normalized cMFI value representing relative HLA-DR1 amount was generated 
using flow data for selected clones (designated as S1X2.n, where X refers to A. V, B. A or C. E, and n 
refers to clone numbers) from corresponding backcrossed libraries.  The dashed line indicated cMFI value 
of yeast co-displaying wild type HLA-DR1 and FLU peptide. 
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Similarly, to obtain sequence information, plasmids were rescued from selected 

positive yeast clones by yeast mini-prep, and either used for E. coli transformation and 

plasmid isolation or used as template for amplifying PCR product for DNA sequencing.  

Comparing with previous one (Table 5-2), alignment of sequences of more HLA-DR1 

mutants from backcrossed libraries (Table 5-3) discovers less mutations or single 

mutation bearing clones with improved P1-variant-binding ability, which helps to 

determine more essential mutations, such as α22, β11, β26, β30, β37, β57,  β86.  Of 

particular interest is the phenomenon that much less mutations in α chain, including the 

three designed mutation sites, were carried over to backcrossed mutants than β chain 

from previous mutant pools, indicating neutral or negative contributions of most 

mutations in α chain, which agrees with the fact that α chain is more conserved under 

natural evolution whereas most polymorphic regions are located at β chain.  Stop codon 

observed at the end of β1 domain of some mutant (mutant S1V2.10) implies that β2 

domain may be unnecessary for peptide binding.  Same sequences can be found in all 

three mutant pools, especially for those bound by P1-Ala and P1-Glu, suggesting that 

proper sample number was chosen to acquire enough information from each pool.   
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Table 5-3 Mutations in HLA-DR1 mutants after being backcrossed with wild type. 

α chain β chain 
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Like previous characterization, seven mutants: S1V2.1, S1V2.3, S1A2.1, S1A2.10, 

S1E2.6, S1E2.16 and S1E1.18, most of which show multiple times in table 5-3, were 

chosen for P1 anchor preference analysis (Figure 5-5).  Only S1V2.3 and S1A2.10 

exhibit different P1 anchor preferences from wild type HLA-DR1, and the patterns of 

their relative binding histograms look very similar, indicating some correlation between 

these two clones. S1V2.3 is a single mutation-bearing mutant, the mutation Gα86F, 

which is also include in S1A2.10, is likely to be responsible for the changed P1 anchor 

preference.  Therefore, other mutations within S1A2.10 might just provide some effect 

on stabilizing protein folding or just neutral mutations.  In contrast with the two with 

altered peptide binding specificity, the other five selected mutants just show an 

increasing overall binding ability to all variants without changing the preference, which 

suggest that DNA shuffling and backcrossing against wild type may get rid of some 

positive contributions from rare mutations which cell sorting can not tell and recover.  

These results also tell us that fewer mutations outside a specific pocket region have the 

potential to alter anchor preference of that pocket. 
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Figure 5-5 P1 anchor preference for selected HLA-DR1 mutants from backcrossed libraries: A. P1-
Val-binding B. P1-Ala-binding and C. P1-Glu-binding.  Relative binding level of different mutants to 
FLU analogues with indicated residues at P1 anchor were determined as decribed previously.  The dashed 
line again represents the value for yeast co-displaying wild type FLU peptide and HLA-DR1. 

5.3.5.  Evaluation for false positive sorted from yeast library 

S4V1.5, S4A1.9 and S1V2.3, S1A2.10 obtained before and after DNA shuffling, 

respectively, show obvious altered P1 anchor preferences, which demonstrate the 

applicability of using yeast co-display to engineer peptide binding specificity of HLA-

DR1.  However, the observation that S4E1.3 has no binding preference to all P1 variants 

and five out of seven mutants sorted out of backcrossed libraries exhibit a similar 

increase for binding to each P1 variant, suggesting that the phenotype might due to false 
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positives, for instance, possible binding of mutagenized HLA-DR1 molecules to yeast 

surface proteins.  To evaluate this possibility, parent strain EBY100 was transformed 

with plasmids encoding these mutants and tested for HA and DR double positive signals 

without including any peptide-expressing plasmid.  Because S4V1.5, S4A1.9, S1V2.3 

and S1A2.10 have already shown no binding to several P1 variants (Figure 5-3 B and C, 

Figure 5-5A and B), there is no need to test these true positives; on the other hand, they 

can be used as controls (Figure 5-6A and B) to evaluate other ones.  Five of the other six 

mutants gave similar flow cytrometric results (Figure 5-6C~H), whereas only S1E2.18-

expressing plasmid transformed yeast shows a small DR-positive population.  It is 

interesting to notice that S1E2.16 and S1E2.18 share most mutations but Lβ26F only 

found in S1E2.18 (Table 5-3), which could be the one bringing in the false positive 

phenotype.  However, S4V1.5 containing the same mutation Lβ26F still represents a true 

positive clone, suggesting that the false positive observed for S1E2.18 is possibly due to 

an overall false positive effect added up by non-obvious ones contributed by single 

mutations.  Nonetheless, the percentage of false positive is only 10% or less, which will 

not significantly affect the accuracy of applying yeast co-display for manipulation of 

HLA-DR1 molecules. 

