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Computational Protein Design and Molecular Dynamics Simulations: A
Study of Membrane Proteins, Small Peptides and Molecular Systems

Abstract
Molecular design and modeling can provide stringent assessment of our understanding of the structure and
function of proteins. Due to the subtleness of the interactions that largely stabilize proteins, computational
methods have been particularly valuable in establishing practical, formal and physically grounded protocols to
study the structure and function of these biomolecules. Especifically, computational protein design seeks to
identify sequences that fold into a desired structure and have specific structural and functional properties
using computational methodologies. Among current techniques, an entropy-based formalism that efficiently
determines the number and composition of sequences satisfying a predefined set of constraints seems
particularly promising and powerful. Complementary to this methodology are the well-established molecular
dynamics simulation techniques that have been extensively used to study structure, function and dynamics of
biologically relevant systems. Herein different studies of systems using computational techniques to address
particular molecular problems are described. Efforts to redesign membrane proteins to generate water-soluble
variants were applied to a widely studied pentameric ligand-gated ion channel, the nicotinic acetylchoilne
receptor (nAChR). NMR structures and binding studies demostrated the robustness and applicability of the
computational design approach. Toward the creation of water-soluble variants of a G protein–coupled
receptor (GPCR), comparative modeling and docking calculations were used to investigate the structure of
the human μ opioid receptor and presented in light of previous mutagenesis studies of structure and agonist-
induced activation. Candidate peptides for possible therapeutic agents were computationally analyzed.
Peptide design, loop modeling and MD simulations were applied to investigate the stromal cell-derived
factor-1&a; (SDF-1&a;). SDF-1&a; displays promising therapeutic benefits to treat blood-supply related
heart disease and elicit growth of microvasculature. Simplified analogs of SDF-1&a; exhibit enhanced
therapeutic properties in cell-based assays. MD simulations provide insights about the molecular features of
this enhancement. One simplified peptide offers a potentially clinically translatable neovasculogenic therapy.
Lastly, MD simulations were utilized to analyze a molecule with hindered internal rotors, a tribenzylamine
hemicryptophane. The molecule was characterized by different experimental and computational techniques.
The structural and dynamic features of the hemicryptophane molecule make it an attractive starting point for
controlling internal rotation of aromatic rings within molecular systems.
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ABSTRACT 

 

COMPUTATIONAL PROTEIN DESIGN AND MOLECULAR DYNAMICS SIMULATIONS: A 

STUDY OF MEMBRANE PROTEINS, SMALL PEPTIDES AND MOLECULAR SYSTEMS 

 

José Manuel Pérez Aguilar 

 

Jeffery G. Saven 

 

Molecular design and modeling can provide stringent assessment of our understanding of the 

structure and function of proteins. Due to the subtleness of the interactions that largely 

stabilize proteins, computational methods have been particularly valuable in establishing 

practical, formal and physically grounded protocols to study the structure and function of these 

biomolecules. Especifically, computational protein design seeks to identify sequences that fold 

into a desired structure and have specific structural and functional properties using 

computational methodologies. Among current techniques, an entropy-based formalism that 

efficiently determines the number and composition of sequences satisfying a predefined set of 

constraints seems particularly promising and powerful. Complementary to this methodology 

are the well-established molecular dynamics simulation techniques that have been extensively 

used to study structure, function and dynamics of biologically relevant systems. Herein 

different studies of systems using computational techniques to address particular molecular 

problems are described. Efforts to redesign membrane proteins to generate water-soluble 

variants were applied to a widely studied pentameric ligand-gated ion channel, the nicotinic 

acetylchoilne receptor (nAChR). NMR structures and binding studies demostrated the 

robustness and applicability of the computational design approach. Toward the creation of 

water-soluble variants of a G protein�coupled receptor (GPCR), comparative modeling and 
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docking calculations were used to investigate the structure of the human � opioid receptor and 

presented in light of previous mutagenesis studies of structure and agonist-induced activation. 

Candidate peptides for possible therapeutic agents were computationally analyzed. Peptide 

design, loop modeling and MD simulations were applied to investigate the stromal cell–derived 

factor–1� (SDF–1�). SDF–1� displays promising therapeutic benefits to treat blood-supply 

related heart disease and elicit growth of microvasculature. Simplified analogs of SDF–1� 

exhibit enhanced therapeutic properties in cell-based assays. MD simulations provide insights 

about the molecular features of this enhancement. One simplified peptide offers a potentially 

clinically translatable neovasculogenic therapy. Lastly, MD simulations were utilized to analyze 

a molecule with hindered internal rotors, a tribenzylamine hemicryptophane. The molecule 

was characterized by different experimental and computational techniques. The structural and 

dynamic features of the hemicryptophane molecule make it an attractive starting point for 

controlling internal rotation of aromatic rings within molecular systems.   
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1 Introduction 

 

Proteins play crucial roles in the cellular physiology of a living organism with a wide 

diversity of biological functions, including storage and transport of different particles, catalysis 

(enzymes), transmission of information (hormones), control of flux of molecules across the 

membrane, immune responses, control of gene expression, and structural support [1]. 

To have biological activity, proteins must adopt specific folded three-dimensional 

conformations, also denominated native conformations. The three-dimensional structure is 

determined by the linear sequence of amino acids in the protein backbone [2]. The description 

of the spontaneous formation of a unique highly ordered three-dimensional structure from the 

complete unfolded polypeptide chain comformations has been denominated the protein folding 

problem [3].  

Complementary to the protein folding problem is the approach of finding an 

“appropriate” set of amino acid sequences that fold into a desired target structure in a similar 

way as a native conformation with the lowest accessible free energy. Furthermore, such 

“appropriate” sequences will not simultaneously fold to alternative competing conformations of 

similar free energy [4,5]. In other words, instead of starting with a specific amino acid 

sequence and then predict the folded structure of the native conformations, the protein design 

paradigm starts with a conformation of the backbone and then selects amino acid sequences 

that stabilize the native three-dimensional conformation. This inverse approach, sometimes 

denominated inverse protein folding problem [4,5], is the purpose of the current efforts of the 

protein design field [6-9].  
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1.1 Computational Protein Design  

Early protein design efforts involved the design of small proteins using empirical 

knowledge obtained from structural databases and/or biochemical experiments. Often a 

hierarchical approach was utilized, where sequences with likelihood to form particular regular 

local substructures were assembled with an eye toward a specific tertiary structure [7,8]. The 

results yielded impressive findings, but very often, protein-like systems with structural and 

themodynamic properties less well defined than those of natural proteins, were obtained.  

The interactions within a structured protein can have many levels of complexity 

making protein design approaches difficult or impractical, particularly given the large numbers 

of possible sequences. Proteins contain tens to thousands of amino acid residues, and even 

for a single sequence, many conformations of the backbone are plausible. Furthermore, just 

for a single backbone structure, an exponentially large numbers of side chain conformations 

are possible. In addition, the native conformations of proteins are largely stabilized by 

noncovalent forces: van der Waals, hydrophobic, electrostatic, and hydrogen bond 

interactions.  Given the subtlety of these interactions, reliable assessments of stability with 

respect to unfolded states can be difficult to estimate. Finally, the large numbers of potential 

protein sequences can lead to combinatorial complexity in protein design, e.g., using the 20 

naturally occurring amino acids, a 100-residue protein has more than 10130 possible 

sequences. 

To address and overcome many of these difficulties, computational methods have 

been developed for the design of proteins.  Most methods use as input a target structure, 

which can be a naturally ocurring one or one created de novo via computational modeling. To 

quantify interations within a given conformation and assess the compatibility between potential 

sequences and a selected structure, energy-based objective functions are used. The methods 

can then identify individual sequences or properties of sequences from a large ensemble likely 

to possess desirable structural and functional properties. Optimization-based methods for 
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identifying such low-energy sequences utilize Monte Carlo simulated annealing, dead-end 

elimination, and genetic algorithms [9-12]. Alternatively, probabilistic methods characterize an 

ensemble of sequences and use ideas derived from statistical thermodynamics to estimate the 

site-specific probabilities of the amino acids at variable sites within the protein [12-14].    

In this regard a statistical entropy-based formalism has been developed to estimate a 

set of amino acid probabilities for a specific backbone structure. This theory uses concepts 

from statistical thermodynamics to calculate the site-specific probability profiles compatibles 

with the given backbone structure. An effective entropy function quantifies the sequence 

variability consistent with the target structure. The most probable set of site-specific 

probabilities is determined by maximazing this effective entropy subject to centain constraints 

[15-17].  

 

1.2 Molecular Dynamics Simulations, Comparative Modeling and Docking Calculations  

Molecular dynamics (MD) simulations have been extensively used to estimate 

equilibrium and dynamic properties of proteins [18-21]. MD simulation is the computational 

approach to statistical mechanics and the methodology utilized is simple in principle [22]. This 

approach simulates motions of the system in consideration under the influence of a specific 

force field. Configurations in time are generated by integration of classical equations of motion 

[22]. By following the dynamics of a molecular system in space and in time, estimations of 

equilibrium and dynamic properties of the system can be obtained. Such information 

concerning structural and dynamic properties includes molecular geometries and energies, 

atomic fluctuations, rates of configurational changes, free energies, and concerted global 

motions [18-21,23].  

In the case of proteins, all-atom MD simulations have been used to provide high-

resolution information of the motions of these important biological macromolecules. These 
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atomistic models are used to calculate statistical properties of the system that can be tested 

experimentally. Recent advances in computer software and hardware have increased the 

structural complexity and time scale simulations of the studied systems [24-28]. 

Many other computational tools for exploring atomic and molecular properties can 

complement the MD simulations approach. Some include Monte Carlo simulations, Poisson-

Boltzmann anaysis, energy minimization, docking calculations, and molecular modeling. 

Comparative (homology) modeling provides information of the three-dimensional 

protein structure, particularly for proteins that are difficult to obtain by experimental procedures 

such as X-ray crystallography and protein NMR structural studies. Using the comparative 

modeling approach, a three-dimensional model of a protein where the structure is unknown, 

can be created using one or more related proteins of known structure as templates. The main 

condition for obtaining a useful model is that the similarity between the target sequence and 

the template(s) sequence is detectable somehow (e.g., sequence similarity). Additionally, a 

correct alignment between the sequences is also essential. The comparative modeling 

approach is based on the notion that a small change in the protein sequence usually results in 

a small change in its tertiary structure [29]. In recent years template based protein modeling 

techniques have produced encouraging results [30-32]. Particularly relevant is the state of the 

art of comparative modeling for G protein-coupled receptors (GPCR), which has taken 

advantage of the currently increasing structural information from this membrane protein family 

[30,31]. 

The molecular docking method is extensively applied in protein systems with special 

relevance in rational drug design [33]. The methodology attempts to predict preferred poses or 

orientations of one structure (e.g., a drug-like molecule) forming an intermolecular complex 

with a second structure (e.g., protein receptor). Information about the preferred orientations of 

the structure in an intermolecular complex may be used to estimate the strength of association 

or binding affinity of the structures. Most docking algorithms can generate a large number of 
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possible associated structures, thus the technique requires a way to discriminate 

intermolecular structures in order to identifiy those of most interest. In a nutshell, we can state 

that the docking problem is related with the generation and assessment of reasonable 

structures of intermolecular complexes [34-36]. Successful studies relevant to the work in this 

thesis include GPCRs, potassium channels, protein kinases, protein tyrosine phosphatase, 

integrin �V�3, and G proteins [37]. 

 

1.3 Thesis Overview 

Although the entropy-based formalism for computational protein design was the main 

technique used during most of the studies described herein, it was complemented by other 

computational techniques including comparative modeling, docking calculations, and specially 

all-atom MD simulations. 

First in chapter 2, a detailed description of the entropy-based formalism used for 

computationally design of proteins is described. A description of the determination of the site-

specific amino acid probabilities and the different constraints that modulate the sequence 

design are provided. 

In chapter 3, the entropy-based protein design method was applied to redesign the 

transmembrane domain of the � subunit of the nicotinic acetylcholine receptor (nAChR). The 

hydrophobic protein exterior was redesigned so as to have exterior residues that are 

consistent with each other and with those expected on the surface of a water-soluble protein. 

The NMR structure of the computationally designed water-soluble structure (WSA) was solved 

and findings regarding the structure are discussed. Interactions with anesthetics and lipids are 

also analyzed. Preservation of binding sites for anesthetics and lipids in the water-soluble 

variant are discussed with regard to experimental findings in membrane-soluble proteins. 

The structure of the human � opioid receptor (a G protein-coupled receptor, GPCR) 

was built by comparative modeling techniques using recent structural information (Chapter 4). 
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Previous mutagenesis findings are discussed in the context of the structure. Assessment of 

the benefits of using different number of templates in the construction of the models is 

provided. Docking calculations of a typical antagonist (naloxone) and agonist (morphine) are 

described. Lastly, predictions of the agonist-induced activation are suggested. 

Chapter 5 describes the design, experimental evaluation and MD simulations of 

stromal cell–derived factor–1� (SDF–1�) and simplified analogs toward the generation of 

effective therapeutic agents to treat inadequate blood-supply (ischemia) related heart disease. 

Analogs of SDF–1� were computationally modeled to simplify the protein structure. The 

simplified analogs were experimentally characterized in cell-based assays. A simplified analog 

where the central region was replaced by a two-proline linker was further characterized in a 

murine model of ischemic heart failure. All-atom MD simulations were carried out in SDF–1� 

and the simplified analogs at physiological conditions of temperature and pressure. For the 

simplified analogs, structural insights related with the different “success” in mimicking the 

beneficial therapeutic properties of SDF–1� are discussed. 

Lastly, MD simulations were carried out to analyze the properties of a gyroscope-

inspired molecule (Chapter 6). From NMR experiments, the structural dynamics of the novel 

gyroscope-inspired tribenzylamine hemicryptophane molecule indicated rigidity in one of the 

components (CTV stator). Also, a hindered motion of the three rotators was observed at room 

temperature. MD simulations showed close agreement with these experimental findings. 

Comparison with experimental results corroborates the utility of MD simulations in providing 

atomic details of molecular phenomena. Details about the rotation energy barrier and the 

correlation of the three rotators are discussed.     
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2 Probabilistic Theory of Computational Protein Design 

 

2.1 Statistical Theory of Sequence Ensembles 

Identifying the properties of sequences compatible with a predetermined backbone 

structure would provide ways to probe the determinants of protein folding and identify folding 

amino acids sequences [1,2]. A probabilistic theory has been previously introduced to explore 

and characterize sequence space for a target structure without explicitly tabulating all 

sequences [3,4]. The statistical entropy-based formalism has been developed to determine a 

set of amino acid probabilities for a chosen backbone structure. This approach laverages 

concepts from statistical thermodynamics to estimate site-specific probability profiles 

compatible with the given backbone structure [1].  

To adress the energetic sequence compatibility with regard to the backbone structure, 

the methodology includes several scoring functions. In addition to an atom based potential 

(physically derived), knowledge based potentials can be included to modulate centain 

properties of the system such as secondary structure preference and hydrophobicity. The 

sequence conformational space can be readily explored by the method and as a 

consequence, large systems (> 100 residues; for 100-residue protein, 20100 � 10130 possible 

sequences) can be considered in the protein design calculations. The method yields the 

probabilities of each amino acid at each of the positions of interest in a given protein structure 

and not only a specific sequence (oftentimes, the minimum energy solution) [5]. The generality 

of the method allows different prerequisites for foldable sequences or arbitrary constraints 

such as patterning of hydrophobic residues to be included.  

In specifying the sequence identity and energetic conformations subject to certain 

constraints for a specific folded state, the probability of amino acid � at position i and with a 

side chain in a conformation state defined by r(�), is denoted by wi(�,r(�)). The total 
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sequence-conformational entropy function S that quantifies the variability of sequences 

consistent with a particular target structure is defined by equation 2-1. 

 

S = � w
i
�,r(�)( ) lnwi

�,r(�)( )
� ,r(� )

�
i

�                           (2-1) 

 

The expression considers each of the sequence position i and all available amino acid 

identities �. For each amino acid identity �, the expression also considers all the possible 

rotamer states r(�) [6]. The residues state probabilities are obtained by maximizing this 

effective entropy function subject to different constraints. The maximization is done using the 

Lagrange multipliers method [7]. The variational functional of the set of probabilities wi(�,r(�)) 

is defined by equation 2-2. 

 

V = S � �
1
f
1
� �

2
f
2
� �

3
f
3
�� � �  (2-2) 

 

The constraint functions fk specify global and local features of the sequence-structure space 

and are in general, function of the probabilities wi(�,r(�)). �k are the respective Lagrange 

multipliers. To identify the probabilities consistent with particular value(s) of the constraint(s) fk, 

the constraint function is restrained to have a particular value fk0.   

 

fk
0 = fk {wi(�,r(�))}( )   (2-3) 

 

The large set of coupled nonlinear equations that determine the set of state probabilities 

{wi(�,r(�))} and the Lagrange multiplier �k associated with the contraints are defined by 

equations 2-4 and 2-5.  
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0 =
�V

�w
i
�,r(�)( )

  (2-4) 

0 =
�V

��
k

   (2-5) 

 

2.2 Constraints 

2.2.1 Energy Functions 

Conformational energy function E that quantifies sequence-structure compatibility is 

determined using a molecular mechanics force field [8]. This conformational energy is 

composed of non-bonding interactions including van der Waals (using a Lennard-Jones 12-6 

potential), electrostatics with a distance dependent dielectric constant (� = 4�0rij where rij is the 

interatomic distance), and a modified angular-dependent hydrogen bond term [9] (additionally, 

a torsional energy term for the side chains is sometimes included as one body term, see 

equation 2-6). For a particular sequence of N sites (�1,…,�N) where the side chain 

conformational states of the each amino acid are (r(�1),…, r(�N)), the conformational energy 

E can be expressed as a one-body and a pairwise two-body terms, equation 2-6. 

 

E = �i
(1)

i

� �,r(�)( ) + � ij
(2) �,r(�);� ',r(� ')( )

i< j

�   (2-6) 

 

The first term contains the one-body contribution �i
(1)(�,r(�)) and includes the interaction 

between backbone and amino acid side chains. Additionally, it contains the reference energy 

that accounts for the unfolded state contribution, see section 2.2.2. The second term contains 

the two-body contribution �ij
(1)(�,r(�);�’,r(�’)) and includes all the interaction energies 
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between amino acid side chains r(�) and r(�’) at site i and j, that is two different rotamer 

states at two different sites in the structure.  

Within the context of the statistical theory, for a given set of sequences, the 

assumption that the fluctuations in the conformational energy around the main value (due to 

variability of sequence) are small is reasonable. The conformational energy can be writen as 

equation 2-7. 

 

E � �i
(1)

�,r(� )

� �,r(�)( )wi �,r(�)( )
i

� +

� ij
(2) �,r(�);� ',r(� ')( )wi �,r(�)( )w j � ',r(� ')( )

� ',r(� ' )

�
�,r(� )

�
i< j

�
  (2-7) 

 

2.2.2 Reference Energy 

The paradigm in protein design is to optimize the energy of a particular sequence in 

the folded structure. In order to discriminate among a large number of possibilities, information 

about the energetics of the folded and unfolded states must be considered [2]. The 

discrimination of different sequences is carried out relative to the energy of the ensemble of 

unfolded states [2,10]. The calculation of the energy of the ensemble states is very complex 

even for small systems. To address this difficulty, a reference energy �ref is introduced to 

account for the energetics of the unfolded states, equation 2-8. Using the structure: 

N�acetyl�(�)�N’�methylamide, the Helmholtz free energy is calculated for each amino acid 

(�) over different possible rotamer states r(�) and backbone degrees of freedom (�, �). In 

particular, the calculation of the partition function zref at a given temperature T for each of the 

amino acids involves the sum of the conformational energy over different rotamers states and 

variations of the backbone degrees of freedom (�, �). The different rotamer states are those 

from a backbone dependent rotamer library [11]. The variations of the � and � angles involved 
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increments in 10° from 0 to 2�, equation 2-9. The results for the reference energy �ref for the 

different amino acid residues are expressed with respect to the value for glycine. 

 

� ref (�,T) = �kBT ln
zref (�,T)

zref (Gly,T)
   (2-8) 

 

zref (�,T) = exp
r(� )

�
� ,�

� �
�ref �,�,r(�)( )

kBT

� 

� 
� 

	 


 
�   (2-9) 

 

Since the reference energy is just a function of the amino acid type at each site, this 

term that accounts for the contributions of the unfolded states is introduced directly in the 

effective one-body term in equation 2-7. Consequently, the energy contraint that involves 

interatomic interaction can be rewritten as equation 2-10. 

 

E � �i
(1) �,r(�)( ) � � ref (�,T)( )

�,r(� )

� wi �,r(�)( )
i

�

+ � ij
(2) �,r(�);� ',r(� ')( )wi �,r(�)( )w j � ',r(� ')( )

� ',r(� ' )

�
�,r(� )

�
i< j

�
 (2-10) 

 

2.2.3 Environmental Energy 

To account for solvation effects and for the tendency of different amino acids to be 

exposed to or sequestered from water (hydrophobicity), an additional contraint was 

introduced, herein environmental energy (Eenv) [4]. This energy term is based on the local 

density of C� atoms of each residue in the fixed protein scaffold. Generally in a folded 

structure, hydrophobic residues tend to be sequestered from the solvent and as a 

consequence, surrounded by a large number of neighbors. The number of C� atoms in the 
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vicinity of these buried residues is relatively large. On the other hand, hydrophilic residues are 

prone to be located at the surface positions where they are highly exposed to water 

molecules. In this case, the amount of neighbors and thus, the number of C� atoms in their 

vicinity, is relatively low. The choice of C� density is convenient not only because this quantity 

is invariant for a specific fixed backbone structure but also because the implementation is 

complatible and consistent with the statistical implementation described in section 2.1 [4]. The 

effective local environmental energy is defined by equation 2-11.  

 

�env (�,r(�);�) = �kBT ln
f (�,�)

f (�) f (�)
   (2-11) 

 

Where �env is the effective local environmental energy that depends on the amino acid 

type � with particular rotamer state r(�) and the specific C� density environment �. f(�,�) is 

the fraction of times a local C� density �, is observed for the amino acid type �. f(�) is the 

fraction of times a local density � is observed in the globular protein training set used for the 

parametrization. f(�) is the fraction of times a local density � is observed irrespective of the 

amino acids type. The protein-training database was composed of 500 representative globular 

protein structures (http://www.cbrc.jp/pdbreprdb-cgi/reprdb_query.pl), see details in reference 

[4]. The local C� density � (equation 2-12) is defined as the density of C� atoms within the free 

volume of a sphere of radius Rc centered at the center of mass of each side chain. The free 

volume is referred as the volume not excluded by the side chain and its respective peptide 

main chain.  

 

�(�) =
n� C� ,R( )

4

3
�R

c

3 � V
access

(�)
   (2-12) 
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Here n� is the number of C� atoms within a specified volume of radius R and �Vaccess(�)� is the 

average volume not excluded by the side chain of �, where the average is taken over all 

possible rotamer states r(�). The average value of the C� density ��(�)� for each amino acid 

was found to correlate well other scales of hydrophobicity [4,12]. 

Within the context of the statistical theory, the environmental energy is defined by 

equation 2-13. Noteworthy, for a fixed backbone, Eenv(�,r(�)), which depends on both the 

amino acid type and the rotamer state, is expressed as one-body term. The calculation of the 

environmental energy in the globular protein-training set correlated well with the length of the 

protein (number of residues). During the sequence probability calculation, the target E0
env is 

constrained to a value in concordance with the linear relationship found in the globular protein 

set between the value of the environmental energy and the number of residues of the system. 

The ensemble environmental energy Eenv is optimized so as to satisfy the target value of the 

environmental constraint E0env. 

 

E
env

0 = E
env
= �

env
�,r(� )( )w �,r(� )( )

� ,r(� )

�
i

�   (2-13) 

 

2.2.4 Diversity Entropy Potential 

During the framework of the statistical method in protein design, the selection of a 

final sequence is usually carried out by using the most probable amino acids at each of the 

target positions. Sometimes, different criteria are used to obtain the final consensus 

sequence. In the case of buried positions, the environment exerts restraints that tend to bias 

the preference for some amino acids. In these positions, a distinctive and easy to interpret 

probability distribution is frequently observed. On the contrary, in the case of highly exposed 

positions, the solutions obtained in the statistical calculations frequently display unbiased 
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distributions for the amino acid probabilities. Polar or charged amino acids exhibit very similar 

probabilities and are slightly preferred than non-polar amino acids. Depending upon the 

purpose of the design, sometimes a more diverse sequence is desired as in the case of NMR 

experiments where such diversity should yield dispersion in the NMR spectrum and facilitate 

structure determination. To increase the amino acid diversity, an additional constraint 

consistent with the statistical methodology was introduced. This constraint, denominated 

diversity entropy potential SI, was implemented as an inverse participation ratio.  

