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(L2/3) and infragranular (L5/6) layers. This work supports the hypothesis that alterations in glutamatergic
transmission result in changes to gamma oscillations in primary sensory areas and is consistent with the
hypothesis that these changes are associated with disrupted sensory perception.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Neuroscience

First Advisor
Diego Contreras

Keywords
gamma oscillations, mouse, vision, schizophrenia, spontaneous, electrophysiology

Subject Categories
Systems Neuroscience

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/458

http://repository.upenn.edu/edissertations/458?utm_source=repository.upenn.edu%2Fedissertations%2F458&utm_medium=PDF&utm_campaign=PDFCoverPages


GAMMA OSCILLATIONS IN THE MOUSE PRIMARY VISUAL CORTEX AS AN 

ENDOPHENOTYPE OF SCHIZOPHRENIA 

Cristin Grace Welle 

A DISSERTATION 

in 

Neuroscience 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2010 

Supervisor of Dissertation 

Signature___________________________ 

Diego Contreras, Associate Professor, Neuroscience 

 

Graduate Group Chairperson 

Signature___________________________ 

Rita Balice-Gordon, Professor, Neuroscience 

 

Dissertation Committee 

Larry Palmer, Professor, Neuroscience 

Joshua Gold, Associate Professor, Neuroscience 

Brian Salzberg, Professor, Neuroscience and Physiology 

Bruce Turetsky, Associate Professor, Psychiatry 

  



ii 
 

ACKNOWLEDGEMENTS 
 

I would like to acknowledge Diego Contreras for his help and advice as thesis advisor 

and the members of my thesis committee for their time and support.  I would also like to 

thank the members of the Contreras lab, both past and present, for their advice and 

camaraderie.  In particular, I would like to acknowledge Daniel Denman for his help with 

experiments, for writing substantial amounts of code and for contributing experimental 

data to this thesis.  Finally, I would like to thank Steve Siegel and Yuling Liang for 

providing the neuregulin 1 knockout mice. 

  



iii 
 

ABSTRACT 

GAMMA OSCILLATIONS IN THE MOUSE PRIMARY VISUAL CORTEX AS AN 

ENDOPHENOTYPE OF SCHIZOPHRENIA 

Cristin Grace Welle 

Diego Contreras 

Gamma oscillations (20-50 Hz) are a robust component of brain activity associated with 

information processing, but are also part of the background spontaneous activity during 

various brain states including sleep and anesthesia. Our goal was to examine the changes 

in gamma oscillations that result from pharmacological and genetic manipulations of 

glutamatergic transmission which produce endophenotypes of schizophrenia. We 

recorded local field potentials (LFP) and single units through the depth of the mouse 

primary visual cortex in vivo and examined the alterations in gamma frequency activity 

under both normal and pathological conditions. Our results indicate that both in awake 

and anesthetized animals, baseline gamma frequency power in the LFP is increased 

throughout the cortical lamina, and the signal-to-noise ratio of gamma oscillations 

produced by a visual stimulus is diminished, most notably in the superficial layers. In 

addition, the entrainment of single units to the local oscillations in the LFP is reduced in 

the supragranular (L2/3) and infragranular (L5/6) layers. This work supports the 

hypothesis that alterations in glutamatergic transmission result in changes to gamma 

oscillations in primary sensory areas and is consistent with the hypothesis that these 

changes are associated with disrupted sensory perception.  
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Introduction 

Diversity of gamma oscillations 

The oscillatory activity of neural populations has been studied for over a century. 

Fast frequency, referred to as gamma, oscillations were initially observed in human EEG 

recordings (Berger, 1929; Adrian, 1936) and have been subsequently characterized in a 

wide variety of species ranging from insects and invertebrates to birds and mammals. 

Gamma frequency oscillations are not associated with a single neurological process, but 

instead occur during many different brain states, both conscious and unconscious.  

A large body of literature has established a clear relationship between gamma 

frequency activity and the processing of sensory stimuli. Across many species, gamma 

activity occurs in response to visual, auditory and olfactory stimuli. In the insect olfactory 

system, oscillatory activity between specific groups of cells depends on the 

characteristics of odor that is presented (Laurent, 1996; MacLeod and Laurent, 1996; 

Bazhenov et al., 2001; Laurent, 2002). Auditory stimuli produce an increase in gamma 

oscillations in the auditory cortex (Palva et al., 2002; Lakatos et al., 2005) and synchrony 

in the gamma range between single units with shared frequency preference (Brosch et al., 

2002). In the visual system, gamma activity of single neurons and the local field potential 

is modulated by basic stimulus characteristics such as orientation (Frien et al., 2000) and 

contrast (Henrie and Shapley, 2005), in addition to top-down cognitive processes such as 

perceptual grouping (Keil et al., 1999). Although most work in the visual system has 

been performed in larger mammals such as cats, monkeys and humans, robust gamma 

oscillations have also been observed in the mouse primary visual cortex following the 
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presentation of bars or drifting gratings (Nase et al., 2003). It has yet to be determined if 

gamma oscillations in the mouse share similar properties to those recorded from larger 

mammalian species.  

In addition to sensory processing, gamma frequency activity has also been 

implicated in relation to higher cognitive functions. In awake monkey and human 

subjects, shifts in selective attention are accompanied by changes in gamma band activity 

specific to the modality attended (Fries et al., 2001; Herrmann and Knight, 2001; Sokolov 

et al., 2004; Tallon-Baudry et al., 2005). In the visual system, attention modulation of 

gamma activity is present both in higher order processing centers (Fries et al., 2001) and 

in the primary visual cortex (Chalk et al., 2010). Gamma oscillations are also relevant for 

short and long term memory processes. During short term memory of visual cues, EEG 

recordings in human subjects revealed increased gamma activity in occipital areas 

(Jokisch and Jensen, 2007). Likewise, modulations of gamma activity occurs both during 

successful encoding of memories and retrieval of long term memories (Sederberg et al., 

2003; Gruber et al., 2004; Axmacher et al., 2006). Finally, gamma oscillations are also 

relevant for the integration of sensorimotor information (Sanes and Donoghue, 1993).  

 Gamma frequency activity is not restricted to states of conscious information 

processing. In fact, gamma oscillations occur in awake animals in the absence of sensory 

input, during sleep, and under anesthesia (Contreras and Steriade, 1995; Steriade and 

Amzica, 1996; Destexhe et al., 1999). During slow wave sleep and under ketamine and 

xylazine anesthesia, long lasting positive waves are followed by high amplitude negative 

waves that are crowned with smaller amplitude gamma oscillations. During rapid eye 
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movement (REM) sleep and in awake animals, gamma oscillations occur consistently 

(Contreras and Steriade, 1995).  The general frequency content and magnitude of gamma 

oscillations are similar in between all the states in which it occurs. 

 

Function of gamma oscillations 

Decades of research on the visual cortex has revealed an enormous organizational 

complexity. There are nearly 30 distinct visual areas classified in the monkey cortex and 

certainly as many in human or cat cortex. Hebb was the first to propose that the 

representation of different visual aspects of a scene might be distributed over many 

distinct subdivisions of the visual cortex. He referred to neurons responding to various 

features of an object as an ‘assembly’. This concept of neural representation is appealing 

because it provides an economical use of neurons, yet it creates the problem of 

distinguishing one neural assembly from another. Realistic scenes have multiple objects 

that are represented, so presumably, multiple assemblies of neurons are activated. This 

would create an ambiguous representation unless there is a mechanism to distinguish one 

neural assembly from another (Hebb, 1949). 

 Von der Marlsburg proposed that the precise timing of action potentials at the 

millisecond timescale provides a cue to distinguish a given assembly. Thus, neurons 

representing a single object would engage in stimulus-dependant synchronous firing 

patterns. Studies in cat and monkey visual cortex show that spatially separate cells in the 

visual cortex show strong synchronization only if they are responding to the same visual 

stimuli. When responding to two independent stimuli, they fire in a less correlated 
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manner. Further studies have shown similar stimulus-dependant synchronization across 

the hemispheres and between sensory and motor regions (von der Malsberg and 

Schneider, 1986).  

Gray and Singer showed that this neural synchronization occurs in the gamma 

frequency range. Neurons responding to the same orientation participate in gamma 

frequency oscillations that are precise on a millisecond timescale, even when the neurons 

are separated spatially by up to 7 mm. Synchronous gamma oscillations are not stimulus-

locked, but generally occur about 200 to 500 ms following stimulus onset. However, the 

gamma oscillations between neurons responding to the same orientation are phase-

locked, and thus occur synchronously between the assembly of participating neurons 

(Gray et al., 1989; Gray and Singer, 1989). Gamma oscillations only occur in response to 

coherent stimuli, and not portions of the stimuli presented independently (Engel et al., 

1991; Singer and Gray, 1995). These findings suggest that gamma oscillations may serve 

as the mechanism by which neural assemblies are distinguished.  

 The most convincing evidence establishing a functional role for gamma 

oscillations is that performed by Gil Laurent and colleagues in the olfactory system of 

insects (Laurent, 1996; MacLeod and Laurent, 1996; Bazhenov et al., 2001; Laurent, 

2002). This work shows that distinct groups of cells representing a given odor fire 

synchronously at a gamma frequency range. When the oscillations are disrupted 

pharmacologically, the olfactory discrimination performance of the insects is degraded. 

This level of causality has not yet been applied outside the insect olfactory system due to 
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the technical difficulties of specifically modulating gamma activity in the context of 

behavior.  

Although there is evidence consistent with the idea that gamma oscillations may 

serve as a mechanism to bind different aspects of a stimulus into one unified 

representation, it is far from conclusive. An alternative explanation that can account for 

many of the experimental observations is that gamma activity is a natural by-product of 

increased neural activity, and thus is correlated with depolarization but does not 

contribute to perception directly. LFP and single unit recordings in the cat visual cortex 

using drifting grating stimuli shows that gamma activity increases with contrast, and thus 

may be more indicative of increasing recurrent cortical activity than a perceptual process 

(Henrie and Shapley, 2005). Additionally, the presence of gamma oscillations during 

states of unconsciousness, both during sleep and under many types of anesthesia, is not 

consistent with a direct role for gamma activity in conscious perception.  

 The body of work presented in this thesis does not address the functional role of 

gamma activity, but instead characterizes their spatiotemporal properties and their 

entrainment of single units throughout the depth of the cortex. However, our studies of 

the characteristics of gamma oscillations in different contexts do touch on this issue of a 

functional role. We find that gamma oscillations have different spatiotemporal properties 

and entrain excitatory and inhibitory networks differently when they are produced 

spontaneously than when they are induced by a stimulus.  This suggests that the 

organization and the mechanisms of generation of gamma oscillations are context 
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dependant, and is consistent with the interpretation that gamma oscillations may serve 

different roles during spontaneous and stimulus-driven activity (Chapter 1).  

 

Gamma oscillations and human disease  

Another important motivation for the study of gamma frequency oscillations is 

the disruption of these oscillations that occurs in patients with neuropsychiatric disorders, 

such as schizophrenia. Schizophrenia is a disorder of altered cognition that is largely 

genetic in origin and is characterized by constellations of positive symptoms such as 

hallucinations and delusions and negative symptoms including flattened affect and 

disorganization of thought and language. Despite nearly a century of research on the 

disorder, there is no known cause of schizophrenia, and in fact, schizophrenia itself may 

include numerous diseases with different origins that manifest similar cognitive 

symptoms. 

Patients with schizophrenia exhibit many electrophysiological alterations, 

including changes in gamma frequency activity throughout numerous areas of the brain 

(Kwon et al., 1999; Spencer et al., 2003; Uhlhaas and Singer, 2010). During higher-level 

cognitive tasks such as working memory and perceptual organization, schizophrenic 

patients show decreased power in the gamma band in frontal and temporal areas, and 

reduced synchrony of oscillations over the whole brain (Winterer et al., 2000; Cho et al., 

2006; Uhlhaas et al., 2006; Haenschel et al., 2009). Even in the resting state, baseline 

spontaneous gamma activity is reduced in the frontal cortex compared to controls (Tekell 

et al., 2005; Boutros et al., 2008; Rutter et al., 2009).  
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Because of its symptoms, schizophrenia has long been considered a disorder of 

higher cognition, but work on event-related potentials (ERPs) in the primary auditory and 

visual cortices has demonstrated that schizophrenic patients show abnormalities even in 

the initial stages of sensory processing (Johnson et al., 2005; Turetsky et al., 2009). 

Furthermore, recent studies in primary sensory areas have shown that gamma oscillations 

are enhanced in patients compared to controls (Light et al., 2006; Spencer et al., 2009). 

Additionally, gamma oscillation power correlates with the positive symptoms of 

schizophrenia, most notably, hallucinations (Lee et al., 2003a; Behrendt, 2006). Patients 

with auditory hallucinations have increased magnitude and synchrony of gamma 

oscillations in the primary auditory cortex compared to patients not experiencing auditory 

hallucinations (Spencer et al., 2009).   

 One of the preeminent hypotheses for the cellular basis of schizophrenia is an 

alteration in glutamatergic functioning (Greene, 2001; Coyle et al., 2003; Lisman et al., 

2008; Traub and Whittington, 2010). A strong line of evidence for this hypothesis stems 

from the observation that when humans are given the NMDA receptor antagonist 

ketamine, they exhibit symptoms similar to those observed in schizophrenic patients 

(Krystal et al., 1994). Additionally, the administration of ketamine alters gamma 

oscillations, increasing the power in the auditory cortex of human subjects (Plourde et al., 

1997). In rodent models, ketamine produces behavioral endophenotypes of schizophrenia, 

such as hypolocomotion, reduced attention, visual discrimination and perceptual 

grouping (Nelson et al., 2002; Kurylo and Gazes, 2008). Ketamine has been shown to 

increase baseline gamma (Pinault, 2008; Hakami et al., 2009), and reduce the signal-to-
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noise ratio of gamma oscillations in the awake rodent EEG (Lazarewicz et al., 2010). In 

primates, NMDA receptor antagonists alter mismatch negativity, another common 

endophenotype of schizophrenia (Javitt et al., 1996). 

 Interestingly, recent work in human neuroimmunology has identified an antibody 

that specifically antagonizes NMDA receptors (Dalmau et al., 2008; Hughes et al., 2010). 

Patients with this autoimmune disorder present with psychotic-like symptoms and are 

often admitted in psychiatric wards with tentative diagnosis for schizophrenia. Typically, 

the antibodies are produced in reaction to teratomas in the body, and following tumor 

resection, the patient’s cognitive state is fully restored. This disorder lends support to the 

hypothesis that some of the psychiatric symptoms found in schizophrenia are produced 

by the modulation of the NMDA receptor.  

 A leading risk gene for schizophrenia, neuregulin 1 (NRG1), is a synaptic 

structural protein that also effects NMDA-receptor mediated glutamatergic 

neurotransmission (Stefansson et al., 2002; Hahn et al., 2006). NRG1 has been shown to 

modulate NMDA receptor activation and has altered expression patterns in post mortem 

brain tissue from schizophrenic patients compared to controls (Hahn et al., 2006). Animal 

models with decreased NRG1 expression exhibit behavioral endophenotypes of 

schizophrenia such as mismatch negativity, contextual fear conditioning and social 

deficits (Ehrlichman et al., 2009b; O'Tuathaigh et al., 2010). In vitro studies of the 

hippocampus from NRG1 knockout animals report increased gamma oscillations (Fisahn 

et al., 2009).  
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 In this body of work, we have looked at gamma oscillations specifically in the 

visual cortex of mice either under the influence of ketamine or with genetic reductions in 

NRG1 to assess the changes in gamma oscillations during baseline conditions and during 

the processing of sensory stimuli. We propose that changes in NMDA receptor function 

result in alterations of gamma oscillation in V1 (Chapter 3). 

 

Cellular mechanisms of gamma oscillations 

The cellular mechanisms of gamma oscillation production in the sensory cortex in vivo 

have not been fully investigated. Gamma activity in the cortex can be produced by at 

least three mechanisms: cell autonomous, gap junction-mediated networks between 

inhibitory interneurons and the network activity involving both excitatory and inhibitory 

neurons. Gamma oscillations in cortex can results from intrinsic oscillatory properties of 

excitatory cells (Llinas, 1988; Silva et al., 1991; Nunez et al., 1992), inhibitory cells 

(Llinas et al., 1991), and the special pyramidal cell class called fast rhythmic bursting or 

chattering cells (Gray and McCormick, 1996; Steriade et al., 1996b; Cardin et al., 2005). 

However, evidence from intracellular recordings of fast rhythmic bursting cells in cortex 

demonstrates that individual cells are not acting as pacemakers for gamma oscillations 

(Cardin et al., 2005). Instead, cortical gamma oscillations are more likely to be an 

emergent property of the network. Thus, synchronous gamma activity in a cortical 

network is likely generated either through connections between interneurons, or through 

reciprocal interactions between pyramidal cells and interneurons (Whittington et al., 

2000; Tiesinga and Sejnowski, 2009). Interneuron generated gamma activity ( ING) 
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occurs when a network of interneurons, potentially connected via gap junctions, receive 

an excitatory input and then begin to fire synchronously due to reciprocal inhibition. 

Alternatively, pyramidal-interneuron gamma generation (PING) occurs when pyramidal 

cells receive excitatory input, and depolarize inhibitory cells, which inhibit the excitatory 

cells and result in a network of oscillating cells.  In both mechanisms, the onset of gamma 

generation requires a depolarizing input, and the frequency of the oscillation is 

determined by the decay constant of the GABAA receptor (Contreras et al., 1996; 

Whittington et al., 2000; Traub and Whittington, 2010).  

In addition to generation by local cortical sources, gamma oscillations can be 

imposed onto the cortex by extracortical sources. For instance, gamma oscillations are 

robustly generated by thalamic cells (Steriade et al., 1993) and propagated between 

thalamic and cortical circuits via recurrent thalamocortical interactions (Contreras and 

Steriade, 1995; Jones, 2001; Llinas et al., 2005).  

Experimental evidence suggests that both excitatory and inhibitory cells play 

some role in the production of gamma activity. A number of studies in vitro and in vivo 

suggest that inhibitory cell firing and IPSP timing is more closely entrained to activity in 

the gamma frequency range (Hasenstaub et al., 2005; Haider et al., 2007). Similarly, 

optogenetic stimulation of inhibitory cells at gamma frequencies produces greater gamma 

activity in the local field potential (LFP) than stimulation of regular spiking (RS) cells 

and may influence the information transmitted by sensory stimulus (Cardin et al., 2009; 

Sohal et al., 2009). However, a recent study showed that optogenetic excitation of RS 

cells in the superficial layers also produces gamma activity in L2/3 and influences firing 
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rates of excitatory cells in the deep layers (Adesnik and Scanziani, 2010). In our work on 

the entrainment of excitatory and inhibitory neurons to ongoing gamma oscillations, we 

find far greater entrainment of putative inhibitory cells than excitatory cells, although the 

precise contribution of specific cell type varies both with cortical depth and with the 

context of gamma production (Chapter1, Chapter 2). 

The spatiotemporal characteristics of gamma oscillations in the LFP also vary 

through the depth of the cortex. Gamma oscillations are not thought to originate from one 

initial current sink, but  instead, current source density profiles in anesthetized animals 

show multiple distributed sinks and sources over space and time (Steriade and Amzica, 

1996). In addition, the magnitude of gamma oscillations in the auditory cortex of awake 

monkeys is larger in superficial layers than deep (Lakatos et al., 2005). In vitro studies 

have suggested that there may be two independent networks for generating gamma in 

cortex, located in the superficial and deep layers. These studies show that a cut 

perpendicular to the cortical surface in L4 does not prevent oscillatory activity in the 

beta/gamma range in either L2/3 or L5/6 (Roopun et al., 2006; van Aerde et al., 2009). In 

the primary sensory cortex of mice, we found that gamma oscillations showed a 

consistent phase shift through the layers of cortex, implying some organization of current 

sinks and sources. The magnitude of visually-driven gamma oscillations was largest in 

the superficial layers, but we did not observe a laminar profile during bouts of 

spontaneous activity. We manipulated gamma frequency activity in the superficial layers 

and found that the gamma oscillations in the deep layers were not affected, lending 
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support to the hypothesis of two connected, but somewhat independent, circuits for 

gamma generation in the cortex.  