Along with the checking for false positives performed in chapter 4 (Figure 4-9), this 

control experiment again points out that directed evolution using the high throughput 

yeast co-display system normally provides conclusive information with 90% accuracy, 

which is statistically high enough for quantitatively evaluating characteristics of 

interaction between MHC-II proteins and various peptides. 
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Figure 5-6 Flow cytometric analysis for examination of false positive.  EBY100 transformed with one 
of these HLA-DR1 mutant-expressing plasmids was cultured under corresponding nutrient dropout 
condition and double labeled to detect both HA and DR signal.  Data was collected on Accuri C6 flow 
cytometer. 
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5.4.  Discussion 

5.4.1.  Appropriate strategy for engineering peptide binding 

specificity of MHC-II  

Following previous chapter, we have examined another more profound application of 

yeast co-display on engineering peptide binding specificity of HLA-DR1, product of a 

well-characterized MHC-II allele, in order to explore the possibility of tailoring the 

antigen presenting spectrum for MHC-II molecules evolved under laboratorial situation.  

Directed evolution strategy such as constructing and screening a combinatorial yeast 

library of tens of millions of HLA-DR1 mutants has been applied throughout this chapter 

for selecting novel binding phenotypes in a high throughput manner. 

Although HLA-DR1 mutants are secreted solubly and bound by yeast-surface-

tethered P1 variants non-covalently, no intercellular switching of these soluble 

molecules was observed, which enables recovery of the mutagenic genotype 

corresponding to screened phenotype easily.  This genotype-phenotype linkage has been 

further confirmed for clones sorted out of both the original libraries and the backcrossed 

libraries by recovering the HLA-DR1-expressing plasmid from positive clones and 

retransforming them into corresponding parent strains (for example, after transforming 

the plasmid encoding S4V1.5 back into parent strain displaying P1-Val peptide, the 

same phenotype (Figure 5-3B) was observed just as the positive clone sorted out of P1-

Val-displaying library (Figure 5-2A), so it is reliable to use FACS for screening positive 

phenotype in co-displaying yeast libraries and obtaining corresponding genotype 

information. 
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The laboratorial evolution of HLA-DR1 discussed in this chapter includes two 

generations of yeast libraries.  The original yeast libraries were constructed for screening 

HLA-DR1 mutants bearing mutation sites concentrated near P1 pockets against a DR 

non-specific P1 variant.  Sequence analysis of selected P1-variant-associated HLA-DR1 

mutants indicates that although a little more leucine’s (which should be more because it 

can be encoded by six codons) appearing among mutated residues, the whole 

mutagenesis strategy did not cause too much bias and if combining different sites, 

mutations almost include all possible amino acids (Table 5-2).  Indeed, this generation 

has already yield significant amount of mutants capable of associating with FLU variants 

used to escape the recognition of HLA-DR1 molecules and these mutants have started to 

exhibit altered peptide specificity (Figure 5-3), but most mutants contain multiple 

substitutions.  If time permitted, one could test these substitutions one by one to define 

their effects on defining peptide binding motifs and pocket profiles by making single 

mutation bearing mutants.  To accelerate the process for selection and determination of 

useful mutations, backcrossed libraries aiming for pinpointing the most essential 

substitutions within the mutagenized gene cassette were constructed and screened for 

similar phenotypes against corresponding P1-variants.  Alignment of genotypic 

sequences suggests an obvious correlation between the two generations of libraries 

(Table 5-2 and 5-3), where the backcrossed ones significantly shrink the range of 

mutation sites to regions possibly dominating the altered phenotypes.  Characterization 

of HLA-DR1 mutants extracted from selected clones also implies the additive 

contribution of each single-substitution bearing mutant (Figure 5-5) to the phenotype of 

a multi-substitution bearing mutant (Figure 5-3).  This overview clearly shows that the 
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searching strategy herein is appropriate for engineering HLA-DR1 molecules and 

discovering important sites within peptide binding groove, which will imply more 

structure-function relationship with the help of crystallographic analysis. 