 

SI =
1

meff

= f
2

�

� (�)     (2-14) 

f (�) =

wi �,r(�)( )
i=1

n

�

n
   (2-15) 

 

Here, f(�) is the frequency with which amino acid � appears among the sequences and is 

defined as the probability of amino acid � summed over the n targeted positions (targeted 

positions are usually all the positions selected to be mutated during the design). The number 

of possible amino acids, m, is m = 20 if all the naturally occurring amino acids are permitted.  

The effective number of amino acids that appear at the targeted sites, meff, can be defined 

using the calculated amino acid probabilities; meff is bounded 1 � meff � m and it represents an 

average over the ensemble of sequences. For a homopolymer where only one amino acid is 

used to construct the sequence, meff = 1; if all 20 amino acids appear with equally frequency, 

meff = 20. Thus meff may be viewed as the effective number of amino acids used to construct 

the sequences. 
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2.3 Site-Specific Amino Acid Probabilities 

In solving the coupled nonlinear equations that maximize the conformational entropy 

function subject to certain constraints, the site-specific probabilities and the associated 

Langrange multipliers to those constraints are determined.  

 

w
i
(�) = w

i

r(� )

� �,r(�)( )  (2-16) 

 

The set of probabilities are obtained at different effective temperatures � -1, where � is the 

Lagrange multiplier associated with the conformational energy constraint. At � equal to 0.5 

mol/kcal the sequence properties are found to be robust with respect to slight changes in the 

backbone structure [4]. 
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3 NMR Structure and Dynamics of a Computationally Designed 

Water-Solubilized Transmembrane Domain of the Nicotinic 

Acethylcholine Receptor (nAChR) 1, 2 

 

3.1 Introduction 

 Nicotinic acetylcholine receptors (AChRs) belong to a superfamily of neurotransmitter-

gated ion channels, which also include glycine (Gly), �-amino-butyric acid type A (GABAA), 

and serotonin (5-HT3) receptors. These receptors, composed of five homologous subunits in a 

pentameric assembly, mediate fast synaptic transmissions. All subunits comprise of a large 

extracellular domain, four transmembrane (TM) domains, and a long intracellular loop linking 

the third and fourth TM domains [1,2]. Mutagenesis and functional investigations have showed 

that binding of at least two agonists at the interfaces of the extracellular domains triggers the 

channel opening, allowing ions to pass through a TM pore surrounded by the TM2 helices 

from the five subunits. 

 

 

 

 

 

 

1 This project was a collaboration with the group of Professor Roderick G. Eckenhoff at the 
Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania 
Perelman School of Medicine, Philadelphia, PA 19104 and the group of Professor Yan Xu at 
the Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 
15260. 
2 Adapted from Tanxing Cui, David Mowrey, Vasyl Bondarenko, Tommy Tillman, Dejian Ma, 
Elizabeth Landrum, Jose Manuel Perez-Aguilar, Jing He, Wei Wang, Jeffery G. Saven, 
Roderic G. Eckenhoff, Pei Tang, Yan Xu. Biochimica et Biophysica Acta – Biomembranes 
2012, 1818, 617-626.  
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 The most studied member of this receptor superfamily is the highly abundant nAChR 

found in the Torpedo electric organs. The Torpedo nAChR, consisting of two �1 subunits and 

one each of �1, �, and � subunits, is homologous to the mammalian muscle-type nAChR 

responsible for the rapid signaling at the neuromuscular junction. Although no atomic 

resolution structure is yet available for nAChRs, a 4-Å-resolution structure model has been 

determined by the pioneering cryo-electron microscopy (cryo-EM) work on the Torpedo 

nAChR [3,4]. 

 More recently, high-resolution structural insights are gained from several crystal or NMR 

structures of related proteins, including an isolated extracellular domain of the nAChR �1 

subunit bound to �-bungarotoxin [5], isolated four TM domains of the nAChR �2 subunit [6], 

the snail acetylcholine binding protein [7] which resembles the extracellular domain of the 

nAChR, and two prokaryotic pentameric ligand-gated ion channels from the bacterium Erwinia 

chrysanthemi (ELIC) [8] and the cyanobacterium Gloebacter violaceus (GLIC) [9,10]. The 

overall architecture of the extracellular domains is similar among the currently available 

structures. The TM domains, however, exhibit significant variation in high-resolution details. 

The discrepancy among the TM domain structures may result from the difference in the 

membrane mimetic environments used for the structure determination, or from the difference 

in the ion-conducting states of the TM segments. It is worth noting that the 4-Å-resolution cryo-

EM structure of the muscle-type nAChR shows four straight long helices in the TM domains. In 

contrast, the GLIC and ELIC crystal structures and the nAChR �2 NMR structure all exhibit 

relatively short and curved helical structures. The cryo-EM nAChR structure is presumably in 

the closed-channel state, whereas GLIC is either in a desensitized state or in a non-

physiological artificial state due to the unexpected presence of detergent molecules within the 

aqueous pore. The ELIC crystal structure is thought to be in a collapsed state. Potential 

interactions with cholesterols, which are present in eukaryotic membrane but absent in 

prokaryotic membrane, can add another layer of complexity in TM domain structure 
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determination. 

 The uncertainty in the TM domain structures reflects the technical difficulties associated 

with the structure determination of TM channel proteins. Crystallization trials involve the use of 

nonnative detergents that may or may not support the functional fold of the TM domains. The 

success in the expression, purification, and crystallization of prokaryotic channels such as 

ELIC and GLIC does not readily translate into practice for mammalian channels, which are 

difficult to overexpress in suitable quantities for structural studies. Because of their large 

hydrophobic surface in the TM segments and the need for posttranslational modifications, 

mammalian channel proteins are also prone to aggregation, rendering the standard solution-

phase purification methods ineffective. Most biophysical studies involve dispersing membrane 

proteins in aqueous media, usually using detergents, lipids, auxiliary proteins, and other 

membrane-mimetic mixtures. Obtaining conditions to achieve monodispersity for X-ray 

crystallography or NMR studies remains a touchy and exceedingly time consuming process. 

 An alternate, systematic approach is to redesign membrane proteins to remove the 

exposed hydrophobic exterior. In essence, TM proteins are transformed into soluble ones 

while retaining important structural and functional features.  Using computational approaches, 

water-soluble variants of integral membrane proteins have been designed to facilitate 

structural studies. Recently, a computationally designed water-soluble variant of the bacterial 

potassium ion channel KcsA has been accomplished [11,12] and its high-resolution structure 

has been elucidated by NMR [13]. The NMR structure of one of the three designed sequences 

of water-solubilized KcsA (WSK3) is in striking agreement with the crystal structure of the wild-

type protein [13,14]. These findings emphasize the promise of developing water-soluble 

variants of membrane proteins suitable for biophysical studies and potentially for structure-

based drug discovery.  

In this study, we present a similar approach for the TM domains of nAChR �1 subunit. 

A water-soluble variant of the TM domains was computationally designed, resulting in the 
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replacement of 23 hydrophobic residues with hydrophilic ones at the lipid-exposed surface. 

The resulting protein, called water-soluble acetylcholine receptor channel (WSA), was 

experimentally expressed and purified, and its structures determined using high-resolution 

NMR. Because the nAChRs are potential molecular targets for general anesthetics [15-19], we 

also determined the binding of two representative anesthetics, azi-isoflurane and azi-propofol, 

to the designed protein using photoaffinity labeling. We found that the designed protein 

retained an overall four-helix bundle topology and overlapped remarkably well with the crystal 

structure of the GLIC TM domains. A common binding site was identified for azi-isoflurane and 

azi-propofol in the general vicinity of a propofol binding site found in the crystal structure of 

anesthetic-bound GLIC. These results provide additional experimental evidence for the 

general applicability of the water solubilization approach to high-resolution structural 

investigation of membrane proteins. 

 

3.2 Methods 

3.2.1 Computational Sequence Design for Water Solubilization 

 The design principle involves the identification and redesign of exposed hydrophobic 

residues in the TM domains in order to transform a membrane protein into a completely or 

partially soluble protein while maintaining the structure- and function-related properties. The 

redesign of the nAChR �1 subunit was based on the 4-Å-resolution cryo-EM structure model 

as a template (PDB accession code: 1OED; Figure 3.1a) [3,4]. The exposed residues were 

selected as those with more than 40% solvent exposure (Figure 3.1b) according to 

GETAREA1.1 [20]. Residues targeted for mutation were both hydrophobic (AFILMVW) and 

expected to reside in the TM region [3]. Hydrophobic residues at the interfaces between 

helices within the subunit were retained as in the wild type protein.  

 The site-specific probabilities of the amino acids at the potential mutation sites were 

calculated as described previously [11,21-25]. For each of the sites, all 20 amino acids were 
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permitted while the remaining residues were constrained as wild type. Side chain 

conformations were restricted to those from a library of frequently observed conformations 

(rotamer states) [26] with at most 10 rotamer states per amino acid. Two energy functions, 

averaged over the sequence of the entire protein, were constrained to characterize the 

ensemble of soluble variants. The first energy term accounts for the inter-atomic interactions 

using a molecular mechanics force field (the AMBER force field) [27]. The second term 

quantifies the hydrophobic potential (environmental or solvation energy) that was constrained 

to an averaged value expected for a soluble protein having the size of the TM domains of the 

nAChR �1 subunit [11]. 

 The computation for site-specific probabilities of amino acids at each mutation position 

was carried out in two stages. The first stage used the most probable amino acids at each of 

the targeted positions. At the second stage, only the sites where one amino acid was highly 

favored (probability of an amino acid exceeding 0.8) were constrained to that most probable 

amino acid. At the rest of the positions, an additional constraint was imposed to increase the 

diversity of different amino acids that appear in the final sequence. Amino acid diversity is 

desirable to avoid spectral over-crowding in the NMR spectra, thereby facilitating spectral 

assignment and structure determination.  The sequence diversity constraint was implemented 

as an inverse participation ratio: 

1

meff

= f
2
(�)

�=1

m

�    (3-1) 

f (�) =

wi(�)
i=1

n

�

n
  (3-2) 

 

where m is the number of possible amino acids, e.g., m = 20 if all the naturally occurring 

amino acids are permitted. The function f(�) is the frequency with which amino acid � 
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appears among the sequences and is defined as the probability of amino acid � summed over 

the n targeted positions. The effective number of amino acids that appear at the targeted sites, 

meff, can be defined using the calculated amino acid probabilities; meff is bounded 1 � meff � m 

and it represents an average over the ensemble of sequences. For a homopolymer where 

only one amino acid is used to construct the sequence, meff = 1; if all 20 amino acids appear 

with equal frequency, meff  = 20. Thus meff may be viewed as the effective number of amino 

acids used to construct the sequences. 

 The current design focused on the TM domain without the extracellular domain and the 

intracellular loop. The removal of the intracellular loop separate TM4 from TM1-TM3. In order 

to express the designed protein as a single chain, a polyglycine linker was designed using the 

loop builder in MODELLER [28]. To minimize any structural biases and effects of an artificial 

linker on TM3 and TM4 and to take advantage of the additional length from the residues in the 

wild-type sequence leading to the TM1 helix and ending the TM4 helix (the C-terminus), we 

placed the artificial polyglycine linker between the C-terminus of helix TM4 and the N-terminus 

of helix TM1 (Figure 3.1c). This arrangement preserves the orientations of individual TM 

domains without restricting the relative spatial positions of TM3 and TM4, as in the topology of 

the original cryo-EM template. 
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Figure 3.1. Sequence Redesign. (a) Ribbon representation of the pentameric structural template (PDB 

code: 2BG9) of nicotinic acetylcholine receptor (nAChR) used for the water solubilization sequence 

redesign. (b) The transmembrane domain of the �1 subunit in van der Waals representation before (left) 

and after (right) the computational redesign. Residues are colored by amino acid types: Green: 

hydrophilic (GNQSTY); white: hydrophobic (ACFILMPVW); blue: basic (HKR); and red: acidic (DE). (c) 

Cartoon representation of helix configuration in water-solubilized acetylcholine receptor (WSA). A 

polyglycine linker was added between TM1 (helical N-terminus) and TM4 (helical C-terminus) so that the 

TM domains can be expressed as a single chain. (d) Sequences of the transmembrane domains of 

nAChR �1 subunit, two calculated water-solubilization designs, and the bacterial pentameric ion channel 

GLIC are aligned for comparison. Water-solubilization mutations are marked in red. The most probable 

mutations are in italic boldface. Mutations changed by the inclusion of sequence diversity constraints are 

highlighted in green. Putative pore-lining residue positions are highlighted in blue. The transmembrane 

domain helices in the corresponding structures are underlined for comparison. Conformation 

heterogeneity in WSA is underlined with dashed lines. 

 

3.3 Results 

3.3.1 WSA Sequence Design 

 Using the cryo-EM structure model of the nAChR �1 subunit [3,4] as a template and 

40% solvent accessibility surface as the criterion for exposed residues, we identified 29 

hydrophobic residues within the TM domains as potential redesign targets. Of these, six were 

considered at the interfaces between the helices and kept unchanged: I219, M243, V261, 

F414, I420 and V425.  The remaining 23 positions were targeted for computational redesign. 

They are I220, L223, L224, F227, L245, I247, L251, V255, F256, L258, V259, M282, I283, 

I286, I290, V293, V294, L411, M415, L416, I419, V423, and F426.  

 At the first stage of site-specific probability computation, the most probable amino acids 

at each of the 23 positions were calculated. The resulting sequence is shown in Figure 3.1d as 

Cal_1. This sequence was found to be cytotoxic to E. coli, and the resulting expression yield 

was low. In the second stage of redesign, only the positions with amino acid probability > 0.8 

were constrained to the most probable amino acids. The following six mutations satisfied this 

condition: L224K, F227E, L245E, V259K, I290K and I419K. At the remaining 17 positions, 
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sequence diversity constraints were used according to Eq. (3-1) and Eq. (3-2). With 23 

variable residues, the site-specific probabilities yield meff = 4.3 in the absence of any 

constraints on diversity. With the mutations at the above six positions fixed, the constraint is 

applied so as to achieve meff = 5.0. The most probable amino acid was selected at each of the 

17 variable positions, yielding sequence Cal_2 in Figure 3.1d. This sequence has a theoretical 

isoelectric point (pI) of = 6.39 [29]. Also displayed in Figure 3.1d is an aligned sequence for 

the GLIC TM domains. The sequences are 83% identical between Cal_2 and the original �1 

subunit of nAChR, and 11% between Cal_2 and GLIC. The residue numbering used in this 

study and the corresponding sequence numbering in nAChR �1 subunit and in GLIC are 

shown in Figure 3.1d.  

 The lengths of the polyglycine linker (4 to 8 Glys) were investigated, and 50 

independent calculations for each length of loop were performed using MODELLER [28]. The 

5-glycine segment had the lowest effective energy (best score in MODELLER). The quality of 

the choice of loop length was also confirmed by energy minimization of the loop structures 

with NAMD [30] using the CHARMM force field [31]. 

 

3.3.2 Secondary Structure of WSA by CD and NMR 

 Circular dichroism (CD) measurenments of the water-soluble variant in aqueous media 

with 2% of lipid (1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG)) show 

an �-helical content of ~50%. Although this value is significantly lower than the helical content 

of the cryo-EM template (~83-87%), it is in reasonable agreement with the estimation from 

FTIR and CD measurement of the authentic full-length nAChR [32] and GlyR [33,34]. From 

the NMR chemical shift index (CSI), secondary structure can be inferred. In the case of WSA, 

this quantity indicates four helical segment (Figure 3.2b), with ~70% residues having a C� 

chemical shift consistent with an �-helical secondary structure. These results are in excellent 

agreement with the helical content of the transmembrane domains of GLIC. Additionally, a 
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slow conformational exchange between two conformations for the segment 104STSS107 was 

observed on the NMR timescale (Figure 3.2c). 

 

 

Figure 3.2. Secondary Structure Determination. (a) Far-UV circular dichroism (CD) spectrum of WSA 

in water with 2% LPPG, showing an �-helical content of ~50%. (b) The NMR chemical shift index (CSI), 

determined based on the backbone C� resonance frequencies relative to the random coil values, is 

plotted as a function of residue numbers. Four helical domains are clearly defined. (c) Conformation 

heterogeneity in the segment between TM2 and TM3 is visible in the resonance peak doubling for 

residues 104STSS107. SCI suggests slow exchange between helical and non-helical conformations. 
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3.3.3 High-Resolution NMR Structure of WSA 

 The advantage of water solubilization of TM channel proteins is clearly displayed in the 

NMR spectra of WSA (Figure 3.3a). Not only can WSA be expressed and purified in large 

quantity for structural studies, the NMR spectra also showed that the water solubilization of 

this TM protein greatly improved monodispersity of the protein sample, allowing high-

resolution NMR spectra to be acquired with homogenous peak intensities. Well-resolved 3D 

NMR spectra permitted spectral assignment of nearly all backbone resonances and many side 

chain resonances. With the exception of the segment STSS mentioned above, the majority of 

residues in the WSA sequence showed one set of NMR peaks, indicating a structural 

homogeneity. The structures of WSA with the STSS segment in the major and minor 

conformations were determined separately using the standard solution-state NMR methods. 

The 15 lowest target-function structures for each conformation are shown in Figure 3.3b 

(protein data bank PDB ID code 2LKG and 2LKH for the major and minor conformations, 

respectively), and the structure with minimal root-mean-square deviation (RMSD) from the rest 

in the same conformation is highlighted in the ribbon representation. The overall backbone 

RMSD in the four helical domains is 0.69 ± 0.13 Å and 0.93 ± 0.19 Å in the major and minor 

conformations, respectively.  None of the structures have a distance violation > 0.5 Å or an 

angle violation > 5°, and 99.2% of the residues are in the most favored and additional allowed 

regions of the Ramachandran plot and no residues are in the disallowed region. Lastly, 

backbone 15N R1 and R2 relaxation parameters suggested a monomeric form of WSA. 
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Figure 3.3. Structure Determination of WSA by High-resolution NMR. (a) Representative 1H-15N 

HSQC NMR spectrum of WSA acquired at 40°C on an 800-MHz spectrometer, showing well resolved 

resonances of the water-solubilized membrane protein. (b) Bundles of the 15 lowest target function 

structures of major (left) and minor (right) conformations. The structures with the least RMSD from the 

rest of the bundle are depicted in the ribbon representation, with the TM4-TM1-TM2-TM3 domains 

colored in a red-to-blue color scale. The STSS segment is highlighted in magenta, and Loop-23 in the 

Cryo-EM template, which is a part of the TM3 helix in the WSA structure, is highlighted in cyan. (c) 

Superposition of the WSA NMR structure (blue) onto the TM domains of the crystal structure of GLIC 

(left, white) and the NMR structure of nAChR �2 subunit (right, white), which was solved in 

hexafluoroisopropanol [6]. 
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3.3.4 Anesthetic Binding to WSA 

Using photoaffinity labeling, we investigated potential anesthetic binding to WSA. Peptides 

accounting for 48% of the sequence were detected for the azi-isoflurane labeled sample, and 

a single adduction site was found at V-31. Similarly, peptides accounting for 67% of the WSA 

sequence were detected in the aziPm labeled sample, and the same residue (V-31) was found 

to be the only modified site. 

 

3.4 Discussion 

3.4.1 Structure Characteristics of WSA 

 We have solved the structure of a water-solubilized analogue of the TM domains of 

nAChR �1 subunit using solution-state NMR spectroscopy. The protein was designed to be 

monomeric in solution, permitting secondary and tertiary structures to be determined at the 

atomic resolution. For clarity, we focus our discussion of the WSA structures with the STSS 

segment in its major conformation. The structure shows the expected four-helix bundle fold 

but with four unequal helix lengths. TM1 and TM2 are both six helix-turns long, shorter than 

TM3 (9 helix turns) and TM4 (8 helix turns). In comparison, the cryo-EM structure of Torpedo 

nAChR, which was used as the template in the computational sequence redesign, has four 

straight helices of roughly equal lengths (8 helix turns for TM1, TM2, and TM3, and 10 helix 

turns for TM4). The residues belonging to the helices as determined in the cryo-EM structure 

and the WSA NMR structure, along with those in the crystal structure of GLIC, are underlined 

in the sequences in Figure 3.1d for comparison. A superposition of WSA structure onto the 

monomer structure of GLIC is depicted in Figure 3.3c. Although WSA has ~83% sequence 

identity to the wild-type nAChR and only 11% identity to the GLIC TM domains, the high-

resolution NMR structure of WSA agrees more with that of GLIC than with the cryo-EM 

template. This is rather unexpected. Several contributing factors can be considered. First, the 

experimental conditions under which the structures were determined were very different. The 
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cryo-EM structure of nAChR was determined in highly ordered tubular crystal arrays rapidly 

frozen in liquid-nitrogen-cooled ethane. WSA NMR structure was determined at the room 

temperature in a significantly more dynamic aqueous solution of lyso-lipids; 2% LPPG was 

needed to maintain monodispersity of the NMR sample when pH was lowered to 5.8. 

Similarly, GLIC was crystallized at a non-freezing temperature in ~3% n-Undecyl-�-D-

maltoside detergent. Moreover, nAChR normally resides in eukaryotic membranes that 

contain cholesterol, and cholesterol has been proposed to form a slowly exchangeable 

structural component of this family of ligand-gated ion channels [35].  The absence of 

cholesterol in WSA may therefore make it more resemblant to the GLIC structure. Hence, the 

environment might play a more critical role than the amino acid sequences in affecting the 

high-resolution details of the structures. The debatable question remains as to which 

biophysical conditions are more relevant for membrane protein structure determination. Before 

high-resolution structures can be determined under physiologically relevant conditions, all 

currently available methods, including crystallography, can conceivably introduce some 

degree of artifact. Second, the high-resolution difference between WSA and cryo-EM nAChR 

structures may result from different equilibriums of conformational states. The cryo-EM 

structure is believed to mainly capture the closed state of the channel [3], whereas GLIC 

crystal is thought to be in either an open or desensitized state [9,10]. Because WSA structure 

was determined as a monomer, its conformational state can only be inferred. The fact that 

WSA structure agrees so well with the GLIC structure suggests that WSA monomer may 

reflect the conformation of the open or desensitized state of nAChR TM domains. Third, there 

is also a possibility that WSA structure is distorted due to the truncation of extracellular and 

intracellular domains or due to water solubilization itself. This scenario is very unlikely, 

however, given the agreement between WSA and GLIC structures. GLIC was determined as 

an intact channel protein. Taken together, our results suggest that water-solubilization of 

membrane proteins is not less relevant for structure determination than other more 
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conventional lipid or detergent solubilization approaches. The ease in protein expression and 

purification and, more importantly, the greatly improved spectral quality of the resulting 

proteins after water solubilization, make water solubilization an attractive alternative. We 

believe that the NMR structures of water-solubilized proteins, including WSK3 published 

previously [13] and WSA determined in this study, represent the first approximation of the 

native structures. These structures provide the high-resolution templates for further refinement 

by other biophysical means. 

 

3.4.2 Dynamic Characteristics of WSA 

 It is conceivable that water solubilization of membrane proteins can change the 

motional characteristics of these proteins. For WSA, several residues in the TM2 domain were 

mutated from hydrophobic to charged amino acids for the purpose of promoting monomeric 

form in order to increase NMR spectral resolution. There are seven mutations in the TM2 

helix, four of which, L89K (L9’K), V93E (V13’E), L96K (L16’K), and V97K (V17’K) (see Figure 

3.1d for relative numbering of TM2), are located at the putative pore-lining sites of the nAChR 

channel. The charged residues likely prevent the formation of oligomerization by TM2. Without 

association with other TM2 helices, TM2 domain becomes particularly dynamic in WSA. 

Although the increase in dynamics of TM2 in WSA is undoubtedly the result of water 

solubilization, the fact that other TM domains do not experience the same degree of increase 

suggests that the motional characteristics of TM2, controlled by Loop-12 and Loop-23, might 

be intrinsically different from the rest of the protein. Indeed, it has been suggested that nAChR 

TM domains can be separated into inner helices, comprised of TM2 domains, and outer 

helices, comprised of TM1, TM3, and TM4 helices [3]. Channel gating is thought to involve the 

movement of the inner helices relative to the outer helices.  