  

Importance of murine model in the study of gamma oscillations 

Recently, studies in the field that have long relied on larger animal models such as 

cat and monkey have begun to move towards to the mouse model. One of the most 

important advantages of the murine model is the ability to genetically modify the mouse 

in order to model disease or to perturb a specific aspect of the neural system. In this 

thesis, we use the NRG1 mouse to characterize gamma oscillations as an endophenotype 

of schizophrenia. Modeling human disease in rodents can be an important way to make 

predictions about the changes that occur in disease states and allow for the testing of 

potential pharmacological interventions.  

 An additional advantage of the genetic modification of mice comes from the 

recent development of optogenetics. The excitation or inhibition of specific groups of 

neurons by light stimulation provides an opportunity to determine the contribution of 

specific components of a circuit. The manipulation of individual cell types in 

combination with recent advances in mouse behavioral paradigms, such as the recently 

developed visual discrimination tasks in head-fixed mice (Andermann et al., 2010; Niell 

and Stryker, 2010), will allow for experiments that can effectively address the 

mechanisms and function of gamma oscillations.  
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Chapter 1: Spontaneous and sensory-driven gamma 

oscillations engage distinct cortical circuitry 

 

Abstract 

Gamma oscillations (20-50 Hz) are a robust component of brain activity associated with 

information processing, but are also part of the background spontaneous activity during 

various brain states including sleep and anesthesia. Since the proposed functional role of 

gamma differs between states, we reasoned that the spatiotemporal pattern and 

contribution of excitatory and inhibitory networks to gamma oscillations should also be 

distinct. Here we compared those two states using local field potentials and single units 

from mouse primary visual cortex in vivo. We found that visually-driven gamma activity 

was preferentially increased in supragranular (L2/3) and granular (L4) layers whereas 

spontaneous gamma activity was homogenously distributed through the depth of the 

cortex. Single unit recordings of regular spiking (RS, putative excitatory) neurons 

showed that visual stimulation increased the number of rhythmic cells mainly in supra- 

and infragranular (L5/6) cortical layers, unlike during spontaneous gamma, in which 

rhythmic cells were homogeneously distributed throughout cortex. In contrast, fast 

spiking (FS, putative inhibitory) cells showed increased rhythmicity in infragranular 

layers during both conditions of gamma. Blockage of chloride-mediated GABAergic 

inhibition in supragranular layers led to a reduction in gamma oscillations in 

supragranular layers, a reduction in rhythmicity for both supragranular RS and FS, but a 

reduced rhythmicity for only RS cells in infragranular layers. Thus, our results show clear 
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differences in the spatiotemporal pattern of spontaneous and sensory-driven gamma and 

reveal an important contribution of supragranular layers to the rhythmicity of 

infragranular layers.
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Introduction 

 Oscillatory activity in the gamma (20-50 Hz) frequency band is a ubiquitous 

rhythm throughout the brain that has been implicated in multiple aspects of information 

processing. Gamma oscillations have been associated with sensory representation (Gray 

et al., 1989; Ribary et al., 1991; Eckhorn et al., 1993), sensorimotor integration (Sanes 

and Donoghue, 1993) and cognitive processes including memory (Sederberg et al., 2003; 

Gruber et al., 2004; Herrmann et al., 2004), attention (Fries et al., 2001; Debener et al., 

2003) and perception (Keil et al., 1999; Ribary, 2005). The association of gamma-band 

rhythmic activity and information processing is found across a wide range of species 

ranging from insects (Laurent, 1996) and rodents (Sukov and Barth, 1998; Nase et al., 

2003) to non-human primates (Eckhorn et al., 1993) and humans (Ribary et al., 1991).  

 In addition to its association with information processing, gamma-frequency 

activity is a robust component of the ongoing background activity of the brain. 

Spontaneous gamma oscillations occur during REM and slow wave sleep, under various 

anesthesias, and in the wake state in the absence of direct sensory stimulation (Contreras 

et al., 1996; MacDonald et al., 1996; Steriade and Amzica, 1996; Steriade et al., 1996a; 

Destexhe et al., 1999; Steriade, 2006). 

 Experimental and theoretical studies have identified a variety of cellular 

mechanisms underlying the generation of gamma oscillations in cortical and 

thalamocortical networks. These mechanisms range from intrinsic oscillatory properties 

of single neurons  (Llinas, 1988; Llinas et al., 1991; Silva et al., 1991; Nunez et al., 1992; 

Gray and McCormick, 1996; Steriade et al., 1996b; Cardin et al., 2005), to local circuit 
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interactions (Whittington et al., 1995; Wang and Buzsaki, 1996; Fisahn et al., 1998; 

Whittington et al., 2000) and recurrent thalamocortical interactions  (Steriade et al., 1993; 

Contreras and Steriade, 1995; Jones, 2001; Llinas et al., 2005). 

 Despite the abundance of work delineating the mechanisms of gamma oscillations 

and their relevance to information representation, few studies have addressed the 

apparent paradox of the presence of this rhythm during ongoing, background activity. 

The goal of this study was to shed light on the mechanisms of gamma generation in vivo 

and to determine if stimulus-driven gamma activity engages columnar circuitry and 

excitatory and inhibitory networks in the same manner as spontaneous gamma activity. 

The well-documented modulation of gamma activity by visual stimuli, the robust gamma 

oscillations in the mouse V1 (Nase et al., 2003), and the recent characterization of its 

single unit response properties (Niell and Stryker, 2008) made the mouse primary visual 

cortex ideally suited for our study of the characteristics of gamma frequency oscillations. 

 We show that in the primary visual cortex of the mouse in vivo, spontaneous and 

visually-driven gamma oscillations have similar magnitude and peak frequency but 

different bandwidths and distributions over the cortical depth. In addition, the 

quantification of rhythmicity of regular and fast spiking neurons reveals a laminar 

structure that differs between the stimulus-driven and spontaneous conditions, implying 

differential contribution of excitatory and inhibitory networks between states. Finally, our 

results suggest an important contribution of L2/3 to sensory responses and to the 

rhythmicity of the output neurons of the cortex. 
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Materials and Methods 

Surgery 

All animal experiments were performed in accordance with the guidelines of the National 

Institutes of Health and the University of Pennsylvania Institutional Animal Care and Use 

Committee. Adult C57/B6 mice (12 – 24 weeks) were sedated with an initial dose of 

xyalzine (13 mg/kg) and anesthetized with brief exposure to a high concentration of 

isoflurane (5%). Anesthesia was maintained with light isoflurane (0.1 – 0.7 %) and the 

administration of booster doses of xylazine as needed, typically every 2 hours. Anesthetic 

level was monitored by toe pinch, respiration and pupil dilation. Body temperature was 

maintained at 36° – 37° F throughout the experiment with a heating pad (FHC). Mice 

were positioned in a stereotaxic apparatus (David Kopf Instruments) and rotated 60° so 

that one eye was directed towards a LCD monitor. Skin incisions were infused with 

lidocaine and the eye was covered with lacrilube to prevent drying. During the recording 

session, lacrilube was removed, and eye condition was carefully monitored. A 

craniotomy (~1.5 x 1.5 mm) was made above the primary visual cortex contralateral to 

the eye facing the monitor. The dura was removed to allow the insertion of either a 

silicon polytrode (NeuroNexusTechnologies) or multiple tetrodes (Thomas Recording 

Technologies).  

 

Electrophysiology 

Local field potential (LFP) recordings were obtained from multi-electrode probes 

(Neuronexus Technologies) with 16 channels arranged in a vertical configuration, with 
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either 50 or 100 μm spacing between probes (model a1x16-3mm50-177 or a1x16-

3mm100-177), inserted normal to the surface of the cortex. In some experiments, two 

probes were inserted with ~1mm space between the probes. LFP signals were filtered 0.1 

to 3000 Hz online (n= 18 animals, 21 probes). For single-unit recording, simultaneous 

extracellular and LFP recordings were obtained from multiple tetrodes inserted via a 

microcontroller (Thomas Recording). The extracellular signal was filtered from 600 to 

9000 Hz and spiking events were detected on-line by voltage threshold crossing (N=14 

animals, 47 tetrodes, 215 cells). A 1.5 ms waveform sample was acquired around the time 

of threshold crossing and was analyzed offline. All signals were recorded with the 

Cheetah 32-channel acquisition system at 30 kHz (Neuralynx).  

 

Pharmacology 

A small dose (75 μL) of picrotoxin (0.75 μM, Sigma) was applied to the surface of the 

cortex, and the excess was immediately wiped away. Recordings were started 5 minutes 

after the application of picrotoxin and lasted for ~20 minutes. 

 

Visual stimuli 

Visual stimuli were generated using a ViSaGe stimulation generation system (Cambridge 

Research Systems, Cambridge, UK) and the accompanying MATLAB toolbox. Stimuli 

were displayed on a gamma-corrected 19-inch LCD monitor configured at 75Hz refresh 

rate, and positioned 30cm away from the mouse's eye to occupy ~70º of visual space. Full 

screen drifting gratings were presented for 1s with long (2-5 s) inter-stimulus intervals to 
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allow for a sufficient return to baseline between trials. Stimulus parameters (95% 

contrast, 0.08- 0.1 cycles/degree, 3 Hz) were chosen to maximally drive the visual 

response in both single units (Drager, 1975; Niell and Stryker, 2008) and LFPs.  

 

Analysis 

Analysis was carried out using custom routines in Igor (Wavemetrics) except where 

specified. Neural signals were filtered 0.1 – 300 Hz for LFP recordings and 20 – 50 Hz to 

isolate gamma frequency oscillations. LFPs from the 16-channel probes were used to 

calculate the current source density (CSD) of the cortical stimulus-evoked responses 

according to the methods of Swadlow et al. (2002). Briefly, the one-dimensional CSD 

was derived from the second spatial derivative of the LFP data as described by Freeman 

and Nicholson (1975): 

 (∂2Φ/∂z2)=[Φ(z+2Δz)-2Φ(z)+Φ(z-2Δz)]/(2Δz)2 

where Φ is the LFP, z is the vertical coordinate depth of the probe, and Δz is the inter-

recording site distance (50 or 100 μm in the present study). Upper and lower boundaries 

for CSD calculation were obtained by extrapolating recordings from the first and last 

recording sites. 

Power spectra were generated using Fast Fourier Transform at a single trial level 

for 1s epochs either immediately before (baseline condition) or after (stimulus condition) 

the onset of the drifting grating. Baseline and stimulus spectra were averaged across trials 

for each electrode and then divided to give a ratio measurement of the increase above 

baseline. Peak frequency, amplitude and width measurements were calculated from the 
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ratio spectra. Latency to onset of gamma oscillations was calculated from LFP traces 

filtered for the gamma range (20- 50 Hz) and was measured as the time from stimulus 

onset to the first positive peak of the gamma filtered trace that crossed a significance 

threshold (2.5 SD above the mean). Coherence measurements were computed using 

multitapered methods and the Chronux package (http://chronux.org/)(Mitra et al., 2008) 

in Matlab (Mathworks). Wave triggered averages were calculated by averaging LFPs on 

the peaks of gamma oscillations that occurred during the presentation of the drifting 

grating and were above the significance threshold (2.5 SD above the mean). 

Representative LFPs from L2/3, L4 and L5/6 were averaged on the peaks of gamma from 

the L4 LFP. Phase shift was quantified by comparing the time of the center peak in the 

wave triggered average of LFPs from L2/3, L4 and L5/6. 

 Single units were first identified using an automated clustering algorithm based 

on the mixture-of-Gaussians model (Harris et al., 2000). Clusters were refined manually 

on the basis of waveform shape and interspike interval (SpikeSort3D, Neuralynx). 

Quality of separation was determined based on the Mahalanobis distance and L-ratio 

(Schmitzer-Torbert et al., 2005) using the MClust package (Matlab). Units were 

identified as visually responsive if they maintained an average firing rate of 0.05 Hz 

during at least 20 presentations of the stimulus.  

 All 215 units were then classified as regular or fast spiking based on properties of 

their average waveforms, at the electrode site with the largest amplitude. Three 

parameters were used for discrimination: the height of the positive peak relative to the 

subsequent negative trough, the time from peak to trough, and the slope of the waveform 
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0.5 ms after the initial peak. These parameters have been found optimal for separation of 

neurons in all layers of the mouse V1 (Niell and Stryker, 2008). 

 To determine if single units were entrained to the gamma oscillations in the LFP 

recorded on the same tetrode, we created peri-event histograms (PEHs) using the peaks of 

the gamma oscillations that crossed a significance threshold as timestamps. To ascertain 

if the modulation of these events was significant, we computed a rhythmicity index (RI) 

for each cell. The RI was calculated by averaging the spike counts of the difference 

between the three center peaks and troughs, and dividing this by the average of the entire 

histogram (Popescu et al., 2009). This calculation was repeated 1,000 times with shuffled 

spike times, and the RI of the cell was normalized with respect to the resulting histogram 

of spike-shuffled rhythmicity values. A normalized rhythmicity value of 0.95 or greater, 

corresponding to a RI greater than 95% of the shuffled values, was considered 

significant. All rhythmicity values reported in the text and figures are normalized. 

 Statistical analysis was performed using the Mann-Whitney U test or the 

Wilcoxon signed-rank test where appropriate. Variability is reported as the standard 

deviation (SD) unless specified to be the standard error of the mean (s.e.m.). All error 

bars in the figures represent the standard error of the mean. 
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Results 

Spontaneous and visually driven gamma frequency oscillations occur robustly 

through the depth of V1. 

Our goal was to characterize the spatiotemporal distribution of gamma oscillations (20-50 

Hz) through the depth of the mouse primary visual cortex (V1) and compare visually 

driven oscillations with those occurring spontaneously. We recorded local field potentials 

(LFPs) using a multisite probe (Neuronexus, Ann Arbor, MI) with 16 evenly spaced 

recording sites (50 or 100 µm interelectrode distance) inserted normal to the cortical 

surface and spanning the cortical depth. We also recorded single cells from layers 2-6 

using 5-7 independently movable tetrodes (Thomas Recordings, Giessen, Germany). 

Mice were anesthetized with a mix of isoflurane and xylazine in order to obtain a stable 

low amplitude spontaneous baseline pattern recorded in the LFPs (Fig. 1A). The visual 

responses described here were readily abolished or became highly variable when the 

anesthesia level induced slow oscillations in the background activity. We obtained 

recordings from 21 probes from 18 animals, from which we selected 17 probes from 13 

animals for analysis based on the stability and amplitude of visual responses and the 

absence of slow oscillations in the baseline. Among these, we further selected 9 probes 

from 7 animals for the analysis of spontaneous activity in which there was enough 

prolonged stable baseline activity.  

 The presentation of high-contrast, full screen drifting gratings evoked a large 

response in the LFP signal, which was evident at the single trial level (Fig.1, green boxes) 

both in the broadband (0.1 to 300 Hz, Fig. 1A) and gamma frequency (20 – 50 Hz, Fig. 
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1D) filtered data. The stimulus-locked average of the visual response in the broadband 

LFP (Fig. 1B) consisted of a negative deflection with a latency of 90 ms after stimulus 

onset in layer 4 (L4). The amplitude and latency of the stimulus-locked response varied 

systematically with cortical depth, which we quantified using current source density 

(CSD) analysis (Freeman and Nicholson, 1975; Swadlow et al., 2002). In this example, 

the CSD revealed an initial large sink in L4 with an onset latency of 90 ms followed 92 

and 111 ms later by sinks in L2/3 and L5/6, respectively (Fig. 1C). For the population, 

the latency to onset of the evoked response in L4 was 95.7 ± 15.5 ms, the latency to onset 

of the CSD response for L4 was 103±16 ms followed 69±66 and 78±73 later by sink 

onsets in L2/3 and L5/6. On the basis of the CSD analysis, we were able to reliably 

identify channels located in L2/3, L4 and L5/6. These latencies are longer than others 

have previously reported for rodent primary visual (Heynen and Bear, 2001; Niell and 

Stryker, 2008) and auditory cortex (Szymanski et al., 2009). However, this may be a 

function of the drifting grating stimuli, which produces a more gradual onset than a 

flashed or contrast reversing grating. Additionally, differences in onset latency may be 

anesthesia dependant.  

 Visual stimulation also triggered a robust increase in gamma frequency activity 

(Fig. 1D). Unlike the LFP evoked response, sensory driven gamma showed a variable 

latency from stimulus onset, and, therefore, was greatly reduced in magnitude by the 

stimulus-locked averaging (Fig. 1E, notice the change in vertical scale). Indeed, the CSD 

analysis of the averaged gamma revealed multiple sinks and sources over space and time 
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without any obvious layer arrangement (Fig. 1F). For this reason, our quantification of 

gamma frequency activity was done at the single trial level.  

 In addition to sensory-driven gamma, the spontaneous background activity 

showed bouts of gamma activity with similar amplitude and duration to those triggered 

by the drifting gratings. Spontaneous gamma bouts occurred robustly and regularly 

throughout the depth of V1 in all recording sessions (Fig. 1D, spontaneous). The presence 

of spontaneous gamma oscillations agrees with previous observations indicating that 

gamma oscillations are a robust component of the background activity of the brain 

(Steriade et al., 1996b).  

 

Sensory-driven and spontaneous gamma frequency activities have distinct laminar 

structures.  

Next, we compared the characteristics of visually-driven and spontaneous gamma 

through the vertical extent of the cortex. To quantify visually-driven gamma oscillations, 

we calculated the power spectrum from each single trial response over a 1 second 

window following stimulus onset. To obtain baseline spectra we used 1 second windows 

immediately preceding stimulus onset for each single trial. As indicated above, single 

trial analysis is immune to the reduction in amplitude of gamma oscillations that 

inevitably results from averaging the responses time locked to the stimulus. We then 

averaged the response and baseline single trial spectra (Fig. 2A, left panel) and calculated 

the ratio between the two for all 16 channels (Fig. 2A, right panel). Thus, the ratio spectra 

quantify the fold increase in activity along the frequency axis triggered by the visual 



25 
 

response with respect to the activity immediately preceding stimulus onset. The ratio 

spectra for this example illustrated in Figure 2A show up to a 6.36 fold increase in power 

in the gamma frequency band that is maximal at 26 ± 1 Hz. This increase over baseline 

was limited to a relatively narrow band of frequencies surrounding 26 Hz (width = 

11.3±1.8 Hz). Additionally, this increase in gamma power was not uniform through 

cortical depth but was much stronger in granular (L4) and supragranular (L2/3) layers as 

illustrated by representing  the ratio spectra as a 2D plot in which magnitude was color 

coded (Fig. 2B). The asymmetry between layers was clear in the plot of peak power 

frequency (26 Hz) versus cortical depth (Fig. 2B), which shows a 2.84 fold difference 

between L4 and L5/6.  