5.4.2.  Common features of essential mutations in HLA-DR1 

By simply comparing the sequence alignments in Table 5-2 and Table 5-3, we found 

that mutations in β chain are more diverse while those in α chain are more conserved, 

and the number of mutations in α chain dramatically declines after backcrossing such 

that even the three designed mutation positions have no more mutations left, especially 

for P1-Val and P1-Ala-binding mutants (the case of P1-Glu-binding mutants is a little 

special and we will further discuss this in detail later).  The more conserved feature of 

DRα on defining peptide anchor preference nicely agrees with the discovery in nature 

that there is only one single extracellular domain of HLA-DRA protein known till today 

comparing with more than six hundred HLA-DRB proteins (Table 1-1).  This again 

indicates the outstanding capability of yeast co-display to reflect and mimic the natural 

evolution of MHC-II proteins.  

In contrast to the total decreased number, mutations are significantly enriched after 

backcrossing in a few sites: α22, α60, β11, β26, β30, β37, β57, β86, most of which have 

been observed in mutants binding to different P1 variants.  Other than these, 

α54 and β81 also imply certain importance as both of them show up for both P1-Val and 

P1-Ala-binding mutants in original libraries (Table 5-2).  Together with α31, α32, β89, 

β90, which are designed to be intensive mutated, almost all these essential mutation 

positions suggested by yeast co-display are either located in P1 pocket or on the floor of 
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peptide binding groove (Figure 5-7A, α31, α32, β81, β89, β90, responsible to form P1 

pocket, are not shown in this figure).  Space spanning of these residues in wild type 

HLA-DR1 suggest a direct contact or correlation between side chains of peptide anchors 

and these residues, except for α60, which is further away from the peptide-binding site 

(Figure 5-7B).  Mutation Lα60M observed in S1V2.12, S1E2.9 and S1E2.12 is actually 

coexisting with other essential mutations at sites mentioned earlier, so this site might not 

critical on its own or just a neutral mutation carried over from original libraries, so we 

will not consider it when further discussing the structure-function correlation. 
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Figure 5-7 Essential mutation sites implied by directed evolution via yeast co-display for altering 
peptide binding properties.  A. Location of these positions corresponding to HLA-DR1 structure.  B. 
Space spanning for side chains of wild type residues at these positions.  In all images, greens and purples 
represent α1 and β1 domains of HLA-DR1 or corresponding residues in either domain.  FLU peptide is 
shown as stick-connected red or yellow spheres, where reds represent anchor residues with side chain dots 
also dipicted in B.  In A and B, top view (i) and side view (ii) are both presented.  

An alignment of dozens of representative protein sequences for extracellular domain 

encoded by naturally discovered DRB alleles indicates that most polymorphic sites are 

concentrated in β1 domain, and responsible for peptide binding or TCR binding (Figure 

5-8).  All essential mutation sites (β11, β26, β30, β37, β57, β86) found in β chain 
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suggested by yeast co-display are right among these polymorphic regions, and several 

substitutions (Lβ11R, Lβ26F, Cβ30Y, Sβ37F, or even Hβ81Y) even exist in some 

genuine alleles.  Except for the relatively conserved bimorphic position β86 in P1 pocket, 

all other essential mutation sites allow various alterations (up to 8) in nature (red 

rectangles in Figure 5-8).  In addition, it seems none of these sites affect the interaction 

between MHC-II and TCR, DM or CD4 molecules.  Because mutants isolated by yeast 

co-display appear consistent with the natural evolution of MHC-II molecules, yeast co-

display seems like a potent tool for probing the molecular basis for MHC-II evolution in 

defining peptide specificity. 

 

Figure 5-8 Polymorphic sites of protein encoded by DRB alleles.  Alternative residues at variable 
positions of DRB extracellular domain (β1 and β2) are listed under corresponding position of protein 
sequence for DR1β chain (DRB1*010101) by alignment of selective mature protein sequences in each 
subgroup of DRB alleles (DRB1*010101, DRB1*030101, DRB1*040101, DRB1*0411, DRB1*070101, 
DRB1*080101, DRB1*090102, DRB1*100101, DRB1*110101, DRB1*120101, DRB1*130101, 
DRB1*140101, DRB1*150101, DRB1*160101, DRB3*01010201, DRB3*0201, DRB3*030101, 
DRB4*01010101, DRB5*010101, DRB5*0202). Putative peptide contacting residues are shaded.  
Essential mutation sites implied by directed evolution via yeast co-display are illustrated in red rectangles. 
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5.4.3.  Residues in P1 pocket defining peptide binding specificity 

