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The Nanoaquarium: A Nanofluidic Platform for in SiTu Transmission
Electron Microscopy in Liquid Media

Abstract
There are many scientifically interesting and technologically relevant nanoscale phenomena that take place in
liquid media. Examples include aggregation and assembly of nanoparticles; colloidal crystal formation; liquid
phase growth of structures such as nanowires; electrochemical deposition and etching for fabrication
processes and battery applications; interfacial phenomena; boiling and cavitation; and biological interactions.
Understanding of these fields would benefit greatly from real-time, in situ transmission electron microscope
(TEM) imaging with nanoscale resolution. Most liquids cannot be imaged by traditional TEM due to
evaporation in the high vacuum environment and the requirement that samples be very thin. Liquid-cell in situ
TEM has emerged as an exciting new experimental technique that hermetically seals a thin slice of liquid
between two electron transparent membranes to enable TEM imaging of liquid-based processes. This work
presents details of the fabrication of a custom-made liquid-cell in situ TEM device, dubbed the nanoaquarium.
The nanoaquarium’s highlights include an exceptionally thin sample cross section (10s to 100s of nm); wafer
scale processing that enables high-yield mass production; robust hermetic sealing that provides leak-free
operation without use of glue, epoxy, or any polymers; compatibility with lab-on-chip technology; and on-
chip integrated electrodes for sensing and actuation. The fabrication process is described, with an emphasis on
direct wafer bonding. Experimental results involving direct observation of colloid aggregation using an
aqueous solution of gold nanoparticles are presented. Quantitative analysis of the growth process agrees with
prior results and theory, indicating that the experimental technique does not radically alter the observed
phenomenon. For the first time, in situ observations of nanoparticles at a contact line and in an evaporating
thin film of liquid are reported, with applications for techniques such as dip-coating and drop-casting,
commonly used for depositing nanoparticles on a surface via convective-capillary assembly. Theoretical
analysis suggests that the observed particle motion and aggregation are caused by gradients in surface tension
and disjoining pressure in the thin liquid film.
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Abstract 

THE NANOAQUARIUM: A NANOFLUIDIC PLATFORM FOR IN SITU 

TRANSMISSION ELECTRON MICROSCOPY IN LIQUID MEDIA 

Joseph M. Grogan 

Haim H. Bau 

There are many scientifically interesting and technologically relevant nanoscale 

phenomena that take place in liquid media. Examples include aggregation and assembly 

of nanoparticles; colloidal crystal formation; liquid phase growth of structures such as 

nanowires; electrochemical deposition and etching for fabrication processes and battery 

applications; interfacial phenomena; boiling and cavitation; and biological interactions. 

Understanding of these fields would benefit greatly from real-time, in situ transmission 

electron microscope (TEM) imaging with nanoscale resolution. Most liquids cannot be 

imaged by traditional TEM due to evaporation in the high vacuum environment and the 

requirement that samples be very thin. Liquid-cell in situ TEM has emerged as an 

exciting new experimental technique that hermetically seals a thin slice of liquid between 

two electron transparent membranes to enable TEM imaging of liquid-based processes. 

This work presents details of the fabrication of a custom-made liquid-cell in situ TEM 

device, dubbed the nanoaquarium. The nanoaquarium’s highlights include an 

exceptionally thin sample cross section (10s to 100s of nm); wafer scale processing that 

enables high-yield mass production; robust hermetic sealing that provides leak-free 

operation without use of glue, epoxy, or any polymers; compatibility with lab-on-chip 
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technology; and on-chip integrated electrodes for sensing and actuation. The fabrication 

process is described, with an emphasis on direct wafer bonding. Experimental results 

involving direct observation of colloid aggregation using an aqueous solution of gold 

nanoparticles are presented. Quantitative analysis of the growth process agrees with prior 

results and theory, indicating that the experimental technique does not radically alter the 

observed phenomenon. For the first time, in situ observations of nanoparticles at a 

contact line and in an evaporating thin film of liquid are reported, with applications for 

techniques such as dip-coating and drop-casting, commonly used for depositing 

nanoparticles on a surface via convective-capillary assembly. Theoretical analysis 

suggests that the observed particle motion and aggregation are caused by gradients in 

surface tension and disjoining pressure in the thin liquid film. 
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Chapter 1: Introduction 

Since its inception in the 1930’s, the transmission electron microscope (TEM), 

and later the scanning transmission electron microscope (STEM), has provided a 

powerful means to image features on the nanoscale. These tools provide image resolution 

in the single nanometer, or even sub nanometer range, far beyond what is possible with 

traditional light microscopy. In addition to high resolution imaging, the TEM and STEM 

allow for material characterization due to the unique interactions between the electron 

beam and the sample. These interactions provide qualitative information such as the 

relative densities of the constituents of an inhomogeneous sample, as well as precise 

elemental analysis through characteristic x-ray emission (energy dispersive x-ray 

spectroscopy) and characteristic electron scattering (electron energy loss spectroscopy). 

For these reasons, the TEM and STEM have become standard analytical tools in both the 

physical and the biological sciences.  

Until recently, (S)TEM imaging has been limited to solid, frozen, or dried out 

samples, with very few (S)TEM studies focusing on dynamical processes taking place in 

liquid media because it has simply not been possible to perform. In the introduction to the 

oft cited (3000+ citations) article, “Wetting: statics and dynamics,” P. G. de Gennes states 

that our understanding of phenomena at the liquid-solid interface is limited because 

“solid/liquid interfaces are much harder to probe than their solid/vacuum counterpart; 

essentially all experiments making use of electron beams become inapplicable when a fluid is 

present [1].” In other words, since standard electron microscopes require a high vacuum 

environment for imaging, most liquids will quickly evaporate in this environment and will 
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not be accessible for observations. Additionally, the TEM and STEM require very thin 

samples for imaging to avoid excessive scattering or absorption by the sample. Typically, to 

study a process occurring in liquid media, one must fix (freeze or dry out) samples at 

various stages of the process and carry out ex situ imaging. Although this procedure has 

resulted in major advances in disciplines ranging from materials science to biology, it 

suffers from some limitations. Imaging of fixed samples does not capture the dynamics of 

a process, only static snapshots along the way. Moreover, it is difficult to select the 

“right” moment to fix the sample, so critical observations may be precluded. Also, the 

essential sample preparation process may alter the sample in fundamental ways. Liquid-

cell in situ (S)TEM is a burgeoning technique that makes it possible to view processes 

taking place in liquid media with a standard TEM or STEM and has the potential of 

producing new insights in many branches of science. For example, when forming 

colloidal crystals, it would be highly beneficial to image, in real-time, nanoparticle self 

and controlled assembly and inter-particle interactions. Such studies are likely to improve 

our understanding of these processes and enable us to rationally design and fine tune 

assembly processes to yield desired outcomes. Similarly, direct observations of 

interactions among macromolecules are likely to enhance our understanding of 

conformational changes in polymers and macromolecules. For instance, Walker et al. [2] 

studied motility of protein motors by imaging a large number of static samples, 

sequenced the images according to pre-conceived rules of motion, and formed an 

animation of motor locomotion. Their results are compelling, but it would be much more 
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desirable to directly observe the actual dynamical process in a liquid medium and in real-

time. 

There is a tool that addresses the aim of imaging liquid samples in an electron 

microscope: the environmental scanning electron microscope (ESEM). ESEMs make use 

of a differential pumping configuration to keep the electron beam column isolated from 

the chamber, which can then be filled with water vapor (a few Torr) to keep a liquid 

sample (e.g., a droplet) stable for imaging. The interaction of the electron beam with the 

water vapor produces a cascade effect that amplifies the signal to the gaseous secondary 

electron detector (GSED) and allows imaging of non-conducting samples and mitigates 

charge buildup effects [3]. While ESEM is a powerful technique, especially for imaging 

hydrated solid samples (e.g. imaging surface structure of biological material without the 

need for sample preparation/modification/fixing), it has drawbacks for imaging processes 

occurring in liquid media. Significant modification to a standard SEM is required to 

enable ESEM capabilities and thus it is preferable to buy an ESEM capable microscope 

from the start. However, the expense of a new microscope may not be feasible for all. 

While the evaporation issue is alleviated in an ESEM, it is not eliminated and care must 

be taken with the vapor pressure in the chamber to ensure favorable imaging conditions 

while also ensuring that the sample does not dry out. Most importantly, only the top layer 

of the liquid sample is imaged in ESEM, with minimal penetration of the beam into the 

liquid [4]. Observations are thus limited to the portion of the sample at the liquid-vapor 

interface (top of the drop), and one is prohibited from viewing the body of the sample or, 

in the case of a droplet, the part that is in contact with the solid substrate on which it is 
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supported. These limitations make ESEM inadequate for many studies and there is 

necessity for another technique to facilitate electron microscopy of liquid samples. 

Two key issues, evaporation and sample thickness, must be addressed to enable 

(S)TEM visualization of liquid suspensions. Electron microscopes operate at high 

vacuum, and so most liquid samples, particularly aqueous solutions, must be confined in 

a sealed vessel to prevent evaporation. Water at 25 °C will boil at an approximate 

pressure of 24 Torr [5], which is much higher than a typical (S)TEM chamber’s pressure. 

Additionally, to provide reasonable resolution and contrast between suspended objects 

and the suspending medium in all imaging modes (bright field, dark field, and high angle 

annular dark field), one must use very thin slices of sample (i.e., liquid). The last few 

years have seen a flare of efforts to develop devices that allow real-time, in situ (S)TEM 

imaging of dynamical, nanoscale processes in fluids [6–18]. In general, liquid-cell 

(S)TEM devices confine a thin slice of liquid sample in a sealed chamber sandwiched 

between two electron-transparent membranes, thus preventing evaporation while 

allowing the electron beam to pass through the sample to produce an image.  

To form a liquid slice that is sufficiently thin to minimize electron scattering by 

the suspending medium, researchers have relied on microfabrication technology to 

produce a variety of devices based on the common theme of thin membranes separated by 

a spacer material to form a sealed chamber. The details of each device differ in the choice 

of membrane material, sealing method, and spacer material. The spacer material dictates 

the distance between the membranes and the height of the liquid-cell. Williamson et al. 

[6] and Radisic et al. [7] used 100 nm stoichiometric silicon nitride membranes with a 0.5 
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– 1 µm silicon oxide layer as the spacer and sealed the device with epoxy. Their device 

was used in a TEM to study electrochemical nucleation and growth of copper 

nanoclusters. Liu et al. [8] used 9 nm silicon oxide membranes with a 2 – 5 µm epoxy 

spacer that also served to seal the device. Their device was used in a TEM to study live E. 

coli and K. pneumoniae cells and monitor biological processes. de Jonge et al. [9] used 

50 nm low stress silicon nitride membranes with 10 µm polystyrene microspheres as the 

spacer and sealed the device with a special sample holder. Their device was used in a 

STEM to study fibroblast cells with gold-tagged labels. Zheng et al. [10], [11] used 25 

nm low stress silicon nitride membranes with a 200 nm indium layer as the spacer and 

sealing material. Their device was used in a TEM to study platinum nanocrystal growth 

and the diffusion of gold nanocrystals. Similarly, Creemer et al. [12] constructed a gas 

flow cell using a 4 µm thick silicon oxide layer as the spacer and sealed the device with 

epoxy. Observation windows were formed in 1.2 µm thick low stress silicon nitride 

membranes by locally thinning the membrane down to 10 nm. Their device was used for 

TEM imaging of copper nanocrystal growth at elevated temperature and hydrogen 

atmosphere. Additionally, commercial liquid-cell systems have recently been introduced 

by companies such as Hummingbird ScientificTM and ProtochipsTM. Typically, these 

systems use low stress silicon nitride membranes (10’s to 100’s of nm thick) with a 

polymer spacer of some kind (beads or photopatterned epoxy) and seal with a custom 

holder as in the case of de Jonge et al. [9]. 

In this work, a nanofluidic platform for in situ (S)TEM of fluid samples, dubbed 

the nanoaquarium, is presented with results for studies on systems of nanoparticles as 



6 
 

well as other applications of the device. The nanoaquarium is made by direct bonding of 

silicon wafers coated with silicon nitride. One of the wafers also contains a thin film of 

patterned silicon oxide that defines the geometry and height of the chamber and conduits. 

The thickness of the silicon oxide film, and thus the liquid-cell’s height, is controllable 

and can be prescribed to be tens to hundreds of nanometers. The first version of the 

nanoaquarium was made with a silicon oxide film that was 100 nm thick, and the imaging 

window was made of two 50 nm thick silicon nitride membranes. For the second version 

of the nanoaquarium, devices were produced with an oxide film that was up to 300 nm 

thick. The device fits into a custom-made holder and can sustain the high vacuum 

environment of the electron microscope for many hours without any noticeable loss of 

liquid. Some of the nanoaquarium’s highlights include:  

• An exceptionally thin sample cross-section, a distinction that translates to 

improved contrast and resolution. The technique could be used to produce 

channels and chambers as thin as a few tens of nanometers. The chamber spacing 

on each device is highly controllable thanks to the wafer bonding process. There 

is no risk of debris incorporation when assembling the device, which could 

modify the height of the chamber and is a concern in other individually assembled 

devices. 

• Wafer scale processing that enables high yield mass production, as opposed to 

production on a device-by-device basis.  

• Robust hermetic sealing that provides leak-free operation without the use of glues, 

epoxies, or polymer spacers. These materials are a potential source of 
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contamination and/or device failure. When the nanoaquarium is filled with a 

solution, the only materials in contact with the solution are silicon, silicon nitride, 

and silicon oxide (as well as titanium and platinum or gold when electrodes are 

present). At the inlet and outlet, the solution is also in contact with O-rings; 

however, the inlet and outlet are far from the imaging window and robust, 

chemically inert material can be selected for the O-rings such that there is no 

threat of contamination. This makes the nanoaquarium uniquely suited to handle 

harsh chemistries such as strong solvents, acids, or bases.  

• Compatibility with lab-on-chip technology such as sample storage and 

manipulation (e.g. mixing, pumping). 

• On-chip integrated electrodes for sensing and actuation thanks to use of a 

dielectric material as the spacer. 

• The nanoaquarium can be used in either a static mode without through flow or a 

continuous flow mode. In static mode, the nanoaquarium is self-contained and 

does not require fluidic feed-throughs on the sample holder. This simplifies 

construction of the sample holder and minimizes the volume of solution 

consumed in an experiment.  

• It is envisioned that the nanoaquarium will be used as a disposable device to avoid 

cross-contamination; however, devices can be reused when desired. The 

nanoaquarium can be removed from the holder, drained, and refilled with a 

new/fresh solution as needed for the experiment. 
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Chapter 2: Fabrication of the Nanoaquarium 

Portions of what appears in this chapter can be found in the Journal of 

Microelectromechanical Systems [13], Copyright © 2010, IEEE. 

The nanoaquarium consists of a hermetically sealed, liquid-filled chamber 

sandwiched between two freestanding silicon nitride membranes. The fabrication 

technique described here allows one to construct exceptionally thin chambers. Embedded 

electrodes are integrated into the device for sensing and actuation. Figure 2-1 

schematically depicts the cross-section of the device, and Figure 2-2 schematically 

depicts the fabrication steps. Two versions of the nanoaquarium were fabricated; version 

1 was produced during the summer of 2009 and version 2 was produced during the fall of 

2010. After working with version 1 of the nanoaquarium, minor changes were made to 

the design and process flow in 

order to make improvements in 

version 2. In the following sections 

of this chapter, version 1 and 

version 2 of the nanoaquarium are 

distinguished from each other 

where appropriate. 

Section 2.1: Starting Substrate 

Superior to prime grade, 300 µm thick, 100 mm diameter, double-side polished 

<100> Si wafers were purchased from Semiconductor Processing Company (Boston, 

Figure 2-1: A schematic depiction of the 
nanoaquarium’s cross section. Not drawn to scale. 
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MA). From a batch of 50 wafers, 20 wafers were characterized. The wafers ranged in 

thickness from 304.2 to 306.8 µm. Individual wafer specs included a total thickness 

variation (TTV) ranging from 0.2 to 1.6 µm and bow ranging from -4.7 to 2.5 µm. When 

direct wafer bonding is to be performed, the flatness and smoothness of the starting 

substrate are of paramount importance. Unlike adhesive or thermocompression bonding, 

direct bonding does not involve an 

intermediate layer that can reflow to 

compensate for warped or uneven 

surfaces. The physical specifications 

for prime grade wafers are generally 

considered sufficient for direct wafer 

bonding [19]. 

 

Figure 2-2: Depiction of the various 
fabrication steps. Color coded as follows: 
gray – silicon, green – silicon nitride, 
yellow – electrode stack, blue – silicon 
oxide. (a) 50 nm silicon nitride deposited 
by LPCVD. (b) 30 nm Ti / Au or Pt / Ti 
electrode stack deposited and patterned by 
evaporation and lift-off. (c) 150 nm – 450 
nm silicon oxide deposited by PECVD. (d) 
Oxide planarization in a CMP. (e) 
Backside nitride patterned in RIE. (f) 
Frontside oxide patterned with BOE. (g) 
Plasma activated wafer bonding to a blank 
nitride-coated wafer. (h) Backside nitride 
on top wafer patterned in RIE. (i) 
Windows and vias etched with KOH. (j) 
Inlet, outlet, and electrodes are exposed. 
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Section 2.2: Depositing Films 

50 nm of stoichiometric silicon nitride with a residual tensile stress of 800 MPa 

was deposited on both sides of all wafers by low pressure chemical vapor deposition 

(LPCVD) at a facility brokered by the MEMS and Nanotechnology Exchange (Figure 

2-2(a)). Electrodes were patterned on some of the wafers’ frontsides by lift-off technique 

(Figure 2-2(b)). The electrodes consisted of a Ti / Au / Ti stack (4 nm / 22 nm / 4 nm) in 

version 1 and a Ti / Pt / Ti stack (4 nm / 22 nm / 4 nm) in version 2, deposited by e-beam 

evaporation. Ti was used above and below as an adhesion layer to the substrate as well as 

to the subsequent film deposited on top of the electrodes. Silicon oxide was deposited by 

plasma enhanced chemical vapor deposition (PECVD) on the wafers’ frontsides (Figure 

2-2(c)). Silicon oxide films with a thickness of 100 nm – 450 nm were deposited on 

wafers with electrodes and wafers without electrodes (simplified devices without 

electrodes were also produced). A greater thickness of oxide was applied to wafers with 

electrodes to allow for subsequent planarization. 

The Ti / Au / Ti stack in version 1 was replaced with a Ti / Pt / Ti stack in version 

2 of the nanoaquarium because the electrodes in version 1 presented micron-size patches 

of missing metal all over the electrodes (see Figure 2-3) and did not function properly in 

many devices. We suspect that the gold layer and the surrounding layer of silicon oxide 

(which, as a result of the PECVD deposition technique, was not pure stoichiometric SiO2) 

interdiffused and reacted during one of the high temperature annealing steps that were 

needed for wafer bonding. The change of material from gold to platinum appeared to fix 
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the problem. The Ti / Pt / Ti electrode stack “looked pristine” and functioned properly (as 

illustrated in the electrochemical experiment discussed in Section 2.11.2. 

 

 

Figure 2-3: Images of problem electrodes in completed version 1 devices. (a) and (b) Scanning 
electron microscope images of electrodes, showing the presence of patches throughout the electrode 
surface. Many patches had an associated bead of material, as pictured in (b). (c) and (d) TEM images 
of electrodes with an especially bad patchy electrode problem. 
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Section 2.3: Film Densification 

Following oxide deposition, wafers were annealed in a tube furnace with nitrogen 

ambient to densify the oxide films. In version 1, wafers with electrodes were annealed for 

4 hours at 350°C, and wafers without electrodes were annealed for 4 hours at 400°C, 

followed by an additional 4 hours at 350°C. In version 2, all wafers were annealed for 4 

hours at 350°C. Preliminary wafer bonding tests demonstrated that insufficient film 

densification can lead to film outgassing during the bond anneal step. Typically, bond 

strength is the metric that one seeks to maximize when bonding wafers as part of a 

permanent structure. As bond strength improves, the ability of trapped gas to diffuse 

along the bond interface diminishes [20]. Without sufficient film densification, 

incorporated gases and reaction gases produced during the bond annealing step are unable 

to escape and lead to incomplete bonding. 

In the preliminary process development tests, bonding was performed between 

prime grade 500 µm thick, 100 mm diameter, single side polished <100> Si wafers. 

Figure 2-4(a) is an infrared (IR) image of a room temperature bonded wafer pair. Wafer 1 

was coated with 50 nm of LPCVD stoichiometric silicon nitride followed by 75 nm of 

PECVD silicon oxide that had been densified at 350°C for 1 hour. Wafer 2 was coated 

with 50 nm of LPCVD stoichiometric silicon nitride. According to the image, good 

contact formed along nearly the entire interface of the wafers. After room temperature 

bonding, the wafers were annealed for 13 hours at 300°C. IR imaging subsequent to the 

annealing process (Figure 2-4(b)) revealed the presence of multiple voids due to film 

outgassing. Apparently, the desorbed gas formed high pressure bubbles that deformed the 
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wafers locally. The resulting 

interference fringes are visible in 

the IR image. Similar observations 

have been reported by others [20–

22]. The area outside the bubbles 

formed a high strength bond that 

prevented the wafers from 

separating and the gas in the 

bubbles from escaping. Inspection 

of the same wafer pair nine months 

later (Figure 2-4(c)) revealed that 

some of the smaller bubbles 

disappeared and some of the larger 

bubbles shrank, as indicated by the 

fringe pattern. Comparison 

between Figure 2-4(b) and Figure 

2-4(c) indicates that the voids are dynamic and some of the gas can diffuse out of the 

voids, either through the interface, or through the film and substrate [23]. The diffusion 

process, however, is extremely slow. 

The degassing issue seems to be significant for silicon oxide deposited by 

techniques such as PECVD and LPCVD, but not for thermally grown oxide [24]. It has 

been demonstrated that patterned films can produce void free bonds, even without 

Figure 2-4: IR images of bonded wafer pair. Bond was 
between 75 nm PECVD silicon oxide film on wafer 1, 
and 50 nm LPCVD stoichiometric silicon nitride film 
on wafer 2. Dark vertical lines and periodic squares are 
from etched nitride on the backside of wafer 1 and are 
not part of the bond interface. (a) Room temperature 
bonding results in a nearly perfect bond. Only a few 
unbonded regions are present around the perimeter. 
(b) After annealing for 13 hours at 300°C, many voids 
are visible due to film outgassing. (c) Nine months later, 
voids are still present; although they evolved and 
shrank slightly in volume (as evidenced by the 
decreased number of interference fringes), presumably 
due to gas diffusion 
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densification, because grooves provide escape paths for gases produced during the bond 

anneal step [25–28]. This is a useful unintended benefit of working with wafers that have 

features patterned on them. Film densification, however, should not be ignored. 

Section 2.4: Polishing 

The silicon oxide film that was deposited on the wafers with electrodes provided a 

conformal coating that retained the stepped topography of the embedded electrode pattern 

(Figure 2-2(c)). The oxide film on these wafers was planarized using a Strasbaugh 6EC 

Chemical Mechanical Polisher (CMP) (Figure 2-2(d)). It was discovered during version 2 

fabrication that polishing of the wafers without electrodes should be performed, even 

though there is no embedded topography. Polishing proved to be the second most 

challenging step of the fabrication process, next to wafer bonding. 

2.4.1 Polishing of Version 1 Devices 

Wafers with embedded electrodes were temporarily glued to a 500 µm thick 

handle wafer using SPR220-7.0 photoresist to ensure that the CMP head had a 

sufficiently thick specimen to grip during polishing. Wafers were polished until the steps 

were smoothed out and the oxide thickness was approximately 70 nm above the 

electrodes and 100 nm elsewhere. After polishing, the handle wafer was released by 

soaking the sample in resist stripper (Shipley Microposit Remover 1165) for 24 hours.  

2.4.2 Polishing of Version 2 Devices 

In addition to polishing the wafers with embedded electrodes, the silicon oxide on 

the non-electrode devices was also polished. This was necessary due to a surface 



15 
 

roughness issue, explained further in Section 2.5. The use of photoresist as temporary 

glue between device wafers and handle wafers proved problematic during fabrication of 

version 2 devices. In most cases, the surface of the sample was extremely uneven after 

polishing (see Figure 2-5). This was likely due to uneven photoresist that caused some 

parts of the wafer to be polished more than others. 

The level of non-uniformity depicted in Figure 2-5 was unacceptable because 

large regions of the wafers remained essentially unpolished, and thus the electrode 

topology persisted. Device wafers were released from the handle wafers by soaking them 

in resist stripper (Shipley Microposit Remover 1165) for one to three days. On several 

wafers that possessed significant gashes/burn marks from uneven CMP, additional oxide 

was deposited by PECVD so that the sample could be polished further in order to remove 

the sharp steps of the embedded electrode topology. The retaining ring of the CMP head 

was carefully adjusted and multiple tests were performed with dummy wafers to make 

Figure 2-5: Film thickness measurements that show the amount of material removed from two 
wafers that were polished while glued to a handle wafer with photoresist. Uniformity is terrible; the 
first sample has a minimum removal of 8.47 nm and a maximum removal of 60.38 nm, and the 
second sample has a minimum removal of 7.51 nm and a maximum removal of 75.09 nm. 
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sure that the wafers would remain gripped by the CMP head. Device wafers were then 

polished in the CMP without use of a handle wafer. Representative reflectometer scans 

that show the amount of material removed during a CMP run are depicted in Figure 2-6. 

Although some wafers were lost during polishing (6 out of 9 survived), it was necessary 

to polish the wafers in this manner in order to ensure the most uniform planarization. 