 The dynamics of the two loops, Loop-12 and Loop-23, deserves further examination. As 

shown in Figure 3.1d, the WSA loop regions coincide more with those in GLIC structure than 
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in nAChR cryo-EM structure. Loop-12 consists of five residues L73-S77 (LPTDS) in WSA, 

different from the very tight, three-residue turn (SGE) in the cryo-EM structure. The loop 

residues are also shifted. Loop-12 in WSA is a part of the TM1 helix in nAChR cryo-EM 

structure, whereas Loop-12 in the cryo-EM structure forms the beginning of the TM2 helix in 

WSA. The NMR dynamics measurements show that the segment from Y72 to K80, 

encompassing Loop-12 in both the WSA (LPTDS) and cryo-EM (SGE) structures, is highly 

flexible. Although the Loop-12 conformation as shown in the NMR structures is the preferred 

conformation based on the NMR data, the shifted Loop-12 conformation as displayed in the 

Cryo-EM structure is also possible. Nevertheless, we believe that the Loop-12 conformation 

as shown in the NMR structures, with P74 in the loop instead of in the TM1 helix, is the 

dominant loop population in the conformational equilibrium. 

 Similarly, Loop-23 between TM2 and TM3 domain is also highly dynamic. In the intact 

receptor, this loop is believed to interact with the Cys-loop and �12 loop in the extracellular 

domain to mediate ligand binding to channel gating [17,18,36,37]. In WSA structure, TM2 helix 

ends at E20’, whereas in Cryo-EM structure the TM2 helix extends to the extracellular space 

and ends at S27’ or A28’. None of the high-resolution structures solved so far for Cys-loop 

receptors, including the WSA structure solved in this study, the NMR structure of the nAChR 

�2 subunit TM domains [6], the high resolution NMR structures of glycine receptor TM2-TM3 

domains solved in DMPC/DHPC bicelles [38], the crystal structure of GLIC [10], and the 

crystal structure ELIC [8], agree with the cryo-EM structure in this region. Our dynamics data 

suggest that several conformations can co-exist in Loop-23. Even with water solubilization, the 

dynamic characteristics seem to have been preserved. High-resolution NMR spectra of 

pentameric glycine receptor TM domains in lyso-lipid micelles also exhibit peak doubling in 

this segment (data not shown), suggesting that slow conformational exchange is an intrinsic 

dynamic feature in the region between TM2 and TM3 helices. The conformation heterogeneity 

of Loop-23 may be required for the TM2 movement during channel gating. 
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3.4.3 Anesthetic Binding to WSA 

 To further confirm similarity of WSA to GLIC, we performed binding studies. Recently, 

X-ray structures of GLIC were solved with two different general anesthetics—propofol and a 

haloether, desflurane—bound [39]. Like GLIC, nAChR is also sensitive to general anesthetics, 

so confirmation of anesthetic binding will provide a functional measure of the fidelity of the 

water solubilization paradigm.  We found that both propofol and a haloether photolabels bound 

to the same residue (V31) in the WSA structure (Figure 3.4). Also highlighted in this figure are 

residues that border the propofol-binding site in the GLIC-anesthetic co-crystal structure. The 

agreement with respect to the Z-direction along the bundle is remarkable. Although the side 

chain of V31 is oriented away from the intrasubunit GLIC anesthetic site, we have prior 

evidence suggesting that backbone carbonyl atoms are preferred photoadduction sites [40], 

especially for residues with apolar hydrocarbon side chains. The V31 carbonyl oxygen is 

oriented such that it is easily accessed from the intrasubunit cavity. Thus, it would appear that 

the anesthetic site in GLIC and WSA is similarly positioned within the bundle.  This result 

further validate the water-solubilization approach: mutation of surface residues to improve 

water solubility does not greatly alter the overall fold and internal packing of the protein, 

preserving potential drug binding sites or structure-based drug screening. However, it is 

important to note that neither propofol nor isoflurane binding site has been definitely located in 

nAChR, thus we cannot yet conclude with confidence that the WSA site well represents that in 

the native nAChR. 

 



 38 

 

Figure 3.4. Comparison of Anesthetic Binding Site in WSA and in GLIC. The WSA structure 

(magenta) is fitted to the TM domain of the crystal structure of GLIC (yellow). The anesthetic binding site 

in WSA was determined by photoaffinity labeling. Both Azi-isoflurane and Azi-propofol bind to residue 

V31 located in TM4 (cyan). The dominant propofol binding site in GLIC crystal is highlighted in orange. 

Notice that the general location of the binding sites is essentially the same, suggesting that the drug-

binding site is preserved in the water-solubilized protein. 

 

 

3.4.4 WSA-Detergent Interaction Site 

 Although WSA was soluble in water at high pH, lowering pH to pass the theoretical 

isoelectric point (pI) for NMR experiments can lead to soluble aggregations. To maintain WSA 

monodispersity in the NMR sample, 2% of the lyso-lipid LPPG was used. Previous 

experimental and computational studies have suggested that nicotinic acetylcholine receptor 

requires the proper compositions of lipids in order to function. The location of lyso-lipid 
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molecules in WSA thus can provide structural information about protein-lipid interaction. We 

found that several residues at the TM1 and TM4 interface have cross peaks with LPPG. 

Specifically, residues 48, 50, 64, and 67 of TM1 and residues 24, 33, 34, 35, 39, 40, 41, and 

43 of TM4 border an interfacial cavity that can accept a lipid molecule. The same cavity can 

be found in nAChR cryo-EM structure and in ELIC and GLIC X-ray structures. As shown in 

Figure 3.5, the superposition of WSA and GLIC reveals that the strong WSA-LPPG interaction 

site coincides nearly perfectly with location where surface lipid molecules were found in the 

GLIC crystal. This finding indicates that despite water solubilization, the helix interfaces are 

preserved to maintain possible interactions as in the wild-type protein. 
 

 
Figure 3.5. WSA-LPPG Interactions. WSA structure is superimposed onto the TM domain of the GLIC 

crystal structure. Residues showing cross-peaks with LPPG are highlighted in licorice representation in 

cyan (for clarity no hydrogen atoms are displayed). Also displayed are lipid molecules co-crystallized 

with GLIC (black). Notice that the intra-helix cavity between TM1 and TM4 for lipid binding is preserved 

in WSA. 
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 In summary, the monomer structure of a water-soluble analogue of the Torpedo nAChR  

�1 subunit was resolved to the backbone RMSD of 0.69 ± 0.13 Å. The overall structure is 

similar to the crystal structure of GLIC, demonstrating the robustness of the water 

solubilization approach. The WSA structure preserved the anticipated intra-helical drug 

binding site and lipid interaction site in the intact form of homologous receptors.  

 

 

3.5 References 

1. Lindstrom JM: Nicotinic acetylcholine receptors of muscles and nerves: comparison 

of their structures, functional roles, and vulnerability to pathology. Ann N Y Acad Sci 

2003, 998:41-52. 

2. Baenziger JE, Corringer PJ: 3D structure and allosteric modulation of the 

transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 

60:116-125. 

3. Miyazawa A, Fujiyoshi Y, Unwin N: Structure and gating mechanism of the 

acetylcholine receptor pore. Nature 2003, 423:949-955. 

4. Unwin N: Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J 

Mol Biol 2005, 346:967-989. 

5. Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L: Crystal structure of the extracellular 

domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat 

Neurosci 2007, 10:953-962. 

6. Bondarenko V, Tillman T, Xu Y, Tang P: NMR structure of the transmembrane domain 

of the n-acetylcholine receptor beta2 subunit. Biochim Biophys Acta 1798:1608-1614. 

7. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK: 

Crystal structure of an ACh-binding protein reveals the ligand-binding domain of 

nicotinic receptors. Nature 2001, 411:269-276. 



 41 

8. Hilf RJ, Dutzler R: X-ray structure of a prokaryotic pentameric ligand-gated ion 

channel. Nature 2008, 452:375-379. 

9.  Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ: X-

ray structure of a pentameric ligand-gated ion channel in an apparently open 

conformation. Nature 2009, 457:111-114. 

10. Hilf RJ, Dutzler R: Structure of a potentially open state of a proton-activated 

pentameric ligand-gated ion channel. Nature 2009, 457:115-118. 

11. Slovic AM, Kono H, Lear JD, Saven JG, DeGrado WF: Computational design of water-

soluble analogues of the potassium channel KcsA. Proc Natl Acad Sci U S A 2004, 

101:1828-1833. 

12. Bronson J, Lee OS, Saven JG: Molecular Dynamics Simulation of WSK-3, a 

Computationally Designed, Water-Soluble Variant of the Integral Membrane Protein 

KcsA. Biophys J 2006, 90:1156-1163. 

13. Ma D, Tillman TS, Tang P, Meirovitch E, Eckenhoff R, Carnini A, Xu Y: NMR studies of a 

channel protein without membranes: structure and dynamics of water-solubilized 

KcsA. Proc Natl Acad Sci U S A 2008, 105:16537-16542. 

14. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R: Chemistry of ion coordination 

and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 

2001, 414:43-48. 

15. Cui T, Canlas CG, Xu Y, Tang P: Anesthetic effects on the structure and dynamics of 

the second transmembrane domains of nAChR alpha4beta2. Biochim Biophys Acta 

1798:161-166. 

16. Xu Y, Seto T, Tang P, Firestone L: NMR study of volatile anesthetic binding to 

nicotinic acetylcholine receptors. Biophys J 2000, 78:746-751. 



 42 

17. Liu LT, Haddadian EJ, Willenbring D, Xu Y, Tang P: Higher susceptibility to halothane 

modulation in open- than in closed-channel alpha4beta2 nAChR revealed by 

molecular dynamics simulations. J Phys Chem B 114:626-632. 

18. Liu LT, Willenbring D, Xu Y, Tang P: General anesthetic binding to neuronal 

alpha4beta2 nicotinic acetylcholine receptor and its effects on global dynamics. J 

Phys Chem B 2009, 113:12581-12589. 

19. Chiara DC, Dangott LJ, Eckenhoff RG, Cohen JB: Identification of nicotinic 

acetylcholine receptor amino acids photolabeled by the volatile anesthetic 

halothane. Biochemistry 2003, 42:13457-13467. 

20. Fraczkiewicz R, Braun, W.: Exact and efficient analytical calculation of the accessible 

surface areas and their gradients for macromolecules. J Comput Chem 1998, 19:15. 

21. Kono H, Saven JG: Statistical theory for protein combinatorial libraries. Packing 

interactions, backbone flexibility, and the sequence variability of a main-chain 

structure. J Mol Biol 2001, 306:607-628. 

22. Calhoun JR, Kono H, Lahr S, Wang W, DeGrado WF, Saven JG: Computational design 

and characterization of a monomeric helical dinuclear metalloprotein. J Mol Biol 

2003, 334:1101-1115. 

23. Cochran FV, Wu SP, Wang W, Nanda V, Saven JG, Therien MJ, DeGrado WF: 

Computational de novo design and characterization of a four-helix bundle protein 

that selectively binds a nonbiological cofactor. J Am Chem Soc 2005, 127:1346-1347. 

24. Nanda V, Rosenblatt MM, Osyczka A, Kono H, Getahun Z, Dutton PL, Saven JG, Degrado 

WF: De novo design of a redox-active minimal rubredoxin mimic. J Am Chem Soc 

2005, 127:5804-5805. 

25. Bender GM, Lehmann A, Zou H, Cheng H, Fry HC, Engel D, Therien MJ, Blasie JK, Roder 

H, Saven JG, et al.: De novo design of a single-chain diphenylporphyrin 

metalloprotein. J Am Chem Soc 2007, 129:10732-10740. 



 43 

26. Dunbrack RL, Jr., Cohen FE: Bayesian statistical analysis of protein side-chain 

rotamer preferences. Protein Sci 1997, 6:1661-1681. 

27. Weiner SJ, Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., 

and Weiner, P.: A New Force-Field For Molecular Mechanical Simulation Of Nucleic-

Acids And Proteins. J. Am. Chem. Soc. 1984, 106:20. 

28. Fiser A, Do RK, Sali A: Modeling of loops in protein structures. Protein Sci 2000, 

9:1753-1773. 

29. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, 

Hochstrasser D: The Focusing Positions Of Polypeptides In Immobilized Ph 

Gradients Can Be Predicted From Their Amino-Acid-Sequences. Electrophoresis 

1993, 14:1023-1031. 

30. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, 

Kale L, Schulten K: Scalable molecular dynamics with NAMD. J Comput Chem 2005, 

26:1781-1802. 

31. MacKerell AD, Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., 

Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, 

F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., 

Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-

Kuczera, J., Yin, D., and Karplus, M.: All-atom empirical potential for molecular 

modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102:31. 

32. Gorne-Tschelnokow U, Strecker A, Kaduk C, Naumann D, Hucho F: The transmembrane 

domains of the nicotinic acetylcholine receptor contain alpha-helical and beta 

structures. EMBO J 1994, 13:338-341. 

33. Cascio M, Shenkel S, Grodzicki RL, Sigworth FJ, Fox RO: Functional reconstitution and 

characterization of recombinant human alpha 1-glycine receptors. J Biol Chem 2001, 

276:20981-20988. 



 44 

34. Ma D, Liu Z, Li L, Tang P, Xu Y: Structure and dynamics of the second and third 

transmembrane domains of human glycine receptor. Biochemistry 2005, 44:8790-

8800. 

35. Brannigan G, Henin J, Law R, Eckenhoff R, Klein ML: Embedded cholesterol in the 

nicotinic acetylcholine receptor. Proceedings of the National Academy of Sciences of 

the United States of America 2008, 105:14418-14423. 

36. Mowrey D, Haddadian EJ, Liu LT, Willenbring D, Xu Y, Tang P: Unresponsive correlated 

motion in alpha7 nAChR to halothane binding explains its functional insensitivity to 

volatile anesthetics. J Phys Chem B 114:7649-7655. 

37. Szarecka A, Xu Y, Tang P: Dynamics of heteropentameric nicotinic acetylcholine 

receptor: implications of the gating mechanism. Proteins 2007, 68:948-960. 

38. Canlas CG, Ma D, Tang P, Xu Y: Residual dipolar coupling measurements of 

transmembrane proteins using aligned low-q bicelles and high-resolution magic 

angle spinning NMR spectroscopy. J Am Chem Soc 2008, 130:13294-13300. 

39. Nury H, Van Renterghem C, Weng Y, Tran A, Baaden M, Dufresne V, Changeux JP, 

Sonner JM, Delarue M, Corringer PJ: X-ray structures of general anaesthetics bound 

to a pentameric ligand-gated ion channel. Nature 469:428-431. 

40. Eckenhoff RG, Xi J, Shimaoka M, Bhattacharji A, Covarrubias M, Dailey WP: Azi-

isoflurane, a Photolabel Analog of the Commonly Used Inhaled General Anesthetic 

Isoflurane. Acs Chemical Neuroscience 2010, 1:139-145. 

 

 

 

 

 

 



 45 

4 Comparative Modeling of the Human �  Opioid Receptor: A 

Structural Context for Mutagenesis Studies and Agonist-Induced 

Activation 1 

 

4.1 Introduction 

The study of opioids, their effects, and their interactions with opioid receptors [1,2] are 

relevant to addiction, pain control and reward pathways [1,3,4]. Clinically, opioid receptors are 

important in analgesia, euphoria, respiratory depression, feeding, hormone release, inhibition 

of gastrointestinal transit, and anxiety [5,6]. To better understand the pharmacological activity 

and diversity of the opioid receptors, it is desirable to have molecularly detailed structures that 

aid in understanding their cellular responses to a variety of ligands. Such structural information 

could also aid the rational design of new drugs. Until now, the structures of the opioid 

receptors have not been obtained by experimental means, and therefore computational 

models are of central importance. Herein comparative modeling is used to obtain models of 

the � opioid receptor and better understand some of its functionally related properties. 

 

 

 

 

 

 

 

 

1 This project was a collaboration with the group of Professor Renyu Liu at the Department of 
Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, 
Philadelphia, PA 19104. 
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Opioid receptors are part of the largest family of integral transmembrane proteins 

coded by the human genome, the G protein-coupled receptors (GPCRs) [7]. GPCRs mediate 

most transmembrane signal transduction, usually in response to hormones, neurotransmitters 

and environmental stimulants. Each GPCR comprises an extracellular N terminus, seven-

transmembrane (7TM) helical segments separated by alternating intracellular and extracellular 

loop regions, and an intracellular C terminus [7-9]. Opioid receptors are part of the largest 

GPCR family, family A (rhodopsin-like) [10], and other members include the receptors for 

epinephrine, dopamine, serotonin, and adenosine [11]. 

The � opioid receptor is the primary receptor in the brain for endogenous opioid 

neuropeptides as well as exogenously administrated opioid compounds [1,3,12]. Potent drugs 

such as morphine, heroin, fentanyl and methadone induce their pharmacological effects 

through the activation of this receptor [13].  

The � opioid receptor structure has not yet been experimentally determined, and 

indirect computational methods, including comparative modeling and de novo methods, have 

been used to suggest structural details of this important signal transduction protein [14-19]. 

Comparative (homology) modeling provides three-dimensional information concerning protein 

structures, particularly for proteins such as the � opioid receptor that are difficult to obtain 

experimentally in large quantity for use in X-ray crystallography or protein NMR structural 

studies [20,21]. The atomic-resolution structural information suggested from such models can 

be used to interpret experimental data, predict the functional effects of different mutations, 

motivate hypotheses concerning structure and function, and design medications [22]. 

In creating models of the opioid receptors, only the structure of bovine rhodopsin has 

been used previously [15-17]. In recent years, several additional GPCR structures have been 

solved to high resolution: the human �2 adrenergic receptor (2.4 Å) [23], the turkey �1 

adrenergic receptor (2.7 Å) [24], and the human A2A adenosine receptor (2.6 Å) [25]. The use 

of these additional GPCR structures may improve the quality of the models and be useful in 
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formulating hypotheses and interpreting mutational data. The use of the structure of the �2 

adrenergic receptor seems particularly appealing [23,26]. Although the sequence identity 

between the human � opioid receptor and the human �2 adrenergic receptor is just (26%), 

compared to that with bovine rhodopsin (25%), the � opioid receptor and �2 adrenergic 

receptor may share similar interactions with their respective ligands since epinephrine is 

structurally similar to opioids [1,27]. In addition, increasing the number of templates often 

helps to improve the accuracy of comparative protein modeling [28,29]. Comparative models 

created by using just one template emphasize the shortcomings of the modeling procedure by 

heavily biasing the structures of the created models [23].  

Herein models of the human � opioid receptor (hMOP-R) were constructed with 

comparative modeling. Two families of structures were created: (a) one used structures of 

human �2 adrenergic receptor and bovine rhodopsin as templates and (b) the other also 

included the turkey �1 adrenergic receptor and the human A2A adenosine receptor as 

templates. Representative structures of each of these two- and four-template ensembles were 

considered in light of a large set of mutagenesis studies. The two- and four-template models 

are very similar and may be used to interpret a variety of experimental data. Molecular 

docking calculations were carried out on these models using an opioid antagonist (naloxone) 

and an opioid agonist (morphine). The docking calculations are consistent with previously 

proposed binding sites and suggest specific interactions of the opioid ligands with key 

residues in the receptor. Using the proposed agonist-induced activation mechanisms of the 

adrenergic receptors and the A2A adenosine receptor, residues involved in agonist recognition 

of h-MOR-P are suggested.  
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4.2 Methods 

The approach taken to obtain models of hMOP-R involves alignment of the 

sequences, creation of the comparative models, minimization, and structural evaluation. 

Docking calculations were used to assess the models and potential protein-ligand interactions. 

 

4.2.1 Sequence Alignment 

The sequences of hMOP-R, human �2 adrenergic receptor, bovine rhodopsin, turkey 

�1 adrenergic receptor and human A2A adenosine receptor were obtained from the UniProt 

Knowledgebase UniProtKB server with the accession numbers P35372, P07550, P02699, 

P07700, and P29274, respectively [30]. 

Given the importance of sequence alignments in the comparative modeling procedure 

[20,31,32], several different programs and substitution matrices were considered. BLASTp 

[33], SIM [34], ClustalW [35], and Phyre [36] were used to align the sequences of hMOP-R 

and human �2 adrenergic receptor. In the case of BLASTp, three members of the “Blosum” 

substitution matrix family [37] (Blosum62, Blosum45 and Blosum80) and one member of the 

“PAM” substitution matrix family [38] (PAM70) were used. For the case of the alignment tool 

SIM, Blosum62 and Blosum30 were used. For ClustalW just the Blosum30 matrix was used. 

The protein structure prediction server Phyre, was also utilized. Standard penalty gaps were 

applied in all the cases [33-35]. A similar procedure was carried out in the case of hMOP-R 

and bovine rhodopsin, hMOP-R and �1 adrenergic receptor, and hMOP-R and A2A adenosine 

receptor. 

A final sequence alignment was obtained for each pair of proteins and modifications 

were performed to maintain highly conserved fingerprint residues of the rhodopsin-like GPCR 

family [39]. Among these are: the disulfide bond between TM3 and the second extracellular 

loop (EC2), the “DRY” motif in TM3, the XBBXXB motif in the third intracellular loop (IC3) 

(where B represents a basic amino acid and X represents a non-basic residue, LRRITR in the 
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case of hMOP-R), the FXXXWXPX[F] motif in TM6 (FIVCWTPIH in the case of hMOP-R), the 

NPXXY motif in TM7 (NPVLY in hMOP-R), and the C-terminal cys palmitoylation site.[39] The 

final multiple sequence alignment is presented in Figure 4.1. 

 

 

Figure 4.1. Sequence Alignment Used in the Creation of the Models of the Human � Opioid 

Receptor, hMOP-R. The templates are: human �2 adrenergic receptor (ADR�2) and bovine rhodopsin 

(bRHO). The residues of the N- and C- terminus are excluded (residue 1 to 65 and residues 354 to 400, 

respectively). Also, the residues excluded from the comparative modeling are colored in gray. The most 

conserved residues at each of the transmembrane helices are depicted in blue. The secondary structure 

of the �2 adrenergic receptor based on STRIDE [40], is shown below the sequences. Residue numbering 

of hMOP-R is shown. Highly conserved motifs in the rhodopsin-like GPCR family are highlighted in 

yellow. 
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4.2.2 Comparative Modeling and Minimization 

Two different ensembles of models of the hMOP-R were constructed. (i) The first 

ensemble used the X-ray crystallographic structures of human �2 adrenergic receptor at 2.4 Å 

resolution (PDB accession code: 2RH1) [23] and bovine rhodopsin at 2.2 Å resolution (PDB 

accession code: 1U19) [41] as templates. (ii) In addition to these templates, the second 

ensemble used the X-ray crystallographic structures of turkey �1 adrenergic receptor at 2.7 Å 

resolution (PDB accession code: 2VT4) [24] and human A2A adenosine receptor at 2.6 Å 

resolution (PDB accession code: 3EML) [25].  

Using the sequence alignments and the two- and four-template structure sets 

described above, one hundred independent models (from residue 65 to 353) were generated 

using Modeller 9v2 with the refinement optimization level adjusted to slow [42,43]. The side 

chains from the resulting models of the two-template and four-template ensembles, were 

minimized using NAMD2 [44] and the CHARMM22 force field [45]. Hydrogen atoms were 

added and minimization was performed by the conjugate-gradient method until the total 

energy remains constant (change in energy less than 1.0 kcal/mol). Models with the lowest 

energy were characterized using Molprobity [46] to confirm that no steric clashes or unusual 

conformations of the backbone and side chains are present. The binding site cavities for the 

models were calculated and analyzed with CASTp [47]. 

 

4.2.3 Docking Calculations 

Naloxone (antagonist) and morphine (agonist) were docked into representative 

models using DockingServer [48] (the DockingServer uses the AutoDock4 [49] algorithm for 

the docking calculations). The geometries of naloxone and morphine were obtained from the 

PubChem database (CID: 5284596 and 5288826, respectively) [50]. The geometry of the 

ligands was optimized using the PM3 semiempirical method using MOPAC2009 [51], which 

was also used to calculate the partial charges. The Lamarkian genetic algorithm was used 
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during the docking calculations with the local search method developed by Solis and Wets 

[52]. The initial position, orientation, and value of the torsion angles for the ligands were set 

randomly. Default parameters for the genetic algorithm were used in all the calculations. 