The conserved feature of α chain in nature, where little or no neutral drift is 

suggested, implies that this chain is structurally or functionally intolerant to mutations; 

here, α chain mutations were isolated from the primary libraries, suggesting that 

mutations at these sites were not highly detrimental to folding, assembly or function of 

the heterodimer.  However, most mutations found at α24, α31, α32, and α54 disappear 

after backcrossing, implying that these mutations were not important for binding to the 

target peptide.  In contrast, the three intensively mutated sites on β chain almost carry 

alterations all the time, where β89, β90 permit various substitutions though a little 

hydrophobic prone after backcrossing, while β86 mainly allows hydrophobic residues 

even for accommodating P1-Glu with a negative charged side chain at P1 anchor.  After 

backcrossing, phenylalanine was greatly enriched at β86 in mutants specific for 

hydrophobic P1 variants, especially for P1-Ala (Table 5-3), which agrees perfectly with 

the fact discovered in other work that the β86 Gly-Val dimorphism plays an substantial 

role in affecting peptide binding69, 119, 152, 179-181.  This enrichment results in a single 

mutation-bearing mutant S1V2.3 (Gβ86F), which exhibits a significant different side 

chain preference for its P1 pocket (Figure 5-5A) and tends to lose binding ability to 

aromatic side chain and bigger side chain bearing residues including the wild type Tyr in 

comparison with the P1 pocket profile of wild type HLA-DR1 (Figure 4-5 or Figure 5-

3A), which is also confirmed by previous characterization of a similar mutation at β8669.  

Furthermore, S4V1.5 (Figure 5-3B), S4A1.9 (Figure 5-3C) and S1A2.10 (Figure 5-5B) 

bearing the mutation Gβ86F are all exhibiting a similar P1 pocket profile to S1V2.3 
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though minor differences exist among them, probably resulting from the non-shared 

mutations in these clones. 

As shown previously, in naturally-occurring DRB proteins, the bimorphic site β86 

has either Gly or Val (Figure 5-8), whose small hydrophobic side chains allow P1 pocket 

to have enough space for aromatic or bigger hydrophobic side chain to fit in (Figure 5-

3A, 5-7B).  This also explains why Val and Ala at P1 anchor of FLU analogues are less 

favored, and mutants specific for them need longer side chain substitutions in order to 

occupy the space and provide enough attractive force to hold small anchors (e.g. Figure 

5-9A).  These characterizations all support the fact that β86 is one of the dominant 

residues within P1 pocket of HLA-DR1 for defining the pocket profile, or even suggest a 

possible role of β86 in defining the significantly different peptide binding specificity of 

another MHC-II allele, HLA-DQ, whose product has a hydrophilic β86 residue22, 58, 122, 

154, 155.  Substitutions for other residues forming P1 pocket such as Hβ81Y, Fb89L, 

Fbb89A, or even Fa32L, Fα54L found in conserved chain in Table 5-2, seem not 

necessary but could presumably donate positive contribution to maintain the 

hydophilicity and to stabilize P1 pocket by saving more space for the Phe-substitution at 

β86  (e.g. comparing Figure 5-9B to Figure 5-7B). 
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Figure 5-9 Selected examples of substitutions at essential mutation sites within P1 anchor-pocket 
region dominating or affecting P1 Pocket profile.  A. Gβ86F/P1-Val. B. Fα54L/P1-Val.  Same as 
shown previously, greens and purples represent essential residues in α1 and β1 domains of HLA-DR1 
respectively, presumably responsible for peptide binding.  P1 variants of FLU peptide is illustrated as 
spheres either in red for anchors or yellow otherwise, connected by yellowish sticks with P1 anchor 
residue replaced by corresponding variant (carbon/hydrogen, nitrogen and oxygen atoms are shown in 
white, blue and red respectively).  Space spanning for side chains of all residues at essential mutation sites 
and all peptide anchors are indicated using dots.  Cyan suggests specific mutations at different sites in 
HLA-DR1 mutants.  Mutagenesis was performed by using the software PyMOL.  Briefly, wild type amino 
acids was replaced by mutated residues arbitrarily first, and then one of the two conformations predicted 
by PyMOL was selected to simply illustrate the putative side chain space spanning. 