Polishing uniformity was improved by forgoing the handle wafer. Still, in many 

cases the planarization that resulted from several CMP runs was insufficient, but there 

was not enough oxide material left to allow for further polishing. In such cases, additional 

silicon oxide was deposited by PECVD and the wafer was polished again. Sometimes 

several iterations of deposition and polishing were necessary to achieve satisfactory 

planarization. The material removal patterns from the two different wafers featured in 

Figure 2-6 actually look quite similar, simply rotated. This implies that the 

nonuniformities were related to the CMP head and the orientation it happened to be in 

Figure 2-6: Film thickness measurements that show the amount of material removed from two 
wafers that were polished without use of a handle wafer. Uniformity is better than that of Figure 2-5; 
the first sample has a minimum removal of 42.11 nm and a maximum removal of 79.14 nm, and the 
second sample has a minimum removal of 36.70 nm and a maximum removal of 76.33 nm. 
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when it picked up the wafer for polishing. For this reason, the polishing process on a 

single wafer was often broken up into several runs. For example, rather than polishing a 

wafer for 2 minutes continuously, the process was broken up into four 30 second 

polishing runs. Doing so introduced variability into the orientation of the wafer relative to 

the CMP head so that the pattern of nonuniformity would be rotated by some random 

angle during each polishing run. 

Section 2.5: Surface Roughness 

Surface roughness measurements were taken with an atomic force microscope 

(Digital Instruments Dimension 3100) to ensure that wafer surfaces were sufficiently 

smooth for direct bonding. RMS surface roughness was measured in tapping mode by 

scanning 2 µm x 2 µm squares at several locations on each wafer. Measurements were 

taken throughout the fabrication process of version 1, the results of which are presented 

in Table I and representative scans 

are pictured in Figure 2-7. The 

surface roughness should be as low 

as possible for direct wafer 

bonding. Comparison of sample 3 

and sample 4 (Table I) 

demonstrates that the surface 

roughness of a sample can be 

reduced greatly by polishing with a 

TABLE I 

SURFACE ROUGHNESS 

Sample RMS Roughness 

1 LPCVD nitride coated wafer - as 
deposited 

0.30 nm 

2 PECVD oxide coated wafer (without 
electrodes) - as deposited 

0.79 nm 

3 PECVD oxide coated wafer (with 
electrodes) - as deposited 

1.24 nm 

4 PECVD oxide coated wafer (with 
electrodes) - post CMP 

0.47 nm 

 

Surface roughness measurements at various steps of the 
fabrication process as measured by AFM in tapping mode 
(2 µm x 2 µm scan area with 4 – 6 scan locations per 
wafer). Samples 1, 2, and 4 were device wafers used for 
bonding. The oxide on samples 2 and 3 was deposited 
using different tools. 
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CMP. Using the appropriate polishing pad and slurry materials, the RMS roughness can 

ultimately be brought down to as low as 0.1 nm [29]. Realistically, 1 nm or lower is a 

good target for RMS roughness [19], though prior wafer bonding tests demonstrated 

successful bonding of wafers with RMS roughness as large as 2 nm. 

During version 1 fabrication, oxide that was deposited on blank wafers for the 

production of nanoaquarium devices without electrodes did not need to be polished in the 

CMP (see sample 2 in Table I). However, while fabricating version 2 devices, almost all 

Figure 2-7: Examples of the AFM scans presented in Table I . (a) LPCVD nitride coated wafer - as 
deposited. (b) PECVD oxide coated wafer (without electrodes) - as deposited. (c) PECVD oxide 
coated wafer (with electrodes) - as deposited. (d) PECVD oxide coated wafer (with electrodes) - post 
CMP. The oxide that was deposited on samples (b) and (c) was done using different tools, which is 
likely the reason for the difference in as deposited roughness. 

Roughness 

RMS: 0.228 nm 

Ra: 0.174 nm 

Roughness 

RMS: 0.769 nm 

Ra: 0.604 nm 

Roughness 

RMS: 1.351 nm 

Ra: 0.805 nm 

Roughness 

RMS: 0.455 nm 

Ra: 0.359 nm 
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of the oxide that was deposited on wafers with and without electrodes was found to 

contain scattered narrow spikes with height up to 100 nm. The spikes represented some 

form of contamination, and while the exact source is unclear, there are two possible 

explanations. One possibility is simply a dirty PECVD chamber with excess material on 

the chamber walls that flaked off and deposited on the wafers. The other possibility is 

homogenous nucleation during the PECVD process. The chemical reaction that occurs 

during PECVD does not occur exclusively on the wafer surface, as is the case in a 

process like epitaxy. Under the right (or more accurately, “wrong”) conditions, source 

gases react in the bulk of the plasma field and nucleate nanoscale product throughout the 

chamber; this is called homogeneous nucleation. The material produced during 

homogenous nucleation remains suspended in the plasma field until the end of the 

process and then lands on the sample when the plasma shuts off. In order to make use of 

the samples that had already received PECVD oxide and to avoid troubleshooting the 

PECVD tool (which would likely be complicated), all wafers, with and without 

electrodes, were polished with the CMP. As illustrated in Table I, CMP polishing 

produces surfaces superior to even the best as deposited PECVD oxide, so in general, 

polishing all samples should yield better outcomes for wafer bonding. Representative 

surface profilometer scans of wafers at various stages of processing during the fabrication 

of version 2 devices are presented in Figure 2-8 to Figure 2-11. 
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Figure 2-9: Surface profilometer scan of a wafer (without electrodes) that was coated with 
approximately 160 nm of PECVD silicon oxide. Spikes are present throughout the scan. The issue of 
spikes was present, irrespective of whether the wafer contained electrodes, thus ruling out 
contamination from the wafer itself as the cause of the problem. 

Figure 2-8: Surface profilometer scan of a bare LPCVD nitride coated wafer that did not yet 
received any further processing. 
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Figure 2-10: Surface profilometer scan of a wafer with patterned electrodes that was coated with 
approximately 160 nm of PECVD silicon oxide. Spikes are present throughout the scan. 

Figure 2-11: Surface profilometer scan of a wafer with patterned electrodes after polishing in a 
CMP. This scan was performed over an area with an embedded electrode, similar to the scan in 
Figure 2-10. Several iterations and deposition and polishing, as described in Section 2.4, were 
performed to achieve an acceptably smooth surface. 
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Section 2.6: Etching Oxide & Nitride 

Wafer backsides were 

patterned and etched in a reactive 

ion etcher (RIE) to define the 

membrane window pattern in the 

silicon nitride film (Figure 2-2(e)). 

Care was taken to ensure that the 

pattern was aligned with the 

crystallographic structure of the 

wafer. This was accomplished by 

including a feature at the bottom of 

the photomask that was used to 

align the major flat of the wafer to the orientation of the mask. Wafer frontsides were 

patterned and etched with 5:1 buffered oxide etch (BOE) to define the conduit pattern in 

the silicon oxide film (Figure 2-2(f)). The pattern for the silicon oxide spacer layer was 

modified in version 2 to include four 8 µm pillars in the window region to anchor the top 

and bottom membranes to each other in order to mitigate outward bowing of the 

membranes when the device is clamped in its fixture/holder (see Section 2.10) or when 

high pressure develops in the cell as in the case of gas formation. Backside alignment was 

performed to align the conduit pattern on the frontside with the window pattern on the 

backside. When the wafers contained electrodes, the BOE also etched the top layer of Ti 

Figure 2-12: Top view of a single device on the bottom 
wafer prior to capping with the top wafer. (a) Version 
1. (b) and (c) Version 2. 
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in the electrode stack, thus exposing the gold/platinum layer in the channel and at the 

contact pads. Figure 2-12 shows partially fabricated devices at this point in the process. 

Section 2.7: Surface Cleaning, Plasma Activation, and Direct Bonding 

Direct bonding of silicon wafers is an attractive method for sealing cavities and 

forming channels because hermetic seals are possible with low temperature, low force, 

and no electric field [19], [30–33]. When the wafers satisfy appropriate bow/warp, total 

thickness variation (TTV), surface roughness, and cleanliness criteria, spontaneous 

bonding at room temperature is possible. Following this initial weak bond, attributed to 

van der Waals forces and hydrogen bonds, wafer pairs are typically annealed at elevated 

temperature to increase the bond strength. For wafers whose surfaces were activated by 

wet chemistries alone, anneal temperatures as high as 1000 °C are necessary to maximize 

bond strength. However, when wafer surfaces are plasma treated prior to bonding, the 

anneal temperature can be lowered significantly to 200 – 300 °C. This is especially 

important when materials such as metal electrodes are present on the wafers, prohibiting 

the use of extreme temperatures. Wafer cleaning and plasma treatment are therefore 

critical steps in preparing wafers for bonding. In this section, the procedures for 

optimizing the bonding process and the final recipe are described. 

First, the wafers were thoroughly cleaned to remove any contaminants and 

activate the surfaces for bonding. For direct bonding involving a silicon oxide surface, 

the cleaning process should leave the surfaces hydrophilic. Piranha (sulfuric acid and 

hydrogen peroxide) and RCA 1 (ammonium hydroxide, hydrogen peroxide, and water) 
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cleaning solutions were examined, which are commonly used to remove organic 

contaminants and leave surfaces hydrophilic. Both solutions bubble aggressively due to 

the presence of hydrogen peroxide, an effect that dislodges and removes stubborn 

inorganic particle contaminants. Miyashita et al. studied cleaning effectiveness and 

surface roughening of Si wafers and demonstrated that piranha causes no significant 

surface roughening, but the traditional RCA 1 solution (NH4OH:H2O2:H2O = 1:1:5) 

causes slight roughening [34]. Thus, a modified RCA 1 solution (MRCA 1) was used 

with a reduced concentration of ammonium hydroxide (NH4OH:H2O2:H2O = 0.25:1:5) 

[35]. Min et al. demonstrated that in glass-to-silicon direct wafer bonding, combinations 

of cleaning solutions improved bond quality [36]. Indeed, our experience indicated that 

cleaning both wafers with piranha followed by MRCA 1 yielded the best results. 

Subsequent plasma activation and bonding was performed immediately after the wet 

chemistry treatments (within several minutes). 

It has been demonstrated extensively that plasma activation improves bond 

strength at low annealing temperature. The recommendations for the plasma process, 

however, such as process gas, duration, pressure, and power vary greatly in the literature 

and are material and tool-specific. Hence, the appropriate conditions for this 

circumstance were investigated.  

Argon, nitrogen, and oxygen have all been reported as effective process gases for 

plasma activation. Doll et al. examined the effect of process gas and anneal temperature 

on bond strength for various material combinations [25]. For Si–SiO2 bonds, anneal 

temperature was shown to have minimal effect on surface energy when wafers were 
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treated with oxygen plasma. The surface energy was generally high for all temperatures 

(~ 2 J/m2) with a slight peak around 250 °C. Anneal temperature was shown, however, to 

be directly proportional to surface energy when wafers were treated with argon plasma. 

Oxygen plasma yielded stronger bonds below 250 °C, but argon plasma was more 

effective above 250 °C. For Si–Si3N4 and Si3N4–Si3N4 bonds, surface energy was directly 

proportional to the anneal temperature for oxygen and argon plasma treatments alike. 

Thus, we selected oxygen as the plasma process gas due to its effectiveness at low 

temperature (< 300 °C) bonding of SiO2. Moriceau et al. demonstrated that SiO2 surfaces 

treated with oxygen plasma at 50 mTorr experienced a decrease in surface roughness 

when the treatment time exceeded 10 seconds [37]. Process pressures of tens of mTorr 

are also recommended in many other reports [20], [25], [38], [39]. Additionally, 

Moriceau et al. showed that for Si–SiO2 bonds, surface energy as a function of plasma 

treatment time has a peak around 30 seconds [37]. Thus, wafers were plasma treated for 

30 seconds at 60 mTorr. 

Plasma activation was performed with an Oxford PlasmaLab 80+ RIE system, 

which is part of a multi-user facility and is regularly exposed to various photoresist and 

etch byproducts that could adversely affect bond quality [25]. To minimize chamber-

induced contamination, the chamber was cleaned before wafer treatment with oxygen 

plasma for one hour at 60 mTorr with a gas flow rate of 50 sccm and platen power of 150 

W.  

Plasma activation of wafer surfaces with platen power values in the range of 15–

100 W have been frequently reported [20], [25], [37], [38]. To determine the optimal 
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value of our tool’s platen power, bond tests were performed using prime grade, 500 µm 

thick, 100 mm diameter, single side polished <100> Si wafers coated with 60 nm of 

PECVD silicon oxide. Pairs of wafers were treated with oxygen plasma for 30 seconds at 

60 mTorr, a gas flow rate of 50 sccm, and platen powers of 15, 75, and 100 W. Wafers 

were then rinsed in deionized (DI) water for 60 seconds, spun dry for 2 minutes, and 

mated by hand. The post-plasma DI water rinse washed away particles from the wafer 

surface that might have accumulated from the RIE chamber and provided water 

molecules that adsorb to the wafer surface to assist in forming hydrogen bonds between 

the wafers [25], [38]. Previous wafer bond tests on troublesome wafers with 25 µm bow 

and 35 µm warp demonstrated that a 4% NH4OH wash in place of the DI water wash can 

help establish a stronger room temperature bond. Following the DI water rinse, the 

samples were annealed for 12 hours at 250°C in nitrogen ambient. 

The bonded area for each pair of wafers was imaged with an IR camera, and the 

bond strength was inspected with the Maszara crack-opening method in which a 

razorblade is inserted between the bonded wafers and the resulting debonded area is 

measured [40]. Although this method is inaccurate for quantifying the surface energy of 

bonded wafers [41–43], consistent application of the technique to sets of similar wafers 

provides an easy qualitative method to assess bond quality without having to dice 

samples. Examination with a razor blade revealed that all samples partially debonded and 

then fractured, but the sample treated at 15 W debonded the least prior to fracture. During 

fabrication of version 2 devices, 15 W proved insufficient to activate the wafers surfaces 

and 30 W was used instead. 
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Additional bond tests were carried out with the silicon nitride coated custom 

wafers to confirm that the bonding process was, indeed, optimized. Two wafers were 

coated with 100 nm PECVD silicon oxide and two wafers were left bare to test SiO2–

Si3N4 bonding. The bonding process is detailed in Table II. Two different post-plasma 

washes were tested (DI water and 4% NH4OH in DI water), but there did not appear to be 

any difference in the bond quality. In both cases, the razor blade could hardly be inserted 

anywhere between the pair of bonded wafers. When the blade was forced, one of the 

wafers simply chipped off, tearing out chunks of material from the opposite wafer with it. 

This result indicated that the bond was as strong as the underlying substrate. 

The bonding process detailed in Table II was used to bond device wafers (with 

and without electrodes) to their blank nitride-coated partners (Figure 2-2(g)). Blank 

nitride-coated wafers were used as the bonding counterparts to avoid potential 

complications of wafer-to-wafer 

pattern alignment. The major and 

minor flats of the feature-

containing device wafer and the 

feature-free blank wafer were 

aligned by hand. This ensured 

similar crystallographic 

orientations of the wafers. 

Patterning of the blank wafer took 

TABLE II 

PLASMA ACTIVATED WAFER BONDING RECIPE 

Step Process 

1 Piranha clean 
• H2SO4:H2O2 = 1:3 for 10 min 

2 MRCA 1 clean 
• NH4OH:H2O2:H2O = 0.25:1:5 for 10 min at 80°C 

3 Plasma activate 
• O2 plasma for 30 seconds at 60 mTorr with a gas flow 

of 50 sccm and platen power of 15 W – 30 W 
4 Rinse & Dry 

• Dunk in DI water or 4% NH4OH in DI water for 4 min 
• Dry in Verteq spin rinse dryer or Hamatech-Steag 

wafer processor 
5 Version 1: Mate wafers by hand 

• Push center together first 
• Manually spread bond interface by squeezing wafers 

together while inspecting with IR camera 
Version 2: Bond wafers in Suss SB8e wafer bonder 

• 1E-3 – 1E-4 mbar chamber pressure 
• 1100 – 2200 N force  for 5 – 10 min 

6 Anneal 
• 250°C for 2.5 hours (ramp up and down) 
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place after bonding (as described in the following section).  

Due to material restrictions in the RIE tool, the wafers with gold electrodes were 

not plasma treated, but did receive the wet chemical cleanings. While plasma treatment of 

both wafers is ideal, the process still works when only one wafer is treated; however, a 

decrease in surface energy of 15 – 50 % is expected [37]. The inability to put gold in the 

plasma tool was part of the motivation for changing the electrode material from gold to 

platinum in version 2, for which plasma activation was performed on all wafers. 

In the literature there is evidence of a beneficial aging effect, where bond strength 

improves over the course of days and weeks for wafers stored in room conditions [23], 

[38], [44]. Thus, bonded wafers were allowed to rest for 12+ days before further 

processing. 

Section 2.8: Etching nitride, KOH etching, and final steps 

The backsides of the blank bonded top wafers were patterned and etched in an 

RIE to define the complementary membrane window pattern as well as inlets/outlets to 

the channel (Figure 2-2(h)). Additionally, narrow lines were defined that would self-

terminate in the KOH etch to allow easy separation of the individual chips. Backside 

alignment with an EV620 Contact Aligner or Suss MA6 Contact Aligner was used to 

align the mask for patterning the top wafer’s backside to the existing pattern on the 

bottom wafer’s backside. Bonded wafer stacks were etched for several hours in 30% 

KOH at 80 °C until the inner nitride membrane was reached (Figure 2-2(i)). During 

earlier process development tests, membranes were etched on individual wafers and their 
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shape was inspected after the etching process. The released membranes did not exhibit 

any apparent deformations. 

Windows measured 100 µm × 100 µm and inlets/outlets measured 300 µm × 300 

µm at the bottom of the tapered KOH etch. The alignment precision of the top and bottom 

windows was ultimately set by the precision of the contact aligner, which had a stated 

front-to-back alignment accuracy of 1 µm. Inspection of the samples revealed that the 

membrane window edges were generally aligned to better than 3 µm. 

Individual chips were separated without the use of a dicing saw thanks to the self-

terminating lines that served as scribe marks for manual cleaving. The scribe marks were 

laid out in a grid pattern that traced the perimeter of each individual chip, but did not 

intersect at the corners (convex corners result in rounded features in KOH etching). After 

KOH etching, the wafer stacks were mounted on removable dicing tape to keep debris off 

of the membrane windows. Chips were then separated by manually snapping the wafer 

stack along the scribe marks. This 

technique is gentler than a dicing 

saw and minimized the risk of 

damage to the membrane windows. 

A completed device is shown in 

Figure 2-13. 

Completed devices contained freely suspended silicon nitride membranes at the 

inlets/outlets in addition to the imaging windows. To gain access to the channel, the 

nitride membranes at the inlets/outlets were popped with tweezers (Figure 2-2(j)). 

Figure 2-13: Top view of a completed single version 1 
device (18 mm x 5 mm x 0.6 mm). 
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Alternatively, the imaging membrane window was shadow masked (e.g., with tape), and 

the nitride in the inlets/outlets was etched with a RIE (SF6 + O2  chemistry). 

Functional device yield was ≥90% in version 1, with loss occurring primarily 

during the KOH etch step, which caused some membranes to break. In all cases when 

breakage occurred, the larger, 300 µm membrane at the inlet/outlet broke, never the 100 

µm viewing window. The broken membrane at the inlet/outlet allowed KOH into the 

conduit and these devices later proved difficult to fill with solution. Device yield was 

high in version 2 as well, ≥80%, with loss presenting itself during chip separation. Due to 

the uneven polishing that the wafers were subjected to (see Section 2.4), many wafers 

contained gashes or burn marks/streaks where a great deal of material was removed, to 

the point where the bulk silicon was exposed. Obviously, these regions of the wafer could 

not bond or produce functional devices, and fell apart while separating the chips from the 

wafer. 

Section 2.9: Filling and Sealing 

Devices were filled by placing a droplet of solution at the inlet and letting the 

solution fill the conduit by capillary imbibition. The nitride window was inspected in an 

optical microscope to check for color change, indicating that fluid was present. Once the 

conduit was filled, another droplet was placed at the opposite end. If a bubble was visible 

in the window during filling then the fluid was withdrawn using filter paper and the 

filling process repeated. Rubber O-rings (Markez -002 O-rings, Marco Rubber) were 

placed over the inlet and outlet, and the device was clamped in a custom-made titanium 
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fixture as illustrated in Figure 2-14. 

In some devices, the top and 

bottom membranes of the viewing 

window were collapsed, touching 

each other and preventing the fluid 

from freely entering the viewing 

chamber. This was remedied by a) 

simply waiting for the fluid to 

creep in and separate the membranes or b) clamping the device in the fixture to increase 

the pressure of the fluid, which then pushed the membrane apart (see Figure 2-15). 

The titanium fixture was designed for easy loading and unloading of 

nanoaquarium devices. The bottom piece (B) contained a recessed rectangular groove 

that the nanoaquarium (A) snugly sat in (Figure 2-14(a)). While in the groove, the 

membrane window of the nanoaquarium lined up with a thru-hole in the bottom of the 

fixture such that there was an unobstructed path for the electron beam. The top piece (C), 

which also contained a through-hole at its center, screwed onto the bottom piece with two 

plastic screws, thus compressing the O-rings to form a tight seal against the inlet and 

outlet of the chip. The assembled top and bottom pieces were inserted into a third 

titanium adapter piece (D) that snapped into a fixture in the STEM. Two plastic screws 

were used to secure the assembly within the adapter piece (D) and to provide additional 

compression on the O-rings to ensure a leak-proof seal (Figure 2-14(b)).  

Figure 2-14: Illustration of the nanoaquarium mounted 
in a custom-made, titanium holder. (a) The 
nanoaquarium positioned in the holder’s bottom with 
O-rings placed around the inlet and outlet ports. Top: 
isometric view. Bottom: side view. (b) The 
nanoaquarium in the fully assembled titanium holder. 
Top: isometric view.  Bottom: side view. 
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The O-ring sealing approach was employed for experimental ease, as opposed to 

sealing with glue, epoxy, or the like, as in several of the other liquid-cell in situ (S)TEM 

devices discussed earlier [6–8], [10], [11]. In practice, we found that nanoaquarium 

devices could be filled with solution, clamped in the fixture, and loaded into the 

microscope for imaging in a matter of minutes. When an experiment was completed, the 

device was readily removed from the fixture and replaced with a new device. 

The clamping fixture illustrated in Figure 2-14 was designed for closed-cell 

applications where the contents of the chip remain sealed for the duration of the 

experiment. However, the fixture/adapter design can readily be altered to include ports 

Figure 2-15: A series of bright field microscope images of a collapsed window being filled with a 
solution of nanoparticles in a glycerine-water mixture. The device is clamped firmly in the holder in 
order to drive fluid into the window. Approximately  four seconds elapse between each frame. 

(a) 

(f) (d) (e) 

(c) (b) 
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for external tubing to allow the transmission of liquids through the device while it is in 

the vacuum chamber of the microscope. 

Section 2.10: Shape of the Silicon Nitride Window 

The silicon nitride imaging membrane of the device is relatively large (edge size 

of 100 µm) and extremely thin (thickness of 50 nm), and thus can deform a great deal 

without breaking. It was observed that when the device was filled with liquid, inserted 

into the titanium holder, and the screws were tightened, the liquid contents were 

inadvertently pressurized. The 

liquid, in turn, deformed the 

membrane. As the membrane 

deformed, light fringes in the 

nitride window, similar to 

Newton’s rings, were observable 

with an optical microscope (Figure 

2-16(a)). By adjusting the force 

with which the O-rings were 

clamped, the number of fringes 

changed, indicating that the 

membrane flexed outward due to 

the internal pressure of the liquid 

in the channel. As the height of the 

Figure 2-16: (a) Bright field light microscope image of a 
bowed membrane for a channel filled with water. (b) 
Illustration of the multiple-interface problem to be 
solved to estimate membrane deformation. (c) The 
relative intensity of the reflected light as a function of 
channel height when the device is filled with water and 
illuminated with green light (λ = 540 nm). The peaks 
and valleys of the plot correspond to light rings and 
dark rings, respectively, in the microscope image. 
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encapsulated channel changed with the curvature of the membrane, incident and reflected 

light interfered constructively and destructively to produce light and dark fringes. The 

precise shape of the window can be determined by modeling the light reflection and 

transmission in the multiple interface stack. 

The nanoaquarium viewing window consists of multiple layers with four 

interfaces and five optically transparent media (Figure 2-16(b)). We ignore the slight 

curvature of the membranes’ surfaces and assume normal incidence of the light. In each 

medium, there is a forward and a reverse instantaneous electromagnetic field traveling in 

the z-direction, represented as 
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In the above, E is the electric field, H is the magnetic field, subscript i denotes the 

medium, β is the phase constant, η is the intrinsic impedance (
iii εµη = ), µ is the 

permeability, ε is the permittivity, and Fi and Ri are complex coefficients that represent 

the magnitude and phase of the wave. Fi and Ri are determined by enforcing continuity of 

the electric and magnetic fields at the interfaces: 
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Without a loss of generality, the problem is normalized by the incident wave that 

illuminates the window in medium 1. Accordingly, F1=1. Also, it is assumed that the 

wave that exits the stack to medium 5 does not reflect back. In other words, R5=0. The 
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system of equations (2-1) and (2-2) is solved for Fi and Ri as functions of channel height 

(d3) when the illumination is monochromatic. 

The intensity of a wave is given by 

; = <=><average (2-3) 

where => = BC> × DCC> is the Poynting vector. By taking the intensity of the reflected wave in 

medium 1 and scaling it by the intensity of the incident wave in medium 1, we end up 

with the following expression: 

;relative = <F��<. (2-4) 

The relative permeability, µr, of all the layers (air, nitride, and water) was taken to 

be approximately equal to 1 because they are nonmagnetic materials. For illumination 

with monochromatic green light (wavelength λ = 540 nm), the refractive index, n, was 

taken to be approximately 1 for air [45], 2.03 for silicon nitride [46], and 1.34 for water 

[47]. Figure 2-16(c) depicts Irelative as a function of the channel height (d3). Witness the 

periodic interference pattern. The peaks and valleys correspond, respectively, to light and 

dark fringes of the bowed membrane. The channel height at the edge of the membrane is 

a fixed quantity (100 nm) because the membrane is connected to a massive silicon 

structure with negligible deformation. Thus, the quantity and position of the light and 

dark fringes provides a means for characterizing the shape of the membrane window. For 

example, when two dark fringes are visible, the height of the conduit is estimated to be 

230 nm at the outer fringe and 430 nm at the inner fringe. More generally, for a channel 

filled with water and two 50 nm thick silicon nitride membranes, a dark fringe appears 
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every 201.5 nm in liquid height. Additionally, for a channel filled with air and two 50 nm 

thick silicon nitride membranes, a dark fringe appears every 270 nm in chamber height.  