 

4.3 Results and Discussion 

4.3.1 Template Structures 

The four structural templates used for the creation of the hMOP-R belong to the same 

family of hMOP-R (family A) and are among the most studied GPCR systems. Each receptor 

comprises seven transmembrane helices that form a helical bundle. The helices are 

connected by intracellular  (IC) and extracellular (EC) loops. 

The human �2 adrenergic receptor is part of the family A of GPCRs, particularly of the 

amine group [23,26,53], and is the target of the catecholamine hormone epinephrine 

(adrenaline). The structure contains a small helical segment perpendicular to the seven-helix 

bundle. Helices TM2, TM4, TM5, TM6 and TM7 contain proline-induced kinks that are 

believed to be relevant in the rearrangement needed for the activation of the G protein. An �-

aneurysm is present in helix TM2, and the structure has an exposed loop (EC2) that forms a 

helical segment. 

Rhodopsin is composed of the protein opsin and the covalently bound cofactor retinal 

[41]. Proline-induced kinks are located in helices TM1, TM4, TM6 and TM7. In contrast to the 

second extracellular loop in �2 adrenergic receptor, the EC2 loop forms a partially buried �-

sheet structure. Similar to the �2 adrenergic receptor, there is an �-aneurysm present in TM2. 

The turkey �1 adrenergic receptor shares high similarity with the �2 adrenergic 

receptor [24]. Structurally, one of the main differences is a helical motif located in the second 

intracellular loop (IC2) that is absent in the structure of �2 adrenergic receptor and also absent 

in the structure of bovine rhodopsin. 
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The human A2A adenosine receptor endogenous ligand is the nucleoside adenosine 

[25]. Proline-induced kinks are located in helices TM2, TM5, TM6 and TM7 and in addition to 

the highly conserved disulfide bond, two extra disulfide bonds restrict the conformational 

space of the EC2 loop. Similar to the �1 adrenergic receptor, a helical segment located in the 

second intracellular loop (IC2) that is absent in the �2 adrenergic receptor and bovine 

rhodopsin. The protein also contains an �-aneurysm in TM2. 

These four structures were used as templates in the comparative modeling procedure. 

Two different sets of models of hMOP-R were created in order to test the hypothesis that more 

templates produce better models. The first set contains an ensemble of structures obtained 

using two templates, the �2 adrenergic receptor and bovine rhodopsin. The second set 

contains an ensemble of structures generated using four templates: �2 adrenergic receptor, 

bovine rhodopsin, �1 adrenergic receptor and A2A adenosine receptor. Importantly, in order to 

isolate if significant differences exist with the introduction of more templates, the sequence 

alignments used were exactly the same in both calculations. The conserved disulfide bond 

was explicitly specified in the calculation. Special attention was paid to relax the �-aneurysm 

in TM2 present in all the templates and suggested to be absent in the � opioid receptor [17]. 

Finally, the structures were refined by energy minimization (see Methods). 

 

4.3.2 � Opiod Receptor Mutagenesis Studies 

Site-directed mutagenesis studies provide valuable molecular information and can be 

compared with the comparative models. Although the human � opioid receptor has been 

widely studied, the rat and mouse � opioid receptors are the more commonly used to probe 

the impact of specific mutations. The sequence homology between human, rat and mouse � 

opioid receptors is high. For the human and rat � receptors, the sequence similarity is 94% 

(376/400) for the entire sequence and 98% (285/288) for the transmembrane portion 
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considered in the present study based on the pairwise alignment using BLASTp [33]. The 

similarity of the human and mouse � receptors is 94% (376/400) for the entire sequence and 

98% (284/288) for the transmembrane domain. Table 4.1 summarizes previous findings from 

the mutational studies of the � opiod receptor, and Figures 4.2 and 4.3 illustrate some of the 

residues involved in the mutagenesis studies as well as highly conserved residues in hMOP-

R. 

 

4.3.3 Ensemble Structures 

Figures 4.2a and 4.2b render the backbone root mean square deviation (rmsd) for 

each residue. The calculation is done relative to the lowest energy structure and the average 

is over models in each ensemble. In the case of four-template ensemble the range of rmsd 

values is 0.12 to 7.07 Å with an average residue rmsd of 0.44 ± 0.68 Å while in the case of 

two-template ensemble the range of values is 0.11 to 9.01 Å with an average residue rmsd of 

0.53 ± 0.95 Å. As expected, the variability of the transmembrane region is small when 

compared with that of the loops and the termini. Figures 4.2c and 4.2d show views of relevant 

ligand-binding residues from the extracellular side of the four-template structure and the two-

template structures, respectively. The average side chain rmsd value of all the residues in 

Table 4.1 is 0.97 ± 0.64 Å for the four-template ensemble and 1.10 ± 0.55 Å for the two-

template ensemble. In summary, including two additional templates (�1 adrenergic receptor 

and A2A adenosine receptor) does not significantly change the ensemble results when the 

same alignment is used. 
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SEQUENCE 
NUMBER IN  
THE HMOP-R 

DESCRIPTION 

D116 (2.50) Mutation to A, N or Q reduced binding of DAMGO to less than 5% of WT. Also Mutation to N 
reduces dramatically the affinities for a peptide agonist [54]. 

D149 (3.32) 
Site-directed mutagenesis studies indicated that it is involved in the primary binding site and also 
that mutation to A and N diminishes the binding affinity to agonist and antagonist. Mutation to E 
results in similar properties as the wildtype [54,55]. 

Y150 (3.33) Mutation to F reduced the binding affinities to some �  selective agonists but did not alter the 
affinities to DAMGO, naloxone and the non-selective opioids etorphine and buprenorphine [56]. 

N152 (3.35) Mutation to A produced a 20-fold increase in binding affinity for fentanyl but just a 10-fold increase 
for morphine [57]. 

D166 (3.49) Mutation to H, Q, Y and M led to agonist independent activation [58,59]. 
S198 (4.54) Important not for ligand binding but most likely for maintaining the receptor conformation [60]. 
I200 (4.56) Mutation to V resulted in a four- to five-fold decrease affinity for �  agonists [57]. 
N232 (5.36) Mutations to T or L increased the potency of fentanyl and morphine [61]. 
K235 (5.39) Covalently labeled by �-FNA, as suggested by site-directed mutagenesis studies [62]. 
T281 (6.34) Mutation to K at the junction of IC3 loop led to agonist activation [63]. 

H299 (6.52) Mutation to A decreases the ligand binding of �  and � opioid receptors. Mutation to A reduces 
binding to DAMGO and naloxone [64]. 

K305 (6.58) 
Mutation to E (to mimic �  receptor) produces activity similar to that of wildtype �  receptor for nor-
BNI and GNTI (�  receptor selective ligands) [65]. 

W320 (7.35) Mutation to A increases the binding affinities for the antagonists NTI and SIOM.  Also, mutation to L 
confers � receptor-like potency for morphine [66,67]. 

H321 (7.36) Mutation to A reduces the binding affinities of opioid ligands but did not alter the affinities of 
naloxone and bremazocine [56]. 

I324 (7.39) In �  receptor, mutation to T produces a significant reduction of the binding of dynorphin-related 
peptides, indicating that this site is part of a key opioid peptide binding pocket [68]. 

Y328 (7.43) Mutation to F decreases the binding affinity of naltrexone. Also this mutation decreases the Ki value 
of DAMGO by 20-fold [57]. 

S331 (7.46) Mutation to A decreases the potency of DAMGO. Together with other findings, it suggests 
hydrophilic interactions between S331 and DAMGO [69]. 

C142 (3.25) 
C219 (EC2) 

Mutation of these cysteine residues suggests that the disulfide bond formed is critical for specific 
ligand binding [70]. 

H225 (EC2) This position is critical for the receptor binding. Mutation to S decreases the affinity of bremazocine 
25-fold [71]. 

E231 (EC2) Mutation to D increases binding affinity of an analogue of the peptide agonist JOM6 [72]. 
N88 (1.50) 
D116 (2.50) 
N334 (7.49) 

Mutagenesis studies suggested these highly conserved residues might be part of a hydrogen-
bonding network that ties together helices TM1, TM2 and TM3 [15,73]. 

K235 (5.39) 
C237 (5.41) 

These positions are the cross-linking sites for the reporter affinity label NNA, as suggested by 
mutagenesis studies. [74]. 

I236 (5.40) 
F239 (5.43) 
H299 (6.52) 
V302 (6.55) 

Based on engineered metal-binding sites (Zn2+) it is suggested that I236 and F239 face the 
binding-site crevice and form a metal-binding center with H299 and V302 [17]. 

F243 (5.47) 
W295 (6.48) 

Mutation experiments suggested that these residues might help to form the putative hydrophobic 
pocket and constitute a general binding domain for opioids based of similarities with the � opioid 
receptor [75]. 

K305 (6.58) 
V318 (7.33) 
W320 (7.35) 
H321 (7.36) 

Mutational studies showed the importance of these third extracellular loop residues to differentiate 
�  from �  opioid receptors [76]. 

N334 (7.49) 
D116 (2.50) 

Mutation N334D eliminated detectable binding of DAMGO, but an additional mutation of D116N 
could partially restore the affinity, indicating a structural relation between these two residues [73]. 
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Table 4.1. � Opioid Receptor Mutagenesis Findings. The residue numbers used in the table are those 

of hMOP-R. The numbering in parentheses is consistent with the Ballesteros and Weinstein indexing 

system [77]: (number of the transmembrane helix).(residue number relative to most conserved residue in 

transmembrane helix, which is assigned position 50). EC denotes extracellular loop; IC denotes 

intracellular loop. �-FNA and NNA are irreversible � opioid receptor ligands (reporter affinity labels). 

DAMGO ([D-Ala2,MePhe4,Gly-ol5]enkephalin) is a synthetic opioid peptide having high specificity for � 

opioid receptor. NTI is the delta antagonist naltrindole, and SIOM is the delta antagonist 7’-

spiroindanooxymorphone. JOM6 (Tyr1-c(S-Et-S)[D-Cys2-Phe3-D-Pen4]NH2) is a cyclic peptide agonist. 

 

4.3.4 Model Structures of hMOP-R 

The models with the lowest energy based on the CHARMM22 force field were 

selected as representative of the four-template (4T-hMOP-R) and the two-template (2T-

hMOP-R) ensembles. These models of the hMOP-R consist of 288 amino acid residues 

(residues 66 to 353) comprising the seven transmembrane helices with all the connecting 

loops, plus the small helix that comes after the seventh transmembrane helix (residues 343-

352). N-terminal (residues 1-65) and C-terminal (residues 353-400) domains are not included 

in the models. The structure of hMOP-R presents the typical counterclockwise arrangement of 

the seven transmembrane helices (see Figures 4.2c, 4.2d, 4.3b and 4.3c). Proline-induced 

kinks are located in helices TM2, TM4, TM5, TM6 and TM7. The EC2 loop forms a small 

helical segment that is inherited from the structures of the adrenergic receptors and is 

believed to be important in binding selectivity [1]. This loop is part of the entrance to the 

putative opioid binding pocket and is constrained by a conserved disulfide bond between 

residues C142 and C219. This extracellular segment is more extended when compared with 

the comparable tightly packed loop of rhodopsin. The models present a helical segment in IC1 

that is present in the all the templates but absent in the structure of bovine rhodopsin. The 

TM2 in the hMOP-R models does not have the �-aneurysm present in the templates [17]. 
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Figure 4.2. Ensemble Structures of hMOP-R Using Four (a) and Two (b) Templates. The thickness 

of the protein backbone chain and color is representative of the backbone rmsd value for each residue. 

Subset of some of the residues from Table 4.1 for the 100 ensemble minimized structures for the four-

template (c) and two-template (d) ensemble, respectively. The average side chain rmsd of all the 

residues in Table 1 is 0.97 ± 0.64 Å for the four-template ensemble and 1.10 ± 0.55 Å for the two-

template ensemble. 

 

 

Two different views of the model of hMOP-R are depicted in Figure 4.3a. In general, 

4T-hMOP-R and 2T-hMOP-R are very similar with a backbone rmsd of 1.30 Å. One of the 

most significant differences between the models is a helical segment in IC2 that is specific to 

the �1 adrenergic receptor and A2A adenosine receptor; it is absent in 2T-hMOP-R (see inset 

of Figure 4.3a). This loop connects helices TM3 and TM4 and is close to the important and 

highly conserved DRY motif. 

The secondary structures of the models were assigned with STRIDE [40], a 

structurally base secondary structure method. The locations and lengths of the TM helices 

were similar for both 4T-hMOP-R and 2T-hMOP-R. 

Both models 4T-hMOP-R and 2T-hMOP-R can qualitatively aid the interpretation of 

the experimental data collected in Table 4.1 (see Figures 4.3b and 4.3c). Asp1493.32, known to 
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be crucial for binding affinity of agonists and antagonists [54,55], is located in TM3 and it is 

directed toward the putative ligand-binding pocket. Lys2355.39 is predicted to appear in this 

binding site, where it could irreversibly bind the fumaramate moiety of the reporter affinity label 

�-funaltrexamine (�-FNA) [62]. The models contain a hydrogen-bonding network formed by 

Asn881.50, Asp1162.50 and Asn3347.49, and interactions among these residues have been 

suggested to tie TM1, TM2 and TM3 together [15,73]. Phe2435.47 and Trp2956.48 have been 

suggested to form a hydrophobic pocket [75], observed in the models where these residues 

appear near the interface between helices TM5 and TM6. The residue His2996.52 is positioned 

near both these residues in the putative binding site and is known to be important in agonist 

affinity [64]. Position His225, in the EC2 loop, is located at the entrance of the binding pocket, 

and this residue may interact with ligands; this position is critical for the receptor binding [71]. 

Mutation of Asp1663.49 or Thr2816.34 leads to an agonist-independent activation of the receptor 

[58,63]. Residue Asp1663.49 is part of the conserved triplet of residues, the DRY motif. In the 

case of 4T-hMOP-R, Asp1663.49 is in proximity to Arg181(IC2) (distance of 2.7 Å), Tyr1082.42 

(4.1 Å), and Thr1052.39 (5.5 Å) (see Figure 4.3d). In the case of 2T-hMOP-R, Asp1663.49 is near 

to Arg1673.50 (2.7 Å), and is part of a polar network together with Arg181(IC2), Asp179(IC2), 

and to a less extent with Tyr1082.42 (see Figure 4.3e). (The distances in parentheses are the 

shortest distances between atoms in the different residue side chains.) 

The importance of residue Thr2816.34 in hMOP-R seems to be related with the region 

denominated “ionic lock” [78]: the highly conserved Arg1673.50 on TM3 together with a Glu6.30 

residue on TM6 has been proposed to be relevant to the stability of the inactive-state 

conformation and therefore with the basal activity of different GPCRs [7,79]. In the case of the 

X-ray crystallographic structure of the inactive state of rhodopsin [41], Arg3.50 forms a salt 

bridge with Glu6.30. Surprisingly, in the case of both adrenergic receptors [23,24] and the 

adenosine receptor [25], the salt bridge between Arg3.50 and Glu6.30 is disrupted. hMOP-R 

contains the highly conserved Arg3.50 on TM3 but it contains a Leu6.30 residue in the analogous 
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position on TM6. In the case of 4T-hMOP-R, Arg1673.50 is predicted to be in the vicinity of 

residue Thr2816.34 (2.9 Å), that is, one turn in the helix separated from Leu2776.30 (i+4). 

Arg1673.50 is also close to the carbonyl group of Leu2776.30 (3.0 Å), and to Thr1052.39 (4.9 Å). 

The position of Arg1673.50 in 4T-hMOP-R resembles more the position of the equivalent Arg3.50 

in rhodopsin. In the case of 2T-hMOP-R, the position of Arg1673.50 is closer to Asp1663.49 (2.7 

Å), Thr1052.39 (3.6 Å), and the carbonyl group of Ala177(IC2) (4.1 Å) than to Thr2816.34 (5.9 Å) 

as seen in the case of 4T-hMOP-R. The position of Arg1673.50 in 2T-hMOP-R resembles the 

analogous Arg3.50 in the adrenergic receptors and the adenosine receptor structures.  

 



 59 

 



 60 

Figure 4.3. Alignment and Comparison of Representative Models of hMOP-R. (a) the representative 

models from the four-template ensemble (4T-hMOP-R) and two-template ensemble (2T-hMOP-R) are 

color in green and yellow, respectively. The most conserved residues at each of the transmembrane 

helices are depicted as blue sticks. The highly conserved motifs in the rhodopsin-like GPCR family are 

depicted as orange sticks; disulfide bond between TM3 and EC2, DRY in TM3, XBBXXB in IC3 (where B 

represents a basic amino acid and X represents a non-basic residue), FXXXWXPX[F] in TM6, the 

NPXXY in TM7  and the C-terminal cys palmitoylation site. The inset at the bottom shows one of the 

most significant differences between the two models. The IC2 loop that connects helices TM3 and TM4 

in the 4T-hMOP-R model, forms a helical motif inherit from the �1 adrenergic receptor and the A2A 

adenosine receptor templates. (b) (c) Top views of the binding site for the 4T-hMOP-R and 2T-hMOP-R 

models with a subset of the relevant residues involved in experimental studies (see Table 4.1). Side 

chain residues are colored in magenta in both cases. This view of the hMOP-R from the extracellular 

side of the membrane shows the counterclockwise arrangement of the TM helices. (d) (e), Views of the 

TM3-IC2-TM4 region with the DRY motif for 4T-hMOP-R  and 2T-hMOP-R,  respectively. Asp1663.49 (D) 

and Tyr1683.51 (Y) are colored in orange while Arg1673.50 (R) is colored in blue. 

 

 

A graphical summary (snake-like plot) of the features of 4T-hMOP-R is shown in 

Figure 4.4. The lipid membrane region for the h-MOP-R is also shown and is identified using 

the positioning of the �2 adrenergic receptor presented in the Orientation of Proteins in 

Membrane Database [80]. Highly conserved positions, conserved motifs in the rhodopsin-like 

family, positions involved in experimental studies, length of each of the helices and complete 

sequence of hMOP-R, are also depicted. 

Within the models, CASTp identified a putative binding cavity using a probe with a 

radius of 1.4 Å. The calculated volume for 4T-hMOP-R is 1402 Å3 and for 2T-hMOP-R is 1717 

Å3. By comparison, the respective cavity volumes of �2 adrenergic receptor and bovine 

rhodopsin are 2057.3 and 674.4 Å3. 

The quality of the models was examined with Molprobity. The Ramachandran analysis 

for 4T-hMOP-R found one outlier, Thr313 located at the EC3 loop. The clashscore for all-atom 

contacts was 6.35 (within the 89th percentile). In the case of 2T-hMOP-R, the Ramachandran 

analysis identified three outliers, Pro226 in EC2, Met226 in IC3, and Thr3177.32 at the 
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beginning of TM7. The clashscore for all-atom contacts was 10.17 (within the 70th percentile). 

As a reference, the clashscores for all-atoms for the templates are: 6.10 (90th percentile) for �2 

adrenergic, 43.86 (6th percentile) for bovine rhodopsin, 19.05 (35th percentile) for �1 adrenergic 

and 11.17 (66th percentile) for A2A adenosine receptors. The number of outliers in the 

Ramachandran analysis for the four templates is zero, eight, one and zero, respectively. 

 

 

 

Figure 4.4. Snake-like Plot of the Entire Sequence of hMOP-R. The glycosylation sites are those 

proposed at UniProtKB [30]. The most conserved residues at each of the transmembrane helices are in 

blue circles with the respective Ballesteros and Weinstein indexing number. Positions involved in 

experimental studies mentioned in Table 4.1 are colored in magenta. The conserved motifs in the 

rhodopsin-like GPCR family are colored in orange. Disulfide bond between C142 and C219 is indicated. 

The N- and C- helical termini of each of the seven helices are depicted as bold circles. The membrane 

region is colored in gray and was obtained by aligning the 4T-hMOP-R model to the structure of the �2 

adrenergic receptor positioned in a membrane at the Orientation of Proteins in Membrane Database [80]. 

The absent (nonmodeled) sequence region in the model is display in gray circles. 
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4.3.5 Comparison with Previous Opioid Models 

Three previously published models of the inactive conformation were compared with 

4T-hMOP-R and 2T-hMOP-R. i) The human � opioid receptor proposed by Kieffer and 

coworkers (Model_A) [81], ii) the model of human � opioid receptor developed by Ferguson 

and coworkers (Model_B) [15], and iii) the rat � opioid receptor model developed by Mosberg 

and coworkers (Model_C) [17]. There is a fourth model of the human � opioid receptor but the 

coordinates are not available [19]. 

Model_A is based on the structure of bovine rhodopsin (PDB accession code: 1F88) 

and lacks the EC2 loop, which is important for ligand selectivity. The model contains the �-

aneurysm in TM2 and therefore residue Thr122 is highly exposed to the lipid membrane. The 

volume for the binding cavity using CASTp with a radius probe of 1.4 Å was 1219.6 Å3. The 

main differences between this model and 4T-hMOP-R and 2T-hMOP-R are the positions of 

the beginning of TM1 relative to the rest of the bundle, the presence of an �-aneurysm in TM2 

and finally, the absence of the second extracellular loop EC2.  

Model_B is based on electron cryomicroscopy data[82] and the C� coordinate 

template developed by Baldwin et al. [83] This model comprises only the seven 

transmembrane helices. The TM2 helix does not contain the �-aneurysm. The main difference 

between this model and the 4T-hMOP-R and 2T-hMOP-R models is the presence of all the 

connecting loops in our models of hMOP-R, which are fundamental to address the 

receptor/ligand interactions. 

Model_C is based on the structure of bovine rhodopsin (PDB accession code: 1GZM) 

and was refined using experimentally determined structural-distance constraints [17]. This 

model contains all the connecting loops, especially the important EC2 loop that forms a �-

sheet structure and is buried in a similar way as the EC2 in bovine rhodopsin. In contrast, the 

4T-hMOP-R and 2T-hMOP-R models have an EC2 loop that resembles the short helical 

segment present in the adrenergic receptors. This extracellular region adopts a more 
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protruded position in comparison with the tightly packed loop of rhodopsin, leaving the entrace 

of the putative binding site directly exposed to water. Similar to Model_B, Model_C does not 

contain the �-aneurysm in TM2 and the first segment of the TM1 (residues Ser661.28 to 

Tyr771.39) is relatively closer to the rest of the helical bundle when compared with 4T-hMOP-R 

and 2T-hMOP-R. The volume for the binding cavity using CASTp with a radius probe of 1.4 Å 

was 1382.8 Å3.  

The models presented here (4T-hMOP-R and 2T-hMOP-R) provide information about 

the extracellular regions of the hMOP-R, in particular the structure of the EC2 loop. Only 

Model_C provides a structure of this important segment that is believed to be important for 

ligand affinity, selectivity and functional differences between hMOP-R and other receptors 

[1,7]. Model_C predicts an EC2 loop forming a short �-sheet structure that protects the ligand-

binding pocket from solvent access as the EC2 does in rhodopsin. In the case of hMOP-R, 

and all the other available GPCR structures except rhodopsin, the endogenous ligands are 

diffusible and noncovalently bound. The structures of the EC2 loop display a more open 

binding site in comparison with rhodopsin, allowing access to the ligand-binding pocket.  

The models presented here display significant improvements in the understanding of 

the structure of the hMOP-R when compared with the previously published models. They are 

able to aid in the interpretation of all the experimental data collected in Table 4.1. The models 

contain information about the extracellular loop (EC2) that connects helices TM4 and TM5, 

and the proposed structure for the EC2 loop is consistent with the experimental data [70-72]. 

In addition, the EC2 loop structure is consistent with the observation that other available 

GPCR structures having diffusible endogenous ligands present a more protruded structure 

when compared with that of rhodopsin allowing easier access to the ligand binding site [23-

25]. 
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4.3.6 Docking Calculations 

Opioid ligands were computationally docked into the model structures. The crystal 

structure of �2 adrenergic receptor [23], �1 adrenergic receptor [24], and A2A adenosine 

receptor [25] were solved with diffusible antagonists (partial inverse agonists in the case of 

�2), while the structure of the bovine rhodopsin was solved with the covalently bound cofactor 

retinal in its 11-cis configuration [41], that is, all templates were solved in the inactive 

conformation. For this reason, an opioid antagonist (naloxone) was primarily utilized in the 

docking calculations to the � opiod receptor models. Naloxone has high affinity for the � opioid 

receptor and contains a positively charged nitrogen atom that is thought to strongly interact 

with the opioid receptor [6].  A classic opioid agonist, morphine, with a similar structure was 

also considered. 