 Spontaneous gamma oscillations had distinct spectral and spatiotemporal 

properties compared to visually-driven gamma. We detected spontaneous gamma bouts 

by the crossing of a significance threshold set to 2.5 SD above the mean applied to the 

gamma band filtered data (see Methods). As with the visually-driven gamma, we 

calculated the power spectrum from each gamma bout and its corresponding 1 second 

preceding baseline, and averaged the single trial spectra (Fig. 2C, left panel). We then 

calculated the ratio spectra (spontaneous bout/baseline) for all 16 channels (Fig. 2C, right 

panel). Fig 2C shows an example in which spontaneous gamma bouts were similar to 

sensory-triggered gamma in their amplitude and peak frequency (6.17 fold increase in 

gamma power at 25.2 ± 1 Hz). In contrast, spontaneous gamma bouts included a much 

wider spectral increase (18.5 ± 1.4 Hz) and were relatively uniform in magnitude over the 

cortical layers. The more uniform distribution of spontaneous gamma bouts through 



26 
 

cortical depth is illustrated by the two-dimensional plot of the ratio spectra and by the 

laminar profile of the power at the peak frequency of 27 Hz (Fig. 2D). Thus, in contrast 

with those driven by visual stimuli, spontaneous gamma oscillations lack a distinct 

laminar structure.  

 The differences illustrated by the example in Figure 2 (A-D) were verified at the 

level of the population. To simplify the comparison over depth and across experiments, 

we averaged the responses of the channels located in the supragranular (L2/3), granular 

(L4) and infragranular (L5/6) laminae, as indicated by the CSD analysis. We quantified 

the distribution of gamma power through the depth of the cortex from the ratio spectra, to 

obtain a population value we arbitrarily normalized to L5/6 (Fig. 2E). The increase in 

visually driven gamma was significantly higher in L2/3 (1.83 fold greater, p= 0.022) and 

L4 (1.86 fold greater, p= 0.012) than L5/6. In contrast, the increase in gamma power 

during spontaneous bouts did not show significant differences between layers, despite a 

tendency to a larger increase in L2/3 (Fig. 2E).  

 The width (in Hz) of the increased power was measured from the ratio spectra as 

the distance between points raising 1 SD above spectral noise. The width did not change 

as a function of depth in either the spontaneous or stimulus-driven condition, and thus 

was averaged across all channels for each experiment. The width was significantly larger 

for spontaneous (23.2 ± 1.9 Hz) than sensory-driven (13.4 ± 2.7 Hz) (Fig. 2F), and while 

visually-driven increase generally fell between 20 – 50 Hz, spontaneous oscillations 

increased over a broader spectral range from 10 – 60 Hz. Like the example in Figure 2, 

the population peak frequency in the ratio spectra did not change over cortical depth and 
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was averaged across all channels. The frequency was not different between spontaneous 

(29.5 ± 3.4 Hz) and visually-driven (29.1 ± 1.8 Hz) (Fig. 2G). We quantified the latency 

to onset of visually-driven gamma oscillations as the time from onset of the drifting 

grating presentation to the first threshold-detected peak on the gamma-band filtered LFP. 

The population average showed no difference in onset latency between L2/3 (524 ± 246 

ms) and L4 (495 ± 252 ms), but the latency in L5/6 was significantly longer than in L4 

(652 ± 279 ms, p = 0.04). In conclusion, sensory-driven and spontaneous gamma activity 

showed peaks with similar frequency and magnitude but different bandwidth and 

distribution across cortical depth. 

 To further characterize the differences between spontaneous and visually-driven 

gamma oscillations and their distribution in the cortical depth, we investigated the phase 

and magnitude of gamma activity between the cortical layers. We performed coherence 

measurements (see Methods) between representative channels in L4, L2/3 and L5/6, in 

which the two non-granular channels were equidistant to L4. In the example of Figure 3A 

(left panel) coherence was strong between L4 and the other two layers along most of the 

frequency spectrum, but was consistently larger between L4 and L2/3. Coherence 

between supra and infragranular layers was considerably smaller throughout the 

spectrum, but in all three cases coherence increased in the gamma band (20-50 Hz) and it 

was highest for L4 and L2/3 (Fig. 3A, left panel). We quantified coherence at the gamma 

frequency band for the population by averaging the coherence values for frequencies 

from 20 - 50 Hz across the population. The coherence of L4 and L2/3 between 20- 50 Hz 

(0.83±0.1) was greater than the coherence of L4 and L5/6 (0.64±0.17, p< 0.0001). 
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Coherence between L2/3 and L5/6 (0.46±0.23) was lower than both of the other pairs. 

The coherence analysis for the spontaneous gamma oscillations produced the same 

results as the stimulus-driven. Thus, our results show a large degree of broadband 

spectral coherence within the cortical column with a strong functional coupling between 

L4 and L2/3. More importantly, our results show that coherence is enhanced in the 

gamma frequency band both for spontaneous and stimulus-driven gamma. The similar 

coherence values between spontaneous and visually-driven oscillations suggest that, 

despite the differences in laminar distribution and frequency band, the phase relations 

across the cortical depth are equally stable over a wide spectral band. 

 Coherence analysis quantifies the stability of the phase relationships between 

waveforms but does not provide a measure of the phase value. To quantify the phase (in 

ms) of gamma oscillations between layers, we averaged the gamma oscillations in all 

channels around the threshold-detected positive gamma cycles from one chosen electrode 

in L4. As illustrated by the example of Figure 3B, these wave triggered averages (WTA) 

centered on L4 showed a positive phase shift in supragranular layers progressively 

increasing towards the pia, and a negative phase shift that progressively decreased 

towards the white matter. To obtain a population measure of phase shift we measured the 

delay of the central peak with respect to L4 from the same two representative channels 

(L2/3 and L5/6) as for the coherence analysis (Fig. 3C). We measured the phase shift 

both for stimulus driven as well as spontaneous gamma. The example in Figure 3C of 

stimulus-driven gamma showed a L4-L5/6 negative delay of -2.58 ms and a L4-L2/3 

positive delay of 2.76 ms. Population averages reveal a positive delay in L2/3 during 
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visually-driven gamma (2.7 ± 1.7 ms) and that is significantly larger than the positive 

delay during spontaneous gamma (1.9 ± 1.6 ms; p = 0.029). The average phase between 

L4 and L5/6, in contrast, showed a negative delay (visually-driven= -2.2 ± 1,5 ms; 

spontaneous = -1.95 ± 1.8 ms). In addition, the WTA analysis showed a much larger 

central peak for L2/3 than L5/6, emphasizing the functional coupling of the superficial 

layers. Thus, the large coherence values and the small phase shifts of the gamma positive 

peaks between layers assures effective interactions in the gamma band along the vertical 

axis of the cortical column. In addition, sensory-driven gamma oscillations have a better 

defined spatial and temporal structure than spontaneous oscillations.  

 

Single units entrain to gamma differently through the cortical layers. 

In order to determine if the laminar structure of the LFP oscillations is reflected in the 

spike output of V1, we recorded single units and LFPs throughout V1 using 

independently movable tetrodes (n=215 units). Single units in the mouse primary visual 

cortex respond robustly to full screen drifting gratings (mean firing rate to visual 

stimulation = 2.17 ± 3.2 Hz; baseline firing rate = 0.479 ± 1.07; n= 176 cells). However, 

since response firing rates rarely reach firing rates in the gamma range, responsive cells 

typically fire only once every several gamma cycles. An example of a cell responding to 

various orientations of a full screen drifting grating is illustrated by the rastergram in Fig. 

4A. The spike response of this example cell was robust as shown by the peristimulus 

histogram (PSTH) at the bottom, and it faithfully followed the evoked potential recorded 

in the LFP from the same electrode (superimposed trace on Fig. 4A, polarity inverted for 
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clarity). However, despite the strong responses and the presence of gamma oscillations in 

the LFP no gamma frequency activity was visible in the PSTH. Therefore, to quantify the 

rhythmicity of cells with low firing rates, we generated perievent histograms (PEH) 

which are spike time histograms around the threshold-detected positive gamma peaks in 

the LFP (Fig. 4B). From the PEHs we calculated a rhythmicity index (RI, see methods) as 

the average distance between trough and peak of the first 3 peaks of the PEH (Popescu et 

al., 2009). We set a criteria for significance at 95% over the level of the shuffled PEH 

(Fig. 4C, significance level) and found that 38% of single units showed a significant 

entrainment to stimulus driven gamma-frequency fluctuations in the LFP (mean RI 

0.99±0.6) but only 15% to the spontaneous gamma oscillations (mean RI 0.742±0.4) 

(Fig. 4C). For example, the PEH of the cell in Fig. 4B (green histogram, RI = 2.59) 

showed a strong entrainment to the visually-driven gamma oscillations, which were very 

robust as shown by its WTA (Fig. 4B, green line, vertical dotted line indicates the zero 

time of the gamma peaks). The same cell showed a much smaller entrainment to the 

spontaneous gamma oscillations (blue histogram, RI = 1.03) which in this example also 

produced a less robust WTA (Fig. 4B, blue line). Variations in the degree of entrainment 

of the spikes to the LFP could be a trivial result of variations in the magnitude of the 

gamma oscillations. However, the entrainment of a given cell could not be predicted by 

overall magnitude of gamma activity in the LFP rhythm or to the rhythmicity index of 

other cells in very close spatial proximity (Fig. 4D). In contrast, cell rhythmicity was 

dependent on the laminar position of the cell during visually driven gamma (Fig. 4E). 

The mean RIs were highest in L2/3 (1±0.6, p=0.025) and L5/6 (1.18±0.6, p=0.0039) 
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compared to L4 (0.78 ± 0.3). During spontaneous gamma, there were no significant 

differences in RI throughout the cortical depth (Fig. 4D, left panel). Similar results were 

obtained when examining the percent of rhythmic cells in each layer. During stimulus-

driven gamma L2/3 and L5/6 had a greater percentage of rhythmic cells (38% and 58.5%, 

respectively) than L4 (20.9%). During spontaneous gamma, the differences were much 

smaller, although L4 still had the smallest percent of rhythmic cells (9.3% compared to 

17.1% in L2/3 and 26.8% in L5/6; Fig 4D, right panel). Thus, both in terms of mean RI 

and percent rhythmic cells, neurons in L2/3 and L5/6 showed enhanced rhythmicity 

compared to L4 during stimulus-driven, but not spontaneous, gamma oscillations.  

 

RS and FS cells networks entrain differently during spontaneous and stimulus-

driven gamma. 

 In cortex, gamma oscillations rely strongly on excitatory and inhibitory network 

interactions. To determine the potential influence of excitatory and inhibitory cells on 

rhythmogenesis throughout the cortex, we classified all 215 units as putative excitatory 

(regular spiking, RS) or putative inhibitory (fast spiking, FS) cells on the basis of the 

shape of their waveform (Fig. 5A) (n= 195 RS, 20 FS) (Niell and Stryker, 2008). Unlike 

what has been observed in other species (Bruno and Simons, 2002), FS and RS both 

show high variability in firing rates and very similar mean rates during visual stimulation 

(FS = 2.65±2.8 Hz ; RS=2.13±3.3 Hz). However, the average rhythmicity of FS cells was 

much more pronounced than that of RS cells (FS = 1.42±0.7; RS = 0.95±0.5, p=0.002) 

and a higher percentage of FS cells were rhythmic compared to RS cells (FS = 75 %, RS 
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= 35%; Fig. 5B). Both FS and RS cells showed laminar structure in their rhythmicity 

during stimulus-driven gamma oscillations. FS cells showed no differences in average 

rhythmicity between L2/3 (1.12±0.6) and L4 (1.16±0.6), but rhythmicity in L5/6 was 

significantly greater than both of the superficial layers (2.03±0.67, p=0.02, p=0.022; Fig 

5C). Similarly, the percent of rhythmic FS cells in L5/6 (100%) was higher than L2/3 

(66.7%) or L4 (60%; Fig 5E). The laminar profile of the rhythmicity of RS cells during 

stimulus-driven gamma was distinct from that of FS cells (Fig. 5D). RS cells had 

significantly higher rhythmicity in L2/3 (1±0.6, p = 0.006) and L5/6 (1.06±0.46, 

p=0.0006) than L4 (0.73±0.25), and showed a similar pattern in the percent of rhythmic 

cells across layers (L2/3 = 36%; L5/6 = 52.8%; L4 = 15.8%; Fig 5F).  

 During spontaneous gamma, the mean RI decreased in both cell classes and 

across all layers   However, FS cells maintained their laminar structure during 

spontaneous gamma, with L5/6 cells showing significantly greater rhythmicity than cells 

in more superficial layers (L5/6 = 1.24±0.47; L4 = 0.75±0.7, p=0.038; L2/3 = 0.82±.042, 

p= 0.033) (Fig. 5C). In contrast, despite the significant entrainment of cells throughout 

the cortex, RS cells did not show laminar specificity during spontaneous gamma (L2/3 = 

0.76±0.5; L4 = 0.66±0.27; L5/6 = 0.71±0.34) (Fig 5D). The percentage of rhythmic cells 

followed the same trends as the mean RI for both FS and RS cells during spontaneous 

gamma (Fig 5E,F). Taken together, these results imply that the RS cells in L2/3 and L5/6 

are specifically engaged during stimulus driven gamma activity and that both 

spontaneous and stimulus gamma engage more powerfully FS cells in the deep layers.  
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Stimulus driven, but not spontaneous, gamma frequency activity depends on 

GABAergic transmission between RS cells. 

Anatomical and electrophysiological studies of cortical circuits have found a strong 

efferent drive from L2/3 to L5/6 (Thomson et al., 2002; Binzegger et al., 2009). We 

hypothesized that the increase in gamma frequency activity in the LFP and single units of 

L2/3 during stimulus gamma might be driving the increased rhythmicity seen in FS and 

RS cells in L5/6. To test this hypothesis, we specifically reduced gamma frequency 

activity in the superficial layers through the application of a weak concentration of 

picrotoxin (0.75 µM, 75 µL) topically to the surface of the cortex and presented drifting 

gratings over the course of 20-30 minutes. Within 5 – 10 minutes, the picrotoxin had 

noticeably increased the size of the evoked response of the LFP throughout all cortical 

layers (Fig.6A) and selectively reduced the magnitude of stimulus-driven gamma activity 

in L2/3 (Fig. 6B). The reduction of the GABAA dependant transmission also reduced the 

percent of rhythmic cells in L2/3 (50% reduction) and L5/6 (15%) (Fig 6C). FS and RS 

cells were identified on the basis of their waveform shape (n= 30 RS, 7 FS). In L2/3, the 

number of rhythmic cells was reduced for both FS cells (33% reduction, n = 3) and RS 

cells (100% reduction, n = 9). In L5/6, the percent of RS cells with significant 

rhythmicity was reduced (88% reduction, n=18), but the number of rhythmic FS cells in 

L5/6 was unchanged (n=3).  

 These results indicate that networks of FS and RS cells in L2/3 generate gamma 

oscillations driven by sensory stimulation through a mechanism that is dependent on 

GABAergic transmission. This network activity underlying gamma generation in L2/3 
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during visual stimulation contributes to the rhythmicity of RS, but not FS cells in L5/6. 

This result suggests a mechanism for L5/6 RS cell entrainment based either on the 

location of their apical dendrites in L2/3 or to excitatory vertical connectivity, and shows 

that networks of FS cells in L5/6 are capable of generating gamma oscillations 

independently of their RS neighbors and of afferent drive from L2/3. Furthermore, the 

magnitude of stimulus driven gamma in L5/6 is unchanged following the application of 

picrotoxin, suggesting that L5/6 stimulus driven gamma at a population level does not 

depend on activity in L2/3 or RS cell entrainment in L5/6, and is consistent with the 

hypothesis that FS cells are the primary drivers of gamma frequency activity in L5/6.  

 

  



35



36 
 

Figure 1.  Local field potential activity during the presentation of a drifting grating. 

(A) Sixteen LFPs, filtered 0.1 – 300 Hz, showing the evoked response to a single 

presentation of a full screen vertical drifting grating (95% contrast, 3 Hz, 0.08 

cycles/degree) for 1 second, as indicated by the green rectangle.   An evoked response 

and corresponding fast frequency activity following stimulus onset are clearly visible 

during this single trial.   

(B) Average evoked response for 50 presentations of the drifting grating.  The onset of 

the evoked response occurs 90 ms following stimulus onset, and the largest evoked 

response occurs within layer 4. 

(C)  Current source density analysis of the average response in (B) shows a large initial 

sink in L4 at 90 ms, followed by sinks in L2/3 (182 ms) and L5/6 (201 ms).   

(D)  Same data as presented in (A) but filtered for the gamma frequency range, 20 to 50 

Hz.  A stimulus-driven increase in gamma activity occurs during the presentation of the 

drifting grating, and a spontaneous bout of gamma activity occurs several seconds later. 

(E)  Average evoked gamma activity for 50 presentations of the stimulus.  Because 

gamma activity is not time-locked to stimulus onset, these averages only represent a 

small portion of the total gamma activity, as reflected by the smaller amplitude of the 

averages compared to the single trial activity in (D). 

(F)  Current source density analysis of the average evoked gamma.  Unlike the CSD 

analysis of the broadband LFP (panel C), there is not one initial sink in L4 followed by 

distinct sinks in the other layers, but instead multiple distributed sinks and sources over 

space and time. 
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Figure 2.  Laminar characteristics of stimulus-driven and spontaneous gamma activity. 

(A)  Power spectra from each of the 16 channels for one experiment.  Power spectra are 

calculated for the 1s window during the presentation of the stimulus (green) and for the 

baseline period 1 second immediately before the stimulus onset (black).  Spectra are 

calculated for each single trial and then averaged across all trials.  For each channel, the 

stimulus spectrum is divided by the baseline spectrum to reveal the frequencies with the 

greatest increase above baseline during the presentation of the stimulus.   

(B)  The values of the stimulus/baseline ratio (A, right hand graph) are plotted with 

respect to cortical depth.  The fold increase over baseline is represented by pseudocolor, 

with red indicating the largest increase (~6 fold increase).  Values for the frequency with 

the largest increase (26 ± 1 Hz, designated by arrow), are plotted with respect to depth to 

the right of the color plot.  The width of the gamma peak is 11.3±1.8 Hz. 

(C)  Spontaneous bouts of gamma are identified manually and confirmed by threshold 

crossing (2.5 SD + mean).  Power spectra are calculated in the same manner as in (A), for 

the 1 second window during the spontaneous bout (blue) and the 1 second baseline period 

immediately preceding each bout (black).  The spectra during the spontaneous bout are 

then divided by the corresponding baseline spectra for each channel to reveal a ratio 

measurement.   

(D)  The ratio measurements calculated in (C) were plotted with respect to depth.  The 

color scale indicated the increase over baseline and is the same as in (B).  The maximum 

increase (~6 fold) occurs at frequency 25.2 ± 1 Hz, and the width of the gamma peak is 

18.5 ± 1.4 Hz. 
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(E)  The ratio measurements shown in (A) and (C) for stimulus and spontaneous gamma, 

respectively were quantified (stimulus n=18 probes, 13 animals; spontaneous n=9 probes, 

7 animals).  The increase over baseline was quantified as the maximum amplitude for 

each channel, demonstrated by “a” in panel (A).  To compare between stimulus and 

spontaneous, these values were normalized to the value in L5/6.  The increase in visually 

driven gamma was significantly higher in L2/3 (1.83 fold greater, p= 0.022) and L4 (1.86 

fold greater, p= 0.012) than L5/6, only during stimulus driven gamma.   

(F)  The width of the gamma peak includes those frequencies in which the ratio 

measurement is greater than baseline, demonstrated by “w” in panel (A).  The width of 

the gamma peak was similar throughout the layers of cortex, but encompassed a wider 

range of frequencies during spontaneous gamma (23.2 ± 1.9 Hz) than stimulus (13.4 ± 

2.7 Hz, p=0.02). 

(G) Peak frequency was designated as the frequency with the largest increase over 

baseline, demonstrated by “f” in panel (A).  Peak frequency was constant through the 

layers of cortex and was the same during stimulus-driven (29.5 ± 3.4 Hz) and 

spontaneous (29.1 ± 1.8 Hz) bouts of gamma.  