Due to the very high aspect ratio of the membrane (a length to thickness ratio of 

2000), the membrane can deform a great deal without breaking. When several dark 

fringes are visible in a sealed device, indicating that the membrane is severely bowed, 

then the pressure on the O-rings that seal the inlet and outlet can be relaxed until the 

membrane is sufficiently flat. In some of our experiments, the membranes were allowed 

to remain bowed out and the large deformation required us to restrict the imaging to 

regions close to the membrane’s edges, where the thickness of the liquid layer was 

approximately 100 nm. The higher thickness liquid close to the window’s center made it 

difficult to resolve the smallest features in the sample. 

Observation of the shape of the bowed membrane provides a simple means to 

estimate the pressure inside the nanoaquarium. Maier-Schneider et al. [48] provide an 

analytical expression that relates the center deflection ℎ of a square suspended thin film 

membrane to an applied pressure G given by 

G�ℎ� = 4	I� 	J	KL� 	ℎ + 16	I��M� 	J	BL� 	ℎ�	. (2-1) 

Creemer et al. [17] used this expression to estimate the deflection of the membrane in 

their high pressure in situ gas-cell. In this expression, L is the length of the membrane 

side, J is the membrane thickness, K is the residual stress in the film, B is Young’s 

modulus, and I� and I��M� are numerical constants given by 

I� = 3.45 (2-2) 
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and 

I��M� = 1.994	 �1 − 0.271	M� �1 − M�⁄ 	 (2-3) 

where I��M� depends on the in-plane Poisson’s ratio M. Non-deflected membranes are 

separated by a distance equal to the channel height. It is useful to consider the internal 

pressure G of the fluid in the device as a function of the change in separation distance at 

the center of the membrane window, given by total deflection ∆� = 2ℎ (there are two 

membranes). When L = 100	μm, J = 50	nm, K = 800	MPa, B = 325	GPa [49], and 

M = 0.25 [48], we find the relationship depicted in Figure 2-17. The applied pressure 

expression from equation (2-1) (plotted in Figure 2-17) represents the pressure of the 

fluid relative to the pressure on the other side of the membrane. When the measurement is 

made in a lab environment using an optical microscope, the applied pressure is relative to 

atmosphere, i.e., gauge pressure. In order to determine the absolute pressure of the fluid, 

we must add 101.325 kPa (1 atm) to the value in equation (2-1). 

Figure 2-17: Relative internal pressure of the fluid in the nanoaquarium as a function of the change 
in height of the bulging observation window at its center. The pressure is relative to the ambient 
pressure of the environment on the other side of the membrane (1 atm when the measurement is 
performed in a lab environment). Two ranges of thickness change are displayed in order to highlight 
the initially linear trend, which becomes nonlinear for large change in thickness. 
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Section 2.11: Device Validation 

2.11.1: Leak Tests & Basic Imaging 

Device performance was demonstrated using an aqueous solution containing 5 nm 

gold particles (EM.GC5, BBI Life Sciences), 50 nm gold particles (EM.GC50, BBI Life 

Sciences), and 50 nm fluorescent polystyrene particles (Fluorescent Yellow Particles, 

Spherotech) suspended in water. The fluorescent particles enabled imaging with a 

fluorescent optical microscope during the initial debugging stage of the device. Brownian 

motion of the fluorescent particles was observed through the silicon nitride window. The 

device remained sealed for approximately 20 hours, at which time the window was 

observed again and fluorescent particles were seen still diffusing randomly. There had 

been no appreciable loss of fluid in that time interval. The sealed device was then placed 

in an FEI Quanta 600 FEG Mark II scanning electron microscope with STEM detector. 

The microscope was operated in high vacuum mode (~1E-5 Torr) with an acceleration 

voltage of 20 kV. Real-time video lasting several minutes was recorded; though, there is 

no limitation on observation time. The video showed individual gold nanoparticles and 

aggregates of various sizes diffusing through the field of view, sometimes bumping into 

each other to form larger aggregates. The motion of individual particles as well as 

aggregates was clearly visible with good resolution. Figure 2-18(a) features an 

instantaneous bright field STEM image taken from the recorded video. Figure 2-18(b) is 

a higher magnification bright field STEM image of a single 50 nm gold particle. Witness 

the excellent contrast between the high density gold particle and the suspending water. 

Clearly, the STEM provides high contrast images of the suspended particles at a 
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relatively low acceleration voltage. Even higher resolution images should be attainable 

with a TEM or STEM that is capable of higher acceleration voltages with correcting 

electron optics. 

The device used in this initial experiment remained sealed in the fixture for 2 days 

of observation with no appreciable loss of fluid. Several STEM videos recorded over the 

course of this 2 day period demonstrated that particles/aggregates were continuously 

diffusing about in a random manner. The motion of these particles/aggregates verified 

that they were in fact suspended in liquid and that the device was leak-free in the high 

vacuum microscope chamber.  

Another device filled with an aqueous solution of 5 nm gold particles remained 

sealed in the fixture for 13 consecutive days. STEM imaging performed at the start and 

end of this time period confirmed there had been no significant loss of fluid, as evidenced 

Figure 2-18: (a) A bright field STEM image of an aqueous solution containing 5 nm gold particles, 
50 nm gold particles, and 50 nm fluorescent polystyrene particles. Individual particles as well as 
aggregates are visible with excellent resolution. 50 nm gold particles are seen most prominently 
decorating the aggregates. (b) A bright field STEM image of a single 50 nm gold particle in water. 
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by the persistent diffusive motion of suspended particles. This indicates excellent device 

hermeticity.  

In the course of the imaging experiments, with beam intensities up to 30 kV, no 

bubbles were observed to form in the liquid-cell. This indicates that the liquid remained 

well below its boiling temperature. The lack of excessive heating may be due to both the 

relatively low energy of the electron beam and the thinness of the liquid-cell that 

facilitates efficient heat transfer to the silicon substrate. 

2.11.2: Electrode Functionality 

Functionality of the electrodes in version 1 of the nanoaquarium proved 

problematic. As mentioned in Section 2.2, the appearance of the gold electrodes in 

version 1 devices was troubling. Not surprisingly, they did not seem to function properly 

in most of the devices tested. Section 4.1 describes a strange outcome produced by the 

gold electrodes in a version 1 device. As also mentioned in Section 2.2, the electrode 

material was changed from gold to platinum in version 2 of the device. In collaboration 

with a research group headed by Dr. Frances M. Ross at the IBM T. J. Watson research 

center, version 2 of nanoaquarium was used for in situ imaging of deposition and 

stripping of copper in a copper sulfate solution (copper sulfate and sulfuric acid, 0.1M 

CuSO4 + 0.18M H2SO4). The nanoaquarium was loaded into the TEM (Hitachi H9000) 

using a custom-made sample holder with electrical connections, constructed at IBM. In 

the experiment, deposition and stripping was performed through cyclic voltammetry and 

under potentiostatic conditions at a variety of potentials. In a “low” voltage potential 

sweep (-0.6V to +0.6V relative to open circuit potential), sparse nucleation and growth of 
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distinct clusters was observed (Figure 2-19). In a “medium” voltage potentiostatic 

deposition and stripping process (+0.8V relative to open circuit potential), dense 

nucleation that coalesced to form a continuous film was observed, along with some 

lateral growth beyond the electrode edge (Figure 2-20). And in a high voltage 

potentiostatic deposition process (+1.2V relative to open circuit potential), rapid coverage 

of the electrode followed by lateral growth of dendrites was observed (Figure 2-21). The 

relationship between applied potential and morphology of deposited copper is in keeping 

(a) (b) 

(c) (d) 

window 

electrode copper  
nuclei 

Figure 2-19: In situ TEM images of electrodeposition of copper on platinum electrodes from a 
solution of copper sulfate. The potential was swept from -0.6V to +0.6V relative to the open circuit 
potential. The image sequence shows the nucleation, growth, and then stripping of copper deposits on 
the electrodes. Horizontal field of view in each image is 1850 nm. 
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with expectations [6], [7] and successfully demonstrates functionality of the electrodes. It 

also confirms that the nanoaquarium can handle harsh chemistries with no failure issues 

and can be used for electrochemical studies. 

(a) (b) 

(c) (d) 

electrode 

window 

copper 
nuclei 

Figure 2-20: In situ TEM images of electrodeposition of copper on platinum electrodes from a 
solution of copper sulfate. (a)-(c) Potentiostatic deposition at +0.8V relative to the open circuit 
potential. Nuclei are more numerous than in Figure 2-19. (d) Potentiostatic stripping of the copper 
film at a different location on the electrode. Horizontal field of view in each image is 1850 nm. 
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Figure 2-21: In situ TEM images of electrodeposition of copper on platinum electrodes from a 
solution of copper sulfate. (a)-(f) Potentiostatic deposition at +1.2V relative to the open circuit 
potential. Rapid coverage of the electrode followed by growth of dendrites is seen. Horizontal field of 
view in each image is 1850 nm. 
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Chapter 3: Diffusion Limited Aggregation 

Portions of what appears in this chapter can be found in Physical Review E [50], 

Copyright © 2011, APS. 

Section 3.1: Background 

Aggregation is a classical topic of broad interest in disciplines such as condensed 

matter physics, material science, air and water pollution, and medicine. Nanoparticle 

aggregation is of interest, among other things, for the synthesis of colloidal crystals and 

the formation of meta and ceramic materials with unique properties. Some of the earliest 

experimental work in the field of nanoscale colloid aggregation & growth was performed 

by Weitz et al. [51], [52] and Lin et al. [53], [54]  on systems of aqueous gold colloids 

undergoing irreversible kinetic aggregation to form tenuous, chainlike fractal structures. 

Since then, a rich theoretical and modeling framework has been developed with emphasis 

on kinetic models [55–57] and computer simulations with applications of the 

Smoluchowsky theory [58–62]. To this day, however, experimental work that captures 

the dynamics of nanoscale colloid assembly/crystallization is scarce [63], due in large 

part to the difficulty of in situ observation of complicated nanoscale phenomena in liquid 

media with an appropriate level of spatial and temporal resolution. A common 

experimental approach is to grow aggregates/crystals under prescribed conditions (e.g. by 

hydrothermal coarsening) and then freeze or dry out the sample to examine the resultant 

structure with TEM to indirectly infer details of the growth mechanism [64–67]. Except 

for some unique cases [64], [68], this technique does not capture dynamics of the 
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aggregation process. Dynamic light scattering and static light scattering are common 

experimental techniques for studying particles in solution. While these techniques 

provide dynamical information regarding aggregate size and fractal dimension, they are 

ensemble techniques that give bulk statistics averaged over the cluster mass distribution 

[54] and cannot capture individual events. In contrast, with the nanoaquarium, one can 

collect statistical information on an ensemble of clusters in view while also observing 

interactions between individual particles/clusters. 

Zheng et al. studied nanoparticle migration in a liquid-cell TEM device and 

reported on anomalous diffusion behavior [10]. In their experiment, the observed 

phenomena may have been influenced by leakage from the liquid-cell. In contrast to 

Zheng et al.’s device, the nanoaquarium is perfectly sealed and is ideally suited for the 

study of nanoparticles in solution.  

The nanoaquarium was used for real-time STEM imaging of diffusion limited 

aggregation/assembly of gold colloids. The deduced kinetics of the observed 

phenomenon in the early stages of aggregate growth agreed well with predictions based 

on three-dimensional cluster-cluster diffusion-limited aggregation models. Large 

aggregates exhibited properties of clusters grown in a three-dimensional regime, even 

when the characteristic size of the clusters exceeded the height of the nanoaquarium (tens 

of nanometers) and two-dimensional growth characteristics may have been expected. The 

mechanism for this seemingly paradoxical result was revealed through direct observation 

of the aggregation process, facilitated by the nanoaquarium. 
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Section 3.2: Experiment 

An aqueous solution of amorphous, charge-stabilized, 5 nm diameter gold 

colloids (EM.GC5, BBI Life Sciences) was drawn into the nanoaquarium by surface 

tension forces. Imaging was carried 

out with a FEI Quanta 600 FEG 

Mark II with a STEM detector. The 

microscope was operated at 20-30 

kV. Better resolution would likely 

be attained with higher power 

TEMs (acceleration voltage of up 

to 300 kV). The nanoaquarium was 

translated within the microscope to 

observe various regions of the 

imaging window. Some of the 

Figure 3-1: Aggregating nanoparticles. Three frames from recorded video of 5 nm gold particles 
and clusters composed thereof, as observed in situ with STEM. 

Figure 3-2: An aggregate composed of 5 nm diameter 
gold particles. The fractal dimension, Df ~ 1.77, is 
consistent with three-dimensional cluster-cluster 
diffusion-limited aggregation. 
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regions featured small clusters of particles in the process of aggregating (Figure 3-1) and 

others contained sizable aggregates (Figure 3-2). 

Section 3.3: Modeling and Analysis 

A simple kinetic model that characterizes the aggregation process was proposed 

by Meakin [69]. Briefly, the number of clusters (N) is inversely proportional to the mean 

cluster size (S) measured by the number of primary particles composing the cluster:  

1~ −SN . (3-1) 

The mean cluster radius (R) measured by a bounding circle is  

fDSR 1~ , (3-2) 

where Df is the fractal dimension of the clusters. A coarse grain model describes the rate 

of decrease in the number of clusters:  

( )( )( ) 12~
−⋅− γSRRNN

dt

dN d . (3-3) 

The second term in the parenthesis on the r.h.s. of equation (3-3) represents the 

probability that a cluster will encounter another cluster. The exponent d (= 3) is the space 

dimension. The third term represents the inverse of the average time interval between 

collisions. The diffusion coefficient of a cluster containing S particles is 

γSD ~ . (3-4) 

Substituting equations (3-1) and (3-2) into equation (3-3) yields 

νN
dt

dN −~ , (3-5) 

where 
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γν −−+= ff DdD22 . (3-6) 

Integrating equation (3-5), we have 

( ) ( )ν−++ 11
0 1~ ttN . (3-7) 

In the above, t = 0 is the time when observations began, and t = -t0 is the start of the 

aggregation process.  According to the Stokes-Einstein equation, the diffusion coefficient 

is 

fD
BB

S

Tk

R

Tk
D 166 ⋅⋅⋅

⋅=
⋅⋅⋅

⋅=
µπµπ

, (3-8) 

where µ is the viscosity of the suspending medium, kB is the Boltzmann constant, T is the 

temperature, and the relation in equation (3-2) has been applied.  With the aid of equation 

(3-4), we conclude that the exponent 

fD1−=γ . (3-9) 

Substituting equation (3-9) into equation (3-6) with d = 3 results in ν = 2. Thus, 

( ) 1
0 1~ −++ ttN , (3-10) 

( )1~ 0 ++ ttS , (3-11) 

and 

( ) fDttR 1
0 1~ ++ . (3-12) 

The video footage for the process pictured in Figure 3-1 was analyzed using 

ImageJ, and nonlinear least squares fitting of the data was performed with Matlab. Figure 

3-3 depicts Df (mean for all clusters in view) and N0, the number of primary particles 

present in the image (whether alone or as part of a cluster) (a); N (b); S (c); and R (d) as 

functions of time for a single set of analyzed images (see Appendix A for further details 
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of the image processing and image analysis, as well as details of the subsequent data 

fitting). As time progresses, Df increases slowly towards its asymptotic, long term value 

of Df ~ 1.77 (measured for Figure 3-2), which is in good agreement with Meakin’s 

computational results for cluster-cluster aggregation (Df ~ 1.75 – 1.80) [69] and Weitz et 

al.’s experimental results for diffusion-limited aggregation of gold nanoparticles (Df ~ 

1.75) [51]. The fitted exponent for N is -1.0 ± 0.1 and the fitted exponent for S is 1.0 ± 

0.1, in close agreement with theory. The fitted exponent for R is 0.5 ± 0.2, which is 

Figure 3-3: Analysis of the diffusion-limited aggregation process pictured in Figure 3-1. The symbols 
and lines correspond, respectively, to raw data and least squares fits. (a) The mean fractal dimension 
(Df) increases slowly as a function of time as the aggregates acquire individual particles and small 
clusters. The number of primary particles (N0) accounted for in the image, normalized by the time 
average of N0, varies by < 20 % and indicates that mass is conserved. (b) The number of clusters 
decays as (t + 1)-1. (c) The mean cluster size increases nearly linearly with time. (d) The mean cluster 
radius grows with an exponent of 1/Df = 0.5. The scatter of the data can be attributed, in part, to 
particles and clusters moving in and out of the field of view from one frame to the next. 
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approximately the inverse of the time-averaged fractal dimension (Figure 3-3(a)): (< Df 

>)-1 ~ 0.63. The good agreement between theory and experiments indicates that the 

Stokes-Einstein equation adequately describes the diffusion of nanoparticles in the 

nanosize fluid cell. This is in contrast to the results of Zheng et al. [10], whose liquid-cell 

was subject to leakage and associated effects that could include evaporation, convective 

flow, capillary forces, and nucleation of vapor bubbles. 

Interestingly, the lateral dimension of the cluster pictured in Figure 3-2 is an order 

of magnitude larger than the cluster’s height (dictated by the nanochannel’s height); yet 

the fractal dimension is consistent with three-dimensional growth, rather than two-

dimensional growth. Theoretical models for simple diffusion-limited aggregation, in 

which particles are added one at a time to a single immobile growing cluster via random 

walk trajectories, predict clusters with Df ~ 1.72 for two-dimensional growth and Df ~ 2.5 

for three-dimensional growth [69]. These models are, however, inappropriate for our 

experiments. In our experiments, clusters are not immobilized; they clearly move and 

combine (see Figure 3-1 and Figure 3-4). Theoretical models for cluster-cluster diffusion-

limited aggregation, in which particles and clusters are allowed to move via random walk 

trajectories and combine, predict clusters with Df ~ 1.4 – 1.45 for two-dimensional 

growth and Df ~ 1.75 – 1.8 for three-dimensional growth [69]. This raises the question: 

why do relatively large clusters exhibit characteristics of three-dimensional growth when 

two-dimensional growth might have been expected?  
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Our in situ imaging helps to shed light on the formation of large aggregates in a 

shallow conduit. Initially, clusters assemble from individual particles that are small 

relative to the conduit height, and follow a three-dimensional growth habit, as illustrated 

in Figure 3-3. Subsequently, when the size of the clusters approaches the height of the 

channel, the clusters’ movement is confined to a plane and growth is dominated by lateral 

cluster-cluster aggregation. Since these aggregating clusters already possess 

characteristics of growth in a near-three-dimensional regime, these characteristics are 

preserved in the resulting aggregate. Figure 3-4 depicts two clusters with fractal 

dimensions of ~1.67 and ~1.65 (appropriate values considering the upward trend of Df in 

Figure 3-3(a)) coming together to 

form a larger cluster with a fractal 

dimension of ~1.64. Additionally, 

small clusters and individual 

particles are free to diffuse into the 

body of a large cluster, further 

adding to the structural complexity 

of the aggregate. Figure 3-5 depicts 

the fractal dimension as a function 

of aggregate size for several 

aggregates observed in our 

experiments. As the cluster size 

Figure 3-4: Cluster-cluster aggregation. Two distinct 
clusters (a), come together to form a single cluster one 
second later (b). Small clusters formed in a three-
dimensional growth regime go on to aggregate two-
dimensionally, resulting in large aggregates with three-
dimensional characteristics, despite confinement in a 
narrow channel. 
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increases, there is a narrowing of 

the variation in fractal dimension, 

along with an upward trend in the 

fractal dimension towards the long 

term value consistent with three-

dimensional growth. 

 
Figure 3-5: Fractal dimension as a function of size for 84 
aggregates. Large aggregates possess fractal 
characteristics consistent with three-dimensional growth. 
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Chapter 4: Particle Motion in an Evaporating Thin Liquid 
Film: Experiments 

In Chapter 3, we saw that the nanoaquarium is an effective tool for investigating 

nanoparticle aggregation in solution when the nanoparticles are completely submerged in 

the suspending liquid and absent of interfaces. The nanoaquarium can also be used to 

investigate the behavior of nanoparticles confined to interfaces and to study the effect of 

interface shape on particle motion and aggregation. In this chapter, experimental 

observations of the motion of particles in an evaporating thin film of liquid, as well as at 

a three phase contact line are described. The observations and results reported herein are 

relevant to techniques such as dip-coating and drop-casting, which are commonly used 

for deposition of nanoparticles on a surface via convective-capillary assembly. In Chapter 

5, the underlying physics responsible for the observations reported in this chapter will be 

delineated. 

Section 4.1: Experimental Setup 

The circumstances leading to the series of experiments discussed in this chapter 

occurred serendipitously. Once it became apparent that an interesting set of phenomena 

was presenting itself, the experiments were steered in such a way as to exploit the unique 

circumstances and investigate the phenomena at hand. 

Version 1 of the nanoaquarium was filled with an aqueous solution of gold 

nanorods (20 nm x 40 nm) with surfactant CTAB (cetrimonium bromide). The 

suspension was provided by Xingchen Ye and Professor Christopher B. Murray of the 
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Chemistry department and Materials Science department at the University of 

Pennsylvania.  

Imaging was performed in a FEI Quanta 600 FEG Mark II with a STEM detector, 

operated at an acceleration voltage of 30 kV. An AC electric potential was applied to the 

two embedded window electrodes in an effort to observe in situ dielectrophoretic 

assembly of the nanorods to form nanowires, as was previously demonstrated ex situ by 

Hermanson et al. [70]. As discussed in Section 2.2, there was something wrong with the 

electrodes in version 1 of the nanoaquarium. The magnitude and frequency of the applied 

potential was varied (0 – 5 V, 100 – 1000 Hz), yet no dielectrophoretic assembly was 

seen. Instead, the gold electrodes eroded and gold was deposited on the silicon nitride 

membrane windows (Figure 4-1), most likely as hemispherical deposits. The applied 

potential was raised until it reached approximately 15V at 500Hz, at which point a bubble 

formed, displacing liquid to the perimeter of the imaging window, but leaving a thin film 

of liquid on the membrane surface. The gas/vapor bubble (bright region) can be seen 

clearly in the microscope image featured in Figure 4-2. The bubble is illustrated 

schematically in Figure 4-3. The electric potential was turned off and remained off for the 

rest of the experiment. From Figure 4-2(b) we can count approximately 16 dark fringes 

present for a medium of air or water vapor (both of which have a refractive index close to 

1). Referring back to Section 2.10, where the shape of the bowed membrane window was 

characterized, we can estimate that at the center of the window, the change in height of 

the channel is ~4300 nm. Using equation (2-1), or referring to Figure 2-17, we conclude 

that pressure of the gas is approximately 180 kPa relative to atmosphere.  
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The nanoaquarium was translated in the microscope to interrogate various regions 

of the window. Gold particles, deposited from the eroded electrodes, were found 

scattered across the membrane in the gas/vapor-filled region of the window, along with 

occasional nanorods. Most of the nanorods, however, were carried to the perimeter of the 

imaging window and remained in the liquid region. The confluence of events that 

Figure 4-1: Electrochemical erosion of gold electrodes in version 1 of the nanoaquarium. (a), (b) As 
the electrode (dark regions) material dissolves, gold is deposited on the nitride membrane window. 
(c), (d) With time, the electrodes erode significantly. 41 second elapse between (a) and (b), 22 seconds 
elapse between (c) and (d). 



56 
 

occurred makes this a difficult experiment to reproduce exactly. However, one could 

certainly reproduce this experiment with a different approach. Generating a bubble with 

the electrodes is not difficult; in fact, bubble generation in microfluidic devices is often a 

problem that researchers must combat. Regarding nanoparticle deposits on the 

membrane, it has been demonstrated by Donev and Hastings [71] that electron beam-

induced deposition (EBID) from liquid precursors can yield precisely controlled 

nanoscale deposits of materials such as Pt. With liquid-phase EBID, one could deposit 

metallic nanoparticles deterministically on the nanoaquarium window, and then generate 

a gas bubble with the electrodes, resulting in a scenario similar to the one described in 

this chapter. 

Experimental observations were focused on two regions of the imaging window. 

Figure 4-2: (a) Scanning transmission electron microscope image of the device imaging window 
with a gas/vapor bubble occupying most of the imaging window, with liquid present around the 
perimeter. (b) Bright field optical microscope image taken several hours later. During that time 
the liquid front receded and the bubble came to occupy nearly the entire imaging window. There 
is a small amount of liquid visible in the four corners. 
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One region was the interface between the bubble and the “bulk” liquid around the 

perimeter of the window (see Figure 4-2(a) and Figure 4-3). We refer to this interface as 

the contact line and our observations of particles at the contact line are detailed in Section 

4.3. The term contact line can imply a liquid/vapor/solid interface, while in our case we 

have a liquid/vapor/thin liquid film interface. However, as details emerge about the 

complex nature of contact lines and the wetting of surfaces [1], [72], it seems that a 

liquid/vapor/thin liquid film interface is in fact the reality, and not unique to our case. 

Later in Chapter 5, we make reference to a contact line model, which applies to this 

region. The other region of interest was away from the contact line, in the thin liquid film 

Bubble, 
several µm 

 

Gold nanoparticles 
 

Gold nanorods 
 

Electron beam 
path: contact line 
region 

Electron beam 
path: thin film 
region 

Figure 4-3: Cross sectional illustration of the nanoaquarium with a bubble occupying most of the 
cross section. Gold nanorods were found in the “bulk” liquid at the perimeter, and electrodeposited 
nanoparticles were found in the thin liquid film. The electron beam path is indicated with red 
arrows. Two regions were interrogated: the contact line region and the thin film region. 

Silicon nitride membrane 

Water 

100 nm 
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that coated the silicon nitride membrane in the gas/vapor region. (see Figure 4-2(a) and 

Figure 4-3). We refer to this as the thin film region and our observations of particles in 

the thin film are detailed in Section 4.4 and Section 4.5. Later in Chapter 5, we make 

reference to the heated patch model, which applies to this region. 