To test the reliability of the docking results, the four ligands in each of the template 

structures were docked into their corresponding receptors. In each case, the top docking 

results were in aggrement with the crystal structure even in the case of larger and more 

flexible ligands such as retinal and ZMA241385. The rmsd values between the 

crystallographic ligand positions and the docking results for the heavy atoms are: carazolol 

1.49 Å, retinal 1.41 Å, cyanopindolol 0.83 Å and ZMA241385 2.69 Å. 

Due to the lack of flexibility intrinsic in the docking calculations used here, 

modifications in the conformation of some side chains were needed to dock naloxone into 4T-

hMOP-R and 2T-hMOP-R. Specifically, these involve changes in some dihedral angles of 

large residues such as Ile146, Tyr150, Trp228, Trp320, Ile324, and Tyr328 in the putative 

binding pocket. For instance, in the case of Trp228 the dihedral angle (�) between N-C�-C�-C� 

was modified by 3.5° (from a value of -50.5° to 54.0°). All the structures were docked in a 

similar binding pocket as illustrated in Figure 4.5a. The binding site is located mainly between 

helices TM2, TM3, TM6 and TM7 with small involvement of TM5.  
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One of the docking results orients the positively charged ammonium nitrogen of 

naloxone in proximity to Asp1493.32 in helix TM3 (Figure 4.5b and 4.5c). The interaction of 

opioid ligands with Asp1493.32 has been found to be crucial for binding, and the mutation of 

this position leads to a substantial decrease in binding affinity [55,84]. Furthermore, the two 

adrenergic receptors have an aspartic acid located in an equivalent position (Asp1133.32 for 

the �2 and Asp1213.32 for the �1). In the crystal structure of �2 and �1 adrenergic receptors, 

both ligands (carazolol and cyanopindolol, respectively) contain a positively charged nitrogen 

atom interacting with this acidic residue. Figure 4.5d and 4.5e show a structural alignment of 

�2 adrenergic receptor and carazolol (cyan) with the hMOP-R models and naloxone (gray and 

purple), where the positions of the positively charged nitrogens in carazolol and naloxone are 

similarly located. When the crystal structure of �1 adrenergic receptor is used in the 

comparison, similar relative positioning of ligand’s nitrogen atom is observed. The same 

models were used to dock the opioid agonist morphine. In both cases, morphine is positioned 

in the same binding cavity as naloxone, with orientations that bring the ammonium nitrogen of 

morphine in proximity to the acidic residue Asp1493.32. 
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Figure 4.5. Docking Calculation Results for the Model Structures of hMOP-R. (a) Aligned structures 

of the 4T-hMOP-R (green) and 2T-hMOP-R (yellow) models with the top docked structures. The ligand 

molecules naloxone and morphine are located in the same binding site. The docked structures in the 4T-

hMOP-R model are colored in grey while the docked structures in the 2T-hMOP-R model are colored in 

purple. (b) (c) Docked structure (naloxone) in a position that orients the positively charged nitrogen atom 

close to the oxygen atoms of the acidic residue Asp1493.32 (see dashed red line) for (b) 4T-hMOP-R and 

(c) 2T-hMOP-R. d, e, Superposition of crystal structure of �2 adrenergic receptor with carazolol (cyan) 

with the (d) 4T-hMOP-R and (e) 2T-hMOP-R models. Carazolol’s ammonium nitrogen atom (black circle) 

that interacts with residue Asp1133.32 that is analogous to Asp1493.32 in hMOP-R. 

 

4.3.7 Residues Involved in Agonist/Antagonist Ligand Binding 

Based on recent findings involving GPCR agonist-induced activation mechanisms [85-

89], the hMOP-R models may be helpful in understanding the activation process of this 

receptor. Based on comparisons of recent structures of GPCRs bound to agonist and partial 

agonist [85-89], with their counterparts bound to antagonists and inverse agonists [23-25], 

residues have been identified to interact particularly with agonist and proposed to be important 

in agonist-induced activation.  

In the case of the adrenergic receptors, �1 and �2, the important residues involved in 

agonist activation are located in TM5 [85,87]. Residues Ser2115.42 and Ser2155.46 form 

hydrogen bonds with both full and partial agonists, but just the full agonists interact with 

Ser2155.46. The equivalent position of h-MOP-R contains an alanine residue Ala2425.46. 

In the case of the A2A adenosine receptor, the residues involved in direct interaction 

with agonists and not with inverse agonists are located mainly in TM3 and TM7 [88,89]. 

Agonists formed non-polar interactions with Val843.32, Leu853.33 and Thr883.36 and polar 

interactions with Ser2777.42 and His2787.43. Both kinds of interactions were concluded to be 

important in the activation of the A2A adenosine receptor [88,89].  

The general receptor structural changes upon agonist-induced activation were 

concluded to be: i) The inward motion of TM3, TM5 and TM7 (contraction of the binding 

pocket), and ii) the formation of a bulge in TM5 (centered around Ser2155.46 and Ser2075.46 in 
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�1 and �2 adrenergic receptors, and Cys1855.46 in the adenosine receptor) [89]. Finally, based 

on structural alignments, it was concluded that the positions involved in contact with agonist in 

the complexes �1 adrenergic receptor/isoprenaline and A2A adenosine receptor/adenosine are: 

Asp1213.32, Val843.32; Val1253.36, Thr883.36; Ser2115.42, Asn1815.42; Phe3066.51, Leu2496.51; 

Asn3106.55, Asn2536.55; Phe3076.52, His2506.52; Asn3297.39, Ile2747.39 and Tyr3337.43, His2787.43, 

respectively (see Figure 4.6a) [89]. Using the representative models of the human � opioid 

receptor, 4T-hMOP-R and 2T-hMOP-R, the equivalent positions are Asp1493.32, Met1533.36, 

Val2385.42, Ile2986.51, Val3026.55, His2996.52, Ile3247.39 and Tyr3287.43. To our knowledge, there 

have been studies on hMOP-R involving Asp1493.32, Val3026.55, His2996.52, Ile3247.39 and 

Tyr3287.43. The effects of mutations involving residues Met1533.36, Val2385.42, and Ile2986.51 

have yet to be explored, however, particularly with regard to agonist-induced activation in � 

opioid receptor, and would be interesting candidates for future studies.  

 

 

 
 
Figure 4.6. Residues Involve in Agonist-Induced Activation of hMOP-R. (a) Equivalent positions in 

the hMOP-R that make contacts with agonists in the complexes A2A adenosine receptor/adenosine and 

�1 adrenergic receptor/isoprenaline (cyan space-filling models).[89] To our knowledge, positions 

Met1533.36, Val2385.42, and Ile2986.51 have not been investigated to address their relevance in agonist 

binding. (b) Ala2425.46 is centered in the bulge formation upon agonist binding. (c) The interface of TM5 

and TM6 is formed mostly by hydrophobic interactions. In order to reinforce the interaction of TM5 and 

TM6, mutation of position Thr2966.44 for a more hydrophobic residue is anticipated to have similar effects 

as the hydrogen bond formation between Ser5.43 and Asn6.55 in the agonist bound adrenergic receptors. 
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From these previous structural studies of the adenosine/agonist and 

adrenergic/agonist complexes and the structural information from the 4T-hMOP-R and the 2T-

hMOP-R models, two main predictions for the hMOP-R are suggested: 

1) Given the bulge formation in TM5 upon agonist binding and the thermostabilizing mutations 

in the A2A adenosine receptor, there may be an important interaction between positions 

Cys1855.46 and Gln893.37 [88,89]. These positions have been shown to be relevant to agonist 

binding.85 The mutation Q89A stabilizes the active state of the A2A adenosine receptor,85 so 

disruption of the interaction at this position in hMOP-R is suggested to be also relevant (the 

equivalent positions in h-MOP-R are Ala2425.46 and Phe1543.37, see Figure 4.6b). Based on 

the models of h-MOP-R, mutation of Ala2425.46 could have significant implications in the 

activation of the receptor, Moreover, position Ile2004.56 also seems to play an important role in 

these interactions (see Figure 4.6b). Mutagenesis of this position for a smaller residue I200V, 

decreases the agonist affinity (Kd) of morphine and the synthetic opioid peptide DAMGO by a 

factor of 4 to 5 [57]. Using the models proposed here, the explanation for this result is that a 

smaller residue reduces the propensity toward inward movement of residue Ala2425.46 (center 

of the bulge formation upon agonist binding), thus we anticipate that a bulkier residue would 

facilitate the inward movement of Ala2425.46, shifting the equilibrium to the active state and 

therefore increasing agonist binding affinity. 

2) Upon binding of agonists in the case of the adrenergic receptors, there is a formation of a 

hydrogen bond (Ser2125.43 and Asn3106.55 in �1, Ser2045.43 and Asn2936.55 in �2) between 

helices TM5 and TM6. In the case of hMOP-R, the residue identities at these positions 

(Phe2395.43 and Val3026.55) prevent similar hydrogen binding interactions. If the reinforcement 

of the interactions of helices TM5 and TM6 occurs upon agonist binding, using the models 

presented here, mutation of Thr2966.44 for a more hydrophobic residue could strengthen the 

interactions of TM5 and TM6 in a similar fashion to that observed in the �1 (�2) adrenergic 
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receptors. As a result, a shift in the equilibrium to active conformations and an increase in 

agonist binding would be expected (see Figure 4.6c). 

 

4.4 Conclusions 

Models of the human � opioid receptor have been created that leverage new 

structural data concerning GPCRs. We compare varying the number of templates used in the 

comparative modeling. Interestingly, the ensemble analysis showed that there is small 

difference when four templates and two templates are used to create the models. One of the 

main conclusions is that both ensembles produced similar results on the condition that the 

sequence alignment used is the same.  More templates usually produce better sequence 

coverage and therefore the hypothesis that more templates are able to improve the 

comparative models is still reasonable. We have seen from the different GPCR structures 

available that they have some structural diversity and therefore surmount some of the 

structural bias inherent in using just one structure.  Nonetheless, the structures used in this 

study are still limited to the four mentioned herein.   

Based on the energies after minimization, two models were selected as representative 

of each ensemble. Detailed analysis of 4T-hMOP-R and 2T-hMOP-R shows that the two 

models are similar and that both may be used to interpret the collected experimental data. 

One important difference is the second intracellular loop (IC2) that connects TM3 and TM4. 

For this segment, 4T-hMOP-R forms a helical motif that is inherited from the �1 adrenergic 

receptor and the A2A adenosine receptor and therefore is absent in the 2T-hMOP-R model. 

This region of the receptor is relevant because it is close to the highly conserved DRY motif. 

The docking calculations were in aggrement with some experimental data and they 

show a possible binding orientation of the ligand. Also, both models produce similar results for 

the docking of an antagonist and an agonist. Naloxone, an opioid antagonist, was docked into 

4T-hMOP-R and 2T-hMOP-R. One particular docking result, oriented the positively charged 
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nitrogen of naloxone, close to the acidic residue Asp1493.32 located in helix TM3. This residue 

has been shown to be crucial for the binding of different ligands. The crystal structures of �2 

and �1 adrenergic receptors show that the analogous residue Asp3.32 is interacting with a 

positively charged nitrogen atom from carazolol and cyanopindolol, respectively. When the 

structures of 4T-hMOP-R/naloxone and 2T-hMOP-R/naloxone are superimposed with the 

structure of �2 adrenergic/carazolol and �1 adrenergic receptor/cyanopindolol, the positions of 

the positively charged nitrogens are almost identical. The opioid agonist morphine was docked 

in the models and binds in the same binding cavity as naloxone, with the positively charged 

nitrogen of morphine close the residue Asp1493.32. Based on information from GPCRs agonist 

bound structures and the suggested agonist-induced mechanisms, predictions about residues 

involved in the agonist-induced activation process in the hMOP-R are anticipated. Specifically, 

the following is proposed.  (1) A substitution that facilitates the inward movement of TM5 and 

the bulge formation centered at Ala2425.46. The mutation involves interaction with a bulkier 

residue at position Ile2004.56. (2) A single mutation to strengthen the interactions between TM5 

and TM6 in hMOP-R, based on the suggested reinforced interactions upon agonist binding 

between TM5 and TM6. The substitution involves a hydrophobic residue at position Thr2966.44. 
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5 Computational Protein Design and Molecular Dynamics 

Simulations of Stromal Cell–Derived Factor–1�  and Simplified Peptide 

Analogs1 

 

5.1 Computational Protein Design to Re-Engineer Stromal Cell–Derived Factor–1�  

Generates an Effective and Translatable Angiogenic Polypeptide Analog2 

5.1.1 Introduction 

More people die annually of cardiovascular disease than of any other cause. The 

World Health Organization estimates that more than 17 million people per year die of 

cardiovascular disease. Of these deaths, an estimated 7.2 million were due to ischemic heart 

disease. An estimated 80 000 000 American adults (approximately 1 in 3) have at least 1 type 

of cardiovascular disease, with more than 22 000 000 having either coronary heart disease or 

heart failure [1]. 

 

 

 

 

 

 

 

 

1 This project was a collaboration with the group of Professor Y. Joseph Woo at Division of 
Cardiovascular Surgery, Department of Surgery, University of Pennsylvania School of 
Medicine, Philadelphia, PA 19104. 
2 Adapted in part from William Hiesinger, Jose Manuel Perez-Aguilar, Pavan Atluri, Nicole A. 
Marotta, John R. Frederick, J. Raymond Fitzpatrick III, Ryan C. McCormick, Jeffrey R. 
Muenzer, Elaine C. Yang, Rebecca D. Levit, Li-Jun Yuan, John W. MacArthur, Jeffery G. 
Saven, Y. Joseph Woo Circulation 2011, 124:S18-26. 
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Treatments for ischemic heart disease often fail because they do not address the 

underlying ventricular cellular pathophysiology and, most importantly, do not restore 

microvascular perfusion, which has been shown to be a critical, independent predictor of 

ventricular remodeling, as well as reinfarction, heart failure, and death [2,3]. On the other 

hand, postinfarction patients who develop robust angiographic collateralization manifest 

improved regional ventricular function, which suggests an important role for the native 

revascularization process [4]. Current therapeutic options for ischemic heart disease are only 

capable of intervening in relatively large arteries, which leaves pervasive microvascular 

dysfunction unaddressed. This is important because microvascular integrity, specifically 

microvascular blood velocity and flow, predicts functional recovery of ischemic myocardium [5-

9]. 

In addition, current interventions are instituted relatively late in the overall time course 

of the disease process, with macrorevascularization possible in only 63% to 80% of patients 

with ischemic heart disease [10]. Even with reestablishment of epicardial coronary artery flow 

through thrombolysis, percutaneous intervention, or bypass grafting, a paucity of patent, 

functional microvasculature remains. Angiogenic cytokine therapy is a microrevascularization 

strategy that can serve as a primary therapy at any point in the disease process and can be 

used synergistically with traditional coronary revascularization methods [11]. A wide variety of 

cytokines and microrevascularization techniques have been used with varying degrees of 

success [12-15]. 

Stromal cell–derived factor–1� (SDF) is a powerful chemoattractant and is considered 

to be one of the key regulators of hematopoietic stem cell trafficking between the peripheral 

circulation and bone marrow. It has been shown to effect proliferation and mobilization of 

endothelial progenitor cells (EPCs) to induce vasculogenesis and is significantly upregulated 

in response to both myocardial ischemia and infarction [16,17]. SDF, a 67–amino acid protein, 

is also remarkably conserved among species; a single amino acid substitution is all that 
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differentiates the human and murine sequences [18]. Experimentally, delivery of SDF to 

ischemic myocardium has been shown to increase circulating EPCs, significantly enhance 

myocardial EPC density, increase vasculogenesis, and augment myocardial function by 

enhancing perfusion, reversing cellular ischemia, increasing cardiomyocyte viability, and 

preserving ventricular geometry [19,20]. 

However, exogenous SDF is quickly degraded by multiple proteases [18,21], has a 

large and complex tertiary structure that involves multiple disulfide linkages [22], and is very 

expensive because it is a recombinant protein. Smaller analogs of SDF may provide 

translational advantages, including enhanced stability and function, ease of synthesis, lower 

cost, and potential modulated delivery via engineered biomaterials [23,24]. In the present 

study, we set out to design and engineer a minimized, highly efficient polypeptide analog of 

the SDF molecule using computational molecular modeling and design. The primary design 

goal was to remove the large, central �-sheet region and link the native N–terminus 

(responsible for receptor activation and binding) and the C–terminus (responsible for 

extracellular stabilization) while maintaining functionality and the approximately perpendicular 

orientation between the 2 termini [22]. Two disulfide bonds located in the large central �-sheet 

region help to maintain the conformation of native SDF. To recover a similar conformation 

after excision of this portion of the protein, proline residue linkers were considered to connect 

the N– and C–termini. The cyclic proline residue limits the conformational space accessible to 

the polypeptide. Loop modeling calculations revealed the variability of conformations explored 

by linkers comprising different numbers of proline residues. A designed diproline linker yielded 

energetic and conformational advantages that resulted in a small, low-molecular-weight 

engineered SDF polypeptide analog (ESA) that was shown to have activity comparable to or 

better than recombinant human SDF both in vitro and in a murine model of ischemic heart 

failure. 
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5.1.2 Methods 

5.1.2.1 Computational Protein Design, Modeling, and Synthesis 

Loop modeling calculations were performed with the program MODELLER, which 

implements a loop modeling algorithm that consists of an optimization of a defined segment of 

protein structure in a fixed environment, guided by a pseudo–energy-scoring function [25]. 

Fifty different structures for a 1-, 2-, and 3-proline residue linker were created while 

constraining the coordinates of the remainder of the protein. The conformation with the lowest 

effective energy (best score) was analyzed with MolProbity, which provides detailed all-atom 

contact analysis of steric interactions, dihedral angles, and possible hydrogen bonds and van 

der Waals contacts [26]. After the amino acid sequence of the newly designed ESA peptide 

had been computationally designed and analyzed, it was synthesized by solid-phase peptide 

synthesis, which involves the incorporation of N �-amino acids into a peptide of any desired 

sequence with 1 end of the sequence remaining attached to a solid support matrix. After the 

desired sequence of amino acids has been obtained, the peptide is removed from the 

polymeric support. 

 

5.1.2.2 Cell Isolation 

Bone marrow mononuclear cells were isolated from the long bones of adult male 

green fluorescent protein (GFP)-expressing Wistar rats by density-gradient centrifugation with 

Histopaque 1083 (Sigma-Aldrich) and cultured in endothelial basal medium-2 supplemented 

with EGM-2 SingleQuot (Lonza) containing human epidermal growth factor, FBS, vascular 

endothelial growth factor, basic human fibroblast growth factor, recombinant human long R3 

insulin-like growth factor-1, ascorbic acid, heparin, gentamicin, and amphotericin-B. The 

combination of endothelium-specific media and the removal of nonadherent bone marrow 

mononuclear cells was intended to select for the EPC phenotype. 
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5.1.2.3 Functional Characterization of Isolated EPCs by Boyden Chamber Assay 

Boyden chambers (Neuro Probe) were used to assess EPC migration. Briefly, 8-�m 

filters were loaded into control and experimental chambers. Fourteen-day EPCs cultured in 

endothelium-specific media on vitronectin-coated plates were trypsinized, counted, and 

brought to a concentration of 90 cells/�L in Dulbecco phosphate buffered saline (DPBS). The 

bottom chamber of the control and experimental chambers were loaded with DPBS, 100 

ng/mL recombinant SDF (R&D Systems) in DPBS, or 100 ng/mL ESA in DPBS. A 560-�L cell 

suspension was added to the top chamber of each. All 3 chambers were incubated at 37°C, 

5% CO2 for 4 hours. The cells remaining in the top chamber were wiped clean with a cotton 

swab, and the filter was removed. Slides were visualized on a DF5000B Leica Fluorescent 

scope and analyzed via LASAF version 2.0.2 (Leica) software. Boyden chamber analysis was 

performed in triplicate. Additional Boyden chamber assays were run to generate a dose-

response curve to compare molar equivalents of ESA and SDF. A series of progressively 

increasing ESA and SDF gradients (0.625, 1.25, 2.5, 5, 12.5, 20, 25, and 50 nmol/L) were 

used, and assays at each dose were run 10 times. 

 

5.1.2.4 CXCR4 Receptor Activation Assay 

Fourteen-day EPCs cultured in endothelium-specific media on vitronectin-coated 

plates were trypsinized and plated onto the bottom of a 96-well cell culture plate at a density of 

10 000 cells per well and allowed to adhere for 24 hours. Cells were incubated with culture 

media that contained recombinant SDF (0.5 �g/mL) or ESA (0.5 �g/mL) or media only 

(control) for 10 minutes and subsequently were fixed in 4% formaldehyde. Phosphorylated 

and total AKT levels were quantified with the FACE AKT ELISA kit (Active Motif). These 

experiments were also repeated but with the addition of the chemokine receptor 4 (CXCR4) 

receptor antagonist AMD3100 to each experimental group. Results are reported in optical 

density (OD) units. 
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5.1.2.5 CXCR4 Receptor Expression 

EPCs were seeded overnight at a density of 1�104 cells per coverslip in 4-well slide 

chambers. Cells were either treated with 100 ng/mL SDF or 100 ng/mL ESA at 37°C for 6 

hours. After chemokine stimulation, the cells were fixed and immunostained with rabbit anti-

CXCR4 antibody (Abcam) at 1:250 for 12 hours. Cells were then incubated with Alexa 488 

donkey anti-rabbit polyclonal antibody (Invitrogen) at 1:250 for 1 hour at room temperature. 

The cells were counterstained with DAPI to visualize nuclei. Immunofluorescence images 

were acquired with Zeiss ZEN 2010 software and a Zeiss LSM 710 confocal laser 

fluorescence scanning microscope. 

 

5.1.2.6 Animal Care and Biosafety 

Male CD-1 mice weighing 25 to 30 g were obtained from Charles River. Food and 

water were provided ad libitum. This investigation conformed with the Guide for the Care and 

Use of Laboratory Animals published by the US National Institutes of Health (NIH publication 

No. 85-23, revised 1996) and was approved by the Institutional Animal Use and Care 

Committee of the University of Pennsylvania (protocol #709026). 

 

5.1.2.7 Ischemic Cardiomyopathy Model 

Mice were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg), intubated 

with a 22-gauge catheter, and mechanically ventilated (Hallowell EMC). With the animal 

supine, an anterior thoracotomy was performed in the left fourth intercostal space, and an 8-0 

polypropylene suture was placed around the mid left anterior descending coronary artery 

(LAD) midway between the left atrial appendage and left ventricular (LV) apex and ligated to 

produce a large anterolateral myocardial infarction of 30% of the LV. The extent of infarction is 

highly reproducible in our hands, and progression to cardiomyopathy has been well 

documented. After ligation, animals were randomly assigned to receive direct intramyocardial 
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injection into the peri-infarct border zone of either saline (30 �L, n=7), SDF (6 �g/kg in 30 �L, 

n=13), or ESA (6 �g/kg in 30 �L, n=10). The thoracotomy was then closed, and the animals 

were extubated and recovered. Buprenorphine (0.5 mg/kg) was administered for postoperative 

analgesia. Both treatment groups received subcutaneous injections of 40 �g/kg liquid 

sargramostim (granulocyte-macrophage colony-stimulating factor), diluted in saline for a total 

volume of 100 �L, immediately postoperatively and on postoperative day 1. 

 

5.1.2.8 In Vivo Angiogenic Growth Factor Expression 

To assess upregulation of angiogenic growth factors and evaluate any potential 

sustained angiogenic effect of ESA treatment, hearts from all animals (control n=7, SDF n=13, 

and ESA n=10) were explanted 2 weeks after LAD ligation, and myocardial tissue biopsy 

samples were taken from the ischemic border zone. Samples were homogenized in T-Per 

tissue extraction reagent (Thermo-Fischer), normalized for total protein content via a Quick 

Start Bradford Protein Assay (Bio-Rad Laboratories), and tested for presence of mouse 

angiopoietin-1. Immunoblotting was performed with a mouse monoclonal antibody directed 

against mouse angiopoietin-1 (1:250; Abcam) and horseradish peroxidase–conjugated sheep 

anti-mouse IgG enhanced chemiluminescence secondary antibody (1:20 000; GE Healthcare). 

Chemiluminescent SuperSignal West Dura Extended Duration Substrate (Thermo Scientific) 

was used, and images were captured with a ChemiDoc XRS+ system (Bio-Rad). Assays were 

performed in triplicate. 