(H) The latency to the first bout of gamma was only calculated for stimulus-driven 

gamma, due to the lack of a consistent onset time for spontaneous gamma.  Latency was 

determined by finding the first gamma peak to cross the significance threshold following 

the onset of the stimulus.  The population average showed no difference in onset latency 

between L2/3 (524 ± 246 ms) and L4 (495 ± 252 ms), but the latency in L5/6 was 

significantly longer than in L4 (652 ± 279 ms, p = 0.04). 
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Figure 3.  Coherence and phase measurements between cortical laminae. 

(A)  Coherence ± jackknife error measurements for 50 trials of drifting grating 

presentation.  The coherence of L4 and L2/3 between 20- 50 Hz (0.83±0.1) was greater 

than the coherence of L4 and L5/6 (0.64±0.17, p< 0.0001).  Coherence between L2/3 and 

L5/6 was lower than both of the other pairs (0.46±0.23). These differences were 

significant over the population (right panel, N=5 animals), and were similar between 

stimulus-driven and spontaneous gamma (not shown). 

(B)  Wave-triggered averages (WTAs) using the peaks of gamma oscillations in L4 as 

timestamps shows a distinct phase relationship through the cortical depth.  The peak of 

each gamma cycle occurs first in L5/6, followed by L4 and then L2/3.  The phase 

relationship is seen even more clearly in the CSD plot to the right of the WTAs.  Similar 

phase shifts are seen in both stimulus-driven (left panel) and spontaneous (right panel) 

gamma activity. 

(C)  Detailed view of the WTA averages seen in (B) for channels from each lamina.   

(D)  Quantification of the phase relationships shown in (B) and (C) for the population 

shows a larger phase precession through the layers during stimulus-driven gamma than 

spontaneous (N = 5 animals).  The positive delay between L2/3 and L4 is larger for 

visually-driven (2.7 ± 1.7 ms) than for spontaneous (1.9 ± 1.6 ms; p = 0.029) gamma. The 

average phase between L4 and L5/6, in contrast, showed a negative delay (visually-

driven= -2.2 ± 1.5 ms; spontaneous = -1.95 ± 1.8 ms).  
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Figure 4.  Single units are modulated by gamma oscillations differently through the 

cortex. 

(A)  Raster and PSTH from an RS cells in L2/3 during the presentation of a drifting 

grating.  The evoked response in the LFP (inverted polarity) follows a similar time course 

to the PSTH of the unit.   

(B)  Peri-event histograms for stimulus-driven (green) and spontaneous (blue) spiking 

events.   The positive peaks of gamma oscillations that crossed the significance threshold 

(2.5 SD above mean) served as timestamps.    

(C) Distribution of rhythmicity indices (RIs) for 176 cells during stimulus-driven (green) 

and spontaneous (blue) gamma.  RI for one third (38%) of the neurons were greater than 

the significance threshold during stimulus-driven gamma (mean RI 0.99±0.6), and RI for 

15% of the neurons crossed threshold during spontaneous gamma (mean RI 0.742±0.4).  

Box and whisker plots demonstrate the median and quartile values for each condition 

(stimulus median = 0.79, lower quartile = 0.62, upper quartile = 1.16; spontaneous 

median = 0.66, lower quartile = 0.51, upper quartile = 0.84). 

(D)  The RI did not correlate with the magnitude of gamma oscillations in the LFP from 

the same tetrode for either spontaneous or stimulus-driven gamma. 

(E)  Distinct laminar differences in rhythmicity were observed during stimulus, but not 

spontaneous gamma.  Neurons in both L2/3 (1±0.6, p=0.025) and L5/6 (1.18±0.6, 

p=0.0039) had significantly higher mean RI than L4 neurons (0.78 ± 0.3) (left panel).  

During spontaneous gamma there were no difference between the mean RIs for each 

layer (L2/3 = 0.76±0.45; L4 = 0.67±0.33; L5/6 = 0.77± 0.4).  Similarly, a greater percent 
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of neurons in L2/3(38%) and L5/6 (58.5%) were rhythmic compared to L4 (20.9%) 

during stimulus-driven gamma (right panel).  There was a similar trend during 

spontaneous gamma, but the differences between layers were smaller than during 

stimulus-driven gamma (L2/3 = 17.1%; L4 = 9.3%; L5/6 = 26.8%). 
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Figure 5.  FS and RS classification and modulation through the cortex. 

(A)  FS and RS cells were well separated on the basis of their peak/trough amplitude 

ratio, peak-to-trough time and ending slope of the trough. 

(B)  FS cells showed significantly greater rhythmicity than RS cells both in terms of the 

mean RI (FS 1.42±0.7; RS 0.95±0.5, p=0.002), and the percent of rhythmic cells (75% 

FS, 35% RS). 

(C) FS cells have a laminar structure to their rhythmicity during both stimulus-driven and 

spontaneous gamma.  During stimulus-driven gamma (dark lines) FS cells in L5/6 are 

more rhythmic (2.03±0.7) than those in L4 (1.16±0.6, p=0.022) or L2/3 (1.12±0.6; p= 

0.02).  FS cells have a similar laminar profile during spontaneous gamma (light lines) 

(L5/6 1.24±0.7; L4 0.75±0.7, p=0.038; L2/3 0.82±.042, p= 0.033).  The rhythmicity in 

L5/6 is greater during stimulus-driven than spontaneous gamma activity (p=0.0217).   

(D) RS cells in L2/3 (0.998±0.6) and L5/6 (1.06±0.46) showed greater rhythmicity than 

cells in L4 (0.734±0.25, p<0.0001).  During spontaneous gamma, RS cells showed no 

distinct changes in rhythmicity through the depth of the cortex (L2/3 0.76±0.5, L4 

0.66±0.27, L5/6 0.71±0.34).  RS cell rhythmicity in both L2/3 and L5/6 is greater during 

stimulus-driven than spontaneous gamma activity (p<0.0001). 

(E) Similar to the mean RI shown in (C), more FS cells are rhythmic in L5/6 (100%) than 

in L2/3 (66.7%) or L4 (60%) during stimulus-driven gamma.  This same relationship 

holds true for spontaneous gamma (L5/6 = 80%; L2/3 = 33.3%; L4 = 20%). 

(F)  Like the data presented in (D), more RS cells are rhythmic in L2/3 (36%) and L5/6 

(52.8%) than in L4 (15.8%), during stimulus-driven gamma. During spontaneous gamma, 
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there is a trend in the same direction, but the differences between layers are much smaller 

(L2/3 = 17%; L4 = 7.9%; L5/6 = 19.4%). 
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Figure 6.  Gamma activity is reduced following the application of picrotoxin. 

(A)  The GABAA antagonist, picrotoxin, increases the amplitude of the evoked response 

in the LFP during the presentation of the drifting grating through all layers of cortex, with 

the largest increase in L2/3 (n = 3 animals, p = 0.0215).   

(B)  Picrotoxin reduces the gamma power (20-50 Hz) during the presentation of the 

visual stimulus in L2/3 (p = 0.0313).   

(C)  The percent of rhythmic RS cells (n=30) in both L2/3 and L5/6 decreases following 

the application of picrotoxin (100% and 88% decrease).  The percent of rhythmic FS cells 

(n=7) falls in L2/3 (33% decrease) but not in L5/6 (0% decrease).   



50 
 

Discussion 

Our goal was to compare the laminar structure and the single unit entrainment during 

stimulus-driven and spontaneous gamma frequency activity in the primary visual cortex 

of the mouse. This study was motivated by the apparent paradox between the relevance 

of gamma oscillations for information processing and the abundance of gamma 

oscillations in local field potentials and units during on-going background activity in 

wake, sleep and anesthesia. Our results indicate that stimulus-driven and spontaneous 

gamma oscillations have distinct spatiotemporal profiles and engage excitatory and 

inhibitory networks differently through the cortical depth. Indeed, not only does stimulus-

driven gamma activity preferentially occur in the superficial layers, but it specifically 

entrains networks of excitatory cells in the superficial layers that contribute to the 

rhythmic activity of excitatory cells in L5/6. This work implies that spontaneous and 

stimulus-driven gamma are not functionally equivalent and is consistent with the 

hypothesis that stimulus-driven gamma is relevant for information processing.  

 

Gamma oscillations are ubiquitous during sensory processing and stimulus-driven 

activity 

Over the last several decades, many studies have provided evidence that gamma 

oscillations in neocortex are relevant to information representation. Initial work 

demonstrated increased synchrony in gamma frequency activity in single units in the 

primary visual cortex (Gray et al., 1989; Gray and Singer, 1989). Later studies revealed 

that the gamma component of local field potentials in V1 is directly modulated by 
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stimulus characteristics (Frien et al., 2000; Henrie and Shapley, 2005). Work in humans 

showed that gamma oscillations are modulated by perceptual processes, such as the 

interpretation of Gestalt stimuli (Keil et al., 1999; Tallon-Baudry and Bertrand, 1999), 

and are structured differently in patients with psychiatric disorders such as schizophrenia 

(Kwon et al., 1999; Spencer et al., 2004). Furthermore, results from 

magnetoencephalography (MEG) have shown that gamma oscillations display a specific 

spatiotemporal organization over the entire human cortex and which are reset by sensory 

stimuli (Ribary et al., 1999). 

 However, gamma frequency activity is present not only during information 

processing related activity, but also occurs as part of the background activity of the brain 

during the depolarization phases of anesthesia and slow wave oscillations, REM sleep, 

brain activation by stimulation of neuromodulatory systems of the brainstem  and in the 

waking state not in association with motor or sensory activity (Steriade et al., 1996b); 

reviewed in (Steriade, 2006). Thus, from the point of view of single cells the common 

principle underlying the appearance of gamma oscillations is the presence of tonic 

depolarization. 

 Since gamma oscillations are generated and distributed by networks of cortical 

neurons and their spatiotemporal profiles correlate dynamically with the information 

processing task, it is of great relevance to determine if stimulus-driven and spontaneous 

gamma activity share the same spatiotemporal characteristics or recruit the same neural 

networks. Differences between stimulus-driven and spontaneous gamma activity would 
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suggest that the mechanisms by which gamma activity is produced and likewise, its 

functional role, depend on the context in which it generated.  

 

Spatiotemporal structure of gamma oscillations during sensory processing 

While there are few studies that directly compare the structure of gamma oscillations in 

different functional or behavioral contexts, a number of studies have described the 

structure of spontaneous gamma activity. It was shown that spontaneous gamma 

oscillations have limited spatial synchrony in the cortex of awake cats (Steriade et al., 

1996a) and rats (Sirota et al., 2008),  and show multiple distributed current sinks and 

sources through the depth of the cortex (Steriade and Amzica, 1996). The study by 

Steriade and Amzica (1996) reported for the first time that gamma oscillations occur in 

tight phase relations across the depth of the cortex and single cell firing was tightly 

locked to the oscillations, indicative of local generation rather than volume conduction. 

That LFPs are indeed local in nature has been recently quantified in cat primary visual 

cortex (Katzner et al., 2009). We have found a similar tight relation between cell firing 

and LFPs as quantified by peri-event histograms centered on the peaks of gamma 

oscillations in the LFP, which showed that the entrainment of single units during 

spontaneous gamma was uniform throughout the cortex. Furthermore, in our study we 

quantified the phase shift across layers and found a systematic positive shift from L4 to 

L2/3 of 2.76 ms and a systematic negative phase shift from L4 to L5/6 of -2.58 ms. Thus, 

gamma oscillations occur with very small (<6ms) shifts of their positive peaks across the 
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cortical depth which allows effective communication between layers of gamma frequency 

spikes. 

 The study by Amzica and Steriade also showed a homogenous distribution of 

amplitudes across the depth of the cortex both for spontaneous gamma and that induced 

by stimulation of brainstem cholinergic systems, an arrangement similar to our CSD 

analysis of spontaneous gamma. Brainstem cholinergic systems depolarize thalamic non-

specific nuclei, which in turn globally activate the neocortex through glutamatergic 

transmission (Steriade, 2006). A study comparing spontaneous gamma oscillations with 

those evoked by stimulation of an intralaminar, non-specific thalamic nucleus showed a 

similar and homogenous distribution through the depth of the cortex (Sukov and Barth, 

1998). The similarity between gamma oscillations due to activation of diffusely 

projecting thalamic nuclei and gamma occurring spontaneously is consistent with the 

hypothesis that non-specific thalamic inputs may be an important component of the 

background gamma activity that characterizes functional brain states (Llinas and Pare, 

1997; Steriade, 2000; Jones, 2001) and which is altered in several pathological conditions 

(Llinas et al., 1999). Furthermore, it clearly distinguishes spontaneous gamma 

oscillations or with a non-specific thalamic contribution from those generated by specific 

sensory inputs as reported in this study, further supporting the idea of a physiological role 

of sensory-driven gamma. Finally, despite the differences in organization, our study 

showed the spontaneous and sensory driven gamma share a common mean frequency and 

spectral amplitude which is in agreement with a similar comparison made in the primary 

auditory cortex of the rat (Lakatos et al., 2005).  
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 In vitro studies have suggested that there may be two independent gamma 

generating circuits in the cortex, one in the superficial layers and one in deep layers, 

because a cut in L4 does not reduce the power of pharmacologically induced gamma in 

either L2/3 or L5/6 (Roopun et al., 2006; van Aerde et al., 2009). Furthermore, in both in 

vitro studies, superficial layer gamma was dependent on chloride GABAergic 

transmission. The laminar functional architecture of sensory-driven gamma reported here 

depends on GABAergic transmission as well, since superficial application of picrotoxin 

abolished gamma activity in L2/3. Furthermore, picrotoxin did not reduce gamma activity 

in deep layers suggesting that in vivo as well there may be two related, but independent, 

sources of gamma generation, in the deep and superficial layers of cortex.  

 Our results show an increase in gamma oscillation magnitude in the superficial 

layers that occurs only during stimulus-driven gamma. Specific activation of L2/3 gamma 

oscillations during the processing of sensory stimuli is consistent with the known 

functional architecture of the cortex. Pyramidal cells in L2/3 have widespread horizontal 

connections that are known to be critical for cortico-cortical information processing. Our 

results are suggest that stimulus-driven, but not spontaneous gamma, may be important 

for coordinating widespread sensory processing.  

 

Excitatory and inhibitory network contribution to gamma oscillations in cortex 

A strong case has been made for the importance of the FS cell network, mediated by gap 

junctions, in the generation of cortical gamma oscillations. Inhibitory transmission is 

thought to carry a large portion of the gamma rhythm (Hasenstaub et al., 2005) and 
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rhythmic depolarization of FS cells produces gamma activity in the LFP and increases 

spike precision (Cardin et al., 2005). In addition, in vitro studies have shown the 

generation of cortical gamma to be abolished by the blockade of GABAA transmission 

(Traub et al., 2005; Roopun et al., 2006). However, a recent study has shown that 

depolarization of superficial RS cells also produces gamma activity in the LFP and drives 

the firing of RS cells in L5/6 (Adesnik and Scanziani, 2010), which is consistent with the 

known excitatory drive from L2/3 to L5/6 in sensory cortex (Thomson et al., 2002; 

Binzegger et al., 2009). Our work highlights the involvement of both putative excitatory 

and inhibitory networks in gamma rhythmogenesis, but shows a specific role for RS cells 

in L2/3 and L5/6 during stimulus-driven gamma. Furthermore, disruption of rhythmic 

activity in the superficial layers by the GABAA antagonist, picrotoxin, demonstrates that 

gamma activity in L2/3 contributes to the entrainment of RS cells in L5/6.  

 In contrast, putative inhibitory cells are more entrained to gamma activity than 

putative excitatory cells throughout the cortex, but show a smaller difference in their 

rhythmicity between stimulus and spontaneous conditions. FS cells in L5/6 show 

increased overall rhythmicity during stimulus-driven gamma, but this increase does not 

depend on gamma frequency activity in the superficial layers, as seen by the unchanged 

rhythmicity of L5/6 FS cells during the application of picrotoxin to the superficial layers. 

In addition, the magnitude of the gamma oscillations in the L5/6 LFP is also unchanged 

during the picrotoxin application, suggesting that L5/6 putative inhibitory cells are 

primarily entrained to the local LFP. The modulation of L5/6 FS cell by the L5/6 LFP is 
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independent of the magnitude of gamma in the superficial layers and is relatively 

insensitive to the context during which the gamma is generated.  

 Taken together, these findings show clear differences in the laminar structure of 

gamma frequency activity in both the LFP and single units between stimulus-driven and 

spontaneous gamma, suggesting that gamma activity that occurs in the presence and 

absence of stimuli is not functionally equivalent. Instead, the context in which gamma 

occurs determines the networks that are involved and the balance of excitatory and 

inhibitory contribution throughout the laminae. These findings are consistent with the 

hypothesis that gamma frequency activity is relevant to the processing of information in 

the cortex. 
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Chapter 2: The modulation of gamma frequency oscillations by 

stimulus characteristics in the mouse primary visual cortex.  

 

Abstract 

Our goal was to determine the modulation of gamma frequency activity by stimulus 

characteristics in the local field potential (LFP) and single units of the primary visual 

cortex (V1) of the mouse.  Previous studies in animals with orientation columns have 

shown that gamma activity depends on stimulus intensity and is selective for stimulus 

orientation. Visual stimulation produces robust gamma frequency activity in the mouse 

visual cortex, but because the mouse lacks feature maps in V1, it was not known whether 

gamma was modulated by the characteristics of the stimulus. Our results indicate that the 

broadband and gamma component of the LFP are modulated by stimulus contrast but not 

by stimulus orientation. In contrast, the entrainment of single units to gamma frequency 

activity in the LFP depends both on the intensity and orientation of the stimulus. Both the 

number of cells that fire rhythmically and the amount of rhythmicity for each cell varies 

with stimulus characteristics. This work implies that while the entrainment of single 

neurons is sensitive to many aspects of the stimulus, population measures depend only on 

stimulus intensity. 
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Introduction 

 Information representation in cortex is based on specific spatiotemporal patterns 

of activation of populations of neurons. The activation patterns are a consequence of 

synaptic inputs generated by sensory stimuli, spontaneous background activity, the state 

of neuromodulation, the intrinsic electrophysiological properties of neurons and the 

anatomical network in which neurons are embedded. As a result of these factors, the 

average responses to changes in stimulus features lead to the definition of functional 

maps. However, maps are based on average depolarization and firing rate and, therefore, 

constitute a simple representation of the stimulus-locked, average response to a single 

stimulus parameter. Further, it is not known whether other parameters of neuronal 

activity may allow the distinction of new functional maps with perhaps very different 

functional meanings. One type of activity that appears in association with many forms of 

brain function and particularly in response to sensory stimulation is oscillatory activity in 

the gamma frequency band. 

 Several methods allow us to characterize and describe the activity of populations 

of neurons, from multiple single cells recordings to population recordings with 

electrophysiological and optical methods. The collective synaptic input to a local 

population can be measured extracellularly as local field potential (LFP), which 

represents electrical potential gradients in the extracellular space caused by synaptic 

activity driven currents. 

 Gamma oscillations recorded in the LFP or in the spike output of individual 

neurons have been proposed to play a role in information processing by providing a 
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common frequency to which groups of cells synchronize generating functionally 

meaningful neuronal ensembles (Singer and Gray, 1995). Under this assumption, changes 

in stimulus parameters may lead to changes in the rhythmicity of individual cells which 

in turn could be more meaningful for stimulus representation than changes in firing rate. 

Moreover, if stimulus representation is indeed associated with ensembles of rhythmic 

neurons, then the defining parameter of a stimulus feature would be the correlation 

structure of the population. More likely, firing rate and correlation in the gamma band 

represent different attributes of a stimulus or different levels of attributes, such as 

orientation and object continuity in the visual system for example. 