Section 4.2: Convective-Capillary Assembly Background 

Self-assembly of nanoparticles to form crystalline films is a fascinating topic with 

increased interest in the last decade. Some of the earliest work in this field by 

Kralchevsky, Nagayama, and collaborators [73–75] indicated that capillary forces 

between partially exposed particles in a thin film of liquid can drive aggregation of 

nanoparticles because the interaction energy is greater than VW	� even for particles as 

small as a few nanometers in diameter. This is in contrast to conventional lateral capillary 

forces between floating particles, for which the interaction energy for assembly is smaller 

than VW	� when the radius of the particles is a few micrometers or smaller. The flotation 

force (associated with particles floating on liquid), as Kralchevsky and Nagayama refer to 

it, relies on particle weight to deform the fluid interface. Particles below a few microns 

are too small to sufficiently deform the interface to drive assembly. Kralchevsky and 

Nagayama show that the immersion force (associated with particles on a surface 

protruding from a thin liquid film), on the other hand, has a different functional 

dependence on particle radius and surface tension of the liquid that makes it significant 

for even nano-size particles [73]. Nagayama reported that with a liquid film whose 

thickness is comparable to the particle size, colloidal particles self-assemble to form 
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hexagonally packed crystal arrays [74]. He postulated that two distinct mechanisms were 

responsible for this phenomenon:  

• Particles are assembled by convective liquid flow, driven by evaporation of the 

liquid at the contact line. 

• Particles are packed by long-range attractive forces, driven by surface tension of 

the thin liquid film. The lateral capillary force results from an imbalance in the 

curvature of the liquid surface due to the protruding particles. 

Together, these two mechanisms produce the phenomenon of convective-capillary 

assembly as illustrated in Figure 4-4. 

When the goal is to produce a thin film of colloids with poly-crystalline order, 

then convective-capillary assembly is a fast and convenient technique [76]. Application 

of the convective-capillary assembly technique has taken various forms that include 

placing a substrate in a tilted beaker full of solution and allowing the solvent to evaporate 

[77]; placing a droplet of a nanoparticle suspension on a substrate and allowing the drop 

Figure 4-4: Illustration of convective-capillary assembly process. (a) Particles are carried from the 
meniscus area toward the array boundary by convective flow. Water is removed by evaporation at 
the array, leaving dried particles. (b) The attractive interaction of the lateral capillary force between 
protruding particles in a liquid film results in mo vement. Surface tension in the deformed water 
surface produces the 2D attractive force. 

Surface tension 

Evaporation 

Convective flow 

(a) (b) 
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to dry (the familiar “coffee ring effect”) [78], [79]; placing a droplet of a nanoparticle 

suspension on a substrate with a retaining ring or other boundary to modify the shape of 

the drop and allowing the liquid to evaporate [80], [81]; and dip-coating and variations on 

the Langmuir-Blodgett technique, wherein a substrate is withdrawn from a liquid 

reservoir or a liquid reservoir is swept over a substrate (e.g. using a straightedge knife to 

squeegee a large drop of liquid over a stationary sample) [74], [76], [82]. 

Several in-depth overviews on the subject of convective-capillary assembly, 

including rigorous theoretical modeling of the various forces at play, have been published 

[73], [83–85]. Related is fundamental work on wetting of solid surfaces and the shape of 

the interface at the contact line [1], [72]. A wide assortment of techniques, applications, 

and demonstrations of convective-capillary assembly has been reported. Briefly, Yamaki, 

Higo and Nagayama reported on size-dependent separation of nanoparticles based on the 

fact that larger particles experience the lateral capillary force (immersion force) first [74]. 

Chen et al. reported on increased deposition/drying rates using a straight-edge to restrict 

the meniscus of liquid at the drying front and suggested that an increased evaporation rate 

yields an increased colloidal film growth rate [76]. Malaquin et al. assembled crystalline 

films using convective flow of nanoparticles and produced sparse arrays of complex 3-D 

structures using capillary forces [82]. They cited hydrodynamic drag as key to the 

assembly process and claimed that particle motion is dominated by flows associated with 

evaporation of the liquid. They also stated that modification of substrate temperature 

provides a convenient way to control the evaporation rate. Zhao et al. used the “coffee 

ring effect” to deposit PbS nanocrystals and emphasized the importance of controlling the 
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solvent evaporation rate as it is responsible for self-assembly [78]. In their experiments, 

Zhao et al. found that the assembly process resulting from rapid solvent evaporation at 

elevated temperature (40°C) produced disordered structures, while slow evaporations 

rates at room temperature produced both ordered and disordered structures. Ye et al. used 

patterned substrates to break symmetries of the lateral capillary forces and increased the 

complexity of the resultant structures [86].  

Section 4.3: Particles at the Contact Line 

As mentioned in Section 4.1, the gold nanorods (20 nm x 40 nm) that were 

introduced into the nanoaquarium as part of the original solution were mostly displaced 

to the perimeter of the imaging window when the bubble formed. While examining this 

Figure 4-5: Gold nanorods ejected from a receding liquid front are deposited onto the surface of 
the window that contains the gas/vapor bubble. Two seconds elapse between images. The large 
dark objects at the bottom of the images are deposits from the potassium hydroxide etch that 
formed the suspended membranes (Figure 2-2(i)). They are on the outside of the channel and do 
not interact with the particles, though they do affect the electron beam passing through the 
sample.  

gas/vapor 
 
gas/vapor 

liquid 
 
liquid  
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region of the window, the interface between the “bulk” liquid and the gas/vapor region 

appeared to be unstable under irradiation of the electron beam, sometimes advancing, 

sometimes receding, and sometimes oscillating. Often when the interface receded, 

nanorods were ejected from the “bulk” liquid into the liquid thin film of the gas/vapor 

region (see Figure 4-5, Figure 4-6, and Figure 4-7).  

The observations are consistent with the description for convective-capillary 

assembly given in Section 4.2, namely that particles are convected out from the bulk 

liquid to the thin liquid film and then pack together as a result of their capillary 

interaction in the thin film region. The significance of the role that convection plays is 

illustrated in Figure 4-6. As the contact line recedes, particles pushed out of the “bulk” 

liquid into the thin liquid film are the ones that experience the most significant motion. 

Figure 4-6: Particles ejected from a receding contact line. 48 seconds elapse between frames. The 
same particle in the left and right images are marked with the same color arrow and the particle’s 
trajectory is indicated with a dashed line. Note that the particles most recently ejected from the 
receding contact line experience the most significant motion, while the particles located further from 
the contact line experience minimal motion (green circle). The former location of the contact line is 
indicated by blue line on the right image. 
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And this motion takes place in the thin film region of the system. The particles in Figure 

4-6 reached instantaneous velocities on the order of hundreds of nm/s, e.g., 

approximately 200 nm/s and 525 nm/s for the red and yellow indicators, respectively. 

The concentration of particles in this image is not very high, and thus we were able to 

track the “long range” motion of the ejected particles. However, one could imagine that 

in the highly concentrated regime, an ejected particle would not be able to travel far 

before coming into contact with already deposited particles, at which point capillary and 

intermolecular forces would dictate the orientation and packing of the new particle. In 

this case, the convection of particles would be an effective mechanism for packing the 

particles together. 

An interesting observation was made regarding the motion of particles at the 

contact line. The moment at which a particle was propelled into the thin film region was 

generally not concurrent with the moment that the contact line passed over the particle 

(contact line here refers to the interface between dark and light background in Figure 4-5, 

Figure 4-6, and Figure 4-7). In most cases, the contact line passed over the particle and it 

wasn’t until the contact line had receded past the particle by some distance (10s of nm) 

that the particle shot forward. For example, note the red arrow particle in Figure 4-7. The 

red arrow particle starts out in the “bulk” liquid. The contact line passes over the particle 

and the particle hardly moves (though it does rotate to be parallel to the contact line). 

Shortly thereafter, as the contact line continues to recede, the particle is displaced and 

moves out into the thin film region. 
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Another interesting effect was observed regarding particles at the moving contact 

line. During the experiment, the contact line frequently oscillated while being imaged. 

The contact line would surge and recede, giving the appearance of ocean waves. During 

the recede part of the cycle, nanorods were deposited on the membrane surface. In some 

cases when the nanorod concentration was high enough, the ejected nanorods aggregated 

(Figure 4-7). When the nanorod concentration was sufficiently low, individual nanorods 

simply came to rest after being ejected. During the surge part of the cycle, the liquid front 

moved forward, approaching the location of the previously deposited nanorods. Upon 

reaching a nanorod on the membrane surface, one might expect the liquid front to engulf 

the nanorod, resuspending the nanorod in the liquid. But this was not observed. Instead, 

the surging liquid front consistently pushed the nanorod away, often rotating the nanorod 

to align it parallel with the contact line. Examples are shown in Figure 4-8 and Figure 

4-9. The advancing contact line served to advect the nanorods in the thin film. The 

particles were pushed forward at a speed equal to the rate at which the contact line 

Figure 4-7: Gold nanorods aggregate on a surface as they are ejected from a receding liquid contact 
line. The dark region moving upward in the three images is the receding liquid. The same particle is 
indicated by a red arrow in each frame. 50 seconds elapse between frames. Note how the particle of 
interest does not move from its position on the surface until the contact line has passed over it by 
some distance. 

bulk liquid  

thin film  
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advanced. Explanations for this behavior, as well as the delayed particle motion at the 

contact line mentioned earlier, are discussed in Section 5.2. 

  

(a) (b) 

(c) (d) 

Figure 4-8: Deposition and orientation of gold nanorods under the influence of a cyclic contact line. 
Note how initially scattered nanorods are pushed into alignment by the advancing contact line. 

liquid 

gas/vapor 

oriented 
nanorods 
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(a) (b) 

(c) (d) 

Figure 4-9: Deposition and orientation of gold nanorods under the influence of a cyclic contact line. 
Note how initially dispersed and loosely packed nanorods are oriented and compacted by the 
advancing contact line. 

liquid 

gas/vapor 
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Section 4.4: Assembly in an Evaporating Thin Film of Liquid 

Particles in the gas/vapor region of the imaging window resided in a thin film of 

liquid. Particles were driven to aggregate by zooming in on a region of interest and 

allowing the electron beam to raster across the sample while recording the image. A 

series of images of aggregating particles is pictured in Figure 4-10. Once the particles in a 

(a) (b) 

(c) (d) 

Figure 4-10: (a) – (d) A series of images of nanoparticles aggregating on the silicon nitride 
membrane surface in an evaporating thin film of liquid. Timestamp in HH:MM:SS reads (a) 
12:28:46, (b) 12:28:58, (c) 12:29:05, (d) 12:29:52. 



68 
 

region finished aggregating, or the aggregation stalled, the imaging area was zoomed out, 

relocated to a different site of the imaging window, and zoomed back in to drive another 

aggregation process. The level of zoom/magnification remained fixed during any 

particular aggregation process, but was varied from process to process. 

Zoom/magnification was the “knob” that controlled this experiment. 

The rate and extent of aggregation experienced by the particles depended on the 

level of zoom/magnification, which affected the rate of heating and evaporation. At low 

magnification, the aggregation occurred slowly and not all of the particles in the field of 

view participated equally in the aggregation process (particles close to the perimeter 

moved further and more rapidly than particles near the center). At high magnification the 

aggregation occurred quickly and nearly all of the particles in the field of view 

participated in the aggregation process. 

Section 4.5: Results and Analysis 

Digital recorded video was processed and particle tracking was performed to 

analyze the motion of particles and evolution of the system described in Section 4.4. 

Particle and cluster tracking was performed with ImageJ (1.37) and Matlab, using particle 

tracking code made freely available by Dr. Maria Kilfoil [87].  Details of the image 

processing and particle tracking are given in Appendix B. Four levels of 

zoom/magnification were investigated: 

• 160,000X magnification, scale bar of 500 nm, 1.56 nm/pixel (1 dataset) 

• 240,000X magnification, scale bar of 300 nm, 1.04 nm/pixel (4 datasets) 
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• 500,000X magnification, scale bar of 100 nm B, 0.50 nm/pixel (2 datasets) 

• 600,000X magnification, scale bar of 100 nm A, 0.41 nm/pixel (3 datasets) 

Representative images and the tracked particle trajectories from a single dataset at each 

magnification are shown in Figure 4-11 – Figure 4-14. The particles’ positions and 

trajectories were digitized and stored in data files. Several quantities, discussed in the 

following paragraphs, were calculated for a particular dataset at a given magnification 

and the values were averaged with the values from other datasets at the same 

magnification to produce Figure 4-15 – Figure 4-22. 
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Figure 4-11: First frame (a) and 
last frame (b) for one dataset at 
160,000X magnification. (c) 
Particle tracking results showing 
particle trajectories. Initial 
positions are marked with a 
hollow circle and final positions 
are marked with solid red dots. 
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Figure 4-12: First frame (a) and 
last frame (b) for one dataset at 
240,000X magnification. (c) 
Particle tracking results showing 
particle trajectories. Initial 
positions are marked with a 
hollow circle and final positions 
are marked with solid red dots. 
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Figure 4-13: First frame (a) and 
last frame (b) for one dataset at 
500,000X magnification. (c) 
Particle tracking results showing 
particle trajectories. Initial 
positions are marked with a 
hollow circle and final positions 
are marked with solid red dots. 
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Figure 4-14: First frame (a) and 
last frame (b) for one dataset at 
600,000X magnification. (c) 
Particle tracking results showing 
particle trajectories. Initial 
positions are marked with a 
hollow circle and final positions 
are marked with solid red dots. 
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The normalized mean distance between particles as a function of time for various 

magnifications is given in Figure 4-15 (the left image depicts data for the time interval 

0<t<140s and the right image depicts data for the time interval 0<t<400s). The mean 

distance was normalized with the diagonal length of the imaged area. This normalization 

was necessary to enable comparison of data obtained at different magnifications. The 

mean distance was calculated from the particle position information in each frame. 

Details of this calculation, including an explanation of the choice of image diagonal as 

the normalization factor, are given in Appendix C. Briefly, consider X particles in a 

frame. We select particle Y and calculate the distance ��Z between it and the other X − 1 

particles, and then determine the average distance between the Yth particle and all the 

other particles, i.e. �\] = �
^)�∑ ��ZẐ`� . The same calculation was repeated for all X 

particles in the frame, and averaged to give the mean distance between all particles for 

that frame, defined as �̅ = �
^ 	∑ �\]�̂`� . The mean distance between particles gives a 

measure of the aggregation state of the system. As individual particles aggregate and 

Figure 4-15: Mean distance between particles a], normalized by the length of the image diagonal, 
versus time for four different magnifications. L and R image show two different time ranges. 



75 
 

form clusters, the mean distance between particles decreases. Note that the rate of 

aggregation increases for increased magnification. The plotted values in Figure 4-15 

represent the averaged value at a given magnification (1 dataset at 160,000X, 4 datasets 

at 240,000X, 2 datasets at 500,000X, 3 datasets at 600,000X). For each magnification, the 

plots become erratic towards the end because datasets of the same magnification lasted 

for different amounts of time and when a dataset runs out of values it produces a sharp 

step in the plotted (averaged) value (e.g., two datasets are being averaged until the first 

dataset runs out of values and the plotted value jumps to the value of the second dataset 

only). 

The normalized mean cluster size, measured by the number of individual particles 

in a cluster, as a function of time for various magnifications is depicted in Figure 4-16 

(the left image depicts data for the time interval 0<t<140s and the right image depicts 

data for the time interval 0<t<400s). Mean cluster size was calculated by thresholding the 

image in ImageJ to produce a binary image where aggregates containing multiple 

Figure 4-16: Normalized mean cluster size versus time for four different magnifications. L and R 
image show two different time ranges. 
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individual particles became a single entity. Details are given in Appendix B. Mean cluster 

size was normalized with the initial mean cluster size at the start of observation. Erratic 

behavior at the end of each plot is due to differences in duration for the datasets, as well 

as variability in thresholding the grayscale images (e.g. sometimes a large cluster would 

oscillate between recognition as a single cluster and two separate clusters). 

The normalized cluster concentration (count/area), measured by the number of 

clusters in the field of view, as a function of time for various magnifications is given in 

Figure 4-17 (the left image depicts data for the time interval 0<t<140s and the right 

image depicts data for the time interval 0<t<400s). Cluster count was calculated by 

thresholding the image in ImageJ to produce a binary image where aggregates that 

contained multiple individual particles became a single entity. Details are given in 

Appendix B. Cluster count was normalized with the initial cluster count at the start of 

observation. Erratic behavior at the end of each plot is due to differences in duration for 

the datasets, as well as variability in thresholding the grayscale images. 

Figure 4-17: Normalized cluster concentration (count/area) versus time for four different 
magnifications. L and R image show two different time ranges. 
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Particle speed was calculated by measuring the displacement of a particle from 

one frame to the next and dividing by the time that elapsed between the frames. Due to an 

unsynchronized frame rate issue that resulted in oversampled images, the speed 

calculation was not straightforward. Details of the frame rate and speed calculation are 

given in Appendix B. The speed for all of the particles in a frame was calculated and 

averaged to give Figure 4-18 and Figure 4-19. Figure 4-18 depicts the mean particle 

speed as a function of time for magnifications of 160,000X (a), 240,000X (b), 500,000X 

Figure 4-18: Mean speed of all the particles in the field of view versus time for all datasets at four 
different magnifications. (a) 120,000X. (b) 240,000X. (c) 500,000X. (d) 600,000X. 

 

(c) (d) 

(b) (a) 
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(c), 600,000X (d). Time starts at the beginning of the aggregation process. Figure 4-19 

depicts the mean particle speed as a function of the mean distance between particles for 

magnifications of 160,000X (a), 240,000X (b), 500,000X (c), 600,000X (d). 

 

Spatial information about speed is important as well. For example, it would be 

useful to know if particles move faster in one region of the imaging window compared to 

other regions. A coordinate system was selected to represent the radial position of a 

particle from the center of the image. The coordinate system was designed to take into 

Figure 4-19: Mean speed of all the particles in the field of view as a function of the mean distance 
between all the particles in the field of view for all datasets at four different magnifications. (a) 
120,000X. (b) 240,000X. (c) 500,000X. (d) 600,000X. 

(b) 

(d) 

(a) 

(c) 
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account the fact that the electron beam illuminates a rectangular region. Based on the 

particles’ trajectories in Figure 4-11 – Figure 4-14, it is clear that the rectangular footprint 

of the imaging region affected the aggregation pattern (also a rectangle) and the 

relationship between image geometry (heating region geometry) and particle position had 

to be considered. Details of the radial box coordinate system are given in Appendix D. 

Figure 4-20 depicts particle speed as a function of radial box position from the center of 

the image. The plots show speed measurements for the entire duration of all datasets. If a 

radial position had multiple speed values because multiple particles passed through the 

Figure 4-20: Particle speed as a function of radial box position for all datasets at four different 
magnifications. (a) 120,000X. (b) 240,000X. (c) 500,000X. (d) 600,000X. 

(b) 

(d) 

(a) 

(c) 
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same radial position at different times, then the speed values were averaged for that 

position. 

To soften the impact of outliers in Figure 4-20, the radial position was divided 

into bins of length 5 pixels (i.e. 0px ≤ bin1<5px, 5px ≤ bin2<10px, 10px ≤
bin3<15px, etc) and the speed values in each bin were averaged. Figure 4-21 depicts the 

binned and averaged particle speed as a function of radial box position from the center of 

the image. Lastly, the speed data was processed in the same manner of binning and 

Figure 4-21: Binned and Averaged particle speed as a function of radial box position for all datasets 
at four different magnifications. (a) 120,000X. (b) 240,000X. (c) 500,000X. (d) 600,000X. Radial box 
position was partitioned into bins, 5 pixels long, and the speed values in each bin were averaged. 

 

(b) 

(d) 

(a) 

(c) 
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averaging, except particles with zero speed were considered stuck to the membrane and 

excluded from the calculation. Figure 4-22 depicts the binned, averaged, non-zero speed 

as a function of radial box position from the center of the image. 

  

Figure 4-22: Binned and averaged non-zero particle speed as a function of radial box position for all 
datasets at four different magnifications. (a) 120,000X. (b) 240,000X. (c) 500,000X. (d) 600,000X. 
Radial box position was partitioned into bins, 5 pixels long, and the speed values in each bin were 
averaged. Only non-zero speeds were considered in the calculation. 

 

(b) 

(d) 

(a) 
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Chapter 5: The Effect of Evaporation on Fluid Flow in a Thin 
Liquid Film and Consideration of Other Effects. 

In Chapter 4, we imaged the motion and aggregation of nanoparticles resulting 

from motion of the “contact line” and evaporation of a liquid film. As discussed in 

Section 4.3, nanoparticles interacting with a receding contact line were propelled into the 

thin film region, although often with a delay between when the contact line passed over 

the particle and when the particle moved. Additionally, an advancing contact line was 

seen to push particles away, rather than engulf particles. As discussed in Section 4.4, 

particles in an evaporating thin film of liquid aggregated. The kinetics and extent of 

aggregation was dependent on the magnification of the image in the electron microscope. 

In this chapter, we will estimate the various forces acting on the nanoparticles and 

characterize how these forces change in response to key parameters in order to obtain a 

deeper understanding of the process. Insight gained from the investigation can be used to 

design processes and systems based on convective-capillary assembly with desired 

outcomes. Suggestions for novel nanoparticle self-assembly techniques are presented at 

the end. 

Section 5.1: Background and Fundamentals of Relevant Phenomena 

5.1.1: Pressure in a Liquid Thin Film 

Disjoining Pressure 

The self-leveling nature of a free-flowing liquid in response to a potential field 

should be familiar and intuitive to most. On the macro scale, the dominant potential field 

is gravitational potential energy (f	g	ℎ). For example, imagine a tank of water with a 
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partition in the middle that separates two different volumes, one of which is larger, and 

thus higher, than the other (Figure 5-1). Upon removal of the divider, water will flow 

from the tall section to the short section in order to minimize the gravitational potential 

energy of the system. Flow is driven by a spatial variation in the hydrostatic pressure of 

the water (�	g	ℎ) due to the variation in water height, giving rise to a lateral pressure 

gradient (�
 �:⁄ ).  
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(a) (b) 

(d) (c) 

Figure 5-1: Equilibration of liquid height on the macro-scale in order to minimize 
gravitational potential energy. (a) A tank with a divider separates two volumes of water. 
The hydrostatic pressure in the taller volume of liquid is greater than in the shorter 
volume of liquid.  (b) The divider is removed. (c) Water flows from the higher pressure 
region to the lower pressure region. (d) Flow ceases when the liquid height is constant. 
There is no longer any lateral pressure gradients to drive flow. Gravitational potential 
energy of the system is minimized. 
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Similarly, there is an analogous process that takes place on the nanoscale, except 

that instead of gravitational potential energy, it is intermolecular interaction energy (i.e., 

Van der Waals force) that drives the process. We define the Van der Waals interaction 

potential between molecules as 

hii�j� = − I
jk, (5-1) 

and corresponding force as 

mii�j� = −�h�j = − n	I
jko�, (5-2) 

where j is the center to center separation distance between molecules,	n = 6 for Van der 

Waals interaction, and I is the London dispersion force constant (~	10)qqr	f� for many 

commonly encountered materials) [88]. When I > 0, the force is attractive, and when 

I < 0, the force is repulsive. An interaction potential of this form is appropriate for 

describing the attractive interaction of a water molecule with a wetting surface (e.g. 

silicon oxide, silicon nitride, etc); however, one could capture more complicated 

interactions between molecules by writing the interaction potential in a more general 

form: 

hii�j� = − *
jk +

�
ji +⋯ (5-3) 

and including additional terms such as Coulombic interactions between charged 

molecules, dipole interactions between polarizable molecules, the interaction of a water 

molecule with a hydrophobic surface, or other interactions of interest. As detailed in 

“Intermolecular and Surface Forces” [88], equations (5-1) and (5-2) are used to calculate 
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the interaction potential (hit) and corresponding force (mit) between a molecule and a 

plate of thickness �� and molecular number density ��, separated by distance, � (see 

Figure 5-2): 

hit��, ��� = −u	I	��6 	v 1�� − 1
�� + ����w (5-4) 

mit��, ��� = −u	I	��2 	v 1�� − 1
�� + ����w .	 (5-5) 

As a reference for the strength of this interaction, we can compare hit for a single water 

molecule to thermal energy, VW	�. A water molecule in direct contact with a silicon 

nitride surface will have a separation distance of about �~0.45	nm (radius of water 

molecule = 0.193	nm, radius of silicon nitride molecule = 0.253	nm), the thickness of 

the silicon nitride membrane (plate 1) is �� = 50	nm, and the number density of silicon 

nitride is �� = 1.48 × 10�x m�⁄ , which at 30 °C yields hit�0.45	nm, 50	nm� VW	�⁄ ≈
0.2 (30 °C was selected as a modest temperature rise due to heating from the beam). 

Figure 5-2: Schematic illustration of relevant geometric parameters for a molecule and a plate with 
Van der Waals interaction. The plate is of thickness z{, molecular number density |{, and separated 
by distance }. 

�� 

� 

molecular number density, �� 
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Moving out by a single water molecule diameter, this values drops to 

hit�0.83	nm, 50	nm� VW 	�⁄ ≈ 0.03, and at another molecule diameter away the value 

drops to hit�1.22	nm, 50	nm� VW 	�⁄ ≈ 0.01. From this, one might be tempted to 

conclude that the Van der Waals interaction is orders of magnitude too small and dies off 

too quickly to be of any consequence. This is incorrect because when summed over the 

entirety of the liquid body (film height), the interaction becomes quite significant. The 

expressions in equations (5-4) and (5-5) are used to obtain the interaction potential and 

corresponding force between two plates of thickness �� and �� with molecular number 

density �� and ��, separate by distance, � (see Figure 5-3) [88]: 

 

 

Figure 5-3: Schematic illustration of relevant geometric parameters for two plates with Van der 
Waals interaction. Each plate is of thickness z~, molecular number density |~, and separated by 
distance }. If we consider plate 2 to be a liquid film, then the separation, }, would be given by the 
sum of one molecular radius from each material. It is helpful to define the film height, � = } + z�. 
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htt��, ��, ��� = −u	I	��	��12 	v 1�� − 1
�� + ���� +

1
�� + �� + ����

− 1
�� + ����w 

(5-6) 

mtt��, ��, ��� = −u	I	��	��6 	v 1�� − 1
�� + ���� +

1
�� + �� + ����

− 1
�� + ����w .	