 

5.1.2.9 In Vivo Inflammatory Analysis   

To assess upregulation of inflammatory factors, hearts from all animals (control n=7, 

SDF n=13, and ESA n=10) were explanted 2 weeks after LAD ligation, and myocardial tissue 

biopsy samples were taken from the ischemic border zone. Samples were homogenized in T-

Per Tissue Extraction Reagent (Thermo-Fischer), normalized for total protein content via 
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Quick Start Bradford Protein Assay (Bio-Rad), and tested for the presence of mouse tumor 

necrosis factor-�. Immunoblotting was performed with a rabbit polyclonal antibody directed 

against mouse tumor necrosis factor-� (1:1000; Abcam) and horseradish peroxidase–

conjugated sheep anti-rabbit IgG enhanced chemiluminescence secondary antibody (1:3000; 

GE Healthcare). Chemiluminescent SuperSignal West Dura Extended Duration Substrate 

(Thermo Scientific) was used, and images were captured with a ChemiDoc XRS+ system 

(Bio-Rad). 

To further assess the inflammatory response after treatment, hearts from a subset of 

animals (control n=4, SDF n=4, and ESA n=4) were explanted 2 weeks after LAD ligation, and 

myocardial tissue biopsy samples were taken from the ischemic border zone. Samples were 

homogenized in T-Per Tissue Extraction Reagent (Thermo-Fischer), normalized for total 

protein content via Quick Start Bradford Protein Assay (Bio-Rad), and tested for the presence 

of multiple inflammatory markers, including monocyte chemotactic protein-1, stem cell factor, 

nuclear factor (NF)-�B, phospho-NF-�B, phospho-p38 mitogen-activated protein kinase, 

phospho-Stat3, and phospho-I�B-�. Levels were quantified with the mouse inflammation 

ELISA strip (Signosis) and the PathScan Inflammation Multi-Target Sandwich ELISA (Cell 

Signaling Technology).  

 

5.1.2.10 Echocardiographic Assessment of LV Geometry and Function 

LV geometry and function were evaluated at 2 weeks (control n=7, SDF n=13, and 

ESA n=10) after LAD ligation with a high-resolution (30 MHz) Vevo 770 transthoracic 

echocardiography system (VisualSonic Inc). Four equally spaced short-axis acquisitions and 1 

maximum long-axis cine-loop acquisition of the LV were recorded with the ultrahigh-frame-rate 

EKVTM (ECG-based kilohertz visualization) acquisition mode. LV systolic function was 

evaluated by a modified 4-plane Simpson method. LV cross-sectional areas were obtained by 

tracing the diastolic and systolic endocardial borders in each of the 4 equally spaced LV short-
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axis slices. On the basis of these measurements and the Simpson length (d, s), the fractional 

area change, ejection fraction, stroke volume, and cardiac output were computed with the 

Vevo 770 Standard Measurement Package. Before and during the ultrasound scanning, the 

mouse was lightly anesthetized with a mixture of 1% to 2% isoflurane gas and 100% oxygen 

and was placed in the supine position on a heating platform. All analyses were performed by a 

single investigator in a group-blinded fashion.  

 

5.1.2.11 Statistical Analysis 

Overall comparisons between the 3 groups were analyzed with a 1-way ANOVA. The 

results are reported with F (a ratio of the variance between groups to the variance within 

groups), 2 degrees of freedom, and the probability value. In addition, the unpaired Student t 

test was used to compare individual groups. Values are expressed as mean±SEM. Statistical 

significance was defined by P�0.05. 

 
 

Figure 5.1. Crystallographic Structures of Stromal Cell–Derived Factor–1� (SDF) and Designed 
Model Structure ESA. The different regions of the structure are colored as N–terminal (green), central 
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region (yellow), and C–terminal (magenta). The central �-sheet region (yellow) is replaced by a diproline 
linker in ESA. The corresponding amino acid sequences of SDF–1� and ESA are also depicted, with the 
different regions colored accordingly. 
 

 

 

5.1.3 Results 

5.1.3.1 Computational Protein Design, Modeling, and Synthesis 

The crystallographic structure of SDF at 2.2 Å resolution was used to guide design 

and modeling (Figure 5.1) [27]. The central �-sheet region residues (amino acids 18 to 54) 

were replaced with a 2-proline linker, which resulted in the 32-residue designed polypeptide 

ESA. The coordinates of residues 14FESHPPL20 were allowed to relax on modeling with 

MODELLER, whereas the coordinates of the remainder of the structure were constrained at 

their crystallographic values. Fifty different possible structures were generated for peptides 

with a 1-, 2-, or 3-proline linker. In general, the number of stable conformations increases 

substantially as the number of linking amino acids is increased (Figure 5.2). The peptide with 

the 2-proline linker (subsequently designated ESA) yielded energetic and conformational 

advantages. The ESA peptide structure model with the lowest-scoring function was chosen for 

further analysis. Importantly, the 2-proline residues were found to have energetically favorable 

backbone dihedral angles (� and �) consistent with those observed for proline in natural 

protein structures. The introduction of a 2-consecutive-proline linker does not produce steric 

clashes within the modeled polypeptide structure. In addition, based on the calculated 

structure, phenylalanine 14 (F14ESA) interacts with glutamic acid 15 (E15ESA), histidine 17 

(H17ESA), and leucine 20 (L20ESA or L55 in SDF). These interactions are not present in the 

crystallographic structure of SDF, and this group of residues may form a small clusterlike 

structure that when coupled with the diproline spacer biases the peptide toward conformations 

similar to those found in native SDF (Figure 5.3). Further structural analysis revealed that the 
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model did not contain any steric clashes or unusual conformations of the backbone and the 

amino acid side chains. 

 

 
 
Figure 5.2. Top and Side View of Model Stromal Cell–Derived Factor–1� (SDF) Analog Peptides 

Using 1-proline (a), 2-proline (b), and 3-proline (c) Residues to Link the N and C Terminus. The 

images depict a composite of the 50 most energetically stable linker conformations of each peptide 

sequence. The peptide with the 2-proline linker (b) adopts a more uniform tertiary profile than the others 

and recovers the perpendicular orientation between the N– and C–termini found in native SDF. 
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Figure 5.3. Space-Filling Representation of the ESA and SDF-1�  Structures. The bulky side chain of 

phenylalanine 14 (F14ESA) interacts with glutamic acid 15 (E15ESA), histidine 17 (H17ESA), and to some 

extent leucine 20 (L20ESA or residue 55 in native SDF-1�). The interactions of F14SDF, E15SDF, H17SDF, 

and L55SDF were absent in the crystallographic structure of SDF–1�. These new interactions formed a 

small clusterlike structure that when coupled with the diproline spacer (yellow in ESA) may help to 

provide the necessary conformational stability and rigidity found in native SDF. 

 

 

5.1.3.2 EPCs Cultured in Endothelial Specific Media Exhibit Enhanced Migration When 

Exposed to an ESA Gradient   

Using a Boyden chamber assay, 14-day cells showed increased migration when 

placed in an ESA gradient compared with both recombinant SDF and saline (ESA 567±74 

cells/high-power field [HPF] versus SDF 438±46 cells/HPF [P=0.037] versus control 156±45 

cells/HPF [P=0.001]). Representative slides are shown in Figure 5.4. In addition, a 1-way 

ANOVA was used to generate an overall comparison of the 3 study groups. EPC migration 

differed significantly across the 3 groups, F(2,6)=41.27, P=0.0003. A dose-response curve 

generated by comparing molar equivalents of ESA and SDF (Figure 5.5) demonstrated that 

ESA significantly outperformed SDF at the high end of the concentration range but was 

essentially equivalent to SDF for the low- and mid-range concentrations. Additionally, it was 

revealed that the effectiveness of ESA and SDF was not linearly correlated to the dose 
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concentration and that there was a significant decrease in EPC migration at the highest doses 

for both. 

 

 

 
 
Figure 5.4. Boyden Chamber Assays. Representative images of Boyden chamber assay filters 

demonstrating green fluorescent protein–positive endothelial progenitor cell (EPC) migration when 

exposed to a saline, stromal cell–derived factor–1� (SDF), and ESA gradient, respectively. HPF 

indicates high-power field. 
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Figure 5.5. EPC Dose Response Migration. Dose-response curve of endothelial progenitor cell (EPC) 

migration comparing molar equivalent concentration gradients of ESA and stromal cell–derived factor–

1� (SDF). HPF indicates high-power field. 

 

 

5.1.3.3 ESA Elicits Increased CXCR4 Receptor Activation In Vitro 

Cells treated with ESA had greater levels of AKT phosphorylation than either 

recombinant SDF (1.638±0.239 versus 1.258±0.187 OD, P=0.006) or control (1.638±0.239 

versus 0.949±0.077 OD, P=0.0003). There was no significant difference in total AKT content 

among the groups. In addition, a 1-way ANOVA was used to generate an overall comparison 

of the 3 study groups. Levels of AKT phosphorylation differed significantly among the 3 

groups, F(2,21)=38.56, P<1�10�7. The addition of the CXCR4 receptor antagonist AMD3100 

to the culture media eliminated any difference in receptor activation between the groups (ESA 

0.598±0.22 versus SDF 0.599±0.07 OD, P=0.49, and ESA 0.598±0.22 versus control 

0.539±0.05 OD, P=0.27). 
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5.1.3.4 EPCs Display Robust CXCR4 Expression When Treated With ESA 

After exposure to ESA or SDF for 6 hours, isolated EPCs demonstrated diffuse 

expression of the CXCR4 receptor (Figure 5.6). 

 

 

Figure 5.6. CXCR4 Expression in EPCs. Isolated endothelial progenitor cells cultured and stimulated 

with either stromal cell–derived factor–1� (A and B) or ESA (C and D) demonstrated robust and 

universal expression of the chemokine receptor 4 (CXCR4 receptor; green). Nuclei are stained with 

DAPI (blue). 
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5.1.3.5 In Vivo Angiogenic Growth Factors Are Upregulated by ESA 

At 2 weeks, immunoblotting revealed a significant quantitative increase in mouse angiopoietin-

1 expression in the ESA- and SDF-treated animals compared with the control group. 

Quantitative analysis demonstrated intensities of 336±9 (ESA), 367±17 (SDF), and 234±7 

(control) intensity units, respectively (P<0.001). A representative immunoblot is shown in 

Figure 5.7. 

 

 
 

Figure 5.7. In vivo Mouse Angiopoietin-1 Growth Factor. At 2 weeks, border-zone myocardial tissue 

samples show increased levels of mouse angiopoietin-1 (Ang-1) in the ESA-treated and stromal cell–

derived factor–1� (SDF)-treated groups compared with the control group. GAPDH staining was 

performed to demonstrate equivalent protein loading between lanes. 

 

5.1.3.6 In Vivo Levels of Border-Zone Inflamatory Markers Are Not Statistically Different 

Between Groups 

At 2 weeks, immunoblotting revealed similar levels of tumor necrosis factor-� among 

the ESA, SDF, and control groups. Quantitative analysis demonstrated intensities of 

4784±274 (ESA), 4832±547 (SDF), and 4832±722 (control) arbitrary intensity units, 

respectively. Statistical comparisons revealed no statistically significant difference (ESA 

versus control, P=0.46; ESA versus SDF, P=0.4, SDF versus control, P=0.5). Additional 

analysis demonstrated that after infarction and treatment, border-zone levels of the 

inflammatory factors monocyte chemotactic protein-1, stem cell factor, NF-�B, phospho-NF-

�B, phospho-p38 mitogen-activated protein kinase, phospho-Stat3, and phospho-I�B-� were 
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either not significantly different or were significantly less in animals treated with ESA or SDF 

than in saline control animals. These findings indicate that inflammation is not responsible for 

the beneficial and proangiogenic effects of ESA.  

 

5.1.3.7 Echocardiographic Assessment Demonstrates Enhanced LV Function After ESA 

Treatment 

Echocardiographic assessment of cardiac function demonstrated significant benefits 

in the ESA group compared with the control group. At 2 weeks, ESA animals had a 

significantly improved ejection fraction (57±2.9% versus 42±1.6%, P=0.002), cardiac output 

(30±1.8 versus 23±1.3 mL/min, P=0.01), stroke volume (61±3.6 versus 48±2.9 �L, P=0.02), 

and fractional area change (52±3.6% versus 29±4.9%, P=0.001) compared with controls. The 

ESA-treated mice also had a significantly increased fractional area change compared with 

SDF–treated mice (52±3.6% versus 42±3.2%, P=0.04) and a strong trend toward 

improvement in all other ventricular function parameters assessed (Table 5.1). A 1-way 

ANOVA was used to generate an overall comparison of the 3 study groups for each cardiac 

functional parameter. Values differed significantly across the 3 groups for ejection fraction 

(F(2,27)=5.71, P=0.009), cardiac output (F(2,27)=3.98, P=0.03), stroke volume (F(2,27)=3.83, 

P=0.03), and fractional area change (F(2,27)=7.91, P=0.002). 

 

 

Table 5.1. Left Ventricular Function Assessed by Transthoracic Echocardiography. At 2 weeks, 

ESA-treated animals demonstrated improved left ventricular function by transthoracic echocardiography. 

SDF indicates stromal cell–derived factor–1�. 
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5.1.4 Discussion 

Angiogenic cytokine therapy for ischemic heart disease has proven to have great 

potential in numerous preclinical and clinical trials. The ability to replenish myocardial 

microvasculature could prove lifesaving to the millions of patients with myocardial ischemia. 

SDF, in particular, is among the most potent and specific angiogenic cytokines; its sole target, 

the CXCR4 cell surface antigen, is expressed in significant levels on CD34+ EPCs, and 

expression of this receptor is related to efficient SDF-induced transendothelial migration [28]. 

SDF repeatedly has been shown to play a critical role in the rescue of myocardial function and 

stem cell recruitment to the heart after myocardial infarction [19,20,29-33]. However, 

significant barriers remain between the diverse experimental successes of SDF angiogenic 

cytokine therapy and its widespread clinical translation. SDF is a large, complex 10-kDa 

protein that is expensive to manufacture and is readily inactivated by proteases that are 

upregulated at the time of myocardial infarction [34,35]. It is our belief that smaller, synthetic 

analogs of SDF can provide translational advantages over the native protein, including 

enhanced stability and function, ease of synthesis, lower cost, and potential modulated 

delivery via engineered biomaterials. In the present study, we used advanced computational 

protein design techniques to create a more efficient and translatable molecule (ESA) evolved 

from the native SDF protein.  

The ESA peptide was engineered to link the native N–terminus (responsible for 

receptor activation and binding) and the C–terminus (responsible for extracellular stabilization) 

with a diproline amino acid spacer. Although ESA may not have a well-defined tertiary 

structure, the linker is designed to bias the polypeptide toward structures that present the N– 

and C–termini in a manner similar to that present in the native SDF protein. On the basis of 

the modeled structure, F14ESA is in proximity to E15ESA, H17ESA, and L20ESA, forming a small 

cluster of side chains within ESA (Figure 5.3). These interactions, coupled with the diproline 

linker, may provide a conformational bias sufficient to recover the activity associated with 
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SDF. The end product, ESA, is a novel polypeptide that contains less than half the number of 

amino acid residues, is less than half the molecular weight, and has enhanced physiological 

performance compared with recombinant SDF. 

The SDF chemotactic homing mechanism is central to its ability to increase peri-

infarct microvasculature and prevent mechanically inefficient ventricular contraction and 

eventual heart failure. Using a Boyden chamber assay to directly quantify the magnitude of 

cellular migration, we were able to demonstrate significantly enhanced migration of endothelial 

progenitor stem cells when placed in an ESA gradient compared with native SDF peptide. This 

result shows that for the same mass concentration, ESA not only retains this important 

function, despite its reengineered conformation, but surpasses the native protein. Compared 

with SDF, the relatively small size of ESA may enhance its diffusion potential and the speed at 

which the chemotactic signal is deployed. However, rapid diffusion is likely not the only factor 

that leads to significantly greater EPC migration. It has been shown that AKT activation is 

required for SDF-induced cellular migration [36]. To evaluate the EPC response to ESA, we 

incubated EPCs with culture media that contained ESA, recombinant SDF, or media only 

(control) and quantified both phosphorylated and total AKT levels by ELISA. In concordance 

with the results of the EPC migration assay, we were able to demonstrate significantly 

increased CXCR4 receptor activation and phosphorylated AKT levels in response to ESA 

compared with SDF. The addition of the CXCR4 antagonist AMD3100 eliminated this 

difference in receptor activation between ESA, SDF, and control, which confirms its receptor 

specificity. It is difficult to speculate which specific receptor-peptide interactions are 

responsible for the enhanced activation of CXCR4 by ESA, and future computational studies 

will be used to understand the surprisingly efficient activity of this novel polypeptide on a 

molecular level. 

It is our belief that ESA, in a similar fashion to SDF, increases border-zone 

microvasculature, which in turn reverses cellular ischemia, preserves cardiomyocyte viability, 
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and increases the mechanical efficiency of peri-infarct myocardium. In support of that 

hypothesis, we have shown that border-zone myocardium treated with ESA has significantly 

upregulated levels of angiopoietin-1, indicative of an ongoing angiogenic process as late as 2 

weeks after infarction and treatment. One could argue that the mechanism responsible for the 

upregulated angiogenic activity is an exaggerated inflammatory response that results from the 

injection of ESA or even SDF. However, analysis of border-zone tumor necrosis factor-�, 

monocyte chemotactic protein-1, stem cell factor, NF-�B, phospho-NF-�B, phospho-p38 

mitogen-activated protein kinase, phospho-Stat3, and phospho-I�B-� revealed that levels of 

inflammatory markers were not increased in experimental animals compared with controls, 

which indicates that the beneficial angiogenic and functional effects were not the result of 

differing levels of inflammation. 

An increase in microvascular perfusion should result in decreased ventricular 

remodeling, improved regional ventricular function, and slower progression toward heart 

failure. Left ventricular geometry and function were evaluated at 2 weeks after LAD ligation 

with a high-resolution (30 MHz) transthoracic echocardiography system. The improved 

functionality of ESA in vitro was, once again, borne out in vivo. Animals treated with 

intramyocardial injections of the ESA peptide had better ejection fractions, cardiac output, 

stroke volume, and fractional area contraction than either the SDF or control group.  

 

5.1.5 Conclusion 

In conclusion, we have been able to engineer a novel, low-molecular-weight 

polypeptide with the enhanced physiological ability to induce EPC migration and EPC receptor 

activation and improve ventricular performance compared with native SDF. This peptide offers 

a more clinically translatable neovasculogenic therapy that could conceivably be deployed at 

any point in the time course of ischemic heart disease to address critical deficits in 

microvascular perfusion. 
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5.2 Molecular Dynamics Simulations of Stromal Cell–Derived Factor–1� and Simplified 

Peptide Analogs with Enhanced Chemotactic Activity1 

5.2.1 Introduction 

Chemokines are a family of small (8�10 kDa) secreted proteins that posses 

chemoattractant properties [37,38]. This type of cytokines directs cell migration and 

proinflamatory immune responses by specific activation of their receptors expressed on the 

cell surface. The chemokine receptors are part of the large family of seven�transmembrane G 

protein�coupled receptors (GPCRs) [39]. In addition, chemokines play an important role in 

promoting the creation and regulation of new blood vessels (angiogenesis and angiostasis) 

[37,40]. Chemokines are divided in four families based on the arrangement and number of 

cysteine residues in the N�terminus, i.e., CXC, CC, CX3C, and C [37,38].  

Stromal cell�derived factor�1 (SDF�1 or CXCL12) is a member of the CXC 

chemokine family and is responsible for the migration of a variety of cells, including monocytes 

and lymphocytes [38]. It is constitutively secreted from the bone marrow stromal cells and it 

plays a central role in the hematopoietic stem cell trafficking [41,42]. SDF�1 is the ligand of 

the CXC chemokine receptor 4 (CXCR4). The SDF-1/CXCR4 signal axis has been shown to 

play essential roles in: hemotopoiesis, stem/progenitor cell trafficking, stem-cell homing, 

cancer progression-growth, metastasis, neovascularization and angiogenic processes [11,43-

46]. Furthermore, mice lacking the SDF–1 or the CXCR4 gene die in utero with a number of 

developmental abnormalities indicating the critical role of SDF–1 and CXCR4 in embryonic 

development [47-49]. 

Three variants of SDF�1 are produced by alternative splicing of the same gene, i.e., 

SDF–1�, SDF–1�, and SDF–1� [50]. SDF-1� is the most abundant form and is composed of 

68 residues. SDF–1� contains four additional residues in the C�terminus while the SDF–1� 

variant contains a more extensive C�terminus with a different amino acid composition. SDF–
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1� assumes the conventional chemokine topology as shown by its NMR [22,51] and crystal 

structures [27,52,53]. It is composed by an unstructured N–terminus (K1 to R8), a long flexible 

loop that contains the CXC conserved motif (denominated N–loop), a three-stranded anti-

parallel �-sheet, and an �-helix. Interestingly, two disulfide bonds formed by residues at the 

N–loop and the �-sheet region, restrict the conformations of SDF–1�.   

The interaction of SDF–1� with the CXCR4 receptor has been widely studied 

[38,45,46] and the current binding model suggests a two-step/two-site mechanism [22,54]. 

First is the interaction between SDF–1� (through its �-sheet, 50–s loop and N–loop) and the 

CXCR4 extracellular region. After SDF–1� is effectively anchored on the extracellular region 

of CXCR4, its highly dynamic N�terminus efficiently searches and binds a cavity within the 

transmembrane helices that triggers the conformational changes needed for signal 

transduction [54], pressumably by the fly-casting mechanism [55]. 

Based on the relevance of the SDF–1�/CXCR4 system, its potential role as a 

therapeutic target for treatment of different disorders (e.g., cancer progression-growth, 

metastasis, inflammatory and infectious diseases, etc) has been extensively explored [40,56]. 

Of particular relevance are its roles in the growth of new blood vessels from existing ones 

(angiogenesis) and the de novo formation of vessels from endothelial progenitor cells 

(vasculogenesis). These provide a promising treatment for inadequate blood supply to the 

heart (ischemic heart disease), which has been predicted to be the leading cause of death 

worldwide in the near future [11,46].  

For instance, externally administered SDF–1� to ischemic myocardium has been 

demostrated to produce beneficial effects such as increase circulating endothelial progenitor 

cells (EPC), increment in the de novo formation of vessels (vasculogenesis), increase in 

myocardial function, and preservation of ventricular geometry, just to mention some [19,20].  

Despite its potential as a therapeutic agent for treatment of cardiovascular disorders, 

SDF–1� presents features that preclude its translation to general clinical therapy. 
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Recombinant SDF–1� suffers proteolysis by different proteases [21,35], has a complex 

tertiary structure that involved two disulfide bonds [22], and is relatively large and expensive. 

Hiesinger et al. recently proposed a promising alternative based on computationally 

designed SDF–1� analogs that used a proline residue linker to connect the N–terminus and 

part of the N–loop (K1 to H17) with the �-helix at the C–terminus (L55 to N67) [57]. The study 

showed that proline analogs performed similarly and in some cases, outperform recombinant 

SDF–1� in cell-based assays. Moreover, one of the analogs outperformed recombinant SDF–

1� in a murine model of ischemic heart failure [57]. In this study, a detailed analysis of the 

conformations of SDF–1� and some simplified analogs was carried out. Molecular dynamics 

(MD) simulations were performed to obtain insights of the conformations explore by SDF–1� 

and the different analogs in water environment and under physiological conditions of 

temperature and pressure. MD simulations suggest that the analogs explore similar 

conformations as native SDF–1�, especially the two-proline (2P) analog. MD simulation 

results are in close agreement with experimental results using a migration assay and a 

receptor activation assay [57]. Hypotheses about the reasons of enhanced activity of the two-

proline analog relative to native SDF–1� in both, cell-based assays and in the murine model 

of heart failure are exposed and discussed in regard to experimental findings. 

 
5.2.2 Methods 

5.2.2.1 Initial Structures 

The crystal structure of SDF–1� at 2.2 Å resolution was used [27]. The complete 

structure was reconstructed using the CHARMM topology files. The modeling of the simplified 

SDF–1� analogs is described previously [57]. Briefly, the crystal structure of SDF–1� was 

used to guide the design. The segment of the protein composed by the �-sheet region was 

replaced by linkers made of one (1P), two (2P), and three (3P) proline residues using 

MODELLER [25]. An additional linker composed of two glycine residues was also considered 



 104 

(2G). Finally, for the analog with a linker of three prolines, two mutations in the �-helix were 

suggested (I58E and L62K) to increase the helix stability (3P_I24E_L28K). The initial 

structures utilized for the molecular dynamics simulations are shown in figure 5.8. 