However, due to hydrophobic nature of P1 pocket59, 145, hydrophilic or charged side 

chains such as Glu are much less favored such that replacing Gly itself at β86 by Ile, Leu, 

Phe, or Thr would not be enough any more, alterations around P1 pocket especially in 

the conserved chain become inevitable.  Few phenotypic positive clones sorted out of 

original P1-Glu-displaying library also confirm the difficulty for HLA-DR1 mutants to 

accommodate P1-Glu peptide.  Although most mutations in mutants bound by P1-Glu 

are only shown once in table 5-2 and possibly neutral, Fα31L, Fα32S, Fα32L Lα45H, 

Rα50G, Fα51Y are all located at P1 area.  Along with Gβ86T, Fβ89Q, Tβ90M, all these 

putative alterations in P1 pocket tend to convert the hydrophilicity of P1 pocket, which 

potentially favor anchors such as Glu.  Therefore, DNA shuffling and backcrossing 

actually limit the carry-over of contributions from all these mutations and lead mutants 
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even harder to prefer binding to P1-Glu (Figure 5-5C).  The only example in our 

characterized clones that suggests a possibility to make Glu a preferred P1 anchor is 

S4E1.3 (Fα22V, Fα32S, Lα60M, Dβ57Y, Gβ86I, Fβ89Q, Tβ90M), which unselectively 

bind to all P1 variants with similar binding affinity (Figure 3D).  This ultra promiscuity 

implies an intermediate state from where if more alterations being introduced, resulting 

mutants could specifically prefer Glu instead of hydrophobic residues.  To compromise, 

dominating nature of P1 pocket on peptide specificity may be dramatically disturbed and 

importance of other pockets possibly arise, because several changes outside P1 pockets 

are observed in S4E1.3 and these changes remain after backcrossing. 

5.4.4.  Significance of essential mutations occurred outside P1 

pocket 

Clones selected from the original three libraries all contain multiple mutations (Table 

5-2), which makes structure-function relationship harder to interpret, but of particular 

interest is that random mutations outside the six designed mutation sites have been 

extensively observed throughout the whole mutagenized gene cassette [DRα(1–

61)//GAL1-10//DR1β(1–146)], especially along the β chain even considering the more 

residues included in the cassette.  A couple of these mutations were remaining in the 

cassettes as the only mutation after DNA shuffling and backcrossing against wild type 

sequence (Table 5-3), a process that theoretically would eradicate most nonessential 

substitutions.  Therefore, these sites found by sorting original libraries appear to convey 

significant influence on peptide binding even they are not directly engaged in association 

with P1 anchor.  Based on the screening and characterization of phenotypic positive 
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clones selected from two generations of yeast libraries, residues outside P1 pocket that 

might introduce important contribution to P1 variant associations include α22, β11, β26, 

β30, β37, β57 (Figure 5-7).  Mutations occurring in these sites are more or less favorable 

for accommodation of other anchor residues on peptide regardless of alteration in P1 

anchor-pocket region.  For example, Lβ11R, Cβ30Y (not single mutation, but clearly 

important), Sβ37F and Dβ57Y found in S1A2.1, S1V2.4, S1V2.1 and S1E2.6 actually 

exhibit larger space occupancy (Figure 5-10A~D) than wild type (Figure 5-7B), which 

could provide stronger molecular interaction between the mutated residues and P6, P7, 

P9 anchors respectively.  Other than that, even though Fα22V and Lβ26F are not 

observed as single mutations, their contributions for peptide binding can be judged by 

comparing S1E 2.21 or S1E2.18 versus S1E2.16 (Figure 5-5C).  The effect of Fα22V is 

possibly connected to stabilization of P4 anchor Gln by replacing the aromatic side chain 

to smaller hydrophobic one (Figure 5-10F).  The effect of Lβ26F is not obvious due to 

the simple mutagenesis analysis by PyMOL (Figure 5-10E), but could also be due to 

some correlation with P4 anchor considering its importance in some other DR proteins 

with Phe at β26 (e.g. DR2182), though a little bit false positive was observed for S1E2.18 

(Figure 5-6H).  
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Figure 5-10 Substitution at essential mutation sites outside P1 anchor-pocket region favoring for 
accommodation of P1 variants.  A. Lβ11R/P1-Ala.  B. Cβ30Y/P1-Val.  C. Sβ37F/P1-Val.  D. 
Dβ57Y/P1-Glu.  E. Lβ26F/P1-Val.  F. Fα22V/Glu-variant.  Color illustrations are the same as previous 
figure.  Mutagenesis was performed by PyMOL in a similar manner to previous figure.  
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Relative binding assay shows HLA-DR1 mutants containing only these mutations 

rather obtain stronger overall binding ability than altering P1 anchor preference (Figure 

5-5).  Alternative explanation of this observation is that higher expression level 

(probably related to stability) instead of better peptide binding occurred due to these 

mutations, which agrees with the hypothesis proposed in other work that mutations 

Lβ11H, Lβ26F and Dβ57A are responsible for increasing the stability of a single-chain 

derivative of HLA-DR1 displayed by yeast133.  The fact that the anchor preference 

governed by P1 pocket can hardly be changed by introducing substitution outside this 

pocket confirms the dominance of P1 pocket on determining peptide binding specificity 

and the relatively independent peptide-binding nature of P1 pocket region to elsewhere.  