 In species such as the cat and the primate, neurons with similar stimulus 

selectivity are arranged in vertical columns through the depth of the cortex with a 

diameter of roughly 300-500 microns. Such columnar arrangement is due to convergence 

of specific populations of thalamic inputs and local vertical connectivity. Because of the 

similar selectivity of the neurons within a column the LFP associated with the sensory 

response shows similar stimulus selectivity. Interestingly, it has been shown in monkeys 

and cats that gamma oscillations are more selective to orientation than the LFP, which 

suggests that activity in the gamma band has a higher sensory discrimination power than 

the average neuronal responses (Gray and Singer, 1989; Frien et al., 2000; Berens et al., 

2008).  

 In contrast, in the mouse visual cortex there is no evidence for such columnar 

arrangement (Drager, 1975; Ohki et al., 2005). Therefore, the expectation is not to find 

stimulus selectivity in the LFP average response but to see an increase in LFP amplitude 
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with increases in stimulus intensity, here represented by changes in contrast. However, it 

is still possible that ensembles of neurons may be synchronized through synaptic linkages 

specific to their response properties, or that biases in the population may lead to sharper 

tuning of gamma oscillations despite the lack of columns. Again, the formation of 

functional groups should be manifest in the correlation structure of the ensemble and 

become visible as selectivity in the gamma band activity recorded by the LFP.  

 Here we show a contrast dependent increase in power in the gamma frequency 

band that is that is higher in L2/3 and L4 than L5/6. The firing rate, the gamma 

rhythmicity (measured with respect to the LFP) and the percent of rhythmic cells at the 

gamma frequency also increased with contrast. However, while single cells were 

orientation selective, gamma oscillations or the LFP evoked-response was not selective to 

the orientation of the drifting gratings. Thus, our results show that in mouse gamma 

frequency band activity is generated by populations of cells homogeneously distributed in 

the cortical volume. 
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Methods 

Surgery, electrophysiology, visual stimuli:   

See Chapter 1. 

 

Analysis: 

See Chapter 1. For single unit analysis, varying sets of contrast values were used in 

different experiments. For the purpose of population quantification, the responses of 

single units to slightly different contrast values in different experiments were grouped. 

Responses of single units to contrasts 23-35% were grouped into the contrast group 28%; 

contrasts between 41 – 59% were grouped into the contrast group 50%; contrasts between 

65 – 77% were grouped into the contrast group 73%. All units were presented with 5% 

and 95% contrast stimuli. 

Orientation selectivity index (OSI) was calculated by taking the value at the preferred 

orientation minus the value at the orthogonal orientation, divided by the sum of the two. 
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Results  

Our goal was to quantify the modulation of gamma oscillations (20-50 Hz) through the 

depth of the mouse primary visual cortex (V1) in response to changes in stimulus 

characteristics. Using full screen drifting sinusoidal gratings, we manipulated stimulus 

intensity by changing contrast and stimulus specificity by changing orientation. We 

recorded local field potentials (LFPs) using a multisite probe (Neuronexus, Ann Arbor, 

MI) with 16 evenly spaced recording sites (50 or 100 µm interelectrode distance) inserted 

normal to the cortical surface and spanning the cortical depth. We also recorded single 

cells from layers 2-6 using 5-7 independently movable tetrodes (Thomas Recordings, 

Giessen, Germany). Mice were anesthetized with a mix of isoflurane and xylazine in 

order to obtain a stable low amplitude spontaneous baseline pattern recorded in the LFPs. 

The visual responses described here were readily abolished or became highly variable 

when the anesthesia level induced slow oscillations in the background activity. We 

obtained recordings from 21 probes from 18 animals, from which we selected 18 probes 

from 13 animals for orientation analysis based on the stability and amplitude of visual 

responses and the absence of slow oscillations in the baseline. Among these, we further 

selected 5 probes from 4 animals for the analysis of contrast manipulations. 

 

Stimulus intensity modulates gamma frequency activity in V1 

 To quantify visually-driven gamma oscillations as a function of stimulus contrast, 

we used drifting grating presentations lasting 1000 ms at 4 luminance contrasts (95%, 

65%, 35% and 5%). Because gamma oscillations are not stimulus-locked but they appear 
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at different times during the visual response they are greatly reduced by averaging. Thus, 

we calculated power spectra from each single trial both during the 1 second window 

following the onset of the presentation of the drifting gratings and 1 second window 

immediately before stimulus onset (baseline). We then averaged the spectra from the 

visual response and baseline (Fig. 1A, left panel) and calculated the ratio between the two 

for all 16 channels and 4 contrasts (Fig. 1A, right panel). Thus, the ratio spectra quantify 

the fold increase in activity along the frequency axis in the visual response with respect to 

the activity immediately preceding stimulus onset. The ratio spectra for the L2/3 channel 

illustrated in Figure 1A show a maximal fold increase in power (8.4 fold) at 95% 

contrast, with smaller increases (2.8 fold) at 65% contrast and (1.4 fold) at 35%, and no 

change at 5%. Over the population, a stimulus with 95% contrast induced an increase of 

5.03±0.39, for 65% an increase of 2.5±0.7, for 35% contrast an increase of 1.6±0.2 and 

for 5% an increase of 1.4±0.06.  

 In order to determine if contrast dependent changes in gamma power were 

uniform throughout the cortex, we plotted the average for all experiments of the mean 

fold increase of gamma at the peak frequency ± 5 Hz as a function of channel depth (Fig 

1B). On average, for stimuli with high contrast the modulation was greatest in the 

superficial layers. To simplify the comparison over depth and across experiments, we 

averaged the responses of the channels located in the supragranular (L2/3), granular (L4) 

and infragranular (L5/6) laminae, as indicated by current source density (CSD) analysis 

(Fig 1C). Through the cortical depth, gamma power increased with stimulus contrast, but 
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at 95% contrast, L2/3 and L4 showed greater increase than L5/6 (p= 0.04; p=0.005). At 

65% contrast, L4 showed greater increase than L5/6 (p = 0.04). 

 In order to determine if the modulation of the LFP oscillations by stimulus 

intensity was reflected in the spike output of V1, we recorded single units and LFPs 

throughout V1 using independently movable tetrodes. Only single units that responded 

robustly to full screen drifting gratings of 95% contrast were included in the analysis (n= 

66 cells). To quantify the rhythmicity of single units, we generated perievent histograms 

(PEH) which are spike time histograms around the threshold-detected positive gamma 

peaks in the gamma-filtered LFP for each contrast. From the PEHs we calculated a 

rhythmicity index (RI, see methods) as the average distance between trough and peak of 

the first 3 peaks of the PEH, and used a bootstrapping technique to set a significance 

threshold of 95% over shuffled RIs (Popescu et al., 2009).  

 Both firing rate and rhythmicity increased with contrast for single units. For the 

L2/3 RS cell shown in Figure 2A, at the lowest contrast (5%), the cell fired at 1.4 Hz and 

had a RI of 0.72. At the highest contrast (95%), the firing rate increased to 7.3 Hz and the 

RI to 3.2. However, rhythmicity crossed the significance threshold at contrast levels 35%, 

65% and 95%, so the cell was rhythmic for a majority of contrast values.  

 Over the population, both the firing rate and rhythmicity increased with contrast. 

Firing rate increased from 0.7±0.15 Hz at 5% contrast to 3.3±0.32 Hz at 95% contrast 

(Fig. 2B). Similarly, the rhythmicity of the single units increased from 0.59±0.04 to 

1.23±0.08 (Fig. 2C, left), and the percent of rhythmic units increased from 9 to 51% (Fig. 

2C, right), as the contrast increased from 5% to 95%. To more directly compare the 
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modulation of firing rate and rhythmicity by contrast, we normalized the average firing 

rate and rhythmicity values to the 95% contrast value (Fig 2D). We found that firing rate 

rises more rapidly with increasing contrast than rhythmicity. Thus, the rhythmicity of a 

cell is less modulated by contrast than is the firing rate. The average RI includes all cells, 

both rhythmic and non-rhythmic. Thus, there are two ways to increase the mean RI; by 

increasing the RI of each cell, or by increasing the number of cells with high RI scores. 

We tested between these two possibilities by plotting the percent rhythmic and the 

average rhythmicity of cells that were rhythmic for two or more contrasts. This allowed 

us to see if rhythmicity continues to increase with contrast even after significant 

rhythmicity has been reached. Only the percent of rhythmic cells was modulated by 

contrast, which implies that with contrast, more cells become entrained to the ongoing 

oscillation. Cells that are already entrained do not become more tightly entrained with 

contrast. 

 To determine the potential differences in modulation of excitatory and inhibitory 

cells by stimulus intensity, we classified all units as putative excitatory (regular spiking, 

RS) or putative inhibitory (fast spiking, FS) cells on the basis of the shape of their 

waveform  (n= 56 RS, 10 FS) (Niell and Stryker, 2008). Unlike what has been observed 

in other species (Bruno and Simons, 2002), FS and RS both show high variability in 

firing rates and very similar mean rates over all levels of contrast (Fig. 2E). However, the 

average rhythmicity of FS cells was much more pronounced than that of RS cells at 

contrast levels greater than 28%. For instance, at 95% contrast FS cells had a greater RI 

(1.67±0.24) than RS (1.07±0.08; p = 0.004) and a larger percent of rhythmic cells (FS = 



66 
 

90%; RS = 45%; Fig 2F). However, at 5% contrast, FS and RS cells had comparable RIs 

and a similar percent of cells with rhythmic firing. Correspondingly, the difference in 

rhythmicity from 5% to 95% contrast seemed greater for FS cells (1.05±0.3) than RS 

cells (0.44±0.08), although this difference did not reach significance (Fig 2G). In 

addition, we measured the contrast threshold for rhythmicity, which is the contrast at 

which a cell that is rhythmic at 95% contrast no longer fires rhythmically (Fig 2H). FS 

cells have a substantially lower rhythmicity threshold than RS cells (FS = 61.4±11.6%; 

RS = 81.5±3.5%; p = 0.006 ; Fig. 2H), and thus begin to fire rhythmically at a lower 

contrast level. This is consistent with a greater rate of increase in rhythmicity with 

increasing contrast in FS cells compared to RS, and implies that FS cell rhythmicity is 

modulated more strongly by stimulus intensity than that of RS cells. 

 

Components of the LFP are weakly selective for stimulus characteristics 

 Unlike many other mammals, the mouse primary visual cortex does not show a 

columnar organization based on orientation preference (Mangini and Pearlman, 1980; 

Wagor et al., 1980; Ohki et al., 2005; Niell and Stryker, 2008). Therefore, we did not 

expect to find strong orientation tuning of the population activity represented by the 

broadband LFP or gamma frequency component of the LFP. Figure 3A shows an 

example of the average evoked responses to 8 different orientations in three layers of 

cortex. The amplitude of these evoked responses is represented in Figure 3B as a tuning 

curve (left panel) and polar plot (right panel). The difference in amplitude between the 

most and least preferred orientation is typically very small. In this example, in L2/3 the 
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amplitude at the preferred orientation (315 º) is 0.19 mV, and the amplitude of the non-

preferred orientation (180 º) is 0.12 mV. To quantify the stimulus selectivity for our 

population, we calculated an orientation selectivity index (OSI, see Methods) and 

averaged the OSI for channels corresponding to L2/3, L4 and L5/6 (Fig. 3G, white 

circles). The average OSI was similar through the depth of the cortex (L2/3 = 0.2±0.12; 

L4 = 0.18±0.14; L5/6 = 0.23±0.18), demonstrating that all layers of cortex have a 

similarly broad selectivity for orientation.  

 Although stimulus selectivity is low, orientation preference remains relatively 

constant through the cortical depth. In the example shown in Fig. 2A and B, the evoked 

response is largest in all layers when a grating of 315 º is presented. Over the population 

in general, the orientation preference shows only moderate variance from surface to 

depth. We calculated change in orientation preference as degrees difference from the 

preferred orientation of the most superficial channel (Fig 3C). On average, the preferred 

orientation changes 37±18 º over the cortical depth, with the smallest change predictably 

occurring at a depth of 100 µm (3±69 º) and the largest change occurring in deepest 

channel (68±86 º). 

 To quantify the orientation tuning of the gamma component in the LFP, we 

calculated the power spectrum from each single trial both during a 1 second window after 

stimulus onset and a 1 second window immediately before stimulus onset (baseline). We 

then averaged the response and baseline single trial spectra (Fig. 3D, top panel) and 

calculated the ratio between the two for each orientation (Fig. 3D, bottom panel). For the 

example shown in Figure 3D (bottom panel), the maximum ratio values, which occurred 
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at 26 Hz,  ranged from 9.9 fold increase for the preferred orientation (180º) to 4.2 fold 

increase for the non-preferred orientation (45º). We plotted the ratio values as a two-

dimensional plot of frequency vs. orientation, where color signifies the magnitude of the 

ratio (fold increase) of the stimulus over baseline (Fig. 3E). The frequency with the 

greatest increase over baseline, 26 Hz, showed a clear tuning for orientation with a 

preferred value of 180º (Fig. 3E, bottom panel). As described for the broadband LFP, we 

calculated the OSI of the gamma tuning curve. In this example, the OSI for this L2/3 

channel was 0.15. For the population, the orientation selectivity is low through the 

cortical depths (Fig 2G, solid circles), and is somewhat, although not significantly, less 

than the LFP OSI (LFP:L2/3 = 0.2±0.03; L4 = 0.18±0.03; L5/6 = 0.22±0.04; 

gamma:L2/3 = 0.13±0.08; L4 = 0.12±0.07; L5/6 = 0.12±0.07).  

 The orientation preference of gamma frequency activity was relatively constant 

through the depth of the cortex, with an average change from the preferred orientation of 

the top channel of 9.8±18º. The values through the depth of the cortex ranged from 

2.5±1.8º at a depth of 200 µm to a maximum of 39±2.4º at 350 µm.  

 In summary, although the selectivity of both the LFP and gamma frequency 

component were both low, the orientation preference of gamma was more consistent 

through the depth of the cortex. Interestingly, the preferred orientation of gamma 

frequency activity did not usually correspond to the preferred orientation of the LFP, as 

shown in Fig 2H.  

 

Single unit rhythmicity is orientation selective  
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Single neurons in the mouse primary visual cortex are selective for orientation (Drager, 

1975; Mangini and Pearlman, 1980; Niell and Stryker, 2008). In our population (n = 176 

cells), the average selectivity (measured as the OSI) was much greater in L2/3 

(0.49±0.03, n= 92) and L4 (0.43±0.04, n=43) than in L5/6 (0.26±0.03, n= 41, p < 0.0001; 

p = 0.002)(Fig. 4A). We set a threshold for selectivity of 0.5 and found that 46% of cells 

in L2/3, 35% of cells in L4 and 7% of cells in L5/6 were selective (Fig. 4B). For a subset 

of the population (n = 73), we then performed a rhythmicity calculation for the spiking 

response to each individual orientation and plotted the RI as a function of the degrees 

from the preferred orientation of the cell, as determined by the cell’s firing rate (Fig. 4C). 

Cells showed higher rhythmicity at 0º and 180º from the cell’s own preferred orientation, 

implying that the rhythmicity of the cell is somewhat for orientation, but not for direction.  

 We classified the units on the basis of their waveform as either fast-spiking (FS, n 

= 11) or regular-spiking (RS, n = 62). Both the average selectivity and firing rate of FS 

and RS cells were similar (FS:FR = 2.66±0.7, OSI = 0.35±0.06; RS:FR = 2.13±0.26, OSI 

= 0.43±0.02) (Fig. 4D). When we examined the rhythmicity for each orientation, FS cells 

fired rhythmically for 2±0.7 out of 8 orientations, while RS cells were rhythmic for <1 

out of 8 orientations (0.77±0.18; p = 0.006; Fig. 4E). Similarly, FS cells have a higher RI 

at every orientation than RS cells (Fig. 4F). In addition, the rhythmicity of FS cells was 

significantly higher for the preferred orientation (0.95±0.4) than for the orthogonal 

(0.66±0.3; p = 0.02), while RS cell rhythmicity was greater for the opposite orientation 

(0.73±0.4) than for the orthogonal (0.6±0.3; p = 0.009).  Thus, although the selectivity of 
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RS and FS cells was similar, the rhythmic behavior of FS cells showed higher stimulus 

selectivity than RS cells.  
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Figure 1. Contrast modulates gamma oscillation power. 

(A)  Example of the change in induced gamma power at different level of contrasts in a 

L2/3 channel.  Power spectra for four levels of contrast and baseline are shown in the left 

panel.  Ratio of each power spectrum during the stimulus over the baseline power 

spectrum show in right panel.   

(B)  Average ratio value for peak value ±5 Hz for every channel through the depth of the 

cortex at 4 contrast levels (n= 5 probes, 4 animals).   

(C)  Population statistics of the maximum ratio value produced at four levels of contrast 

in L2/3, L4 and L5/6 (n= 5 probes, 4 animals).  At 95% contrast, the ratio values for L2/3 

(7.1±1.1; p = 0.04) and L4 (7.7±0.8; p = 0.005) were significantly larger than L5/6 values 

(4.3±0.7).  At 65% contrast, ratio values for L4 (3.2±1; p = 0.04) were significantly larger 

than L5/6 values (2.2±0.6).   
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Figure 2.  Contrast modulates the entrainement of single neurons. 

(A)  Peri-event histogram (PEH) demonstrating the rhythmicity of an RS neuron in L2/3.  

Firing rate (FR) and rhythmicity index (RI) both decrease with contrast ( FR 95% = 7.3 

Hz ; 5% = 1.4 Hz), but the rhythmicity of the cell remains significant until 5% contrast. * 

= significant RI. 

(B) The firing rate of single units depends on contrast.  Firing rate increases from 

0.7±0.15 Hz at 5% contrast to 3.3±0.32 Hz at 95% contrast. 

(C)  The rhythmicity of the single units increased from 0.59±0.04 at 5% to 1.23±0.08 at 

95% contrast (left panel).  Similarly, the percent of rhythmic neurons increased from 9% 

to 51% as contrast increased from 5% to 95%.   

(D) Population values for FR, RI, percent rhythmic, and mean significant RI for neurons 

that are rhythmic at 2 or more contrasts.  Values are normalized to 95% contrast value to 

aid comparison.  Rhythmicity is less modulated by contrast than the firing rate (n = 66 

units).   

(E)  Firing rate at different contrast levels for RS (blue) and FS cells (red).   There are no 

significant differences in firing rate between RS and FS cells.   

(F)  Rhythmicity over different contrast levels for RS and FS cells.  Both for average RI 

(left panel) and percent of cells that are significantly rhythmic (right panel), FS cells 

show increased rhythmicity at all levels of contrast until 5%.  (95% FS = 1.67±0.24, RS = 

1.07±0.08; 73% FS = 0.94±0.17, RS = 0.74±0.05; 50% = FS 1.07±0.09, RS = 0.7±0.05; 

28% FS = 0.76±0.09, RS = 0.65±0.03; 5% FS = 0.69±0.09, RS = 0.59±0.04).  *p<0.004. 



75 
 

(G)  FS cells are more modulated by contrast than RS cells.  The difference in 

rhythmicity score between 95% and 5% contrast was greater in FS cells (1.05±0.3) than 

for RS cells (0.44±0.08). 

(H)  FS cells have a lower threshold for rhythmicity than RS cells.  Rhythmicity threshold 

was defined as the highest contrast stimuli that did not induce rhythmic firing in the cell.  

Average FS rhythmicity threshold (61.4±11.6% ) was substantially lower than the 

average rhythmicity threshold of RS cells (81.5±3.5%; p = 0.006 ). 
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Figure 3. Population measures are not well tuned for orientation. 

(A) Average evoked responses in the LFP of a representative channel from each cortical 

layers in response to gratings of 8 different orientations. 

(B)  Orientation tuning curves (left panel) and polar plots (right panel) for the amplitude 

of the evoked response (seen in A).  The preferred orientation for each of these channels 

is 315º, but the tuning is very broad. 