 

5.2.2.2 Molecular Dynamics Simulations 

All-atom molecular dynamic simulations were performed on the SDF–1� structure and 

the simplified analogs. The simulations were carried out using NAMD2 [58] and the 

CHARMM22 force field [59]. The best structure from the comparative modeling was minimized 

after addition of hydrogen atoms for 5000 steps using NAMD2 [58]. Water molecules (TIP3P) 

[60] and sodium (Na+) and chlorine (Cl–) ions [59] were included and minimized with the 

protein atoms fixed followed by a short MD simulation (5.0 ps with 1.0 fs time step). The 

protein was then minimized to adjust to the new environment for 10000 steps followed by 

another 10000 steps minimization of the entire system. Finally, the MD simulation on the 

entire system was carried out in the NPT ensemble. Langevin dynamics and the hybrid Nosé-

Hoover Langevin piston were used to maintain constant temperature (310 K) and constant 

pressure (1atm), respectively [61]. Electrostatic interactions were evaluated using the Particle 

Mesh Ewald technique with a grid spacing less than 1.0 Å for each dimension and a fourth-

order interpolation [62]. Periodic boundary conditions were used with a periodic cell of 55 Å � 

52 Å � 69 Å. Bond lenghts involving hydrogen atoms were constrained to their equilibrium 

values [59] by using the SHAKE algorithm [63]. A time step of 2.0 fs was used during the 

simulations. 
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Figure 5.8. Initial Structures (With Sequences) of SDF–1�  and the Simplified Analogs Used for the 

Molecular Dynamics Simulations. The regions of SDF–1� and analogs are colored as follows: N–

terminus in green, �-region/Linker in yellow, and C–terminus (including the �-helix) in magenta. The root-

mean square deviation (rmsd) plots relative to the initial structure for the production phase (100 ns) are 

also shown. The C� atoms involved in the calculation of the rmsd are depicted as blue spheres. To avoid 

noise from the highly dynamic N–terminus, the first eight residues were excluded in the rmsd 

calculations. 

 

5.2.2.3 Overlap Distribution Calculation 
 

The overlap distribution (�) calculation was done using the following equation: 

 

(5-1) 

 

where N is the total number of points, �1i and �2i are the values for the first and the second 

histograms, respectively. The sum is over the different “bins” in the histrograms. W is the 

number of bins. The denominator is the normalization factor. A value of 0 means there is not 

overlap for the two distributions whereas a value of 1 means a maximum ovelap (equal 

distributions). 

 

5.2.3 Results 

5.2.3.1 Structural Parameters and General Dynamics of the Systems 

The equilibriation of the different systems was monitored by changes in structural 

parameters such as the root-mean square deviation (rmsd) relative to the initial structure. The 

production phase for each of the systems was 100 ns. In the case of SDF–1�, the rmsd of the 

C� atoms was used to monitor the dynamics of the protein. It was evident from the results that 

the highly dynamic N–terminus was introducing noise in the analysis (figure 5.9a), so a subset 

of the 68 C� atoms of SDF–1� was chosen (from C9 to A65). The rmsd of the C� atoms from 

C9 to A65 is shown in figure 5.8 and 5.9a. For consistency, the equivalent residues in the 

SDF-1� analogs were used in the calculations of rmsd.  
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Figure 5.9. Root-mean Square Deviations (rmsd) and Root-mean Square Fluctuations (rmsf) of 

SDF–1�, and Distributions and PSI and PHI Backbone Angles of the 2P and 2G Analogs. (a) Rmsd 

for the entire trajectory (~110 ns) for SDF–1�1-67 and SDF–1�9-65. Inclusion of the highly dynamics N–

terminus segment (K1-R8) produces large fluctuations in the rmsd that are not present when this 

segment is excluded from the calculations. The production phase is highlighted in red. (b) SDF–1� root-

mean square fluctuations for the C� atoms for the MD trajectory (100 ns). The thickness and color of the 

rederings are related with the rmsf value. (c-f) Distributions of the � and � backbone angles for all the 

residues in the 2P and 2G analogs. (g-n) Distributions of � and � angles for the residues that formed the 

linker in 2P and 2G analogs. 

 

Additionally, the root-mean square fluctuations (rmsf) were calculated for the entire 

production phase and the results for SDF-1� are presented in figure 5.9b. From the rmsf 

results, it is evident the most dynamics part of the structure reside in the first segment of the 

N–terminus, K1 to R8. The disulfide bonds between C9-C34 and C11-C50, seem to 

significantly restrain the movement of the rest of the N–terminus (see figure 5.8).  

In the case of the different analogs the conformations from the linker residues are in 

agreement with values seeing in natural proteins. As expected the proline residues forming 

the linker present a very narrow distribution of the phi (�) and psi (�) angles through the entire 

trajectory while the glycine residues explore a relatively wide distribution, see Figure 5.9c-n. 

 

5.2.3.2 Simplified Parameters to Monitor the Dynamics of SDF-1� and its Analogs 

Instead of using techniques to reduce the dimentionality of the variables involved in 

the conformations explored by SDF–1� and the analogs, e.g., principal component analysis, 

we decided to identify simple parameters with straightforward physical interpretation. For this 

reason three parameters were defined and monitored: i) the distance between the C� atoms 

of residue C9 and L55 (located before the beginning of the �-helix in the C–terminus), ii) the 

distance between the C� atoms of residues C9 and A65 (last residue of the �-helix in the C–

terminus), and iii) the angle formed by the C� atoms of C9-L55 and A65, see figure 5.10. 
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To explore the similarities in the conformations sampled by SDF–1� and its simplified 

analogs, the distributions of the values adopted by the systems were obtained. The different 

histograms were compared and the overlaps calculated using equation 5-1. The results are 

presented in figure 5.10. The values of the overlap range from 0 (no distribution ovelap) and 1 

(complete distribution overlap). Based on the distributions of these three parameters, it seems 

that the analogs sample similar conformations than SDF–1�. In the case of distance1 (C9-

L55), the 3P_I24E_L82K and 2G analog sample similar values than SDF-1�, but for the rest, 

there is still significant overlap in all the analogs but 1P. For distance2 (C9-A65), the results 

shown a better overlap for 1P and 2P with significant values for all the rest analogs but 

3P_I24E_L82K. In the case of angle1 (C9-L55-A65), all the distributions seem to overlap 

significantly, with the oustanding case of the 1P and 2P analogs. It is our belief that the 

position of the N–terminus relative to the rest of the structure could be important in the 

interactions of SDF–1� with its native target receptors.  

The findings from this analysis indicate that in general and based on the three 

parameters defined previously, all the simplified analogs of SDF–1� explore to a certain 

degree, conformations similar to the native SDF–1�. A product of the values for the overlap of 

the three parameters suggests that the rank of similarity between SDF-1� and the simplified 

analogs is 2P (0.083) > 2G (0.059) > 1P (0.015) > 3P (0.012) > 3P_I24E_L82K (0.003). The 

results based on this analysis are in agreement with experimental findings that show that the 

2P analog bahaves similarly to native SDF–1� in a migration assay and a receptor activation 

assay [57]. 
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Figure 5.10. Parameter Defined to Monitor the Dynamics of SDF–1� and the Simplified Analogs. 

Three parameters, two distances and one angle are defined in the SDF–1� structure (top panels). The 

distributions of the values sampled along the MD simulations of the simplified analogs are compared with 

the distribution sampled by SDF–1�. The similarity (overlap) of the distributions is expressed by the 
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number at the top right corner of the histograms, were 0 represents no overlap and 1 represents a 

complete overlap. 

 

 

5.2.3.3 Comparison of Superimposed Structures 

A structure from the entire 100 ns MD trajectory was extracted every 2.0 ns and a 

comparison of the 50 resulting structures is presented in figure 5.11 for SDF–1� and the 

simplified analogs. From the MD trajectories different features for SDF–1� and each of the 

simplified analogs can be deduced. 

SDF–1� : Based on the rmsd and the MD trajectories, the different conformations explored by 

SDF–1� at this time scale are similar (�rmsd� = 2.79 Å) than the initial structure (based on the 

X-ray crystal structure, 1A15.pdb; chain A [27]). As expected, the N–terminus is highly 

dynamic and explores a significant space volume with a radius of gyration for the nitrogen 

atom of the first residue (K1) of 14.79 Å. Starting at residue C9, the structure samples less 

diverse conformations that resemble the initial structure. As suggested previously, the 

presence of the two disulfide bonds (C9-C34 and C11-C50) seems to aid in maintaining the 

tertiary structure of SDF–1�. The secondary structure is well maintained during the simulation 

as indicated in figure 5.11 (Top left panel).   

1P analog: Interestingly, the MD simulations indicate a disruption of the �-helical structure in 

the analog with one-proline linker. The N–terminus is still very flexible with radius of gyration 

for the nitrogen atom of the first residue (K1) of 13.91 Å. The lack of the disulfide bonds seems 

to produce a highly flexible peptide, see figure 5.11, top right panel. 

2P analog: MD simulations indicate that even though there are no disulfide bonds present in 

the peptide, the general topology of 2P resembles the tertiary structure of native SDF–1� 

(figure 5.11, middle left panel). Contrary to the 1P analog, the secondary structure of the �-

helix is retained. The N–terminus is highly flexible and explores an even larger space volume 
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than SDF–1� as indicated by the radius of gyration of the nitrogen atom of the first residue, 

17.13 Å. 

2G analog: The flexible residues in the linker of this peptide seem to allow the proximity of part 

of the N–terminus with the �-helix at the C–terminus (resembling an inverted “U” from the 

poses in figure 5.11, middle right panel). The structure of the �-helix is retained and similarly 

to SDF–1�, 1P and 2P, the N-terminus explores a significant space volume with a radius of 

gyration for the nitrogen atom of the first residue of 14.96 Å. 

3P analog: The MD simulations show a similarity in the general conformation explored by 2G 

and 3P. In a similar fashion, part of the N-terminus of 3P, samples conformations that are in 

the vicinity of the �-helix at the C-terminus, forming an inverted “U” topology, see figure 5.11, 

bottom left panel. The secondary structure of the �-helix is conserved and the N–terminus 

also explores a significant space volume with a radius of gyration of 13.10 Å for the nitrogen 

atom in the first residue. 

3P_I24E_L28K analog: Finally, a similar behavior than 2G and 3P is displayed regarding the 

proximity of the N– and C–terminus (inverted “U” topology, see figure 5.11 bottom right panel). 

Although the structure of the �-helix is conserved, the space volume explored by the N–

terminus is dramatically reduced as suggested by the radius of gyration of the nitrogen atom 

of the first residue, 3.91 Å. 
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Figure 5.11. Superimposed Structures for SDF–1� and the Simplified Analogs Taken Every 2.0 ns 

for the Entire Production Phase (100 ns). For clarity and to indicate the positions of the N– and C–

terminus, the first and last residues in the structures are colored in pale blue and red, respectively. In the 
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analogs, the residues forming the linker are colored in yellow. Finally, the positions that determined the 

parameters defined to monitor the dynamics of the structures are colored in blue. 

 

5.2.3.4 Space Volume Sampled by the N–terminus, Radius of Gyration of the Center of 

Mass of Segment K1-R8 

It has been shown that the N–terminus is responsible for the interaction and activation 

of SDF–1� with its native receptors [22]. To have further insights into the similarities of the 

conformations explored by the highly dynamic N–terminus of SDF–1� and the analogs, we 

simplified the degrees of freedom to only the center of mass of the segment K1-R8 and then 

compared the regions explored along the 100 ns of the MD trajectories.  

Sampled structures along the MD simulations were aligned to the initial structure in 

each case. The alignment was based on the C� atoms of the �-helix, e.g., K56 to A65 (or 

equivalent positions in analogs). Then, the center of mass of the C� atoms of the segment K1-

R8 was calculated (see small spheres in Figure 5.12). The cloud of points (and its center) 

generated for SDF-1� and the simplified analogs is shown in figure 5.12, in blue and red, 

respectively. In comparing the overlap, the initial structure of SDF–1� and the analogs were 

used and the transformation matrix needed to obtain the best-fit alignment between the 

analogs and SDF–1� was calculated. The atoms involved in the calculation were C9-H17 and 

K56-A65 (SDF-1�) and the equivalent residues in the analogs (the subset is composed of N–

terminal residues involved in the rmsd calculation and the residues in the �-helix, i.e., residues 

that are common in all the structures). The same transformation matrix was applied to the 

points from the analogs and the overlap was calculated using equation 5-1. The values 

obtained for the overlap were: 1P (0.000), 2P (0.011), 2G (0.007), 3P (0.001), and 

3P_I24E_L28K (0.000). Although small, the overlap for the center of mass of the N–terminus 

suggests that the 2P analogs displays more similarities (with SDF–1�) in the conformations 

explored than that rest of the analogs, see figure 5.12. Furthermore, the results from the 

overlap of the spatial region sampled by the N–terminus suggest the SDF–1� similarity rank: 
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2P > 2G > 3P > 1P = 3P_I24E_L28K. Based on the overlapping values it is not possible to 

discriminate between 1P and 3P_I24E_L82K, but based on the visual considerations, we 

could speculate that 3P_I24E_L82K would diverge more from SDF–1� in the conformation 

explored by both structures. The final similarity rank from this section is 2P > 2G > 3P > 1P > 

3P_I24E_L28K. This is slightly different (order of 1P and 3P analogs) than the rank proposed 

previously (using three parameters), 2P > 2G > 1P > 3P > 3P_I24E_L82K.  

In addition to the overlaps, figure 5.12 also contains information about the relative 

position of the center of the cloud of points for SDF–1� and the simplified analogs. In the case 

of SDF–1�, the center is located in front of the helical positions (see yellow spheres in figure 

5.12) that face the �-region. The central region and the disulfide bonds seem to preclude the 

proximity of the N–terminus to the �-helix.   

In the case of 1P, the center is located behind the “reference positions” (yellow 

spheres), which in the case of SDF–1�, face the �-region. Similar to SDF–1�, the center in 

the case of 2P is located in front of the reference positions that originally face the �-region. 

The absence of the �-region and the disulfide bonds allows the N–terminus to explore 

conformations closer to the �-helix. Similar to the center of 2P, the center of the 2G analog is 

located in front of the reference positions but perhaps due to the large flexibility of the residues 

composing the linker, the center is closer to the �-helix. The center of 3P is located in a very 

similar position as 2G. Finally, in the case of 3P_I24E_L28K, the center is very close to the �-

helix located at the C–terminus. 

From this section the results indicate the features of the different regions of space that 

are sampled by the N–terminus of SDF–1� and the simplified analogs. Again, the 2P analog 

seems to mimic better the conformations of native SDF–1�. In contrast, the conformations of 

the N–terminus of the 3P_I24E_L28K analog are restricted to a relative small volume and also 

they diverge more from those explored by SDF–1�.  
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Figure 5.12. Space Sampled by the Center of Mass of the Highly Dynamic N–terminus (K1-R8) 
Along the MD Simulations. The left panels present comparisons of the space volume explored by the 
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center of mass of the N-terminus (K1-R8; small spheres, represent the positions of C� for K1 and R8) of 

both, SDF–1� (blue) and the simplified analogs (red). The center of the each of the cloud of points is 

represented as blue (SDF–1�) and red (analogs) spheres, respectively. As reference, the C� atoms for 

the equivalent positions I58E and L62K, are rendered as yellow spheres in the analogs structures. These 

helical positions are facing the �-region in SDF–1�. The overlap for each of the analogs was: 1P (0.000), 

2P (0.011), 2G (0.007), 3P (0.001), and 3P_I24E_L28K (0.000). Middle and right panels show two 

different views of the center of the points explored by the center of mass of the segment K1-R8 in the 

MD simulations for SDF–1� (blue) and analogs (red). 

 

 

5.2.3.5 Comparison of Current Crystal and NMR Structures of SDF–1� with the Average 

Structure from MD simulations 

It is worthwhile to compare the average structure of SDF–1� from the MD simulations 

with the currently available crystal and NMR structures. The initial geometry used in the 

current study is based on the chain A of the crystal structure, 1A15.pdb [27]. For the 

production phase (100 ns), the average positions of the backbone atoms were calculated and 

the structure was compared with the experimentally determined structures from NMR and X-

ray crystallographic techniques. The structures used were 1SDF.pdb (NMR) [22], 1A15.pdb 

(X-ray, 2.20 Å) [27], 1QG7.pdb (X-ray, 2.00 Å) [52], 1VMC.pdb (NMR) [51], and 2J7Z.pdb (X-

ray, 1.95 Å) [53]. The results are present in figure 5.13. 

The rmsd values indicate that the average structure is closer to the NMR structure 

1VMC for the entire segment C9-A65. Interestingly, for the same alignment and as indicated 

by the rsmd57-65 values, the position of the �-helix relative to the rest of the structure 

resembles more the position in the first NMR structure (see Figure 5.13b). Both NMR 

structures were characterized as monomers. 
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Figure 5.13. Comparison of the Average Backbone Structures from the MD Simulations With 

Current Structures of SDF–1�. (a) Superimposed SDF-1� structures: 1SDF.pdb (magenta) [22], 

1A15.pdb (yellow) [27], 1QG7.pdb (green) [52], 1VMC.pdb (purple) [51], and 2J7Z.pdb (orange) [53]. (b) 

Comparison of average structure from MD simulations (gray), and the two NMR structures, 1SDF.pdb 

(magenta) and 1VMC (purple). (c) Root mean-square deviation of the experimentally determined 

structure and the average structure from MD simulations. The structural alignment was done using the 

backbone atoms from residues C9 to A65. Although the rmsd with 1VMC is the lowest considering the 

segment C9-A65, the positions of the �-helix relative to the rest of the structure resembles more the 

1SDF.pdb structure (rmsd of residues W57-A65).  

 

5.2.4 Discussion 

Stromal cell–derived factor–1� (SDF–1� or CXCL12�) is a powerful chemoattractant 

important in orchestrating migratory responses involved in inflamatory reactions. This small 

67-residue protein presents a typical chemokine tertiary structure composed of N–terminus, 

N–loop, a �-sheet region composed of three � strands, and an �-helix at the C–terminus. 

There are two difulfide bonds that help to maintain the native conformation of SDF–1�. 

Despite the fact that the disulfide bonds restrain the conformations of part of the structure, the 

N–terminal segment composed of residues K1 to R8, has been demostrated to be highly 

flexible and unstructured [22]. Furthermore, it has been demostrated by mutagenesis studies 

that the N–terminus is crucial for the binding and for signal transduction [22]. Due to the 

relevance in different physiological processes, the interactions between SDF–1� and the 

CXCR4 receptor has been extensively studied. The current model of interaction suggests a 

two-step/two-site mechanism [22,54]. New evidence suggests that the interactions between 
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the two sites are independent of each other, that is, the first interaction of SDF–1� with the N–

terminus of the CXCR4 is independent of the second interaction between the N–terminus of 

SDF–1� and the transmembrane region of CXCR4 [54]. Additionally, it was been demostrated 

that quaternary structure of SDF–1� is sensitive to a different factors such as pH, specific 

anions, heparin, and the presence of CXCR4 [64].  

The SDF–1�/CXCR4 system has be investigated as a therapeutic target for the 

treatment of different disorders [40,56]. Particularly relevant is its possible role in the treatment 

of cardiovascular diseases [12,46]. 

A recent study has shown the possibility to use simplified analogs as an alternative 

neovasculogenic therapy [57]. Here we used molecular dynamics simulations to get insights 

into the conformations sampled by native SDF–1� and simplified analogs. Different analysis 

proposed a possible molecular explanation for the beneficial properties of the simplified 

analogs in mimicking the properties of native SDF–1�. 

 

5.2.4.1 Conformations of SDF–1�  and the Simplified Analogs 

The findings from MD simulations using two different approaches to compare the 

conformations sample by SDF–1� and the simplified analogs, suggest that the two-proline 

analog 2P outperforms the other simplified analogs in mimicking such conformations. This 

results are in agreement with the experimental finding using a EPC migration and a CXCR4 

activation assays [57]. 

 

5.2.4.2 Monomer–Dimer Equilibrium and Possible Reasons of the Enhanced Activity of 

the 2P Analog Relative to Native SDF–1� 

To study the role of posttranslational modifications of the N–terminal domain of 

CXCR4 and its implication in the recognition of SDF–1�, an engineered covalently locked 

dimer of SDF–1� (denominated SDF12) was created to simplified the determination of the 
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interactions between SDF–1� and a peptide derived from the N–terminal domain of CXCR4 

[65]. The structure of SDF12, determined by NMR, was in close agreement with the wild-type 

dimer determined by X-ray crystallography [52]. Surprisingly, the covalently locked dimer was 

able to induce intracellular Ca2+ mobilization in human acute monocytic leukemia (TPH-1) 

cells but had no chemotactic activity. Moreover, SDF12 inhibits migration of THP-1 cells in 

response to wild-type SDF–1� and therefore was suggested to act as a potent partial agonist. 

Also, the role of the shift in oligomeric state was tested using a SDF–1� mutant (H25R) that 

remains monomeric at higher concentrations. SDF–1� displays a biphasic dose-dependent 

chemotactic response that decreases at higher concentrations. Interestingly, the SDF–1� 

mutant (H25R) was shown to maintain chemotactic responses at higher concentrations than 

native SDF–1� [65]. The final conclusion was that at low concentrations the monomeric SDF–

1� is largely dominant and it is responsible for stimulating chemotaxis, whereas at higher 

concentrations and perhaps promoted by species such as heparin or CXCR4, the dimeric form 

starts to be dominant and it is resposible for interference with chemotactic signaling [65]. 

Additionally, Hiesinger et al. performed similar migration studies in endothelial 

progenitor cells and found similar results, where a biphasic dose-dependent chemotactic 

response was observed [57]. In this case, the 2P analog (denominated ESA) displayed 

chemotactic activity at higher concentrations than native SDF–1�. Following similar rationale 

than in the SDF–1� mutant (H25R), we speculate that the outperformance of the simplified 2P 

analog is related with its tendency to remain monomeric at high concentrations. As shown in 

the X-ray structure of the SDF-1� dimer (1QG7.pdb) [52] and the engineered SDF12 

(2K01.pdb), the �-sheet region and particularly the first �-strand (23VKHLKIL29), is 

responsible for a large portion of the protein-protein interactions that stabilize the dimer [64]. In 

the simplified peptide analogs, the �-sheet region was completely removed and with it, some 

of the interactions that stabilize the dimer formation. To explain the benefits obtained for the 
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2P simplified analog of SDF–1�, we hypothesize that by removing the �-sheet region, the 

monomer-dimer equilibrium was shifted to the monomeric form and therefore, the oligomeric 

state responsible for inducing chemotaxis is present at higher concentrations than in the case 

of native SDF–1�.   

 

5.2.5 Conclusions 

Molecular dynamics simulations have been used to elucidate atomistic details of 

SDF–1� and simplified analogs. The results show that in aqueous at physiological conditions 

of temperature and pressure, the two-proline analog explores similar conformations as native 

SDF–1� under similar simulation conditions. The agreement between experimental and 

computational findings suggest that MD simulations could be used not only to provide insights 

into the molecular mechanisms of this type of systems but also to predict protein behaviours in 

different experimental assays. 
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6 Multiple Hindered Rotators in a Gyroscope-Inspired 

Tribenzylamine Hemicryptophane1, 2 

 

6.1 Introduction 

Synthetic chemical systems provide means to explore complex phenomena in 

biological machines [1-8] and also to create novel molecular mechanical components [9]. 

Designs based on macroscopic devices include brakes, gears, propellers, rachets, turnstiles, 

rotors, scissors, and most recently gyroscopes [3,10-14]. These molecular systems have been 

extensively studied in solution, in solid phases, on surfaces and in polymers [15]. One 

challenge in designing these systems is the required restriction of some molecular degrees of 

freedom, while allowing specific motions of targeted molecular components [9]. Although 

synthesis of such molecules can also be challenging, criteria for the construction of molecular 

gyroscopes have been identified and generally applied: rotary elements (rotators) are attached 

to a static framework (stator); steric contacts, internal rotation barriers, and interaction with 

solvent should be minimized to allow low-friction, low-barrier rotary motion; rotating groups are 

isolated and/or well-separated from each other. To expand upon these criteria, we designed a 

gyroscope-inspired framework with cyclotriveratrylene (CTV) and trismethylamine as the two-

component stator, bridged by three p-phenylene rotators (Figure 6.1). Previously, two 

opposing CTV units have been linked to generate cryptophanes with suitable for host-guest 

chemistry, as well as biosensing and chiroptical properties [16-31]. CTV has also been 

employed in supramolecular assemblies, gels and organic microporous polymers [32]. 