However, different from S1V2.1 (Sβ37F), the ability of mutants S1A2.1 and S1E2.6 

to associate with variants that are not bound by wild type HLA-DR1 suggests that 

substitutions Lβ11R and Dβ57Y occurring in P6 and P9 pockets could compensate a 

little affinity loss caused by P1 anchor alteration, such that weak- or non-binder could 

associate.  Although due to a lack of single mutation in P4 and P7 pockets we did not 

characterize whether such substitution could provide similar compensation, essential 

mutations around all these four anchors indeed have been identified for altered binding 

affinity, suggesting similar effects of all these pockets on acquiring binding ability to P1 

variants that wild type does not bind.  In addition, elsewhere studies suggest that site-

directed mutations applied at sites β11, β13, β30, β67, β70, β71, β74, β78 forming P4, 

P6, and possibly P7 pockets have impact on peptide binding by other DR alleles such as 

DR3 or DR7119, 166.  The importance of β26, β37 and β57 for P4, P9 pocket of DQ 

proteins has also been postulated for determining their specific peptide association56, 58, 
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167, 183, 184.  Therefore we postulate that the effect of any of the other four pockets is 

roughly equal on stabilization of peptide binding for DR proteins without influencing the 

binding specificity determined by P1 pocket, and the contribution for peptide binding 

from one of these four pockets can be obtained by modifying residues in others.  

5.4.5.  Evolutionary hint for MHC-II in peptide binding specificity 

Comparing with P1-Val or P1-Ala, the huge hydrophilicity change in P1-Glu peptide 

requires more residue alterations in essential positions, which are closely related to 

natural evolution of MHC-II molecules.  In humans, HLA-DQ, another subclass of 

MHC-II alleles, encode some proteins specific for binding and presenting antigenic 

peptides with Glu or Gln at P1 anchor, and these proteins have significantly different 

residues in their P1 pockets as well as other pockets22, 58, 122, 154, 155.  For example, the 

structure of HLA-DQ8 in complex with an immunodominant peptide insulin B (derived 

from insulin B chain 9-23: SHLVEALYLVCGERG, with the N-terminal Glu as P1 

anchor and C-terminal Glu as P9 anchor)58 suggests that Gluβ86, Hisα24 and Gluα31 

instead of Glyβ86, Pheα24 and Ileα31 in HLA-DR1 are responsible for forming P1 

pocket for DQ8 to hold Glu (P1) in the insulin B peptide.  Obviously, the hydrophilicity 

of P1 pocket in DQ8 is completely reversed, and P1 is demonstrated to be less important 

than some other pockets such as P4 and P9 in determining peptide binding specificity of 

DQ molecules, in agreement with our findings for mutants (e.g. S4E1.3) with relatively 

better binding to P1-Glu mentioned previously.  It is also known that protein sequences 

of DQA are not conserved at all (Table 1-1), consistent with the observation in our 

results that more alterations are involved in α chain for mutants obtaining P1-Glu 
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binding ability (Table 5-2 and 5-3).  Particularly, DQ8 has Leuβ26 and Alaβ57 at P4 and 

P9 pockets respectively responsible for accommodation of corresponding anchors Tyr 

(P4) and Glu (P9) in insulin B peptide.  Even though mutations Fα22V, Lβ26F and 

Dβ57Y occurred around P4 and P9 pockets in HLA-DR1 mutants S4E1.3, S1E2.1, 

S1E2.6, S1E2.9, S1E2.18, S1E2.21 may not contribute to P1-Glu binding the same way 

as Leuβ26 and Alaβ57 towards insulin B peptide, β26 and β57 are selected out of yeast 

library even though we did not design any of these sites for mutagenesis.  All these 

similarity between the mutations we found in mutants bound by P1-Glu peptide and the 

essential residues in DQ8 specific for Glu (P1) bearing insulin B peptide, gives us an 

obvious hint that there is a molecular motivation for evolving MHC-II by switching 

peptide binding dominancy in between different pockets to broaden peptide binding 

spectrum.  This might be the reason why MHC-II molecules have been differentiated 

into three major subtypes for recognition and presentation of various antigenic peptide 

sequences derived from different sources.  