(C)  Population statistics for orientation preference with respect to depth.  The preferred 

orientation of the most superficial channel is plotted as 0, and the preferred orientation 

for the other 15 channels is plotted as the degrees from the preferred orientation of 

channel 1.  Data from 18 experiments is represented by the grey dots, and the color 

intensity signifies the number of data points at that dot.  Average values are shown in red.  

The average degrees away from the preferred orientation is less than 90º.   

(D)  Power spectra for one channel during the presentation of 8 gratings with different 

orientations (upper panel).  Baseline spectra shown in black.  Ratio of the spectrum for 

each orientation divide by the baseline spectrum (lower panel).  Peak ratio values range 

from 9.9 for 180 º to 4.2 for 45 º. 

(E)  Power spectra from (D, lower panel) plotted with respect to depth.  Color signifies 

the magnitude of the ratio over baseline.  Orientation tuning curve for peak frequency (26 

Hz). 

(F)  Population data for the orientation preference of gamma oscillations with respect to 

depth, plotted as in (C). 
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(G)  Orientation selectivity indices for the LFP (1 – 300 Hz) and gamma oscillations (20 

– 50 Hz) for the cortical layers.  Both show broad orientation tuning, and although the 

gamma oscillations have slightly lower index values than the LFP index values, the 

difference is not significant (LFP:L2/3 = 0.2±0.03; L4 = 0.18±0.03; L5/6 = 0.22±0.04; 

gamma:L2/3 = 0.13±0.08; L4 = 0.12±0.07; L5/6 = 0.12±0.07).   

(H)  Gamma oscillations and LFPs from the same electrode do not share orientation 

preference.  Descriptive statistics of the preferred orientation for gamma are plotted as a 

function of LFP preferred orientation.   
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Figure 4. The entrainment of single units is orientation selective. 

(A)  Orientation selectivity index for single units.  The OSI of L2/3 (0.49±0.03, n= 92) 

and L4 (0.43±0.04, n=43) are both greater than L5/6 (0.26±0.03, n= 41, p < 0.0001; p < 

0.0024). 

(B)  Percent of single units with OSI > 0.5, by layer.  46% of cells in L2/3, 35% of cells 

in L4 and 7% of cells in L5/6 were selective. 

(C)  Rhythmicity of single unit firing was determined for 8 orientations.  On average, 

cells showed the higher rhythmicity at the preferred (0.68±0.3) and opposite (0.76±0.5) 

orientations, compared to orthogonal (0.61±0.3; p = 0.04; p = 0.008). 

(D)  FS and RS cells show similar firing rates and selectivity (FS fr = 2.66±0.7, osi = 

0.35±0.06; RS fr = 2.13±0.26, osi = 0.43±0.02).   

(E)  When rhythmicity was calculated for 8 orientations, on average, FS cells fired 

rhythmically for 2±0.7 orientations, compared to 0.77±0.18 orientations for RS cells(p = 

0.006).  

(F)  FS cells showed higher rhythmicity across all orientations than RS cells, but both cell 

types showed some selectivity in their rhythmicity.  The rhythmicity of FS cells was 

significantly higher for the preferred orientation (0.95±0.4) than for the orthogonal 

(0.66±0.3; p = 0.02), while RS cell rhythmicity was greater for the opposite orientation 

(0.73±0.4) than for the orthogonal (0.6±0.3; p = 0.009).     



81 
 

Discussion 

 Our results show a selective increase in gamma frequency band in the local field 

potentials (LFP) recorded from mouse V1 in response to increases in stimulus contrast. 

The increase in gamma activity was more pronounced in supragranular (L2/3) and 

granular (L4) layers than in infragranular (L5/6). Single cells responded to increasing 

stimulus contrast with an increase in firing rate and an increase in their rhythmicity index. 

Increasing contrast also increased the percent of rhythmic cells. 

 Our results also show that neither gamma band activity, nor the LFP stimulus-

locked response was modulated by stimulus orientation. This was in contrast with the 

population of single cells which were orientation selective particularly in L2/3 and L4, 

but also in L5/6. Both in response to increasing contrast and in response to changes in 

orientation, fast spiking (FS) neurons showed a stronger rhythmicity in the gamma band 

than regular spiking (RS) cells. 

 Our selectivity values were slightly lower than those reported previously (Drager, 

1975; Mangini and Pearlman, 1980; Niell and Stryker, 2008) presumably because we did 

not match our stimuli for the receptive field of each cell, but instead we used full screen 

drifting gratings of constant spatial and temporal frequencies. Preliminary studies with 

the presentation of optimal stimuli resulted in higher selectivity (not shown). In addition, 

we did not find a significant difference between the firing rate or selectivity index of FS 

and RS cells, which was also likely due to the full screen grating stimuli.  Similar to what 

has been previously reported, we found that the greatest average selectivity and highest 
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percent of selective neurons occurred in the superficial layers (L2/3 and L4) (Drager, 

1975; Mangini and Pearlman, 1980; Niell and Stryker, 2008). 

 The increase in power driven by the visual stimulus was limited to a band 

between 20-60 Hz and more often between 20-50 Hz. We did not see peaks at higher 

frequencies as reported in behaving cat V1 (Siegel and Konig, 2003) or a broadband 

increase in power above 20Hz as in monkey V1 (Henrie and Shapley, 2005). Because the 

frequency band of increased power was so specific we did not compare its behavior to 

other frequency bands in response to visual stimuli, but instead used that power in the 

gamma frequency band across stimulus conditions. 

 Contrast increased the percentage of rhythmic cells albeit with a much smaller 

effect on the average rhythmicity index. Once cells became rhythmic, their overall 

rhythmicity changed very little with firing rate. This effect resulted from the fact that the 

RI of many cells is hovering below significance and an increase in contrast brings all 

those cells above significance level without large changes in the value of RI. Thus, the 

main effect of stimulus contrast was to entrain more cells to the ongoing gamma 

oscillations in the LFP.   

  It is conceivable that the increase in gamma oscillations by contrast could be due 

to volume conduction as the electrode would see progressively larger populations of 

neurons entrained by the increasing contrast. Also, the lack of modulation in gamma band 

by orientation could be explained by volume conduction as the electrode would not 

distinguish among distant populations with different orientation preferences. However, 

volume conduction is an unlikely explanation. Several lines of evidence show that LFP 
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originates within a small area around the recording electrode of a few hundred microns 

(Kruse and Eckhorn, 1996). Simultaneous intracellular recordings in the vicinity of the 

field recording electrode have demonstrated the similarity of the intracellular voltage 

with the LFP(Contreras and Steriade, 1995; Steriade et al., 1996b; Penttonen et al., 1998; 

McCormick et al., 2003), indicating the validity of the LFP as a measure of local 

population activity driven by synaptic currents and neuronal intrinsic properties. Finally, 

the rapid decay of spatial correlation in the gamma frequency band, but not in slower 

frequencies, both in the anesthetized (Steriade et al., 1996b) and non-anesthetized 

(Destexhe et al., 1999; Siegel and Konig, 2003) cat, further supports the notion that 

gamma oscillations in the LFP are generated locally. Therefore, an increase in power in 

the gamma band reflects an increase in the synchronization of local populations of 

neurons. In species with orientation maps such as the cat (Gray et al., 1989; Bonhoeffer 

and Grinvald, 1991; Katzner et al., 2009) and monkey (Friedman-Hill et al., 2000; Frien 

et al., 2000; Berens et al., 2008) such increase in synchrony reflects coordinated activity 

of neurons with similar selectivity. However, rodents do not have orientation maps (Ohki 

et al., 2005) and therefore cells with similar selectivity are spatially scattered, so the 

relationship between connectivity and functional properties is not known. 

  Our cells were well tuned for orientation, but gamma band oscillations in the LFP 

were not. This result indicates that the populations of cells engaged by the stimulus 

changes with orientation but the overall activity of the network remains relatively stable. 

Furthermore, it suggests that the distribution of cells with different orientations is 
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sufficiently homogeneous around the recording electrode as to not demonstrate any bias 

neither in the LFP response nor in the gamma frequency band activity.  

 Surprisingly, both the LFP and gamma oscillations showed little variance along 

the depth of the cortex in the orientation that evoked the maximum response. The gamma 

component showed less variability than LFP. In the initial studies of the mouse visual 

cortex, Drager (1975) reported that on penetrations normal to the cortical surface there 

was on average 30° difference in orientation preference of single units, implying that 

despite the lack of an orientation map, there may be cortical ‘microcolumns’ that share 

orientation preference (Drager, 1975; Hubener, 2003). Our results are consistent with this 

interpretation.  

 The selective increase in the gamma frequency band of the spectrum upon visual 

stimulation suggests a critical role for inhibitory interneurons in shaping network activity. 

Even though interneurons account for only 20% of the total cells in cortex, their 

divergent connections and the strong conductance change associated with  GABAA  IPSPs 

(Connors, 1984; van Brederode and Spain, 1995; Borg-Graham et al., 1996; Contreras et 

al., 1996) make interneurons ideal for pacing network activity and generating 

synchronization under conditions of depolarization. Indeed, the duration of GABAA 

mediated IPSPs in neocortex is between 20 and 50 ms (Connors, 1984; Berman et al., 

1991; Contreras et al., 1996) which results in oscillatory frequencies between 20 and 50 

Hz. In addition, some populations of interneurons demonstrate intrinsic oscillatory 

properties in the gamma frequency range (Llinas et al., 1991). Our data support of the 

critical role of inhibitory interneurons by showing that FS cells have a lower contrast 
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threshold for significant rhythmicity, there is a higher percentage of rhythmic FS cells 

and individual FS cells have higher degree of rhythmicity with respect to the LFP.  

 It has been shown in monkey V1 that gamma oscillations saturate at higher 

contrasts than single neuron activity suggesting that higher contrasts are encoded by 

changes in neuronal coherence rather than firing rate (Henrie and Shapley, 2005). A 

similar proposition has been made for the effects on attention on monkey V4 (Fries et al., 

2001). Our single cell recordings show that in mouse V1 contrast sensitivity is low and 

only a few cells saturate their firing rates at the highest contrast of 95% measured here, so 

it is possible that such a mechanism for encoding high contrast stimuli evolved later in 

species with a very large dynamic range and in which the visual system is capable of 

operating with high acuity under very low stimulus contrast such as in primates.  

  The robust increase in gamma oscillations with the increase in contrast of a 

drifting grating and the lack of modulation with orientation suggest that gamma 

oscillations mainly represent the degree of activation of the local network rather than a 

specific code for stimulus features. Such a conclusion is supported by results showing 

that increasing input noise with random dot motion stimuli increases the oscillations  

strength at gamma frequency as measured with autocorrelation (Nase et al., 2003). Thus, 

under conditions of sufficient activation, gamma oscillations are the preferential output 

frequency and are selectively enhanced simply because of the powerful nature and the 

duration of GABAA IPSPs. This notion is supported by the higher frequency rates of 

inhibitory interneurons in response to increases in contrast (Contreras and Palmer, 2003). 
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Chapter 3: Alterations in gamma frequency activity in the 

mouse primary visual cortex as an endophenotype of 

schizophrenia 

 

Abstract 

Schizophrenia has long been regarded as a disorder of higher cognition, but recent 

electrophysiological studies in patients have revealed evidence of disruptions in basic 

sensory processing as well (Johnson et al., 2005; Spencer et al., 2009; Turetsky et al., 

2009). In particular, gamma oscillations in the primary auditory cortex show increased 

magnitude at baseline and a decreased signal-to-noise ratio during a stimulus, and these 

changes correlate with the presence of auditory hallucinations (Spencer et al., 2009). Our 

goal was to examine the changes in gamma oscillations that result from pharmacological 

and genetic manipulations of glutamatergic transmission which produce endophenotypes 

of schizophrenia. We recorded local field potentials (LFP) and single units through the 

depth of the mouse primary visual cortex in vivo and examined the alterations in gamma 

frequency activity under both normal and pathological conditions. Our results indicate 

that both in awake and anesthetized animals, baseline gamma frequency power in the 

LFP is increased throughout the cortical lamina, and the signal-to-noise ratio of gamma 

oscillations produced by a visual stimulus is diminished, most notably in the superficial 

layers. In addition, the entrainment of single units to the local oscillations in the LFP is 

reduced in the supragranular (L2/3) and infragranular (L5/6) layers. This work supports 
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the hypothesis that alterations in glutamatergic transmission result in changes to gamma 

oscillations in primary sensory areas and is consistent with the hypothesis that these 

changes are associated with disrupted sensory perception. 
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Introduction 

Gamma frequency activity is a robust characteristic of neural activity and has been 

associated with basic sensory processing and cognitive functions in a wide range of 

species. In humans, visual and auditory stimuli have been shown to increase gamma 

frequency oscillations throughout the brain (Ribary et al., 1991; Marshall et al., 1996; 

Revonsuo et al., 1997; Keil et al., 1999; Lachaux et al., 2000; Ribary, 2005). Gamma is 

also modulated by attentional processes (Fries et al., 2001; Herrmann and Knight, 2001; 

Tallon-Baudry et al., 2005) and may serve in the formation of memories (Sederberg et al., 

2003; Gruber et al., 2004; Axmacher et al., 2006). 

In addition, gamma oscillations are altered in patients with neuropsychiatric 

disorders such as schizophrenia (Kwon et al., 1999; Spencer et al., 2003; Behrendt, 

2006). These patients have increased baseline gamma frequency activity (Tekell et al., 

2005) but a relatively smaller increase in gamma in response to sensory stimuli compared 

to controls (Spencer et al., 2003; Gallinat et al., 2004; Uhlhaas et al., 2006). These 

abnormalities in gamma have been correlated to both the positive and negative symptoms 

of schizophrenia (Baldeweg et al., 1998; Lee et al., 2003a; Spencer et al., 2004), and may 

be responsible for the impaired sensory processing that is characteristic of patients with 

schizophrenia. 

Although schizophrenia has long been regarded as a higher level cognitive 

disorder, there is mounting evidence of electrophysiological abnormalities even in basic 

sensory areas. ERP studies have revealed differences between schizophrenic patients and 

non-affected relatives in both primary auditory (Turetsky et al., 2009) and primary visual 
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cortex (Johnson et al., 2005). Increased synchrony of gamma oscillations in the auditory 

cortex were identified in patients during auditory stimulation, and the synchrony 

correlated with the patient’s propensity for auditory hallucinations(Spencer et al., 2009). 

Schizophrenia has long been associated with changes in glutamatergic function in 

the cortex (Greene, 2001; Coyle et al., 2003; Lee et al., 2003b; Lisman et al., 2008). The 

administration of a sub-anesthetic dose of an NMDA receptor antagonist produces 

schizophrenia-like symptoms in humans and behavioral endophenotypes of schizophrenia 

in animals. In addition, numerous genetic mutations associated with schizophrenia are 

associated with changes in excitatory neurotransmission. For instance, the neuregulin 1 

gene has been implicated in multiple linkage studies to schizophrenia and has been 

shown to modulate NMDA receptor activation (Stefansson et al., 2002; Hahn et al., 

2006). 

 Gamma oscillations are produced by complex interactions between glutamatergic 

and gabaergic systems. Pharmacological disruption of either neurotransmitter system can 

alter neural activity in the gamma range. NMDA receptor antagonists have been shown to 

increase gamma frequency activity in EEG of rodents (Ehrlichman et al., 2008; Pinault, 

2008; Hakami et al., 2009) and to reduce the signal-to-noise ratio of the EEG in response 

to an auditory click (Lazarewicz et al., 2010). 

The goal of this study was to determine if altered glutamatergic transmission 

produced changes in gamma oscillations in primary sensory cortex. We show that 

pharmacological and genetic manipulations of the glutamatergic system alter the power 

of gamma oscillations in the mouse primary visual cortex in vivo. Both the administration 
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of the NMDA receptor antagonist ketamine and the knockout of neuregulin-1 produce an 

increase in the ongoing baseline gamma power. As a result, the signal-to-noise ratio of 

gamma activity induced by a sensory stimulus is decreased. Our results suggest that 

alterations in gamma oscillations found in patients with neuropsychatric disorders may 

results from perturbed glutamaterigic function, and may contribute to aberrant sensory 

perception.  
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Methods 

Acute animals 

Nrg1+/− mice were obtained from S. Siegel (Ehrlichman et al., 2008). The Siegel lab 

previously obtained the mice from C. Birchmeier (Meyer and Birchmeier, 1995) and bred 

the mice on a C57BL/6/129 hybrid background at the University of Pennsylvania. 

Briefly, exon 6 of the neuregulin gene is fused to beta-galactosidase, which results in 

partial deletion of the EGF like domains of all three major types of Nrg1. 

Surgery, electrophysiology, visual stimuli:   

See Chapter 1. 

 

Chronic animals 

Surgery 

All animal experiments were performed in accordance with the guidelines of the National 

Institutes of Health and the University of Pennsylvania Institutional Animal Care and Use 

Committee. Adult C57/B6 mice (12 – 24 weeks) were sedated with an initial dose of 

xylazine (13 mg/kg) and anesthetized with brief exposure to a high concentration of 

isoflurane (5%). Anesthesia was maintained with isoflurane (0.5 – 1 %). Anesthetic level 

was monitored by toe pinch, respiration and pupil dilation. Body temperature was 

maintained at 36° – 37° F throughout the experiment with a heating pad (FHC). Skin 

incisions were infused with lidocaine and the eye was covered with lacrilube to prevent 

drying . Mice were positioned in a stereotaxic apparatus (David Kopf Instruments) and 

one incision was made at midline to allow skin to be pulled to the sides and the skull be 
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exposed. Skull was cleaned with hydrogen peroxide and allowed to dry thoroughly, 

before a layer of superglue was applied to the surface of the skull. A very small 

craniotomy (~ 1mm x 1 mm) was drilled over V1 and another of the same size over the 

contralateral parietal cortex. The dura over the V1 craniotomy was removed to allow the 

insertion of a silicon polytrode (NeuroNexusTechnologies) with the same specifications 

as used in acute recordings. The ground wire was placed into the other craniotomy. The 

probe and ground wire were affixed to the head with dental cement (Dentsply). The 

mouse was given a dose of Metacam (4 mg/kg) and allowed to wake up gradually. The 

animal was checked every 8 hours for the next 24 hours and given additional Metacam as 

needed. All animals were allowed to recover for at least one week following surgery 

before the first recording session. 

 

Electrophysiology 

Local field potential (LFP) recordings were obtained from the implanted multi-electrode 

probes (Neuronexus Technologies) with 16 channels arranged in a vertical configuration, 

with 50 μm spacing between probes (model c1x16-3mm50-177). LFP signals were 

filtered 1 to 300 Hz online (n= 2 animals, 4 recording sessions). All signals were 

recorded with the Cheetah 32-channel acquisition system at 30 kHz (Neuralynx). 

Animals were allowed to freely circumnavigate their home cage during the recording 

session. During visual stimulation an LED was illuminated in an otherwise dark room for 

1 second epochs.  

 



93 
 

Pharmacology 

A sub-anesthetic dose of ketamine (30 mg/kg, i.p.) was administered. The animal was 

allowed to recover for ~5 minutes before visual stimulation was resumed. 

 

Analysis: 

See Chapter 1 and 2. 
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Results 

Human patients with neuropsychiatric disorders such as schizophrenia have altered 

patterns of gamma frequency activity. Changes in gamma oscillations occur not just in 

the higher cognitive areas that have long been associated with the disease state, but also 

in basic sensory processing areas such as primary visual and auditory cortex. To 

understand in greater detail the changes in gamma activity in basic sensory areas 

associated with schizophrenia, we characterized the alterations in gamma activity in the 

primary visual cortex of mice with endophenotypes of schizophrenia. We used two well 

established manipulations, namely, subanesthetic injections of ketamine and the NRG1 

knockout mouse, that have been shown to produce behavioral and physiological 

endophenotypes of schizophrenia in the mouse., We recorded local field potentials 

(LFPs) with a multisite probe inserted perpendicular to the cortical surface, or single units 

using individually moveable tetrodes. For acute recordings of LFPs and single units, mice 

were anesthetized with a mix of isoflurane and xylazine in order to obtain a stable low 

amplitude spontaneous baseline pattern recorded in the LFPs. For chronic recordings of 

LFP, a multisite probe was implanted normal to the cortical surface and allowed to 

stabilize for one week before recording.  