 
 
 
1 This project was a collaboration with the group of Professor Ivan J. Dmochowski at the 
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104. 
2 Adapted from Najat S. Khan†, Jose Manuel Perez-Aguilar†, Tara Kaufmann, P. Aru Hill, 
Olena Taratula, One-Sun Lee, Patrick J. Carroll, Jeffery G. Saven, Ivan J. Dmochowski J. Org. 
Chem. 2011, 76, 1418-1424. Copyright 2011 American Chemical Society. †N.S.K. and J.M.P-
A. contributed equally to this work. 
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In the current design, a single CTV unit provides a rigid hemicryptophane framework 

for the synthesis of a novel gyroscope-inspired molecule. Our design incorporates a novel 

combination of features: (i) efficient, high-yielding synthetic scheme, (ii) multiple, proximate 

rotators in one covalently bonded molecular system, (iii) exclusion of other molecules and ions 

from the stator interior that may impede rotator motion, and (iv) hindered rotators experiencing 

friction through exposure to solvent. 

 

 

Figure 6.1. Gyroscope-Inspired Tribenzylamine Hemicryptophane (5) Possessing a Rigid Stator (a 
and c) and Three Rotator Groups (b). Arrows illustrate rotation but are not intended to suggest 

unidirectionality. 

 

Gyroscope-inspired molecular systems have focused largely on approaching 

barrierless rotation of isolated or sequestered rotors. One of the first examples (also referred 

to as a molecular turnstile) was synthesized by Moore and Bedard [33,34]. The creative 

design included a rigid hexakis(phenylacetylene) framework that preserved the low barrier of 

rotation about the 1,4-axis of the substituted p-phenylene moiety. Garcia-Garibay and co-

workers extended these ideas in the construction of amphidynamic crystals [11,15,35-54], 

where the introduction of bulky substituents creates sufficient space in the lattice framework to 
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allow near barrierless rotation of the central p-phenylene group. Furthermore, the p-phenylene 

moiety can be functionalized to create a dipole moment that could be used for controlling 

motion with an external electric field [11,36-38,42]. Following a different approach, Gladysz 

and co-workers prepared a series of metal-centered molecular gyroscopes in which the rotator 

is protected by three-spoke structures as part of the stator. The rotational dynamics of these 

gyroscopes were studied in solution and their crystal structures indicated sufficient free 

volume around the rotator to allow low-barrier rotation [9,55-59]. Most recently, Kitagawa et al. 

designed a self-assembled supramolecular gyroscope where the stator is a heterocapsule 

formed by noncovalent interactions and the rotator is an encapsulated guest [60]. 

Herein, we report a streamlined synthesis of a gyroscope-inspired tribenzylamine 

hemicryptophane (5, Figure 6.2) involving multiple hindered rotators, where fast rotation is 

observed by 1H NMR spectroscopy above a critical temperature. Rotations about the 1,4-axis 

of the three p-phenylene rotators encased in a rigid CTV-trismethylamine stator were 

investigated using 1H variable temperature (VT) NMR spectroscopy and molecular dynamics 

(MD) simulations. 

 

Figure 6.2. Three-Step Synthesis of Gyroscope-Inspired Tribenzylamine Hemicryptophane 5. 
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6.2 Results and Discussion 

6.2.1 Synthesis and X-ray Crystal Structure of Hemicryptophane   

In order to synthesize the gyroscope-inspired tribenzylamine hemicrytophane 5, the 

linkers (including the rotators) were first cyclized in the rigid CTV framework and then closed 

with an amine to form the final three-dimensional structure (Figure 6.2). Reaction of 

commercially available vanillyl alcohol 1 and dibromo-p-xylene 2 gave the versatile linker 3 in 

65% yield. Cyclization of 3 was achieved with a catalytic amount of Sc(OTf)3 in acetonitrile to 

afford the “gyroscope scaffold intermediate” 4 in 29% yield. This reaction was based on 

previous protocols where various 3,4-disubstituted benzyl alcohols were treated with catalytic 

Sc(OTf)3 to prepare CTV and cryptophane derivatives [18]. Compound 4 was reacted with 7 N 

NH3 in MeOH to give 5 in 67% yield, with an overall yield of 13% for the three steps. 

Compound 5 was characterized by solution 1H NMR and 13C NMR spectroscopy, high-

resolution mass spectrometry (using the electrospray ionization method), and X-ray 

crystallography. This short synthetic scheme utilizes mild conditions and results in high overall 

yields. Moreover, this route provides ample versatility by increasing the number of methylene 

spacer units or introducing new functional groups on 3 to form rotators with different 

conformations, rotation barriers, and dipole moments. 
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N1-C32
N1-C48
N1-C16
C32-C29
C48-C45
C16-C13
C32-N1-C48
C48-N1-C16
C32-N1-C16
N1-C32-C29
N1-C48-C45
N1-C16-C13
O2-C9-C10-C15
O6-C41-C42-C43
O4-C25-C26-C31

1.466 (2) Å
1.464 (2) Å
1.461 (2) Å
1.509 (2) Å
1.512 (3) Å
1.514 (3) Å
114.84 (14 )°
113.96 (14 )°
114.45 (14 )°
108.93 (14 )°
109.15 (14 )°
110.18 (14 )°
86.1 (2 )°
85.4 (2 )°
93.8 (2 )°

C28-C29-C32-N1
O2-C9-C10-C11
O6-C41-C42-C47
O4-C25-C26-C27
C14-C13-C16-N1
C13-C16-N1-C48
C30-C29-C32-N1
C29-C32-N1-C16
C44-C45-C48-N1
C45-C48-N1-C32
C12-C13-C16-N1
C46-C45-C48-N1
C13-C16-N1-C32
C29-C32-N1-C48 
C45-C48-N1-C16      

97.7 (2 )°
-90.9 (2 )°
-89.1 (2 )°
-83.1 (2 )°
-61.5 (2 )°
-84.9 (2 )°
-77.7 (2 )°
-75.4 (2 )°
-66.6 (2 )°
-79.4 (2 )°
117.2 (2)°
107.6 (2)°
140.2 (2 )°
150.05 (13 )°
145.83 (14 )°

a) b)

c)

 

Figure 6.3. (a) ORTEP Representations for 5 With Atom Labels. (b) Space-Filling Side and Bottom 

View of 5. Atom Color Code: C is Gray, O is Red, N is Blue, and H is White. (c) Selected Bond 

Lengths (Å), Angles (° ) and Dihedral Angles (°) of Compound 5. 

 

The X-ray crystal structure of 5 indicates the three rotators adopt a propeller 

conformation (Figure 6.3). 5 crystallizes in the monoclinic space group P21/c and each unit cell 

consists of four molecules with two of each enantiomer (Figure 6.3). In both enantiomers the 

p-phenylene rotators are oriented edgewise into the interior (angled away from the methoxy 

group ortho to them) with an average dihedral angle of ~ 88.1° for O-Cbenzyl-Cphenyl-Cphenyl, ~ -

68.6° for N-Cbenzyl-Cphenyl-Cinterior-phenyl and ~ 107.5° for N-Cbenzyl-Cphenyl-Cexterior-phenyl (see Figure 

6.3c). The minimal distance from the phenylic proton on C44 (pointing into the cage) to the 

plane described by the next aryl ring (C10 to C15) is relatively small at 3.22 Å. After the van 

der Waals radii for hydrogen and carbon are included [61], the “clearance” distance is 

approximately 0.32 Å. The distance from the same proton to the nitrogen atom was even 

shorter at 2.97 Å, with clearance distance of 0.22 Å when van der Waals radii are included, as 

the nitrogen is oriented into the interior with an average C–N–C bond angle of 114.42° (see 

Figure 6.3c). This propeller-shaped conformation with a pyramidal nitrogen atom where the 
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lone pair is pointed into the cage is similar to the crystal structure of tribenzylamine, where the 

rigid CTV is not present [62]. It is believed that this conformation is primarily favored due to 

steric hindrance [62]. Despite the propeller conformation of the rotators and the positioning of 

the nitrogen atom into the interior of the cage, rotator motion is expected given the observed 

clearance distances (Figure 6.3).   

Unlike some previously reported porous gyroscopes [58], which encountered barriers 

to rotation due to the intercalation of solvent molecules (or neighboring molecules in solid 

state), the small internal volume in 5 should prevent guest encapsulation. Indeed, X-ray 

crystallography indicated an empty tribenzylamine hemicryptophane, lacking solvent 

molecules. Small molecules such as helium, dihydrogen, dinitrogen and xenon were not 

observed to bind to 5 at 1 atm over a range of temperatures, +47 °C to -93 °C. Molecular 

dynamics simulations were also in agreement with the experimental findings and suggest that 

these small molecular species should be excluded from the interior. Computational modeling 

was used to explore effects due to rotation of the p-phenylene rotators.  GRASP [63] was 

employed in order to investigate whether a potential interior cavity within 5 emerges with 

rotation of the rotators. With a probe radius of 1.4 Å, only in improbable, high-energy 

structures (�E > 30 kcal mol-1, where �E is the energy relative to the X-ray structure) where 

the angle of each p-phenylene rotator increased by 90° relative to the crystal structure was a 

cavity identified. This suggests that a cavity of sufficient volume to accommodate small guest 

molecules is essentially nonexistent, thereby preventing the inclusion of small molecules that 

may hinder p-phenylene rotation. 

 

6.2.2 1H VT-NMR Experiments with Hemicryptophane 5 

In order to investigate the energy barrier of the rotators in solution phase, we 

performed a 1H VT-NMR study of 5 in CD2Cl2 from -93 °C to +27 °C. The NMR spectra in 

Figure 6.4 indicate that the rotational rate of the p-phenylene rotators became slow on the 
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NMR timescale as the temperature was decreased. At 27 °C, the four protons (labeled H2, H3, 

H4 and H5 in Figure 6.4a) on each of the three rotators were split into two doublets at 6.1 ppm 

(average signal from H2 and H4) and 6.9 ppm (average signal from H3 and H5). Upon cooling, 

these doublets became broader and the energy barrier for p-phenylene rotation was estimated 

using equations 6-1 and 6-2 [64], to be 9.2 kcal mol-1 from the coalescence temperature (ca. -

70 °C; kcoalesce � 2300 Hz). As the temperature was further reduced to -93 °C, a new pair of 

doublets of equal intensity (three protons each) arose for each doublet that coalesced. This 

led to splitting of the doublet for H2 and H5 and also H3 and H4, where H2 and H3 shift upfield 

as they are pointed into the cavity while H4 and H5 are oriented away from the cavity. The H3-

H5 splitting pattern (Figure 6.4b) evidences that p-phenylene rotation at -93 °C is slow on the 

NMR time scale, trot > 3 ms. Similar temperature-dependent behavior was recently reported for 

a 2,3-dichlorophenylene rotator caged within a polysilaalkane stator [65]. In line with our 

design, the stator remained rigid throughout the 1H VT-NMR dataset as indicated by the fact 

that the integration and splitting pattern of all CTV-trismethylamine proton peaks were 

constant. It is also interesting to note that protons HA1 and HA2 remained diastereotopic 

throughout the 1H VT-NMR series (Figure 6.4b). All peaks were assigned by 1H-1H NOESY 

experiment (Figure 6.5). 
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Figure 6.4. (a) Schematic Model of the Molecular Motion of 5. (b) 1H VT-NMR Spectra of 5 

Measured in CD2Cl2 With 500 MHz Spectrometer. 
 

 

 

Figure 6.5.  1H-1H NOESY Spectrum of 5 in CDCl3 at 27 °C With 500 MHz Spectrometer to 

Determine the Assignment of Protons.  
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6.2.3 Molecular Dynamics Simulations 

To investigate the conformational fluctuations of the rotators and stator, MD 

simulations were carried out on 5 (Figure 6.6). One of the crystal structures was used as the 

initial structure, and the length of the simulations was 50 ns. Equilibration was confirmed by 

monitoring relaxation of structural parameters.  Three dihedral angles that reflect the 

conformations of the rotators were selected: (� � N1-C16-C13-C14, � � N1-C32-C29-C30 and 

� � N1-C48-C45-C44). The symmetry of the structure yields nearly identical average values of 

these angles that are in agreement with the values observed in the crystal structure: � = -

72.3° ± 10°, � = -71.8° ± 10° and � = -72.8° ± 10°; the uncertainties (fluctuations) are one 

standard deviation. The MD simulations at 25 °C indicated limited fluctuations within the 

structure on the nanosecond time scale (Figure 6.6), and the CTV unit that forms the stator 

remains highly rigid, in agreement with the NMR results noted above. The p-phenylene units 

are not observed to rotate and instead librate in a manner consistent with a hindered rotor that 

rotates on a time scale > 100 ns. Therefore, simulations, X-ray, and NMR structural data all 

agree that the propeller-shaped conformation is highly favored in 5. High temperatures were 

artificially employed to observe rotation in the simulations: at 527 °C, rotations of the three p-

phenylenes are frequent, conformations where the rotators are directed edgewise into the 

interior (similar to what is seen in the crystal structure) are preferentially populated, and no 

preferred rotational direction in the three p-phenylenes is observed. 

To investigate further the p-phenylene rotation and interactions among the rotators, 

the crystal structure of 5 was minimized, and the dihedral angle � was systematically varied 

(Figure 6.7). The structure was then relaxed via energy minimization, constraining the 

coordinates of all atoms but those in the two remaining � and � p-phenylene rings. The �-ring 

is essentially invariant during the rotation. The �-ring only rotates at most 19.7° to 

accommodate the 180° rotation of the �-ring. An energy barrier arises due to the steric 

interaction between the �-ring and �-ring. Interestingly, the rotational energy barrier estimated 
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from this simplistic and highly constrained calculation (~12 kcal mol-1) is consistent with the 

experimental value inferred from the 1H VT-NMR experiments (~10 kcal mol-1). The modeling 

results suggests that, though not entirely independent, the rotations of the �- and �-rings are 

only weakly coupled. 

 

 

Figure 6.6. Orthogonal Views of 30 Superimposed Structures from the MD Simulation of 5. The 

dihedral angles are indicated: � (magenta), � (cyan) and � (yellow). 
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Figure 6.7. Minimized Energy as a Function of ��, Which is Rotation of the � Dihedral Angle 

Relative to the Energy Minimized X-ray Structure (Gray). The crystal structure of 5 was minimized, 

and the angle � was varied in 10° increments, driving rotation of the �-ring (magenta). For each value of 

��, the structure was energy minimized, constraining the coordinates of all atoms but those in the two 

remaining p-phenylene rotators: �-ring (cyan) and �-ring (yellow). For clarity: the CTV moiety and 

hydrogens are not shown; two carbons of the �-ring are rendered black. 

 

6.3 Conclusions 

In summary, a novel gyroscope-inspired tribenzylamine hemicryptophane 5 was 

synthesized in three steps in good overall yield using mild conditions. This synthetic route 

offers the possibility of preparing hemicryptophanes with multiple, proximate rotators, where 

the molecular properties of the rotators can be varied by changing the length and composition 

of the linkers used to cyclize the “gyroscope scaffold intermediate” 4. The compact size of the 

cavity in this system helps to avoid the inclusion of solvent and gaseous molecules that have 

the potential to inhibit rotation. 1H VT-NMR data indicate a critical temperature for the onset of 

rotation on the sub-millisecond time scale and a hindered, dynamic motion of these three 

rotators at room temperature.  The desired rigidity of the CTV stator and the rotator properties 

of the p-phenylenes were corroborated by 1H VT-NMR spectroscopy and MD simulations. As 

a p-phenylene ring rotates, it encounters one of the neighboring p-phenylenes, leading to a 

steric barrier that hinders rotation. Rotation of the rings appears not to be strongly correlated 

with one another. 

The compact size and molecular motions of 5 make it a compelling initial motif from 

which to engineer unidirectional, potentially coupled rotators for molecular locomotion or 

transmitting torque. Towards this goal, it may be possible to introduce sterically bulky 

substituents on the linkers to control the temperatures at which rotation becomes accessible 

and to favor one direction of rotation. Different substituent groups can also be introduced to 

create a dipole moment on the rotators, thereby allowing the use of electric fields to explore 

rapid conformational response in these systems and to control the direction of rotation. 
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6.4 Experimental Procedures 

6.4.1 Calculating from 1H VT-NMR Data the Energy Barrier for p-Phenylene Rotation 

Equation 6-1 was used to determine the p-phenylene rotation rate at the coalescence 

temperature: 

k =
��v

0

2
                           (6-1) 

where k is the rate coefficient, �v0 = vA-vB is the chemical shift difference (in Hz) between the 

two separate signals at slow exchange (in this case at -93 °C or 180 K). The Arrhenius 

equation (6-2) was used to determine the activation energy, Ea, at the coalescence 

temperature, T (in K): 

ln k /Hz( ) = �
E
a

R

1

T

� 

� 
� 
� 

� 
� + ln A /Hz( )  (6-2) 

where A is the pre-exponential factor and R is the universal gas constant [64].  

 

6.4.2 Computational Methods 

All-atom MD simulations were carried out using NAMD2 [66]. The internal bonded 

parameters were obtained from AMBER-94 [67], and the nonbonded parameters were 

proposed in previous studies [68-72]. Simulations were performed in the absence of solvent at 

25 °C and temperature was controlled using Langevin dynamics with a damping coefficient of 

5 ps-1. The time step of the simulations was 0.5 fs. Relaxation calculations using energy 

minimization consist of up to 10,000 steps of the conjugate gradient algorithm as implemented 

in NAMD2; energy was monitored to confirm minimization [66].  

GRASP [63] was employed to investigate a potential interior cavity within 5. Different 

conformations were generated by manual rotations of the three p-phenylenes. The rotations 
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were systematically performed in 10° increments using one of the crystal structures of 5 as 

reference. A probe radius of 1.4 Å was used for all calculations. 

 

For details about more “Experimental Procedures”: Reagents, and Crystal growth and 

X-ray crystallography, the reader is referred to Najat S. Khan†, Jose Manuel Perez-Aguilar†, 

Tara Kaufmann, P. Aru Hill, Olena Taratula, One-Sun Lee, Patrick J. Carroll, Jeffery G. Saven, 

Ivan J. Dmochowski. “Multiple Hindered Rotators in a Gyroscope-Inspired Tribenzylamine 

Hemicryptophane”, Journal Of Organic Chemistry, 2011, 76: 1418-1424. (†Equal contribution) 

Also the available supporting information. 
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7 Final Remarks 

 

7.1 Conclusions 

In this dissertation, protein systems of varying degrees of complexity were studied 

using a variety of computational approaches. Also, similar computational methodologies were 

utilized to study different molecular systems. The computational design approach based on a 

statistical entropy-based formalism (described in detail in Chapter 2) was used to designed 

and redesigned different protein systems [1-3]. This approach represented the core 

methodology of most all the projects described (Chapter 3). All-atom molecular dynamics 

simulations were used to complement the computational design methods and to extend our 

understanding of the protein systems under investigation, e.g., SDF-1� (Chapter 5). Two other 

techniques were used to better understand some of the studied systems: docking calculations 

and comparative modeling. Docking calculations were used to identify the location and the 

different poses of ligand molecules into receptors, particularly G protein-coupled receptors 

(GPCRs) (Chapter 4). Comparative or homology modeling techniques were extensively used 

to model the structures of GPCRs, e.g., the human � opiod receptor (Chapter 4). 

The study of the human � opioid receptor, a G protein-coupled receptor, exemplifies 

the necessity of using many different computational techniques. In generating water-soluble 

variants for this important receptor, comparative modeling techniques were required to obtain 

reliable models necessary for computational protein design. As discussed in Chapter 4, the 

generation of reliable models of the wild type protein by itself is a complex and subtle problem. 

Something that was particularly useful to guide our modeling was the information collected 

from mutagenesis studies. Also extremely important for the modeling was the sequence 

alignment, which is often the essential determining step in comparative modeling protocols. A 

final consensus was used based on different pairwise sequence alignments programs (see 

Chapter 4), and the alignment obtained using BLASTp [4] with the Blosum62 [5] substitution 
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matrix was in close agreement with the consensus alignment. In subsequent modeling 

projects, the combination BLASTp/Blosum62 is likely to yield suitable alignments. We also 

found that considering the information from the highly conserved fingerprint residues for the 

rhodopsin-like GPCR family facilitates the generation of reliable structures. Additionally, the 

use of docking methodologies could provide another way to corroborate specific protein/ligand 

interactions and, as a consequence, assist in the determination of reliable models. After 

generating reliable models, the statistical entropy-based formalism will be used to redesign the 

membrane protein so as to generate water-soluble variants. To test the robustness of the 

designed structures, all-atom MD simulations will be carried out in aqueous environment 

under physiological conditions of pressure and temperature.   

During our work we identified tools that were valuable in providing insight and 

analyzing computational and experimental findings. Particular in the case of the designed 

water-soluble transmembrane �1 domain from the nicotinic acetylcholine receptor (WSA), 

secondary structure prediction servers were used to predict the locations and lengths of the 

helices in the water-soluble analog. Different prediction servers were used (PSIPRED [6], 

SABLE [7], PORTER [8]), but we found that the protein secondary structure prediction server 

PORTER (http://distill.ucd.ie/porter/), predicted results that were in closest agreement with the 

NMR-derived structures of WSA. In addition, during the creation of models for a GPCR (� 

opioid receptor), the second extracellular loop (EC2) was problematic in the sense that the 

sequence identity with the current available structures is generaly low [9]. Using the same 

servers mentioned above, we predicted the secondary structure of EC2 for the currently 

available GPCR structures. The results from PORTER for assigning secondary structure were 

more in agreement with the secondary structures observed in �2 (PDB accession 2RH1) and 

�1 (PDB accession 2VT4) adrenergic receptor, bovine rhodopsin (PDB accession 1U19), A2A 

adenosine receptor (PDB accession 3EML) and the D3 dopamine receptor (PDB accession 

3PBL).   
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Loop modeling was a technique that was utilized to generate and assay different 

length loops that connect the N- and C-termini in our work with the SDF-1� analogs (Chapter 

5). Although this approach provides no explicit information about structural stability or 

dynamics, we found it useful to guide the design of these loops and some of the general 

conclusions from these systems. The loop building and refinement was done using the 

program Modeller [10,11]. This approach to candidate loop construction offers an easy and 

low computational cost technique.  

Lastly, for the calculation of cavities in proteins, both CASTp [12] and GRASP [13] 

were found to be useful. While studying smaller molecular systems such as the case of our 

work with the gyroscope-inspired tribenzylamine hemicryptophane (Chapter 6), GRASP was 

the preferred choice in calculating cavity volumes. The reason was that GRASP was capable 

to calculate the volume of the small central cavity of this system. Programs such as CASTp 

are designed to work with relatively larger cavities such as those found in proteins. 

  

7.2 Ongoing and Future Directions 

We close with a few comments regarding ongoing work and potential new research 

directions. 

Regarding the work done in the case of WSA (chapter 3), it will be interesting to 

explore the transmembrane structures of this important receptor, including those of the other 

subunits and oligomers of transmembrane domains.   

As previoulsly mentioned, although significant effort was put into modeling the 

structure of the human � opioid receptor, the final goal was to use the model to design of 

water-soluble analogs of this important GPCR. Early experimental results are promising in this 

regard, and it will be of interest to further explore the extent to which the designed protein is 

consistent with the expected structurally and functionally related properties. In addition, it will 
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be of interest to vary the numbers of residues mutated and use more than one model in 

generating designed, water-soluble sequences.  

In the case of SDF-1�, the information provided from cell-based assays, i.e., Boyden 

chamber and CXCR4 activation assays, will be compared with the analysis of the molecular 

dynamics simulations in an effort to provide a molecular interpretation of the activities of 

designed sequences. These simplified analogs open new possibilities to generate analogs 

were the MD simulations could be performed to predict the dynamics and binding properties 

as well as the extent to which such findings can be extrapolated to understand and specify the 

chemotactic and perhaps even the angiogenic properties of the peptides. Possible routes to 

improving the peptides are the removal of site(s) known to be the targets of proteases as well 

as redesign of the current cysteine residues that in SDF-1� form conserved disulfide bonds.  

In the case of the hemicryptophane molecules (Chapter 6), the molecular simulations 

and modeling were in excellent agreement with the observed conformational dynamics and 

structures of these molecules. Similar computational methodologies could be used to explore 

and design other molecules containing internal rotors (gyroscopes) and flexible internal 

degrees of freedom.  
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