Additionally, the result that single-mutation-bearing HLA-DR1 mutants favor for 

binding to P1-Glu is hardly found to exhibit a similar anchor preference to S4E1.3 

indicates that single mutation might only lead to a relatively moderate alteration and the 

genuine change in peptide specificity can only be obtained by combining multiple such 

moderate alterations.  This phenomenon can be observed by comparing the relatively 

lesser polymorphism among different proteins within a subtype of MHC-II to the more 

significant sequence differences between DR and DQ proteins.  
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5.4.6.  Summary of engineering HLA-DR1 for altering peptide binding 

specificity  

The peptide binding specificity of HLA-DR1 molecule is predominantly governed 

by residues forming P1 pocket, essentially the naturally bimorphic site β86, which is 

also responsible for controlling the hydrophilicity of this pocket with significant 

contributions dedicated by other residues in P1 pocket.  Residues outside P1 pocket 

region provide relatively independent and equal importance on stabilizing peptide 

association. 

To specifically associate with hydrophobic P1 variants, one hydrophobic substitution 

at β86 is presumably sufficient and those at other potentially polymorphic sites in or 

outside P1 pocket could strength the specificity of this alteration though not necessary.  

This indicates the relationship between different alleles found in DR subtype (e.g. DR1, 

DR2, DR3, DR7 as mentioned previously).  On the other hand, to specifically bind 

hydrophilic P1 variants, appropriate alterations applied to β86, conserved sites in α 

chain within P1 pocket, and essential sites around other pockets are all required for 

accumulating all necessary contributions to this specificity conversion.  To maintain 

structural stability, more residue substitutions might be needed in other non-polymorphic 

sites, as a result of which the dominant feature of P1 pocket could significant altered, 

implying a structural rationale for differentiation of different MHC-II subtypes (DR, DQ, 

etc.).  Another hypothesis is that hydrophilicity might be one critical motivation for the 

gradual switching of dominant pocket during natural selection and could possibly guide 

the experimental evolution strategies. 
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Chapter 6.  Conclusions of this thesis work and the future 

6.1.  Development of a quantitative, high throughput 

engineering platform for studying protein-protein interactions 

In this thesis work, we developed a powerful in vitro methodology – yeast co-display 

for characterizing and engineering in vivo protein-protein interaction by using a well-

characterized immune response related protein pair FLU/HLA-DR1.  It has been 

clarified that the assembly of HLA-DR1 and their baiting by target peptide mainly take 

place inside yeast via secretory pathway and dissociation on the surface is a slow process 

which will not affect discovering the direct linkage between phenotype on the surface to 

genotype inside the same yeast.  Furthermore, the surface display of HLA-DR1 is 

actually peptide-binding-dependent.  Therefore, interest phenotype of corresponding 

peptide-variants/MHC-II-mutants binding on the surface of target yeast clones recovered 

after several rounds of FACS cell sorting in a high throughput manner can be further 

analyzed quantitatively via yeast co-display. 

On one hand, peptide molecules can be manipulated either by saturating an interested 

anchor with all natural amino acids for determination of anchor preference or by 

randomizing the entire sequences for characterization of HLA-DR1 binding specificity.  

Therefore, both specific pocket profiles and general binding motif can be generated by 

yeast co-display.  On the other hand, MHC-II molecules can be modified by directed 

evolution method for altering their peptide binding specificity, which can be applied for 

designing novel proteins for immunotherapeutic purpose or for understanding molecular 
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basis of natural evolved polymorphic MHC-II proteins with the help of crystallographic 

analysis or molecular modeling.  

6.2.  Generation of peptide binding spectrum of MHC-II for 

various applications 

Importance on modification of MHC-II molecules and on identification of MHC-II 

ligands has been emphasized several times throughout this thesis.  Herein we are 

showing a map of peptide binding spectrum for HLA-DR1 and its mutants generated by 

collecting and quantitatively analyzing several yeast co-display data, which would 

provide a guidance for future mapping the database of promiscuous HLA-specific 

ligands experimentally or computationally (Figure 6-1). 

In this three-dimensional map, X-axis starts with the wild type FLU peptide followed 

by alternative P1 variants, and to a extend, more randomized peptides.  Y-axis lists 

HLA-DR1 as well as its mutants, which normally contain more substitutions following 

the axis direction.  Z-axis represents the relative binding of each peptide to each protein.  

Because libraries constructed by yeast co-display would yield false positive, a set of 

background controls for each peptide are also included at the origin of Y-axis. 

Looking at this map, first, it is easy to tell the false positive such as peptide sequence 

S4DR1pep1.6 generated by sorting randomized peptide library against wild type HLA-

DR1.  Second, anchor presences for each protein can be compared for further sequence-

structure-function relationship analysis.  For example, S1V2.3 (Gb86F) prefers smaller 

hydrophobic side chains to bigger ones in comparison with wild type HLA-DR1, and 

S1A2.1 (Lβ26F) obtains the ability to bind most non-binders of wild type HLA-DR1.  