 

Increased baseline gamma frequency activity and reduced signal-to-noise ratio in 

LFP of mice with pharmacological endophenotypes of schizophrenia. 

To quantify baseline levels of gamma oscillations we recorded LFPs using a multisite 

probe (Neuronexus, Ann Arbor, MI) with 16 evenly spaced recording sites (50 or 100 µm 
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interelectrode distance) inserted normal to the cortical surface and spanning the cortical 

depth. We calculated power spectra from multiple 1 second epochs throughout the 

recording session, and averaged the spectra for each channel. To determine the total 

power in the gamma range, we quantified the area under the curve for the frequencies 

between 20 – 50 Hz.  

Following our initial recordings to determine gamma activity under control 

conditions, we gave the mice a sub-anesthetic dose of ketamine (30 mg/kg, i.p.). The 

level of isoflurane was reduced to keep the anesthetic state of the animal stable. After 

waiting five minutes for the ketamine to take effect, we repeated our recordings.  

Ketamine strongly increased the magnitude of gamma oscillations in mouse 

primary visual cortex. This increase was visible by eye in LFP traces filtered for the 

gamma range (Fig. 1A) and was evident in the average power spectra for each channel 

(Fig. 1B, ketamine = red). To examine the laminar profile of the increase in gamma 

activity, we plotted the power spectra with respect to depth, with warmer colors 

representing higher power (Fig. 1D). In the left and center panels of Figure 1D are the 

spectra for the control and ketamine conditions, respectively. To emphasize the changes 

in power that occur during ketamine, the right panel shows the ratio between the 

ketamine spectra over the control spectra, and the line profile shows the average ratio 

value for each channel between 20 – 50 Hz. In this example, the increase in power is 

greatest between 20 and 40 Hz, and is relatively uniform through the depth of the cortex, 

with a slightly larger increase in the deep layers. This pattern holds true over the 

population (n= 6 animals, 9 probes), with ketamine significantly increasing baseline 
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gamma activity in all cortical layers (L2/3 p = 0.04; L4 p = 0.04; L5/6 p = 0.008; Fig. 

1C).  

  To compare visually-driven gamma oscillations before and after ketamine, we 

used full screen drifting grating presentations of either 500 or 1000 ms at 100% contrast. 

We calculated power spectra from each single trial both during the 1 second window 

during the presentation of the drifting gratings and 1 second window immediately before 

stimulus onset (baseline). We then averaged the response (green) and baseline (gray) 

single trial spectra for each channel (Fig. 2B, top panel) and calculated the ratio between 

the two for each channel (Fig. 2B, middle panel). Thus, the ratio spectra quantify the fold 

increase in activity along the frequency axis in the visual response with respect to the 

activity immediately preceding stimulus onset. The ratio spectra for the control condition 

illustrated in Figure 2B show a maximal fold increase in power (6.5 fold) at 20 Hz. To 

determine the laminar distribution of the increase in gamma activity, we plotted the ratio 

spectra as a function of depth (Fig 2B, bottom panel) with warmer colors representing 

larger fold increase above baseline power. In this example, the increase is greater in the 

superficial layers than deep layers. 

Following the administration of ketamine, visual stimulation still produces a 

robust increase in gamma oscillations, as seen in the single trial illustrated in Figure 2A 

(green rectangle = stimulus). However, it is apparent even at the level of a single trial that 

the magnitude of gamma activity induced by the stimulus is not larger than the ongoing, 

background gamma activity. Comparison between the baseline and visually-driven 

gamma activity was quantified in the same manner as during the control condition. For 
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each single trial, the power spectrum for the epoch during the visual stimulus and for the 

epoch immediately before the stimulus onset were calculated and averaged across trials. 

There is no difference between the baseline (gray) and response (green) spectra (Fig. 2C, 

top panel), and the ratio between the two lacks a discernable peak in the gamma range at 

any depth in the cortex (middle and bottom panels). 

Over the population, the total power induced during a visual stimulus was similar 

for control (gray) and ketamine (red) conditions (Fig. 2D), but the fold increase of 

stimulus-driven over baseline gamma was diminished by ketamine in L2/3 (5.4±0.9 vs. 

2.4±0.4; p = 0.01) and L4 (5.5±0.8 vs. 2.5±0.5; p = 0.001), but not in L5/6 (Fig. 2E). 

Because of the increase in baseline gamma power, the same visually-driven induction of 

gamma frequency activity produces a smaller ratio between the signal and the ongoing 

background noise, potentially compromising the ability of the primary visual cortex to 

faithfully process incoming visual stimuli.  

 

Ketamine alters gamma oscillations in awake, behaving mice. 

At doses larger than given in this study, ketamine can act as anesthetic agent. To ensure 

that the results reported in Figures 1 and 2 were not a result of a change in the anesthetic 

state of the animal or of previously unknown response to a mixture of anesthetics, we 

chronically implanted the same 16-channel, multisite probe (Neuronexus, Ann Arbor, 

MI) into the primary visual cortex of  c57 male mice (n=4). After 1 week of post-

operative recovery, LFPs from the mice were recorded on multiple days. The mouse 

being recorded was kept in its home cage in a dark room, and a very bright LED was 
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illuminated for trials of 1 second duration. After 20 minutes of recording time, the mouse 

was injected with a single subanesthetic dose of ketamine (30 mg/kg, i.p.) and allowed to 

recover for 5 – 10 minutes before the next recording session.  

 Illumination of the LED produced a robust evoked response throughout the cortex 

during both the control (gray) and ketamine (red) conditions (Fig. 3A). When the LFPs 

from the example in part (A) are filtered for gamma frequency (20 – 50 Hz), it is apparent 

that the LED induces increased gamma activity under control conditions, and that after 

ketamine there is more spontaneous, baseline gamma activity (Fig. 3B). Power spectra of 

baseline activity during control and ketamine conditions show that ketamine increases 

gamma (Fig. 3C), and when the baseline power spectra are plotted with respect to depth 

(Fig. 3E), the increase produced by gamma is relatively uniform throughout the cortex. 

The increase in gamma produced by ketamine holds true over the population (n = 2 

animals, 4 recording sessions; p < 0.0001; Fig. 3D). For the example shown in Figure 3B, 

the ratio of gamma activity produced by LED illumination over baseline activity is much 

greater in the control than during ketamine, particularly in the deep layers (Fig. 3F). 

However, because the LED is not a complex stimulus, it does not reliably increase 

gamma frequency activity under control conditions, so we were unable to quantify the 

ratio measures over our population. 

 

Increased baseline gamma frequency activity and reduced signal-to-noise ratio in 

LFP of mice with genetic endophenotypes of schizophrenia. 
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We next wanted to determine if these findings extend to another model of glutamatergic 

hypofunction. We performed acute LFP and single unit recordings as described 

previously in mice heterozygous for the neuregulin-1 gene (NRG1). These mice have 

been shown to have behavioral and biochemical endophenotypes of schizophrenia. We 

recorded from 8 probes in 7 NRG1 animals and 7 probes in 5 wildtype littermates.  

 In the absence of visual stimulation, the NRG1 animals have greater baseline 

gamma frequency activity, seen in the example in Figure 4A and quantified for the 

population in Figure 4C (p = 0.05). The presentation of the drifting grating reliably 

induces gamma frequency oscillations in NRG1 mice (Fig. 4B). When the ratio of the 

stimulus-driven over the baseline power spectra is plotted with respect to depth for wild 

type (Fig. 4E, left panel) and a NRG1 littermate (Fig. 4E, right panel), it is clear that 

visual stimulation increases gamma activity in the superficial layers of both mice. 

However, the ratio for the wild type mouse at 20 Hz in L2/3 (6.5 fold increase) and L4 

(4.8 fold increase) was greater than the ratio for the NRG1 mouse (L2/3 = 2.4 fold; L4 = 

2.8 fold increase). The ratio values at 20 Hz for each mouse are plotted in the line profile 

to the right, showing smaller increases for the NRG1 mouse throughout the superficial 

layers. Over the population, NRG1 mice showed smaller increase in gamma activity over 

baseline (p = 0.0002; Fig. 4D). Taken together, these results suggest that the NRG1 mice 

have a greater baseline gamma component and a smaller signal-to-noise ratio in the 

gamma range, consistent with the findings in the ketamine-injected animals. 
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Decreased selectivity and rhythmicity in single units of mice with endophenotypes of 

schizophrenia.  

In order to determine if the alterations of gamma oscillations in mice with glutamatergic 

transmission deficits were reflected in the spike output of V1, we recorded single units 

and LFPs throughout V1 using independently movable tetrodes in both the mice injected 

with ketamine and in NRG1 mice. Only single units that responded robustly to full screen 

drifting gratings of 95% contrast were included in the analysis (wt = 40 cells; ketamine = 

39 cells; NRG1 = 32 cells). To quantify the rhythmicity of single units, we generated 

perievent histograms (PEH) which are spike time histograms around the threshold-

detected positive gamma peaks in the LFP for each level of contrast presented. From the 

PEHs we calculated a rhythmicity index (RI, see methods) as the average distance 

between trough and peak of the first 3 peaks of the PEH, and used a bootstrapping 

technique to set a significance threshold of 95% over shuffled RIs (Popescu et al., 2009). 

We also quantified the orientation selectivity of the cells (see Methods) and set a 

threshold for selectivity of 0.5.  

Mice with endophenotypes of schizophrenia showed decreased rhythmicity 

throughout the superficial layers of cortex. In Figure 5A, the PEHs of a L2/3 cell before 

and after the administration of ketamine shows a decrease in rhythmicity during ketamine 

(control RI = 1.2, significant; ketamine RI = 0.8), causing the cell’s rhythmicity to fall 

below the significance threshold. For the population, single units in the non-granular 

layers (L2/3 and L5/6) also showed a decrease in rhythmicity during ketamine. In L2/3, 

the average RI fell from 1.3±0.3 to 0.63±0.07 (p = 0.01) and in L5/6 the average RI 
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decreased from 1.3±0.17 to 0.59±0.04 (p = 0.0002; Fig. 5B). In addition, the percent of 

rhythmic neurons decreased in L2/3 from 58% to 7.7% and in L5/6 from 58% to 0%. 

Both the RI and the percent of rhythmic neurons in L4 remained relatively constant. 

Neurons from the NRG1 mice showed similar rhythmicity as neurons from the mice 

under ketamine. The RI of NRG1 mice was lower than wildtype mice in L5/6 (0.55±0.06, 

p = 0.005), in L2/3 (0.82±0.08), although the difference in L2/3 did not reach 

significance. When grouped across all layers, the rhythmicity of cells from the NRG1 

animals (0.89±0.1) and was lower than that of wildtype animals (1.2±0.1, p = 0.013). In 

addition, the percent of rhythmic cells was lower in the NRG1 animals in L2/3 (31%) and 

L5/6 (0%) than for wildtypes, but was not different in L4 (Fig. 5C).The orientation 

selectivity of neurons in mice with endophenotypes of schizophrenia also decreased. 

Figure 5D shows the orientation tuning curve of a single unit in L2/3 before (gray) and 

after (red) the injection of ketamine. The orientation selectivity of the neuron is decreased 

following the ketamine injection. At the level of the population, the percent of neurons 

that are selective (OSI>= 0.5) is smaller during ketamine in L2/3 (8.3%) and in L4(25%) 

than in wt mice (L2/3 = 50%; L4 = 37%). Likewise, fewer neurons from NRG1 animals 

are selective in the superficial layers (L2/3 = 15%; L4 = 15%) than from wild type 

animals. 

Defects in glutamatergic transmission decrease the ability of the cell in V1 to 

entrain to the oscillations of the LFP. In addition, single units do not detect characteristics 

of the stimulus as well. 
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Figure 1.  Ketamine increases baseline gamma oscillation power. 

(A)  Sixteen local field potentials (LFPs) filtered for the gamma range (20 – 50 Hz) 

recorded in the absence of visual stimulation.  Adminstration of ketamine (30 mg/kg, i.p.) 

causes a marked increase in gamma frequency activity (right panel) as compared to 

baseline conditions (right panel). 

(B)  Power spectra of multiple 1 second epochs of baseline activity before (black) and 

after (red) the injection of ketamine.   

(C) For the population (n= 6 animals, 9 probes), ketamine substantially increased the 

power of gamma frequency activity at baseline conditions through the depth of the cortex 

(L2/3 p = 0.04; L4 p = 0.04; L5/6 p = 0.008).  Although the increase in L5/6 was larger 

than that of L2/3 or L4, the difference was not significant. 

(D)  Power spectra shown in (B) are plotted with respect to depth under control (left 

panel) and ketamine (center panel) conditions, and then the ratio between the ketamine 

and control plots to show the change in power at each frequency.  Ketamine induces a 

generalized increase in frequencies between 20 – 50 Hz that is relatively similar 

throughout the depth of the cortex, as demonstrated by the line profile to the right of the 

ratio plot.  The line profile is a mean of ratio amplitudes from 20 – 50 Hz for each 

channel.  
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Figure 2.  Ketamine reduces the signal-to-noise ratio. 

(A)  Sixteen LFPs filtered for the gamma range (20 – 50 Hz) recorded following the 

administration of ketamine.  Green rectangle indicates the time during the presentation of 

500 ms full screen drifting grating at full contrast.  The visual stimulus induces robust 

gamma frequency activity, but note that the activity is no larger than the ongoing gamma 

activity that occurs before stimulus onset. 

(B)  Average power spectra from each channel from epochs either during the presentation 

of the stimulus (green) or during the baseline epoch immediately preceding stimulus 

onset (gray) for a single experiment (top panel).  The ratio of each power spectrum during 

the stimulus over the corresponding power spectrum at baseline is show in the middle 

panel.    In the bottom panel, each ratio is plotted as a function of depth.  These ratio 

measurements show that the largest increase in power (6.5 fold increase) occurs at 20 Hz 

and is predominantly located in the superficial layers. 

(C)  Data from the same experiment as (B), following the injection of ketamine.  Top 

panel shows average power spectra from baseline epoch (gray) and stimulus epoch 

(green) for each channel.  The ratio of stimulus spectrum over baseline spectrum for each 

channel shown in the center panel.  Note the lack of a distinct peak in the gamma range.  

The ratio measurements are plotted with respect to depth in the bottom panel.  To the 

right of the bottom panel are line profiles from the pre-ketamine condition (gray) and 

ketamine condition (red) showing the ratio value at 20 Hz for each channel. 

(D)  Population measurements (n = 6 animals, 9 probes) of gamma power (20 – 50 Hz) 

during the presentation of the stimulus during control (gray bars) conditions and 
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following the injection of ketamine (red bars).  There are no significant differences in 

power between the two conditions. 

(E)  Maximum ratio values for the population.  The average ratio value was greater under 

control conditions (gray) than under ketamine (red) in L2/3 (5.4±0.9 vs. 2.4±0.4; p = 

0.01) and L4 (5.5±0.8 vs. 2.5±0.5; p = 0.001) but not in L5/6 (3.1±0.4 vs. 2.1±0.3). 
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Figure 3.  Ketamine increases baseline gamma oscillations in awake mice. 

(A)  LFPs from an awake, behaving mouse with an implanted 16 channel multi-site 

probe.  The average evoked response for each channel during visual stimulation with an 

LED (onset indicated by dotted line, 1 second duration) under control conditions (gray) 

and following the injection of ketamine (30 mg/kg; i.p.).   

(B) LED stimulation in an awake mouse induces gamma frequency ac tivity.  Sixteen 

LFPs recorded through the depth of the cortex filtered for the gamma range (20 – 50 Hz) 

before (left panel) and after the injection of ketamine (right panel).  An increase in overall 

gamma frequency activity can be seen in the traces recorded under ketamine.   

(C) Power spectra for each of sixteen channels for activity in the absence of visual 

stimulation during control (gray) conditions and following the administration of ketamine 

(red).  The spike at 60Hz is line noise.   

(D)  Quantification of baseline power (no visual stimulation) for the population (n = 2 

animals, 4 trials).  The power of gamma frequency activity during ketamine (4.6±0.8 x10-

5 µV2) is much greater than during control conditions (0.6±0.08 x10-5 µV2; p < 0.0001).   

(E)  Power spectra shown in (C) plotted with respect to depth during control (left panel) 

and ketamine (center panel) conditions.  The ratio of the ketamine plot divided by the 

control plot reveals the frequencies of greatest increase, in this example between 40 – 60 

Hz.  The increase is relatively constant through the depth of the cortex.   

(F)  Ratio of the power spectrum during the LED stimulation over the power spectrum 

from the epoch that immediately precedes LED onset for each channel plotted with 

respect to cortical depth.  Under control conditions (left panel), LED stimulus increases 
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gamma activity in L4 (1.4 fold increase) and L5/6 (1.8 fold increase) at ~ 45 Hz.  

Following the injection of ketamine (right panel) the increases in L4 (1.1 fold) and L5/6 

(1.1 fold) are much smaller than under control conditions.  Line profiles at right show the 

values for control (gray) and ketamine (red) at 50 Hz. 
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Figure 4.  NRG1 mice show increased baseline gamma and reduced signal-to-noise ratio. 

(A) Gamma frequency activity in LFPs filtered 20 – 50 Hz recorded on multiple 

electrodes through the depth of the cortex in a NRG1 (right panel) and a wildtype 

littermate (right panel) mouse under baseline conditions.  Larger amplitude gamma 

oscillations are visible in the recordings from the NRG1 mouse. 

(B) Gamma frequency activity in an NRG1 mouse during the presentation of a full screen 

drifting grating (green rectangle).   

(C)  Baseline gamma power over the population (wt = 5 animals, 7 probes; NRG1 = 7 

animals, 8 probes) and all recording channels.  NRG1 (green) gamma power at baseline 

(2.4±0.4 x10-7 µV2) is greater than their wt (gray) littermates (1.4±0.1 x10-7 µV2; p = 

0.05). 

(D)  Ratio of gamma power during the presentation of visual stimulus over the baseline 

epoch immediately preceding stimulus onset for all channels from the population.  The 

ratio values for NRG1 (green) animals (2.7±0.2) is less than the ratio for wt littermates 

(3.7±0.2; p = 0.0002). 

(E)  Ratio values representing the increase in power induced by visual stimulation for a 

NRG1 mouse and a wt littermate.  The wt mouse shows an increase in L2/3 (6.5 fold 

increase) and L4 (4.8 fold increase) that are greater than for the NRG1 (L2/3 = 2.4 fold; 

L4 = 2.8 fold increase).  The ratio value at 20 Hz for each channel is plotted in the line 

profile (right).    
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Figure 5.  Single units from ketamine and NRG1 mice show decreased rhythmicity and 

orientation selectivity. 

(A)  Perievent histogram (PEH) for a L2/3 RS cell before and after the injection of 

ketamine.  Although the firing rate is slightly increased during ketamine (baseline 0.2 Hz, 

ketamine 0.5 Hz), the rhythmicity index of the cell drops below the significance threshold 

to 0.8, from 1.2 (significant) during baseline conditions.   

(B)  The rhythmicity of neurons from wt animals (gray; n = 40) compared to neurons 

during ketamine administration (red; n = 39) and in NRG1 mice (green; n= 32).   The 

average rhythmicity index (RI) is decreased both during ketamine and in NRG1 mice in 

L5/6 (k = 0.59±0.04, p = 0.0002; NRG1 = 0.55±0.06, p = 0.005 ), and in L2/3 (k = 

0.63±0.07, p = 0.011; NRG1 = 0.82±0.08, p= 0.08, n.s.) as compared to wt (1.3±0.3; 

1.3±0.17).   