(5-7) 

Note that htt and mtt are normalized per unit area, which means that mtt is actually in 

units of pressure (i.e., N m2⁄ , Pa). Supposing that plate 2 is a fluid, the compressive force 

of the Van der Waals interaction is balanced by pressure in the fluid, 


�����, ��, ℎ� = 
���, ��, ℎ� = −mtt��, ��, ℎ�
= u	I	��	��6 	v 1�� − 1

ℎ� +
1

�ℎ + ���� −
1

�� + ����w, 
(5-8) 

where �� has been replaced by ℎ, fluid height, using the relation ℎ = � + ��. The 

expression in equation (5-8) is analogous to gravitational hydrostatic pressure in a fluid, 

except that on the nanoscale it is Van der Waals hydrostatic pressure. This pressure is 

well known and referred to as the disjoining pressure 
� (the pressure it takes to separate, 

or disjoin, the plates), and is considered an important factor in characterizing the wetting 

properties of a drop on a surface [72], [89], [90]. For a water film height of ℎ = 50	nm, 

the disjoining pressure at the water/nitride interface is 
��0.45	nm, 50	nm, 50	nm� ≈
28	MPa	. At a cross section of the water film located at � = 10	nm, the disjoining 

pressure is 
��10	nm, 50	nm, 50	nm� ≈ 2.5	kPa. Looking at the pressure difference 

between two points in cross-sections with film heights ℎ� and ℎ� yields 
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∆
����, ℎ�, ℎ�� = 
���, ��, ℎ�� − 
���, ��, ℎ��
= u	I	��	��6 	� 1

ℎ�� −
1
ℎ�� +

1
�ℎ� + ���� −

1
�ℎ� + �����. 

(5-9) 

Interestingly, the pressure difference in the fluid exists due to the variation in film height, 

but the vertical position � is not in the expression. Although the magnitude of pressure in 

the fluid varies with vertical position in the liquid film according to equation (5-8), the 

lateral pressure difference between two cross-sections is constant throughout the 

thickness of the film, irrespective of vertical position. For example, the pressure 

difference between a ℎ� = 25	nm thick water film and a ℎ� = 50	nm thick water film is 

∆
��50	nm, 25	nm, 50	nm� ≈ 140	Pa. This value of  ∆
� is the same whether one 

considers two points located at the water-nitride interface, two points located 10	nm from 

Figure 5-4: Illustration of the pressure difference, ∆�a, that arises in a thin film of water on a silicon 
nitride surface due to nanoscale variation in film height and subsequent variation in disjoining 
pressure. While the magnitude of the pressure varies along the film height (�{ > �� > ��, �� >�� > ��), the pressure difference between two points located the same distance from the silicon 
nitride surface is the same, regardless of vertical position (�� − �{ = �� − �� = �� − ��). 
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the interface, or two points located 25	nm from the interface (see illustration in Figure 

5-4). Considering that ℎ is a function of :, we can write 

�
��: = u	I	��	��2 	v 1ℎ� −
1

�ℎ + ����w	ℎ� , (5-10) 

where subscript : denotes a derivative. For simplicity, the disjoining pressure gradient 

can be written as 

�
��: = u	I	��	��2 	ℎ�ℎ�, (5-11) 

recognizing that the error in in the disjoining pressure gradient scales as  

�
��: 	error = 1
�1 + �� ℎ⁄ �� − 1. (5-12) 

For a water film that is ℎ = 50	nm thick on a silicon nitride surface that is �� = 50	nm, 

the error is ~	7% and decreases with decreasing ℎ. 

Laplace Pressure 

Surface tension must also be considered for its effect on pressure in the fluid. It is 

well known that when a surface separating two immiscible fluids (e.g., a bubble or 

droplet) is curved, there is a pressure jump across the interface, known as the Laplace 

pressure, given by 

∆
��t���� = 
�k���� − 
������� = �	 v 1F� +
1
F�w, (5-13) 

where � is surface tension and F� and F� are the principle radii of curvature. Since we are 

focusing on one-dimensional analysis, we write 

∆
��t���� = 
�k���� − 
������� = �	 v 1F�w = �	V, (5-14) 
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where V is the curvature of the surface.  

Total Pressure 

In the experiment considered here, there is a gas/vapor bubble that should be 

considered the “inside” and a surrounding liquid that should be considered the “outside.” 

In the same manner as Pham et al. [72], we use the small angle (slope) approximation for 

curvature �V ≈ ��ℎ �:�⁄ �, and combine equations (5-8) and (5-14) to write the total 

pressure in the liquid as 


������ = 
������ − �	ℎ�� + 
� , (5-15) 

and express the total pressure gradient as 

�

�: = −�	ℎ��� + �
��: = −�	ℎ��� + u	I	��	��2 		ℎ�ℎ�. (5-16) 

or 

�

�: = −�	ℎ��� 	ℎ������� + u	I	��	��

2	�	ℎ�� 		ℎ���ℎ��. (5-17) 

where ℎ and : have been replaced by the non-dimensional substitutions ℎ = ℎ�	ℎ� and 

: = �	:� where ℎ� is the farfield fluid height and � is the horizontal length scale. 

At this point, it is helpful to introduce a quantity called the capillary length. 

Capillary length is a characteristic length scale for a fluid subject to a body force as well 

as surface tension. For length scales below the capillary length, the liquid can be 

considered to have a low Bond number (ratio of body force to surface tension force) and 

thus dominated by surface tension. Conversely, for length scales above the capillary 

length, the liquid can be considered to have a high Bond number and thus dominated by 
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the body forces. Kralchevsky and Nagayama [73] provide a definition of capillary length 

that considers gravitational as well as Van der Waals (disjoining pressure) body forces, 

�)� = �∆�	g� + �
� �ℎ⁄
� �

)� �⁄
, (5-18) 

where ∆� = �water − �air ≈ 999	 kg m3⁄ , and g is gravitational acceleration. The first 

term on the right side of equation (5-18) is the ratio of the gravitational body force to 

surface tension and the second term is the ratio of the disjoining pressure effect to surface 

tension. If we compare the disjoining pressure term to the gravitational term, we see that 

for a 50	nm tall film of water, the disjoining pressure term is ~120,000 times greater 

than the gravitational term. As we could have expected, we can thus neglect gravitational 

effects in our nanoscale system. The capillary length therefore becomes 

�)� = vu	I	��	��2	�	ℎ� w)� �⁄ . (5-19) 

We can also compare the disjoining pressure effect to surface tension by taking the ratio 

of disjoining pressure term (2nd term) to the surface tension term (1st term) in equation 

(5-17) to get 

��� = u	I	��	��	��
2	�	ℎ�� , (5-20) 

which we will call the disjoining pressure Bond number.  ��� is similar to the traditional 

Bond number in that it represents the relative importance of a body force to the surface 

tension force, except the body force in ��� is the Van der Waals force, not gravity (as in 

traditional Bond number). We can also relate equations (5-19) and (5-20) with the 

substitution 
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�� = ��� 	�)�. (5-21) 

Equations (5-19) – (5-21) allow us to identify regimes in which the hydrodynamics 

within the thin film of water should be dominated by the disjoining pressure effect, i.e., 

the characteristic lateral length scale is larger than �)� and therefore ��� ≫ 1. 

Supposing that the 
� dominated regime is defined as ��� ≥ 10 , one can calculate the 

capillary length for a system using equation (5-19) and then use equation (5-21) to find 

that if � ≥ √10	�)�, then the disjoining pressure effect is expected to dominant. To 

illustrate the magnitude of these quantities, a 50	nm film of water on a silicon nitride 

surface at room temperature has a capillary length of �)� ≈ 7.7	μm. If the film extends 

for a distance of � ≥ 24	μm, then ��� ≥ 10. A 30	nm film of water on a silicon nitride 

surface at room temperature has a capillary length of �)� ≈ 2.8	μm, and if � ≥ 8.9	μm 

then ��� ≥ 10. A 20	nm film of water on a silicon nitride surface at room temperature 

has a capillary length of �)� ≈ 1.2	μm, and if � ≥ 3.9	μm then ��� ≥ 10. In this high 

��� regime, it is expected that the shape of the liquid/vapor interface as well as the 

associated liquid flow is can be well described by the disjoining pressure effect alone. 

5.1.2: Capillary Force Background 

Capillary forces between particles become important when the thickness of the 

liquid layer drops below the particle height. Kralchevsky and Nagayama [73] derived an 

analytical expression for the immersion capillary force between two particles resting on a 

surface and protruding from a liquid thin film, given by 

  = 2	u	�	¡�	¡�	�	¢�[�	�], (5-22) 
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¡¥ = j¥	Sin[¦¥],	 (5-23) 

where � is surface tension, � is capillary length (defined in equation (5-19)), � is the 

separation distance between particles, ¢� is modified Bessel function, j¥ is contact line 

radius, and ¦¥ is meniscus slope angle. See Figure 5-5 for an illustration of the geometric 

parameters.  

Section 5.2: Discussion 

There are several forces in our system: thermal forces, surface tension forces, 

convective forces, capillary forces, and adhesion forces between the particles and the 

silicon nitride surface on which they rest. Our goal is to compare these forces to 

determine which ones dominate. Particle aggregation occurred at all levels of 

magnification, though to varying extents and at varying rates. At high magnification 

(500,000X and 600,000X), aggregation occurred most quickly and typically resulted in 

very few clusters or even a single cluster containing all of the initially dispersed particles 

visible in the observation window (see Figure 4-13 and Figure 4-14). It is interesting to 

  

� 

j¥ ¦¥ 

Figure 5-5: Illustration of relevant geometric parameters for lateral capillary force interaction
between particles in a liquid thin film. 
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note that with a magnification of 500,000X, which provided slightly slower kinetics 

compared to a magnification of 600,000X, the particles reached a slightly lower 

interparticle mean distance. This indicates that the slower process was able to pack 

particles together more effectively, which is consistent with the results of Zhao et al. [78], 

who found that the assembly process resulting from rapid solvent evaporation at elevated 

temperature (40°C) produced disordered structures, while slow evaporation rates at room 

temperature produced both ordered and disordered structures. At low magnification 

(160,000X and 240,000X), aggregation occurred more slowly and typically resulted in 

many disjoint small clusters (at least in the time span of the experiment) (see Figure 4-11 

and Figure 4-12). The dependence of the aggregation process on magnification suggests 

that aggregation was driven by beam effects, i.e., the evaporation of the liquid due to 

heating from the beam. The spot size of the beam is fixed (recall that the microscope was 

operated in STEM mode with a focused rastered beam), as is the pixel size of the image 

(1024 x 881), which means that as the magnification increases, the area through which 

the electrons pass decreases. This results in an increased flux of electrons through the 

sample at increased magnification. So at higher magnification, heating should be more 

significant, evaporation should be more significant, and the aggregation phenomena, if 

driven by the evaporation of the liquid, should be more pronounced. Figure 4-15 – Figure 

4-17 are consistent with this trend. 

Close examination of Figure 4-11 and Figure 4-12 reveals that not all of the 

particles in the field of view move the same distance or at the same rate. There is an outer 

region near the perimeter of the image where particles experience significant motion, and 
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an inner region where particles, comparatively, do not move as much. So the forces 

experienced by the particles are not experienced equally by all of the particles in the field 

of view.  Let us consider some of the possible forces & energies influencing the system 

through qualitative as well as quantitative comparisons. 

5.2.1: Thermal Forces 

While always present, thermal fluctuations do not result in directed motion unless 

there is a gradient in temperature. There is, indeed, a gradient of temperature in our 

system. The region being irradiated by the beam should be hotter than the surrounding 

area outside of the beam. Directed motion, resulting from thermal forces, would therefore 

drive particles out of the field of view and away from the center of the image due to the 

increase in diffusivity with temperature (thermophoresis). This is not what we observe. In 

all our experiments, the particles migrated towards the center of the imaged region. Thus, 

thermophoresis of particles due to a thermal gradient is likely not important.  

Temperature variations also produce gradients in surface tension that can lead to 

fluid motion, termed the Marangoni Effect. When applied to a shallow body of liquid 

with a lateral temperature gradient, the effect can produce thermocapillary motion, 

typically drawing the fluid from regions of high temperature (low surface tension) to 

regions of low temperature (high surface tension) [91]. As in the case of thermophoresis, 

thermocapillary motion would be in the opposite direction from the observed motion of 

the particles. It is possible, however, that thermocapillary motion could play a role in the 

influencing the height of the thin liquid film, which has important consequences on the 

pressure (and pressure gradients) in the liquid as described earlier in subsection 5.1.1. We 



96 
 

assume, however, that temperature variations are not likely to be significant at the length 

scales considered here and ignore Marangoni Effects.  

How about thermal energy as the cause of random motion of particles? Let us 

consider a particle undergoing a random walk due to Brownian motion. The well-known 

expression for mean square displacement of a particle moving in n-dimensional space 

(n = 1, 2,	or	3), is given by 

〈j�〉k = 2	n	�	J, (5-24) 

where � is the diffusion coefficient and J is time (derivation presented in Appendix E). In 

our case, the expression for 2-D Brownian motion (equation (5-24) with n = 2) is 

appropriate because the particles are confined to a thin layer. We replace � with the 

Stokes-Einstein relation (for a fully submerged particle), used earlier in equation (3-8), to 

get 

〈j�〉�© = 2	VW	�	J3	u	ª	F  (5-25) 

where VW is the Boltzmann constant, � is temperature, J is time, ª is viscosity of the 

liquid (water), and F is the particle radius. From this, one typically expresses the 

displacement of a particle with the root mean square displacement: 〈j�〉� �⁄ . To compute 

〈j�〉� �⁄  we use F = 8	nm, the mean particle radius measured in the initial image of all 

datasets at all magnifications. We will consider a time interval of 10 seconds (the 

experiments depicted in Figure 4-15 – Figure 4-18  lasted for 70 – 450 seconds). We can 

get a lower bound for 〈j�〉�©with values of � = 30	°C and ª = 0.799 × 10)� 	N	s m⁄ , 

and an upper bound for 〈j�〉�©with values of � = 90	°C and ª = 0.316 × 10)� 	N	s m⁄  
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[92] (keeping in mind that the beam heats the sample above room temperature but we’ve 

never seen boiling with our imaging conditions). This gives the following values: 

〈j�〉� �⁄ i�k = 37	μm 

〈j�〉� �⁄ i�� = 65	μm. 

This means that unrestricted Brownian motion as a result of the thermal energy of the 

system should produce particle motion on the order of 37 µm – 65 µm over the course of 

10 seconds. The thermal motion of suspended particles close to a surface is hindered by 

viscous drag. Thus, the above estimates of the thermal motion are likely to be 

overestimates. Nevertheless, one would expect suspended particles to travel significant 

distances over the course of an experiment. With motions of even a fraction of the above 

magnitudes, particles would be flying in and out of the field of view throughout the 

process, likely bumping into each other in a diffusion limited aggregation process similar 

to what was discussed in Chapter 3, but confined to 2D. This clearly does not happen 

here. In most of the aggregation footage, the particles did not appear to experience a great 

deal of random thermal motion. Occasionally in the high magnification images 

(500,000X and 600,000X) a particle or small cluster jumped across the image and/or 

rotated 180 degrees, seemingly at random; however, in general there was not much 

random motion observed. This is a somewhat surprising observation, given that thermal 

energy is generally considered a prominent factor in nanoscale particle systems. 

This indicates that random thermal motion in our system of particles was 

suppressed. The question is, by what means was it suppressed? It is important to note that 
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random particle motion was not suppressed solely in the region being imaged by the 

electron beam; particles throughout the gas/vapor region of the imaging window 

remained fixed until they were zoomed in on by the electron beam, otherwise there would 

have been aggregates present throughout the imaging window. This lets us exclude beam 

effects or charge artifacts as the reason that particle diffusion was suppressed. We 

conclude that the particles must have been stuck to the silicon nitride membrane surface, 

probably due to intermolecular forces, i.e., Van der Waals forces, hydrogen bonds, and 

others. These forces were strong enough to hold the particles in place and resist random 

Brownian motion due to thermal energy, but not strong enough to resist other forces that 

drove aggregation.  

Thermal forces conclusion: Thermal forces on the particles are not significant. Random 

Brownian motion is suppressed by particle interaction with the surface, which is then 

overwhelmed by another force(s) to drive assembly. The interaction energy between a 

particle and the surface must be greater than the thermal energy of the system, 

B� �®i�� = VW	�	~	4 × 10)��	J, and the interaction energy that drives motion and 

aggregation must in turn be even greater. Marangoni Effects and associated flows driven 

by surface tension gradients are ignored in this analysis. 

5.2.2: Surface Tension Force on a Single Particle 

A single partially submerged particle at a liquid surface with a height gradient can 

experience an imbalance of forces based on surface tension that will result in motion. The 

situation is more complicated when multiple particles are present, as they would produce 
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mutual deformations of the liquid surface to yield interparticle capillary forces. In our 

experiment, the imaged region was being heated and presumably the liquid was 

evaporating. Liquid from outside the image region could flow into the evaporation zone 

to replenish the evaporating liquid. If the thin liquid film height in the imaging region 

was not uniform, we must question whether the gradient in film height could be 

responsible for particle motion. 

We expect the center of the image region to have a thinner liquid film than the 

perimeter since the center is furthest from the supply of fresh liquid. A particle on the 

surface would see the environment illustrated in Figure 5-6. The case of a floating 

particle on a curved liquid surface was explored by Katoh et al. [93]. They examined the 

cases of wetting and non-wetting particles on convex and concave meniscus surfaces. In 

their analysis, the case of a wetting particle whose density was greater than that of the 

liquid was trivial because they were looking at bulk liquid, not a thin film, and a heavy 

wetting particle would simply sink into the liquid. Nevertheless, we can employ similar 

analysis to that of Katoh et al. and also include the reactive force that the surface exerts 

on the particle. We assume that our gold nanoparticles are wetted by the liquid, since the 

contact angle of water with gold is less than 90 degrees [94]. In addition, the nanorods 

were coated with CTAB to keep them stable in water (increasing wettability). When the 

contact angle is < 90°, a meniscus will rise around the particle, with an associated surface 

tension force. The surface tension force acts around the wetted perimeter of the particle 

and the resultant of the force points in a direction that is inward and orthogonal to the 

liquid surface (Figure 5-6(b) and (c)).  
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Katoh et al. consider two other forces: gravity and buoyancy. Neither of these 

forces is relevant to our system because we are dealing with nanoparticles in a thin film 

for which the (traditional) Bond number is very small. The Bond number is a non-

dimensional number that gives the relative importance of gravity forces to surface tension 

forces: 

Bo = 	 �∆��g	°�� 	, (5-26) 

where ∆� is the difference in density between the particle and the suspending fluid, g is 

the gravitational acceleration, ° is the characteristic length, and � is surface tension. For 

gold particles (�gold = 19,300	 kg m3⁄ ) in water (�water = 1,000	 kg m3⁄  and 

�water�25°C� = 	71.97 × 10)� N m⁄ ) with a film thickness that is assumed to be on the 

order of the particle diameter (° = 16	nm), we have Bo	~	6×10)�±. As an upper bound, 

consider that a 100 nm film of water at 90 °C would have Bo	~	3×10)x. When 

Bo	2	0.01, gravitational forces can be safely neglected in favor of surface tension forces 

[95]. Katoh et al. draw a vector diagram of forces on a floating wetted particle that 

includes gravity (acting downward), buoyancy (acting upward), and surface tension 

(acting down and away at an angle) to show that there is a net force that moves the 

particle sideways up the meniscus. In our case, we replace the gravity force with an 

attractive force between the particle and the silicon nitride surface due to intermolecular 

interactions, and replace the buoyancy force with a complimentary force that represents 

the energetic penalty paid to displace a volume of liquid (which has its own attractive 

interaction with silicon nitride surface) by the particle. We can refer to this as the Van der 
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Waals buoyancy. In addition, we have a reaction force between the particle and the 

membrane surface. The vector sum of these forces is depicted in Figure 5-6(c). It shows 

that a particle on a surface that is wetted by a non-uniform film of water will experience a 

net force that pulls the particle into the thicker part of the film. A similar conclusion can 

be arrived at by energetic considerations. As the wetted surface area of the particle 

increases, its energy decreases. This is similar to the conclusion reached by Katoh et al., 

which states that a buoyant wetted particle will move into the thicker part of the liquid 

(up the meniscus). 

Surface tension forces conclusion: Surface tension force experienced by a single partially 

wetted particle in a liquid film of variable height is directed towards the region of thicker 

film and cannot explain the aggregation phenomena that was observed in our 

experiments. If present, such forces would draw the particle into the thicker part of the 

liquid film, i.e. from the center to the edge. This is not consistent with the observed 

behavior of the system. 
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particle 

water 

silicon nitride 

Figure 5-6: Illustration of a gold particle in a liquid thin film of variable thickness. If there was a 
variation in liquid film thickness in the imaging window, we would expect the perimeter to be thicker 
than the center. The center of the imaging window is denoted by a dashed line. (a) Would a particle 
in this situation experience a force imbalance that could lead to motion? If so, which way would it 
move? (b) Forces acting on the particle include surface attraction to the substrate (green), an 
opposing force arising from the energetic penalty paid to displace liquid to accommodate the particle 
(purpl e), a reaction force at the surface (black) and surface tension (red). (c) A vector force diagram 
showing the resultant force in blue. 
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5.2.3: Capillary Forces 

As described in Section 5.1, capillary forces have been established as an 

important factor to consider in the assembly of nanoparticles. However, capillary forces 

are not likely to be significant in our system. Nanoparticles and nanorods, did not move 

or assemble deterministically unless they were being imaged with the electron beam. 

From this, we surmise that the equilibrium thickness of the thin liquid film was thicker 

than the size of particle or rod (> 20nm). As described in Section 4.5, not all of the 

particles in the field of view participated in the aggregation process, and in cases of 

incomplete aggregation it was often the particles in the center that did not aggregate (see 

Figure 4-11 and Figure 4-12). This is not consistent with what we would expect for 

capillary force-induced assembly. Particles at the center should be in the thinnest part of 

the liquid film, which would make them protrude the most and therefore experience the 

strongest interparticle capillary forces. Capillary forces are a viable explanation for the 

packing of nanorods in Figure 4-7, however, they do not explain the motion of the 

nanorods ejected from the bulk liquid in Figure 4-6, which came to rest at seemingly 

arbitrary locations in the thin film that were not near any other particles. If capillary 

forces drew a particle into the thin film region, why didn’t the particle continue moving 

to join with the particle(s) responsible for the capillary force? Additionally the nanorods 

already in the thin film region of Figure 4-6 (green circle) did not move. The nanorods 

that were pushed by the surging contact line in Figure 4-8 were subject to forces of some 

kind that produced motion, but they did not aggregate while in the thin liquid film. If 

capillary forces were present and significant, why did the two large distinct clusters of 
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nanorods in Figure 4-9 not draw together to form a single cluster? The precise thickness 

of the thin liquid film is unknown, which makes it difficult to definitively state whether 

capillary forces can be ruled out completely (they are zero if the particle is not protruding 

from the film). 

Capillary force conclusion: Interparticle capillary forces alone do not appear to be a 

viable explanation for the variety of interesting particle behaviors observed in our 

experiments. 

5.2.4: Pressure Gradients and Flow in the Liquid 

The liquid film in the imaging region is irradiated by the electron beam. As a 

result, the temperature in the irradiated region increases, with a corresponding increase in 

evaporation rate. The evaporation provides a means of mass transport out of the thin 

liquid film that will cause a decrease in film height relative to the surrounding unheated 

region. As described in Section 5.1, spatial variations in film height give rise to pressure 

gradients, due to both surface tension and disjoining pressure of the liquid (equation 

(5-17)). Liquid lost from the heated thin film region can be replaced by liquid flow from 

the surroundings. Lateral pressure gradients in the thin liquid film provide a mechanism 

for directed particle motion via non-uniform pressure on a particle’s surface, as well as 

convection of fluid with associated hydrodynamic drag. For the situation described in 

Section 4.3, hereby referred to as the contact line model, liquid lost from the heated thin 

film can be replenished by the much thicker “bulk” liquid at the contact line, as well as 

the thin liquid film outside of the imaging area (see Figure 5-7). We are interested in 
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what happens right next to the “bulk” liquid region when the “contact line” passes over a 

particle, so we perform 1-D analysis in Cartesian coordinates (valid for a particle that lies 

on the :�-axis for which flow in the ¶�-direction would cancel out due to symmetry). 

Similarly, for the situation described in Section 4.4, hereby referred to as the heated patch 

model, liquid lost from the heated thin film can be replenished by the surrounding, 

unheated thin film (see Figure 5-8). We consider the hypothetical case of the imaging 

region as a circular disk (the image is actually a rectangle) and perform 1-D analysis in 

axisymmetric cylindrical coordinates. 
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Figure 5-7: Top view (a) and side view (b) illustration of the liquid film (blue) and the electron beam 
imaging region (evaporation zone) (red) in the contact line model that applies to Section 4.3. Refer 
also to the illustration in Figure 4-3. Cartesian coordinates are used. See Figure 4-5, Figure 4-6, and 
Figure 4-7 for comparison to the experiment. All variables are normalized. 
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Figure 5-8: Top view (a) and side view (b) illustration of the liquid film (blue) and the electron beam 
imaging region (evaporation zone) (red) in the heated patch model that applies to Section 4.4. Refer 
also to the illustration in Figure 4-3. The coordinate system is approximated with axisymmetric 
cylindrical coordinates. See Figure 4-10 for comparison to the experiment. All variables are 
normalized. 
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Conservation of mass dictates that the following continuity equations must hold 

true: 

∇ ∙ �ℎ	�̅� + r 	 0						�0 ≤ :� ≤ 1� (5-27) ∇ ∙ �ℎ	�̅� 	 0						�1 < :��.	 (5-28) 

In the above, ℎ is the film height, �̅ is the mean fluid velocity (averaged over the height 

of the film), and r is the evaporative flux (per unit length). Recall the non-dimensional 

substitutions used in equation (5-17), ℎ 	 ℎ�	ℎ� and : 	 �	:�, where ℎ� is the height scale 

(edge height in contact line model and far-field height in heated patch model) and � is the 

horizontal length scale (half the diameter of the evaporation zone). Both ℎ and �̅ are 

functions of the position :�. For simplicity (and for lack of more detailed information), we 

will assume that the evaporation rate r is uniform since the electron beam irradiates the 

imaging window more or less evenly and we assume small temperature variations. We 

also assume that the re-condensation of evaporated water vapor occurs over a relatively 

large area compared to the area of evaporation (ratio of surface area of whole bubble 

region to surface area of imaging region ~ 8000:1) and so the effect of the flux of 

condensing water vapor on the flow field can be ignored.  