 154 

These findings are directly related to the single substitutions within these two mutants as 

we discussed in Chapter 5.  Third, relative binding of different DR proteins to a specific 

variant can be compared, which could affect the determination of using specific protein 

to present target peptide for possible immunotherapeutic applications.  Fourth, 

interaction between DR proteins and randomized peptide sequences can be used to 

identify and compare peptide motifs of each protein.  If more alterations are introduced 

into wild type FLU peptide, data can be added in between P1 variants and randomized 

peptides and more sequence-function relationship could be acquired.  If more DR 

proteins are tested for their association with different peptides, data can also be inserted 

in corresponding Y-axis.  The potential of constructing and combining peptide libraries 

with MHC-II mutant libraries using yeast co-display would accelerate the generation of 

peptide/MHC-II interaction data to fill this indefinite binding spectrum, which would be 

extremely useful for guiding us to understand peptide binding properties of MHC-II 

molecules and applying created MHC-II with defined peptide specificity for vaccine 

design or other purposes. 
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Figure 6-1 An example of peptide binding spectrum of DR proteins determined by yeast co-display. 

6.3.  Potential applications of yeast co-display 

Interaction of FLU and HLA-DR1 molecules occurring inside yeast cells better 

mimics the is in vivo scenario compared to other binding assays, but it belongs to in vitro 

engineering methods, which decrease biological complexity and concentrate on the 

interested functionality of targets.  Therefore, phenomena observed by yeast co-display 

could be subtly different from those occurring in original biological environment, where 

accessory molecules are extensively involved65.  It is suggested that the presence of 

HLA-DM is important for acceleration of weaker peptide (e.g. Ii) dissociation185 (Figure 
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1-4)  and DM reportedly functions by interacting with DR molecules from the N-

terminal side of accommodated peptides128, 186, which would provide more restraints on 

screening HLA-DR1 mutants specific for target P1 variant.  The ability to assemble 

HLA-DR in a secreted form therefore entering the secretory pathway and to co-express 

multiple plasmids simultaneously suggests a potential of this yeast system wherein DM 

could be co-expressed (e.g., with an ER retention signal) in a similar way and the 

peptide binding of DR molecules would be examined in the presence of this catalyst.  

The capability to characterize and modulate protein-protein interactions in yeast 

using co-display will also show its promising application in various ligand-receptor 

interaction studies.  For instance, in the immune system, other than peptide/MHC-II 

protein pairs, a lot of other protein pairs like antigen-antibody, peptide/MHC complex-

TCR, IFA-ICAM, and CD40-CD40L are being intensive studied these days due to their 

significant role in CD4+ T cell development and function (Figure 1-2).  It is possible to 

study the interaction between these protein pairs using yeast co-display system and to 

determine the function-structure relationship of them.  However, covalent linker in 

between anchor protein Aga2 and at least one protein of these ligand-receptor pairs has 

to be introduced most of the times, which could be a drawback in the future. 

The success of expressing two heterologous proteins encoded by three genes in yeast 

actually extends yeast expression system for engineering more structurally complicated 

molecules.  Instead of making single chain derivatives, essential immunity related 

membrane proteins such as MHCs, antibodies, and T cell receptors (TCRs), are all able 

to be displayed more natively as heterodimer on yeast surface for function studies.  
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Additionally, yeast display of a homotrimer like hemagglutinin would also become 

possible. 

Yeast co-display remains some other advantages of surface-display technology.  One 

example is the possibility of direct purification of soluble HLA-DR1.  The solubility of 

HLA-DR1 produced in this system and the freedom of its dissociation from the surface 

though a little slow make routinely purification of recombinant MHC-II from this system 

become possible.  It is demonstrated that the FLU/HLA-DR1 complex on the surface of 

yeast can be stripped off by treatment of Factor Xa (Chapter 2), so some easier 

approaches can be developed for extracting soluble HLA-DR1 or FLU/HLA-DR1 from 

yeast cells.  However, although the affect is not yet shown in our system, the high-

mannose yeast glycosylation and the low protein expression level are still major 

limitations for assembling human glycoproteins.  Engineered yeast strains with fully 

humanized glycosylation pathway187, 188 would probably help improved the performance 

of our system for producing recombinant proteins in the future.  Another advantage of 

the surface-display system is that yeast co-displaying FLU/HLA-DR1 complexes has the 

potential to stimulate T cell response by direct contact of FLU/HLA-DR1 complex and 

TCR.  This is partially proved by experiments elsewhere134.  Finally, applying yeast co-

display technology in the area of whole yeast vaccine design189, 190 would shed light on 

development of  novel immunotherapeutic strategies. 
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