(C) Likewise, the percent of neurons that are rhythmic (RI>= 0.95) is smaller during 

ketamine and in NRG1 mice in L2/3 (k = 7.7%; NRG1 = 31%) and in L5/6 (k = 0%; 

NRG1 = 0%) than in wt mice (58%; 58%). 

(D) Orientation tuning curve of of an RS cell in L2/3 before (gray) and after an injection 

of ketamine (red).   

(E)  The orientation selectivity of neurons from wt animals (gray; n = 40) compared to 

neurons during ketamine administration (red; n = 39) and in NRG1 mice (green; n= 32).   

The percent of neurons that are selective (OSI>= 0.5) is smaller during ketamine and in 

NRG1 mice in L2/3 (k = 8.3%; NRG1 = 15%) and in L4 (k = 25%; NRG1 = 15%) than 

in wt mice (50%; 37%). 
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Discussion 

Our goal was the evaluate changes in gamma frequency oscillations following genetic 

and pharmacological perturbations of glutamatergic transmission in the mouse primary 

visual cortex in vivo. These manipulations are known to create behavioral 

endophenotypes of schizophrenia in rodents, so we hypothesized that they may produce 

electrophysiological endophenotypes as well. Our work shows that both the 

administration of ketamine and the reduction of NRG1 increase baseline gamma 

frequency activity in the primary sensory cortex and reduce the signal-to-noise ratio of 

gamma oscillations in response to visual stimuli. In addition, entrainment of neurons in 

the superficial and deep layers to gamma oscillations in the LFP was reduced and 

orientation selectivity was diminished. These results show that changes in glutamatergic 

functioning associated with pathology in schizophrenia alters gamma activity in primary 

sensory areas in vivo, and suggests that electrophysiological abnormalities in primary 

sensory areas may contribute to the deficits observed in patients with neuropsychiatric 

disorders. 

 

Gamma oscillations at rest are increased in V1 

Many studies in humans regarding aberrations in gamma oscillations find decreased 

magnitude and synchrony of gamma oscillations in the frontal and temporal cortex during 

the presentation of sensory stimuli (Spencer et al., 2003; Uhlhaas et al., 2006) and during 

rest (Boutros et al., 2008; Rutter et al., 2009). These results were somewhat in conflict 

with electrophysiological studies performed in mice with behavioral endophenotypes of 
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schizophrenia of gamma. In these animals, whole brain EEG recordings showed 

increased gamma oscillations following the administration of ketamine (Pinault, 2008). 

However, more recent electrophysiological recordings in the primary auditory cortex of 

schizophrenic patients and controls show an increase in gamma activity in patients 

compared to controls (Spencer et al., 2009), implying that the direction of change in 

baseline gamma oscillation magnitude varies with brain region. Our acute recordings in 

mice under the effects of ketamine and with decreased NRG1 signaling, along with our 

chronic recordings in mice with sub-anesthetic doses of ketamine support the hypothesis 

that gamma oscillations in primary sensory areas are increased when glutamatergic 

function is compromised. These results are consistent with the observed increases in 

human patients with schizophrenia, but do not exclude the hypothesis that gamma 

oscillations in other areas such as the frontal and temporal cortex are reduced in 

schizophrenics.  

 

Signal-to-noise ratio of gamma oscillations during sensory stimulus is reduced 

Human EEG recordings demonstrate a reduced signal-to-noise ratio between background 

gamma oscillations and those induced by a sensory stimulus (Spencer et al., 2003; 

Gallinat et al., 2004). Whole brain EEG recordings in mice given ketamine show overall 

reductions in the signal-to-noise ratio following an auditory click (Ehrlichman et al., 

2009a; Lazarewicz et al., 2010). However, animal studies have not yet evaluated changes 

in LFP oscillations in primary sensory areas. Our work evaluates the ratio of the power of 

visually-driven gamma over baseline gamma and finds that reductions that are consistent 
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with previous studies and acute experiments and additionally suggest that these changes 

primarily occur in the superficial layers of cortex.  

In anesthetized animals, we find that the ratio of the power of visually-driven 

gamma activity over baseline to be largest in L2/3 and L4, compared to L5/6. 

Correspondingly, we find that the reduction in the ratio produced by changes to 

glutamatergic transmission is largest in these superficial layers. This is consistent with 

the known architecture of the cortex, in which L2/3 and also L4 have many recurrent, 

horizontal connections that generate large amounts of recurrent excitatory activity, 

causing network depolarization that produces gamma oscillations. The full screen, high 

contrast drifting grating stimulus that we present for a long duration is optimal for 

generating recurrent activity and gamma oscillations.  

During chronic recordings, we provided non-specific illumination via an LED 

stimulus instead of a drifting grating due to our lack of control of the mouse’s eye 

position. The LED is less complex stimulus than a drifting grating with a variable level of 

contrast depending on the direction of the mouse’s gaze during LED illumination. 

Although the LED consistently produced an evoked response in the broadband LFP 

throughout all layers of cortex, gamma oscillations varied between testing periods, even 

within the same animal,. In the example in Fig 3F, gamma is induced in the deep layers, 

but not in L2/3, in contrast to our results in the acute experiments, where the stimulus 

produces the largest gamma increase in L2/3. While this difference between chronic and 

acute recordings may be due to anesthesia, it is even more likely to be a consequence of 
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the different visual stimuli. The LED stimulus may not be sufficiently complex to induce 

recurrent activity in L2/3 and L4 of cortex that generate large amounts of gamma.  

 

Single neuron rhythmicity is decreased  

Alterations in glutamatergic signaling increase baseline gamma activity in LFP 

oscillations, but reduce the entrainment of single neurons to gamma oscillations in L2/3 

and L5/6 during the visual stimulus. One potential explanation for this observed decrease 

in rhythmicity is that neurons are entrained to the increased spontaneous gamma, and thus 

are decoupled from gamma oscillations by incoming excitation from a stimulus. In wild-

type animals under control conditions, cells are not strongly entrained to ongoing gamma 

frequency activity in the LFP. When a sensory stimulus is presented, putative excitatory 

cells in superficial and deep layers and putative inhibitory cells in deep layers become 

more entrained to the induced gamma oscillations. Under conditions of altered 

glutamatergic function, cells maybe already entrained to the strong ongoing oscillations 

and the incoming sensory stimuli decouples the cells. This hypothesis predicts that the 

entrainment of neurons under altered glutamatergic signaling is higher during 

spontaneous gamma activity than stimulus-driven. Future analysis will address this 

prediction. 

 

NMDA receptor modulation and cell type 

A number of very recent studies have suggested that both NMDA receptor antagonists 

and NRG1 may not act direct on excitatory transmission, but instead have the largest 
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effect on inhibitory neurons. In slice recordings, bath application of the NMDA receptor 

antagonist MK801 actually increases pyramidal cell activity, but decreases GABAergic 

neural activation (Homayoun and Moghaddam, 2007). Similarly, NRG1 has recently 

been shown to act as trophic factor that acts specifically on inhibitory interneurons (Wen 

et al., 2010), and the ligand for NRG1, ErbB4, is only expressed in inhibitory cells in the 

rat hippocampus (Vullhorst et al., 2009). In previous work, we showed that putative 

excitatory and inhibitory neurons were modulated differently during stimulus driven 

gamma than during spontaneous gamma. In future experiments, we would like to isolate 

putative inhibitory and excitatory neurons and determine if ketamine and reductions in 

NRG1 modulate inhibitory neurons more than excitatory.  
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Conclusions 

The work presented in this thesis was developed from a desire to investigate in vivo the 

changes in gamma frequency activity of the LFP and single units that occur in the 

primary visual cortex in models of glutamatergic hypofunction in schizophrenia. Previous 

electrophysiological characterizations of changes associated with schizophrenia have 

either been measured with a single whole-brain EEG in vivo, or performed in vitro. In 

vivo animal studies with a single EEG measurement lack the resolution necessary to 

understand the circuit dynamics that underlie the observed changes in gamma oscillation 

magnitude. It is possible to probe circuit and cellular dynamics in vitro, however, gamma 

oscillations are not normally observed in vitro and must be created pharmacologically. 

The degree of similarity between pharmacologically induced oscillations in slice and 

those occurring in vivo has not yet been documented. In the slice preparation, the circuits 

involved in gamma oscillation production have been altered fundamentally. Physical 

connections have been severed, and the neuromodulators that are essential for normal 

cortical function have been eliminated (Steriade, 2001). Thus, a detailed characterization 

of changes in gamma oscillations associated with altered glutamatergic function is not 

reducible to the slice, and has not been investigated in vivo. Here, we have a provided a 

detailed circuit-level investigation of gamma oscillations during both normal and 

pathological conditions associated with schizophrenia. 

 

Spontaneous and stimulus-driven gamma oscillations 
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Spontaneous activity in cortex has been long ignored as ‘noise’ that detracts from the 

processing of the incoming ‘signal’. However, recent work on population activity in 

cortex has suggested that ongoing spontaneous activity may modulate cortical 

responsiveness and contribute to information processing. Studies that directly compare 

the spatiotemporal profile of spontaneous and stimulus-driven broadband LFP activity 

have found that they show remarkable similarity (Arieli et al., 1995; Tsodyks et al., 1999; 

Kenet et al., 2003; Fiser et al., 2004; Hasenstaub et al., 2005; Haider et al., 2007), 

although the observed differences may be evidence of cortico-cortical processing during 

stimulus-driven activity (Nauhaus et al., 2009). Gamma frequency activity has also been 

reported to have similar spatiotemporal structure through the cortical depth and across the 

cortical surface (MacDonald et al., 1996; Lakatos et al., 2005). However, we have 

performed more detailed measurements that highlight changes over baseline, and we find 

that spontaneous and stimulus-driven gamma have distinct spatiotemporal profiles and 

entrain excitatory and inhibitory single units differently. These results imply that gamma 

frequency activity engages cortical circuitry differently during spontaneous and visually-

driven contexts, and are consistent with the hypothesis that gamma activity is relevant for 

sensory processing.  

 

Modulation of gamma oscillations by stimulus characteristics 

Neurons in the visual cortex of rodents share many similar properties with those of larger 

mammals, including orientation tuning, but they lack the anatomical organization of an 

orientation map (Drager, 1975; Ohki et al., 2005; Niell and Stryker, 2008). In mammals 
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that have orientation maps, the broadband and gamma frequency component of the LFP 

are tuned to  orientation (Frien et al., 2000). We hypothesized that orientation tuning of 

these population components may be due to the close proximity of single units with a 

shared orientation preference, and that the population components of mice may show less 

tuning. Indeed, in the mouse V1, we find very little evidence for orientation tuning of the 

broadband or gamma frequency LFP, suggesting that orientation tuning of LFP 

components depends on the map structure.  

In contrast to the LFP, single neurons in the mouse V1 are tuned to orientation, 

and the entrainment of the unit depends on the orientation preference of the neuron. Thus 

although the population gamma oscillations are not tuned to orientation, the cells fire 

more rhythmically with respect to the gamma oscillations during preferred orientation 

than non-preferred. This implies that the phase relationship between the single unit firing 

and the local gamma oscillation may have some relevance in stimulus discrimination. 

However, as found in other mammals, gamma frequency component of the LFP in 

mice is modulated by contrast. This indicates that ongoing oscillations are reflective of 

the general depolarization state of the cortex. The average rhythmicity of the single units 

increased with contrast, and this increase was primarily due to a larger number of neurons 

engaging in rhythmic firing, rather than a general increase in rhythmicity across all 

neurons. This implies that with increasing depolarization of the network, a larger 

percentage of neurons are recruited by oscillations of increasing magnitude. Presumably, 

the rhythmic firing of these neurons contributes to the ongoing oscillation of the 

population, entraining more neurons to rhythmic firing. 
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The contribution of inhibitory and excitatory networks in gamma oscillation 

production 

Very little work has been done to delineate the cellular mechanisms of visually evoked 

gamma oscillations in vivo in the cortex. Intracellular recordings in pyramidal neurons of 

anesthetized cats have revealed that membrane depolarization is a critical component for 

fast frequency oscillations (Contreras and Steriade, 1995; Cardin et al., 2005). In vitro 

work in the hippocampus has observed that pyramidal neurons and inhibitory 

interneurons oscillate in phase and the frequency of the oscillation is determined by the 

time constant of the GABAa receptor, although these findings have not been validated in 

vivo (Traub and Whittington, 2010).  

Inhibitory neurons have been proposed to have greater influence in the production 

of gamma oscillations than excitatory neurons. In vitro recordings in L5 neurons show 

that FS cells discharge more strongly in relation to LFP gamma and IPSPs shape spike 

firing in RS cells (Hasenstaub et al., 2005). In addition, optogenetic excitation of 

inhibitory interneurons at gamma frequency produces greater power gamma oscillations 

in the LFP than excitation of excitatory pyramidal cells (Sohal et al., 2009; Cardin et al., 

2010). However, optogenetic depolarization of excitatory pyramidal neurons is sufficient 

to induce gamma oscillations in the population (Adesnik and Scanziani, 2010), implying 

that excitatory neurons in L2/3 are also capable of initiating gamma oscillations. Taken 

together, these results lend support to the idea that gamma oscillations, at least in the 



123 
 

superficial layers, are a result of pyramidal-interneuron generated gamma (PING), and 

are not solely dependent on interneuron activation. 

We find that both excitatory and inhibitory neurons are entrained to the ongoing 

gamma oscillations, but a greater percentage of inhibitory neurons are rhythmic, implying 

a greater correspondence between inhibitory neuron firing and gamma oscillations than 

excitatory neuronal activity. However, closer examination of cell type-specific 

rhythmicity as a function of cortical depth reveals a more subtle role for the contribution 

of each cell type. Inhibitory interneurons in L5/6 show particularly high entrainment 

during spontaneous gamma and an increase in rhythmicity during a stimulus, compared 

to the other layers. During spontaneous gamma, excitatory neurons have low entrainment 

to the LFP through all layers, but stimulus presentation increases rhythmicity in L2/3 and 

L5/6 excitatory neurons. Presumably, this increase in rhythmicity of excitatory neurons is 

due to the observed increase in gamma oscillations in the L2/3 LFP during stimulus 

presentation. Thus, although inhibitory neurons have generally greater entrainment to the 

ongoing LFP and likely contribute strongly to gamma activity throughout the cortex, 

excitatory neurons may also be critically involved in the stimulus-driven gamma in the 

superficial layers. 

Previous work in vitro has suggested that there may be two somewhat 

independent networks for gamma generation in the cortex. L2/3 and L5/6 are both 

capable of generating gamma oscillations even when connections between the layers are 

severed (Roopun et al., 2006; van Aerde et al., 2009). When we reduce L2/3 gamma 

oscillations pharmacologically in vivo, we find no change in the magnitude or frequency 
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of gamma oscillations in L5/6, implying that L5/6 oscillations do not depend on those in 

superficial layers, and supporting the idea of two, somewhat independent gamma 

generating networks.  

However, we did see a reduction in rhythmicity of excitatory neuron in L5/6, and 

based on previous work showing that excitatory cells in L2/3 drive L5/6 excitatory 

neurons (Adesnik and Scanziani, 2010), we conclude that the rhythmic RS cells in L2/3 

drive rhythmicity in L5/6. There was no reduction in the rhythmicity of L5/6 inhibitory 

neurons, suggesting that the rhythmicity of these inhibitory neurons is not dependant on 

oscillations in L2/3, or on the rhythmicity of L5/6 excitatory neurons. Thus, gamma 

oscillations in L5/6 may be largely dependent on connections between inhibitory 

interneurons, perhaps dependant on gap junctions.    

 

Changes in glutamatergic transmission in schizophrenia 

We find evidence that alteration in glutmatergic function increases baseline gamma 

oscillations throughout the depth of the primary visual cortex in both awake and 

anesthetized animals. These changes in glutamate transmission produce behavioral 

endophenotypes of schizophrenia. Both the systemic injection of ketamine and genetic 

reduction in NRG1 are thought to influence signaling at the NMDA receptor. 

Interestingly, in the cortex, reductions in NMDA receptor signaling most likely reduce 

the activity of inhibitory interneurons.  

 In vivo iontophoresis studies have shown that ketamine only produces behavioral 

endophenotypes of schizophrenia and accompanying increases in firing rates of cells in 
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the prefrontal cortex when it is administered systemically, and not when it is locally 

injected into the cortex (Suzuki et al., 2002; Lopez-Gil et al., 2007). In addition, systemic 

administration of ketamine produces a large increase in the amount of glutamate and 

acetylcholine in the cortex as measured by microdialysis, but local injection of ketamine 

does not increase these neurotransmitter levels (Lopez-Gil et al., 2007). On the basis of 

these findings, it has been proposed that ketamine blocks NMDA receptors on inhibitory 

interneurons in subcortical structures such as the thalamus and basal forebrain, which 

reduces the inhibitory drive of these structures on the cortex, leading to increased 

glutamateric and cholinergic input into the cortex. 

Neuregulin 1 is a synaptic structural protein that can modulate NMDA receptor 

activation. However, recent evidence suggests that this modulatory role may primarily 

affect inhibitory neurons. NRG1 has recently been identified as a trophic factor that 

stimulates GABA release from parvalbumin-positive inhibitory interneurons onto 

pyramidal neurons (Wen et al., 2010). Structurally, in the rat hippocampus, the NRG1 

receptor (ErbB4) is only found on inhibitory interneurons, although it is not yet known if 

this is also true for other brain areas (Vullhorst et al., 2009). Thus, under normal 

circumstances, NRG1 seems to stimulate inhibitory neurons via NMDA receptor 

modulation to reduce the excitation in pyramidal neurons. In NRG1 knockout animals, 

the NMDA receptor activation of inhibitory interneurons may be reduced, leading to 

increased depolarization of excitatory neurons in cortex and other brain areas.  

A similar effect may be responsible for schizophrenia-like symptoms observed in 

patients with NMDA-receptor mediated encephalitis. In these patients, the body produces 
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an antibody to the NMDA receptor that is shown to reduce the NMDA current in 

hippocampal neurons, and is likely most efficacious on inhibitory neurons (Dalmau et al., 

2008; Hughes et al., 2010). Removal of the antibody through immunotherapy and 

surgical intervention reverses the symptoms of the patient. However, the gamma 

component of the EEG in these patients has not yet been evaluated. 

Although not identical, both ketamine and NRG1 seem to affect similar pathways 

involving the NMDA receptor modulation of inhibitory interneurons, resulting in 

decreased inhibitory activity and consequently increased depolarization of pyramidal 

neurons in the cortex. This modulated increase in depolarization in the cortex seems to 

produce an increase in spontaneous gamma frequency oscillations in the LFP. However, 

it is important to note that the modulation of inhibitory neurons via the NMDA receptor 

seems to increase gamma oscillations; the complete antagonism of inhibitory by 

picrotoxin eliminates gamma oscillations, suggesting a non-linear effect that is dose 

dependant. 

 

Future directions 

In order to determine a functional role for gamma oscillations, it is necessary to 

specifically manipulate gamma oscillations in the context of behavior. Recent advances 

in optogenetic tools will allow the control of distinct circuit components, such as 

inhibitory and excitatory cells to allow for the dissection of the circuits that control 

gamma oscillations. For instance, precise modulation of the activity of inhibitory cells 

will test their precise role in the generation of gamma oscillations. In addition, recent 
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advances in mouse behavioral tasks, and particularly head fixed recordings during tasks 

of visual discrimination (Andermann et al., 2010; Niell and Stryker, 2010), will allow for 

the testing of the role of gamma oscillations in visual discrimination. 
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