The domain of :� in the heated patch model is 0 ≤ :� ≤ ¾ where ¾ ≫ 1, while the 

domain of :� in the contact line model is 0 ≤ :� ≤ 1 (see Figure 5-7 and Figure 5-8). 

However, for completeness, expressions in the contact line model analysis (Cartesian 

coordinate) that follows are given over the same domain as the heated patch model, i.e., 

0 ≤ :� ≤ ¾ with heating on 0 ≤ :� ≤ 1. When applying the expressions in the contact line 

model to our particular experiment we specify ¾ = 1. 
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The Navier-Stokes equation for fluid flow reduces to the Stokes equation at low 

Reynolds number: 

	μ	¿�� 	 	∇
, (5-29) 

which is a valid simplification for fluid flow in a thin liquid film that is under 100 nm. 

The Stokes equation in Cartesian and cylindrical coordinates with scaled distances 

(: 	 �	:�, À 	 ℎ	À̃) becomes, respectively 

ℎ� 	Â��Â:�� +	�� 	Â��ÂÀ̃� 		ℎ�	��ª 	Â
Â:, (5-30) 

ℎ� 	 ÂÂ:� Ã1:� 	 ÂÂ:� �:�	��Ä +	�� 	Â��ÂÀ̃� 		ℎ�	��ª 	Â
Â: .	 (5-31) 

Assuming that � ≫ ℎ, both equations reduce to 

	Â��ÂÀ̃� = 	ℎ�ª 	Â
Â:, (5-32) 

for which the mean fluid velocity for Couette flow between a non-slip surface (À̃ = 0) 

and a free surface (À̃ = ℎ�) gives 

�̅ = Å �	�À̃�
± = − ℎ�3	ª 	�
�: = �	ℎ��3	ª	�� 	ℎ�� 	�ℎ������� − ��� 	 ℎ���ℎ���, (5-33) 

where �
 �:⁄  has been replaced by the expression in equation (5-17) and the disjoining 

pressure Bond number ��� was defined previously in equation (5-20). The velocity can 

be normalized by  

�± = �	ℎ��3	ª	�� (5-34) 

to get 
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�� 	 �̅�± 		ℎ�� 	�ℎ������� − ���	 ℎ���ℎ���. (5-35) 

The validity of the � ≫ ℎ assumption that allows equations (5-30) and (5-31) to be 

simplified is tested by computing the velocity of the fluid and then comparing the 

magnitude of the terms that were neglected to the terms that were retained, i.e., 

ℎ� 	Â��Â:���� 	Â��ÂÀ̃� 					�Cartesian	coordinates�, (5-36) 

ℎ� 	 ÂÂ:� �1:� 	 ÂÂ:� �:�	���
�� 	Â��ÂÀ̃� 					�cylindrical	coordinates�.	 (5-37) 

Contact line model - Cartesian coordinate analysis 

The mass conservation equations (5-27) and (5-28) become 

d�	�:� Çℎ�	ℎ�	�̅È + r 	 0						�0 ≤ :� ≤ 1� (5-38) 

d�	�:� Çℎ�	ℎ�	�̅È 	 0						�1 < :��.	 (5-39) 

Integration produces 

ℎ�	�̅ 	 − r	�ℎ� 	:�						�0 ≤ :� ≤ 1� (5-40) 

ℎ�	�̅ 	 Çℎ�	�̅È|��`�						�1 < :��	 (5-41) 

Substituting equation (5-33) for �̅ and rearranging gives 

ℎ������� 	 ��� 	 ℎ���ℎ�� − *	 :�ℎ�� 							�0 ≤ :� ≤ 1�, (5-42) 
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ℎ������� 	 ��� 	ℎ���ℎ�� 	− *	 1ℎ�� 							�1 < :��,	 (5-43) 

where  

A 	 3	ª	��	r�	ℎ�� . (5-44) 

Combining equations (5-42) and (5-43), we write 

ℎ������� 	 ��� 	 ℎ���ℎ�� − *	 1ℎ�� 	Ç:�	H�1 − :�� + H�:� − 1�È, (5-45) 

where H�:�� is the Heaviside function. Equation (5-45) must be solved numerically and 

the resulting solution is plugged into equation (5-35) to calculate the fluid velocity ��. 
Boundary conditions (see Figure 5-7) for equation (5-45) are 

ℎ����0� 	 0 (5-46) 

ℎ��¾� 	 1	 (5-47) 

and 

ℎ����¾� 	 ¦	 (5-48) 

where ¦ is the slope at the boundary. We will explore the effect that different values of ¦ 

have on the solution. 

We derive an expression for equation (5-36) that tells us whether our velocity 

solution validates the � ≫ ℎ assumption that was employed to simplify the Stokes 

equation (equation (5-30)). The denominator is given by 

�� 	Â��ÂÀ̃� =	ℎ�	��ª 	Â
Â: = ℎ�	��ª 	−	3	ª	�̅ℎ� = −3	��	�±	��, (5-49) 
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where equation (5-32) is used to define Â�� ÂÀ̃�⁄ , and (5-33) is used to replace the 

�
 �:⁄  term. The numerator is given by 

ℎ� 	Â��i��Â:�� 	 ℎ� 	Â� Ì32	�̅ÍÂ:�� 	 

															− 3	r	�	ℎ�2 	Î−2	ℎ��� + :� 	Ã2	ℎ����ℎ� − ℎ�����ÄÏ					�0 ≤ :� ≤ 1�, (5-50) 

ℎ� 	Â��i��Â:�� 	 ℎ� 	Â� Ì32	�̅ÍÂ:�� 	 −3	r	�	ℎ�2 	Ã2	ℎ����ℎ� − ℎ�����Ä					�1 < :��,	 (5-51) 

where the maximum velocity �i�� 	 �� 	 �̅ for Couette flow is used and �̅ is given by 

equations (5-40) and (5-41). Taking the ratio of equations (5-50) and (5-51) to (5-49) we 

get 

ratio��:�1 = *2 	ℎ���� 	1�� 	ÐÎ−2	ℎ��� + :� 	Ã2	ℎ����ℎ� − ℎ�����ÄÏ 	H�1 − :��
+ Ã2	ℎ����ℎ� − ℎ�����Ä 	H�:� − 1�Ñ, 

(5-52) 

where * is defined previously in equation (5-44), and ��, ℎ�, ℎ���, and ℎ����� are all determined 

from the solution to equation (5-45). 

We can simplify equations (5-42) and (5-43) for the case of large ��� and write 

ℎ���ℎ� 	= *��� 	:�						�0 ≤ :� ≤ 1� (5-53) 

ℎ���ℎ� 	= *��� 							�1 < :��.	 (5-54) 
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Integration yields 

ℎ� �Ò 	W�Ó 		 ℎ�±	B:G v *2	��� 	:��w
	 ℎ��	B:G Ã *2	��� 	�:�� − 1�Ä					�0 ≤ :� ≤ 1� (5-55) 

ℎ� �Ò 	W�Ó 		 ℎ��	B:G Ã *��� 	�:� − 1�Ä
	 B:G Ã *��� 	�:� − ¾�Ä					�1 < :� ≤ ¾�,	 (5-56) 

where ¾ is the far-field bound on :�, ℎ��0� 	 ℎ�±, ℎ��1� 	 ℎ��, and ℎ��¾� 	 1. Here we have 

chosen to satisfy the ℎ��¾� boundary condition and neglected the ℎ����¾� boundary 

condition (the ℎ����0� 	 0 boundary condition is automatically satisfied by the equation). 

With some rearrangement we get 

ℎ� �Ò 	W�Ó 		 B:G Ã *2	��� 	�:�� + 1 − 2	¾�Ä					 �0 ≤ :� ≤ 1� (5-57) 

ℎ� �Ò 	W�Ó 		 B:G Ã *2	��� 	�2	:� − 2	¾�Ä					�1 < :� ≤ ¾�.	 (5-58) 

Combining equations (5-57) and (5-58), we write 

ℎ� �Ò 	W�Ó 		 B:G Ã *2	��� 	Ç�:�� + 1 − 2	¾�	H�1 − :��
+ �2	:� − 2	¾�	H�:� − 1�ÈÄ. (5-59) 



114 
 

The high ��� case also has a simplified expression for velocity. Equation (5-35) is 

simplified to 

�� �Ò 	W�Ó 	 −���	 ℎ���ℎ��. (5-60) 

Referring to equations (5-53) and (5-54) we get 

�� �Ò 	W�Ó 	 −A	 :�ℎ� 					�0 ≤ :� ≤ 1� (5-61) 

�� �Ò 	W�Ó 	 −*	 1ℎ� 					�1 < :� ≤ ¾�.	 (5-62) 

Combining equations (5-61) and (5-62), we write 

�� �Ò 	W�Ó 	 −*	 1ℎ� 	Ç:�	H�1 − :�� + H�:� − 1�È. (5-63) 

Heated patch model - cylindrical coordinate analysis, radial position ·# 

The mass conservation equations (5-27) and (5-28) become 

1�	:� 	 d�	�:� Ç�	ℎ�	:�	ℎ�	�̅È + r = 0						�0 ≤ :� ≤ 1� (5-64) 

1�	:� 	 d�	�:� Ç�	ℎ�	:�	ℎ�	�̅È = 0						�1 < :��	 (5-65) 

Integration produces 

ℎ�	�̅ = − r	�2	ℎ� 	:�						�0 ≤ :� ≤ 1� (5-66) 

ℎ�	�̅ = Ç:�	ℎ�	�̅È|��`�:� 						�1 < :��	 (5-67) 

Substituting equation (5-33) for �̅ and rearranging gives 

ℎ������� = ��� 	 ℎ���ℎ�� − *2	 :�ℎ�� 						 �0 ≤ :� ≤ 1� (5-68) 
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ℎ������� 	 ��� 	ℎ���ℎ�� − *2	 1:�	ℎ�� 							�1 < :��	 (5-69) 

where, as in equation (5-44) previously, 

A 	 3	ª	��	r�	ℎ�� . (5-70) 

Combining equations (5-68) and (5-69), we write 

ℎ������� 	 ��� 	 ℎ���ℎ�� − *2	 1ℎ�� 	�:�	H�1 − :�� + H�:� − 1�:� �, (5-71) 

where H�:�� is the Heaviside function. Equation (5-71) must be solved numerically and 

the resulting solution is plugged into equation (5-35) to calculate the fluid velocity. 

Boundary conditions (see Figure 5-8) for equation (5-71) are 

ℎ����0� 	 0 (5-72) 

ℎ��¾� 	 1	 (5-73) 

and 

ℎ����¾� 	 0.	 (5-74) 

One could also explore the effect of slope at the boundary ¾ by choosing a nonzero value, 

as in equation (5-48). 

We now derive an expression for equation (5-37) that tells us whether our 

velocity solution validates the � ≫ ℎ assumption that was employed to simplify the 

Stokes equation (equation (5-31)). The denominator is given by 

�� 	Â��ÂÀ̃� =	ℎ�	��ª 	Â
Â: = ℎ�	��ª 	−	3	ª	�̅ℎ� = −3	��	�±	��, (5-75) 
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where equation (5-32) is used to define Â�� ÂÀ̃�⁄  and equation (5-33) is used to replace 

the �
 �:⁄  term. The numerator is given by 

ℎ� 	 ÂÂ:� Ã1:� 	 ÂÂ:� �:�	��Ä 	 ℎ� 	 ÂÂ:� Ã1:� 	 ÂÂ:� v:� 	32	�̅wÄ 	 

															− 3	r	�	ℎ�4 	Î−3	ℎ��� + :� 	Ã2	ℎ����ℎ� − ℎ�����ÄÏ					�0 ≤ :� ≤ 1�, (5-76) 

ℎ� 	 ÂÂ:� Ã1:� 	 ÂÂ:� �:�	��Ä 	 ℎ� 	 ÂÂ:� Ã1:� 	 ÂÂ:� v:� 	32	�̅wÄ 	 

															− 3	r	�	ℎ�4 	Ã	ℎ���:�� + 2	ℎ����:�	ℎ� − ℎ�����:� Ä					�1 < :��,	 (5-77) 

where the maximum velocity �i�� 	 �� 	 �̅ for Couette flow is used and �̅ is given by 

equations (5-66) and (5-67). Taking the ratio of equations (5-76) and (5-77) to (5-75) we 

get 

ratio��:�1 = *4 	ℎ���� 	1�� 	ÐÎ−3	ℎ��� + :� 	Ã2	ℎ����ℎ� − ℎ�����ÄÏ 	H�1 − :��
+ Ã	ℎ���:�� + 2	ℎ����:�	ℎ� − ℎ�����:� Ä 	H�:� − 1�Ñ, 

(5-78) 

where * is defined previously in equation (5-70), and ��, ℎ�, ℎ���, and ℎ����� are all determined 

from the solution to equation (5-71). 

We can simplify equations (5-68) and (5-69) for the case of large ��� and write 

ℎ���ℎ� 	= *2	��� 	:�						�0 ≤ :� ≤ 1� (5-79) 
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ℎ���ℎ� 		 *2	��� 	1:� 							�1 < :��	 (5-80) 

Integration yields 

ℎ� �Ò 	W�Ó 		 ℎ�±	B:G v *4	��� 	:��w
	 ℎ��	B:G Ã *4	��� 	�:�� − 1�Ä					�	0 ≤ :� ≤ 1� (5-81) 

ℎ� �Ò 	W�Ó 		 ℎ��	:�Ô �	W�ÓÕ 	 v:�¾wÔ �	W�ÓÕ 					�1 < :� ≤ ¾�,	 (5-82) 

where ¾ is the far-field bound on :�, ℎ��0� 	 ℎ�±, ℎ��1� 	 ℎ��, and ℎ��¾� 	 1. Here we have 

chosen to satisfy the ℎ��¾� boundary condition and neglected the ℎ����¾� boundary 

condition (the ℎ����0� 	 0 boundary condition is automatically satisfied by the equation). 

With some rearrangement we get 

ℎ� �Ò 	W�Ó 		 v1¾wÔ �	W�ÓÕ 	B:G Ã *4	��� 	�:�� − 1�Ä					�	0 ≤ :� ≤ 1� (5-83) 

ℎ� �Ò 	W�Ó 		 v:�¾wÔ �	W�ÓÕ 					�1 < :� ≤ ¾�.	 (5-84) 

Combining equations (5-83) and (5-84), we write 

ℎ� �Ò 	W�Ó 		 v1¾wÔ �	W�ÓÕ 	B:G Ã *4	��� 	�:�� − 1�Ä 	H�1 − :��
+ v:�¾wÔ �	W�ÓÕ 	H�:� − 1�. 

(5-85) 
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The high ��� case also has a simplified expression for velocity. Equation (5-35) is 

simplified to 

�� �Ò 	W�Ó 	 −���	 ℎ���ℎ��. (5-86) 

Referring to equations (5-79) and (5-80) we get 

�� �Ò 	W�Ó 	 −*	 :�2	ℎ� 					�0 ≤ :� ≤ 1� (5-87) 

�� �Ò 	W�Ó 	 −*	 12	ℎ�	:� 							�1 < :� ≤ ¾�.	 (5-88) 

Combining equations (5-87)and (5-88), we write 

�� �Ò 	W�Ó 	 −*	 12	ℎ� 	�:�	H�1 − :�� + H�:� − 1�:� �. (5-89) 

Exact solutions, approximate solutions, and discussion 

The differential equations (5-45) and (5-71) were solved numerically in Matlab 

using the boundary value problem solver “bvp4c.” The initial guess given to the solver 

for ℎ� was a fourth order polynomial that satisfied ℎ������� 	 *	:� (a gross simplification of 

equation (5-42)) and the three boundary conditions in equations (5-72) – (5-74). There 

are two key variables that we plot and examine; they are 

• Film height: ℎ�, that comes from solving equations (5-45) and (5-71). 

• Fluid velocity: ��, that comes from plugging values into equation (5-35). 

Additionally, we will consider two quantities of interest: 
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• The surface tension term (ℎ�������) and the disjoining pressure term (���	  !"# !$) 
from the velocity expression �� in equation (5-35). From these we will see 

the role and relative importance of each term in the fluid velocity. 

• The ratio: ratio��:�1 in the Stokes equation, that comes from equation 

(5-52) and equation (5-78). Small values of ratio��:�1 mean that our 

solution is consistent with the l	≫	h assumption in our fluid dynamics 

equations. 

We will examine how these quantities behave as functions of the evaporation rate * 

(equation (5-44) or (5-70)), the disjoining pressure Bond number Bo� (equation (5-20)), 

and the slope at :� = 1 in the contact line model ¦ (equation (5-48)). As mentioned 

previously, the expressions in the contact line model analysis (Cartesian coordinates) are 

valid over 0 ≤ :� ≤ ¾ with heating in 0 ≤ :� ≤ 1. However, for comparison to our 

experiment we consider only ¾ = 1 in the contact line model (Cartesian coordinates). The 

heated patch model (cylindrical coordinates) will be examined over 0 ≤ :� ≤ ¾ with 

heating in 0 ≤ :� ≤ 1 and ¾ = 10. ¾ = 10 was selected as an approximation for an 

infinite domain. It is anticipated that when ¾ > 10, the solution is independent of ¾. 

Solutions for non-zero values of ¦ in the contact line model are especially relevant to the 

traditional concept and application of convective-capillary assembly described in Section 

4.2, where the thin film must eventually connect to the bulk liquid drop. The bulk liquid 

drop typically has a non-zero contact angle with the substrate, either due to surface 
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tension in the drop (as in drop-casting [78], [79]) or due to the experimental apparatus (as 

in dip-coating and variations on the Langmuir-Blodgett technique [74], [76], [82]). 

To facilitate numerical integration, we must assign values to the evaporation rate 

* (equation (5-44) or (5-70)), the disjoining pressure Bond number Bo� (equation 

(5-20)), and the velocity scale �± (equation (5-34)). Exact values are hard to nail down 

for some variables so we will examine ranges of values and look at the trends. The 

number density of a material is determined by � = �mass	XÔ Ö⁄  where �mass is the mass 

density, XÔ is Avogadro’s constant, and Ö is the molar mass. From this we have �� =
�Si3N4 	~	1.48 × 10�x m3⁄  and �� = �HØÙ	~	3.3 × 10�x m3⁄ . We consider � =
100	nm → 1000	nm and ℎ� = 20	nm → 30	nm (keeping in mind that the film is not 

likely to be under 20	nm because that would cause the nanorods to spontaneously 

assemble by capillary force interactions). We consider the temperature in the heated 

imaging region to be between 60°C and 30°C (with the unheated region at room 

temperature) and thus � = 66.2 × 10)� 	N m⁄ → 71.2 × 10)� 	N m⁄  and ª = 0.467 ×
10)� 	Ns m2⁄ → 0.798 × 10)� 	Ns m2⁄  [92]. The evaporation rate is estimated to be 

r ≈ 1	 nm s⁄ → 100	 nm s⁄  (speculated as a physically reasonable range). From these 

values we obtain * ≈ 3 × 10)Ú → 2 × 10)�, Bod ≈ 1 × 10)� → 1, and �± ≈ 2 ×
10)� 	m s⁄ → 1	m s⁄ . The contact line model (Cartesian coordinates) solution is plotted 

with * = 1 × 10)� → 1 × 10)�, Bod = 1 × 10)� → 1 × 10)� and ℎ����1� = 0 in Figure 

5-9, ℎ����1� = 0.58 (30° slope) in Figure 5-10, and ℎ����1� = 1.73 (60° slope) in Figure 

5-11. We compare the contact line model high Bod solution to the full solution with 
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* 	 1 × 10)� → 1 × 10)�, Bod = 1, and ℎ����1� = 0 and also * = 0.1 → 1, Bod = 1, 

and ℎ����1� = 0 in Figure 5-12. We look at the heated patch model (cylindrical 

coordinates) solution with * = 1 × 10)� → 1 × 10)�, Bod = 1 × 10)� → 1 × 10)� and 

ℎ����10� = 0 in Figure 5-13. We compare the heated patch model high Bod solution to the 

full solution with * = 1 × 10)� → 1 × 10)�, Bod = 1, and ℎ����10� = 0 in Figure 5-14. 
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Figure 5-9: Solutions to contact line model (Cartesian coordinates) with �!·#�{� 	 ¹ (0° slope). (a) & 
(d) �!: film height. (b) & (e) Û#: fluid velocity. (c) & (f) The surface tension term (�!·#·#·#) (blue) and the 

disjoining pressure term (ÜÝa				 �!·#�!�) (red) from Û#. Plots (a), (b), and (c) fix BoBoBoBodddd	�{ × {¹)�� and vary Þ	�{ × {¹)� → { × {¹)��, while plots (d), (e), and (f) fix Þ	�{ × {¹)�� and vary BoBoBoBodddd	�{ × {¹)� → { ×{¹){�. ratioratioratioratioa·:aß < �. � × {¹)� for all solutions. 

(a) 

(e) 

(d) 

(b) 

(c) (f) 
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(a) 

(e) 

(d) 

(b) 

(c) (f) 

Figure 5-10: Solutions to contact line model (Cartesian coordinates) with �!·#�{� 	 ¹. �à (30° slope). 
(a) & (d) �!: film height. (b) & (e) Û#: fluid velocity. (c) & (f) The surface tension term (�!·#·#·#) (blue) and 

the disjoining pressure term (ÜÝa				 �!·#�!�) (red) from Û#. Plots (a), (b), and (c) fix BoBoBoBodddd	�{ × {¹)�� and vary Þ	�{ × {¹)� → { × {¹)��, while plots (d), (e), and (f) fix Þ	�{ × {¹)�� and vary BoBoBoBodddd	�{ × {¹)� → { ×{¹){�. ratioratioratioratioa·:aß < � × {¹)� for all solutions. Note how some of the surface tension terms (�!·#·#·#, blue) 
in (c) and (f) are opposite in sign (some became positive) or are shifting towards the x-axis compared 
to the corresponding plots in Figure 5-9. 
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Figure 5-11: Solutions to contact line model (Cartesian coordinates) with �!·#�{� 	 {. á� (60° slope). 
(a) & (d) �!: film height. (b) & (e) Û#: fluid velocity. (c) & (f) The surface tension term (�!·#·#·#) (blue) and 

the disjoining pressure term (ÜÝa				 �!·#�!�) (red) from Û#. Plots (a), (b), and (c) fix BoBoBoBodddd	�{ × {¹)�� and vary Þ	�{ × {¹)� → { × {¹)��, while plots (d), (e), and (f) fix Þ	�{ × {¹)�� and vary BoBoBoBodddd	�{ × {¹)� → { ×{¹){�. ratioratioratioratioa·:aß < � × {¹)� for all solutions. Note how all of the surface tension terms (�!·#·#·#, blue) in 
(c) and (f) are opposite in sign (now positive) from the corresponding plots in Figure 5-9. Also note 
how the disjoining pressure term (red) overpowers the surface tension term (blue) in (c) and (f) even 
though ÜÝa is low and we expect to be in the surface tension dominated regime. 

(a) 

(e) 

(d) 

(b) 

(c) (f) 
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Figure 5-12: Comparison between contact line model (Cartesian coordinates) high ÜÝa solution and 
the full solution with �!·#�{� 	 ¹ (0° slope). (a) & (c) �!: film height. (b) & (d) Û#: fluid velocity. In all 
plots ÜÝa 	 {. In (a) and (b), Þ is varied from { × {¹)� to { × {¹)� with good agreement, even 
though ÜÝa is not that high. In (c) and (d), Þ is varied from { × {¹)� to { with poorer agreement. 
The �!·#�{� boundary condition in the high ÜÝa solution is not fixed and so the shape of the interface 
shifts in response to increased Þ. The shape of the velocity profile in (d) does not agree precisely, but 
the order of magnitude is correct, as is the trend. 

 

(a) 

(d) 

(c) 

(b) 
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There are many interesting features and trends in Figure 5-9 – Figure 5-12 to 

discuss. In the full solution to the contact line model (Cartesian coordinates) presented in 

Figure 5-9(a) – Figure 5-11(a), we see that when Bod is fixed, the shape of the interface 

remains relatively unchanged over the range of * values (evaporation rate) examined.  In 

Figure 5-9(b) – Figure 5-11(b) we see that the velocity, ��, is negative and, not 

surprisingly, increases in magnitude with increasing *. Recall that based on our 

coordinate system, negative �� signifies motion from the “bulk” liquid into the thin 

evaporating film. Figure 5-9 presents the full solution to the contact line model (Cartesian 

coordinates) with the boundary condition ℎ����1� = 0 (0° slope). The velocity profile in 

Figure 5-9(b) appears to be nearly linear. In this plot, converting �� back into dimensional 

units using �± yields a maximum velocity ranging from about 2 × 10)� 	m s⁄  to 1 ×
10)� 	m s⁄ . In Figure 5-9(c) we see that the surface tension component of the velocity, 

ℎ������� (in blue), is negative, which produces negative �� according to equation (5-35). The 

disjoining pressure component of the velocity, ��� 	  !"# !$ (in red), is nearly zero, likely due 

to the ℎ����1� = 0 boundary condition, moderate * values that don’t deform the interface 

greatly, and small value of ���. In Figure 5-9(d), (e) and (f) we see that for this range of 

* values and this boundary condition, changing the value of ��� does little to influence 

the shape of the interface or the velocity of the fluid.  

Figure 5-10 presents the full solution to the contact line model (Cartesian 

coordinates) with the boundary condition changed to ℎ����1� = 0.58 (30° slope). Some 

very interesting behavior emerges here. For fixed ��� in Figure 5-10(a), the shape of the 
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interface does not appear to change much as * is varied between 1 × 10)� and 1 × 10)�. 

In Figure 5-10(b), we see that the velocity, ��, is negative and increases in magnitude with 

increasing *. We can also see that the shape of the velocity profile is not quite linear. In 

this plot, converting �� back into dimensional units using �± yields a maximum velocity 

ranging from about 2 × 10)� 	m s⁄  to 1 × 10)� 	m s⁄ . In Figure 5-10(c), we see that the 

disjoining pressure component of the velocity, ��� 	  !"# !$ (in red), is non-zero and positive 

(due to boundary condition on ℎ���). This results in negative �� according to equation 

(5-35), which is to be expected. However, in Figure 5-10(c), we also see that the sign of 

the surface tension component of the velocity, ℎ������� (in blue), is positive for some values 

of *. According to equation (5-35), positive values of ℎ������� contribute to motion in the 

positive :� direction, which is back into the “bulk” liquid. Looking at fixed * and varied 

��� in Figure 5-10(d) and (e) we see that the interface shape and fluid velocity do not 

appear to change much in response to variations in ���. But in Figure 5-10(f) we see that 

by varying ���, the values of the surface tension component (blue) and disjoining 

pressure component (red) of �� do in fact change. Yet in every case the disjoining pressure 

term beats out the surface tension term by what must be the same difference to produce 

nearly the same �� in Figure 5-10(e). This is quite surprising because at these low values 

of ��� we expect to be in the surface tension-dominated regime, where the properties of 

the liquid interface should be dictated by surface tension effects alone, with little 

influence from the disjoining pressure body force. Looking again at Figure 5-10(d) and 

(e) one might be tempted to conclude that this is still a valid generalization because even 
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though the disjoining pressure component of �� beats out the surface tension component 

of �� in Figure 5-10(f), it is of no consequence to the interface shape and the fluid 

velocity, and therefore the value of ��� is indeed unimportant. This notion is disproved 

by Figure 5-11.  

Figure 5-11 presents the full solution to the contact line model (Cartesian 

coordinates) with the boundary condition changed to ℎ����1� 	 1.73 (60° slope). Here we 

see more interesting behavior emerging. For fixed ��� in Figure 5-11(a), the shape of the 

interface does not appear to change much as * varies. In Figure 5-11(b), we see that the 

velocity, ��, is negative and increases in magnitude with increasing *. Interestingly, the 

velocity profile has developed a hump, such that the maximum velocity is no longer at 

the boundary. In this plot, converting �� back into dimensional units using �± yields a 

maximum velocity ranging from about 2.8 × 10)� 	m s⁄  to 1.4 × 10)� 	m s⁄ .  In Figure 

5-11(c), as seen previously in Figure 5-10(c), the disjoining pressure component of the 

velocity, ���	  !"# !$ (in red), is non-zero and positive (due to boundary condition on  ℎ���), 
which results in negative ��, as expected. The surface tension component of the velocity, 

ℎ������� (in blue), is positive for all values of * examined. According to equation (5-35), 

again, positive values of ℎ������� mean that surface tension is working to drive fluid in the 

positive :� direction, back into the “bulk” liquid. Another interesting effect appears in 

Figure 5-11(c), which is that even though ��� is fixed, the disjoining pressure component 

of �� changes with changing value of *. This is due to the disjoining pressure 

component’s functional dependence on ℎ� and ℎ��� (i.e., ���	  !"# !$). Even slight changes in ℎ� 
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can have magnified consequences for the disjoining pressure component of �� due to the   

1 ℎ��⁄  dependence. Looking at fixed * and varied ��� in Figure 5-11(d) and (e) we see 

that the interface shape and fluid velocity now change in response to ���. In response to 

increased ���, the film height, ℎ�, rises at the boundary :� 	 0. This makes sense since 

increased ��� means increased disjoining pressure body force, which seeks to make the 

liquid film level. Lower values of ��� result in lower ℎ� at the boundary, which has the 

effect of amplifying �� in Figure 5-11(e) by driving the fluid through what is essentially a 

smaller nozzle. In Figure 5-11(f) we see that by varying ���, the surface tension 

component (blue) and disjoining pressure component (red) of the disjoining pressure 

component of �� change, and in every case the disjoining pressure beats out surface 

tension. Again, this surprising because ��� is small (< 1) and we should expect to be in 

the surface tension-dominated regime. Yet Figure 5-11 shows us that even at small ���, 

film height and fluid velocity are both sensitive to the value of ��� and it is the effect of 

disjoining pressure, not the surface tension, that drives flow from the “bulk” liquid into 

the thin film. 

In order to explore the unexpected behavior observed in Figure 5-9 – Figure 5-11, 

we determine when the surface tension component of �� (i.e., ℎ������� in equation (5-35)) 

changes sign. Let us consider only the domain 0 ≤ :� ≤ 1. The direction in which surface 

tension-driven flow acts is determined by the sign of ℎ�������, given by equation (5-45) for 

the contact line model (Cartesian coordinates). Factoring and rearranging this expression 

allows us to write 
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ℎ������� 	 ��� 	 ℎ���ℎ�� �1 − *	:�	ℎ���� 	ℎ����	 ?< ?	 ?>	0	, (5-90) 

the sign of which is determined by the term in parenthesis. We can also determine criteria 

for whether the disjoining pressure component of �� (i.e., −��� 	  !"# !$ in equation (5-35)) or 

the surface tension component of �� (i.e., ℎ������� in equation (5-35)) dominates the flow. It 

should be noted that any non-zero value of the disjoining pressure component of �� will 

always be negative and therefore always act in the direction from the “bulk” into the thin 

film. Taking the ratio of the disjoining pressure component to the surface tension 

component and taking the absolute value we find that the dominant component is 

determined by the magnitude of the following expression 

ãã 11 − *	:�	ℎ���� 	ℎ���ã
ã	 ?< ?	 ?>	1	. (5-91) 

Examining equation (5-90) and equation (5-91) we see that the same group of terms, 

Ô	��	 !W�Ó	 !"#, appears in both expressions. The same analysis can be performed for the heated 

patch model (cylindrical coordinates) to find that the group of terms, 
Ô	��	 !�	W�Ó	 !"#, appears. 

We evaluate this group of terms with :� 	 1, ℎ� 	 1, which in a typical convective 

capillary assembly (drop casting) process, would be the location where the precursor film 

meets the bulk drop (with an associated traditional contact angle providing a known value 

for ℎ���). :� 	 1, ℎ� 	 1 is exactly correct for the contact line model (Cartesian coordinates) 

and a reasonable approximation (ℎ�	~	1) for the heated patch model (cylindrical 
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coordinates) with moderate evaporation rate, * (discussed later in regards to Figure 

5-13). We define a critical dimensionless number 

I� 	 *ä	���	ℎ����1� 	 6	ª	��	rä	u	I	��	��	ℎ����1�	, (5-92) 

where ä 	 1 for Cartesian coordinates and ä 	 2 for cylindrical coordinates. The value 

of I� determines the dominant component of fluid velocity (disjoining pressure or 

surface tension) as well as the direction in which the surface tension component of flow 

acts. The behavior of the system for various values of I� is presented in Table III. 

Whereas traditionally it is simply the Bond number that determines whether the body 

force (disjoining pressure) or surface tension dominates, we see that at the vapor-solid-

liquid interface at the edge of a drop, the dominant hydrodynamic force is determined by 

a combination of Bond number, evaporation rate, and slope of the interface. 

Figure 5-12 provides a comparison of the high ��� analytical solution in equation 

(5-59) to the full solution that comes from solving equation (5-45) numerically. In Figure 

TABLE III 

INFLUENCE OF THE CRITICAL DIMENSIONLESS NUMBER ON FLOW 

													å} 	 Þæ	ÜÝa	�!·#�{� 
 

 

Disjoining pressure 

vs. 

surface tension 

 

Direction of disjoining 

pressure flow 

 

Direction of surface 

tension flow 

I� 	 0 Tie Into thin film Into bulk 0 < I� < 1 Disjoining pressure dominates Into thin film Into bulk I� 	 1 Disjoining pressure dominates Into thin film No flow 1 < I� < 2 Disjoining pressure dominates Into thin film Into thin film I� 	 2 Tie Into thin film Into thin film 2 < I� Surface tension dominates Into thin film Into thin film 
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5-12(a) and (b), we see that for ��� 	 1, there is good agreement between the high ��� 

solution and the full solution with ℎ����1� 	 0 over the range of * considered (* 	 1 ×
10)� → 1 × 10)�). In Figure 5-12(c) and (d), the range for * is shifted two orders of 

magnitude to * 	 0.1 → 1, while maintaining ��� 	 1 for both solutions and ℎ����1� 	 0  

for the full solution. We see here that agreement between the high ��� solution and the 

full solution degrades in response to the increased evaporation rate, *. In Figure 5-12(c) 

we see that the profile of the film height in the full solution decreases slightly as a result 

of the increased evaporation rate, though the ℎ����1� 	 0 boundary condition is 

maintained. The high ��� solution lacks any constraint on ℎ����1�, and so in Figure 5-12 

(c) we see the film height in the high ��� solution shifting more dramatically than in its 

full solution counterpart. The high ��� solution is unable to maintain the ℎ����1� 	 0 

boundary condition specified in the full solution because we threw out the ℎ������� term and 

in doing so we lost the ability to specify three boundary conditions. As a consequence, 

the velocity profiles in Figure 5-12(d) disagree as well because of the nozzle effect that 

the decreased film height has on the high ��� solution for ��. While the agreement 

between velocity predictions is not exact, the order of magnitude does agree well, along 

with the general trend. If one wanted to simply calculate the maximum velocity for this 

set of parameters then the high ��� solution would be acceptable. Looking again at the 

high ��� solution in Figure 5-12(a), if the boundary condition ℎ����1� on the full solution 

had been something other than zero (perhaps ℎ����1� 	 0.58 as in Figure 5-10), then it is 

clear that the high ��� solution would fail to capture this feature. So the high ��� 
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solution is capable of representing the full solution, but only if the value of ℎ����1� in the 

high ��� solution, which is free to change in response to system parameters A and ���, 

happens to be close to the specified ℎ����1�  boundary condition in the full solution. 

Let us examine these results for the contact line model (Cartesian coordinates) in 

light of the observations of particles at the contact line reported on in Section 4.3. We see 

from Figure 5-9 – Figure 5-11 that evaporation from the thin liquid film produces 

pressure gradients and subsequent fluid motion directed in the minus :� direction from the 

“bulk” liquid (:� 	 1) into the thin film (:� 	 0). We also see that the boundary condition 

ℎ����1� has a significant impact on the velocity profile in the liquid film. As the slope 

ℎ����1� increases, the velocity profile develops a hump such that the maximum lies 

somewhere in the domain, not at the boundary. In subsection 5.2.1 we established that the 

intermolecular forces between nanoparticles and the surface must be greater than thermal 

energy, as evidenced by the muted diffusivity of particles. Particles were therefore stuck 

to the surface. If we consider that in a situation such as this there is likely a threshold 

force for motion, above which a particle that is stuck to the surface will move, then we 

have a good explanation for the delayed particle motion that was described in Section 4.3 

and pictured in Figure 4-7. The conditions were likely such that the velocity profile in the 

thin film looked something like that in Figure 5-11(b) and (e). As the contact line passed 

over a particle, the particle remained stuck to the surface because the force experienced 

by the particle did not meet the threshold force needed to dislodge it. As the contact line 

continued to move past the fixed particle, the velocity profile in the fluid also moved in 

the positive :� direction relative to the fixed particle. The particle experienced an increase 
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in force (as depicted by the velocity profile in Figure 5-11(b) and (e)) until the force on 

the particle exceeded the threshold force necessary to dislodge it and the particle shot out 

in the negative :� direction. The particle eventually came to rest again after moving out in 

the negative :� direction to the point where the force from the fluid was insufficient to 

move the particle. 

These results also provide a good explanation for the interesting observation that 

particles in the path of an advancing contact line were not engulfed by the “bulk” liquid, 

but were instead swept forward (see Figure 4-8 and Figure 4-9). Let’s consider again that 

the conditions were likely such that the velocity profile in the thin film looked something 

like that in Figure 5-11(b) and (e). These conditions produced a high pressure front 

located some distance ahead of the contact line that met the threshold force for dislodging 

a particle. A particle that was fixed to the membrane at a position far from the contact 

line (e.g., near :� 	 0) experienced relatively little force and remained at its location. As 

the contact line advanced, the velocity profile in the fluid moved in the minus :� direction 

relative to the fixed particle. The particle experienced a subsequent increase in force until 

the threshold force was met and the particle was pushed by the advancing contact line. It 

is likely that as the contact line continued to move, the particle remained at the distance 

from the contact line that corresponded to the threshold force for dislodging the particle. 
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Figure 5-13: Solutions to heated patch model (cylindrical coordinates) with �!·#�{¹� 	 ¹ (0° slope). (a) 
& (d) �!: film height. (b) & (e) Û#: fluid velocity. (c) & (f) The surface tension term (�!·#·#·#) (blue) and

the disjoining pressure term (ÜÝa				 �!·#�!�) (red) from Û#. Plots (a), (b), and (c) fix BoBoBoBodddd	�{ × {¹)�� and vary Þ	�{ × {¹)� → { × {¹)��, while plots (d), (e), and (f) fix Þ	�{ × {¹)�� and vary BoBoBoBodddd	�{ × {¹)� → { ×{¹){�. ratioratioratioratioa·:aß < � × {¹)�. Note how velocity is highest at the edge of the heated imaging region 
(·# = {), and decreases when moving away in either direction. 

(a) 

(e) 

(d) 

(b) 

(c) (f) 
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 In Figure 5-13 we see the full solution to the heated patch model. Figure 5-13(a) 

shows that the film height decreases from h� = 1 at the far-field to h� < 1 at the origin. For 

fixed ���, the film height decrease is more pronounced with increased evaporation rate, 

A. Figure 5-13(b) shows that the velocity �� is negative and increases in magnitude with 

increasing *. The fluid velocity reaches a maximum at the edge of the heated region, 

x� = 1. The velocity decreases nearly linearly towards x� = 0 and with nearly 1 x�⁄  

dependence moving towards the far-field. In this plot, converting �� back into dimensional 

units using �± yields a maximum velocity ranging from about 1.2 × 10)� 	m s⁄  to 

6 × 10)� 	m s⁄ . In Figure 5-13(c) we see that the surface tension component of the 

velocity, ℎ������� (in blue), is negative and the disjoining pressure component of the 

velocity, ��� 	  !"# !$ (in red), is positive, which means that both components work to produce 

negative �� according to equation (5-35). In addition, we see that the surface tension 

Figure 5-14: Comparison between heated patch model (cylindrical coordinates) high ÜÝa solution 
and the full solution with �!·#�{¹� = ¹ (0° slope). (a) & (c) �!: film height. (b) & (d) Û#: fluid velocity. In 
all plots ÜÝa = { and Þ is varied ({ × {¹)� → { × {¹)�). Agreement is good, even though ÜÝa is not 
that high. 

 

(a) (b) 
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component of �� is greater than disjoining pressure component of �� for all values of * 

examined. Unlike the contact line solution results discussed earlier, this is the behavior 

that we would expect when ��� is small. From Figure 5-13(a) we see that for moderate 

evaporation rate, *, the dimensionless film height is approximately ℎ�	~	1 at :� 	 1 and 

our definition for the critical dimensionless number, I� (equation (5-92)), is valid. For 

the values of *, ���, and ℎ����¾� specified here, the conditions are such that ℎ��� ≪ 1 over 

the entire domain and I� is therefore very large (bottom row of Table III). In Figure 

5-13(d) and (e), we see that for fixed *, the interface shape and fluid velocity change 

slightly in response to ���. In response to increased ���, the film height, ℎ�, rises at the 

boundary :� 	 0. As mentioned previously, this makes sense since increased ��� means 

increased disjoining pressure body force, which seeks to make the liquid film level. 

Decreased film height with decreased ��� has the effect of increasing �� because the fluid 

is essentially flowing through a smaller nozzle. Though present, the effect is not as 

dramatic here as it was in Figure 5-11(e). In Figure 5-13(f) we see that the surface tension 

component of the velocity, ℎ������� (in blue), is negative, and the disjoining pressure 

component of the velocity, ���	  !"# !$ (in red), is positive for all values of ��� and it is the 

surface tension component that dominates.  

Figure 5-14 provides a comparison of the high ��� analytical solution in equation 

(5-89) to the full solution that comes from solving equation (5-71) numerically. We see 

that even for a value of ��� 	 1, there is good agreement between the high ��� solution 
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and the full solution with ℎ����1� 	 0 over the range of * considered (* 	 1 × 10)� →
1 × 10)�). The agreement improves with increased ���. 

Let us examine these results for the heated patch model in light of the 

observations of particle motion in a thin film reported on in Section 4.4 and Section 4.5. 

We see from Figure 5-13 that evaporation from the imaging region of the liquid film 

produces pressure gradients and subsequent fluid motion directed in the minus :� direction 

from the far-field (:� 	 ¾ ≫ 1) into the thin film (:� = 0). Fluid velocity decreases nearly 

linearly from its maximum at the edge of the imaging region to the origin. We see from 

Figure 5-13(b) that fluid velocity increases with increased evaporation rate *. Recall that 

Figure 4-11 – Figure 4-14 revealed an interesting relationship between the level of 

magnification and which particles in the field of view moved. At relatively high 

magnification (Figure 4-13 and Figure 4-14), nearly all of the particles in the field of 

view aggregated by moving towards the center of the image (minus :� direction). At 

relatively low magnification (Figure 4-11 and Figure 4-12) only the particle near the 

perimeter moved toward the center of the image, while the particles in the center of the 

image experienced little to no movement. At the beginning of Section 5.2 we discussed 

how the flux of electrons through the image, and subsequent heating and evaporation, 

should change with the level of magnification. Relatively speaking, low magnification 

translates to low flux and low evaporation rate, while high magnification translates to 

high flux and high evaporation rate.  

With this in mind, let’s imagine that the threshold force to dislodge a fixed 

particle corresponds to a fluid velocity of �� = 2 × 10)�. Then according to Figure 
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5-13(b), the three plotted values for * would have three different signatures of particle 

motion. For * 	 0.001, none of the particles in the domain of 0 ≤ :� ≤ 1 would 

experience the threshold force for motion. For * 	 0.0055, the particles located 

approximately between 2 3⁄ ≤ :� ≤ 1 would experience enough force to move. The 

particles would move in the minus :� direction and come to rest near :� ≈ 2 3⁄ , producing 

a result that possibly resembles Figure 4-12. For * 	 0.01, the particles located 

approximately between 1 3⁄ ≤ :� ≤ 1 would experience enough force to move. The 

particles would move in the minus :� direction and come to rest near :� ≈ 1 3⁄ , producing 

a result that possibly resembles Figure 4-13. This hypothetical description is meant 

simply to illustrate the point that the results of our model, namely a linear fluid velocity 

profile that decays towards the center of the image and a maximum fluid velocity that 

increases with increased evaporation rate, provide a convincing explanation for the 

observations of Section 4.4 and is in excellent agreement with the results plotted 

throughout Section 4.5. 

Pressure Gradients and Flow Conclusion: Variations in thickness of a thin liquid film 

produce lateral pressure gradients in the film that are driven by gradients in the 

disjoining pressure and the surface tension (Laplace pressure) in the fluid. Subsequent 

fluid velocities can be quite significant (on the order of 1.2 × 10)� 	m s⁄ → 1.4 ×
10)� 	m s⁄ ). Surprisingly, solutions to the differential equations in the contact line model 

(Cartesian coordinates) reveal that even for low disjoining pressure bond number ���, it 

is possible to have fluid motion into the thin film region driven predominantly by the 

disjoining pressure effect with surface tension acting in opposition. A critical 
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dimensionless number, I�, was defined that determines the direction in which surface 

tension drives flow and whether disjoining pressure or surface tension dominates. I� 

depends on evaporation rate, *, disjoining pressure Bond number, ���, and slope of the 

interface, ℎ���, which when evaluated at the contact line refers to the traditional contact 

angle. Interesting velocity profiles were revealed that possessed a maximum located 

within the domain of the thin film (rather than at the boundary). If we consider that there 

is likely a threshold force necessary to move a particle that is resting on the membrane 

surface then the behavior of fluid flow arising from this phenomenon provides convincing 

explanations for the interesting particle motion reported in Chapter 4. 

Section 5.3: Suggestions for novel nanoparticle assembly techniques 

Researchers have reported on convective-capillary assembly of nanoparticles 

using patterned substrates [82], [86], [96], [97], along with other perturbations such as a 

needle dipped into the drop [98] or external electric field [99], in order to direct the shape 

and properties of the deposited nanocrystal. In the experiments discussed in Section 4.4, 

we selectively heated sections of the sample with the electron beam, which enhanced 

evaporation and drove aggregation through the mechanism detailed in Section 5.2. This 

suggests that if one could controllably enhance or suppress the evaporation rate at 

different locations on a sample then aggregation could be directed and patterns could be 

produced. Indeed, this approach to patterned self-assembly is an active field of research 

and is termed evaporative lithography. Harris et al. have several publications on the 

subject [100–102]. Typically, a mask with holes or vias with other geometries is placed 
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over a substrate with a liquid film containing particles. The mask suppresses evaporation 

in the regions without holes to produce a variation in evaporation rate across the sample. 

As an alternative to this approach, we suggest an apparatus illustrated in Figure 5-15. 

Using the modified Langmuir-Blodgett technique for assembling nanoparticles on a 

surface, one could adapt the apparatus to include a light pattern projected at the contact 

line that modifies the drying pattern through selective heating. Particles would be 

convected toward the regions of highest evaporation. The light pattern could be shown 

from either the top, or, if the substrate was transparent, the bottom. In the case of bottom-

side illumination, one would want to be aware of the potential for Rayleigh–Bénard 

convection. 

As an approach to patterning nanoparticles without the need for masks or 

substrate modification, recall the interesting interaction of particles with an advancing 

contact line described in Section 4.3. Particles that were deposited on the surface with 

random placement and orientation were brought into alignment by the advancing contact 

line. This effect could be exploited to achieve ordered deposition of nanoparticles. In the 

modified Langmuir-Blodgett technique used by others [74], [76], [82], a sample is 

withdrawn from a stationary solution or a straight edge is used to sweep a drop across a 

stationary sample. In either case, the process could be modified to include forward and 

backward steps. For example, in order to achieve orientation of anisotropic particles such 

as nanorods, one could move the stage in a cycle of two steps forward followed by one 

step backward. During the forward steps, particles would be ejected from the bulk liquid 

and deposited on the substrate surface. During the backward step, the advancing contact 
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line would serve to orient the rods parallel to the contact line (as pictured in Figure 4-8). 

Additionally, one could work with dilute nanoparticle solutions to produce striped 

depositions of nanoparticles. An illustration of the dilute nanoparticle patterning process 

is pictured in Figure 5-16. 
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Particle  
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edge 
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Figure 5-15: Illustration of proposed technique for patterned deposition of nanoparticles on a blank 
substrate. Light shined onto the sample through a photomask, or with an interference technique, 
would selectively heat the thin film of liquid at the contact line and drive preferential evaporation 
and thus convection of particles towards the heated region (indicated with red arrows). 
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(a) (b) 

(c) (d) 

Figure 5-16: Illustration of a proposed cyclic particle deposition and alignment process for dilute 
nanoparticle solutions. Color coded as follows: gray (substrate), blue (solution), yellow (nanorods). 
(a)  The substrate is withdrawn from the solution and nanoparticles are deposited. (b) The substrate 
is moved back into the solution, which serves to push the deposited nanorods into alignment with the 
contact line, all at the same location on the substrate. (c) The substrate is again withdrawn from the 
solution in order to deposit more particles. (d) The substrate is again moved back into the solution in 
order to orient and place the particles at the position of the contact line. The ratio of forward steps to 
backward steps could be tuned in order to control the spacing between rows of deposited 
nanoparticles. 
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Chapter 6: Conclusions and Outlook 

Section 6.1: Conclusions 

A nanofluidic platform, dubbed the nanoaquarium, for in situ TEM and STEM 

real-time imaging of processes in liquid media has been presented [13]. The device 

consists of two suspended silicon nitride membranes (50 nm thick) sandwiching a thin 

fluid chamber (100 nm – 400 nm) whose height is defined by the thickness of a silicon 

oxide spacing layer. The fabrication details, including a thorough treatment of the plasma 

activated wafer bonding process, were presented. The fabrication approach for the 

nanoaquarium offers several important advantages over other liquid-cell (S)TEM devices 

such as an exceptionally thin liquid height, integrated electrodes for sensing and 

actuation, compatibility with lab-on-chip technology, and wafer level processing to 

enable mass production of identical, inexpensive devices. Also, the selection of materials 

used in construction of the nanoaquarium makes it possible to use the device to study 

systems with harsh chemistries (acids, bases, strong solvents), which isn’t possible in 

many of the similar device that use materials such as glue, epoxy, or indium for sealing. 

Device utility was verified using aqueous suspensions of gold and polystyrene 

nanoparticles. Motion of gold particles in solution was observed using a FEI Quanta 600 

FEG Mark II scanning electron microscope with STEM detector (20 kV – 30 kV 

acceleration voltage). The device provided high contrast images of nanoparticles 

suspended in liquid and allowed monitoring of particle motion and aggregation. It should 

be noted that the volume of solution needed in the experiment was very small (< 3 µL), 

making this an appealing technique when samples are scarce. The hermeticity of the 
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device was excellent; the device was effectively leak-proof, both in the vacuum chamber 

of the microscope for periods of hours, and at room conditions for periods of days. The 

membranes of the viewing window of the nanoaquarium were found to deform and bow 

outward due to pressurization of the internal fluid when the device was clamped in its 

holder. The interaction of light with the stack of materials in the viewing window of the 

device was modeled, providing a means to estimate membrane deformation. By counting 

the interference rings visible with a light microscope, the shape of the bowed membrane 

was approximated and used as a means to estimate the internal pressure of the fluid. 

Kinetics of colloid aggregation was studied [50]. We observed the motion and 

interactions of particles in liquid media in real time with nanoscale resolution, allowing 

us to gather information which cannot be obtained with any other technique. Our 

experiments provide a level of detail that previously could be afforded only by numerical 

simulations. To obtain similar information with frozen samples would be at best 

extremely tedious and at worst impossible. Process kinetics and fractal dimension of the 

aggregates are consistent with three-dimensional cluster-cluster diffusion-limited 

aggregation. The data collected with the nanoaquarium is consistent with prior 

observations obtained by other means [51–54], [69]. This is an important finding for 

establishing in situ liquid-cell (S)TEM as an experimental technique that can produce 

meaningful results free from artifacts associated with the measurement 

technique/apparatus. We also observed and explained an interesting growth regime in 

which large aggregates grown in a shallow nanochannel were found to possess fractal 

characteristics consistent with three-dimensional growth, despite the expectation of 
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confinement effects. This apparent paradox was resolved through in situ observations of 

the interactions between individual particles and clusters at various stages of the 

aggregation process that yielded the large aggregates. It was found that individual 

particles and small clusters initially aggregated in a nearly three-dimensional 

environment until the clusters grew large enough that movement was confined by the 

nanochannel and only lateral movement was permitted. These clusters aggregating in a 

two-dimensional environment already possessed characteristics of three-dimensional 

growth and the characteristics were preserved in the resulting large clusters. 

For the first time, using electron microscopy, the behavior of nanoparticles at the 

contact line and in an evaporating thin film of liquid was investigated. In both cases, 

particles were stuck to the silicon nitride surface. With a receding contact line, particles 

were propelled from the “bulk” liquid into the thin liquid film, though often not until the 

contact line had receded past the particle by some distance. With an advancing contact 

line, particles were not engulfed by the “bulk” liquid, but were instead pushed forward, 

maintaining a separation distance from the contact line. Away from the contact line, 

particles in the thin liquid film remained stably dispersed on the silicon nitride surface 

until they were imaged by the electron beam, at which point the particles in the field of 

view aggregated towards the center of the image. As the magnification of the image 

increased, so did the rate of aggregation and the proportion of particles that participated 

in the aggregation process. The underlying physics that drove these processes was 

modeled by considering the effect of disjoining pressure and surface tension on the 

pressure field in the fluid. An explanation for the phenomena was provided based on an 



148 
 

elevated evaporation rate due to heating from the electron beam in the imaging region. 

This caused variations in the thickness of the thin liquid film, which created lateral 

pressure gradients due to gradients in the surface tension and the disjoining pressure of 

the liquid film, both of which depend on the shape of the liquid-vapor interface. An 

unexpected result of the model showed that even for low disjoining pressure Bond 

number, a regime in which the surface tension force is expected to dominate the 

disjoining pressure body force, the disjoining pressure can overpower the surface tension 

when certain conditions are met. Criterion was identified, in the form of a critical non-

dimensional number, which determines whether the surface tension or the disjoining 

pressure dominates fluid flow, and whether the surface tension effect drives flow into or 

out of the thin film. The critical non-dimensional number depends on the evaporation rate 

of the liquid, the disjoining pressure Bond number, and slope of the interface (which for a 

droplet is governed by the traditional contact angle). Insight into the behavior of particles 

at the edge of a drop and in thin films was gained through this analysis. Additionally, 

novel nanoparticle assembly techniques inspired by the results of the investigation were 

discussed. 

Section 6.2: Outlook 

As mentioned in the introduction, there are numerous applications for a liquid-cell 

such as the nanoaquarium for in situ electron microscopy of nanoscale phenomena in 

liquid media. Examples include aggregation, colloidal crystal formation, liquid phase 

growth of structures such as nanowires, electrochemical deposition and etching of 
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materials for fabrication processes as well as battery applications, interfacial phenomena, 

boiling and cavitation, and biological interactions. Let us briefly discuss some of these 

future applications. 

6.2.1: Aggregation and colloidal crystal formation 

This is a vast field of research that includes a variety of phenomena and 

techniques in addition to the two topics explored in this dissertation (diffusion limited 

aggregation and convective-capillary assembly at the contact line). Additional topics 

include assembly of nanoparticles under the influence of external fields, such as electric 

field, thermal gradient, or concentration gradient. Assembly under various processing 

conditions such as elevated temperature (via resistive heaters) or elevated pressure can be 

explored. It was determined in Section 2.10 and Section 4.1 that the membrane windows 

can sustain significant internal fluid pressure without rupture.  

The gold particles used in the diffusion limited aggregation study herein (Chapter 

3) were amorphous in structure, but by using particles with crystallographic structure one 

can perform an interesting solution-based self-assembly process called oriented 

attachment (OA). In OA, the assembly process does not simply depend on the probability 

of particles colliding, but also includes the relative crystallographic orientation of 

particles as a factor in determining the probability and strength of binding. Penn and 

Banfield first suggested that OA was a dominant growth mechanism in the early stages of 

certain crystal growth processes, providing a pathway for direct combination of 

nanoparticles to form fascinating aggregate structures [66], [67]. Experimental evidence 

for OA has been reported by many researchers in the form of irregular, anisotropic 
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nanocrystal structures such as chains, butterflies, horseshoes, and other odd shapes 

clearly comprised of individual nanoparticle building blocks that stuck together with 

preferred orientation [64], [65], [103–108]. Additionally, crystal defects such as 

dislocations, twins, stacking faults, and misorientation in these structures imply direct 

coalescence of seed nanoparticles [56], [63]. The OA process, however, has not been 

observed in situ, and the ability to observe single binding events between nanoparticles 

would be a powerful capability for exploring and understanding this phenomenon. The 

nanoaquarium has been used to observe single binding events between anisotropic 50 nm 

gold particles in water as pictured in Figure 6-1. In this experiment, gold particles were 

confined in the ~100 nm tall liquid chamber and were often stuck to the top or bottom 

membrane. Occasionally, however, a particle would break free from the membrane 

surface and diffuse randomly, sometimes exiting the field of view, sometimes entering 

the field of view, and sometimes colliding with another particle to form a cluster as 

monomer 

monomer 

dimer 

monomer 

monomer 

trimer 

Figure 6-1: A single binding event in a system of 50 nm amorphous gold particles in water. In the 
first frame, two monomers and a dimer are present. In the following frame, the dimer has become a 
trimer by addition of a single particle. 
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illustrated in Figure 6-1. The nanoaquarium would thus be useful for investigating the 

oriented attachment self-assembly process as well. 

6.2.2: Nanoscale boiling and bubble formation 

The nanoaquarium provides a platform for studying boiling and bubble formation 

on the nanoscale. Future versions of the device can be modified to include resistive 

heaters to precisely control the temperature in the imaging chamber. However, even with 

the current design the device can readily be used to study electron beam-induced boiling 

Figure 6-2: Series of bright field TEM images (Hitachi H9000) of beam-induced bubble formation in 
the nanoaquarium with a solution of ZnO-KOH electrolyte. Horizontal field of view in each image is 
985 nm. 1 second elapses between frames (a), (b) and (c), and 2 seconds elapse between frames (c) 
and (d). Images courtesy of Dr. Frances M. Ross (IBM). 

(a) (b) 

(c) (d) 
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and bubble formation. Using our nanoaquarium in a TEM (Hitachi H9000) with high 

acceleration voltage (up to 300 kV), Dr. Frances M. Ross at the IBM T. J. Watson 

research center was able to controllably generate bubbles under certain circumstances. An 

example of bubble generation in a ZnO-KOH electrolyte solution is shown in Figure 6-2. 

Further investigation is needed to understand the source of the bubbles in Figure 6-2, but 

possible explanations include boiling, radiolysis, or a change in gas solubility in the 

liquid with temperature that caused dissolved gas to come out of solution. The 

nanoaquarium can also be used to study heterogeneous nucleation and boiling from 

surfaces patterned to enhance boiling and reduce the superheat that is needed to sustain 

the boiling process. 

6.2.3: Electrochemical processes 

As demonstrated in Section 2.11, the integrated electrodes of the nanoaquarium 

can be used to apply electric potential in situ in order to sense and actuate 

electrochemical processes (see Figure 2-19 – Figure 2-21 for examples of in situ 

electrochemical deposition of copper). The nanoaquarium can thus be used to 

characterize the morphology and kinetics of various electrochemical deposition 

processes. The results of which can be used to design deposition processes with desired 

outcomes (perhaps a continuous film is desirable for one application but a distributed 

array of individual islands is desirable for another application). Conditions for dendritic 

growth of a material system can be ascertained. Electrochemical etching processes can be 

studied as well, along with systems that cycle between periods of deposition and etching 

(e.g. batteries). Interesting problems in cycling systems include issues of dendritic growth 
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during deposition (often undesirable) and how to modify the stripping cycle in order to 

remove the dendritic features (simple uniform stripping often leaves islands of material 

from the dendrite when the feature becomes detached from the electric potential source, 

i.e., the electrode). 

6.2.4: Biological systems 

Another field of research where the nanoaquarium will be useful is in the study of 

nanoscale biological interactions. Subcellular biological studies involving systems such 

as DNA, motor proteins, cytoskeletal filaments, or organelles such as ribosomes are 

currently performed dynamically through fluorescent labeling (fluorophores or quantum 

dots) and observation with an optical microscope, or statically through high atomic 

number staining and complicated sample preparation (e.g., freeze drying and thin 

sectioning) and observation with an electron microscope. Despite the diffraction limited 

resolution of light, optical microscope studies of single molecules can be localized with 

nanometer resolution by understanding the point spread function of a fluorescing point 

source and backing out the source’s position. However, this approach fails to distinguish 

closely spaced neighbors and does not provide detailed information on conformational 

and structural changes. With the nanoaquarium, we hope to perform dynamical 

experiments on biological systems (e.g., myosin motor proteins walking on actin 

filaments) in the (S)TEM with nanoscale resolution of all features. Several issues must be 

addressed to facility in situ (S)TEM studies of biological samples. Staining techniques for 

the electron microscope must be developed that produce reasonable contrast while 

retaining biological function of the stained feature. Staining could be in the form of a 
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molecular stain that coats the entire surface of a sample and is able to penetrate into small 

features, or in the form of high contrast particle labels (e.g., gold) at select points on a 

sample. The interaction of the electron beam with biological samples must be explored. 

Will the beam cause radiation damage to the sample? If so, with what consequence and 

can this harmful effect be mitigated by modifying the electron beam imaging conditions? 
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Appendix 

: Image processing, image analysis, and data fitting for diffusion Appendix A
limited aggregation in Section 3.3.                                     

ImageJ (version 1.37) was used to perform the image processing and analysis of 

the grayscale STEM images. The raw footage was processed by smoothing the data with 

a median filter, subtracting the background, adjusting brightness and contrast, and 

thresholding to produce a binary image. Analysis was performed on the binary images 

using the fractal analysis plugin “FracLac for ImageJ,” along with ImageJ’s built in 

“Analyze Particles” function. FracLac’s subscan function was used with the particle 

analyzer option enabled to isolate individual clusters and then calculate the fractal 

dimension using a box counting algorithm. To investigate the effect of thresholding level 

on the results, image analysis was carried out with the “auto” (“default”) threshold setting 

T0 (based on the modified IsoData method as explained on the ImageJ website) as well as 

threshold values of T0 ± 0.1*T0 and T0 ± 0.2*T0, which resulted in five image sets. The 

five sets of data obtained from the same footage were used to generate the mean values 

and the standard deviations for the fitted values. The data presented in Figure 3-3 is for 

the image set processed with a threshold setting of T0. 

Fitting of the data was performed in Matlab using the Curve Fitting Toolbox. The 

measured number of clusters was correlated with an expression of the form: 

( )( ) 111)( 00 +++−= bttNtN . (A-1) 

Both t0 and the exponent b were fitted using least squares. Assuming b < 0, equation 

(A-1) satisfies the requirement that after a long time all of the particles/clusters aggregate 
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into a single cluster N(∞) = 1, and that at the beginning of the aggregation process N(-t0) 

= N0 >> 1 is the number of individual primary particles within the observation volume. 

The total number of particles, whether they are in a cluster or not yet aggregated, is 

constant due to conservation of mass. This assumes that particles/clusters that move out 

of the field of view are balanced by particles/clusters that move into the field of view, 

which is supported by Figure 3-3(a). N0 was determined by counting the total foreground 

pixels in an image frame and then dividing by the number of pixels for a single primary 

particle. This value was computed for each frame of the video and then averaged to give 

an overall value for N0.  

Similarly, the mean cluster size was correlated with 

( ) attatS b −+++⋅= 11)( 0 , (A-2) 

where a and b are fitted. The same t0 value was used as in equation (A-1). The form of 

equation (A-2) was selected so that the average cluster at the beginning of the 

aggregation process is comprised of a single particle, i.e., S(-t0) = 1.  

Finally, the average cluster radius, normalized with the primary particle radius (R0 

= 2.5 nm), was correlated with 

( ) attaRtR b −+++⋅= 11)( 00 , (A-3) 

where a and b are obtained by least square fitting. The form of expression (A-3) was 

selected so that the radius of an average cluster at the beginning of the aggregation 

process is equivalent to the radius of a single particle, i.e. R(-t0)/R0 = 1. 



157 
 

: Image processing and image analysis for capillary-convective Appendix B
assembly in Section 5.1 

Video from the microscope was recorded and used for analysis. The video capture 

rate was fixed by the software (100 fps, 10 ms/frame) and was not synchronized to the 

frame rate for the microscope image (117 ms/frame, 317 ms/frame, or 967 ms/frame). 

The lack of synchronization, while undesirable, was at least in favor of oversampling the 

data. The video was in a compressed format and had to be uncompressed so that the 

images could be read by Matlab and ImageJ. VirtualDub 1.9.11 was used to generate 

individual PNG files, sampled at a rate of 10 fps. 

ImageJ 1.37 was used with a macro script to automate the processing of over 

100,000 images. Images were smoothed with a 2 pixel median filter, background was 

subtracted with a “rolling ball” algorithm, and then they were inverted and saved as 8-bit 

TIFF’s for further analysis. 

Particle and cluster tacking was performed by two methods. In the first method, 

ImageJ was used to threshold the images and the built-in particle analyzer was used to 

track the number of distinct objects (particles or clusters) and their size in each frame. By 

thresholding the image, aggregates that contained multiple individual particles became a 

single entity, and so this approach was good for tracking clusters, but not individual 

particles. See Figure B-1 for an example. 
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In the second method, Matlab was used for particle tracking on the processed 

TIFF’s using code developed by the Maria Kilfoil research group [87]. The Kilfoil code 

was adapted from particle tracking code using IDL, developed by David Grier, John 

Crocker, and Eric Weeks [109]. Details of the code and tutorials on how to use it can be 

found on the respective websites for each group. Briefly, the methodology is as follows. 

First, a single frame from a batch of interest is read into the program and the user adjusts 

various settings (particle size and shape, pixel intensity, etc) until the program 

successfully finds the particles of interest. The code looks for particles as light pixels on a 

dark background, as would be generated from fluorescent microscopy (hence the need to 

invert the STEM images). The batch of images is then processed using the settings 

decided on in the first frame. The coordinates for the particles in each frame are linked to 

coordinates in other frames based on user input (e.g., max displacement between frames) 

so as to form trajectories. The final output from the Kilfoil code is a matrix called “res” 

Figure B-1: Example of an unprocessed image (L) and the same image after processing and 
thresholding in ImageJ (R). 
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that contains the following information: columns 1 and 2 are the x and y positions (in 

pixels); column 3 is the integrated intensity; column 4 is the radius of gyration squared 

(pixel squared); column 5 is the eccentricity; column 6 is the frame number in which the 

feature was found; column 7 is the time at which the image was recorded; and column 8 

is the trajectory ID number. The user must then manipulate this “res” matrix as he/she 

sees fit to extract the information of interest (e.g., position of particles, distance between 

particles, velocities, etc). In contrast to the first method with ImageJ, this method 

preserves individual particle identification even when the particle becomes part of a 

cluster (so long as the particle doesn’t deform or coalesce as bubbles would). 

As mentioned at the beginning of this section, there was an issue with 

unsynchronized frame rates for the video and oversampling of the images. As a result of 

the oversampling, there were frequent frame repeats. For example, if the microscope was 

rastering at a frame rate of about 3 fps (a common setting for these experiments) then the 

uncompressed frames that were used for image analysis, which were sampled at 10 fps, 

contained 7 repeat frames for every 3 unique frames. The repeat frames were not a 

problem for measuring quantities such as cluster size, cluster count or mean distance 

between particles. However, the repeat frames did present a problem for calculating 

particle velocity. Velocity was calculated by measuring the displacement of a particle 

from one frame to the next and dividing it by the time step determined by the frame rate 

(0.1 seconds for 10 fps). But with many repeat frames present due to oversampling, the 

velocity calculations contained frequent zero velocity frames where it appeared as if 
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nothing moved. This erroneous artifact was a consequence of oversampling the images. 

The Matlab code was modified to address this issue in the following manner: 

• Take frame Y and compare it to frame Y + 1 by calculating a displacement 

vector, where each row contains displacement information for a particle in 

the image. 

• If the sum of the displacement vector is non-zero, then frame Y and frame 

Y + 1 are not duplicates and the velocity calculation can proceed by 

dividing the displacement vector by the time step to get the velocity 

vector. 

• If the sum of the displacement vector is zero, then frame Y + 1 is a 

duplicate of frame Y. Even if one were to scan a completely static object 

twice in a row, there would be enough noise/drift to produce an image that 

differs by at least a few pixels. So a zero sum displacement vector 

indicates an identical repeat frame. A value of 1 is added to a counter and 

the velocity calculation is postponed. 

• The next set of images is compared, frame Y + 1 to frame Y + 2. If this is 

another pair of repeat frames then another 1 is added to the counter and the 

velocity calculation is postponed. 

• The code continues to compare frames and postpone the velocity 

calculation until the sum of the displacement vector is non-zero, indicating 

that a pair of non-repeat frames has been reached. The velocity is then 
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calculated by dividing the displacement vector by (the time step * (the 

counter value +1)). 

• The velocity calculation performed on the non-repeat frames is used to fill 

in values for velocity in the current frame and the previous number of 

duplicate frames given by the counter. This spreads out the displacement, 

and subsequent velocity, measured in the last pair of frames over all the 

previous duplicate frames. 

• The counter is reset to zero, and the cycle continues. 

: Normalization term for measuring the mean distance between Appendix C
particles 
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result, the ensemble mean distance,	�̅, increases because there are more particles located 

further away from each other. When looking at two images of the same system at 

different magnifications, the �̅ that is measured will be different. Yet these two images 

represent the same system at the same condition. Thus �̅ must be scaled in such a way 

that the measurement is independent of magnification. 

Matlab was used to investigate the relationship between �̅ and view window size 

under various system conditions/factors such as the unit cell size and shape (°è and °é 

values, which affect concentration), and view window shape (VR: D ê⁄ ). In each case, 

the unit cell ratio (°è/°é), and view window ratio (D ê⁄ ) values were fixed and the size 

of the view window was varied (i.e., D was varied). �̅ was calculated for each view 

window size and plotted as a function of different variables in order to investigate 

relationships and find trends. The following plots represent one such case where the unit 

cell ratio (UC) is 1 with °è 	 1 and °é 	 1, and the view window ratio (ïF) is 1 

(D ê⁄ 	 1 ). 
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The following table depicts results for all of the systems tested: 
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There are several conclusions to be drawn from this table and the graphs above. 

• For a given system of any UC ratio and VR, as the view window increases, �̅ 

scales with either linear or power law dependence on all of the variables. �̅ scales 

linearly with square root of the area of the view window. �̅ scales linearly with 

the diagonal of the view window. �̅ × diagonal scales linearly with particle 

count. �̅ scales with power law dependence on particle count. �̅ particle	count⁄  

scales with power law dependence on square root of the area of the view window. 

�̅ particle	count⁄  scales with power law dependence on the diagonal of the view 

window. 

• When the concentration is changed (by changing °è or °é) the new system has all 

the same scaling dependencies (linear or power law) as any other system, 

although the slopes of the dependencies may not be the same. For example, for a 

fixed VR, �̅ × diagonal vs particle count slope varies depending on the unit cell 

size and spacing. 

• Similarly, when the view window ratio is changed, all the same variable 

dependencies hold true, although the slopes, again, may be different. For example, 

for a fixed UC, the slope of �̅ vs square root of the area of the view window 

varies depending on the VR. Interestingly, when the VR is fixed and the UC is 

changed, the slope of �̅ vs square root of the area of the view window appears to 

be constant. 
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• There is, however, one relationship that appears to be constant, regardless of unit 

cell size, unit cell shape, or view window ratio: �̅ vs diagonal of the view window 

(highlighted blue in the table). Examining the highlighted columns, the 

relationship logÇ�̅È 	 log�diagonal� − 1 can be rearranged to give �̅ 	
�

�
×

diagonal, which is confirmed by the preceding set of columns for �̅ vs diagonal.  

• It is interesting to note that the �̅ vs diagonal relationship holds approximately 

true, regardless of particle concentration, as long as there is a regularly distributed 

system of particles. Thus, this gives a good absolute measure of aggregation. In 

any system, �̅ diagonal⁄  can at most be equal to 1 ð⁄ . Any value less than 1 ð⁄  

indicates that the system is aggregated in some way and is not in a state of even 

distribution. The lower bound of �̅ diagonal⁄  will depend on the size and shape of 

the particles, and how they pack with each other. 

 

From this analysis, we can conclude that �̅ should be scaled by the view window 

diagonal in order to collapse the initial �̅ value to a normalized �̅ value that is equivalent 

across different view window sizes and shapes. 

: Radial box position coordinate system Appendix D

We want to explore the idea that particle motion in our system could be dependent 

on where the particle is located in the image. So we would like to display particle 

velocity as a function of radial position from the center of the image. The image, 

however, is not circular, but rather is a rectangle measuring 1024 pixels wide by 881 
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pixels tall. Three possible coordinate systems are illustrated in Figure D-1. Particles 1, 2 

and 3 lie at the same distance from an edge of the image, and they should be represented 

by the same radial position value. A circle that sweeps out from the center of the image 

captures particle 1, but fails to capture particles 2 and 3 at the same radial position. An 

ellipse, with an aspect ratio equal to the aspect ratio of the image, that sweeps out from 

the center of the image captures particles 1 and 3, but fails to capture particle 2 at the 

same radial position. A rectangle, with an aspect ratio equal to the aspect ratio of the 

r r 

r 

Circle 

Rectangle 

Ellipse 

2 1 

3 

2 1 

3 

2 1 

3 

Figure D-1: Three possible coordinate systems for 
measuring the radial position of particles from the 
center of the image.  
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image, that sweeps out from the center of the image captures particles 1, 2 and 3 at the 

same radial position. And so the “radial box position” was selected as the coordinate 

system for representing a particle’s position relative to the center of the image. The radial 

box position of a particle was calculated in the following manner:  

• Set the origin to the center of the image and calculate the : and ¶ position relative 

to the origin. 

• Take the absolute value of the : and ¶ position. 

• Divide the : value of the particle position by the aspect ratio (1024 881⁄ 	

1.162) in order to scale the x position to be in the same range as the ¶ position.  

• Compare the scaled : value to the ¶ value and take whichever is greater, this 

gives the radial box position on which the particle lies. 

: Mean squared displacement due to Brownian motion Appendix E

Let us consider the one-dimensional random walk of a particle due to Brownian 

motion, with analysis outlined in “Physicochemical Hydrodynamics” [91]. The 

probability of finding a particle at position : after n random steps of length � is given by 

the Gaussian distribution: 


�n, :� 	 �2	u	n	���)� �⁄ 	ð)�
Ø �	k	�Ø⁄ , (E-1) 

where the number of steps is taken to be proportional to time according to 

n 	 ¢	J. (E-2) 

Concentration is then represented as 
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ñ 	 ñ±	
�:, J�, (E-3) 

which we plug into the 1-D diffusion equation 

ÂñÂJ 	 �	 Â�ñÂ:�, (E-4) 

where � is the diffusion coefficient, to find that  

¢ 	 2� ��⁄ . (E-5) 

Substituting equations (E-2) and (E-5) into (E-1) for a particle on a random walk in one, 

two, and three dimension produces, respectively, 


�©�:, J� 	 1�4	u	�	J�� �⁄ 	ð)�Ø �	©	�⁄ , (E-6) 


�©�:, ¶, J� 	 1�4	u	�	J�	ð)��ØoòØ� �	©	�⁄ ,	 (E-7) 


�©�:, ¶, À, J� 	 1�4	u	�	J�� �⁄ 	ð)��ØoòØo1Ø� �	©	�⁄ .	 (E-8) 

The integral of each probability over its domain must be 1, i.e., 

Å
�©�:, J� �: 	 1, (E-9) 

ó
�©�:, ¶, J� �:	�¶ 	 1,	 (E-10) 

ô
�©�:, ¶, À, J� �:	�¶	�À 	 1.	 (E-11) 

Converting the 2D expression in (E-10) to cylindrical coordinates and the 3D expression 

in (E-11) to spherical coordinates, and then integrating over the angular terms produces: 


�©�j, J� 	 12	�u	�	J�� �⁄ 	ð)®Ø �	©	�⁄ , �−∞ < j < ∞�, (E-12) 


�©�j, J� 	 j	 12	��	J�	ð)®Ø �	©	�⁄ , �0 < j < ∞�,	 (E-13) 
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�©�j, J� 	 j� 	 12	�u	�	J�� �⁄ 	ð)®Ø �	©	�⁄ , �0 < j < ∞�.	 (E-14) 

We can now calculate the mean squared displacement of a particle undergoing a random 

walk in 1, 2, or 3 dimensions by integrating the square of the displacement times the 

probability of displacement, 

〈j�〉 	 Åj�	
�j, J� �j, (E-15) 

to get 

〈j�〉�© 	 2�J, (E-16) 〈j�〉�© 	 4�J,	 (E-17) 〈j�〉�© 	 6�J.	 (E-18) 
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